1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void update_cpu_load_nohz(int active); 181 #else 182 static inline void update_cpu_load_nohz(int active) { } 183 #endif 184 185 extern void dump_cpu_task(int cpu); 186 187 struct seq_file; 188 struct cfs_rq; 189 struct task_group; 190 #ifdef CONFIG_SCHED_DEBUG 191 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 192 extern void proc_sched_set_task(struct task_struct *p); 193 #endif 194 195 /* 196 * Task state bitmask. NOTE! These bits are also 197 * encoded in fs/proc/array.c: get_task_state(). 198 * 199 * We have two separate sets of flags: task->state 200 * is about runnability, while task->exit_state are 201 * about the task exiting. Confusing, but this way 202 * modifying one set can't modify the other one by 203 * mistake. 204 */ 205 #define TASK_RUNNING 0 206 #define TASK_INTERRUPTIBLE 1 207 #define TASK_UNINTERRUPTIBLE 2 208 #define __TASK_STOPPED 4 209 #define __TASK_TRACED 8 210 /* in tsk->exit_state */ 211 #define EXIT_DEAD 16 212 #define EXIT_ZOMBIE 32 213 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 214 /* in tsk->state again */ 215 #define TASK_DEAD 64 216 #define TASK_WAKEKILL 128 217 #define TASK_WAKING 256 218 #define TASK_PARKED 512 219 #define TASK_NOLOAD 1024 220 #define TASK_STATE_MAX 2048 221 222 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 223 224 extern char ___assert_task_state[1 - 2*!!( 225 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 226 227 /* Convenience macros for the sake of set_task_state */ 228 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 229 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 230 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 231 232 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 233 234 /* Convenience macros for the sake of wake_up */ 235 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 236 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 237 238 /* get_task_state() */ 239 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 240 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 241 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 242 243 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 244 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 245 #define task_is_stopped_or_traced(task) \ 246 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 247 #define task_contributes_to_load(task) \ 248 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 249 (task->flags & PF_FROZEN) == 0 && \ 250 (task->state & TASK_NOLOAD) == 0) 251 252 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 253 254 #define __set_task_state(tsk, state_value) \ 255 do { \ 256 (tsk)->task_state_change = _THIS_IP_; \ 257 (tsk)->state = (state_value); \ 258 } while (0) 259 #define set_task_state(tsk, state_value) \ 260 do { \ 261 (tsk)->task_state_change = _THIS_IP_; \ 262 smp_store_mb((tsk)->state, (state_value)); \ 263 } while (0) 264 265 /* 266 * set_current_state() includes a barrier so that the write of current->state 267 * is correctly serialised wrt the caller's subsequent test of whether to 268 * actually sleep: 269 * 270 * set_current_state(TASK_UNINTERRUPTIBLE); 271 * if (do_i_need_to_sleep()) 272 * schedule(); 273 * 274 * If the caller does not need such serialisation then use __set_current_state() 275 */ 276 #define __set_current_state(state_value) \ 277 do { \ 278 current->task_state_change = _THIS_IP_; \ 279 current->state = (state_value); \ 280 } while (0) 281 #define set_current_state(state_value) \ 282 do { \ 283 current->task_state_change = _THIS_IP_; \ 284 smp_store_mb(current->state, (state_value)); \ 285 } while (0) 286 287 #else 288 289 #define __set_task_state(tsk, state_value) \ 290 do { (tsk)->state = (state_value); } while (0) 291 #define set_task_state(tsk, state_value) \ 292 smp_store_mb((tsk)->state, (state_value)) 293 294 /* 295 * set_current_state() includes a barrier so that the write of current->state 296 * is correctly serialised wrt the caller's subsequent test of whether to 297 * actually sleep: 298 * 299 * set_current_state(TASK_UNINTERRUPTIBLE); 300 * if (do_i_need_to_sleep()) 301 * schedule(); 302 * 303 * If the caller does not need such serialisation then use __set_current_state() 304 */ 305 #define __set_current_state(state_value) \ 306 do { current->state = (state_value); } while (0) 307 #define set_current_state(state_value) \ 308 smp_store_mb(current->state, (state_value)) 309 310 #endif 311 312 /* Task command name length */ 313 #define TASK_COMM_LEN 16 314 315 #include <linux/spinlock.h> 316 317 /* 318 * This serializes "schedule()" and also protects 319 * the run-queue from deletions/modifications (but 320 * _adding_ to the beginning of the run-queue has 321 * a separate lock). 322 */ 323 extern rwlock_t tasklist_lock; 324 extern spinlock_t mmlist_lock; 325 326 struct task_struct; 327 328 #ifdef CONFIG_PROVE_RCU 329 extern int lockdep_tasklist_lock_is_held(void); 330 #endif /* #ifdef CONFIG_PROVE_RCU */ 331 332 extern void sched_init(void); 333 extern void sched_init_smp(void); 334 extern asmlinkage void schedule_tail(struct task_struct *prev); 335 extern void init_idle(struct task_struct *idle, int cpu); 336 extern void init_idle_bootup_task(struct task_struct *idle); 337 338 extern cpumask_var_t cpu_isolated_map; 339 340 extern int runqueue_is_locked(int cpu); 341 342 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 343 extern void nohz_balance_enter_idle(int cpu); 344 extern void set_cpu_sd_state_idle(void); 345 extern int get_nohz_timer_target(void); 346 #else 347 static inline void nohz_balance_enter_idle(int cpu) { } 348 static inline void set_cpu_sd_state_idle(void) { } 349 #endif 350 351 /* 352 * Only dump TASK_* tasks. (0 for all tasks) 353 */ 354 extern void show_state_filter(unsigned long state_filter); 355 356 static inline void show_state(void) 357 { 358 show_state_filter(0); 359 } 360 361 extern void show_regs(struct pt_regs *); 362 363 /* 364 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 365 * task), SP is the stack pointer of the first frame that should be shown in the back 366 * trace (or NULL if the entire call-chain of the task should be shown). 367 */ 368 extern void show_stack(struct task_struct *task, unsigned long *sp); 369 370 extern void cpu_init (void); 371 extern void trap_init(void); 372 extern void update_process_times(int user); 373 extern void scheduler_tick(void); 374 375 extern void sched_show_task(struct task_struct *p); 376 377 #ifdef CONFIG_LOCKUP_DETECTOR 378 extern void touch_softlockup_watchdog_sched(void); 379 extern void touch_softlockup_watchdog(void); 380 extern void touch_softlockup_watchdog_sync(void); 381 extern void touch_all_softlockup_watchdogs(void); 382 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 383 void __user *buffer, 384 size_t *lenp, loff_t *ppos); 385 extern unsigned int softlockup_panic; 386 extern unsigned int hardlockup_panic; 387 void lockup_detector_init(void); 388 #else 389 static inline void touch_softlockup_watchdog_sched(void) 390 { 391 } 392 static inline void touch_softlockup_watchdog(void) 393 { 394 } 395 static inline void touch_softlockup_watchdog_sync(void) 396 { 397 } 398 static inline void touch_all_softlockup_watchdogs(void) 399 { 400 } 401 static inline void lockup_detector_init(void) 402 { 403 } 404 #endif 405 406 #ifdef CONFIG_DETECT_HUNG_TASK 407 void reset_hung_task_detector(void); 408 #else 409 static inline void reset_hung_task_detector(void) 410 { 411 } 412 #endif 413 414 /* Attach to any functions which should be ignored in wchan output. */ 415 #define __sched __attribute__((__section__(".sched.text"))) 416 417 /* Linker adds these: start and end of __sched functions */ 418 extern char __sched_text_start[], __sched_text_end[]; 419 420 /* Is this address in the __sched functions? */ 421 extern int in_sched_functions(unsigned long addr); 422 423 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 424 extern signed long schedule_timeout(signed long timeout); 425 extern signed long schedule_timeout_interruptible(signed long timeout); 426 extern signed long schedule_timeout_killable(signed long timeout); 427 extern signed long schedule_timeout_uninterruptible(signed long timeout); 428 asmlinkage void schedule(void); 429 extern void schedule_preempt_disabled(void); 430 431 extern long io_schedule_timeout(long timeout); 432 433 static inline void io_schedule(void) 434 { 435 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 436 } 437 438 struct nsproxy; 439 struct user_namespace; 440 441 #ifdef CONFIG_MMU 442 extern void arch_pick_mmap_layout(struct mm_struct *mm); 443 extern unsigned long 444 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 445 unsigned long, unsigned long); 446 extern unsigned long 447 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 448 unsigned long len, unsigned long pgoff, 449 unsigned long flags); 450 #else 451 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 452 #endif 453 454 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 455 #define SUID_DUMP_USER 1 /* Dump as user of process */ 456 #define SUID_DUMP_ROOT 2 /* Dump as root */ 457 458 /* mm flags */ 459 460 /* for SUID_DUMP_* above */ 461 #define MMF_DUMPABLE_BITS 2 462 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 463 464 extern void set_dumpable(struct mm_struct *mm, int value); 465 /* 466 * This returns the actual value of the suid_dumpable flag. For things 467 * that are using this for checking for privilege transitions, it must 468 * test against SUID_DUMP_USER rather than treating it as a boolean 469 * value. 470 */ 471 static inline int __get_dumpable(unsigned long mm_flags) 472 { 473 return mm_flags & MMF_DUMPABLE_MASK; 474 } 475 476 static inline int get_dumpable(struct mm_struct *mm) 477 { 478 return __get_dumpable(mm->flags); 479 } 480 481 /* coredump filter bits */ 482 #define MMF_DUMP_ANON_PRIVATE 2 483 #define MMF_DUMP_ANON_SHARED 3 484 #define MMF_DUMP_MAPPED_PRIVATE 4 485 #define MMF_DUMP_MAPPED_SHARED 5 486 #define MMF_DUMP_ELF_HEADERS 6 487 #define MMF_DUMP_HUGETLB_PRIVATE 7 488 #define MMF_DUMP_HUGETLB_SHARED 8 489 #define MMF_DUMP_DAX_PRIVATE 9 490 #define MMF_DUMP_DAX_SHARED 10 491 492 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 493 #define MMF_DUMP_FILTER_BITS 9 494 #define MMF_DUMP_FILTER_MASK \ 495 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 496 #define MMF_DUMP_FILTER_DEFAULT \ 497 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 498 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 499 500 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 501 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 502 #else 503 # define MMF_DUMP_MASK_DEFAULT_ELF 0 504 #endif 505 /* leave room for more dump flags */ 506 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 507 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 508 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 509 510 #define MMF_HAS_UPROBES 19 /* has uprobes */ 511 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 512 513 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 514 515 struct sighand_struct { 516 atomic_t count; 517 struct k_sigaction action[_NSIG]; 518 spinlock_t siglock; 519 wait_queue_head_t signalfd_wqh; 520 }; 521 522 struct pacct_struct { 523 int ac_flag; 524 long ac_exitcode; 525 unsigned long ac_mem; 526 cputime_t ac_utime, ac_stime; 527 unsigned long ac_minflt, ac_majflt; 528 }; 529 530 struct cpu_itimer { 531 cputime_t expires; 532 cputime_t incr; 533 u32 error; 534 u32 incr_error; 535 }; 536 537 /** 538 * struct prev_cputime - snaphsot of system and user cputime 539 * @utime: time spent in user mode 540 * @stime: time spent in system mode 541 * @lock: protects the above two fields 542 * 543 * Stores previous user/system time values such that we can guarantee 544 * monotonicity. 