xref: /linux/include/linux/sched.h (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 #include <linux/sched/prio.h>
7 
8 
9 struct sched_param {
10 	int sched_priority;
11 };
12 
13 #include <asm/param.h>	/* for HZ */
14 
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29 
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33 
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48 
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62 
63 #include <asm/processor.h>
64 
65 #define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
66 
67 /*
68  * Extended scheduling parameters data structure.
69  *
70  * This is needed because the original struct sched_param can not be
71  * altered without introducing ABI issues with legacy applications
72  * (e.g., in sched_getparam()).
73  *
74  * However, the possibility of specifying more than just a priority for
75  * the tasks may be useful for a wide variety of application fields, e.g.,
76  * multimedia, streaming, automation and control, and many others.
77  *
78  * This variant (sched_attr) is meant at describing a so-called
79  * sporadic time-constrained task. In such model a task is specified by:
80  *  - the activation period or minimum instance inter-arrival time;
81  *  - the maximum (or average, depending on the actual scheduling
82  *    discipline) computation time of all instances, a.k.a. runtime;
83  *  - the deadline (relative to the actual activation time) of each
84  *    instance.
85  * Very briefly, a periodic (sporadic) task asks for the execution of
86  * some specific computation --which is typically called an instance--
87  * (at most) every period. Moreover, each instance typically lasts no more
88  * than the runtime and must be completed by time instant t equal to
89  * the instance activation time + the deadline.
90  *
91  * This is reflected by the actual fields of the sched_attr structure:
92  *
93  *  @size		size of the structure, for fwd/bwd compat.
94  *
95  *  @sched_policy	task's scheduling policy
96  *  @sched_flags	for customizing the scheduler behaviour
97  *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
98  *  @sched_priority	task's static priority (SCHED_FIFO/RR)
99  *  @sched_deadline	representative of the task's deadline
100  *  @sched_runtime	representative of the task's runtime
101  *  @sched_period	representative of the task's period
102  *
103  * Given this task model, there are a multiplicity of scheduling algorithms
104  * and policies, that can be used to ensure all the tasks will make their
105  * timing constraints.
106  *
107  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108  * only user of this new interface. More information about the algorithm
109  * available in the scheduling class file or in Documentation/.
110  */
111 struct sched_attr {
112 	u32 size;
113 
114 	u32 sched_policy;
115 	u64 sched_flags;
116 
117 	/* SCHED_NORMAL, SCHED_BATCH */
118 	s32 sched_nice;
119 
120 	/* SCHED_FIFO, SCHED_RR */
121 	u32 sched_priority;
122 
123 	/* SCHED_DEADLINE */
124 	u64 sched_runtime;
125 	u64 sched_deadline;
126 	u64 sched_period;
127 };
128 
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137 
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141 
142 /*
143  * These are the constant used to fake the fixed-point load-average
144  * counting. Some notes:
145  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
146  *    a load-average precision of 10 bits integer + 11 bits fractional
147  *  - if you want to count load-averages more often, you need more
148  *    precision, or rounding will get you. With 2-second counting freq,
149  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
150  *    11 bit fractions.
151  */
152 extern unsigned long avenrun[];		/* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154 
155 #define FSHIFT		11		/* nr of bits of precision */
156 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
157 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
158 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5		2014		/* 1/exp(5sec/5min) */
160 #define EXP_15		2037		/* 1/exp(5sec/15min) */
161 
162 #define CALC_LOAD(load,exp,n) \
163 	load *= exp; \
164 	load += n*(FIXED_1-exp); \
165 	load >>= FSHIFT;
166 
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176 
177 extern void calc_global_load(unsigned long ticks);
178 
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void update_cpu_load_nohz(int active);
181 #else
182 static inline void update_cpu_load_nohz(int active) { }
183 #endif
184 
185 extern void dump_cpu_task(int cpu);
186 
187 struct seq_file;
188 struct cfs_rq;
189 struct task_group;
190 #ifdef CONFIG_SCHED_DEBUG
191 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
192 extern void proc_sched_set_task(struct task_struct *p);
193 #endif
194 
195 /*
196  * Task state bitmask. NOTE! These bits are also
197  * encoded in fs/proc/array.c: get_task_state().
198  *
199  * We have two separate sets of flags: task->state
200  * is about runnability, while task->exit_state are
201  * about the task exiting. Confusing, but this way
202  * modifying one set can't modify the other one by
203  * mistake.
204  */
205 #define TASK_RUNNING		0
206 #define TASK_INTERRUPTIBLE	1
207 #define TASK_UNINTERRUPTIBLE	2
208 #define __TASK_STOPPED		4
209 #define __TASK_TRACED		8
210 /* in tsk->exit_state */
211 #define EXIT_DEAD		16
212 #define EXIT_ZOMBIE		32
213 #define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
214 /* in tsk->state again */
215 #define TASK_DEAD		64
216 #define TASK_WAKEKILL		128
217 #define TASK_WAKING		256
218 #define TASK_PARKED		512
219 #define TASK_NOLOAD		1024
220 #define TASK_STATE_MAX		2048
221 
222 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
223 
224 extern char ___assert_task_state[1 - 2*!!(
225 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
226 
227 /* Convenience macros for the sake of set_task_state */
228 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
229 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
230 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
231 
232 #define TASK_IDLE		(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
233 
234 /* Convenience macros for the sake of wake_up */
235 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
236 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
237 
238 /* get_task_state() */
239 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
240 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
241 				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
242 
243 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
244 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
245 #define task_is_stopped_or_traced(task)	\
246 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
247 #define task_contributes_to_load(task)	\
248 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
249 				 (task->flags & PF_FROZEN) == 0 && \
250 				 (task->state & TASK_NOLOAD) == 0)
251 
252 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
253 
254 #define __set_task_state(tsk, state_value)			\
255 	do {							\
256 		(tsk)->task_state_change = _THIS_IP_;		\
257 		(tsk)->state = (state_value);			\
258 	} while (0)
259 #define set_task_state(tsk, state_value)			\
260 	do {							\
261 		(tsk)->task_state_change = _THIS_IP_;		\
262 		smp_store_mb((tsk)->state, (state_value));		\
263 	} while (0)
264 
265 /*
266  * set_current_state() includes a barrier so that the write of current->state
267  * is correctly serialised wrt the caller's subsequent test of whether to
268  * actually sleep:
269  *
270  *	set_current_state(TASK_UNINTERRUPTIBLE);
271  *	if (do_i_need_to_sleep())
272  *		schedule();
273  *
274  * If the caller does not need such serialisation then use __set_current_state()
275  */
276 #define __set_current_state(state_value)			\
277 	do {							\
278 		current->task_state_change = _THIS_IP_;		\
279 		current->state = (state_value);			\
280 	} while (0)
281 #define set_current_state(state_value)				\
282 	do {							\
283 		current->task_state_change = _THIS_IP_;		\
284 		smp_store_mb(current->state, (state_value));		\
285 	} while (0)
286 
287 #else
288 
289 #define __set_task_state(tsk, state_value)		\
290 	do { (tsk)->state = (state_value); } while (0)
291 #define set_task_state(tsk, state_value)		\
292 	smp_store_mb((tsk)->state, (state_value))
293 
294 /*
295  * set_current_state() includes a barrier so that the write of current->state
296  * is correctly serialised wrt the caller's subsequent test of whether to
297  * actually sleep:
298  *
299  *	set_current_state(TASK_UNINTERRUPTIBLE);
300  *	if (do_i_need_to_sleep())
301  *		schedule();
302  *
303  * If the caller does not need such serialisation then use __set_current_state()
304  */
305 #define __set_current_state(state_value)		\
306 	do { current->state = (state_value); } while (0)
307 #define set_current_state(state_value)			\
308 	smp_store_mb(current->state, (state_value))
309 
310 #endif
311 
312 /* Task command name length */
313 #define TASK_COMM_LEN 16
314 
315 #include <linux/spinlock.h>
316 
317 /*
318  * This serializes "schedule()" and also protects
319  * the run-queue from deletions/modifications (but
320  * _adding_ to the beginning of the run-queue has
321  * a separate lock).
322  */
323 extern rwlock_t tasklist_lock;
324 extern spinlock_t mmlist_lock;
325 
326 struct task_struct;
327 
328 #ifdef CONFIG_PROVE_RCU
329 extern int lockdep_tasklist_lock_is_held(void);
330 #endif /* #ifdef CONFIG_PROVE_RCU */
331 
332 extern void sched_init(void);
333 extern void sched_init_smp(void);
334 extern asmlinkage void schedule_tail(struct task_struct *prev);
335 extern void init_idle(struct task_struct *idle, int cpu);
336 extern void init_idle_bootup_task(struct task_struct *idle);
337 
338 extern cpumask_var_t cpu_isolated_map;
339 
340 extern int runqueue_is_locked(int cpu);
341 
342 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
343 extern void nohz_balance_enter_idle(int cpu);
344 extern void set_cpu_sd_state_idle(void);
345 extern int get_nohz_timer_target(void);
346 #else
347 static inline void nohz_balance_enter_idle(int cpu) { }
348 static inline void set_cpu_sd_state_idle(void) { }
349 #endif
350 
351 /*
352  * Only dump TASK_* tasks. (0 for all tasks)
353  */
354 extern void show_state_filter(unsigned long state_filter);
355 
356 static inline void show_state(void)
357 {
358 	show_state_filter(0);
359 }
360 
361 extern void show_regs(struct pt_regs *);
362 
363 /*
364  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
365  * task), SP is the stack pointer of the first frame that should be shown in the back
366  * trace (or NULL if the entire call-chain of the task should be shown).
367  */
368 extern void show_stack(struct task_struct *task, unsigned long *sp);
369 
370 extern void cpu_init (void);
371 extern void trap_init(void);
372 extern void update_process_times(int user);
373 extern void scheduler_tick(void);
374 
375 extern void sched_show_task(struct task_struct *p);
376 
377 #ifdef CONFIG_LOCKUP_DETECTOR
378 extern void touch_softlockup_watchdog_sched(void);
379 extern void touch_softlockup_watchdog(void);
380 extern void touch_softlockup_watchdog_sync(void);
381 extern void touch_all_softlockup_watchdogs(void);
382 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
383 				  void __user *buffer,
384 				  size_t *lenp, loff_t *ppos);
385 extern unsigned int  softlockup_panic;
386 extern unsigned int  hardlockup_panic;
387 void lockup_detector_init(void);
388 #else
389 static inline void touch_softlockup_watchdog_sched(void)
390 {
391 }
392 static inline void touch_softlockup_watchdog(void)
393 {
394 }
395 static inline void touch_softlockup_watchdog_sync(void)
396 {
397 }
398 static inline void touch_all_softlockup_watchdogs(void)
399 {
400 }
401 static inline void lockup_detector_init(void)
402 {
403 }
404 #endif
405 
406 #ifdef CONFIG_DETECT_HUNG_TASK
407 void reset_hung_task_detector(void);
408 #else
409 static inline void reset_hung_task_detector(void)
410 {
411 }
412 #endif
413 
414 /* Attach to any functions which should be ignored in wchan output. */
415 #define __sched		__attribute__((__section__(".sched.text")))
416 
417 /* Linker adds these: start and end of __sched functions */
418 extern char __sched_text_start[], __sched_text_end[];
419 
420 /* Is this address in the __sched functions? */
421 extern int in_sched_functions(unsigned long addr);
422 
423 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
424 extern signed long schedule_timeout(signed long timeout);
425 extern signed long schedule_timeout_interruptible(signed long timeout);
426 extern signed long schedule_timeout_killable(signed long timeout);
427 extern signed long schedule_timeout_uninterruptible(signed long timeout);
428 asmlinkage void schedule(void);
429 extern void schedule_preempt_disabled(void);
430 
431 extern long io_schedule_timeout(long timeout);
432 
433 static inline void io_schedule(void)
434 {
435 	io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
436 }
437 
438 struct nsproxy;
439 struct user_namespace;
440 
441 #ifdef CONFIG_MMU
442 extern void arch_pick_mmap_layout(struct mm_struct *mm);
443 extern unsigned long
444 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
445 		       unsigned long, unsigned long);
446 extern unsigned long
447 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
448 			  unsigned long len, unsigned long pgoff,
449 			  unsigned long flags);
450 #else
451 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
452 #endif
453 
454 #define SUID_DUMP_DISABLE	0	/* No setuid dumping */
455 #define SUID_DUMP_USER		1	/* Dump as user of process */
456 #define SUID_DUMP_ROOT		2	/* Dump as root */
457 
458 /* mm flags */
459 
460 /* for SUID_DUMP_* above */
461 #define MMF_DUMPABLE_BITS 2
462 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
463 
464 extern void set_dumpable(struct mm_struct *mm, int value);
465 /*
466  * This returns the actual value of the suid_dumpable flag. For things
467  * that are using this for checking for privilege transitions, it must
468  * test against SUID_DUMP_USER rather than treating it as a boolean
469  * value.
