1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void update_cpu_load_nohz(void); 181 #else 182 static inline void update_cpu_load_nohz(void) { } 183 #endif 184 185 extern unsigned long get_parent_ip(unsigned long addr); 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 extern void 196 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 197 #endif 198 199 /* 200 * Task state bitmask. NOTE! These bits are also 201 * encoded in fs/proc/array.c: get_task_state(). 202 * 203 * We have two separate sets of flags: task->state 204 * is about runnability, while task->exit_state are 205 * about the task exiting. Confusing, but this way 206 * modifying one set can't modify the other one by 207 * mistake. 208 */ 209 #define TASK_RUNNING 0 210 #define TASK_INTERRUPTIBLE 1 211 #define TASK_UNINTERRUPTIBLE 2 212 #define __TASK_STOPPED 4 213 #define __TASK_TRACED 8 214 /* in tsk->exit_state */ 215 #define EXIT_DEAD 16 216 #define EXIT_ZOMBIE 32 217 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 218 /* in tsk->state again */ 219 #define TASK_DEAD 64 220 #define TASK_WAKEKILL 128 221 #define TASK_WAKING 256 222 #define TASK_PARKED 512 223 #define TASK_NOLOAD 1024 224 #define TASK_STATE_MAX 2048 225 226 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 227 228 extern char ___assert_task_state[1 - 2*!!( 229 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 230 231 /* Convenience macros for the sake of set_task_state */ 232 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 233 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 234 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 235 236 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 237 238 /* Convenience macros for the sake of wake_up */ 239 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 240 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 241 242 /* get_task_state() */ 243 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 244 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 245 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 246 247 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 248 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 249 #define task_is_stopped_or_traced(task) \ 250 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 251 #define task_contributes_to_load(task) \ 252 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 253 (task->flags & PF_FROZEN) == 0 && \ 254 (task->state & TASK_NOLOAD) == 0) 255 256 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 257 258 #define __set_task_state(tsk, state_value) \ 259 do { \ 260 (tsk)->task_state_change = _THIS_IP_; \ 261 (tsk)->state = (state_value); \ 262 } while (0) 263 #define set_task_state(tsk, state_value) \ 264 do { \ 265 (tsk)->task_state_change = _THIS_IP_; \ 266 smp_store_mb((tsk)->state, (state_value)); \ 267 } while (0) 268 269 /* 270 * set_current_state() includes a barrier so that the write of current->state 271 * is correctly serialised wrt the caller's subsequent test of whether to 272 * actually sleep: 273 * 274 * set_current_state(TASK_UNINTERRUPTIBLE); 275 * if (do_i_need_to_sleep()) 276 * schedule(); 277 * 278 * If the caller does not need such serialisation then use __set_current_state() 279 */ 280 #define __set_current_state(state_value) \ 281 do { \ 282 current->task_state_change = _THIS_IP_; \ 283 current->state = (state_value); \ 284 } while (0) 285 #define set_current_state(state_value) \ 286 do { \ 287 current->task_state_change = _THIS_IP_; \ 288 smp_store_mb(current->state, (state_value)); \ 289 } while (0) 290 291 #else 292 293 #define __set_task_state(tsk, state_value) \ 294 do { (tsk)->state = (state_value); } while (0) 295 #define set_task_state(tsk, state_value) \ 296 smp_store_mb((tsk)->state, (state_value)) 297 298 /* 299 * set_current_state() includes a barrier so that the write of current->state 300 * is correctly serialised wrt the caller's subsequent test of whether to 301 * actually sleep: 302 * 303 * set_current_state(TASK_UNINTERRUPTIBLE); 304 * if (do_i_need_to_sleep()) 305 * schedule(); 306 * 307 * If the caller does not need such serialisation then use __set_current_state() 308 */ 309 #define __set_current_state(state_value) \ 310 do { current->state = (state_value); } while (0) 311 #define set_current_state(state_value) \ 312 smp_store_mb(current->state, (state_value)) 313 314 #endif 315 316 /* Task command name length */ 317 #define TASK_COMM_LEN 16 318 319 #include <linux/spinlock.h> 320 321 /* 322 * This serializes "schedule()" and also protects 323 * the run-queue from deletions/modifications (but 324 * _adding_ to the beginning of the run-queue has 325 * a separate lock). 326 */ 327 extern rwlock_t tasklist_lock; 328 extern spinlock_t mmlist_lock; 329 330 struct task_struct; 331 332 #ifdef CONFIG_PROVE_RCU 333 extern int lockdep_tasklist_lock_is_held(void); 334 #endif /* #ifdef CONFIG_PROVE_RCU */ 335 336 extern void sched_init(void); 337 extern void sched_init_smp(void); 338 extern asmlinkage void schedule_tail(struct task_struct *prev); 339 extern void init_idle(struct task_struct *idle, int cpu); 340 extern void init_idle_bootup_task(struct task_struct *idle); 341 342 extern cpumask_var_t cpu_isolated_map; 343 344 extern int runqueue_is_locked(int cpu); 345 346 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 347 extern void nohz_balance_enter_idle(int cpu); 348 extern void set_cpu_sd_state_idle(void); 349 extern int get_nohz_timer_target(void); 350 #else 351 static inline void nohz_balance_enter_idle(int cpu) { } 352 static inline void set_cpu_sd_state_idle(void) { } 353 #endif 354 355 /* 356 * Only dump TASK_* tasks. (0 for all tasks) 357 */ 358 extern void show_state_filter(unsigned long state_filter); 359 360 static inline void show_state(void) 361 { 362 show_state_filter(0); 363 } 364 365 extern void show_regs(struct pt_regs *); 366 367 /* 368 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 369 * task), SP is the stack pointer of the first frame that should be shown in the back 370 * trace (or NULL if the entire call-chain of the task should be shown). 371 */ 372 extern void show_stack(struct task_struct *task, unsigned long *sp); 373 374 extern void cpu_init (void); 375 extern void trap_init(void); 376 extern void update_process_times(int user); 377 extern void scheduler_tick(void); 378 379 extern void sched_show_task(struct task_struct *p); 380 381 #ifdef CONFIG_LOCKUP_DETECTOR 382 extern void touch_softlockup_watchdog(void); 383 extern void touch_softlockup_watchdog_sync(void); 384 extern void touch_all_softlockup_watchdogs(void); 385 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 386 void __user *buffer, 387 size_t *lenp, loff_t *ppos); 388 extern unsigned int softlockup_panic; 389 void lockup_detector_init(void); 390 #else 391 static inline void touch_softlockup_watchdog(void) 392 { 393 } 394 static inline void touch_softlockup_watchdog_sync(void) 395 { 396 } 397 static inline void touch_all_softlockup_watchdogs(void) 398 { 399 } 400 static inline void lockup_detector_init(void) 401 { 402 } 403 #endif 404 405 #ifdef CONFIG_DETECT_HUNG_TASK 406 void reset_hung_task_detector(void); 407 #else 408 static inline void reset_hung_task_detector(void) 409 { 410 } 411 #endif 412 413 /* Attach to any functions which should be ignored in wchan output. */ 414 #define __sched __attribute__((__section__(".sched.text"))) 415 416 /* Linker adds these: start and end of __sched functions */ 417 extern char __sched_text_start[], __sched_text_end[]; 418 419 /* Is this address in the __sched functions? */ 420 extern int in_sched_functions(unsigned long addr); 421 422 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 423 extern signed long schedule_timeout(signed long timeout); 424 extern signed long schedule_timeout_interruptible(signed long timeout); 425 extern signed long schedule_timeout_killable(signed long timeout); 426 extern signed long schedule_timeout_uninterruptible(signed long timeout); 427 asmlinkage void schedule(void); 428 extern void schedule_preempt_disabled(void); 429 430 extern long io_schedule_timeout(long timeout); 431 432 static inline void io_schedule(void) 433 { 434 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 435 } 436 437 struct nsproxy; 438 struct user_namespace; 439 440 #ifdef CONFIG_MMU 441 extern void arch_pick_mmap_layout(struct mm_struct *mm); 442 extern unsigned long 443 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 444 unsigned long, unsigned long); 445 extern unsigned long 446 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 447 unsigned long len, unsigned long pgoff, 448 unsigned long flags); 449 #else 450 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 451 #endif 452 453 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 454 #define SUID_DUMP_USER 1 /* Dump as user of process */ 455 #define SUID_DUMP_ROOT 2 /* Dump as root */ 456 457 /* mm flags */ 458 459 /* for SUID_DUMP_* above */ 460 #define MMF_DUMPABLE_BITS 2 461 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 462 463 extern void set_dumpable(struct mm_struct *mm, int value); 464 /* 465 * This returns the actual value of the suid_dumpable flag. For things 466 * that are using this for checking for privilege transitions, it must 467 * test against SUID_DUMP_USER rather than treating it as a boolean 468 * value. 469 */ 470 static inline int __get_dumpable(unsigned long mm_flags) 471 { 472 return mm_flags & MMF_DUMPABLE_MASK; 473 } 474 475 static inline int get_dumpable(struct mm_struct *mm) 476 { 477 return __get_dumpable(mm->flags); 478 } 479 480 /* coredump filter bits */ 481 #define MMF_DUMP_ANON_PRIVATE 2 482 #define MMF_DUMP_ANON_SHARED 3 483 #define MMF_DUMP_MAPPED_PRIVATE 4 484 #define MMF_DUMP_MAPPED_SHARED 5 485 #define MMF_DUMP_ELF_HEADERS 6 486 #define MMF_DUMP_HUGETLB_PRIVATE 7 487 #define MMF_DUMP_HUGETLB_SHARED 8 488 489 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 490 #define MMF_DUMP_FILTER_BITS 7 491 #define MMF_DUMP_FILTER_MASK \ 492 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 493 #define MMF_DUMP_FILTER_DEFAULT \ 494 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 495 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 496 497 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 498 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 499 #else 500 # define MMF_DUMP_MASK_DEFAULT_ELF 0 501 #endif 502 /* leave room for more dump flags */ 503 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 504 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 505 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 506 507 #define MMF_HAS_UPROBES 19 /* has uprobes */ 508 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 509 510 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 511 512 struct sighand_struct { 513 atomic_t count; 514 struct k_sigaction action[_NSIG]; 515 spinlock_t siglock; 516 wait_queue_head_t signalfd_wqh; 517 }; 518 519 struct pacct_struct { 520 int ac_flag; 521 long ac_exitcode; 522 unsigned long ac_mem; 523 cputime_t ac_utime, ac_stime; 524 unsigned long ac_minflt, ac_majflt; 525 }; 526 527 struct cpu_itimer { 528 cputime_t expires; 529 cputime_t incr; 530 u32 error; 531 u32 incr_error; 532 }; 533 534 /** 535 * struct cputime - snaphsot of system and user cputime 536 * @utime: time spent in user mode 537 * @stime: time spent in system mode 538 * 539 * Gathers a generic snapshot of user and system time. 540 */ 541 struct cputime { 542 cputime_t utime; 543 cputime_t stime; 544 }; 545 546 /** 547 * struct task_cputime - collected CPU time counts 548 * @utime: time spent in user mode, in &cputime_t units 549 * @stime: time spent in kernel mode, in &cputime_t units 550 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 551 * 552 * This is an extension of struct cputime that includes the total runtime 553 * spent by the task from the scheduler point of view. 554 * 555 * As a result, this structure groups together three kinds of CPU time 556 * that are tracked for threads and thread groups. Most things considering 557 * CPU time want to group these counts together and treat all three 558 * of them in parallel. 