545 */ 546 struct prev_cputime { 547 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 548 cputime_t utime; 549 cputime_t stime; 550 raw_spinlock_t lock; 551 #endif 552 }; 553 554 static inline void prev_cputime_init(struct prev_cputime *prev) 555 { 556 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 557 prev->utime = prev->stime = 0; 558 raw_spin_lock_init(&prev->lock); 559 #endif 560 } 561 562 /** 563 * struct task_cputime - collected CPU time counts 564 * @utime: time spent in user mode, in &cputime_t units 565 * @stime: time spent in kernel mode, in &cputime_t units 566 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 567 * 568 * This structure groups together three kinds of CPU time that are tracked for 569 * threads and thread groups. Most things considering CPU time want to group 570 * these counts together and treat all three of them in parallel. 571 */ 572 struct task_cputime { 573 cputime_t utime; 574 cputime_t stime; 575 unsigned long long sum_exec_runtime; 576 }; 577 578 /* Alternate field names when used to cache expirations. */ 579 #define virt_exp utime 580 #define prof_exp stime 581 #define sched_exp sum_exec_runtime 582 583 #define INIT_CPUTIME \ 584 (struct task_cputime) { \ 585 .utime = 0, \ 586 .stime = 0, \ 587 .sum_exec_runtime = 0, \ 588 } 589 590 /* 591 * This is the atomic variant of task_cputime, which can be used for 592 * storing and updating task_cputime statistics without locking. 593 */ 594 struct task_cputime_atomic { 595 atomic64_t utime; 596 atomic64_t stime; 597 atomic64_t sum_exec_runtime; 598 }; 599 600 #define INIT_CPUTIME_ATOMIC \ 601 (struct task_cputime_atomic) { \ 602 .utime = ATOMIC64_INIT(0), \ 603 .stime = ATOMIC64_INIT(0), \ 604 .sum_exec_runtime = ATOMIC64_INIT(0), \ 605 } 606 607 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 608 609 /* 610 * Disable preemption until the scheduler is running -- use an unconditional 611 * value so that it also works on !PREEMPT_COUNT kernels. 612 * 613 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 614 */ 615 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 616 617 /* 618 * Initial preempt_count value; reflects the preempt_count schedule invariant 619 * which states that during context switches: 620 * 621 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 622 * 623 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 624 * Note: See finish_task_switch(). 625 */ 626 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 627 628 /** 629 * struct thread_group_cputimer - thread group interval timer counts 630 * @cputime_atomic: atomic thread group interval timers. 631 * @running: true when there are timers running and 632 * @cputime_atomic receives updates. 633 * @checking_timer: true when a thread in the group is in the 634 * process of checking for thread group timers. 635 * 636 * This structure contains the version of task_cputime, above, that is 637 * used for thread group CPU timer calculations. 638 */ 639 struct thread_group_cputimer { 640 struct task_cputime_atomic cputime_atomic; 641 bool running; 642 bool checking_timer; 643 }; 644 645 #include <linux/rwsem.h> 646 struct autogroup; 647 648 /* 649 * NOTE! "signal_struct" does not have its own 650 * locking, because a shared signal_struct always 651 * implies a shared sighand_struct, so locking 652 * sighand_struct is always a proper superset of 653 * the locking of signal_struct. 654 */ 655 struct signal_struct { 656 atomic_t sigcnt; 657 atomic_t live; 658 int nr_threads; 659 struct list_head thread_head; 660 661 wait_queue_head_t wait_chldexit; /* for wait4() */ 662 663 /* current thread group signal load-balancing target: */ 664 struct task_struct *curr_target; 665 666 /* shared signal handling: */ 667 struct sigpending shared_pending; 668 669 /* thread group exit support */ 670 int group_exit_code; 671 /* overloaded: 672 * - notify group_exit_task when ->count is equal to notify_count 673 * - everyone except group_exit_task is stopped during signal delivery 674 * of fatal signals, group_exit_task processes the signal. 675 */ 676 int notify_count; 677 struct task_struct *group_exit_task; 678 679 /* thread group stop support, overloads group_exit_code too */ 680 int group_stop_count; 681 unsigned int flags; /* see SIGNAL_* flags below */ 682 683 /* 684 * PR_SET_CHILD_SUBREAPER marks a process, like a service 685 * manager, to re-parent orphan (double-forking) child processes 686 * to this process instead of 'init'. The service manager is 687 * able to receive SIGCHLD signals and is able to investigate 688 * the process until it calls wait(). All children of this 689 * process will inherit a flag if they should look for a 690 * child_subreaper process at exit. 691 */ 692 unsigned int is_child_subreaper:1; 693 unsigned int has_child_subreaper:1; 694 695 /* POSIX.1b Interval Timers */ 696 int posix_timer_id; 697 struct list_head posix_timers; 698 699 /* ITIMER_REAL timer for the process */ 700 struct hrtimer real_timer; 701 struct pid *leader_pid; 702 ktime_t it_real_incr; 703 704 /* 705 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 706 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 707 * values are defined to 0 and 1 respectively 708 */ 709 struct cpu_itimer it[2]; 710 711 /* 712 * Thread group totals for process CPU timers. 713 * See thread_group_cputimer(), et al, for details. 714 */ 715 struct thread_group_cputimer cputimer; 716 717 /* Earliest-expiration cache. */ 718 struct task_cputime cputime_expires; 719 720 #ifdef CONFIG_NO_HZ_FULL 721 unsigned long tick_dep_mask; 722 #endif 723 724 struct list_head cpu_timers[3]; 725 726 struct pid *tty_old_pgrp; 727 728 /* boolean value for session group leader */ 729 int leader; 730 731 struct tty_struct *tty; /* NULL if no tty */ 732 733 #ifdef CONFIG_SCHED_AUTOGROUP 734 struct autogroup *autogroup; 735 #endif 736 /* 737 * Cumulative resource counters for dead threads in the group, 738 * and for reaped dead child processes forked by this group. 739 * Live threads maintain their own counters and add to these 740 * in __exit_signal, except for the group leader. 741 */ 742 seqlock_t stats_lock; 743 cputime_t utime, stime, cutime, cstime; 744 cputime_t gtime; 745 cputime_t cgtime; 746 struct prev_cputime prev_cputime; 747 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 748 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 749 unsigned long inblock, oublock, cinblock, coublock; 750 unsigned long maxrss, cmaxrss; 751 struct task_io_accounting ioac; 752 753 /* 754 * Cumulative ns of schedule CPU time fo dead threads in the 755 * group, not including a zombie group leader, (This only differs 756 * from jiffies_to_ns(utime + stime) if sched_clock uses something 757 * other than jiffies.) 758 */ 759 unsigned long long sum_sched_runtime; 760 761 /* 762 * We don't bother to synchronize most readers of this at all, 763 * because there is no reader checking a limit that actually needs 764 * to get both rlim_cur and rlim_max atomically, and either one 765 * alone is a single word that can safely be read normally. 766 * getrlimit/setrlimit use task_lock(current->group_leader) to 767 * protect this instead of the siglock, because they really 768 * have no need to disable irqs. 769 */ 770 struct rlimit rlim[RLIM_NLIMITS]; 771 772 #ifdef CONFIG_BSD_PROCESS_ACCT 773 struct pacct_struct pacct; /* per-process accounting information */ 774 #endif 775 #ifdef CONFIG_TASKSTATS 776 struct taskstats *stats; 777 #endif 778 #ifdef CONFIG_AUDIT 779 unsigned audit_tty; 780 struct tty_audit_buf *tty_audit_buf; 781 #endif 782 783 oom_flags_t oom_flags; 784 short oom_score_adj; /* OOM kill score adjustment */ 785 short oom_score_adj_min; /* OOM kill score adjustment min value. 786 * Only settable by CAP_SYS_RESOURCE. */ 787 788 struct mutex cred_guard_mutex; /* guard against foreign influences on 789 * credential calculations 790 * (notably. ptrace) */ 791 }; 792 793 /* 794 * Bits in flags field of signal_struct. 795 */ 796 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 797 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 798 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 799 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 800 /* 801 * Pending notifications to parent. 802 */ 803 #define SIGNAL_CLD_STOPPED 0x00000010 804 #define SIGNAL_CLD_CONTINUED 0x00000020 805 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 806 807 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 808 809 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 810 static inline int signal_group_exit(const struct signal_struct *sig) 811 { 812 return (sig->flags & SIGNAL_GROUP_EXIT) || 813 (sig->group_exit_task != NULL); 814 } 815 816 /* 817 * Some day this will be a full-fledged user tracking system.. 818 */ 819 struct user_struct { 820 atomic_t __count; /* reference count */ 821 atomic_t processes; /* How many processes does this user have? */ 822 atomic_t sigpending; /* How many pending signals does this user have? */ 823 #ifdef CONFIG_INOTIFY_USER 824 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 825 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 826 #endif 827 #ifdef CONFIG_FANOTIFY 828 atomic_t fanotify_listeners; 829 #endif 830 #ifdef CONFIG_EPOLL 831 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 832 #endif 833 #ifdef CONFIG_POSIX_MQUEUE 834 /* protected by mq_lock */ 835 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 836 #endif 837 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 838 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 839 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 840 841 #ifdef CONFIG_KEYS 842 struct key *uid_keyring; /* UID specific keyring */ 843 struct key *session_keyring; /* UID's default session keyring */ 844 #endif 845 846 /* Hash table maintenance information */ 847 struct hlist_node uidhash_node; 848 kuid_t uid; 849 850 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 851 atomic_long_t locked_vm; 852 #endif 853 }; 854 855 extern int uids_sysfs_init(void); 856 857 extern struct user_struct *find_user(kuid_t); 858 859 extern struct user_struct root_user; 860 #define INIT_USER (&root_user) 861 862 863 struct backing_dev_info; 864 struct reclaim_state; 865 866 #ifdef CONFIG_SCHED_INFO 867 struct sched_info { 868 /* cumulative counters */ 869 unsigned long pcount; /* # of times run on this cpu */ 870 unsigned long long run_delay; /* time spent waiting on a runqueue */ 871 872 /* timestamps */ 873 unsigned long long last_arrival,/* when we last ran on a cpu */ 874 last_queued; /* when we were last queued to run */ 875 }; 876 #endif /* CONFIG_SCHED_INFO */ 877 878 #ifdef CONFIG_TASK_DELAY_ACCT 879 struct task_delay_info { 880 spinlock_t lock; 881 unsigned int flags; /* Private per-task flags */ 882 883 /* For each stat XXX, add following, aligned appropriately 884 * 885 * struct timespec XXX_start, XXX_end; 886 * u64 XXX_delay; 887 * u32 XXX_count; 888 * 889 * Atomicity of updates to XXX_delay, XXX_count protected by 890 * single lock above (split into XXX_lock if contention is an issue). 891 */ 892 893 /* 894 * XXX_count is incremented on every XXX operation, the delay 895 * associated with the operation is added to XXX_delay. 896 * XXX_delay contains the accumulated delay time in nanoseconds. 897 */ 898 u64 blkio_start; /* Shared by blkio, swapin */ 899 u64 blkio_delay; /* wait for sync block io completion */ 900 u64 swapin_delay; /* wait for swapin block io completion */ 901 u32 blkio_count; /* total count of the number of sync block */ 902 /* io operations performed */ 903 u32 swapin_count; /* total count of the number of swapin block */ 904 /* io operations performed */ 905 906 u64 freepages_start; 907 u64 freepages_delay; /* wait for memory reclaim */ 908 u32 freepages_count; /* total count of memory reclaim */ 909 }; 910 #endif /* CONFIG_TASK_DELAY_ACCT */ 911 912 static inline int sched_info_on(void) 913 { 914 #ifdef CONFIG_SCHEDSTATS 915 return 1; 916 #elif defined(CONFIG_TASK_DELAY_ACCT) 917 extern int delayacct_on; 918 return delayacct_on; 919 #else 920 return 0; 921 #endif 922 } 923 924 #ifdef CONFIG_SCHEDSTATS 925 void force_schedstat_enabled(void); 926 #endif 927 928 enum cpu_idle_type { 929 CPU_IDLE, 930 CPU_NOT_IDLE, 931 CPU_NEWLY_IDLE, 932 CPU_MAX_IDLE_TYPES 933 }; 934 935 /* 936 * Increase resolution of cpu_capacity calculations 937 */ 938 #define SCHED_CAPACITY_SHIFT 10 939 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 940 941 /* 942 * Wake-queues are lists of tasks with a pending wakeup, whose 943 * callers have already marked the task as woken internally, 944 * and can thus carry on. A common use case is being able to 945 * do the wakeups once the corresponding user lock as been 946 * released. 