470  */
471 static inline int __get_dumpable(unsigned long mm_flags)
472 {
473 	return mm_flags & MMF_DUMPABLE_MASK;
474 }
475 
476 static inline int get_dumpable(struct mm_struct *mm)
477 {
478 	return __get_dumpable(mm->flags);
479 }
480 
481 /* coredump filter bits */
482 #define MMF_DUMP_ANON_PRIVATE	2
483 #define MMF_DUMP_ANON_SHARED	3
484 #define MMF_DUMP_MAPPED_PRIVATE	4
485 #define MMF_DUMP_MAPPED_SHARED	5
486 #define MMF_DUMP_ELF_HEADERS	6
487 #define MMF_DUMP_HUGETLB_PRIVATE 7
488 #define MMF_DUMP_HUGETLB_SHARED  8
489 #define MMF_DUMP_DAX_PRIVATE	9
490 #define MMF_DUMP_DAX_SHARED	10
491 
492 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
493 #define MMF_DUMP_FILTER_BITS	9
494 #define MMF_DUMP_FILTER_MASK \
495 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
496 #define MMF_DUMP_FILTER_DEFAULT \
497 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
498 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
499 
500 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
501 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
502 #else
503 # define MMF_DUMP_MASK_DEFAULT_ELF	0
504 #endif
505 					/* leave room for more dump flags */
506 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
507 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
508 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
509 
510 #define MMF_HAS_UPROBES		19	/* has uprobes */
511 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
512 
513 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
514 
515 struct sighand_struct {
516 	atomic_t		count;
517 	struct k_sigaction	action[_NSIG];
518 	spinlock_t		siglock;
519 	wait_queue_head_t	signalfd_wqh;
520 };
521 
522 struct pacct_struct {
523 	int			ac_flag;
524 	long			ac_exitcode;
525 	unsigned long		ac_mem;
526 	cputime_t		ac_utime, ac_stime;
527 	unsigned long		ac_minflt, ac_majflt;
528 };
529 
530 struct cpu_itimer {
531 	cputime_t expires;
532 	cputime_t incr;
533 	u32 error;
534 	u32 incr_error;
535 };
536 
537 /**
538  * struct prev_cputime - snaphsot of system and user cputime
539  * @utime: time spent in user mode
540  * @stime: time spent in system mode
541  * @lock: protects the above two fields
542  *
543  * Stores previous user/system time values such that we can guarantee
544  * monotonicity.
545  */
546 struct prev_cputime {
547 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
548 	cputime_t utime;
549 	cputime_t stime;
550 	raw_spinlock_t lock;
551 #endif
552 };
553 
554 static inline void prev_cputime_init(struct prev_cputime *prev)
555 {
556 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
557 	prev->utime = prev->stime = 0;
558 	raw_spin_lock_init(&prev->lock);
559 #endif
560 }
561 
562 /**
563  * struct task_cputime - collected CPU time counts
564  * @utime:		time spent in user mode, in &cputime_t units
565  * @stime:		time spent in kernel mode, in &cputime_t units
566  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
567  *
568  * This structure groups together three kinds of CPU time that are tracked for
569  * threads and thread groups.  Most things considering CPU time want to group
570  * these counts together and treat all three of them in parallel.
571  */
572 struct task_cputime {
573 	cputime_t utime;
574 	cputime_t stime;
575 	unsigned long long sum_exec_runtime;
576 };
577 
578 /* Alternate field names when used to cache expirations. */
579 #define virt_exp	utime
580 #define prof_exp	stime
581 #define sched_exp	sum_exec_runtime
582 
583 #define INIT_CPUTIME	\
584 	(struct task_cputime) {					\
585 		.utime = 0,					\
586 		.stime = 0,					\
587 		.sum_exec_runtime = 0,				\
588 	}
589 
590 /*
591  * This is the atomic variant of task_cputime, which can be used for
592  * storing and updating task_cputime statistics without locking.
593  */
594 struct task_cputime_atomic {
595 	atomic64_t utime;
596 	atomic64_t stime;
597 	atomic64_t sum_exec_runtime;
598 };
599 
600 #define INIT_CPUTIME_ATOMIC \
601 	(struct task_cputime_atomic) {				\
602 		.utime = ATOMIC64_INIT(0),			\
603 		.stime = ATOMIC64_INIT(0),			\
604 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
605 	}
606 
607 #define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
608 
609 /*
610  * Disable preemption until the scheduler is running -- use an unconditional
611  * value so that it also works on !PREEMPT_COUNT kernels.
612  *
613  * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
614  */
615 #define INIT_PREEMPT_COUNT	PREEMPT_OFFSET
616 
617 /*
618  * Initial preempt_count value; reflects the preempt_count schedule invariant
619  * which states that during context switches:
620  *
621  *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
622  *
623  * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
624  * Note: See finish_task_switch().
625  */
626 #define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
627 
628 /**
629  * struct thread_group_cputimer - thread group interval timer counts
630  * @cputime_atomic:	atomic thread group interval timers.
631  * @running:		true when there are timers running and
632  *			@cputime_atomic receives updates.
633  * @checking_timer:	true when a thread in the group is in the
634  *			process of checking for thread group timers.
635  *
636  * This structure contains the version of task_cputime, above, that is
637  * used for thread group CPU timer calculations.
638  */
639 struct thread_group_cputimer {
640 	struct task_cputime_atomic cputime_atomic;
641 	bool running;
642 	bool checking_timer;
643 };
644 
645 #include <linux/rwsem.h>
646 struct autogroup;
647 
648 /*
649  * NOTE! "signal_struct" does not have its own
650  * locking, because a shared signal_struct always
651  * implies a shared sighand_struct, so locking
652  * sighand_struct is always a proper superset of
653  * the locking of signal_struct.
654  */
655 struct signal_struct {
656 	atomic_t		sigcnt;
657 	atomic_t		live;
658 	int			nr_threads;
659 	struct list_head	thread_head;
660 
661 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
662 
663 	/* current thread group signal load-balancing target: */
664 	struct task_struct	*curr_target;
665 
666 	/* shared signal handling: */
667 	struct sigpending	shared_pending;
668 
669 	/* thread group exit support */
670 	int			group_exit_code;
671 	/* overloaded:
672 	 * - notify group_exit_task when ->count is equal to notify_count
673 	 * - everyone except group_exit_task is stopped during signal delivery
674 	 *   of fatal signals, group_exit_task processes the signal.
675 	 */
676 	int			notify_count;
677 	struct task_struct	*group_exit_task;
678 
679 	/* thread group stop support, overloads group_exit_code too */
680 	int			group_stop_count;
681 	unsigned int		flags; /* see SIGNAL_* flags below */
682 
683 	/*
684 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
685 	 * manager, to re-parent orphan (double-forking) child processes
686 	 * to this process instead of 'init'. The service manager is
687 	 * able to receive SIGCHLD signals and is able to investigate
688 	 * the process until it calls wait(). All children of this
689 	 * process will inherit a flag if they should look for a
690 	 * child_subreaper process at exit.
691 	 */
692 	unsigned int		is_child_subreaper:1;
693 	unsigned int		has_child_subreaper:1;
694 
695 	/* POSIX.1b Interval Timers */
696 	int			posix_timer_id;
697 	struct list_head	posix_timers;
698 
699 	/* ITIMER_REAL timer for the process */
700 	struct hrtimer real_timer;
701 	struct pid *leader_pid;
702 	ktime_t it_real_incr;
703 
704 	/*
705 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
706 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
707 	 * values are defined to 0 and 1 respectively
708 	 */
709 	struct cpu_itimer it[2];
710 
711 	/*
712 	 * Thread group totals for process CPU timers.
713 	 * See thread_group_cputimer(), et al, for details.
714 	 */
715 	struct thread_group_cputimer cputimer;
716 
717 	/* Earliest-expiration cache. */
718 	struct task_cputime cputime_expires;
719 
720 #ifdef CONFIG_NO_HZ_FULL
721 	unsigned long tick_dep_mask;
722 #endif
723 
724 	struct list_head cpu_timers[3];
725 
726 	struct pid *tty_old_pgrp;
727 
728 	/* boolean value for session group leader */
729 	int leader;
730 
731 	struct tty_struct *tty; /* NULL if no tty */
732 
733 #ifdef CONFIG_SCHED_AUTOGROUP
734 	struct autogroup *autogroup;
735 #endif
736 	/*
737 	 * Cumulative resource counters for dead threads in the group,
738 	 * and for reaped dead child processes forked by this group.
739 	 * Live threads maintain their own counters and add to these
740 	 * in __exit_signal, except for the group leader.
741 	 */
742 	seqlock_t stats_lock;
743 	cputime_t utime, stime, cutime, cstime;
744 	cputime_t gtime;
745 	cputime_t cgtime;
746 	struct prev_cputime prev_cputime;
747 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
748 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
749 	unsigned long inblock, oublock, cinblock, coublock;
750 	unsigned long maxrss, cmaxrss;
751 	struct task_io_accounting ioac;
752 
753 	/*
754 	 * Cumulative ns of schedule CPU time fo dead threads in the
755 	 * group, not including a zombie group leader, (This only differs
756 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
757 	 * other than jiffies.)
758 	 */
759 	unsigned long long sum_sched_runtime;
760 
761 	/*
762 	 * We don't bother to synchronize most readers of this at all,
763 	 * because there is no reader checking a limit that actually needs
764 	 * to get both rlim_cur and rlim_max atomically, and either one
765 	 * alone is a single word that can safely be read normally.
766 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
767 	 * protect this instead of the siglock, because they really
768 	 * have no need to disable irqs.
769 	 */
770 	struct rlimit rlim[RLIM_NLIMITS];
771 
772 #ifdef CONFIG_BSD_PROCESS_ACCT
773 	struct pacct_struct pacct;	/* per-process accounting information */
774 #endif
775 #ifdef CONFIG_TASKSTATS
776 	struct taskstats *stats;
777 #endif
778 #ifdef CONFIG_AUDIT
779 	unsigned audit_tty;
780 	struct tty_audit_buf *tty_audit_buf;
781 #endif
782 
783 	oom_flags_t oom_flags;
784 	short oom_score_adj;		/* OOM kill score adjustment */
785 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
786 					 * Only settable by CAP_SYS_RESOURCE. */
787 
788 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
789 					 * credential calculations
790 					 * (notably. ptrace) */
791 };
792 
793 /*
794  * Bits in flags field of signal_struct.
795  */
796 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
797 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
798 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
799 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
800 /*
801  * Pending notifications to parent.
802  */
803 #define SIGNAL_CLD_STOPPED	0x00000010
804 #define SIGNAL_CLD_CONTINUED	0x00000020
805 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
806 
807 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
808 
809 /* If true, all threads except ->group_exit_task have pending SIGKILL */
810 static inline int signal_group_exit(const struct signal_struct *sig)
811 {
812 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
813 		(sig->group_exit_task != NULL);
814 }
815 
816 /*
817  * Some day this will be a full-fledged user tracking system..
818  */
819 struct user_struct {
820 	atomic_t __count;	/* reference count */
821 	atomic_t processes;	/* How many processes does this user have? */
822 	atomic_t sigpending;	/* How many pending signals does this user have? */
823 #ifdef CONFIG_INOTIFY_USER
824 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
825 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
826 #endif
827 #ifdef CONFIG_FANOTIFY
828 	atomic_t fanotify_listeners;
829 #endif
830 #ifdef CONFIG_EPOLL
831 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
832 #endif
833 #ifdef CONFIG_POSIX_MQUEUE
834 	/* protected by mq_lock	*/
835 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
836 #endif
837 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
838 	unsigned long unix_inflight;	/* How many files in flight in unix sockets */
839 	atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
840 
841 #ifdef CONFIG_KEYS
842 	struct key *uid_keyring;	/* UID specific keyring */
843 	struct key *session_keyring;	/* UID's default session keyring */
844 #endif
845 
846 	/* Hash table maintenance information */
847 	struct hlist_node uidhash_node;
848 	kuid_t uid;
849 
850 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
851 	atomic_long_t locked_vm;
852 #endif
853 };
854 
855 extern int uids_sysfs_init(void);
856 
857 extern struct user_struct *find_user(kuid_t);
858 
859 extern struct user_struct root_user;
860 #define INIT_USER (&root_user)
861 
862 
863 struct backing_dev_info;
864 struct reclaim_state;
865 
866 #ifdef CONFIG_SCHED_INFO
867 struct sched_info {
868 	/* cumulative counters */
869 	unsigned long pcount;	      /* # of times run on this cpu */
870 	unsigned long long run_delay; /* time spent waiting on a runqueue */
871 
872 	/* timestamps */
873 	unsigned long long last_arrival,/* when we last ran on a cpu */
874 			   last_queued;	/* when we were last queued to run */
875 };
876 #endif /* CONFIG_SCHED_INFO */
877 
878 #ifdef CONFIG_TASK_DELAY_ACCT
879 struct task_delay_info {
880 	spinlock_t	lock;
881 	unsigned int	flags;	/* Private per-task flags */
882 
883 	/* For each stat XXX, add following, aligned appropriately
884 	 *
885 	 * struct timespec XXX_start, XXX_end;
886 	 * u64 XXX_delay;
887 	 * u32 XXX_count;
888 	 *
889 	 * Atomicity of updates to XXX_delay, XXX_count protected by
890 	 * single lock above (split into XXX_lock if contention is an issue).