559 */ 560 struct task_cputime { 561 cputime_t utime; 562 cputime_t stime; 563 unsigned long long sum_exec_runtime; 564 }; 565 /* Alternate field names when used to cache expirations. */ 566 #define prof_exp stime 567 #define virt_exp utime 568 #define sched_exp sum_exec_runtime 569 570 #define INIT_CPUTIME \ 571 (struct task_cputime) { \ 572 .utime = 0, \ 573 .stime = 0, \ 574 .sum_exec_runtime = 0, \ 575 } 576 577 /* 578 * This is the atomic variant of task_cputime, which can be used for 579 * storing and updating task_cputime statistics without locking. 580 */ 581 struct task_cputime_atomic { 582 atomic64_t utime; 583 atomic64_t stime; 584 atomic64_t sum_exec_runtime; 585 }; 586 587 #define INIT_CPUTIME_ATOMIC \ 588 (struct task_cputime_atomic) { \ 589 .utime = ATOMIC64_INIT(0), \ 590 .stime = ATOMIC64_INIT(0), \ 591 .sum_exec_runtime = ATOMIC64_INIT(0), \ 592 } 593 594 #ifdef CONFIG_PREEMPT_COUNT 595 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 596 #else 597 #define PREEMPT_DISABLED PREEMPT_ENABLED 598 #endif 599 600 /* 601 * Disable preemption until the scheduler is running. 602 * Reset by start_kernel()->sched_init()->init_idle(). 603 * 604 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 605 * before the scheduler is active -- see should_resched(). 606 */ 607 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 608 609 /** 610 * struct thread_group_cputimer - thread group interval timer counts 611 * @cputime_atomic: atomic thread group interval timers. 612 * @running: non-zero when there are timers running and 613 * @cputime receives updates. 614 * 615 * This structure contains the version of task_cputime, above, that is 616 * used for thread group CPU timer calculations. 617 */ 618 struct thread_group_cputimer { 619 struct task_cputime_atomic cputime_atomic; 620 int running; 621 }; 622 623 #include <linux/rwsem.h> 624 struct autogroup; 625 626 /* 627 * NOTE! "signal_struct" does not have its own 628 * locking, because a shared signal_struct always 629 * implies a shared sighand_struct, so locking 630 * sighand_struct is always a proper superset of 631 * the locking of signal_struct. 632 */ 633 struct signal_struct { 634 atomic_t sigcnt; 635 atomic_t live; 636 int nr_threads; 637 struct list_head thread_head; 638 639 wait_queue_head_t wait_chldexit; /* for wait4() */ 640 641 /* current thread group signal load-balancing target: */ 642 struct task_struct *curr_target; 643 644 /* shared signal handling: */ 645 struct sigpending shared_pending; 646 647 /* thread group exit support */ 648 int group_exit_code; 649 /* overloaded: 650 * - notify group_exit_task when ->count is equal to notify_count 651 * - everyone except group_exit_task is stopped during signal delivery 652 * of fatal signals, group_exit_task processes the signal. 653 */ 654 int notify_count; 655 struct task_struct *group_exit_task; 656 657 /* thread group stop support, overloads group_exit_code too */ 658 int group_stop_count; 659 unsigned int flags; /* see SIGNAL_* flags below */ 660 661 /* 662 * PR_SET_CHILD_SUBREAPER marks a process, like a service 663 * manager, to re-parent orphan (double-forking) child processes 664 * to this process instead of 'init'. The service manager is 665 * able to receive SIGCHLD signals and is able to investigate 666 * the process until it calls wait(). All children of this 667 * process will inherit a flag if they should look for a 668 * child_subreaper process at exit. 669 */ 670 unsigned int is_child_subreaper:1; 671 unsigned int has_child_subreaper:1; 672 673 /* POSIX.1b Interval Timers */ 674 int posix_timer_id; 675 struct list_head posix_timers; 676 677 /* ITIMER_REAL timer for the process */ 678 struct hrtimer real_timer; 679 struct pid *leader_pid; 680 ktime_t it_real_incr; 681 682 /* 683 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 684 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 685 * values are defined to 0 and 1 respectively 686 */ 687 struct cpu_itimer it[2]; 688 689 /* 690 * Thread group totals for process CPU timers. 691 * See thread_group_cputimer(), et al, for details. 692 */ 693 struct thread_group_cputimer cputimer; 694 695 /* Earliest-expiration cache. */ 696 struct task_cputime cputime_expires; 697 698 struct list_head cpu_timers[3]; 699 700 struct pid *tty_old_pgrp; 701 702 /* boolean value for session group leader */ 703 int leader; 704 705 struct tty_struct *tty; /* NULL if no tty */ 706 707 #ifdef CONFIG_SCHED_AUTOGROUP 708 struct autogroup *autogroup; 709 #endif 710 /* 711 * Cumulative resource counters for dead threads in the group, 712 * and for reaped dead child processes forked by this group. 713 * Live threads maintain their own counters and add to these 714 * in __exit_signal, except for the group leader. 715 */ 716 seqlock_t stats_lock; 717 cputime_t utime, stime, cutime, cstime; 718 cputime_t gtime; 719 cputime_t cgtime; 720 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 721 struct cputime prev_cputime; 722 #endif 723 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 724 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 725 unsigned long inblock, oublock, cinblock, coublock; 726 unsigned long maxrss, cmaxrss; 727 struct task_io_accounting ioac; 728 729 /* 730 * Cumulative ns of schedule CPU time fo dead threads in the 731 * group, not including a zombie group leader, (This only differs 732 * from jiffies_to_ns(utime + stime) if sched_clock uses something 733 * other than jiffies.) 734 */ 735 unsigned long long sum_sched_runtime; 736 737 /* 738 * We don't bother to synchronize most readers of this at all, 739 * because there is no reader checking a limit that actually needs 740 * to get both rlim_cur and rlim_max atomically, and either one 741 * alone is a single word that can safely be read normally. 742 * getrlimit/setrlimit use task_lock(current->group_leader) to 743 * protect this instead of the siglock, because they really 744 * have no need to disable irqs. 745 */ 746 struct rlimit rlim[RLIM_NLIMITS]; 747 748 #ifdef CONFIG_BSD_PROCESS_ACCT 749 struct pacct_struct pacct; /* per-process accounting information */ 750 #endif 751 #ifdef CONFIG_TASKSTATS 752 struct taskstats *stats; 753 #endif 754 #ifdef CONFIG_AUDIT 755 unsigned audit_tty; 756 unsigned audit_tty_log_passwd; 757 struct tty_audit_buf *tty_audit_buf; 758 #endif 759 760 oom_flags_t oom_flags; 761 short oom_score_adj; /* OOM kill score adjustment */ 762 short oom_score_adj_min; /* OOM kill score adjustment min value. 763 * Only settable by CAP_SYS_RESOURCE. */ 764 765 struct mutex cred_guard_mutex; /* guard against foreign influences on 766 * credential calculations 767 * (notably. ptrace) */ 768 }; 769 770 /* 771 * Bits in flags field of signal_struct. 772 */ 773 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 774 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 775 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 776 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 777 /* 778 * Pending notifications to parent. 779 */ 780 #define SIGNAL_CLD_STOPPED 0x00000010 781 #define SIGNAL_CLD_CONTINUED 0x00000020 782 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 783 784 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 785 786 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 787 static inline int signal_group_exit(const struct signal_struct *sig) 788 { 789 return (sig->flags & SIGNAL_GROUP_EXIT) || 790 (sig->group_exit_task != NULL); 791 } 792 793 /* 794 * Some day this will be a full-fledged user tracking system.. 795 */ 796 struct user_struct { 797 atomic_t __count; /* reference count */ 798 atomic_t processes; /* How many processes does this user have? */ 799 atomic_t sigpending; /* How many pending signals does this user have? */ 800 #ifdef CONFIG_INOTIFY_USER 801 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 802 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 803 #endif 804 #ifdef CONFIG_FANOTIFY 805 atomic_t fanotify_listeners; 806 #endif 807 #ifdef CONFIG_EPOLL 808 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 809 #endif 810 #ifdef CONFIG_POSIX_MQUEUE 811 /* protected by mq_lock */ 812 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 813 #endif 814 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 815 816 #ifdef CONFIG_KEYS 817 struct key *uid_keyring; /* UID specific keyring */ 818 struct key *session_keyring; /* UID's default session keyring */ 819 #endif 820 821 /* Hash table maintenance information */ 822 struct hlist_node uidhash_node; 823 kuid_t uid; 824 825 #ifdef CONFIG_PERF_EVENTS 826 atomic_long_t locked_vm; 827 #endif 828 }; 829 830 extern int uids_sysfs_init(void); 831 832 extern struct user_struct *find_user(kuid_t); 833 834 extern struct user_struct root_user; 835 #define INIT_USER (&root_user) 836 837 838 struct backing_dev_info; 839 struct reclaim_state; 840 841 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 842 struct sched_info { 843 /* cumulative counters */ 844 unsigned long pcount; /* # of times run on this cpu */ 845 unsigned long long run_delay; /* time spent waiting on a runqueue */ 846 847 /* timestamps */ 848 unsigned long long last_arrival,/* when we last ran on a cpu */ 849 last_queued; /* when we were last queued to run */ 850 }; 851 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 852 853 #ifdef CONFIG_TASK_DELAY_ACCT 854 struct task_delay_info { 855 spinlock_t lock; 856 unsigned int flags; /* Private per-task flags */ 857 858 /* For each stat XXX, add following, aligned appropriately 859 * 860 * struct timespec XXX_start, XXX_end; 861 * u64 XXX_delay; 862 * u32 XXX_count; 863 * 864 * Atomicity of updates to XXX_delay, XXX_count protected by 865 * single lock above (split into XXX_lock if contention is an issue). 866 */ 867 868 /* 869 * XXX_count is incremented on every XXX operation, the delay 870 * associated with the operation is added to XXX_delay. 871 * XXX_delay contains the accumulated delay time in nanoseconds. 872 */ 873 u64 blkio_start; /* Shared by blkio, swapin */ 874 u64 blkio_delay; /* wait for sync block io completion */ 875 u64 swapin_delay; /* wait for swapin block io completion */ 876 u32 blkio_count; /* total count of the number of sync block */ 877 /* io operations performed */ 878 u32 swapin_count; /* total count of the number of swapin block */ 879 /* io operations performed */ 880 881 u64 freepages_start; 882 u64 freepages_delay; /* wait for memory reclaim */ 883 u32 freepages_count; /* total count of memory reclaim */ 884 }; 885 #endif /* CONFIG_TASK_DELAY_ACCT */ 886 887 static inline int sched_info_on(void) 888 { 889 #ifdef CONFIG_SCHEDSTATS 890 return 1; 891 #elif defined(CONFIG_TASK_DELAY_ACCT) 892 extern int delayacct_on; 893 return delayacct_on; 894 #else 895 return 0; 896 #endif 897 } 898 899 enum cpu_idle_type { 900 CPU_IDLE, 901 CPU_NOT_IDLE, 902 CPU_NEWLY_IDLE, 903 CPU_MAX_IDLE_TYPES 904 }; 905 906 /* 907 * Increase resolution of cpu_capacity calculations 908 */ 909 #define SCHED_CAPACITY_SHIFT 10 910 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 911 912 /* 913 * Wake-queues are lists of tasks with a pending wakeup, whose 914 * callers have already marked the task as woken internally, 915 * and can thus carry on. A common use case is being able to 916 * do the wakeups once the corresponding user lock as been 917 * released. 