947 * 948 * We hold reference to each task in the list across the wakeup, 949 * thus guaranteeing that the memory is still valid by the time 950 * the actual wakeups are performed in wake_up_q(). 951 * 952 * One per task suffices, because there's never a need for a task to be 953 * in two wake queues simultaneously; it is forbidden to abandon a task 954 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 955 * already in a wake queue, the wakeup will happen soon and the second 956 * waker can just skip it. 957 * 958 * The WAKE_Q macro declares and initializes the list head. 959 * wake_up_q() does NOT reinitialize the list; it's expected to be 960 * called near the end of a function, where the fact that the queue is 961 * not used again will be easy to see by inspection. 962 * 963 * Note that this can cause spurious wakeups. schedule() callers 964 * must ensure the call is done inside a loop, confirming that the 965 * wakeup condition has in fact occurred. 966 */ 967 struct wake_q_node { 968 struct wake_q_node *next; 969 }; 970 971 struct wake_q_head { 972 struct wake_q_node *first; 973 struct wake_q_node **lastp; 974 }; 975 976 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 977 978 #define WAKE_Q(name) \ 979 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 980 981 extern void wake_q_add(struct wake_q_head *head, 982 struct task_struct *task); 983 extern void wake_up_q(struct wake_q_head *head); 984 985 /* 986 * sched-domains (multiprocessor balancing) declarations: 987 */ 988 #ifdef CONFIG_SMP 989 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 990 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 991 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 992 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 993 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 994 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 995 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 996 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 997 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 998 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 999 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 1000 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 1001 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 1002 #define SD_NUMA 0x4000 /* cross-node balancing */ 1003 1004 #ifdef CONFIG_SCHED_SMT 1005 static inline int cpu_smt_flags(void) 1006 { 1007 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1008 } 1009 #endif 1010 1011 #ifdef CONFIG_SCHED_MC 1012 static inline int cpu_core_flags(void) 1013 { 1014 return SD_SHARE_PKG_RESOURCES; 1015 } 1016 #endif 1017 1018 #ifdef CONFIG_NUMA 1019 static inline int cpu_numa_flags(void) 1020 { 1021 return SD_NUMA; 1022 } 1023 #endif 1024 1025 struct sched_domain_attr { 1026 int relax_domain_level; 1027 }; 1028 1029 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1030 .relax_domain_level = -1, \ 1031 } 1032 1033 extern int sched_domain_level_max; 1034 1035 struct sched_group; 1036 1037 struct sched_domain { 1038 /* These fields must be setup */ 1039 struct sched_domain *parent; /* top domain must be null terminated */ 1040 struct sched_domain *child; /* bottom domain must be null terminated */ 1041 struct sched_group *groups; /* the balancing groups of the domain */ 1042 unsigned long min_interval; /* Minimum balance interval ms */ 1043 unsigned long max_interval; /* Maximum balance interval ms */ 1044 unsigned int busy_factor; /* less balancing by factor if busy */ 1045 unsigned int imbalance_pct; /* No balance until over watermark */ 1046 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1047 unsigned int busy_idx; 1048 unsigned int idle_idx; 1049 unsigned int newidle_idx; 1050 unsigned int wake_idx; 1051 unsigned int forkexec_idx; 1052 unsigned int smt_gain; 1053 1054 int nohz_idle; /* NOHZ IDLE status */ 1055 int flags; /* See SD_* */ 1056 int level; 1057 1058 /* Runtime fields. */ 1059 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1060 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1061 unsigned int nr_balance_failed; /* initialise to 0 */ 1062 1063 /* idle_balance() stats */ 1064 u64 max_newidle_lb_cost; 1065 unsigned long next_decay_max_lb_cost; 1066 1067 #ifdef CONFIG_SCHEDSTATS 1068 /* load_balance() stats */ 1069 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1070 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1071 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1072 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1073 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1074 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1075 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1076 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1077 1078 /* Active load balancing */ 1079 unsigned int alb_count; 1080 unsigned int alb_failed; 1081 unsigned int alb_pushed; 1082 1083 /* SD_BALANCE_EXEC stats */ 1084 unsigned int sbe_count; 1085 unsigned int sbe_balanced; 1086 unsigned int sbe_pushed; 1087 1088 /* SD_BALANCE_FORK stats */ 1089 unsigned int sbf_count; 1090 unsigned int sbf_balanced; 1091 unsigned int sbf_pushed; 1092 1093 /* try_to_wake_up() stats */ 1094 unsigned int ttwu_wake_remote; 1095 unsigned int ttwu_move_affine; 1096 unsigned int ttwu_move_balance; 1097 #endif 1098 #ifdef CONFIG_SCHED_DEBUG 1099 char *name; 1100 #endif 1101 union { 1102 void *private; /* used during construction */ 1103 struct rcu_head rcu; /* used during destruction */ 1104 }; 1105 1106 unsigned int span_weight; 1107 /* 1108 * Span of all CPUs in this domain. 1109 * 1110 * NOTE: this field is variable length. (Allocated dynamically 1111 * by attaching extra space to the end of the structure, 1112 * depending on how many CPUs the kernel has booted up with) 1113 */ 1114 unsigned long span[0]; 1115 }; 1116 1117 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1118 { 1119 return to_cpumask(sd->span); 1120 } 1121 1122 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1123 struct sched_domain_attr *dattr_new); 1124 1125 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1126 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1127 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1128 1129 bool cpus_share_cache(int this_cpu, int that_cpu); 1130 1131 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1132 typedef int (*sched_domain_flags_f)(void); 1133 1134 #define SDTL_OVERLAP 0x01 1135 1136 struct sd_data { 1137 struct sched_domain **__percpu sd; 1138 struct sched_group **__percpu sg; 1139 struct sched_group_capacity **__percpu sgc; 1140 }; 1141 1142 struct sched_domain_topology_level { 1143 sched_domain_mask_f mask; 1144 sched_domain_flags_f sd_flags; 1145 int flags; 1146 int numa_level; 1147 struct sd_data data; 1148 #ifdef CONFIG_SCHED_DEBUG 1149 char *name; 1150 #endif 1151 }; 1152 1153 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1154 extern void wake_up_if_idle(int cpu); 1155 1156 #ifdef CONFIG_SCHED_DEBUG 1157 # define SD_INIT_NAME(type) .name = #type 1158 #else 1159 # define SD_INIT_NAME(type) 1160 #endif 1161 1162 #else /* CONFIG_SMP */ 1163 1164 struct sched_domain_attr; 1165 1166 static inline void 1167 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1168 struct sched_domain_attr *dattr_new) 1169 { 1170 } 1171 1172 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1173 { 1174 return true; 1175 } 1176 1177 #endif /* !CONFIG_SMP */ 1178 1179 1180 struct io_context; /* See blkdev.h */ 1181 1182 1183 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1184 extern void prefetch_stack(struct task_struct *t); 1185 #else 1186 static inline void prefetch_stack(struct task_struct *t) { } 1187 #endif 1188 1189 struct audit_context; /* See audit.c */ 1190 struct mempolicy; 1191 struct pipe_inode_info; 1192 struct uts_namespace; 1193 1194 struct load_weight { 1195 unsigned long weight; 1196 u32 inv_weight; 1197 }; 1198 1199 /* 1200 * The load_avg/util_avg accumulates an infinite geometric series. 1201 * 1) load_avg factors frequency scaling into the amount of time that a 1202 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the 1203 * aggregated such weights of all runnable and blocked sched_entities. 1204 * 2) util_avg factors frequency and cpu scaling into the amount of time 1205 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE]. 1206 * For cfs_rq, it is the aggregated such times of all runnable and 1207 * blocked sched_entities. 1208 * The 64 bit load_sum can: 1209 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with 1210 * the highest weight (=88761) always runnable, we should not overflow 1211 * 2) for entity, support any load.weight always runnable 1212 */ 1213 struct sched_avg { 1214 u64 last_update_time, load_sum; 1215 u32 util_sum, period_contrib; 1216 unsigned long load_avg, util_avg; 1217 }; 1218 1219 #ifdef CONFIG_SCHEDSTATS 1220 struct sched_statistics { 1221 u64 wait_start; 1222 u64 wait_max; 1223 u64 wait_count; 1224 u64 wait_sum; 1225 u64 iowait_count; 1226 u64 iowait_sum; 1227 1228 u64 sleep_start; 1229 u64 sleep_max; 1230 s64 sum_sleep_runtime; 1231 1232 u64 block_start; 1233 u64 block_max; 1234 u64 exec_max; 1235 u64 slice_max; 1236 1237 u64 nr_migrations_cold; 1238 u64 nr_failed_migrations_affine; 1239 u64 nr_failed_migrations_running; 1240 u64 nr_failed_migrations_hot; 1241 u64 nr_forced_migrations; 1242 1243 u64 nr_wakeups; 1244 u64 nr_wakeups_sync; 1245 u64 nr_wakeups_migrate; 1246 u64 nr_wakeups_local; 1247 u64 nr_wakeups_remote; 1248 u64 nr_wakeups_affine; 1249 u64 nr_wakeups_affine_attempts; 1250 u64 nr_wakeups_passive; 1251 u64 nr_wakeups_idle; 1252 }; 1253 #endif 1254 1255 struct sched_entity { 1256 struct load_weight load; /* for load-balancing */ 1257 struct rb_node run_node; 1258 struct list_head group_node; 1259 unsigned int on_rq; 1260 1261 u64 exec_start; 1262 u64 sum_exec_runtime; 1263 u64 vruntime; 1264 u64 prev_sum_exec_runtime; 1265 1266 u64 nr_migrations; 1267 1268 #ifdef CONFIG_SCHEDSTATS 1269 struct sched_statistics statistics; 1270 #endif 1271 1272 #ifdef CONFIG_FAIR_GROUP_SCHED 1273 int depth; 1274 struct sched_entity *parent; 1275 /* rq on which this entity is (to be) queued: */ 1276 struct cfs_rq *cfs_rq; 1277 /* rq "owned" by this entity/group: */ 1278 struct cfs_rq *my_q; 1279 #endif 1280 1281 #ifdef CONFIG_SMP 1282 /* 1283 * Per entity load average tracking. 1284 * 1285 * Put into separate cache line so it does not 1286 * collide with read-mostly values above. 1287 */ 1288 struct sched_avg avg ____cacheline_aligned_in_smp; 1289 #endif 1290 }; 1291 1292 struct sched_rt_entity { 1293 struct list_head run_list; 1294 unsigned long timeout; 1295 unsigned long watchdog_stamp; 1296 unsigned int time_slice; 1297 unsigned short on_rq; 1298 unsigned short on_list; 1299 1300 struct sched_rt_entity *back; 1301 #ifdef CONFIG_RT_GROUP_SCHED 1302 struct sched_rt_entity *parent; 1303 /* rq on which this entity is (to be) queued: */ 1304 struct rt_rq *rt_rq; 1305 /* rq "owned" by this entity/group: */ 1306 struct rt_rq *my_q; 1307 #endif 1308 }; 1309 1310 struct sched_dl_entity { 1311 struct rb_node rb_node; 1312 1313 /* 1314 * Original scheduling parameters. Copied here from sched_attr 1315 * during sched_setattr(), they will remain the same until 1316 * the next sched_setattr(). 1317 */ 1318 u64 dl_runtime; /* maximum runtime for each instance */ 1319 u64 dl_deadline; /* relative deadline of each instance */ 1320 u64 dl_period; /* separation of two instances (period) */ 1321 u64 dl_bw; /* dl_runtime / dl_deadline */ 1322 1323 /* 1324 * Actual scheduling parameters. Initialized with the values above, 1325 * they are continously updated during task execution. Note that 1326 * the remaining runtime could be < 0 in case we are in overrun. 