891 	 */
892 
893 	/*
894 	 * XXX_count is incremented on every XXX operation, the delay
895 	 * associated with the operation is added to XXX_delay.
896 	 * XXX_delay contains the accumulated delay time in nanoseconds.
897 	 */
898 	u64 blkio_start;	/* Shared by blkio, swapin */
899 	u64 blkio_delay;	/* wait for sync block io completion */
900 	u64 swapin_delay;	/* wait for swapin block io completion */
901 	u32 blkio_count;	/* total count of the number of sync block */
902 				/* io operations performed */
903 	u32 swapin_count;	/* total count of the number of swapin block */
904 				/* io operations performed */
905 
906 	u64 freepages_start;
907 	u64 freepages_delay;	/* wait for memory reclaim */
908 	u32 freepages_count;	/* total count of memory reclaim */
909 };
910 #endif	/* CONFIG_TASK_DELAY_ACCT */
911 
912 static inline int sched_info_on(void)
913 {
914 #ifdef CONFIG_SCHEDSTATS
915 	return 1;
916 #elif defined(CONFIG_TASK_DELAY_ACCT)
917 	extern int delayacct_on;
918 	return delayacct_on;
919 #else
920 	return 0;
921 #endif
922 }
923 
924 #ifdef CONFIG_SCHEDSTATS
925 void force_schedstat_enabled(void);
926 #endif
927 
928 enum cpu_idle_type {
929 	CPU_IDLE,
930 	CPU_NOT_IDLE,
931 	CPU_NEWLY_IDLE,
932 	CPU_MAX_IDLE_TYPES
933 };
934 
935 /*
936  * Increase resolution of cpu_capacity calculations
937  */
938 #define SCHED_CAPACITY_SHIFT	10
939 #define SCHED_CAPACITY_SCALE	(1L << SCHED_CAPACITY_SHIFT)
940 
941 /*
942  * Wake-queues are lists of tasks with a pending wakeup, whose
943  * callers have already marked the task as woken internally,
944  * and can thus carry on. A common use case is being able to
945  * do the wakeups once the corresponding user lock as been
946  * released.
947  *
948  * We hold reference to each task in the list across the wakeup,
949  * thus guaranteeing that the memory is still valid by the time
950  * the actual wakeups are performed in wake_up_q().
951  *
952  * One per task suffices, because there's never a need for a task to be
953  * in two wake queues simultaneously; it is forbidden to abandon a task
954  * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
955  * already in a wake queue, the wakeup will happen soon and the second
956  * waker can just skip it.
957  *
958  * The WAKE_Q macro declares and initializes the list head.
959  * wake_up_q() does NOT reinitialize the list; it's expected to be
960  * called near the end of a function, where the fact that the queue is
961  * not used again will be easy to see by inspection.
962  *
963  * Note that this can cause spurious wakeups. schedule() callers
964  * must ensure the call is done inside a loop, confirming that the
965  * wakeup condition has in fact occurred.
966  */
967 struct wake_q_node {
968 	struct wake_q_node *next;
969 };
970 
971 struct wake_q_head {
972 	struct wake_q_node *first;
973 	struct wake_q_node **lastp;
974 };
975 
976 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
977 
978 #define WAKE_Q(name)					\
979 	struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
980 
981 extern void wake_q_add(struct wake_q_head *head,
982 		       struct task_struct *task);
983 extern void wake_up_q(struct wake_q_head *head);
984 
985 /*
986  * sched-domains (multiprocessor balancing) declarations:
987  */
988 #ifdef CONFIG_SMP
989 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
990 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
991 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
992 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
993 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
994 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
995 #define SD_SHARE_CPUCAPACITY	0x0080	/* Domain members share cpu power */
996 #define SD_SHARE_POWERDOMAIN	0x0100	/* Domain members share power domain */
997 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
998 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
999 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
1000 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
1001 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
1002 #define SD_NUMA			0x4000	/* cross-node balancing */
1003 
1004 #ifdef CONFIG_SCHED_SMT
1005 static inline int cpu_smt_flags(void)
1006 {
1007 	return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1008 }
1009 #endif
1010 
1011 #ifdef CONFIG_SCHED_MC
1012 static inline int cpu_core_flags(void)
1013 {
1014 	return SD_SHARE_PKG_RESOURCES;
1015 }
1016 #endif
1017 
1018 #ifdef CONFIG_NUMA
1019 static inline int cpu_numa_flags(void)
1020 {
1021 	return SD_NUMA;
1022 }
1023 #endif
1024 
1025 struct sched_domain_attr {
1026 	int relax_domain_level;
1027 };
1028 
1029 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
1030 	.relax_domain_level = -1,			\
1031 }
1032 
1033 extern int sched_domain_level_max;
1034 
1035 struct sched_group;
1036 
1037 struct sched_domain {
1038 	/* These fields must be setup */
1039 	struct sched_domain *parent;	/* top domain must be null terminated */
1040 	struct sched_domain *child;	/* bottom domain must be null terminated */
1041 	struct sched_group *groups;	/* the balancing groups of the domain */
1042 	unsigned long min_interval;	/* Minimum balance interval ms */
1043 	unsigned long max_interval;	/* Maximum balance interval ms */
1044 	unsigned int busy_factor;	/* less balancing by factor if busy */
1045 	unsigned int imbalance_pct;	/* No balance until over watermark */
1046 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
1047 	unsigned int busy_idx;
1048 	unsigned int idle_idx;
1049 	unsigned int newidle_idx;
1050 	unsigned int wake_idx;
1051 	unsigned int forkexec_idx;
1052 	unsigned int smt_gain;
1053 
1054 	int nohz_idle;			/* NOHZ IDLE status */
1055 	int flags;			/* See SD_* */
1056 	int level;
1057 
1058 	/* Runtime fields. */
1059 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
1060 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
1061 	unsigned int nr_balance_failed; /* initialise to 0 */
1062 
1063 	/* idle_balance() stats */
1064 	u64 max_newidle_lb_cost;
1065 	unsigned long next_decay_max_lb_cost;
1066 
1067 #ifdef CONFIG_SCHEDSTATS
1068 	/* load_balance() stats */
1069 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1070 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1071 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1072 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1073 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1074 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1075 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1076 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1077 
1078 	/* Active load balancing */
1079 	unsigned int alb_count;
1080 	unsigned int alb_failed;
1081 	unsigned int alb_pushed;
1082 
1083 	/* SD_BALANCE_EXEC stats */
1084 	unsigned int sbe_count;
1085 	unsigned int sbe_balanced;
1086 	unsigned int sbe_pushed;
1087 
1088 	/* SD_BALANCE_FORK stats */
1089 	unsigned int sbf_count;
1090 	unsigned int sbf_balanced;
1091 	unsigned int sbf_pushed;
1092 
1093 	/* try_to_wake_up() stats */
1094 	unsigned int ttwu_wake_remote;
1095 	unsigned int ttwu_move_affine;
1096 	unsigned int ttwu_move_balance;
1097 #endif
1098 #ifdef CONFIG_SCHED_DEBUG
1099 	char *name;
1100 #endif
1101 	union {
1102 		void *private;		/* used during construction */
1103 		struct rcu_head rcu;	/* used during destruction */
1104 	};
1105 
1106 	unsigned int span_weight;
1107 	/*
1108 	 * Span of all CPUs in this domain.
1109 	 *
1110 	 * NOTE: this field is variable length. (Allocated dynamically
1111 	 * by attaching extra space to the end of the structure,
1112 	 * depending on how many CPUs the kernel has booted up with)
1113 	 */
1114 	unsigned long span[0];
1115 };
1116 
1117 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1118 {
1119 	return to_cpumask(sd->span);
1120 }
1121 
1122 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1123 				    struct sched_domain_attr *dattr_new);
1124 
1125 /* Allocate an array of sched domains, for partition_sched_domains(). */
1126 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1127 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1128 
1129 bool cpus_share_cache(int this_cpu, int that_cpu);
1130 
1131 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1132 typedef int (*sched_domain_flags_f)(void);
1133 
1134 #define SDTL_OVERLAP	0x01
1135 
1136 struct sd_data {
1137 	struct sched_domain **__percpu sd;
1138 	struct sched_group **__percpu sg;
1139 	struct sched_group_capacity **__percpu sgc;
1140 };
1141 
1142 struct sched_domain_topology_level {
1143 	sched_domain_mask_f mask;
1144 	sched_domain_flags_f sd_flags;
1145 	int		    flags;
1146 	int		    numa_level;
1147 	struct sd_data      data;
1148 #ifdef CONFIG_SCHED_DEBUG
1149 	char                *name;
1150 #endif
1151 };
1152 
1153 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1154 extern void wake_up_if_idle(int cpu);
1155 
1156 #ifdef CONFIG_SCHED_DEBUG
1157 # define SD_INIT_NAME(type)		.name = #type
1158 #else
1159 # define SD_INIT_NAME(type)
1160 #endif
1161 
1162 #else /* CONFIG_SMP */
1163 
1164 struct sched_domain_attr;
1165 
1166 static inline void
1167 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1168 			struct sched_domain_attr *dattr_new)
1169 {
1170 }
1171 
1172 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1173 {
1174 	return true;
1175 }
1176 
1177 #endif	/* !CONFIG_SMP */
1178 
1179 
1180 struct io_context;			/* See blkdev.h */
1181 
1182 
1183 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1184 extern void prefetch_stack(struct task_struct *t);
1185 #else
1186 static inline void prefetch_stack(struct task_struct *t) { }
1187 #endif
1188 
1189 struct audit_context;		/* See audit.c */
1190 struct mempolicy;
1191 struct pipe_inode_info;
1192 struct uts_namespace;
1193 
1194 struct load_weight {
1195 	unsigned long weight;
1196 	u32 inv_weight;
1197 };
1198 
1199 /*
1200  * The load_avg/util_avg accumulates an infinite geometric series.
1201  * 1) load_avg factors frequency scaling into the amount of time that a
1202  * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1203  * aggregated such weights of all runnable and blocked sched_entities.
1204  * 2) util_avg factors frequency and cpu scaling into the amount of time
1205  * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1206  * For cfs_rq, it is the aggregated such times of all runnable and
1207  * blocked sched_entities.
1208  * The 64 bit load_sum can:
1209  * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1210  * the highest weight (=88761) always runnable, we should not overflow
1211  * 2) for entity, support any load.weight always runnable
1212  */
1213 struct sched_avg {
1214 	u64 last_update_time, load_sum;
1215 	u32 util_sum, period_contrib;
1216 	unsigned long load_avg, util_avg;
1217 };
1218 
1219 #ifdef CONFIG_SCHEDSTATS
1220 struct sched_statistics {
1221 	u64			wait_start;
1222 	u64			wait_max;
1223 	u64			wait_count;
1224 	u64			wait_sum;
1225 	u64			iowait_count;
1226 	u64			iowait_sum;
1227 
1228 	u64			sleep_start;
1229 	u64			sleep_max;
1230 	s64			sum_sleep_runtime;
1231 
1232 	u64			block_start;
1233 	u64			block_max;
1234 	u64			exec_max;
1235 	u64			slice_max;
1236 
1237 	u64			nr_migrations_cold;
1238 	u64			nr_failed_migrations_affine;
1239 	u64			nr_failed_migrations_running;
1240 	u64			nr_failed_migrations_hot;
1241 	u64			nr_forced_migrations;
1242 
1243 	u64			nr_wakeups;
1244 	u64			nr_wakeups_sync;
1245 	u64			nr_wakeups_migrate;
1246 	u64			nr_wakeups_local;
1247 	u64			nr_wakeups_remote;
1248 	u64			nr_wakeups_affine;
1249 	u64			nr_wakeups_affine_attempts;
1250 	u64			nr_wakeups_passive;
1251 	u64			nr_wakeups_idle;
1252 };
1253 #endif
1254 
1255 struct sched_entity {
1256 	struct load_weight	load;		/* for load-balancing */
1257 	struct rb_node		run_node;
1258 	struct list_head	group_node;
1259 	unsigned int		on_rq;
1260 
1261 	u64			exec_start;
1262 	u64			sum_exec_runtime;
1263 	u64			vruntime;
1264 	u64			prev_sum_exec_runtime;
1265 
1266 	u64			nr_migrations;
1267 
1268 #ifdef CONFIG_SCHEDSTATS
1269 	struct sched_statistics statistics;
1270 #endif
1271 
1272 #ifdef CONFIG_FAIR_GROUP_SCHED
1273 	int			depth;
1274 	struct sched_entity	*parent;
1275 	/* rq on which this entity is (to be) queued: */
1276 	struct cfs_rq		*cfs_rq;
1277 	/* rq "owned" by this entity/group: */
1278 	struct cfs_rq		*my_q;
1279 #endif
1280 
1281 #ifdef CONFIG_SMP
1282 	/*
1283 	 * Per entity load average tracking.