918 * 919 * We hold reference to each task in the list across the wakeup, 920 * thus guaranteeing that the memory is still valid by the time 921 * the actual wakeups are performed in wake_up_q(). 922 * 923 * One per task suffices, because there's never a need for a task to be 924 * in two wake queues simultaneously; it is forbidden to abandon a task 925 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 926 * already in a wake queue, the wakeup will happen soon and the second 927 * waker can just skip it. 928 * 929 * The WAKE_Q macro declares and initializes the list head. 930 * wake_up_q() does NOT reinitialize the list; it's expected to be 931 * called near the end of a function, where the fact that the queue is 932 * not used again will be easy to see by inspection. 933 * 934 * Note that this can cause spurious wakeups. schedule() callers 935 * must ensure the call is done inside a loop, confirming that the 936 * wakeup condition has in fact occurred. 937 */ 938 struct wake_q_node { 939 struct wake_q_node *next; 940 }; 941 942 struct wake_q_head { 943 struct wake_q_node *first; 944 struct wake_q_node **lastp; 945 }; 946 947 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 948 949 #define WAKE_Q(name) \ 950 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 951 952 extern void wake_q_add(struct wake_q_head *head, 953 struct task_struct *task); 954 extern void wake_up_q(struct wake_q_head *head); 955 956 /* 957 * sched-domains (multiprocessor balancing) declarations: 958 */ 959 #ifdef CONFIG_SMP 960 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 961 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 962 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 963 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 964 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 965 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 966 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 967 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 968 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 969 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 970 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 971 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 972 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 973 #define SD_NUMA 0x4000 /* cross-node balancing */ 974 975 #ifdef CONFIG_SCHED_SMT 976 static inline int cpu_smt_flags(void) 977 { 978 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 979 } 980 #endif 981 982 #ifdef CONFIG_SCHED_MC 983 static inline int cpu_core_flags(void) 984 { 985 return SD_SHARE_PKG_RESOURCES; 986 } 987 #endif 988 989 #ifdef CONFIG_NUMA 990 static inline int cpu_numa_flags(void) 991 { 992 return SD_NUMA; 993 } 994 #endif 995 996 struct sched_domain_attr { 997 int relax_domain_level; 998 }; 999 1000 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1001 .relax_domain_level = -1, \ 1002 } 1003 1004 extern int sched_domain_level_max; 1005 1006 struct sched_group; 1007 1008 struct sched_domain { 1009 /* These fields must be setup */ 1010 struct sched_domain *parent; /* top domain must be null terminated */ 1011 struct sched_domain *child; /* bottom domain must be null terminated */ 1012 struct sched_group *groups; /* the balancing groups of the domain */ 1013 unsigned long min_interval; /* Minimum balance interval ms */ 1014 unsigned long max_interval; /* Maximum balance interval ms */ 1015 unsigned int busy_factor; /* less balancing by factor if busy */ 1016 unsigned int imbalance_pct; /* No balance until over watermark */ 1017 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1018 unsigned int busy_idx; 1019 unsigned int idle_idx; 1020 unsigned int newidle_idx; 1021 unsigned int wake_idx; 1022 unsigned int forkexec_idx; 1023 unsigned int smt_gain; 1024 1025 int nohz_idle; /* NOHZ IDLE status */ 1026 int flags; /* See SD_* */ 1027 int level; 1028 1029 /* Runtime fields. */ 1030 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1031 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1032 unsigned int nr_balance_failed; /* initialise to 0 */ 1033 1034 /* idle_balance() stats */ 1035 u64 max_newidle_lb_cost; 1036 unsigned long next_decay_max_lb_cost; 1037 1038 #ifdef CONFIG_SCHEDSTATS 1039 /* load_balance() stats */ 1040 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1041 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1042 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1043 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1044 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1045 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1046 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1047 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1048 1049 /* Active load balancing */ 1050 unsigned int alb_count; 1051 unsigned int alb_failed; 1052 unsigned int alb_pushed; 1053 1054 /* SD_BALANCE_EXEC stats */ 1055 unsigned int sbe_count; 1056 unsigned int sbe_balanced; 1057 unsigned int sbe_pushed; 1058 1059 /* SD_BALANCE_FORK stats */ 1060 unsigned int sbf_count; 1061 unsigned int sbf_balanced; 1062 unsigned int sbf_pushed; 1063 1064 /* try_to_wake_up() stats */ 1065 unsigned int ttwu_wake_remote; 1066 unsigned int ttwu_move_affine; 1067 unsigned int ttwu_move_balance; 1068 #endif 1069 #ifdef CONFIG_SCHED_DEBUG 1070 char *name; 1071 #endif 1072 union { 1073 void *private; /* used during construction */ 1074 struct rcu_head rcu; /* used during destruction */ 1075 }; 1076 1077 unsigned int span_weight; 1078 /* 1079 * Span of all CPUs in this domain. 1080 * 1081 * NOTE: this field is variable length. (Allocated dynamically 1082 * by attaching extra space to the end of the structure, 1083 * depending on how many CPUs the kernel has booted up with) 1084 */ 1085 unsigned long span[0]; 1086 }; 1087 1088 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1089 { 1090 return to_cpumask(sd->span); 1091 } 1092 1093 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1094 struct sched_domain_attr *dattr_new); 1095 1096 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1097 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1098 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1099 1100 bool cpus_share_cache(int this_cpu, int that_cpu); 1101 1102 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1103 typedef int (*sched_domain_flags_f)(void); 1104 1105 #define SDTL_OVERLAP 0x01 1106 1107 struct sd_data { 1108 struct sched_domain **__percpu sd; 1109 struct sched_group **__percpu sg; 1110 struct sched_group_capacity **__percpu sgc; 1111 }; 1112 1113 struct sched_domain_topology_level { 1114 sched_domain_mask_f mask; 1115 sched_domain_flags_f sd_flags; 1116 int flags; 1117 int numa_level; 1118 struct sd_data data; 1119 #ifdef CONFIG_SCHED_DEBUG 1120 char *name; 1121 #endif 1122 }; 1123 1124 extern struct sched_domain_topology_level *sched_domain_topology; 1125 1126 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1127 extern void wake_up_if_idle(int cpu); 1128 1129 #ifdef CONFIG_SCHED_DEBUG 1130 # define SD_INIT_NAME(type) .name = #type 1131 #else 1132 # define SD_INIT_NAME(type) 1133 #endif 1134 1135 #else /* CONFIG_SMP */ 1136 1137 struct sched_domain_attr; 1138 1139 static inline void 1140 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1141 struct sched_domain_attr *dattr_new) 1142 { 1143 } 1144 1145 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1146 { 1147 return true; 1148 } 1149 1150 #endif /* !CONFIG_SMP */ 1151 1152 1153 struct io_context; /* See blkdev.h */ 1154 1155 1156 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1157 extern void prefetch_stack(struct task_struct *t); 1158 #else 1159 static inline void prefetch_stack(struct task_struct *t) { } 1160 #endif 1161 1162 struct audit_context; /* See audit.c */ 1163 struct mempolicy; 1164 struct pipe_inode_info; 1165 struct uts_namespace; 1166 1167 struct load_weight { 1168 unsigned long weight; 1169 u32 inv_weight; 1170 }; 1171 1172 struct sched_avg { 1173 u64 last_runnable_update; 1174 s64 decay_count; 1175 /* 1176 * utilization_avg_contrib describes the amount of time that a 1177 * sched_entity is running on a CPU. It is based on running_avg_sum 1178 * and is scaled in the range [0..SCHED_LOAD_SCALE]. 1179 * load_avg_contrib described the amount of time that a sched_entity 1180 * is runnable on a rq. It is based on both runnable_avg_sum and the 1181 * weight of the task. 1182 */ 1183 unsigned long load_avg_contrib, utilization_avg_contrib; 1184 /* 1185 * These sums represent an infinite geometric series and so are bound 1186 * above by 1024/(1-y). Thus we only need a u32 to store them for all 1187 * choices of y < 1-2^(-32)*1024. 1188 * running_avg_sum reflects the time that the sched_entity is 1189 * effectively running on the CPU. 1190 * runnable_avg_sum represents the amount of time a sched_entity is on 1191 * a runqueue which includes the running time that is monitored by 1192 * running_avg_sum. 1193 */ 1194 u32 runnable_avg_sum, avg_period, running_avg_sum; 1195 }; 1196 1197 #ifdef CONFIG_SCHEDSTATS 1198 struct sched_statistics { 1199 u64 wait_start; 1200 u64 wait_max; 1201 u64 wait_count; 1202 u64 wait_sum; 1203 u64 iowait_count; 1204 u64 iowait_sum; 1205 1206 u64 sleep_start; 1207 u64 sleep_max; 1208 s64 sum_sleep_runtime; 1209 1210 u64 block_start; 1211 u64 block_max; 1212 u64 exec_max; 1213 u64 slice_max; 1214 1215 u64 nr_migrations_cold; 1216 u64 nr_failed_migrations_affine; 1217 u64 nr_failed_migrations_running; 1218 u64 nr_failed_migrations_hot; 1219 u64 nr_forced_migrations; 1220 1221 u64 nr_wakeups; 1222 u64 nr_wakeups_sync; 1223 u64 nr_wakeups_migrate; 1224 u64 nr_wakeups_local; 1225 u64 nr_wakeups_remote; 1226 u64 nr_wakeups_affine; 1227 u64 nr_wakeups_affine_attempts; 1228 u64 nr_wakeups_passive; 1229 u64 nr_wakeups_idle; 1230 }; 1231 #endif 1232 1233 struct sched_entity { 1234 struct load_weight load; /* for load-balancing */ 1235 struct rb_node run_node; 1236 struct list_head group_node; 1237 unsigned int on_rq; 1238 1239 u64 exec_start; 1240 u64 sum_exec_runtime; 1241 u64 vruntime; 1242 u64 prev_sum_exec_runtime; 1243 1244 u64 nr_migrations; 1245 1246 #ifdef CONFIG_SCHEDSTATS 1247 struct sched_statistics statistics; 1248 #endif 1249 1250 #ifdef CONFIG_FAIR_GROUP_SCHED 1251 int depth; 1252 struct sched_entity *parent; 1253 /* rq on which this entity is (to be) queued: */ 1254 struct cfs_rq *cfs_rq; 1255 /* rq "owned" by this entity/group: */ 1256 struct cfs_rq *my_q; 1257 #endif 1258 1259 #ifdef CONFIG_SMP 1260 /* Per-entity load-tracking */ 1261 struct sched_avg avg; 1262 #endif 1263 }; 1264 1265 struct sched_rt_entity { 1266 struct list_head run_list; 1267 unsigned long timeout; 1268 unsigned long watchdog_stamp; 1269 unsigned int time_slice; 1270 1271 struct sched_rt_entity *back; 1272 #ifdef CONFIG_RT_GROUP_SCHED 1273 struct sched_rt_entity *parent; 1274 /* rq on which this entity is (to be) queued: */ 1275 struct rt_rq *rt_rq; 1276 /* rq "owned" by this entity/group: */ 1277 struct rt_rq *my_q; 1278 #endif 1279 }; 1280 1281 struct sched_dl_entity { 1282 struct rb_node rb_node; 1283 1284 /* 1285 * Original scheduling parameters. Copied here from sched_attr 1286 * during sched_setattr(), they will remain the same until 1287 * the next sched_setattr(). 1288 */ 1289 u64 dl_runtime; /* maximum runtime for each instance */ 1290 u64 dl_deadline; /* relative deadline of each instance */ 1291 u64 dl_period; /* separation of two instances (period) */ 1292 u64 dl_bw; /* dl_runtime / dl_deadline */ 1293 1294 /* 1295 * Actual scheduling parameters. Initialized with the values above, 1296 * they are continously updated during task execution. Note that 1297 * the remaining runtime could be < 0 in case we are in overrun. 