1327 */ 1328 s64 runtime; /* remaining runtime for this instance */ 1329 u64 deadline; /* absolute deadline for this instance */ 1330 unsigned int flags; /* specifying the scheduler behaviour */ 1331 1332 /* 1333 * Some bool flags: 1334 * 1335 * @dl_throttled tells if we exhausted the runtime. If so, the 1336 * task has to wait for a replenishment to be performed at the 1337 * next firing of dl_timer. 1338 * 1339 * @dl_boosted tells if we are boosted due to DI. If so we are 1340 * outside bandwidth enforcement mechanism (but only until we 1341 * exit the critical section); 1342 * 1343 * @dl_yielded tells if task gave up the cpu before consuming 1344 * all its available runtime during the last job. 1345 */ 1346 int dl_throttled, dl_boosted, dl_yielded; 1347 1348 /* 1349 * Bandwidth enforcement timer. Each -deadline task has its 1350 * own bandwidth to be enforced, thus we need one timer per task. 1351 */ 1352 struct hrtimer dl_timer; 1353 }; 1354 1355 union rcu_special { 1356 struct { 1357 u8 blocked; 1358 u8 need_qs; 1359 u8 exp_need_qs; 1360 u8 pad; /* Otherwise the compiler can store garbage here. */ 1361 } b; /* Bits. */ 1362 u32 s; /* Set of bits. */ 1363 }; 1364 struct rcu_node; 1365 1366 enum perf_event_task_context { 1367 perf_invalid_context = -1, 1368 perf_hw_context = 0, 1369 perf_sw_context, 1370 perf_nr_task_contexts, 1371 }; 1372 1373 /* Track pages that require TLB flushes */ 1374 struct tlbflush_unmap_batch { 1375 /* 1376 * Each bit set is a CPU that potentially has a TLB entry for one of 1377 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1378 */ 1379 struct cpumask cpumask; 1380 1381 /* True if any bit in cpumask is set */ 1382 bool flush_required; 1383 1384 /* 1385 * If true then the PTE was dirty when unmapped. The entry must be 1386 * flushed before IO is initiated or a stale TLB entry potentially 1387 * allows an update without redirtying the page. 1388 */ 1389 bool writable; 1390 }; 1391 1392 struct task_struct { 1393 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1394 void *stack; 1395 atomic_t usage; 1396 unsigned int flags; /* per process flags, defined below */ 1397 unsigned int ptrace; 1398 1399 #ifdef CONFIG_SMP 1400 struct llist_node wake_entry; 1401 int on_cpu; 1402 unsigned int wakee_flips; 1403 unsigned long wakee_flip_decay_ts; 1404 struct task_struct *last_wakee; 1405 1406 int wake_cpu; 1407 #endif 1408 int on_rq; 1409 1410 int prio, static_prio, normal_prio; 1411 unsigned int rt_priority; 1412 const struct sched_class *sched_class; 1413 struct sched_entity se; 1414 struct sched_rt_entity rt; 1415 #ifdef CONFIG_CGROUP_SCHED 1416 struct task_group *sched_task_group; 1417 #endif 1418 struct sched_dl_entity dl; 1419 1420 #ifdef CONFIG_PREEMPT_NOTIFIERS 1421 /* list of struct preempt_notifier: */ 1422 struct hlist_head preempt_notifiers; 1423 #endif 1424 1425 #ifdef CONFIG_BLK_DEV_IO_TRACE 1426 unsigned int btrace_seq; 1427 #endif 1428 1429 unsigned int policy; 1430 int nr_cpus_allowed; 1431 cpumask_t cpus_allowed; 1432 1433 #ifdef CONFIG_PREEMPT_RCU 1434 int rcu_read_lock_nesting; 1435 union rcu_special rcu_read_unlock_special; 1436 struct list_head rcu_node_entry; 1437 struct rcu_node *rcu_blocked_node; 1438 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1439 #ifdef CONFIG_TASKS_RCU 1440 unsigned long rcu_tasks_nvcsw; 1441 bool rcu_tasks_holdout; 1442 struct list_head rcu_tasks_holdout_list; 1443 int rcu_tasks_idle_cpu; 1444 #endif /* #ifdef CONFIG_TASKS_RCU */ 1445 1446 #ifdef CONFIG_SCHED_INFO 1447 struct sched_info sched_info; 1448 #endif 1449 1450 struct list_head tasks; 1451 #ifdef CONFIG_SMP 1452 struct plist_node pushable_tasks; 1453 struct rb_node pushable_dl_tasks; 1454 #endif 1455 1456 struct mm_struct *mm, *active_mm; 1457 /* per-thread vma caching */ 1458 u32 vmacache_seqnum; 1459 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1460 #if defined(SPLIT_RSS_COUNTING) 1461 struct task_rss_stat rss_stat; 1462 #endif 1463 /* task state */ 1464 int exit_state; 1465 int exit_code, exit_signal; 1466 int pdeath_signal; /* The signal sent when the parent dies */ 1467 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1468 1469 /* Used for emulating ABI behavior of previous Linux versions */ 1470 unsigned int personality; 1471 1472 /* scheduler bits, serialized by scheduler locks */ 1473 unsigned sched_reset_on_fork:1; 1474 unsigned sched_contributes_to_load:1; 1475 unsigned sched_migrated:1; 1476 unsigned :0; /* force alignment to the next boundary */ 1477 1478 /* unserialized, strictly 'current' */ 1479 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1480 unsigned in_iowait:1; 1481 #ifdef CONFIG_MEMCG 1482 unsigned memcg_may_oom:1; 1483 #ifndef CONFIG_SLOB 1484 unsigned memcg_kmem_skip_account:1; 1485 #endif 1486 #endif 1487 #ifdef CONFIG_COMPAT_BRK 1488 unsigned brk_randomized:1; 1489 #endif 1490 1491 unsigned long atomic_flags; /* Flags needing atomic access. */ 1492 1493 struct restart_block restart_block; 1494 1495 pid_t pid; 1496 pid_t tgid; 1497 1498 #ifdef CONFIG_CC_STACKPROTECTOR 1499 /* Canary value for the -fstack-protector gcc feature */ 1500 unsigned long stack_canary; 1501 #endif 1502 /* 1503 * pointers to (original) parent process, youngest child, younger sibling, 1504 * older sibling, respectively. (p->father can be replaced with 1505 * p->real_parent->pid) 1506 */ 1507 struct task_struct __rcu *real_parent; /* real parent process */ 1508 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1509 /* 1510 * children/sibling forms the list of my natural children 1511 */ 1512 struct list_head children; /* list of my children */ 1513 struct list_head sibling; /* linkage in my parent's children list */ 1514 struct task_struct *group_leader; /* threadgroup leader */ 1515 1516 /* 1517 * ptraced is the list of tasks this task is using ptrace on. 1518 * This includes both natural children and PTRACE_ATTACH targets. 1519 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1520 */ 1521 struct list_head ptraced; 1522 struct list_head ptrace_entry; 1523 1524 /* PID/PID hash table linkage. */ 1525 struct pid_link pids[PIDTYPE_MAX]; 1526 struct list_head thread_group; 1527 struct list_head thread_node; 1528 1529 struct completion *vfork_done; /* for vfork() */ 1530 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1531 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1532 1533 cputime_t utime, stime, utimescaled, stimescaled; 1534 cputime_t gtime; 1535 struct prev_cputime prev_cputime; 1536 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1537 seqcount_t vtime_seqcount; 1538 unsigned long long vtime_snap; 1539 enum { 1540 /* Task is sleeping or running in a CPU with VTIME inactive */ 1541 VTIME_INACTIVE = 0, 1542 /* Task runs in userspace in a CPU with VTIME active */ 1543 VTIME_USER, 1544 /* Task runs in kernelspace in a CPU with VTIME active */ 1545 VTIME_SYS, 1546 } vtime_snap_whence; 1547 #endif 1548 1549 #ifdef CONFIG_NO_HZ_FULL 1550 unsigned long tick_dep_mask; 1551 #endif 1552 unsigned long nvcsw, nivcsw; /* context switch counts */ 1553 u64 start_time; /* monotonic time in nsec */ 1554 u64 real_start_time; /* boot based time in nsec */ 1555 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1556 unsigned long min_flt, maj_flt; 1557 1558 struct task_cputime cputime_expires; 1559 struct list_head cpu_timers[3]; 1560 1561 /* process credentials */ 1562 const struct cred __rcu *real_cred; /* objective and real subjective task 1563 * credentials (COW) */ 1564 const struct cred __rcu *cred; /* effective (overridable) subjective task 1565 * credentials (COW) */ 1566 char comm[TASK_COMM_LEN]; /* executable name excluding path 1567 - access with [gs]et_task_comm (which lock 1568 it with task_lock()) 1569 - initialized normally by setup_new_exec */ 1570 /* file system info */ 1571 struct nameidata *nameidata; 1572 #ifdef CONFIG_SYSVIPC 1573 /* ipc stuff */ 1574 struct sysv_sem sysvsem; 1575 struct sysv_shm sysvshm; 1576 #endif 1577 #ifdef CONFIG_DETECT_HUNG_TASK 1578 /* hung task detection */ 1579 unsigned long last_switch_count; 1580 #endif 1581 /* filesystem information */ 1582 struct fs_struct *fs; 1583 /* open file information */ 1584 struct files_struct *files; 1585 /* namespaces */ 1586 struct nsproxy *nsproxy; 1587 /* signal handlers */ 1588 struct signal_struct *signal; 1589 struct sighand_struct *sighand; 1590 1591 sigset_t blocked, real_blocked; 1592 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1593 struct sigpending pending; 1594 1595 unsigned long sas_ss_sp; 1596 size_t sas_ss_size; 1597 1598 struct callback_head *task_works; 1599 1600 struct audit_context *audit_context; 1601 #ifdef CONFIG_AUDITSYSCALL 1602 kuid_t loginuid; 1603 unsigned int sessionid; 1604 #endif 1605 struct seccomp seccomp; 1606 1607 /* Thread group tracking */ 1608 u32 parent_exec_id; 1609 u32 self_exec_id; 1610 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1611 * mempolicy */ 1612 spinlock_t alloc_lock; 1613 1614 /* Protection of the PI data structures: */ 1615 raw_spinlock_t pi_lock; 1616 1617 struct wake_q_node wake_q; 1618 1619 #ifdef CONFIG_RT_MUTEXES 1620 /* PI waiters blocked on a rt_mutex held by this task */ 1621 struct rb_root pi_waiters; 1622 struct rb_node *pi_waiters_leftmost; 1623 /* Deadlock detection and priority inheritance handling */ 1624 struct rt_mutex_waiter *pi_blocked_on; 1625 #endif 1626 1627 #ifdef CONFIG_DEBUG_MUTEXES 1628 /* mutex deadlock detection */ 1629 struct mutex_waiter *blocked_on; 1630 #endif 1631 #ifdef CONFIG_TRACE_IRQFLAGS 1632 unsigned int irq_events; 1633 unsigned long hardirq_enable_ip; 1634 unsigned long hardirq_disable_ip; 1635 unsigned int hardirq_enable_event; 1636 unsigned int hardirq_disable_event; 1637 int hardirqs_enabled; 1638 int hardirq_context; 1639 unsigned long softirq_disable_ip; 1640 unsigned long softirq_enable_ip; 1641 unsigned int softirq_disable_event; 1642 unsigned int softirq_enable_event; 1643 int softirqs_enabled; 1644 int softirq_context; 1645 #endif 1646 #ifdef CONFIG_LOCKDEP 1647 # define MAX_LOCK_DEPTH 48UL 1648 u64 curr_chain_key; 1649 int lockdep_depth; 1650 unsigned int lockdep_recursion; 1651 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1652 gfp_t lockdep_reclaim_gfp; 1653 #endif 1654 #ifdef CONFIG_UBSAN 1655 unsigned int in_ubsan; 1656 #endif 1657 1658 /* journalling filesystem info */ 1659 void *journal_info; 1660 1661 /* stacked block device info */ 1662 struct bio_list *bio_list; 1663 1664 #ifdef CONFIG_BLOCK 1665 /* stack plugging */ 1666 struct blk_plug *plug; 1667 #endif 1668 1669 /* VM state */ 1670 struct reclaim_state *reclaim_state; 1671 1672 struct backing_dev_info *backing_dev_info; 1673 1674 struct io_context *io_context; 1675 1676 unsigned long ptrace_message; 1677 siginfo_t *last_siginfo; /* For ptrace use. */ 1678 struct task_io_accounting ioac; 1679 #if defined(CONFIG_TASK_XACCT) 1680 u64 acct_rss_mem1; /* accumulated rss usage */ 1681 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1682 cputime_t acct_timexpd; /* stime + utime since last update */ 1683 #endif 1684 #ifdef CONFIG_CPUSETS 1685 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1686 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1687 int cpuset_mem_spread_rotor; 1688 int cpuset_slab_spread_rotor; 1689 #endif 1690 #ifdef CONFIG_CGROUPS 1691 /* Control Group info protected by css_set_lock */ 1692 struct css_set __rcu *cgroups; 1693 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1694 struct list_head cg_list; 1695 #endif 1696 #ifdef CONFIG_FUTEX 1697 struct robust_list_head __user *robust_list; 1698 #ifdef CONFIG_COMPAT 1699 struct compat_robust_list_head __user *compat_robust_list; 1700 #endif 1701 struct list_head pi_state_list; 1702 struct futex_pi_state *pi_state_cache; 1703 #endif 1704 #ifdef CONFIG_PERF_EVENTS 1705 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1706 struct mutex perf_event_mutex; 1707 struct list_head perf_event_list; 1708 #endif 1709 #ifdef CONFIG_DEBUG_PREEMPT 1710 unsigned long preempt_disable_ip; 1711 #endif 1712 #ifdef CONFIG_NUMA 1713 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1714 short il_next; 1715 short pref_node_fork; 1716 #endif 1717 #ifdef CONFIG_NUMA_BALANCING 1718 int numa_scan_seq; 1719 unsigned int numa_scan_period; 1720 unsigned int numa_scan_period_max; 1721 int numa_preferred_nid; 1722 unsigned long numa_migrate_retry; 1723 u64 node_stamp; /* migration stamp */ 1724 u64 last_task_numa_placement; 1725 u64 last_sum_exec_runtime; 1726 struct callback_head numa_work; 1727 1728 struct list_head numa_entry; 1729 struct numa_group *numa_group; 1730 1731 /* 1732 * numa_faults is an array split into four regions: 1733 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1734 * in this precise order. 