1284 	 *
1285 	 * Put into separate cache line so it does not
1286 	 * collide with read-mostly values above.
1287 	 */
1288 	struct sched_avg	avg ____cacheline_aligned_in_smp;
1289 #endif
1290 };
1291 
1292 struct sched_rt_entity {
1293 	struct list_head run_list;
1294 	unsigned long timeout;
1295 	unsigned long watchdog_stamp;
1296 	unsigned int time_slice;
1297 	unsigned short on_rq;
1298 	unsigned short on_list;
1299 
1300 	struct sched_rt_entity *back;
1301 #ifdef CONFIG_RT_GROUP_SCHED
1302 	struct sched_rt_entity	*parent;
1303 	/* rq on which this entity is (to be) queued: */
1304 	struct rt_rq		*rt_rq;
1305 	/* rq "owned" by this entity/group: */
1306 	struct rt_rq		*my_q;
1307 #endif
1308 };
1309 
1310 struct sched_dl_entity {
1311 	struct rb_node	rb_node;
1312 
1313 	/*
1314 	 * Original scheduling parameters. Copied here from sched_attr
1315 	 * during sched_setattr(), they will remain the same until
1316 	 * the next sched_setattr().
1317 	 */
1318 	u64 dl_runtime;		/* maximum runtime for each instance	*/
1319 	u64 dl_deadline;	/* relative deadline of each instance	*/
1320 	u64 dl_period;		/* separation of two instances (period) */
1321 	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1322 
1323 	/*
1324 	 * Actual scheduling parameters. Initialized with the values above,
1325 	 * they are continously updated during task execution. Note that
1326 	 * the remaining runtime could be < 0 in case we are in overrun.
1327 	 */
1328 	s64 runtime;		/* remaining runtime for this instance	*/
1329 	u64 deadline;		/* absolute deadline for this instance	*/
1330 	unsigned int flags;	/* specifying the scheduler behaviour	*/
1331 
1332 	/*
1333 	 * Some bool flags:
1334 	 *
1335 	 * @dl_throttled tells if we exhausted the runtime. If so, the
1336 	 * task has to wait for a replenishment to be performed at the
1337 	 * next firing of dl_timer.
1338 	 *
1339 	 * @dl_boosted tells if we are boosted due to DI. If so we are
1340 	 * outside bandwidth enforcement mechanism (but only until we
1341 	 * exit the critical section);
1342 	 *
1343 	 * @dl_yielded tells if task gave up the cpu before consuming
1344 	 * all its available runtime during the last job.
1345 	 */
1346 	int dl_throttled, dl_boosted, dl_yielded;
1347 
1348 	/*
1349 	 * Bandwidth enforcement timer. Each -deadline task has its
1350 	 * own bandwidth to be enforced, thus we need one timer per task.
1351 	 */
1352 	struct hrtimer dl_timer;
1353 };
1354 
1355 union rcu_special {
1356 	struct {
1357 		u8 blocked;
1358 		u8 need_qs;
1359 		u8 exp_need_qs;
1360 		u8 pad;	/* Otherwise the compiler can store garbage here. */
1361 	} b; /* Bits. */
1362 	u32 s; /* Set of bits. */
1363 };
1364 struct rcu_node;
1365 
1366 enum perf_event_task_context {
1367 	perf_invalid_context = -1,
1368 	perf_hw_context = 0,
1369 	perf_sw_context,
1370 	perf_nr_task_contexts,
1371 };
1372 
1373 /* Track pages that require TLB flushes */
1374 struct tlbflush_unmap_batch {
1375 	/*
1376 	 * Each bit set is a CPU that potentially has a TLB entry for one of
1377 	 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1378 	 */
1379 	struct cpumask cpumask;
1380 
1381 	/* True if any bit in cpumask is set */
1382 	bool flush_required;
1383 
1384 	/*
1385 	 * If true then the PTE was dirty when unmapped. The entry must be
1386 	 * flushed before IO is initiated or a stale TLB entry potentially
1387 	 * allows an update without redirtying the page.
1388 	 */
1389 	bool writable;
1390 };
1391 
1392 struct task_struct {
1393 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1394 	void *stack;
1395 	atomic_t usage;
1396 	unsigned int flags;	/* per process flags, defined below */
1397 	unsigned int ptrace;
1398 
1399 #ifdef CONFIG_SMP
1400 	struct llist_node wake_entry;
1401 	int on_cpu;
1402 	unsigned int wakee_flips;
1403 	unsigned long wakee_flip_decay_ts;
1404 	struct task_struct *last_wakee;
1405 
1406 	int wake_cpu;
1407 #endif
1408 	int on_rq;
1409 
1410 	int prio, static_prio, normal_prio;
1411 	unsigned int rt_priority;
1412 	const struct sched_class *sched_class;
1413 	struct sched_entity se;
1414 	struct sched_rt_entity rt;
1415 #ifdef CONFIG_CGROUP_SCHED
1416 	struct task_group *sched_task_group;
1417 #endif
1418 	struct sched_dl_entity dl;
1419 
1420 #ifdef CONFIG_PREEMPT_NOTIFIERS
1421 	/* list of struct preempt_notifier: */
1422 	struct hlist_head preempt_notifiers;
1423 #endif
1424 
1425 #ifdef CONFIG_BLK_DEV_IO_TRACE
1426 	unsigned int btrace_seq;
1427 #endif
1428 
1429 	unsigned int policy;
1430 	int nr_cpus_allowed;
1431 	cpumask_t cpus_allowed;
1432 
1433 #ifdef CONFIG_PREEMPT_RCU
1434 	int rcu_read_lock_nesting;
1435 	union rcu_special rcu_read_unlock_special;
1436 	struct list_head rcu_node_entry;
1437 	struct rcu_node *rcu_blocked_node;
1438 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1439 #ifdef CONFIG_TASKS_RCU
1440 	unsigned long rcu_tasks_nvcsw;
1441 	bool rcu_tasks_holdout;
1442 	struct list_head rcu_tasks_holdout_list;
1443 	int rcu_tasks_idle_cpu;
1444 #endif /* #ifdef CONFIG_TASKS_RCU */
1445 
1446 #ifdef CONFIG_SCHED_INFO
1447 	struct sched_info sched_info;
1448 #endif
1449 
1450 	struct list_head tasks;
1451 #ifdef CONFIG_SMP
1452 	struct plist_node pushable_tasks;
1453 	struct rb_node pushable_dl_tasks;
1454 #endif
1455 
1456 	struct mm_struct *mm, *active_mm;
1457 	/* per-thread vma caching */
1458 	u32 vmacache_seqnum;
1459 	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1460 #if defined(SPLIT_RSS_COUNTING)
1461 	struct task_rss_stat	rss_stat;
1462 #endif
1463 /* task state */
1464 	int exit_state;
1465 	int exit_code, exit_signal;
1466 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1467 	unsigned long jobctl;	/* JOBCTL_*, siglock protected */
1468 
1469 	/* Used for emulating ABI behavior of previous Linux versions */
1470 	unsigned int personality;
1471 
1472 	/* scheduler bits, serialized by scheduler locks */
1473 	unsigned sched_reset_on_fork:1;
1474 	unsigned sched_contributes_to_load:1;
1475 	unsigned sched_migrated:1;
1476 	unsigned :0; /* force alignment to the next boundary */
1477 
1478 	/* unserialized, strictly 'current' */
1479 	unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1480 	unsigned in_iowait:1;
1481 #ifdef CONFIG_MEMCG
1482 	unsigned memcg_may_oom:1;
1483 #ifndef CONFIG_SLOB
1484 	unsigned memcg_kmem_skip_account:1;
1485 #endif
1486 #endif
1487 #ifdef CONFIG_COMPAT_BRK
1488 	unsigned brk_randomized:1;
1489 #endif
1490 
1491 	unsigned long atomic_flags; /* Flags needing atomic access. */
1492 
1493 	struct restart_block restart_block;
1494 
1495 	pid_t pid;
1496 	pid_t tgid;
1497 
1498 #ifdef CONFIG_CC_STACKPROTECTOR
1499 	/* Canary value for the -fstack-protector gcc feature */
1500 	unsigned long stack_canary;
1501 #endif
1502 	/*
1503 	 * pointers to (original) parent process, youngest child, younger sibling,
1504 	 * older sibling, respectively.  (p->father can be replaced with
1505 	 * p->real_parent->pid)
1506 	 */
1507 	struct task_struct __rcu *real_parent; /* real parent process */
1508 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1509 	/*
1510 	 * children/sibling forms the list of my natural children
1511 	 */
1512 	struct list_head children;	/* list of my children */
1513 	struct list_head sibling;	/* linkage in my parent's children list */
1514 	struct task_struct *group_leader;	/* threadgroup leader */
1515 
1516 	/*
1517 	 * ptraced is the list of tasks this task is using ptrace on.
1518 	 * This includes both natural children and PTRACE_ATTACH targets.