1298 */ 1299 s64 runtime; /* remaining runtime for this instance */ 1300 u64 deadline; /* absolute deadline for this instance */ 1301 unsigned int flags; /* specifying the scheduler behaviour */ 1302 1303 /* 1304 * Some bool flags: 1305 * 1306 * @dl_throttled tells if we exhausted the runtime. If so, the 1307 * task has to wait for a replenishment to be performed at the 1308 * next firing of dl_timer. 1309 * 1310 * @dl_new tells if a new instance arrived. If so we must 1311 * start executing it with full runtime and reset its absolute 1312 * deadline; 1313 * 1314 * @dl_boosted tells if we are boosted due to DI. If so we are 1315 * outside bandwidth enforcement mechanism (but only until we 1316 * exit the critical section); 1317 * 1318 * @dl_yielded tells if task gave up the cpu before consuming 1319 * all its available runtime during the last job. 1320 */ 1321 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1322 1323 /* 1324 * Bandwidth enforcement timer. Each -deadline task has its 1325 * own bandwidth to be enforced, thus we need one timer per task. 1326 */ 1327 struct hrtimer dl_timer; 1328 }; 1329 1330 union rcu_special { 1331 struct { 1332 bool blocked; 1333 bool need_qs; 1334 } b; 1335 short s; 1336 }; 1337 struct rcu_node; 1338 1339 enum perf_event_task_context { 1340 perf_invalid_context = -1, 1341 perf_hw_context = 0, 1342 perf_sw_context, 1343 perf_nr_task_contexts, 1344 }; 1345 1346 struct task_struct { 1347 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1348 void *stack; 1349 atomic_t usage; 1350 unsigned int flags; /* per process flags, defined below */ 1351 unsigned int ptrace; 1352 1353 #ifdef CONFIG_SMP 1354 struct llist_node wake_entry; 1355 int on_cpu; 1356 struct task_struct *last_wakee; 1357 unsigned long wakee_flips; 1358 unsigned long wakee_flip_decay_ts; 1359 1360 int wake_cpu; 1361 #endif 1362 int on_rq; 1363 1364 int prio, static_prio, normal_prio; 1365 unsigned int rt_priority; 1366 const struct sched_class *sched_class; 1367 struct sched_entity se; 1368 struct sched_rt_entity rt; 1369 #ifdef CONFIG_CGROUP_SCHED 1370 struct task_group *sched_task_group; 1371 #endif 1372 struct sched_dl_entity dl; 1373 1374 #ifdef CONFIG_PREEMPT_NOTIFIERS 1375 /* list of struct preempt_notifier: */ 1376 struct hlist_head preempt_notifiers; 1377 #endif 1378 1379 #ifdef CONFIG_BLK_DEV_IO_TRACE 1380 unsigned int btrace_seq; 1381 #endif 1382 1383 unsigned int policy; 1384 int nr_cpus_allowed; 1385 cpumask_t cpus_allowed; 1386 1387 #ifdef CONFIG_PREEMPT_RCU 1388 int rcu_read_lock_nesting; 1389 union rcu_special rcu_read_unlock_special; 1390 struct list_head rcu_node_entry; 1391 struct rcu_node *rcu_blocked_node; 1392 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1393 #ifdef CONFIG_TASKS_RCU 1394 unsigned long rcu_tasks_nvcsw; 1395 bool rcu_tasks_holdout; 1396 struct list_head rcu_tasks_holdout_list; 1397 int rcu_tasks_idle_cpu; 1398 #endif /* #ifdef CONFIG_TASKS_RCU */ 1399 1400 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1401 struct sched_info sched_info; 1402 #endif 1403 1404 struct list_head tasks; 1405 #ifdef CONFIG_SMP 1406 struct plist_node pushable_tasks; 1407 struct rb_node pushable_dl_tasks; 1408 #endif 1409 1410 struct mm_struct *mm, *active_mm; 1411 /* per-thread vma caching */ 1412 u32 vmacache_seqnum; 1413 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1414 #if defined(SPLIT_RSS_COUNTING) 1415 struct task_rss_stat rss_stat; 1416 #endif 1417 /* task state */ 1418 int exit_state; 1419 int exit_code, exit_signal; 1420 int pdeath_signal; /* The signal sent when the parent dies */ 1421 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1422 1423 /* Used for emulating ABI behavior of previous Linux versions */ 1424 unsigned int personality; 1425 1426 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1427 * execve */ 1428 unsigned in_iowait:1; 1429 1430 /* Revert to default priority/policy when forking */ 1431 unsigned sched_reset_on_fork:1; 1432 unsigned sched_contributes_to_load:1; 1433 unsigned sched_migrated:1; 1434 1435 #ifdef CONFIG_MEMCG_KMEM 1436 unsigned memcg_kmem_skip_account:1; 1437 #endif 1438 #ifdef CONFIG_COMPAT_BRK 1439 unsigned brk_randomized:1; 1440 #endif 1441 1442 unsigned long atomic_flags; /* Flags needing atomic access. */ 1443 1444 struct restart_block restart_block; 1445 1446 pid_t pid; 1447 pid_t tgid; 1448 1449 #ifdef CONFIG_CC_STACKPROTECTOR 1450 /* Canary value for the -fstack-protector gcc feature */ 1451 unsigned long stack_canary; 1452 #endif 1453 /* 1454 * pointers to (original) parent process, youngest child, younger sibling, 1455 * older sibling, respectively. (p->father can be replaced with 1456 * p->real_parent->pid) 1457 */ 1458 struct task_struct __rcu *real_parent; /* real parent process */ 1459 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1460 /* 1461 * children/sibling forms the list of my natural children 1462 */ 1463 struct list_head children; /* list of my children */ 1464 struct list_head sibling; /* linkage in my parent's children list */ 1465 struct task_struct *group_leader; /* threadgroup leader */ 1466 1467 /* 1468 * ptraced is the list of tasks this task is using ptrace on. 1469 * This includes both natural children and PTRACE_ATTACH targets. 1470 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1471 */ 1472 struct list_head ptraced; 1473 struct list_head ptrace_entry; 1474 1475 /* PID/PID hash table linkage. */ 1476 struct pid_link pids[PIDTYPE_MAX]; 1477 struct list_head thread_group; 1478 struct list_head thread_node; 1479 1480 struct completion *vfork_done; /* for vfork() */ 1481 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1482 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1483 1484 cputime_t utime, stime, utimescaled, stimescaled; 1485 cputime_t gtime; 1486 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1487 struct cputime prev_cputime; 1488 #endif 1489 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1490 seqlock_t vtime_seqlock; 1491 unsigned long long vtime_snap; 1492 enum { 1493 VTIME_SLEEPING = 0, 1494 VTIME_USER, 1495 VTIME_SYS, 1496 } vtime_snap_whence; 1497 #endif 1498 unsigned long nvcsw, nivcsw; /* context switch counts */ 1499 u64 start_time; /* monotonic time in nsec */ 1500 u64 real_start_time; /* boot based time in nsec */ 1501 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1502 unsigned long min_flt, maj_flt; 1503 1504 struct task_cputime cputime_expires; 1505 struct list_head cpu_timers[3]; 1506 1507 /* process credentials */ 1508 const struct cred __rcu *real_cred; /* objective and real subjective task 1509 * credentials (COW) */ 1510 const struct cred __rcu *cred; /* effective (overridable) subjective task 1511 * credentials (COW) */ 1512 char comm[TASK_COMM_LEN]; /* executable name excluding path 1513 - access with [gs]et_task_comm (which lock 1514 it with task_lock()) 1515 - initialized normally by setup_new_exec */ 1516 /* file system info */ 1517 struct nameidata *nameidata; 1518 #ifdef CONFIG_SYSVIPC 1519 /* ipc stuff */ 1520 struct sysv_sem sysvsem; 1521 struct sysv_shm sysvshm; 1522 #endif 1523 #ifdef CONFIG_DETECT_HUNG_TASK 1524 /* hung task detection */ 1525 unsigned long last_switch_count; 1526 #endif 1527 /* CPU-specific state of this task */ 1528 struct thread_struct thread; 1529 /* filesystem information */ 1530 struct fs_struct *fs; 1531 /* open file information */ 1532 struct files_struct *files; 1533 /* namespaces */ 1534 struct nsproxy *nsproxy; 1535 /* signal handlers */ 1536 struct signal_struct *signal; 1537 struct sighand_struct *sighand; 1538 1539 sigset_t blocked, real_blocked; 1540 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1541 struct sigpending pending; 1542 1543 unsigned long sas_ss_sp; 1544 size_t sas_ss_size; 1545 int (*notifier)(void *priv); 1546 void *notifier_data; 1547 sigset_t *notifier_mask; 1548 struct callback_head *task_works; 1549 1550 struct audit_context *audit_context; 1551 #ifdef CONFIG_AUDITSYSCALL 1552 kuid_t loginuid; 1553 unsigned int sessionid; 1554 #endif 1555 struct seccomp seccomp; 1556 1557 /* Thread group tracking */ 1558 u32 parent_exec_id; 1559 u32 self_exec_id; 1560 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1561 * mempolicy */ 1562 spinlock_t alloc_lock; 1563 1564 /* Protection of the PI data structures: */ 1565 raw_spinlock_t pi_lock; 1566 1567 struct wake_q_node wake_q; 1568 1569 #ifdef CONFIG_RT_MUTEXES 1570 /* PI waiters blocked on a rt_mutex held by this task */ 1571 struct rb_root pi_waiters; 1572 struct rb_node *pi_waiters_leftmost; 1573 /* Deadlock detection and priority inheritance handling */ 1574 struct rt_mutex_waiter *pi_blocked_on; 1575 #endif 1576 1577 #ifdef CONFIG_DEBUG_MUTEXES 1578 /* mutex deadlock detection */ 1579 struct mutex_waiter *blocked_on; 1580 #endif 1581 #ifdef CONFIG_TRACE_IRQFLAGS 1582 unsigned int irq_events; 1583 unsigned long hardirq_enable_ip; 1584 unsigned long hardirq_disable_ip; 1585 unsigned int hardirq_enable_event; 1586 unsigned int hardirq_disable_event; 1587 int hardirqs_enabled; 1588 int hardirq_context; 1589 unsigned long softirq_disable_ip; 1590 unsigned long softirq_enable_ip; 1591 unsigned int softirq_disable_event; 1592 unsigned int softirq_enable_event; 1593 int softirqs_enabled; 1594 int softirq_context; 1595 #endif 1596 #ifdef CONFIG_LOCKDEP 1597 # define MAX_LOCK_DEPTH 48UL 1598 u64 curr_chain_key; 1599 int lockdep_depth; 1600 unsigned int lockdep_recursion; 1601 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1602 gfp_t lockdep_reclaim_gfp; 1603 #endif 1604 1605 /* journalling filesystem info */ 1606 void *journal_info; 1607 1608 /* stacked block device info */ 1609 struct bio_list *bio_list; 1610 1611 #ifdef CONFIG_BLOCK 1612 /* stack plugging */ 1613 struct blk_plug *plug; 1614 #endif 1615 1616 /* VM state */ 1617 struct reclaim_state *reclaim_state; 1618 1619 struct backing_dev_info *backing_dev_info; 1620 1621 struct io_context *io_context; 1622 1623 unsigned long ptrace_message; 1624 siginfo_t *last_siginfo; /* For ptrace use. */ 1625 struct task_io_accounting ioac; 1626 #if defined(CONFIG_TASK_XACCT) 1627 u64 acct_rss_mem1; /* accumulated rss usage */ 1628 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1629 cputime_t acct_timexpd; /* stime + utime since last update */ 1630 #endif 1631 #ifdef CONFIG_CPUSETS 1632 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1633 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1634 int cpuset_mem_spread_rotor; 1635 int cpuset_slab_spread_rotor; 1636 #endif 1637 #ifdef CONFIG_CGROUPS 1638 /* Control Group info protected by css_set_lock */ 1639 struct css_set __rcu *cgroups; 1640 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1641 struct list_head cg_list; 1642 #endif 1643 #ifdef CONFIG_FUTEX 1644 struct robust_list_head __user *robust_list; 1645 #ifdef CONFIG_COMPAT 1646 struct compat_robust_list_head __user *compat_robust_list; 1647 #endif 1648 struct list_head pi_state_list; 1649 struct futex_pi_state *pi_state_cache; 1650 #endif 1651 #ifdef CONFIG_PERF_EVENTS 1652 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1653 struct mutex perf_event_mutex; 1654 struct list_head perf_event_list; 1655 #endif 1656 #ifdef CONFIG_DEBUG_PREEMPT 1657 unsigned long preempt_disable_ip; 1658 #endif 1659 #ifdef CONFIG_NUMA 1660 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1661 short il_next; 1662 short pref_node_fork; 1663 #endif 1664 #ifdef CONFIG_NUMA_BALANCING 1665 int numa_scan_seq; 1666 unsigned int numa_scan_period; 1667 unsigned int numa_scan_period_max; 1668 int numa_preferred_nid; 1669 unsigned long numa_migrate_retry; 1670 u64 node_stamp; /* migration stamp */ 1671 u64 last_task_numa_placement; 1672 u64 last_sum_exec_runtime; 1673 struct callback_head numa_work; 1674 1675 struct list_head numa_entry; 1676 struct numa_group *numa_group; 1677 1678 /* 1679 * numa_faults is an array split into four regions: 1680 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1681 * in this precise order. 