1735 * 1736 * faults_memory: Exponential decaying average of faults on a per-node 1737 * basis. Scheduling placement decisions are made based on these 1738 * counts. The values remain static for the duration of a PTE scan. 1739 * faults_cpu: Track the nodes the process was running on when a NUMA 1740 * hinting fault was incurred. 1741 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1742 * during the current scan window. When the scan completes, the counts 1743 * in faults_memory and faults_cpu decay and these values are copied. 1744 */ 1745 unsigned long *numa_faults; 1746 unsigned long total_numa_faults; 1747 1748 /* 1749 * numa_faults_locality tracks if faults recorded during the last 1750 * scan window were remote/local or failed to migrate. The task scan 1751 * period is adapted based on the locality of the faults with different 1752 * weights depending on whether they were shared or private faults 1753 */ 1754 unsigned long numa_faults_locality[3]; 1755 1756 unsigned long numa_pages_migrated; 1757 #endif /* CONFIG_NUMA_BALANCING */ 1758 1759 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1760 struct tlbflush_unmap_batch tlb_ubc; 1761 #endif 1762 1763 struct rcu_head rcu; 1764 1765 /* 1766 * cache last used pipe for splice 1767 */ 1768 struct pipe_inode_info *splice_pipe; 1769 1770 struct page_frag task_frag; 1771 1772 #ifdef CONFIG_TASK_DELAY_ACCT 1773 struct task_delay_info *delays; 1774 #endif 1775 #ifdef CONFIG_FAULT_INJECTION 1776 int make_it_fail; 1777 #endif 1778 /* 1779 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1780 * balance_dirty_pages() for some dirty throttling pause 1781 */ 1782 int nr_dirtied; 1783 int nr_dirtied_pause; 1784 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1785 1786 #ifdef CONFIG_LATENCYTOP 1787 int latency_record_count; 1788 struct latency_record latency_record[LT_SAVECOUNT]; 1789 #endif 1790 /* 1791 * time slack values; these are used to round up poll() and 1792 * select() etc timeout values. These are in nanoseconds. 1793 */ 1794 unsigned long timer_slack_ns; 1795 unsigned long default_timer_slack_ns; 1796 1797 #ifdef CONFIG_KASAN 1798 unsigned int kasan_depth; 1799 #endif 1800 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1801 /* Index of current stored address in ret_stack */ 1802 int curr_ret_stack; 1803 /* Stack of return addresses for return function tracing */ 1804 struct ftrace_ret_stack *ret_stack; 1805 /* time stamp for last schedule */ 1806 unsigned long long ftrace_timestamp; 1807 /* 1808 * Number of functions that haven't been traced 1809 * because of depth overrun. 1810 */ 1811 atomic_t trace_overrun; 1812 /* Pause for the tracing */ 1813 atomic_t tracing_graph_pause; 1814 #endif 1815 #ifdef CONFIG_TRACING 1816 /* state flags for use by tracers */ 1817 unsigned long trace; 1818 /* bitmask and counter of trace recursion */ 1819 unsigned long trace_recursion; 1820 #endif /* CONFIG_TRACING */ 1821 #ifdef CONFIG_MEMCG 1822 struct mem_cgroup *memcg_in_oom; 1823 gfp_t memcg_oom_gfp_mask; 1824 int memcg_oom_order; 1825 1826 /* number of pages to reclaim on returning to userland */ 1827 unsigned int memcg_nr_pages_over_high; 1828 #endif 1829 #ifdef CONFIG_UPROBES 1830 struct uprobe_task *utask; 1831 #endif 1832 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1833 unsigned int sequential_io; 1834 unsigned int sequential_io_avg; 1835 #endif 1836 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1837 unsigned long task_state_change; 1838 #endif 1839 int pagefault_disabled; 1840 /* CPU-specific state of this task */ 1841 struct thread_struct thread; 1842 /* 1843 * WARNING: on x86, 'thread_struct' contains a variable-sized 1844 * structure. It *MUST* be at the end of 'task_struct'. 1845 * 1846 * Do not put anything below here! 1847 */ 1848 }; 1849 1850 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1851 extern int arch_task_struct_size __read_mostly; 1852 #else 1853 # define arch_task_struct_size (sizeof(struct task_struct)) 1854 #endif 1855 1856 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1857 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1858 1859 #define TNF_MIGRATED 0x01 1860 #define TNF_NO_GROUP 0x02 1861 #define TNF_SHARED 0x04 1862 #define TNF_FAULT_LOCAL 0x08 1863 #define TNF_MIGRATE_FAIL 0x10 1864 1865 #ifdef CONFIG_NUMA_BALANCING 1866 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1867 extern pid_t task_numa_group_id(struct task_struct *p); 1868 extern void set_numabalancing_state(bool enabled); 1869 extern void task_numa_free(struct task_struct *p); 1870 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1871 int src_nid, int dst_cpu); 1872 #else 1873 static inline void task_numa_fault(int last_node, int node, int pages, 1874 int flags) 1875 { 1876 } 1877 static inline pid_t task_numa_group_id(struct task_struct *p) 1878 { 1879 return 0; 1880 } 1881 static inline void set_numabalancing_state(bool enabled) 1882 { 1883 } 1884 static inline void task_numa_free(struct task_struct *p) 1885 { 1886 } 1887 static inline bool should_numa_migrate_memory(struct task_struct *p, 1888 struct page *page, int src_nid, int dst_cpu) 1889 { 1890 return true; 1891 } 1892 #endif 1893 1894 static inline struct pid *task_pid(struct task_struct *task) 1895 { 1896 return task->pids[PIDTYPE_PID].pid; 1897 } 1898 1899 static inline struct pid *task_tgid(struct task_struct *task) 1900 { 1901 return task->group_leader->pids[PIDTYPE_PID].pid; 1902 } 1903 1904 /* 1905 * Without tasklist or rcu lock it is not safe to dereference 1906 * the result of task_pgrp/task_session even if task == current, 1907 * we can race with another thread doing sys_setsid/sys_setpgid. 1908 */ 1909 static inline struct pid *task_pgrp(struct task_struct *task) 1910 { 1911 return task->group_leader->pids[PIDTYPE_PGID].pid; 1912 } 1913 1914 static inline struct pid *task_session(struct task_struct *task) 1915 { 1916 return task->group_leader->pids[PIDTYPE_SID].pid; 1917 } 1918 1919 struct pid_namespace; 1920 1921 /* 1922 * the helpers to get the task's different pids as they are seen 1923 * from various namespaces 1924 * 1925 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1926 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1927 * current. 1928 * task_xid_nr_ns() : id seen from the ns specified; 1929 * 1930 * set_task_vxid() : assigns a virtual id to a task; 1931 * 1932 * see also pid_nr() etc in include/linux/pid.h 1933 */ 1934 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1935 struct pid_namespace *ns); 1936 1937 static inline pid_t task_pid_nr(struct task_struct *tsk) 1938 { 1939 return tsk->pid; 1940 } 1941 1942 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1943 struct pid_namespace *ns) 1944 { 1945 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1946 } 1947 1948 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1949 { 1950 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1951 } 1952 1953 1954 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1955 { 1956 return tsk->tgid; 1957 } 1958 1959 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1960 1961 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1962 { 1963 return pid_vnr(task_tgid(tsk)); 1964 } 1965 1966 1967 static inline int pid_alive(const struct task_struct *p); 1968 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1969 { 1970 pid_t pid = 0; 1971 1972 rcu_read_lock(); 1973 if (pid_alive(tsk)) 1974 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1975 rcu_read_unlock(); 1976 1977 return pid; 1978 } 1979 1980 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1981 { 1982 return task_ppid_nr_ns(tsk, &init_pid_ns); 1983 } 1984 1985 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1986 struct pid_namespace *ns) 1987 { 1988 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1989 } 1990 1991 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1992 { 1993 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1994 } 1995 1996 1997 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1998 struct pid_namespace *ns) 1999 { 2000 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 2001 } 2002 2003 static inline pid_t task_session_vnr(struct task_struct *tsk) 2004 { 2005 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 2006 } 2007 2008 /* obsolete, do not use */ 2009 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 2010 { 2011 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2012 } 2013 2014 /** 2015 * pid_alive - check that a task structure is not stale 2016 * @p: Task structure to be checked. 2017 * 2018 * Test if a process is not yet dead (at most zombie state) 2019 * If pid_alive fails, then pointers within the task structure 2020 * can be stale and must not be dereferenced. 2021 * 2022 * Return: 1 if the process is alive. 0 otherwise. 2023 */ 2024 static inline int pid_alive(const struct task_struct *p) 2025 { 2026 return p->pids[PIDTYPE_PID].pid != NULL; 2027 } 2028 2029 /** 2030 * is_global_init - check if a task structure is init. Since init 2031 * is free to have sub-threads we need to check tgid. 2032 * @tsk: Task structure to be checked. 2033 * 2034 * Check if a task structure is the first user space task the kernel created. 2035 * 2036 * Return: 1 if the task structure is init. 0 otherwise. 2037 */ 2038 static inline int is_global_init(struct task_struct *tsk) 2039 { 2040 return task_tgid_nr(tsk) == 1; 2041 } 2042 2043 extern struct pid *cad_pid; 2044 2045 extern void free_task(struct task_struct *tsk); 2046 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2047 2048 extern void __put_task_struct(struct task_struct *t); 2049 2050 static inline void put_task_struct(struct task_struct *t) 2051 { 2052 if (atomic_dec_and_test(&t->usage)) 2053 __put_task_struct(t); 2054 } 2055 2056 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2057 extern void task_cputime(struct task_struct *t, 2058 cputime_t *utime, cputime_t *stime); 2059 extern void task_cputime_scaled(struct task_struct *t, 2060 cputime_t *utimescaled, cputime_t *stimescaled); 2061 extern cputime_t task_gtime(struct task_struct *t); 2062 #else 2063 static inline void task_cputime(struct task_struct *t, 2064 cputime_t *utime, cputime_t *stime) 2065 { 2066 if (utime) 2067 *utime = t->utime; 2068 if (stime) 2069 *stime = t->stime; 2070 } 2071 2072 static inline void task_cputime_scaled(struct task_struct *t, 2073 cputime_t *utimescaled, 2074 cputime_t *stimescaled) 2075 { 2076 if (utimescaled) 2077 *utimescaled = t->utimescaled; 2078 if (stimescaled) 2079 *stimescaled = t->stimescaled; 2080 } 2081 2082 static inline cputime_t task_gtime(struct task_struct *t) 2083 { 2084 return t->gtime; 2085 } 2086 #endif 2087 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2088 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2089 2090 /* 2091 * Per process flags 2092 */ 2093 #define PF_EXITING 0x00000004 /* getting shut down */ 2094 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2095 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2096 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2097 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2098 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2099 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2100 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2101 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2102 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2103 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2104 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2105 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2106 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2107 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2108 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2109 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2110 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2111 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2112 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2113 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2114 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2115 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2116 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2117 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2118 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2119 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2120 2121 /* 2122 * Only the _current_ task can read/write to tsk->flags, but other 2123 * tasks can access tsk->flags in readonly mode for example 2124 * with tsk_used_math (like during threaded core dumping). 