1519 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1520 	 */
1521 	struct list_head ptraced;
1522 	struct list_head ptrace_entry;
1523 
1524 	/* PID/PID hash table linkage. */
1525 	struct pid_link pids[PIDTYPE_MAX];
1526 	struct list_head thread_group;
1527 	struct list_head thread_node;
1528 
1529 	struct completion *vfork_done;		/* for vfork() */
1530 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1531 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1532 
1533 	cputime_t utime, stime, utimescaled, stimescaled;
1534 	cputime_t gtime;
1535 	struct prev_cputime prev_cputime;
1536 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1537 	seqcount_t vtime_seqcount;
1538 	unsigned long long vtime_snap;
1539 	enum {
1540 		/* Task is sleeping or running in a CPU with VTIME inactive */
1541 		VTIME_INACTIVE = 0,
1542 		/* Task runs in userspace in a CPU with VTIME active */
1543 		VTIME_USER,
1544 		/* Task runs in kernelspace in a CPU with VTIME active */
1545 		VTIME_SYS,
1546 	} vtime_snap_whence;
1547 #endif
1548 
1549 #ifdef CONFIG_NO_HZ_FULL
1550 	unsigned long tick_dep_mask;
1551 #endif
1552 	unsigned long nvcsw, nivcsw; /* context switch counts */
1553 	u64 start_time;		/* monotonic time in nsec */
1554 	u64 real_start_time;	/* boot based time in nsec */
1555 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1556 	unsigned long min_flt, maj_flt;
1557 
1558 	struct task_cputime cputime_expires;
1559 	struct list_head cpu_timers[3];
1560 
1561 /* process credentials */
1562 	const struct cred __rcu *real_cred; /* objective and real subjective task
1563 					 * credentials (COW) */
1564 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1565 					 * credentials (COW) */
1566 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1567 				     - access with [gs]et_task_comm (which lock
1568 				       it with task_lock())
1569 				     - initialized normally by setup_new_exec */
1570 /* file system info */
1571 	struct nameidata *nameidata;
1572 #ifdef CONFIG_SYSVIPC
1573 /* ipc stuff */
1574 	struct sysv_sem sysvsem;
1575 	struct sysv_shm sysvshm;
1576 #endif
1577 #ifdef CONFIG_DETECT_HUNG_TASK
1578 /* hung task detection */
1579 	unsigned long last_switch_count;
1580 #endif
1581 /* filesystem information */
1582 	struct fs_struct *fs;
1583 /* open file information */
1584 	struct files_struct *files;
1585 /* namespaces */
1586 	struct nsproxy *nsproxy;
1587 /* signal handlers */
1588 	struct signal_struct *signal;
1589 	struct sighand_struct *sighand;
1590 
1591 	sigset_t blocked, real_blocked;
1592 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1593 	struct sigpending pending;
1594 
1595 	unsigned long sas_ss_sp;
1596 	size_t sas_ss_size;
1597 
1598 	struct callback_head *task_works;
1599 
1600 	struct audit_context *audit_context;
1601 #ifdef CONFIG_AUDITSYSCALL
1602 	kuid_t loginuid;
1603 	unsigned int sessionid;
1604 #endif
1605 	struct seccomp seccomp;
1606 
1607 /* Thread group tracking */
1608    	u32 parent_exec_id;
1609    	u32 self_exec_id;
1610 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1611  * mempolicy */
1612 	spinlock_t alloc_lock;
1613 
1614 	/* Protection of the PI data structures: */
1615 	raw_spinlock_t pi_lock;
1616 
1617 	struct wake_q_node wake_q;
1618 
1619 #ifdef CONFIG_RT_MUTEXES
1620 	/* PI waiters blocked on a rt_mutex held by this task */
1621 	struct rb_root pi_waiters;
1622 	struct rb_node *pi_waiters_leftmost;
1623 	/* Deadlock detection and priority inheritance handling */
1624 	struct rt_mutex_waiter *pi_blocked_on;
1625 #endif
1626 
1627 #ifdef CONFIG_DEBUG_MUTEXES
1628 	/* mutex deadlock detection */
1629 	struct mutex_waiter *blocked_on;
1630 #endif
1631 #ifdef CONFIG_TRACE_IRQFLAGS
1632 	unsigned int irq_events;
1633 	unsigned long hardirq_enable_ip;
1634 	unsigned long hardirq_disable_ip;
1635 	unsigned int hardirq_enable_event;
1636 	unsigned int hardirq_disable_event;
1637 	int hardirqs_enabled;
1638 	int hardirq_context;
1639 	unsigned long softirq_disable_ip;
1640 	unsigned long softirq_enable_ip;
1641 	unsigned int softirq_disable_event;
1642 	unsigned int softirq_enable_event;
1643 	int softirqs_enabled;
1644 	int softirq_context;
1645 #endif
1646 #ifdef CONFIG_LOCKDEP
1647 # define MAX_LOCK_DEPTH 48UL
1648 	u64 curr_chain_key;
1649 	int lockdep_depth;
1650 	unsigned int lockdep_recursion;
1651 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1652 	gfp_t lockdep_reclaim_gfp;
1653 #endif
1654 #ifdef CONFIG_UBSAN
1655 	unsigned int in_ubsan;
1656 #endif
1657 
1658 /* journalling filesystem info */
1659 	void *journal_info;
1660 
1661 /* stacked block device info */
1662 	struct bio_list *bio_list;
1663 
1664 #ifdef CONFIG_BLOCK
1665 /* stack plugging */
1666 	struct blk_plug *plug;
1667 #endif
1668 
1669 /* VM state */
1670 	struct reclaim_state *reclaim_state;
1671 
1672 	struct backing_dev_info *backing_dev_info;
1673 
1674 	struct io_context *io_context;
1675 
1676 	unsigned long ptrace_message;
1677 	siginfo_t *last_siginfo; /* For ptrace use.  */
1678 	struct task_io_accounting ioac;
1679 #if defined(CONFIG_TASK_XACCT)
1680 	u64 acct_rss_mem1;	/* accumulated rss usage */
1681 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1682 	cputime_t acct_timexpd;	/* stime + utime since last update */
1683 #endif
1684 #ifdef CONFIG_CPUSETS
1685 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1686 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1687 	int cpuset_mem_spread_rotor;
1688 	int cpuset_slab_spread_rotor;
1689 #endif
1690 #ifdef CONFIG_CGROUPS
1691 	/* Control Group info protected by css_set_lock */
1692 	struct css_set __rcu *cgroups;
1693 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1694 	struct list_head cg_list;
1695 #endif
1696 #ifdef CONFIG_FUTEX
1697 	struct robust_list_head __user *robust_list;
1698 #ifdef CONFIG_COMPAT
1699 	struct compat_robust_list_head __user *compat_robust_list;
1700 #endif
1701 	struct list_head pi_state_list;
1702 	struct futex_pi_state *pi_state_cache;
1703 #endif
1704 #ifdef CONFIG_PERF_EVENTS
1705 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1706 	struct mutex perf_event_mutex;
1707 	struct list_head perf_event_list;
1708 #endif
1709 #ifdef CONFIG_DEBUG_PREEMPT
1710 	unsigned long preempt_disable_ip;
1711 #endif
1712 #ifdef CONFIG_NUMA
1713 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1714 	short il_next;
1715 	short pref_node_fork;
1716 #endif
1717 #ifdef CONFIG_NUMA_BALANCING
1718 	int numa_scan_seq;
1719 	unsigned int numa_scan_period;
1720 	unsigned int numa_scan_period_max;
1721 	int numa_preferred_nid;
1722 	unsigned long numa_migrate_retry;
1723 	u64 node_stamp;			/* migration stamp  */
1724 	u64 last_task_numa_placement;
1725 	u64 last_sum_exec_runtime;
1726 	struct callback_head numa_work;
1727 
1728 	struct list_head numa_entry;
1729 	struct numa_group *numa_group;
1730 
1731 	/*
1732 	 * numa_faults is an array split into four regions:
1733 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1734 	 * in this precise order.
1735 	 *
1736 	 * faults_memory: Exponential decaying average of faults on a per-node
1737 	 * basis. Scheduling placement decisions are made based on these
1738 	 * counts. The values remain static for the duration of a PTE scan.
1739 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1740 	 * hinting fault was incurred.
1741 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1742 	 * during the current scan window. When the scan completes, the counts
1743 	 * in faults_memory and faults_cpu decay and these values are copied.
1744 	 */
1745 	unsigned long *numa_faults;
1746 	unsigned long total_numa_faults;
1747 
1748 	/*
1749 	 * numa_faults_locality tracks if faults recorded during the last
1750 	 * scan window were remote/local or failed to migrate. The task scan
1751 	 * period is adapted based on the locality of the faults with different
1752 	 * weights depending on whether they were shared or private faults
1753 	 */
1754 	unsigned long numa_faults_locality[3];
1755 
1756 	unsigned long numa_pages_migrated;
1757 #endif /* CONFIG_NUMA_BALANCING */
1758 
1759 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1760 	struct tlbflush_unmap_batch tlb_ubc;
1761 #endif
1762 
1763 	struct rcu_head rcu;
1764 
1765 	/*
1766 	 * cache last used pipe for splice
1767 	 */
1768 	struct pipe_inode_info *splice_pipe;
1769 
1770 	struct page_frag task_frag;
1771 
1772 #ifdef	CONFIG_TASK_DELAY_ACCT
1773 	struct task_delay_info *delays;
1774 #endif
1775 #ifdef CONFIG_FAULT_INJECTION
1776 	int make_it_fail;
1777 #endif
1778 	/*
1779 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1780 	 * balance_dirty_pages() for some dirty throttling pause
1781 	 */
1782 	int nr_dirtied;
1783 	int nr_dirtied_pause;
1784 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1785 
1786 #ifdef CONFIG_LATENCYTOP
1787 	int latency_record_count;
1788 	struct latency_record latency_record[LT_SAVECOUNT];
1789 #endif
1790 	/*
1791 	 * time slack values; these are used to round up poll() and
1792 	 * select() etc timeout values. These are in nanoseconds.
1793 	 */
1794 	unsigned long timer_slack_ns;
1795 	unsigned long default_timer_slack_ns;
1796 
1797 #ifdef CONFIG_KASAN
1798 	unsigned int kasan_depth;
1799 #endif
1800 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1801 	/* Index of current stored address in ret_stack */
1802 	int curr_ret_stack;
1803 	/* Stack of return addresses for return function tracing */
1804 	struct ftrace_ret_stack	*ret_stack;
1805 	/* time stamp for last schedule */
1806 	unsigned long long ftrace_timestamp;
1807 	/*
1808 	 * Number of functions that haven't been traced
1809 	 * because of depth overrun.
1810 	 */
1811 	atomic_t trace_overrun;
1812 	/* Pause for the tracing */
1813 	atomic_t tracing_graph_pause;
1814 #endif
1815 #ifdef CONFIG_TRACING
1816 	/* state flags for use by tracers */
1817 	unsigned long trace;
1818 	/* bitmask and counter of trace recursion */
1819 	unsigned long trace_recursion;
1820 #endif /* CONFIG_TRACING */
1821 #ifdef CONFIG_MEMCG
1822 	struct mem_cgroup *memcg_in_oom;
1823 	gfp_t memcg_oom_gfp_mask;
1824 	int memcg_oom_order;
1825 
1826 	/* number of pages to reclaim on returning to userland */
1827 	unsigned int memcg_nr_pages_over_high;
1828 #endif
1829 #ifdef CONFIG_UPROBES
1830 	struct uprobe_task *utask;
1831 #endif
1832 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1833 	unsigned int	sequential_io;
1834 	unsigned int	sequential_io_avg;
1835 #endif
1836 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1837 	unsigned long	task_state_change;
1838 #endif
1839 	int pagefault_disabled;
1840 /* CPU-specific state of this task */
1841 	struct thread_struct thread;
1842 /*
1843  * WARNING: on x86, 'thread_struct' contains a variable-sized
1844  * structure.  It *MUST* be at the end of 'task_struct'.
1845  *
1846  * Do not put anything below here!
1847  */
1848 };
1849 
1850 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1851 extern int arch_task_struct_size __read_mostly;
1852 #else
1853 # define arch_task_struct_size (sizeof(struct task_struct))
1854 #endif
1855 
1856 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1857 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1858 
1859 #define TNF_MIGRATED	0x01
1860 #define TNF_NO_GROUP	0x02
1861 #define TNF_SHARED	0x04
1862 #define TNF_FAULT_LOCAL	0x08
1863 #define TNF_MIGRATE_FAIL 0x10
1864 
1865 #ifdef CONFIG_NUMA_BALANCING
1866 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1867 extern pid_t task_numa_group_id(struct task_struct *p);
1868 extern void set_numabalancing_state(bool enabled);
1869 extern void task_numa_free(struct task_struct *p);
1870 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1871 					int src_nid, int dst_cpu);
1872 #else
1873 static inline void task_numa_fault(int last_node, int node, int pages,
1874 				   int flags)
1875 {
1876 }
1877 static inline pid_t task_numa_group_id(struct task_struct *p)
1878 {
1879 	return 0;
1880 }
1881 static inline void set_numabalancing_state(bool enabled)
1882 {
1883 }
1884 static inline void task_numa_free(struct task_struct *p)
1885 {
1886 }
1887 static inline bool should_numa_migrate_memory(struct task_struct *p,
1888 				struct page *page, int src_nid, int dst_cpu)
1889 {
1890 	return true;
1891 }
1892 #endif
1893 
1894 static inline struct pid *task_pid(struct task_struct *task)
1895 {
1896 	return task->pids[PIDTYPE_PID].pid;
1897 }
1898 
1899 static inline struct pid *task_tgid(struct task_struct *task)
1900 {
1901 	return task->group_leader->pids[PIDTYPE_PID].pid;
1902 }
1903 
1904 /*
1905  * Without tasklist or rcu lock it is not safe to dereference
1906  * the result of task_pgrp/task_session even if task == current,
1907  * we can race with another thread doing sys_setsid/sys_setpgid.
1908  */
1909 static inline struct pid *task_pgrp(struct task_struct *task)
1910 {
1911 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1912 }
1913 
1914 static inline struct pid *task_session(struct task_struct *task)
1915 {
1916 	return task->group_leader->pids[PIDTYPE_SID].pid;
1917 }
1918 
1919 struct pid_namespace;
1920 
1921 /*
1922  * the helpers to get the task's different pids as they are seen
1923  * from various namespaces
1924  *
1925  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1926  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1927  *                     current.