1682 * 1683 * faults_memory: Exponential decaying average of faults on a per-node 1684 * basis. Scheduling placement decisions are made based on these 1685 * counts. The values remain static for the duration of a PTE scan. 1686 * faults_cpu: Track the nodes the process was running on when a NUMA 1687 * hinting fault was incurred. 1688 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1689 * during the current scan window. When the scan completes, the counts 1690 * in faults_memory and faults_cpu decay and these values are copied. 1691 */ 1692 unsigned long *numa_faults; 1693 unsigned long total_numa_faults; 1694 1695 /* 1696 * numa_faults_locality tracks if faults recorded during the last 1697 * scan window were remote/local or failed to migrate. The task scan 1698 * period is adapted based on the locality of the faults with different 1699 * weights depending on whether they were shared or private faults 1700 */ 1701 unsigned long numa_faults_locality[3]; 1702 1703 unsigned long numa_pages_migrated; 1704 #endif /* CONFIG_NUMA_BALANCING */ 1705 1706 struct rcu_head rcu; 1707 1708 /* 1709 * cache last used pipe for splice 1710 */ 1711 struct pipe_inode_info *splice_pipe; 1712 1713 struct page_frag task_frag; 1714 1715 #ifdef CONFIG_TASK_DELAY_ACCT 1716 struct task_delay_info *delays; 1717 #endif 1718 #ifdef CONFIG_FAULT_INJECTION 1719 int make_it_fail; 1720 #endif 1721 /* 1722 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1723 * balance_dirty_pages() for some dirty throttling pause 1724 */ 1725 int nr_dirtied; 1726 int nr_dirtied_pause; 1727 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1728 1729 #ifdef CONFIG_LATENCYTOP 1730 int latency_record_count; 1731 struct latency_record latency_record[LT_SAVECOUNT]; 1732 #endif 1733 /* 1734 * time slack values; these are used to round up poll() and 1735 * select() etc timeout values. These are in nanoseconds. 1736 */ 1737 unsigned long timer_slack_ns; 1738 unsigned long default_timer_slack_ns; 1739 1740 #ifdef CONFIG_KASAN 1741 unsigned int kasan_depth; 1742 #endif 1743 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1744 /* Index of current stored address in ret_stack */ 1745 int curr_ret_stack; 1746 /* Stack of return addresses for return function tracing */ 1747 struct ftrace_ret_stack *ret_stack; 1748 /* time stamp for last schedule */ 1749 unsigned long long ftrace_timestamp; 1750 /* 1751 * Number of functions that haven't been traced 1752 * because of depth overrun. 1753 */ 1754 atomic_t trace_overrun; 1755 /* Pause for the tracing */ 1756 atomic_t tracing_graph_pause; 1757 #endif 1758 #ifdef CONFIG_TRACING 1759 /* state flags for use by tracers */ 1760 unsigned long trace; 1761 /* bitmask and counter of trace recursion */ 1762 unsigned long trace_recursion; 1763 #endif /* CONFIG_TRACING */ 1764 #ifdef CONFIG_MEMCG 1765 struct memcg_oom_info { 1766 struct mem_cgroup *memcg; 1767 gfp_t gfp_mask; 1768 int order; 1769 unsigned int may_oom:1; 1770 } memcg_oom; 1771 #endif 1772 #ifdef CONFIG_UPROBES 1773 struct uprobe_task *utask; 1774 #endif 1775 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1776 unsigned int sequential_io; 1777 unsigned int sequential_io_avg; 1778 #endif 1779 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1780 unsigned long task_state_change; 1781 #endif 1782 int pagefault_disabled; 1783 }; 1784 1785 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1786 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1787 1788 #define TNF_MIGRATED 0x01 1789 #define TNF_NO_GROUP 0x02 1790 #define TNF_SHARED 0x04 1791 #define TNF_FAULT_LOCAL 0x08 1792 #define TNF_MIGRATE_FAIL 0x10 1793 1794 #ifdef CONFIG_NUMA_BALANCING 1795 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1796 extern pid_t task_numa_group_id(struct task_struct *p); 1797 extern void set_numabalancing_state(bool enabled); 1798 extern void task_numa_free(struct task_struct *p); 1799 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1800 int src_nid, int dst_cpu); 1801 #else 1802 static inline void task_numa_fault(int last_node, int node, int pages, 1803 int flags) 1804 { 1805 } 1806 static inline pid_t task_numa_group_id(struct task_struct *p) 1807 { 1808 return 0; 1809 } 1810 static inline void set_numabalancing_state(bool enabled) 1811 { 1812 } 1813 static inline void task_numa_free(struct task_struct *p) 1814 { 1815 } 1816 static inline bool should_numa_migrate_memory(struct task_struct *p, 1817 struct page *page, int src_nid, int dst_cpu) 1818 { 1819 return true; 1820 } 1821 #endif 1822 1823 static inline struct pid *task_pid(struct task_struct *task) 1824 { 1825 return task->pids[PIDTYPE_PID].pid; 1826 } 1827 1828 static inline struct pid *task_tgid(struct task_struct *task) 1829 { 1830 return task->group_leader->pids[PIDTYPE_PID].pid; 1831 } 1832 1833 /* 1834 * Without tasklist or rcu lock it is not safe to dereference 1835 * the result of task_pgrp/task_session even if task == current, 1836 * we can race with another thread doing sys_setsid/sys_setpgid. 1837 */ 1838 static inline struct pid *task_pgrp(struct task_struct *task) 1839 { 1840 return task->group_leader->pids[PIDTYPE_PGID].pid; 1841 } 1842 1843 static inline struct pid *task_session(struct task_struct *task) 1844 { 1845 return task->group_leader->pids[PIDTYPE_SID].pid; 1846 } 1847 1848 struct pid_namespace; 1849 1850 /* 1851 * the helpers to get the task's different pids as they are seen 1852 * from various namespaces 1853 * 1854 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1855 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1856 * current. 1857 * task_xid_nr_ns() : id seen from the ns specified; 1858 * 1859 * set_task_vxid() : assigns a virtual id to a task; 1860 * 1861 * see also pid_nr() etc in include/linux/pid.h 1862 */ 1863 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1864 struct pid_namespace *ns); 1865 1866 static inline pid_t task_pid_nr(struct task_struct *tsk) 1867 { 1868 return tsk->pid; 1869 } 1870 1871 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1872 struct pid_namespace *ns) 1873 { 1874 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1875 } 1876 1877 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1878 { 1879 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1880 } 1881 1882 1883 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1884 { 1885 return tsk->tgid; 1886 } 1887 1888 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1889 1890 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1891 { 1892 return pid_vnr(task_tgid(tsk)); 1893 } 1894 1895 1896 static inline int pid_alive(const struct task_struct *p); 1897 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1898 { 1899 pid_t pid = 0; 1900 1901 rcu_read_lock(); 1902 if (pid_alive(tsk)) 1903 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1904 rcu_read_unlock(); 1905 1906 return pid; 1907 } 1908 1909 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1910 { 1911 return task_ppid_nr_ns(tsk, &init_pid_ns); 1912 } 1913 1914 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1915 struct pid_namespace *ns) 1916 { 1917 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1918 } 1919 1920 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1921 { 1922 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1923 } 1924 1925 1926 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1927 struct pid_namespace *ns) 1928 { 1929 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1930 } 1931 1932 static inline pid_t task_session_vnr(struct task_struct *tsk) 1933 { 1934 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1935 } 1936 1937 /* obsolete, do not use */ 1938 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1939 { 1940 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1941 } 1942 1943 /** 1944 * pid_alive - check that a task structure is not stale 1945 * @p: Task structure to be checked. 1946 * 1947 * Test if a process is not yet dead (at most zombie state) 1948 * If pid_alive fails, then pointers within the task structure 1949 * can be stale and must not be dereferenced. 1950 * 1951 * Return: 1 if the process is alive. 0 otherwise. 1952 */ 1953 static inline int pid_alive(const struct task_struct *p) 1954 { 1955 return p->pids[PIDTYPE_PID].pid != NULL; 1956 } 1957 1958 /** 1959 * is_global_init - check if a task structure is init 1960 * @tsk: Task structure to be checked. 1961 * 1962 * Check if a task structure is the first user space task the kernel created. 1963 * 1964 * Return: 1 if the task structure is init. 0 otherwise. 1965 */ 1966 static inline int is_global_init(struct task_struct *tsk) 1967 { 1968 return tsk->pid == 1; 1969 } 1970 1971 extern struct pid *cad_pid; 1972 1973 extern void free_task(struct task_struct *tsk); 1974 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1975 1976 extern void __put_task_struct(struct task_struct *t); 1977 1978 static inline void put_task_struct(struct task_struct *t) 1979 { 1980 if (atomic_dec_and_test(&t->usage)) 1981 __put_task_struct(t); 1982 } 1983 1984 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1985 extern void task_cputime(struct task_struct *t, 1986 cputime_t *utime, cputime_t *stime); 1987 extern void task_cputime_scaled(struct task_struct *t, 1988 cputime_t *utimescaled, cputime_t *stimescaled); 1989 extern cputime_t task_gtime(struct task_struct *t); 1990 #else 1991 static inline void task_cputime(struct task_struct *t, 1992 cputime_t *utime, cputime_t *stime) 1993 { 1994 if (utime) 1995 *utime = t->utime; 1996 if (stime) 1997 *stime = t->stime; 1998 } 1999 2000 static inline void task_cputime_scaled(struct task_struct *t, 2001 cputime_t *utimescaled, 2002 cputime_t *stimescaled) 2003 { 2004 if (utimescaled) 2005 *utimescaled = t->utimescaled; 2006 if (stimescaled) 2007 *stimescaled = t->stimescaled; 2008 } 2009 2010 static inline cputime_t task_gtime(struct task_struct *t) 2011 { 2012 return t->gtime; 2013 } 2014 #endif 2015 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2016 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2017 2018 /* 2019 * Per process flags 2020 */ 2021 #define PF_EXITING 0x00000004 /* getting shut down */ 2022 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2023 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2024 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2025 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2026 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2027 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2028 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2029 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2030 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2031 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2032 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2033 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2034 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2035 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2036 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2037 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2038 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2039 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2040 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2041 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2042 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2043 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2044 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2045 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2046 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2047 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2048 2049 /* 2050 * Only the _current_ task can read/write to tsk->flags, but other 2051 * tasks can access tsk->flags in readonly mode for example 2052 * with tsk_used_math (like during threaded core dumping). 