2125 * There is however an exception to this rule during ptrace 2126 * or during fork: the ptracer task is allowed to write to the 2127 * child->flags of its traced child (same goes for fork, the parent 2128 * can write to the child->flags), because we're guaranteed the 2129 * child is not running and in turn not changing child->flags 2130 * at the same time the parent does it. 2131 */ 2132 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2133 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2134 #define clear_used_math() clear_stopped_child_used_math(current) 2135 #define set_used_math() set_stopped_child_used_math(current) 2136 #define conditional_stopped_child_used_math(condition, child) \ 2137 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2138 #define conditional_used_math(condition) \ 2139 conditional_stopped_child_used_math(condition, current) 2140 #define copy_to_stopped_child_used_math(child) \ 2141 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2142 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2143 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2144 #define used_math() tsk_used_math(current) 2145 2146 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2147 * __GFP_FS is also cleared as it implies __GFP_IO. 2148 */ 2149 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2150 { 2151 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2152 flags &= ~(__GFP_IO | __GFP_FS); 2153 return flags; 2154 } 2155 2156 static inline unsigned int memalloc_noio_save(void) 2157 { 2158 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2159 current->flags |= PF_MEMALLOC_NOIO; 2160 return flags; 2161 } 2162 2163 static inline void memalloc_noio_restore(unsigned int flags) 2164 { 2165 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2166 } 2167 2168 /* Per-process atomic flags. */ 2169 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2170 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2171 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2172 2173 2174 #define TASK_PFA_TEST(name, func) \ 2175 static inline bool task_##func(struct task_struct *p) \ 2176 { return test_bit(PFA_##name, &p->atomic_flags); } 2177 #define TASK_PFA_SET(name, func) \ 2178 static inline void task_set_##func(struct task_struct *p) \ 2179 { set_bit(PFA_##name, &p->atomic_flags); } 2180 #define TASK_PFA_CLEAR(name, func) \ 2181 static inline void task_clear_##func(struct task_struct *p) \ 2182 { clear_bit(PFA_##name, &p->atomic_flags); } 2183 2184 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2185 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2186 2187 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2188 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2189 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2190 2191 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2192 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2193 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2194 2195 /* 2196 * task->jobctl flags 2197 */ 2198 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2199 2200 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2201 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2202 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2203 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2204 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2205 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2206 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2207 2208 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2209 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2210 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2211 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2212 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2213 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2214 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2215 2216 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2217 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2218 2219 extern bool task_set_jobctl_pending(struct task_struct *task, 2220 unsigned long mask); 2221 extern void task_clear_jobctl_trapping(struct task_struct *task); 2222 extern void task_clear_jobctl_pending(struct task_struct *task, 2223 unsigned long mask); 2224 2225 static inline void rcu_copy_process(struct task_struct *p) 2226 { 2227 #ifdef CONFIG_PREEMPT_RCU 2228 p->rcu_read_lock_nesting = 0; 2229 p->rcu_read_unlock_special.s = 0; 2230 p->rcu_blocked_node = NULL; 2231 INIT_LIST_HEAD(&p->rcu_node_entry); 2232 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2233 #ifdef CONFIG_TASKS_RCU 2234 p->rcu_tasks_holdout = false; 2235 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2236 p->rcu_tasks_idle_cpu = -1; 2237 #endif /* #ifdef CONFIG_TASKS_RCU */ 2238 } 2239 2240 static inline void tsk_restore_flags(struct task_struct *task, 2241 unsigned long orig_flags, unsigned long flags) 2242 { 2243 task->flags &= ~flags; 2244 task->flags |= orig_flags & flags; 2245 } 2246 2247 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2248 const struct cpumask *trial); 2249 extern int task_can_attach(struct task_struct *p, 2250 const struct cpumask *cs_cpus_allowed); 2251 #ifdef CONFIG_SMP 2252 extern void do_set_cpus_allowed(struct task_struct *p, 2253 const struct cpumask *new_mask); 2254 2255 extern int set_cpus_allowed_ptr(struct task_struct *p, 2256 const struct cpumask *new_mask); 2257 #else 2258 static inline void do_set_cpus_allowed(struct task_struct *p, 2259 const struct cpumask *new_mask) 2260 { 2261 } 2262 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2263 const struct cpumask *new_mask) 2264 { 2265 if (!cpumask_test_cpu(0, new_mask)) 2266 return -EINVAL; 2267 return 0; 2268 } 2269 #endif 2270 2271 #ifdef CONFIG_NO_HZ_COMMON 2272 void calc_load_enter_idle(void); 2273 void calc_load_exit_idle(void); 2274 #else 2275 static inline void calc_load_enter_idle(void) { } 2276 static inline void calc_load_exit_idle(void) { } 2277 #endif /* CONFIG_NO_HZ_COMMON */ 2278 2279 /* 2280 * Do not use outside of architecture code which knows its limitations. 2281 * 2282 * sched_clock() has no promise of monotonicity or bounded drift between 2283 * CPUs, use (which you should not) requires disabling IRQs. 2284 * 2285 * Please use one of the three interfaces below. 2286 */ 2287 extern unsigned long long notrace sched_clock(void); 2288 /* 2289 * See the comment in kernel/sched/clock.c 2290 */ 2291 extern u64 cpu_clock(int cpu); 2292 extern u64 local_clock(void); 2293 extern u64 running_clock(void); 2294 extern u64 sched_clock_cpu(int cpu); 2295 2296 2297 extern void sched_clock_init(void); 2298 2299 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2300 static inline void sched_clock_tick(void) 2301 { 2302 } 2303 2304 static inline void sched_clock_idle_sleep_event(void) 2305 { 2306 } 2307 2308 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2309 { 2310 } 2311 #else 2312 /* 2313 * Architectures can set this to 1 if they have specified 2314 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2315 * but then during bootup it turns out that sched_clock() 2316 * is reliable after all: 2317 */ 2318 extern int sched_clock_stable(void); 2319 extern void set_sched_clock_stable(void); 2320 extern void clear_sched_clock_stable(void); 2321 2322 extern void sched_clock_tick(void); 2323 extern void sched_clock_idle_sleep_event(void); 2324 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2325 #endif 2326 2327 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2328 /* 2329 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2330 * The reason for this explicit opt-in is not to have perf penalty with 2331 * slow sched_clocks. 2332 */ 2333 extern void enable_sched_clock_irqtime(void); 2334 extern void disable_sched_clock_irqtime(void); 2335 #else 2336 static inline void enable_sched_clock_irqtime(void) {} 2337 static inline void disable_sched_clock_irqtime(void) {} 2338 #endif 2339 2340 extern unsigned long long 2341 task_sched_runtime(struct task_struct *task); 2342 2343 /* sched_exec is called by processes performing an exec */ 2344 #ifdef CONFIG_SMP 2345 extern void sched_exec(void); 2346 #else 2347 #define sched_exec() {} 2348 #endif 2349 2350 extern void sched_clock_idle_sleep_event(void); 2351 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2352 2353 #ifdef CONFIG_HOTPLUG_CPU 2354 extern void idle_task_exit(void); 2355 #else 2356 static inline void idle_task_exit(void) {} 2357 #endif 2358 2359 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2360 extern void wake_up_nohz_cpu(int cpu); 2361 #else 2362 static inline void wake_up_nohz_cpu(int cpu) { } 2363 #endif 2364 2365 #ifdef CONFIG_NO_HZ_FULL 2366 extern u64 scheduler_tick_max_deferment(void); 2367 #endif 2368 2369 #ifdef CONFIG_SCHED_AUTOGROUP 2370 extern void sched_autogroup_create_attach(struct task_struct *p); 2371 extern void sched_autogroup_detach(struct task_struct *p); 2372 extern void sched_autogroup_fork(struct signal_struct *sig); 2373 extern void sched_autogroup_exit(struct signal_struct *sig); 2374 #ifdef CONFIG_PROC_FS 2375 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2376 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2377 #endif 2378 #else 2379 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2380 static inline void sched_autogroup_detach(struct task_struct *p) { } 2381 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2382 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2383 #endif 2384 2385 extern int yield_to(struct task_struct *p, bool preempt); 2386 extern void set_user_nice(struct task_struct *p, long nice); 2387 extern int task_prio(const struct task_struct *p); 2388 /** 2389 * task_nice - return the nice value of a given task. 2390 * @p: the task in question. 2391 * 2392 * Return: The nice value [ -20 ... 0 ... 19 ]. 2393 */ 2394 static inline int task_nice(const struct task_struct *p) 2395 { 2396 return PRIO_TO_NICE((p)->static_prio); 2397 } 2398 extern int can_nice(const struct task_struct *p, const int nice); 2399 extern int task_curr(const struct task_struct *p); 2400 extern int idle_cpu(int cpu); 2401 extern int sched_setscheduler(struct task_struct *, int, 2402 const struct sched_param *); 2403 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2404 const struct sched_param *); 2405 extern int sched_setattr(struct task_struct *, 2406 const struct sched_attr *); 2407 extern struct task_struct *idle_task(int cpu); 2408 /** 2409 * is_idle_task - is the specified task an idle task? 2410 * @p: the task in question. 2411 * 2412 * Return: 1 if @p is an idle task. 0 otherwise. 