1928  * task_xid_nr_ns()  : id seen from the ns specified;
1929  *
1930  * set_task_vxid()   : assigns a virtual id to a task;
1931  *
1932  * see also pid_nr() etc in include/linux/pid.h
1933  */
1934 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1935 			struct pid_namespace *ns);
1936 
1937 static inline pid_t task_pid_nr(struct task_struct *tsk)
1938 {
1939 	return tsk->pid;
1940 }
1941 
1942 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1943 					struct pid_namespace *ns)
1944 {
1945 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1946 }
1947 
1948 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1949 {
1950 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1951 }
1952 
1953 
1954 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1955 {
1956 	return tsk->tgid;
1957 }
1958 
1959 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1960 
1961 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1962 {
1963 	return pid_vnr(task_tgid(tsk));
1964 }
1965 
1966 
1967 static inline int pid_alive(const struct task_struct *p);
1968 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1969 {
1970 	pid_t pid = 0;
1971 
1972 	rcu_read_lock();
1973 	if (pid_alive(tsk))
1974 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1975 	rcu_read_unlock();
1976 
1977 	return pid;
1978 }
1979 
1980 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1981 {
1982 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1983 }
1984 
1985 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1986 					struct pid_namespace *ns)
1987 {
1988 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1989 }
1990 
1991 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1992 {
1993 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1994 }
1995 
1996 
1997 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1998 					struct pid_namespace *ns)
1999 {
2000 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2001 }
2002 
2003 static inline pid_t task_session_vnr(struct task_struct *tsk)
2004 {
2005 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2006 }
2007 
2008 /* obsolete, do not use */
2009 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2010 {
2011 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
2012 }
2013 
2014 /**
2015  * pid_alive - check that a task structure is not stale
2016  * @p: Task structure to be checked.
2017  *
2018  * Test if a process is not yet dead (at most zombie state)
2019  * If pid_alive fails, then pointers within the task structure
2020  * can be stale and must not be dereferenced.
2021  *
2022  * Return: 1 if the process is alive. 0 otherwise.
2023  */
2024 static inline int pid_alive(const struct task_struct *p)
2025 {
2026 	return p->pids[PIDTYPE_PID].pid != NULL;
2027 }
2028 
2029 /**
2030  * is_global_init - check if a task structure is init. Since init
2031  * is free to have sub-threads we need to check tgid.
2032  * @tsk: Task structure to be checked.
2033  *
2034  * Check if a task structure is the first user space task the kernel created.
2035  *
2036  * Return: 1 if the task structure is init. 0 otherwise.
2037  */
2038 static inline int is_global_init(struct task_struct *tsk)
2039 {
2040 	return task_tgid_nr(tsk) == 1;
2041 }
2042 
2043 extern struct pid *cad_pid;
2044 
2045 extern void free_task(struct task_struct *tsk);
2046 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2047 
2048 extern void __put_task_struct(struct task_struct *t);
2049 
2050 static inline void put_task_struct(struct task_struct *t)
2051 {
2052 	if (atomic_dec_and_test(&t->usage))
2053 		__put_task_struct(t);
2054 }
2055 
2056 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2057 extern void task_cputime(struct task_struct *t,
2058 			 cputime_t *utime, cputime_t *stime);
2059 extern void task_cputime_scaled(struct task_struct *t,
2060 				cputime_t *utimescaled, cputime_t *stimescaled);
2061 extern cputime_t task_gtime(struct task_struct *t);
2062 #else
2063 static inline void task_cputime(struct task_struct *t,
2064 				cputime_t *utime, cputime_t *stime)
2065 {
2066 	if (utime)
2067 		*utime = t->utime;
2068 	if (stime)
2069 		*stime = t->stime;
2070 }
2071 
2072 static inline void task_cputime_scaled(struct task_struct *t,
2073 				       cputime_t *utimescaled,
2074 				       cputime_t *stimescaled)
2075 {
2076 	if (utimescaled)
2077 		*utimescaled = t->utimescaled;
2078 	if (stimescaled)
2079 		*stimescaled = t->stimescaled;
2080 }
2081 
2082 static inline cputime_t task_gtime(struct task_struct *t)
2083 {
2084 	return t->gtime;
2085 }
2086 #endif
2087 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2088 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2089 
2090 /*
2091  * Per process flags
2092  */
2093 #define PF_EXITING	0x00000004	/* getting shut down */
2094 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
2095 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
2096 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
2097 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
2098 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2099 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
2100 #define PF_DUMPCORE	0x00000200	/* dumped core */
2101 #define PF_SIGNALED	0x00000400	/* killed by a signal */
2102 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
2103 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
2104 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
2105 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
2106 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
2107 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
2108 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
2109 #define PF_KSWAPD	0x00040000	/* I am kswapd */
2110 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
2111 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
2112 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
2113 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
2114 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
2115 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
2116 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2117 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
2118 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
2119 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2120 
2121 /*
2122  * Only the _current_ task can read/write to tsk->flags, but other
2123  * tasks can access tsk->flags in readonly mode for example
2124  * with tsk_used_math (like during threaded core dumping).
2125  * There is however an exception to this rule during ptrace
2126  * or during fork: the ptracer task is allowed to write to the
2127  * child->flags of its traced child (same goes for fork, the parent
2128  * can write to the child->flags), because we're guaranteed the
2129  * child is not running and in turn not changing child->flags
2130  * at the same time the parent does it.
2131  */
2132 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2133 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2134 #define clear_used_math() clear_stopped_child_used_math(current)
2135 #define set_used_math() set_stopped_child_used_math(current)
2136 #define conditional_stopped_child_used_math(condition, child) \
2137 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2138 #define conditional_used_math(condition) \
2139 	conditional_stopped_child_used_math(condition, current)
2140 #define copy_to_stopped_child_used_math(child) \
2141 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2142 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2143 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2144 #define used_math() tsk_used_math(current)
2145 
2146 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2147  * __GFP_FS is also cleared as it implies __GFP_IO.
2148  */
2149 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2150 {
2151 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2152 		flags &= ~(__GFP_IO | __GFP_FS);
2153 	return flags;
2154 }
2155 
2156 static inline unsigned int memalloc_noio_save(void)
2157 {
2158 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2159 	current->flags |= PF_MEMALLOC_NOIO;
2160 	return flags;
2161 }
2162 
2163 static inline void memalloc_noio_restore(unsigned int flags)
2164 {
2165 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2166 }
2167 
2168 /* Per-process atomic flags. */
2169 #define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */
2170 #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2171 #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2172 
2173 
2174 #define TASK_PFA_TEST(name, func)					\
2175 	static inline bool task_##func(struct task_struct *p)		\
2176 	{ return test_bit(PFA_##name, &p->atomic_flags); }
2177 #define TASK_PFA_SET(name, func)					\
2178 	static inline void task_set_##func(struct task_struct *p)	\
2179 	{ set_bit(PFA_##name, &p->atomic_flags); }
2180 #define TASK_PFA_CLEAR(name, func)					\
2181 	static inline void task_clear_##func(struct task_struct *p)	\
2182 	{ clear_bit(PFA_##name, &p->atomic_flags); }
2183 
2184 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2185 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2186 
2187 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2188 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2189 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2190 
2191 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2192 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2193 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2194 
2195 /*
2196  * task->jobctl flags
2197  */
2198 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
2199 
2200 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
2201 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
2202 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
2203 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
2204 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
2205 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
2206 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
2207 
2208 #define JOBCTL_STOP_DEQUEUED	(1UL << JOBCTL_STOP_DEQUEUED_BIT)
2209 #define JOBCTL_STOP_PENDING	(1UL << JOBCTL_STOP_PENDING_BIT)
2210 #define JOBCTL_STOP_CONSUME	(1UL << JOBCTL_STOP_CONSUME_BIT)
2211 #define JOBCTL_TRAP_STOP	(1UL << JOBCTL_TRAP_STOP_BIT)
2212 #define JOBCTL_TRAP_NOTIFY	(1UL << JOBCTL_TRAP_NOTIFY_BIT)
2213 #define JOBCTL_TRAPPING		(1UL << JOBCTL_TRAPPING_BIT)
2214 #define JOBCTL_LISTENING	(1UL << JOBCTL_LISTENING_BIT)
2215 
2216 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2217 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2218 
2219 extern bool task_set_jobctl_pending(struct task_struct *task,
2220 				    unsigned long mask);
2221 extern void task_clear_jobctl_trapping(struct task_struct *task);
2222 extern void task_clear_jobctl_pending(struct task_struct *task,
2223 				      unsigned long mask);
2224 
2225 static inline void rcu_copy_process(struct task_struct *p)
2226 {
2227 #ifdef CONFIG_PREEMPT_RCU
2228 	p->rcu_read_lock_nesting = 0;
2229 	p->rcu_read_unlock_special.s = 0;
2230 	p->rcu_blocked_node = NULL;
2231 	INIT_LIST_HEAD(&p->rcu_node_entry);
2232 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2233 #ifdef CONFIG_TASKS_RCU
2234 	p->rcu_tasks_holdout = false;
2235 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2236 	p->rcu_tasks_idle_cpu = -1;
2237 #endif /* #ifdef CONFIG_TASKS_RCU */
2238 }
2239 
2240 static inline void tsk_restore_flags(struct task_struct *task,
2241 				unsigned long orig_flags, unsigned long flags)
2242 {
2243 	task->flags &= ~flags;
2244 	task->flags |= orig_flags & flags;
2245 }
2246 
2247 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2248 				     const struct cpumask *trial);
2249 extern int task_can_attach(struct task_struct *p,
2250 			   const struct cpumask *cs_cpus_allowed);
2251 #ifdef CONFIG_SMP
2252 extern void do_set_cpus_allowed(struct task_struct *p,
2253 			       const struct cpumask *new_mask);
2254 
2255 extern int set_cpus_allowed_ptr(struct task_struct *p,
2256 				const struct cpumask *new_mask);
2257 #else
2258 static inline void do_set_cpus_allowed(struct task_struct *p,
2259 				      const struct cpumask *new_mask)
2260 {
2261 }
2262 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2263 				       const struct cpumask *new_mask)
2264 {
2265 	if (!cpumask_test_cpu(0, new_mask))
2266 		return -EINVAL;
2267 	return 0;
2268 }
2269 #endif
2270 
2271 #ifdef CONFIG_NO_HZ_COMMON
2272 void calc_load_enter_idle(void);
2273 void calc_load_exit_idle(void);
2274 #else
2275 static inline void calc_load_enter_idle(void) { }
2276 static inline void calc_load_exit_idle(void) { }
2277 #endif /* CONFIG_NO_HZ_COMMON */
2278 
2279 /*
2280  * Do not use outside of architecture code which knows its limitations.
2281  *
2282  * sched_clock() has no promise of monotonicity or bounded drift between
2283  * CPUs, use (which you should not) requires disabling IRQs.
2284  *
2285  * Please use one of the three interfaces below.
2286  */
2287 extern unsigned long long notrace sched_clock(void);
2288 /*
2289  * See the comment in kernel/sched/clock.c
2290  */
2291 extern u64 cpu_clock(int cpu);
2292 extern u64 local_clock(void);
2293 extern u64 running_clock(void);
2294 extern u64 sched_clock_cpu(int cpu);
2295 
2296 
2297 extern void sched_clock_init(void);
2298 
2299 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2300 static inline void sched_clock_tick(void)
2301 {
2302 }
2303 
2304 static inline void sched_clock_idle_sleep_event(void)
2305 {
2306 }
2307 
2308 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2309 {
2310 }
2311 #else
2312 /*
2313  * Architectures can set this to 1 if they have specified
2314  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2315  * but then during bootup it turns out that sched_clock()
2316  * is reliable after all:
2317  */
2318 extern int sched_clock_stable(void);
2319 extern void set_sched_clock_stable(void);
2320 extern void clear_sched_clock_stable(void);
2321 
2322 extern void sched_clock_tick(void);
2323 extern void sched_clock_idle_sleep_event(void);
2324 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2325 #endif
2326 
2327 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2328 /*
2329  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2330  * The reason for this explicit opt-in is not to have perf penalty with
2331  * slow sched_clocks.
2332  */
2333 extern void enable_sched_clock_irqtime(void);
2334 extern void disable_sched_clock_irqtime(void);
2335 #else
2336 static inline void enable_sched_clock_irqtime(void) {}
2337 static inline void disable_sched_clock_irqtime(void) {}
2338 #endif
2339 
2340 extern unsigned long long
2341 task_sched_runtime(struct task_struct *task);
2342 
2343 /* sched_exec is called by processes performing an exec */
2344 #ifdef CONFIG_SMP
2345 extern void sched_exec(void);
2346 #else
2347 #define sched_exec()   {}
2348 #endif
2349 
2350 extern void sched_clock_idle_sleep_event(void);
2351 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2352 
2353 #ifdef CONFIG_HOTPLUG_CPU
2354 extern void idle_task_exit(void);
2355 #else
2356 static inline void idle_task_exit(void) {}
2357 #endif
2358 
2359 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2360 extern void wake_up_nohz_cpu(int cpu);
2361 #else
2362 static inline void wake_up_nohz_cpu(int cpu) { }
2363 #endif
2364 
2365 #ifdef CONFIG_NO_HZ_FULL
2366 extern u64 scheduler_tick_max_deferment(void);
2367 #endif
2368 
2369 #ifdef CONFIG_SCHED_AUTOGROUP
2370 extern void sched_autogroup_create_attach(struct task_struct *p);
2371 extern void sched_autogroup_detach(struct task_struct *p);
2372 extern void sched_autogroup_fork(struct signal_struct *sig);
2373 extern void sched_autogroup_exit(struct signal_struct *sig);
2374 #ifdef CONFIG_PROC_FS
2375 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2376 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2377 #endif
2378 #else
2379 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2380 static inline void sched_autogroup_detach(struct task_struct *p) { }
2381 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2382 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2383 #endif
2384 
2385 extern int yield_to(struct task_struct *p, bool preempt);
2386 extern void set_user_nice(struct task_struct *p, long nice);
2387 extern int task_prio(const struct task_struct *p);
2388 /**
2389  * task_nice - return the nice value of a given task.