2053 * There is however an exception to this rule during ptrace 2054 * or during fork: the ptracer task is allowed to write to the 2055 * child->flags of its traced child (same goes for fork, the parent 2056 * can write to the child->flags), because we're guaranteed the 2057 * child is not running and in turn not changing child->flags 2058 * at the same time the parent does it. 2059 */ 2060 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2061 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2062 #define clear_used_math() clear_stopped_child_used_math(current) 2063 #define set_used_math() set_stopped_child_used_math(current) 2064 #define conditional_stopped_child_used_math(condition, child) \ 2065 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2066 #define conditional_used_math(condition) \ 2067 conditional_stopped_child_used_math(condition, current) 2068 #define copy_to_stopped_child_used_math(child) \ 2069 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2070 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2071 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2072 #define used_math() tsk_used_math(current) 2073 2074 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2075 * __GFP_FS is also cleared as it implies __GFP_IO. 2076 */ 2077 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2078 { 2079 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2080 flags &= ~(__GFP_IO | __GFP_FS); 2081 return flags; 2082 } 2083 2084 static inline unsigned int memalloc_noio_save(void) 2085 { 2086 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2087 current->flags |= PF_MEMALLOC_NOIO; 2088 return flags; 2089 } 2090 2091 static inline void memalloc_noio_restore(unsigned int flags) 2092 { 2093 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2094 } 2095 2096 /* Per-process atomic flags. */ 2097 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2098 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2099 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2100 2101 2102 #define TASK_PFA_TEST(name, func) \ 2103 static inline bool task_##func(struct task_struct *p) \ 2104 { return test_bit(PFA_##name, &p->atomic_flags); } 2105 #define TASK_PFA_SET(name, func) \ 2106 static inline void task_set_##func(struct task_struct *p) \ 2107 { set_bit(PFA_##name, &p->atomic_flags); } 2108 #define TASK_PFA_CLEAR(name, func) \ 2109 static inline void task_clear_##func(struct task_struct *p) \ 2110 { clear_bit(PFA_##name, &p->atomic_flags); } 2111 2112 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2113 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2114 2115 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2116 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2117 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2118 2119 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2120 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2121 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2122 2123 /* 2124 * task->jobctl flags 2125 */ 2126 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2127 2128 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2129 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2130 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2131 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2132 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2133 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2134 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2135 2136 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2137 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2138 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2139 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2140 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2141 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2142 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2143 2144 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2145 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2146 2147 extern bool task_set_jobctl_pending(struct task_struct *task, 2148 unsigned long mask); 2149 extern void task_clear_jobctl_trapping(struct task_struct *task); 2150 extern void task_clear_jobctl_pending(struct task_struct *task, 2151 unsigned long mask); 2152 2153 static inline void rcu_copy_process(struct task_struct *p) 2154 { 2155 #ifdef CONFIG_PREEMPT_RCU 2156 p->rcu_read_lock_nesting = 0; 2157 p->rcu_read_unlock_special.s = 0; 2158 p->rcu_blocked_node = NULL; 2159 INIT_LIST_HEAD(&p->rcu_node_entry); 2160 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2161 #ifdef CONFIG_TASKS_RCU 2162 p->rcu_tasks_holdout = false; 2163 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2164 p->rcu_tasks_idle_cpu = -1; 2165 #endif /* #ifdef CONFIG_TASKS_RCU */ 2166 } 2167 2168 static inline void tsk_restore_flags(struct task_struct *task, 2169 unsigned long orig_flags, unsigned long flags) 2170 { 2171 task->flags &= ~flags; 2172 task->flags |= orig_flags & flags; 2173 } 2174 2175 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2176 const struct cpumask *trial); 2177 extern int task_can_attach(struct task_struct *p, 2178 const struct cpumask *cs_cpus_allowed); 2179 #ifdef CONFIG_SMP 2180 extern void do_set_cpus_allowed(struct task_struct *p, 2181 const struct cpumask *new_mask); 2182 2183 extern int set_cpus_allowed_ptr(struct task_struct *p, 2184 const struct cpumask *new_mask); 2185 #else 2186 static inline void do_set_cpus_allowed(struct task_struct *p, 2187 const struct cpumask *new_mask) 2188 { 2189 } 2190 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2191 const struct cpumask *new_mask) 2192 { 2193 if (!cpumask_test_cpu(0, new_mask)) 2194 return -EINVAL; 2195 return 0; 2196 } 2197 #endif 2198 2199 #ifdef CONFIG_NO_HZ_COMMON 2200 void calc_load_enter_idle(void); 2201 void calc_load_exit_idle(void); 2202 #else 2203 static inline void calc_load_enter_idle(void) { } 2204 static inline void calc_load_exit_idle(void) { } 2205 #endif /* CONFIG_NO_HZ_COMMON */ 2206 2207 #ifndef CONFIG_CPUMASK_OFFSTACK 2208 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 2209 { 2210 return set_cpus_allowed_ptr(p, &new_mask); 2211 } 2212 #endif 2213 2214 /* 2215 * Do not use outside of architecture code which knows its limitations. 2216 * 2217 * sched_clock() has no promise of monotonicity or bounded drift between 2218 * CPUs, use (which you should not) requires disabling IRQs. 2219 * 2220 * Please use one of the three interfaces below. 2221 */ 2222 extern unsigned long long notrace sched_clock(void); 2223 /* 2224 * See the comment in kernel/sched/clock.c 2225 */ 2226 extern u64 cpu_clock(int cpu); 2227 extern u64 local_clock(void); 2228 extern u64 running_clock(void); 2229 extern u64 sched_clock_cpu(int cpu); 2230 2231 2232 extern void sched_clock_init(void); 2233 2234 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2235 static inline void sched_clock_tick(void) 2236 { 2237 } 2238 2239 static inline void sched_clock_idle_sleep_event(void) 2240 { 2241 } 2242 2243 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2244 { 2245 } 2246 #else 2247 /* 2248 * Architectures can set this to 1 if they have specified 2249 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2250 * but then during bootup it turns out that sched_clock() 2251 * is reliable after all: 2252 */ 2253 extern int sched_clock_stable(void); 2254 extern void set_sched_clock_stable(void); 2255 extern void clear_sched_clock_stable(void); 2256 2257 extern void sched_clock_tick(void); 2258 extern void sched_clock_idle_sleep_event(void); 2259 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2260 #endif 2261 2262 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2263 /* 2264 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2265 * The reason for this explicit opt-in is not to have perf penalty with 2266 * slow sched_clocks. 2267 */ 2268 extern void enable_sched_clock_irqtime(void); 2269 extern void disable_sched_clock_irqtime(void); 2270 #else 2271 static inline void enable_sched_clock_irqtime(void) {} 2272 static inline void disable_sched_clock_irqtime(void) {} 2273 #endif 2274 2275 extern unsigned long long 2276 task_sched_runtime(struct task_struct *task); 2277 2278 /* sched_exec is called by processes performing an exec */ 2279 #ifdef CONFIG_SMP 2280 extern void sched_exec(void); 2281 #else 2282 #define sched_exec() {} 2283 #endif 2284 2285 extern void sched_clock_idle_sleep_event(void); 2286 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2287 2288 #ifdef CONFIG_HOTPLUG_CPU 2289 extern void idle_task_exit(void); 2290 #else 2291 static inline void idle_task_exit(void) {} 2292 #endif 2293 2294 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2295 extern void wake_up_nohz_cpu(int cpu); 2296 #else 2297 static inline void wake_up_nohz_cpu(int cpu) { } 2298 #endif 2299 2300 #ifdef CONFIG_NO_HZ_FULL 2301 extern bool sched_can_stop_tick(void); 2302 extern u64 scheduler_tick_max_deferment(void); 2303 #else 2304 static inline bool sched_can_stop_tick(void) { return false; } 2305 #endif 2306 2307 #ifdef CONFIG_SCHED_AUTOGROUP 2308 extern void sched_autogroup_create_attach(struct task_struct *p); 2309 extern void sched_autogroup_detach(struct task_struct *p); 2310 extern void sched_autogroup_fork(struct signal_struct *sig); 2311 extern void sched_autogroup_exit(struct signal_struct *sig); 2312 #ifdef CONFIG_PROC_FS 2313 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2314 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2315 #endif 2316 #else 2317 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2318 static inline void sched_autogroup_detach(struct task_struct *p) { } 2319 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2320 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2321 #endif 2322 2323 extern int yield_to(struct task_struct *p, bool preempt); 2324 extern void set_user_nice(struct task_struct *p, long nice); 2325 extern int task_prio(const struct task_struct *p); 2326 /** 2327 * task_nice - return the nice value of a given task. 2328 * @p: the task in question. 2329 * 2330 * Return: The nice value [ -20 ... 0 ... 19 ]. 2331 */ 2332 static inline int task_nice(const struct task_struct *p) 2333 { 2334 return PRIO_TO_NICE((p)->static_prio); 2335 } 2336 extern int can_nice(const struct task_struct *p, const int nice); 2337 extern int task_curr(const struct task_struct *p); 2338 extern int idle_cpu(int cpu); 2339 extern int sched_setscheduler(struct task_struct *, int, 2340 const struct sched_param *); 2341 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2342 const struct sched_param *); 2343 extern int sched_setattr(struct task_struct *, 2344 const struct sched_attr *); 2345 extern struct task_struct *idle_task(int cpu); 2346 /** 2347 * is_idle_task - is the specified task an idle task? 2348 * @p: the task in question. 2349 * 2350 * Return: 1 if @p is an idle task. 0 otherwise. 