2413 */ 2414 static inline bool is_idle_task(const struct task_struct *p) 2415 { 2416 return p->pid == 0; 2417 } 2418 extern struct task_struct *curr_task(int cpu); 2419 extern void set_curr_task(int cpu, struct task_struct *p); 2420 2421 void yield(void); 2422 2423 union thread_union { 2424 struct thread_info thread_info; 2425 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2426 }; 2427 2428 #ifndef __HAVE_ARCH_KSTACK_END 2429 static inline int kstack_end(void *addr) 2430 { 2431 /* Reliable end of stack detection: 2432 * Some APM bios versions misalign the stack 2433 */ 2434 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2435 } 2436 #endif 2437 2438 extern union thread_union init_thread_union; 2439 extern struct task_struct init_task; 2440 2441 extern struct mm_struct init_mm; 2442 2443 extern struct pid_namespace init_pid_ns; 2444 2445 /* 2446 * find a task by one of its numerical ids 2447 * 2448 * find_task_by_pid_ns(): 2449 * finds a task by its pid in the specified namespace 2450 * find_task_by_vpid(): 2451 * finds a task by its virtual pid 2452 * 2453 * see also find_vpid() etc in include/linux/pid.h 2454 */ 2455 2456 extern struct task_struct *find_task_by_vpid(pid_t nr); 2457 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2458 struct pid_namespace *ns); 2459 2460 /* per-UID process charging. */ 2461 extern struct user_struct * alloc_uid(kuid_t); 2462 static inline struct user_struct *get_uid(struct user_struct *u) 2463 { 2464 atomic_inc(&u->__count); 2465 return u; 2466 } 2467 extern void free_uid(struct user_struct *); 2468 2469 #include <asm/current.h> 2470 2471 extern void xtime_update(unsigned long ticks); 2472 2473 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2474 extern int wake_up_process(struct task_struct *tsk); 2475 extern void wake_up_new_task(struct task_struct *tsk); 2476 #ifdef CONFIG_SMP 2477 extern void kick_process(struct task_struct *tsk); 2478 #else 2479 static inline void kick_process(struct task_struct *tsk) { } 2480 #endif 2481 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2482 extern void sched_dead(struct task_struct *p); 2483 2484 extern void proc_caches_init(void); 2485 extern void flush_signals(struct task_struct *); 2486 extern void ignore_signals(struct task_struct *); 2487 extern void flush_signal_handlers(struct task_struct *, int force_default); 2488 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2489 2490 static inline int kernel_dequeue_signal(siginfo_t *info) 2491 { 2492 struct task_struct *tsk = current; 2493 siginfo_t __info; 2494 int ret; 2495 2496 spin_lock_irq(&tsk->sighand->siglock); 2497 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2498 spin_unlock_irq(&tsk->sighand->siglock); 2499 2500 return ret; 2501 } 2502 2503 static inline void kernel_signal_stop(void) 2504 { 2505 spin_lock_irq(¤t->sighand->siglock); 2506 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2507 __set_current_state(TASK_STOPPED); 2508 spin_unlock_irq(¤t->sighand->siglock); 2509 2510 schedule(); 2511 } 2512 2513 extern void release_task(struct task_struct * p); 2514 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2515 extern int force_sigsegv(int, struct task_struct *); 2516 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2517 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2518 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2519 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2520 const struct cred *, u32); 2521 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2522 extern int kill_pid(struct pid *pid, int sig, int priv); 2523 extern int kill_proc_info(int, struct siginfo *, pid_t); 2524 extern __must_check bool do_notify_parent(struct task_struct *, int); 2525 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2526 extern void force_sig(int, struct task_struct *); 2527 extern int send_sig(int, struct task_struct *, int); 2528 extern int zap_other_threads(struct task_struct *p); 2529 extern struct sigqueue *sigqueue_alloc(void); 2530 extern void sigqueue_free(struct sigqueue *); 2531 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2532 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2533 2534 static inline void restore_saved_sigmask(void) 2535 { 2536 if (test_and_clear_restore_sigmask()) 2537 __set_current_blocked(¤t->saved_sigmask); 2538 } 2539 2540 static inline sigset_t *sigmask_to_save(void) 2541 { 2542 sigset_t *res = ¤t->blocked; 2543 if (unlikely(test_restore_sigmask())) 2544 res = ¤t->saved_sigmask; 2545 return res; 2546 } 2547 2548 static inline int kill_cad_pid(int sig, int priv) 2549 { 2550 return kill_pid(cad_pid, sig, priv); 2551 } 2552 2553 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2554 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2555 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2556 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2557 2558 /* 2559 * True if we are on the alternate signal stack. 2560 */ 2561 static inline int on_sig_stack(unsigned long sp) 2562 { 2563 #ifdef CONFIG_STACK_GROWSUP 2564 return sp >= current->sas_ss_sp && 2565 sp - current->sas_ss_sp < current->sas_ss_size; 2566 #else 2567 return sp > current->sas_ss_sp && 2568 sp - current->sas_ss_sp <= current->sas_ss_size; 2569 #endif 2570 } 2571 2572 static inline int sas_ss_flags(unsigned long sp) 2573 { 2574 if (!current->sas_ss_size) 2575 return SS_DISABLE; 2576 2577 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2578 } 2579 2580 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2581 { 2582 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2583 #ifdef CONFIG_STACK_GROWSUP 2584 return current->sas_ss_sp; 2585 #else 2586 return current->sas_ss_sp + current->sas_ss_size; 2587 #endif 2588 return sp; 2589 } 2590 2591 /* 2592 * Routines for handling mm_structs 2593 */ 2594 extern struct mm_struct * mm_alloc(void); 2595 2596 /* mmdrop drops the mm and the page tables */ 2597 extern void __mmdrop(struct mm_struct *); 2598 static inline void mmdrop(struct mm_struct * mm) 2599 { 2600 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2601 __mmdrop(mm); 2602 } 2603 2604 /* mmput gets rid of the mappings and all user-space */ 2605 extern void mmput(struct mm_struct *); 2606 /* Grab a reference to a task's mm, if it is not already going away */ 2607 extern struct mm_struct *get_task_mm(struct task_struct *task); 2608 /* 2609 * Grab a reference to a task's mm, if it is not already going away 2610 * and ptrace_may_access with the mode parameter passed to it 2611 * succeeds. 2612 */ 2613 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2614 /* Remove the current tasks stale references to the old mm_struct */ 2615 extern void mm_release(struct task_struct *, struct mm_struct *); 2616 2617 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2618 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2619 struct task_struct *, unsigned long); 2620 #else 2621 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2622 struct task_struct *); 2623 2624 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2625 * via pt_regs, so ignore the tls argument passed via C. */ 2626 static inline int copy_thread_tls( 2627 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2628 struct task_struct *p, unsigned long tls) 2629 { 2630 return copy_thread(clone_flags, sp, arg, p); 2631 } 2632 #endif 2633 extern void flush_thread(void); 2634 extern void exit_thread(void); 2635 2636 extern void exit_files(struct task_struct *); 2637 extern void __cleanup_sighand(struct sighand_struct *); 2638 2639 extern void exit_itimers(struct signal_struct *); 2640 extern void flush_itimer_signals(void); 2641 2642 extern void do_group_exit(int); 2643 2644 extern int do_execve(struct filename *, 2645 const char __user * const __user *, 2646 const char __user * const __user *); 2647 extern int do_execveat(int, struct filename *, 2648 const char __user * const __user *, 2649 const char __user * const __user *, 2650 int); 2651 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2652 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2653 struct task_struct *fork_idle(int); 2654 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2655 2656 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2657 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2658 { 2659 __set_task_comm(tsk, from, false); 2660 } 2661 extern char *get_task_comm(char *to, struct task_struct *tsk); 2662 2663 #ifdef CONFIG_SMP 2664 void scheduler_ipi(void); 2665 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2666 #else 2667 static inline void scheduler_ipi(void) { } 2668 static inline unsigned long wait_task_inactive(struct task_struct *p, 2669 long match_state) 2670 { 2671 return 1; 2672 } 2673 #endif 2674 2675 #define tasklist_empty() \ 2676 list_empty(&init_task.tasks) 2677 2678 #define next_task(p) \ 2679 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2680 2681 #define for_each_process(p) \ 2682 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2683 2684 extern bool current_is_single_threaded(void); 2685 2686 /* 2687 * Careful: do_each_thread/while_each_thread is a double loop so 2688 * 'break' will not work as expected - use goto instead. 2689 */ 2690 #define do_each_thread(g, t) \ 2691 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2692 2693 #define while_each_thread(g, t) \ 2694 while ((t = next_thread(t)) != g) 2695 2696 #define __for_each_thread(signal, t) \ 2697 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2698 2699 #define for_each_thread(p, t) \ 2700 __for_each_thread((p)->signal, t) 2701 2702 /* Careful: this is a double loop, 'break' won't work as expected. */ 2703 #define for_each_process_thread(p, t) \ 2704 for_each_process(p) for_each_thread(p, t) 2705 2706 static inline int get_nr_threads(struct task_struct *tsk) 2707 { 2708 return tsk->signal->nr_threads; 2709 } 2710 2711 static inline bool thread_group_leader(struct task_struct *p) 2712 { 2713 return p->exit_signal >= 0; 2714 } 2715 2716 /* Do to the insanities of de_thread it is possible for a process 2717 * to have the pid of the thread group leader without actually being 2718 * the thread group leader. For iteration through the pids in proc 2719 * all we care about is that we have a task with the appropriate 2720 * pid, we don't actually care if we have the right task. 2721 */ 2722 static inline bool has_group_leader_pid(struct task_struct *p) 2723 { 2724 return task_pid(p) == p->signal->leader_pid; 2725 } 2726 2727 static inline 2728 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2729 { 2730 return p1->signal == p2->signal; 2731 } 2732 2733 static inline struct task_struct *next_thread(const struct task_struct *p) 2734 { 2735 return list_entry_rcu(p->thread_group.next, 2736 struct task_struct, thread_group); 2737 } 2738 2739 static inline int thread_group_empty(struct task_struct *p) 2740 { 2741 return list_empty(&p->thread_group); 2742 } 2743 2744 #define delay_group_leader(p) \ 2745 (thread_group_leader(p) && !thread_group_empty(p)) 2746 2747 /* 2748 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2749 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2750 * pins the final release of task.io_context. Also protects ->cpuset and 2751 * ->cgroup.subsys[]. And ->vfork_done. 2752 * 2753 * Nests both inside and outside of read_lock(&tasklist_lock). 2754 * It must not be nested with write_lock_irq(&tasklist_lock), 2755 * neither inside nor outside. 2756 */ 2757 static inline void task_lock(struct task_struct *p) 2758 { 2759 spin_lock(&p->alloc_lock); 2760 } 2761 2762 static inline void task_unlock(struct task_struct *p) 2763 { 2764 spin_unlock(&p->alloc_lock); 2765 } 2766 2767 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2768 unsigned long *flags); 2769 2770 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2771 unsigned long *flags) 2772 { 2773 struct sighand_struct *ret; 2774 2775 ret = __lock_task_sighand(tsk, flags); 2776 (void)__cond_lock(&tsk->sighand->siglock, ret); 2777 return ret; 2778 } 2779 2780 static inline void unlock_task_sighand(struct task_struct *tsk, 2781 unsigned long *flags) 2782 { 2783 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2784 } 2785 2786 /** 2787 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2788 * @tsk: task causing the changes 2789 * 2790 * All operations which modify a threadgroup - a new thread joining the 2791 * group, death of a member thread (the assertion of PF_EXITING) and 2792 * exec(2) dethreading the process and replacing the leader - are wrapped 2793 * by threadgroup_change_{begin|end}(). This is to provide a place which 2794 * subsystems needing threadgroup stability can hook into for 2795 * synchronization. 