2390  * @p: the task in question.
2391  *
2392  * Return: The nice value [ -20 ... 0 ... 19 ].
2393  */
2394 static inline int task_nice(const struct task_struct *p)
2395 {
2396 	return PRIO_TO_NICE((p)->static_prio);
2397 }
2398 extern int can_nice(const struct task_struct *p, const int nice);
2399 extern int task_curr(const struct task_struct *p);
2400 extern int idle_cpu(int cpu);
2401 extern int sched_setscheduler(struct task_struct *, int,
2402 			      const struct sched_param *);
2403 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2404 				      const struct sched_param *);
2405 extern int sched_setattr(struct task_struct *,
2406 			 const struct sched_attr *);
2407 extern struct task_struct *idle_task(int cpu);
2408 /**
2409  * is_idle_task - is the specified task an idle task?
2410  * @p: the task in question.
2411  *
2412  * Return: 1 if @p is an idle task. 0 otherwise.
2413  */
2414 static inline bool is_idle_task(const struct task_struct *p)
2415 {
2416 	return p->pid == 0;
2417 }
2418 extern struct task_struct *curr_task(int cpu);
2419 extern void set_curr_task(int cpu, struct task_struct *p);
2420 
2421 void yield(void);
2422 
2423 union thread_union {
2424 	struct thread_info thread_info;
2425 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2426 };
2427 
2428 #ifndef __HAVE_ARCH_KSTACK_END
2429 static inline int kstack_end(void *addr)
2430 {
2431 	/* Reliable end of stack detection:
2432 	 * Some APM bios versions misalign the stack
2433 	 */
2434 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2435 }
2436 #endif
2437 
2438 extern union thread_union init_thread_union;
2439 extern struct task_struct init_task;
2440 
2441 extern struct   mm_struct init_mm;
2442 
2443 extern struct pid_namespace init_pid_ns;
2444 
2445 /*
2446  * find a task by one of its numerical ids
2447  *
2448  * find_task_by_pid_ns():
2449  *      finds a task by its pid in the specified namespace
2450  * find_task_by_vpid():
2451  *      finds a task by its virtual pid
2452  *
2453  * see also find_vpid() etc in include/linux/pid.h
2454  */
2455 
2456 extern struct task_struct *find_task_by_vpid(pid_t nr);
2457 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2458 		struct pid_namespace *ns);
2459 
2460 /* per-UID process charging. */
2461 extern struct user_struct * alloc_uid(kuid_t);
2462 static inline struct user_struct *get_uid(struct user_struct *u)
2463 {
2464 	atomic_inc(&u->__count);
2465 	return u;
2466 }
2467 extern void free_uid(struct user_struct *);
2468 
2469 #include <asm/current.h>
2470 
2471 extern void xtime_update(unsigned long ticks);
2472 
2473 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2474 extern int wake_up_process(struct task_struct *tsk);
2475 extern void wake_up_new_task(struct task_struct *tsk);
2476 #ifdef CONFIG_SMP
2477  extern void kick_process(struct task_struct *tsk);
2478 #else
2479  static inline void kick_process(struct task_struct *tsk) { }
2480 #endif
2481 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2482 extern void sched_dead(struct task_struct *p);
2483 
2484 extern void proc_caches_init(void);
2485 extern void flush_signals(struct task_struct *);
2486 extern void ignore_signals(struct task_struct *);
2487 extern void flush_signal_handlers(struct task_struct *, int force_default);
2488 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2489 
2490 static inline int kernel_dequeue_signal(siginfo_t *info)
2491 {
2492 	struct task_struct *tsk = current;
2493 	siginfo_t __info;
2494 	int ret;
2495 
2496 	spin_lock_irq(&tsk->sighand->siglock);
2497 	ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2498 	spin_unlock_irq(&tsk->sighand->siglock);
2499 
2500 	return ret;
2501 }
2502 
2503 static inline void kernel_signal_stop(void)
2504 {
2505 	spin_lock_irq(&current->sighand->siglock);
2506 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2507 		__set_current_state(TASK_STOPPED);
2508 	spin_unlock_irq(&current->sighand->siglock);
2509 
2510 	schedule();
2511 }
2512 
2513 extern void release_task(struct task_struct * p);
2514 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2515 extern int force_sigsegv(int, struct task_struct *);
2516 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2517 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2518 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2519 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2520 				const struct cred *, u32);
2521 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2522 extern int kill_pid(struct pid *pid, int sig, int priv);
2523 extern int kill_proc_info(int, struct siginfo *, pid_t);
2524 extern __must_check bool do_notify_parent(struct task_struct *, int);
2525 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2526 extern void force_sig(int, struct task_struct *);
2527 extern int send_sig(int, struct task_struct *, int);
2528 extern int zap_other_threads(struct task_struct *p);
2529 extern struct sigqueue *sigqueue_alloc(void);
2530 extern void sigqueue_free(struct sigqueue *);
2531 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2532 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2533 
2534 static inline void restore_saved_sigmask(void)
2535 {
2536 	if (test_and_clear_restore_sigmask())
2537 		__set_current_blocked(&current->saved_sigmask);
2538 }
2539 
2540 static inline sigset_t *sigmask_to_save(void)
2541 {
2542 	sigset_t *res = &current->blocked;
2543 	if (unlikely(test_restore_sigmask()))
2544 		res = &current->saved_sigmask;
2545 	return res;
2546 }
2547 
2548 static inline int kill_cad_pid(int sig, int priv)
2549 {
2550 	return kill_pid(cad_pid, sig, priv);
2551 }
2552 
2553 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2554 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2555 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2556 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2557 
2558 /*
2559  * True if we are on the alternate signal stack.
2560  */
2561 static inline int on_sig_stack(unsigned long sp)
2562 {
2563 #ifdef CONFIG_STACK_GROWSUP
2564 	return sp >= current->sas_ss_sp &&
2565 		sp - current->sas_ss_sp < current->sas_ss_size;
2566 #else
2567 	return sp > current->sas_ss_sp &&
2568 		sp - current->sas_ss_sp <= current->sas_ss_size;
2569 #endif
2570 }
2571 
2572 static inline int sas_ss_flags(unsigned long sp)
2573 {
2574 	if (!current->sas_ss_size)
2575 		return SS_DISABLE;
2576 
2577 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
2578 }
2579 
2580 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2581 {
2582 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2583 #ifdef CONFIG_STACK_GROWSUP
2584 		return current->sas_ss_sp;
2585 #else
2586 		return current->sas_ss_sp + current->sas_ss_size;
2587 #endif
2588 	return sp;
2589 }
2590 
2591 /*
2592  * Routines for handling mm_structs
2593  */
2594 extern struct mm_struct * mm_alloc(void);
2595 
2596 /* mmdrop drops the mm and the page tables */
2597 extern void __mmdrop(struct mm_struct *);
2598 static inline void mmdrop(struct mm_struct * mm)
2599 {
2600 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2601 		__mmdrop(mm);
2602 }
2603 
2604 /* mmput gets rid of the mappings and all user-space */
2605 extern void mmput(struct mm_struct *);
2606 /* Grab a reference to a task's mm, if it is not already going away */
2607 extern struct mm_struct *get_task_mm(struct task_struct *task);
2608 /*
2609  * Grab a reference to a task's mm, if it is not already going away
2610  * and ptrace_may_access with the mode parameter passed to it
2611  * succeeds.
2612  */
2613 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2614 /* Remove the current tasks stale references to the old mm_struct */
2615 extern void mm_release(struct task_struct *, struct mm_struct *);
2616 
2617 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2618 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2619 			struct task_struct *, unsigned long);
2620 #else
2621 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2622 			struct task_struct *);
2623 
2624 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2625  * via pt_regs, so ignore the tls argument passed via C. */
2626 static inline int copy_thread_tls(
2627 		unsigned long clone_flags, unsigned long sp, unsigned long arg,
2628 		struct task_struct *p, unsigned long tls)
2629 {
2630 	return copy_thread(clone_flags, sp, arg, p);
2631 }
2632 #endif
2633 extern void flush_thread(void);
2634 extern void exit_thread(void);
2635 
2636 extern void exit_files(struct task_struct *);
2637 extern void __cleanup_sighand(struct sighand_struct *);
2638 
2639 extern void exit_itimers(struct signal_struct *);
2640 extern void flush_itimer_signals(void);
2641 
2642 extern void do_group_exit(int);
2643 
2644 extern int do_execve(struct filename *,
2645 		     const char __user * const __user *,
2646 		     const char __user * const __user *);
2647 extern int do_execveat(int, struct filename *,
2648 		       const char __user * const __user *,
2649 		       const char __user * const __user *,
2650 		       int);
2651 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2652 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2653 struct task_struct *fork_idle(int);
2654 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2655 
2656 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2657 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2658 {
2659 	__set_task_comm(tsk, from, false);
2660 }
2661 extern char *get_task_comm(char *to, struct task_struct *tsk);
2662 
2663 #ifdef CONFIG_SMP
2664 void scheduler_ipi(void);
2665 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2666 #else
2667 static inline void scheduler_ipi(void) { }
2668 static inline unsigned long wait_task_inactive(struct task_struct *p,
2669 					       long match_state)
2670 {
2671 	return 1;
2672 }
2673 #endif
2674 
2675 #define tasklist_empty() \
2676 	list_empty(&init_task.tasks)
2677 
2678 #define next_task(p) \
2679 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2680 
2681 #define for_each_process(p) \
2682 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2683 
2684 extern bool current_is_single_threaded(void);
2685 
2686 /*
2687  * Careful: do_each_thread/while_each_thread is a double loop so
2688  *          'break' will not work as expected - use goto instead.
2689  */
2690 #define do_each_thread(g, t) \
2691 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2692 
2693 #define while_each_thread(g, t) \
2694 	while ((t = next_thread(t)) != g)
2695 
2696 #define __for_each_thread(signal, t)	\
2697 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2698 
2699 #define for_each_thread(p, t)		\
2700 	__for_each_thread((p)->signal, t)
2701 
2702 /* Careful: this is a double loop, 'break' won't work as expected. */
2703 #define for_each_process_thread(p, t)	\
2704 	for_each_process(p) for_each_thread(p, t)
2705 
2706 static inline int get_nr_threads(struct task_struct *tsk)
2707 {
2708 	return tsk->signal->nr_threads;
2709 }
2710 
2711 static inline bool thread_group_leader(struct task_struct *p)
2712 {
2713 	return p->exit_signal >= 0;
2714 }
2715 
2716 /* Do to the insanities of de_thread it is possible for a process
2717  * to have the pid of the thread group leader without actually being
2718  * the thread group leader.  For iteration through the pids in proc
2719  * all we care about is that we have a task with the appropriate
2720  * pid, we don't actually care if we have the right task.
2721  */
2722 static inline bool has_group_leader_pid(struct task_struct *p)
2723 {
2724 	return task_pid(p) == p->signal->leader_pid;
2725 }
2726 
2727 static inline
2728 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2729 {
2730 	return p1->signal == p2->signal;
2731 }
2732 
2733 static inline struct task_struct *next_thread(const struct task_struct *p)
2734 {
2735 	return list_entry_rcu(p->thread_group.next,
2736 			      struct task_struct, thread_group);
2737 }
2738 
2739 static inline int thread_group_empty(struct task_struct *p)
2740 {
2741 	return list_empty(&p->thread_group);
2742 }
2743 
2744 #define delay_group_leader(p) \
2745 		(thread_group_leader(p) && !thread_group_empty(p))
2746 
2747 /*
2748  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2749  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2750  * pins the final release of task.io_context.  Also protects ->cpuset and
2751  * ->cgroup.subsys[]. And ->vfork_done.
2752  *
2753  * Nests both inside and outside of read_lock(&tasklist_lock).