2351 */ 2352 static inline bool is_idle_task(const struct task_struct *p) 2353 { 2354 return p->pid == 0; 2355 } 2356 extern struct task_struct *curr_task(int cpu); 2357 extern void set_curr_task(int cpu, struct task_struct *p); 2358 2359 void yield(void); 2360 2361 union thread_union { 2362 struct thread_info thread_info; 2363 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2364 }; 2365 2366 #ifndef __HAVE_ARCH_KSTACK_END 2367 static inline int kstack_end(void *addr) 2368 { 2369 /* Reliable end of stack detection: 2370 * Some APM bios versions misalign the stack 2371 */ 2372 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2373 } 2374 #endif 2375 2376 extern union thread_union init_thread_union; 2377 extern struct task_struct init_task; 2378 2379 extern struct mm_struct init_mm; 2380 2381 extern struct pid_namespace init_pid_ns; 2382 2383 /* 2384 * find a task by one of its numerical ids 2385 * 2386 * find_task_by_pid_ns(): 2387 * finds a task by its pid in the specified namespace 2388 * find_task_by_vpid(): 2389 * finds a task by its virtual pid 2390 * 2391 * see also find_vpid() etc in include/linux/pid.h 2392 */ 2393 2394 extern struct task_struct *find_task_by_vpid(pid_t nr); 2395 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2396 struct pid_namespace *ns); 2397 2398 /* per-UID process charging. */ 2399 extern struct user_struct * alloc_uid(kuid_t); 2400 static inline struct user_struct *get_uid(struct user_struct *u) 2401 { 2402 atomic_inc(&u->__count); 2403 return u; 2404 } 2405 extern void free_uid(struct user_struct *); 2406 2407 #include <asm/current.h> 2408 2409 extern void xtime_update(unsigned long ticks); 2410 2411 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2412 extern int wake_up_process(struct task_struct *tsk); 2413 extern void wake_up_new_task(struct task_struct *tsk); 2414 #ifdef CONFIG_SMP 2415 extern void kick_process(struct task_struct *tsk); 2416 #else 2417 static inline void kick_process(struct task_struct *tsk) { } 2418 #endif 2419 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2420 extern void sched_dead(struct task_struct *p); 2421 2422 extern void proc_caches_init(void); 2423 extern void flush_signals(struct task_struct *); 2424 extern void ignore_signals(struct task_struct *); 2425 extern void flush_signal_handlers(struct task_struct *, int force_default); 2426 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2427 2428 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2429 { 2430 unsigned long flags; 2431 int ret; 2432 2433 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2434 ret = dequeue_signal(tsk, mask, info); 2435 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2436 2437 return ret; 2438 } 2439 2440 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2441 sigset_t *mask); 2442 extern void unblock_all_signals(void); 2443 extern void release_task(struct task_struct * p); 2444 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2445 extern int force_sigsegv(int, struct task_struct *); 2446 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2447 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2448 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2449 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2450 const struct cred *, u32); 2451 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2452 extern int kill_pid(struct pid *pid, int sig, int priv); 2453 extern int kill_proc_info(int, struct siginfo *, pid_t); 2454 extern __must_check bool do_notify_parent(struct task_struct *, int); 2455 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2456 extern void force_sig(int, struct task_struct *); 2457 extern int send_sig(int, struct task_struct *, int); 2458 extern int zap_other_threads(struct task_struct *p); 2459 extern struct sigqueue *sigqueue_alloc(void); 2460 extern void sigqueue_free(struct sigqueue *); 2461 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2462 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2463 2464 static inline void restore_saved_sigmask(void) 2465 { 2466 if (test_and_clear_restore_sigmask()) 2467 __set_current_blocked(¤t->saved_sigmask); 2468 } 2469 2470 static inline sigset_t *sigmask_to_save(void) 2471 { 2472 sigset_t *res = ¤t->blocked; 2473 if (unlikely(test_restore_sigmask())) 2474 res = ¤t->saved_sigmask; 2475 return res; 2476 } 2477 2478 static inline int kill_cad_pid(int sig, int priv) 2479 { 2480 return kill_pid(cad_pid, sig, priv); 2481 } 2482 2483 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2484 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2485 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2486 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2487 2488 /* 2489 * True if we are on the alternate signal stack. 2490 */ 2491 static inline int on_sig_stack(unsigned long sp) 2492 { 2493 #ifdef CONFIG_STACK_GROWSUP 2494 return sp >= current->sas_ss_sp && 2495 sp - current->sas_ss_sp < current->sas_ss_size; 2496 #else 2497 return sp > current->sas_ss_sp && 2498 sp - current->sas_ss_sp <= current->sas_ss_size; 2499 #endif 2500 } 2501 2502 static inline int sas_ss_flags(unsigned long sp) 2503 { 2504 if (!current->sas_ss_size) 2505 return SS_DISABLE; 2506 2507 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2508 } 2509 2510 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2511 { 2512 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2513 #ifdef CONFIG_STACK_GROWSUP 2514 return current->sas_ss_sp; 2515 #else 2516 return current->sas_ss_sp + current->sas_ss_size; 2517 #endif 2518 return sp; 2519 } 2520 2521 /* 2522 * Routines for handling mm_structs 2523 */ 2524 extern struct mm_struct * mm_alloc(void); 2525 2526 /* mmdrop drops the mm and the page tables */ 2527 extern void __mmdrop(struct mm_struct *); 2528 static inline void mmdrop(struct mm_struct * mm) 2529 { 2530 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2531 __mmdrop(mm); 2532 } 2533 2534 /* mmput gets rid of the mappings and all user-space */ 2535 extern void mmput(struct mm_struct *); 2536 /* Grab a reference to a task's mm, if it is not already going away */ 2537 extern struct mm_struct *get_task_mm(struct task_struct *task); 2538 /* 2539 * Grab a reference to a task's mm, if it is not already going away 2540 * and ptrace_may_access with the mode parameter passed to it 2541 * succeeds. 2542 */ 2543 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2544 /* Remove the current tasks stale references to the old mm_struct */ 2545 extern void mm_release(struct task_struct *, struct mm_struct *); 2546 2547 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2548 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2549 struct task_struct *, unsigned long); 2550 #else 2551 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2552 struct task_struct *); 2553 2554 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2555 * via pt_regs, so ignore the tls argument passed via C. */ 2556 static inline int copy_thread_tls( 2557 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2558 struct task_struct *p, unsigned long tls) 2559 { 2560 return copy_thread(clone_flags, sp, arg, p); 2561 } 2562 #endif 2563 extern void flush_thread(void); 2564 extern void exit_thread(void); 2565 2566 extern void exit_files(struct task_struct *); 2567 extern void __cleanup_sighand(struct sighand_struct *); 2568 2569 extern void exit_itimers(struct signal_struct *); 2570 extern void flush_itimer_signals(void); 2571 2572 extern void do_group_exit(int); 2573 2574 extern int do_execve(struct filename *, 2575 const char __user * const __user *, 2576 const char __user * const __user *); 2577 extern int do_execveat(int, struct filename *, 2578 const char __user * const __user *, 2579 const char __user * const __user *, 2580 int); 2581 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2582 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2583 struct task_struct *fork_idle(int); 2584 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2585 2586 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2587 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2588 { 2589 __set_task_comm(tsk, from, false); 2590 } 2591 extern char *get_task_comm(char *to, struct task_struct *tsk); 2592 2593 #ifdef CONFIG_SMP 2594 void scheduler_ipi(void); 2595 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2596 #else 2597 static inline void scheduler_ipi(void) { } 2598 static inline unsigned long wait_task_inactive(struct task_struct *p, 2599 long match_state) 2600 { 2601 return 1; 2602 } 2603 #endif 2604 2605 #define tasklist_empty() \ 2606 list_empty(&init_task.tasks) 2607 2608 #define next_task(p) \ 2609 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2610 2611 #define for_each_process(p) \ 2612 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2613 2614 extern bool current_is_single_threaded(void); 2615 2616 /* 2617 * Careful: do_each_thread/while_each_thread is a double loop so 2618 * 'break' will not work as expected - use goto instead. 2619 */ 2620 #define do_each_thread(g, t) \ 2621 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2622 2623 #define while_each_thread(g, t) \ 2624 while ((t = next_thread(t)) != g) 2625 2626 #define __for_each_thread(signal, t) \ 2627 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2628 2629 #define for_each_thread(p, t) \ 2630 __for_each_thread((p)->signal, t) 2631 2632 /* Careful: this is a double loop, 'break' won't work as expected. */ 2633 #define for_each_process_thread(p, t) \ 2634 for_each_process(p) for_each_thread(p, t) 2635 2636 static inline int get_nr_threads(struct task_struct *tsk) 2637 { 2638 return tsk->signal->nr_threads; 2639 } 2640 2641 static inline bool thread_group_leader(struct task_struct *p) 2642 { 2643 return p->exit_signal >= 0; 2644 } 2645 2646 /* Do to the insanities of de_thread it is possible for a process 2647 * to have the pid of the thread group leader without actually being 2648 * the thread group leader. For iteration through the pids in proc 2649 * all we care about is that we have a task with the appropriate 2650 * pid, we don't actually care if we have the right task. 2651 */ 2652 static inline bool has_group_leader_pid(struct task_struct *p) 2653 { 2654 return task_pid(p) == p->signal->leader_pid; 2655 } 2656 2657 static inline 2658 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2659 { 2660 return p1->signal == p2->signal; 2661 } 2662 2663 static inline struct task_struct *next_thread(const struct task_struct *p) 2664 { 2665 return list_entry_rcu(p->thread_group.next, 2666 struct task_struct, thread_group); 2667 } 2668 2669 static inline int thread_group_empty(struct task_struct *p) 2670 { 2671 return list_empty(&p->thread_group); 2672 } 2673 2674 #define delay_group_leader(p) \ 2675 (thread_group_leader(p) && !thread_group_empty(p)) 2676 2677 /* 2678 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2679 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2680 * pins the final release of task.io_context. Also protects ->cpuset and 2681 * ->cgroup.subsys[]. And ->vfork_done. 2682 * 2683 * Nests both inside and outside of read_lock(&tasklist_lock). 2684 * It must not be nested with write_lock_irq(&tasklist_lock), 2685 * neither inside nor outside. 2686 */ 2687 static inline void task_lock(struct task_struct *p) 2688 { 2689 spin_lock(&p->alloc_lock); 2690 } 2691 2692 static inline void task_unlock(struct task_struct *p) 2693 { 2694 spin_unlock(&p->alloc_lock); 2695 } 2696 2697 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2698 unsigned long *flags); 2699 2700 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2701 unsigned long *flags) 2702 { 2703 struct sighand_struct *ret; 2704 2705 ret = __lock_task_sighand(tsk, flags); 2706 (void)__cond_lock(&tsk->sighand->siglock, ret); 2707 return ret; 2708 } 2709 2710 static inline void unlock_task_sighand(struct task_struct *tsk, 2711 unsigned long *flags) 2712 { 2713 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2714 } 2715 2716 /** 2717 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2718 * @tsk: task causing the changes 2719 * 2720 * All operations which modify a threadgroup - a new thread joining the 2721 * group, death of a member thread (the assertion of PF_EXITING) and 2722 * exec(2) dethreading the process and replacing the leader - are wrapped 2723 * by threadgroup_change_{begin|end}(). This is to provide a place which 2724 * subsystems needing threadgroup stability can hook into for 2725 * synchronization. 