2796 */ 2797 static inline void threadgroup_change_begin(struct task_struct *tsk) 2798 { 2799 might_sleep(); 2800 cgroup_threadgroup_change_begin(tsk); 2801 } 2802 2803 /** 2804 * threadgroup_change_end - mark the end of changes to a threadgroup 2805 * @tsk: task causing the changes 2806 * 2807 * See threadgroup_change_begin(). 2808 */ 2809 static inline void threadgroup_change_end(struct task_struct *tsk) 2810 { 2811 cgroup_threadgroup_change_end(tsk); 2812 } 2813 2814 #ifndef __HAVE_THREAD_FUNCTIONS 2815 2816 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2817 #define task_stack_page(task) ((task)->stack) 2818 2819 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2820 { 2821 *task_thread_info(p) = *task_thread_info(org); 2822 task_thread_info(p)->task = p; 2823 } 2824 2825 /* 2826 * Return the address of the last usable long on the stack. 2827 * 2828 * When the stack grows down, this is just above the thread 2829 * info struct. Going any lower will corrupt the threadinfo. 2830 * 2831 * When the stack grows up, this is the highest address. 2832 * Beyond that position, we corrupt data on the next page. 2833 */ 2834 static inline unsigned long *end_of_stack(struct task_struct *p) 2835 { 2836 #ifdef CONFIG_STACK_GROWSUP 2837 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2838 #else 2839 return (unsigned long *)(task_thread_info(p) + 1); 2840 #endif 2841 } 2842 2843 #endif 2844 #define task_stack_end_corrupted(task) \ 2845 (*(end_of_stack(task)) != STACK_END_MAGIC) 2846 2847 static inline int object_is_on_stack(void *obj) 2848 { 2849 void *stack = task_stack_page(current); 2850 2851 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2852 } 2853 2854 extern void thread_info_cache_init(void); 2855 2856 #ifdef CONFIG_DEBUG_STACK_USAGE 2857 static inline unsigned long stack_not_used(struct task_struct *p) 2858 { 2859 unsigned long *n = end_of_stack(p); 2860 2861 do { /* Skip over canary */ 2862 n++; 2863 } while (!*n); 2864 2865 return (unsigned long)n - (unsigned long)end_of_stack(p); 2866 } 2867 #endif 2868 extern void set_task_stack_end_magic(struct task_struct *tsk); 2869 2870 /* set thread flags in other task's structures 2871 * - see asm/thread_info.h for TIF_xxxx flags available 2872 */ 2873 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2874 { 2875 set_ti_thread_flag(task_thread_info(tsk), flag); 2876 } 2877 2878 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2879 { 2880 clear_ti_thread_flag(task_thread_info(tsk), flag); 2881 } 2882 2883 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2884 { 2885 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2886 } 2887 2888 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2889 { 2890 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2891 } 2892 2893 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2894 { 2895 return test_ti_thread_flag(task_thread_info(tsk), flag); 2896 } 2897 2898 static inline void set_tsk_need_resched(struct task_struct *tsk) 2899 { 2900 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2901 } 2902 2903 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2904 { 2905 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2906 } 2907 2908 static inline int test_tsk_need_resched(struct task_struct *tsk) 2909 { 2910 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2911 } 2912 2913 static inline int restart_syscall(void) 2914 { 2915 set_tsk_thread_flag(current, TIF_SIGPENDING); 2916 return -ERESTARTNOINTR; 2917 } 2918 2919 static inline int signal_pending(struct task_struct *p) 2920 { 2921 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2922 } 2923 2924 static inline int __fatal_signal_pending(struct task_struct *p) 2925 { 2926 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2927 } 2928 2929 static inline int fatal_signal_pending(struct task_struct *p) 2930 { 2931 return signal_pending(p) && __fatal_signal_pending(p); 2932 } 2933 2934 static inline int signal_pending_state(long state, struct task_struct *p) 2935 { 2936 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2937 return 0; 2938 if (!signal_pending(p)) 2939 return 0; 2940 2941 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2942 } 2943 2944 /* 2945 * cond_resched() and cond_resched_lock(): latency reduction via 2946 * explicit rescheduling in places that are safe. The return 2947 * value indicates whether a reschedule was done in fact. 2948 * cond_resched_lock() will drop the spinlock before scheduling, 2949 * cond_resched_softirq() will enable bhs before scheduling. 2950 */ 2951 extern int _cond_resched(void); 2952 2953 #define cond_resched() ({ \ 2954 ___might_sleep(__FILE__, __LINE__, 0); \ 2955 _cond_resched(); \ 2956 }) 2957 2958 extern int __cond_resched_lock(spinlock_t *lock); 2959 2960 #define cond_resched_lock(lock) ({ \ 2961 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2962 __cond_resched_lock(lock); \ 2963 }) 2964 2965 extern int __cond_resched_softirq(void); 2966 2967 #define cond_resched_softirq() ({ \ 2968 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2969 __cond_resched_softirq(); \ 2970 }) 2971 2972 static inline void cond_resched_rcu(void) 2973 { 2974 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2975 rcu_read_unlock(); 2976 cond_resched(); 2977 rcu_read_lock(); 2978 #endif 2979 } 2980 2981 /* 2982 * Does a critical section need to be broken due to another 2983 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2984 * but a general need for low latency) 2985 */ 2986 static inline int spin_needbreak(spinlock_t *lock) 2987 { 2988 #ifdef CONFIG_PREEMPT 2989 return spin_is_contended(lock); 2990 #else 2991 return 0; 2992 #endif 2993 } 2994 2995 /* 2996 * Idle thread specific functions to determine the need_resched 2997 * polling state. 2998 */ 2999 #ifdef TIF_POLLING_NRFLAG 3000 static inline int tsk_is_polling(struct task_struct *p) 3001 { 3002 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 3003 } 3004 3005 static inline void __current_set_polling(void) 3006 { 3007 set_thread_flag(TIF_POLLING_NRFLAG); 3008 } 3009 3010 static inline bool __must_check current_set_polling_and_test(void) 3011 { 3012 __current_set_polling(); 3013 3014 /* 3015 * Polling state must be visible before we test NEED_RESCHED, 3016 * paired by resched_curr() 3017 */ 3018 smp_mb__after_atomic(); 3019 3020 return unlikely(tif_need_resched()); 3021 } 3022 3023 static inline void __current_clr_polling(void) 3024 { 3025 clear_thread_flag(TIF_POLLING_NRFLAG); 3026 } 3027 3028 static inline bool __must_check current_clr_polling_and_test(void) 3029 { 3030 __current_clr_polling(); 3031 3032 /* 3033 * Polling state must be visible before we test NEED_RESCHED, 3034 * paired by resched_curr() 3035 */ 3036 smp_mb__after_atomic(); 3037 3038 return unlikely(tif_need_resched()); 3039 } 3040 3041 #else 3042 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3043 static inline void __current_set_polling(void) { } 3044 static inline void __current_clr_polling(void) { } 3045 3046 static inline bool __must_check current_set_polling_and_test(void) 3047 { 3048 return unlikely(tif_need_resched()); 3049 } 3050 static inline bool __must_check current_clr_polling_and_test(void) 3051 { 3052 return unlikely(tif_need_resched()); 3053 } 3054 #endif 3055 3056 static inline void current_clr_polling(void) 3057 { 3058 __current_clr_polling(); 3059 3060 /* 3061 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3062 * Once the bit is cleared, we'll get IPIs with every new 3063 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3064 * fold. 3065 */ 3066 smp_mb(); /* paired with resched_curr() */ 3067 3068 preempt_fold_need_resched(); 3069 } 3070 3071 static __always_inline bool need_resched(void) 3072 { 3073 return unlikely(tif_need_resched()); 3074 } 3075 3076 /* 3077 * Thread group CPU time accounting. 3078 */ 3079 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3080 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3081 3082 /* 3083 * Reevaluate whether the task has signals pending delivery. 3084 * Wake the task if so. 3085 * This is required every time the blocked sigset_t changes. 3086 * callers must hold sighand->siglock. 3087 */ 3088 extern void recalc_sigpending_and_wake(struct task_struct *t); 3089 extern void recalc_sigpending(void); 3090 3091 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3092 3093 static inline void signal_wake_up(struct task_struct *t, bool resume) 3094 { 3095 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3096 } 3097 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3098 { 3099 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3100 } 3101 3102 /* 3103 * Wrappers for p->thread_info->cpu access. No-op on UP. 3104 */ 3105 #ifdef CONFIG_SMP 3106 3107 static inline unsigned int task_cpu(const struct task_struct *p) 3108 { 3109 return task_thread_info(p)->cpu; 3110 } 3111 3112 static inline int task_node(const struct task_struct *p) 3113 { 3114 return cpu_to_node(task_cpu(p)); 3115 } 3116 3117 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3118 3119 #else 3120 3121 static inline unsigned int task_cpu(const struct task_struct *p) 3122 { 3123 return 0; 3124 } 3125 3126 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3127 { 3128 } 3129 3130 #endif /* CONFIG_SMP */ 3131 3132 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3133 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3134 3135 #ifdef CONFIG_CGROUP_SCHED 3136 extern struct task_group root_task_group; 3137 #endif /* CONFIG_CGROUP_SCHED */ 3138 3139 extern int task_can_switch_user(struct user_struct *up, 3140 struct task_struct *tsk); 3141 3142 #ifdef CONFIG_TASK_XACCT 3143 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3144 { 3145 tsk->ioac.rchar += amt; 3146 } 3147 3148 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3149 { 3150 tsk->ioac.wchar += amt; 3151 } 3152 3153 static inline void inc_syscr(struct task_struct *tsk) 3154 { 3155 tsk->ioac.syscr++; 3156 } 3157 3158 static inline void inc_syscw(struct task_struct *tsk) 3159 { 3160 tsk->ioac.syscw++; 3161 } 3162 #else 3163 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3164 { 3165 } 3166 3167 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3168 { 3169 } 3170 3171 static inline void inc_syscr(struct task_struct *tsk) 3172 { 3173 } 3174 3175 static inline void inc_syscw(struct task_struct *tsk) 3176 { 3177 } 3178 #endif 3179 3180 #ifndef TASK_SIZE_OF 3181 #define TASK_SIZE_OF(tsk) TASK_SIZE 3182 #endif 3183 3184 #ifdef CONFIG_MEMCG 3185 extern void mm_update_next_owner(struct mm_struct *mm); 3186 #else 3187 static inline void mm_update_next_owner(struct mm_struct *mm) 3188 { 3189 } 3190 #endif /* CONFIG_MEMCG */ 3191 3192 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3193 unsigned int limit) 3194 { 3195 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3196 } 3197 3198 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3199 unsigned int limit) 3200 { 3201 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3202 } 3203 3204 static inline unsigned long rlimit(unsigned int limit) 3205 { 3206 return task_rlimit(current, limit); 3207 } 3208 3209 static inline unsigned long rlimit_max(unsigned int limit) 3210 { 3211 return task_rlimit_max(current, limit); 3212 } 3213 3214 #ifdef CONFIG_CPU_FREQ 3215 struct update_util_data { 3216 void (*func)(struct update_util_data *data, 3217 u64 time, unsigned long util, unsigned long max); 3218 }; 3219 3220 void cpufreq_set_update_util_data(int cpu, struct update_util_data *data); 3221 #endif /* CONFIG_CPU_FREQ */ 3222 3223 #endif 3224