2754  * It must not be nested with write_lock_irq(&tasklist_lock),
2755  * neither inside nor outside.
2756  */
2757 static inline void task_lock(struct task_struct *p)
2758 {
2759 	spin_lock(&p->alloc_lock);
2760 }
2761 
2762 static inline void task_unlock(struct task_struct *p)
2763 {
2764 	spin_unlock(&p->alloc_lock);
2765 }
2766 
2767 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2768 							unsigned long *flags);
2769 
2770 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2771 						       unsigned long *flags)
2772 {
2773 	struct sighand_struct *ret;
2774 
2775 	ret = __lock_task_sighand(tsk, flags);
2776 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2777 	return ret;
2778 }
2779 
2780 static inline void unlock_task_sighand(struct task_struct *tsk,
2781 						unsigned long *flags)
2782 {
2783 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2784 }
2785 
2786 /**
2787  * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2788  * @tsk: task causing the changes
2789  *
2790  * All operations which modify a threadgroup - a new thread joining the
2791  * group, death of a member thread (the assertion of PF_EXITING) and
2792  * exec(2) dethreading the process and replacing the leader - are wrapped
2793  * by threadgroup_change_{begin|end}().  This is to provide a place which
2794  * subsystems needing threadgroup stability can hook into for
2795  * synchronization.
2796  */
2797 static inline void threadgroup_change_begin(struct task_struct *tsk)
2798 {
2799 	might_sleep();
2800 	cgroup_threadgroup_change_begin(tsk);
2801 }
2802 
2803 /**
2804  * threadgroup_change_end - mark the end of changes to a threadgroup
2805  * @tsk: task causing the changes
2806  *
2807  * See threadgroup_change_begin().
2808  */
2809 static inline void threadgroup_change_end(struct task_struct *tsk)
2810 {
2811 	cgroup_threadgroup_change_end(tsk);
2812 }
2813 
2814 #ifndef __HAVE_THREAD_FUNCTIONS
2815 
2816 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2817 #define task_stack_page(task)	((task)->stack)
2818 
2819 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2820 {
2821 	*task_thread_info(p) = *task_thread_info(org);
2822 	task_thread_info(p)->task = p;
2823 }
2824 
2825 /*
2826  * Return the address of the last usable long on the stack.
2827  *
2828  * When the stack grows down, this is just above the thread
2829  * info struct. Going any lower will corrupt the threadinfo.
2830  *
2831  * When the stack grows up, this is the highest address.
2832  * Beyond that position, we corrupt data on the next page.
2833  */
2834 static inline unsigned long *end_of_stack(struct task_struct *p)
2835 {
2836 #ifdef CONFIG_STACK_GROWSUP
2837 	return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2838 #else
2839 	return (unsigned long *)(task_thread_info(p) + 1);
2840 #endif
2841 }
2842 
2843 #endif
2844 #define task_stack_end_corrupted(task) \
2845 		(*(end_of_stack(task)) != STACK_END_MAGIC)
2846 
2847 static inline int object_is_on_stack(void *obj)
2848 {
2849 	void *stack = task_stack_page(current);
2850 
2851 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2852 }
2853 
2854 extern void thread_info_cache_init(void);
2855 
2856 #ifdef CONFIG_DEBUG_STACK_USAGE
2857 static inline unsigned long stack_not_used(struct task_struct *p)
2858 {
2859 	unsigned long *n = end_of_stack(p);
2860 
2861 	do { 	/* Skip over canary */
2862 		n++;
2863 	} while (!*n);
2864 
2865 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2866 }
2867 #endif
2868 extern void set_task_stack_end_magic(struct task_struct *tsk);
2869 
2870 /* set thread flags in other task's structures
2871  * - see asm/thread_info.h for TIF_xxxx flags available
2872  */
2873 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2874 {
2875 	set_ti_thread_flag(task_thread_info(tsk), flag);
2876 }
2877 
2878 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2879 {
2880 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2881 }
2882 
2883 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2884 {
2885 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2886 }
2887 
2888 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2889 {
2890 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2891 }
2892 
2893 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2894 {
2895 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2896 }
2897 
2898 static inline void set_tsk_need_resched(struct task_struct *tsk)
2899 {
2900 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2901 }
2902 
2903 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2904 {
2905 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2906 }
2907 
2908 static inline int test_tsk_need_resched(struct task_struct *tsk)
2909 {
2910 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2911 }
2912 
2913 static inline int restart_syscall(void)
2914 {
2915 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2916 	return -ERESTARTNOINTR;
2917 }
2918 
2919 static inline int signal_pending(struct task_struct *p)
2920 {
2921 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2922 }
2923 
2924 static inline int __fatal_signal_pending(struct task_struct *p)
2925 {
2926 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2927 }
2928 
2929 static inline int fatal_signal_pending(struct task_struct *p)
2930 {
2931 	return signal_pending(p) && __fatal_signal_pending(p);
2932 }
2933 
2934 static inline int signal_pending_state(long state, struct task_struct *p)
2935 {
2936 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2937 		return 0;
2938 	if (!signal_pending(p))
2939 		return 0;
2940 
2941 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2942 }
2943 
2944 /*
2945  * cond_resched() and cond_resched_lock(): latency reduction via
2946  * explicit rescheduling in places that are safe. The return
2947  * value indicates whether a reschedule was done in fact.
2948  * cond_resched_lock() will drop the spinlock before scheduling,
2949  * cond_resched_softirq() will enable bhs before scheduling.
2950  */
2951 extern int _cond_resched(void);
2952 
2953 #define cond_resched() ({			\
2954 	___might_sleep(__FILE__, __LINE__, 0);	\
2955 	_cond_resched();			\
2956 })
2957 
2958 extern int __cond_resched_lock(spinlock_t *lock);
2959 
2960 #define cond_resched_lock(lock) ({				\
2961 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2962 	__cond_resched_lock(lock);				\
2963 })
2964 
2965 extern int __cond_resched_softirq(void);
2966 
2967 #define cond_resched_softirq() ({					\
2968 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2969 	__cond_resched_softirq();					\
2970 })
2971 
2972 static inline void cond_resched_rcu(void)
2973 {
2974 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2975 	rcu_read_unlock();
2976 	cond_resched();
2977 	rcu_read_lock();
2978 #endif
2979 }
2980 
2981 /*
2982  * Does a critical section need to be broken due to another
2983  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2984  * but a general need for low latency)
2985  */
2986 static inline int spin_needbreak(spinlock_t *lock)
2987 {
2988 #ifdef CONFIG_PREEMPT
2989 	return spin_is_contended(lock);
2990 #else
2991 	return 0;
2992 #endif
2993 }
2994 
2995 /*
2996  * Idle thread specific functions to determine the need_resched
2997  * polling state.
2998  */
2999 #ifdef TIF_POLLING_NRFLAG
3000 static inline int tsk_is_polling(struct task_struct *p)
3001 {
3002 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3003 }
3004 
3005 static inline void __current_set_polling(void)
3006 {
3007 	set_thread_flag(TIF_POLLING_NRFLAG);
3008 }
3009 
3010 static inline bool __must_check current_set_polling_and_test(void)
3011 {
3012 	__current_set_polling();
3013 
3014 	/*
3015 	 * Polling state must be visible before we test NEED_RESCHED,
3016 	 * paired by resched_curr()
3017 	 */
3018 	smp_mb__after_atomic();
3019 
3020 	return unlikely(tif_need_resched());
3021 }
3022 
3023 static inline void __current_clr_polling(void)
3024 {
3025 	clear_thread_flag(TIF_POLLING_NRFLAG);
3026 }
3027 
3028 static inline bool __must_check current_clr_polling_and_test(void)
3029 {
3030 	__current_clr_polling();
3031 
3032 	/*
3033 	 * Polling state must be visible before we test NEED_RESCHED,
3034 	 * paired by resched_curr()
3035 	 */
3036 	smp_mb__after_atomic();
3037 
3038 	return unlikely(tif_need_resched());
3039 }
3040 
3041 #else
3042 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3043 static inline void __current_set_polling(void) { }
3044 static inline void __current_clr_polling(void) { }
3045 
3046 static inline bool __must_check current_set_polling_and_test(void)
3047 {
3048 	return unlikely(tif_need_resched());
3049 }
3050 static inline bool __must_check current_clr_polling_and_test(void)
3051 {
3052 	return unlikely(tif_need_resched());
3053 }
3054 #endif
3055 
3056 static inline void current_clr_polling(void)
3057 {
3058 	__current_clr_polling();
3059 
3060 	/*
3061 	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3062 	 * Once the bit is cleared, we'll get IPIs with every new
3063 	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3064 	 * fold.
3065 	 */
3066 	smp_mb(); /* paired with resched_curr() */
3067 
3068 	preempt_fold_need_resched();
3069 }
3070 
3071 static __always_inline bool need_resched(void)
3072 {
3073 	return unlikely(tif_need_resched());
3074 }
3075 
3076 /*
3077  * Thread group CPU time accounting.
3078  */
3079 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3080 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3081 
3082 /*
3083  * Reevaluate whether the task has signals pending delivery.
3084  * Wake the task if so.
3085  * This is required every time the blocked sigset_t changes.
3086  * callers must hold sighand->siglock.
3087  */
3088 extern void recalc_sigpending_and_wake(struct task_struct *t);
3089 extern void recalc_sigpending(void);
3090 
3091 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3092 
3093 static inline void signal_wake_up(struct task_struct *t, bool resume)
3094 {
3095 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3096 }
3097 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3098 {
3099 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3100 }
3101 
3102 /*
3103  * Wrappers for p->thread_info->cpu access. No-op on UP.
3104  */
3105 #ifdef CONFIG_SMP
3106 
3107 static inline unsigned int task_cpu(const struct task_struct *p)
3108 {
3109 	return task_thread_info(p)->cpu;
3110 }
3111 
3112 static inline int task_node(const struct task_struct *p)
3113 {
3114 	return cpu_to_node(task_cpu(p));
3115 }
3116 
3117 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3118 
3119 #else
3120 
3121 static inline unsigned int task_cpu(const struct task_struct *p)
3122 {
3123 	return 0;
3124 }
3125 
3126 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3127 {
3128 }
3129 
3130 #endif /* CONFIG_SMP */
3131 
3132 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3133 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3134 
3135 #ifdef CONFIG_CGROUP_SCHED
3136 extern struct task_group root_task_group;
3137 #endif /* CONFIG_CGROUP_SCHED */
3138 
3139 extern int task_can_switch_user(struct user_struct *up,
3140 					struct task_struct *tsk);
3141 
3142 #ifdef CONFIG_TASK_XACCT
3143 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3144 {
3145 	tsk->ioac.rchar += amt;
3146 }
3147 
3148 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3149 {
3150 	tsk->ioac.wchar += amt;
3151 }
3152 
3153 static inline void inc_syscr(struct task_struct *tsk)
3154 {
3155 	tsk->ioac.syscr++;
3156 }
3157 
3158 static inline void inc_syscw(struct task_struct *tsk)
3159 {
3160 	tsk->ioac.syscw++;
3161 }
3162 #else
3163 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3164 {
3165 }
3166 
3167 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3168 {
3169 }
3170 
3171 static inline void inc_syscr(struct task_struct *tsk)
3172 {
3173 }
3174 
3175 static inline void inc_syscw(struct task_struct *tsk)
3176 {
3177 }
3178 #endif
3179 
3180 #ifndef TASK_SIZE_OF
3181 #define TASK_SIZE_OF(tsk)	TASK_SIZE
3182 #endif
3183 
3184 #ifdef CONFIG_MEMCG
3185 extern void mm_update_next_owner(struct mm_struct *mm);
3186 #else
3187 static inline void mm_update_next_owner(struct mm_struct *mm)
3188 {
3189 }
3190 #endif /* CONFIG_MEMCG */
3191 
3192 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3193 		unsigned int limit)
3194 {
3195 	return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3196 }
3197 
3198 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3199 		unsigned int limit)
3200 {
3201 	return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3202 }
3203 
3204 static inline unsigned long rlimit(unsigned int limit)
3205 {
3206 	return task_rlimit(current, limit);
3207 }
3208 
3209 static inline unsigned long rlimit_max(unsigned int limit)
3210 {
3211 	return task_rlimit_max(current, limit);
3212 }
3213 
3214 #ifdef CONFIG_CPU_FREQ
3215 struct update_util_data {
3216 	void (*func)(struct update_util_data *data,
3217 		     u64 time, unsigned long util, unsigned long max);
3218 };
3219 
3220 void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
3221 #endif /* CONFIG_CPU_FREQ */
3222 
3223 #endif
3224