2726 */ 2727 static inline void threadgroup_change_begin(struct task_struct *tsk) 2728 { 2729 might_sleep(); 2730 cgroup_threadgroup_change_begin(tsk); 2731 } 2732 2733 /** 2734 * threadgroup_change_end - mark the end of changes to a threadgroup 2735 * @tsk: task causing the changes 2736 * 2737 * See threadgroup_change_begin(). 2738 */ 2739 static inline void threadgroup_change_end(struct task_struct *tsk) 2740 { 2741 cgroup_threadgroup_change_end(tsk); 2742 } 2743 2744 #ifndef __HAVE_THREAD_FUNCTIONS 2745 2746 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2747 #define task_stack_page(task) ((task)->stack) 2748 2749 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2750 { 2751 *task_thread_info(p) = *task_thread_info(org); 2752 task_thread_info(p)->task = p; 2753 } 2754 2755 /* 2756 * Return the address of the last usable long on the stack. 2757 * 2758 * When the stack grows down, this is just above the thread 2759 * info struct. Going any lower will corrupt the threadinfo. 2760 * 2761 * When the stack grows up, this is the highest address. 2762 * Beyond that position, we corrupt data on the next page. 2763 */ 2764 static inline unsigned long *end_of_stack(struct task_struct *p) 2765 { 2766 #ifdef CONFIG_STACK_GROWSUP 2767 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2768 #else 2769 return (unsigned long *)(task_thread_info(p) + 1); 2770 #endif 2771 } 2772 2773 #endif 2774 #define task_stack_end_corrupted(task) \ 2775 (*(end_of_stack(task)) != STACK_END_MAGIC) 2776 2777 static inline int object_is_on_stack(void *obj) 2778 { 2779 void *stack = task_stack_page(current); 2780 2781 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2782 } 2783 2784 extern void thread_info_cache_init(void); 2785 2786 #ifdef CONFIG_DEBUG_STACK_USAGE 2787 static inline unsigned long stack_not_used(struct task_struct *p) 2788 { 2789 unsigned long *n = end_of_stack(p); 2790 2791 do { /* Skip over canary */ 2792 n++; 2793 } while (!*n); 2794 2795 return (unsigned long)n - (unsigned long)end_of_stack(p); 2796 } 2797 #endif 2798 extern void set_task_stack_end_magic(struct task_struct *tsk); 2799 2800 /* set thread flags in other task's structures 2801 * - see asm/thread_info.h for TIF_xxxx flags available 2802 */ 2803 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2804 { 2805 set_ti_thread_flag(task_thread_info(tsk), flag); 2806 } 2807 2808 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2809 { 2810 clear_ti_thread_flag(task_thread_info(tsk), flag); 2811 } 2812 2813 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2814 { 2815 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2816 } 2817 2818 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2819 { 2820 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2821 } 2822 2823 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2824 { 2825 return test_ti_thread_flag(task_thread_info(tsk), flag); 2826 } 2827 2828 static inline void set_tsk_need_resched(struct task_struct *tsk) 2829 { 2830 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2831 } 2832 2833 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2834 { 2835 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2836 } 2837 2838 static inline int test_tsk_need_resched(struct task_struct *tsk) 2839 { 2840 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2841 } 2842 2843 static inline int restart_syscall(void) 2844 { 2845 set_tsk_thread_flag(current, TIF_SIGPENDING); 2846 return -ERESTARTNOINTR; 2847 } 2848 2849 static inline int signal_pending(struct task_struct *p) 2850 { 2851 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2852 } 2853 2854 static inline int __fatal_signal_pending(struct task_struct *p) 2855 { 2856 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2857 } 2858 2859 static inline int fatal_signal_pending(struct task_struct *p) 2860 { 2861 return signal_pending(p) && __fatal_signal_pending(p); 2862 } 2863 2864 static inline int signal_pending_state(long state, struct task_struct *p) 2865 { 2866 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2867 return 0; 2868 if (!signal_pending(p)) 2869 return 0; 2870 2871 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2872 } 2873 2874 /* 2875 * cond_resched() and cond_resched_lock(): latency reduction via 2876 * explicit rescheduling in places that are safe. The return 2877 * value indicates whether a reschedule was done in fact. 2878 * cond_resched_lock() will drop the spinlock before scheduling, 2879 * cond_resched_softirq() will enable bhs before scheduling. 2880 */ 2881 extern int _cond_resched(void); 2882 2883 #define cond_resched() ({ \ 2884 ___might_sleep(__FILE__, __LINE__, 0); \ 2885 _cond_resched(); \ 2886 }) 2887 2888 extern int __cond_resched_lock(spinlock_t *lock); 2889 2890 #ifdef CONFIG_PREEMPT_COUNT 2891 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2892 #else 2893 #define PREEMPT_LOCK_OFFSET 0 2894 #endif 2895 2896 #define cond_resched_lock(lock) ({ \ 2897 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2898 __cond_resched_lock(lock); \ 2899 }) 2900 2901 extern int __cond_resched_softirq(void); 2902 2903 #define cond_resched_softirq() ({ \ 2904 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2905 __cond_resched_softirq(); \ 2906 }) 2907 2908 static inline void cond_resched_rcu(void) 2909 { 2910 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2911 rcu_read_unlock(); 2912 cond_resched(); 2913 rcu_read_lock(); 2914 #endif 2915 } 2916 2917 /* 2918 * Does a critical section need to be broken due to another 2919 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2920 * but a general need for low latency) 2921 */ 2922 static inline int spin_needbreak(spinlock_t *lock) 2923 { 2924 #ifdef CONFIG_PREEMPT 2925 return spin_is_contended(lock); 2926 #else 2927 return 0; 2928 #endif 2929 } 2930 2931 /* 2932 * Idle thread specific functions to determine the need_resched 2933 * polling state. 2934 */ 2935 #ifdef TIF_POLLING_NRFLAG 2936 static inline int tsk_is_polling(struct task_struct *p) 2937 { 2938 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2939 } 2940 2941 static inline void __current_set_polling(void) 2942 { 2943 set_thread_flag(TIF_POLLING_NRFLAG); 2944 } 2945 2946 static inline bool __must_check current_set_polling_and_test(void) 2947 { 2948 __current_set_polling(); 2949 2950 /* 2951 * Polling state must be visible before we test NEED_RESCHED, 2952 * paired by resched_curr() 2953 */ 2954 smp_mb__after_atomic(); 2955 2956 return unlikely(tif_need_resched()); 2957 } 2958 2959 static inline void __current_clr_polling(void) 2960 { 2961 clear_thread_flag(TIF_POLLING_NRFLAG); 2962 } 2963 2964 static inline bool __must_check current_clr_polling_and_test(void) 2965 { 2966 __current_clr_polling(); 2967 2968 /* 2969 * Polling state must be visible before we test NEED_RESCHED, 2970 * paired by resched_curr() 2971 */ 2972 smp_mb__after_atomic(); 2973 2974 return unlikely(tif_need_resched()); 2975 } 2976 2977 #else 2978 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2979 static inline void __current_set_polling(void) { } 2980 static inline void __current_clr_polling(void) { } 2981 2982 static inline bool __must_check current_set_polling_and_test(void) 2983 { 2984 return unlikely(tif_need_resched()); 2985 } 2986 static inline bool __must_check current_clr_polling_and_test(void) 2987 { 2988 return unlikely(tif_need_resched()); 2989 } 2990 #endif 2991 2992 static inline void current_clr_polling(void) 2993 { 2994 __current_clr_polling(); 2995 2996 /* 2997 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 2998 * Once the bit is cleared, we'll get IPIs with every new 2999 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3000 * fold. 3001 */ 3002 smp_mb(); /* paired with resched_curr() */ 3003 3004 preempt_fold_need_resched(); 3005 } 3006 3007 static __always_inline bool need_resched(void) 3008 { 3009 return unlikely(tif_need_resched()); 3010 } 3011 3012 /* 3013 * Thread group CPU time accounting. 3014 */ 3015 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3016 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3017 3018 /* 3019 * Reevaluate whether the task has signals pending delivery. 3020 * Wake the task if so. 3021 * This is required every time the blocked sigset_t changes. 3022 * callers must hold sighand->siglock. 3023 */ 3024 extern void recalc_sigpending_and_wake(struct task_struct *t); 3025 extern void recalc_sigpending(void); 3026 3027 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3028 3029 static inline void signal_wake_up(struct task_struct *t, bool resume) 3030 { 3031 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3032 } 3033 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3034 { 3035 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3036 } 3037 3038 /* 3039 * Wrappers for p->thread_info->cpu access. No-op on UP. 3040 */ 3041 #ifdef CONFIG_SMP 3042 3043 static inline unsigned int task_cpu(const struct task_struct *p) 3044 { 3045 return task_thread_info(p)->cpu; 3046 } 3047 3048 static inline int task_node(const struct task_struct *p) 3049 { 3050 return cpu_to_node(task_cpu(p)); 3051 } 3052 3053 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3054 3055 #else 3056 3057 static inline unsigned int task_cpu(const struct task_struct *p) 3058 { 3059 return 0; 3060 } 3061 3062 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3063 { 3064 } 3065 3066 #endif /* CONFIG_SMP */ 3067 3068 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3069 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3070 3071 #ifdef CONFIG_CGROUP_SCHED 3072 extern struct task_group root_task_group; 3073 #endif /* CONFIG_CGROUP_SCHED */ 3074 3075 extern int task_can_switch_user(struct user_struct *up, 3076 struct task_struct *tsk); 3077 3078 #ifdef CONFIG_TASK_XACCT 3079 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3080 { 3081 tsk->ioac.rchar += amt; 3082 } 3083 3084 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3085 { 3086 tsk->ioac.wchar += amt; 3087 } 3088 3089 static inline void inc_syscr(struct task_struct *tsk) 3090 { 3091 tsk->ioac.syscr++; 3092 } 3093 3094 static inline void inc_syscw(struct task_struct *tsk) 3095 { 3096 tsk->ioac.syscw++; 3097 } 3098 #else 3099 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3100 { 3101 } 3102 3103 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3104 { 3105 } 3106 3107 static inline void inc_syscr(struct task_struct *tsk) 3108 { 3109 } 3110 3111 static inline void inc_syscw(struct task_struct *tsk) 3112 { 3113 } 3114 #endif 3115 3116 #ifndef TASK_SIZE_OF 3117 #define TASK_SIZE_OF(tsk) TASK_SIZE 3118 #endif 3119 3120 #ifdef CONFIG_MEMCG 3121 extern void mm_update_next_owner(struct mm_struct *mm); 3122 #else 3123 static inline void mm_update_next_owner(struct mm_struct *mm) 3124 { 3125 } 3126 #endif /* CONFIG_MEMCG */ 3127 3128 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3129 unsigned int limit) 3130 { 3131 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3132 } 3133 3134 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3135 unsigned int limit) 3136 { 3137 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3138 } 3139 3140 static inline unsigned long rlimit(unsigned int limit) 3141 { 3142 return task_rlimit(current, limit); 3143 } 3144 3145 static inline unsigned long rlimit_max(unsigned int limit) 3146 { 3147 return task_rlimit_max(current, limit); 3148 } 3149 3150 #endif 3151