1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ 5 6 /* 7 * cloning flags: 8 */ 9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 17 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 27 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 28 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 29 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 30 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 42 #ifdef __KERNEL__ 43 44 struct sched_param { 45 int sched_priority; 46 }; 47 48 #include <asm/param.h> /* for HZ */ 49 50 #include <linux/capability.h> 51 #include <linux/threads.h> 52 #include <linux/kernel.h> 53 #include <linux/types.h> 54 #include <linux/timex.h> 55 #include <linux/jiffies.h> 56 #include <linux/rbtree.h> 57 #include <linux/thread_info.h> 58 #include <linux/cpumask.h> 59 #include <linux/errno.h> 60 #include <linux/nodemask.h> 61 62 #include <asm/system.h> 63 #include <asm/semaphore.h> 64 #include <asm/page.h> 65 #include <asm/ptrace.h> 66 #include <asm/mmu.h> 67 #include <asm/cputime.h> 68 69 #include <linux/smp.h> 70 #include <linux/sem.h> 71 #include <linux/signal.h> 72 #include <linux/securebits.h> 73 #include <linux/fs_struct.h> 74 #include <linux/compiler.h> 75 #include <linux/completion.h> 76 #include <linux/pid.h> 77 #include <linux/percpu.h> 78 #include <linux/topology.h> 79 #include <linux/seccomp.h> 80 #include <linux/rcupdate.h> 81 #include <linux/futex.h> 82 #include <linux/rtmutex.h> 83 84 #include <linux/time.h> 85 #include <linux/param.h> 86 #include <linux/resource.h> 87 #include <linux/timer.h> 88 #include <linux/hrtimer.h> 89 #include <linux/task_io_accounting.h> 90 91 #include <asm/processor.h> 92 93 struct exec_domain; 94 struct futex_pi_state; 95 struct bio; 96 97 /* 98 * List of flags we want to share for kernel threads, 99 * if only because they are not used by them anyway. 100 */ 101 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 102 103 /* 104 * These are the constant used to fake the fixed-point load-average 105 * counting. Some notes: 106 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 107 * a load-average precision of 10 bits integer + 11 bits fractional 108 * - if you want to count load-averages more often, you need more 109 * precision, or rounding will get you. With 2-second counting freq, 110 * the EXP_n values would be 1981, 2034 and 2043 if still using only 111 * 11 bit fractions. 112 */ 113 extern unsigned long avenrun[]; /* Load averages */ 114 115 #define FSHIFT 11 /* nr of bits of precision */ 116 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 117 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 118 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 119 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 120 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 121 122 #define CALC_LOAD(load,exp,n) \ 123 load *= exp; \ 124 load += n*(FIXED_1-exp); \ 125 load >>= FSHIFT; 126 127 extern unsigned long total_forks; 128 extern int nr_threads; 129 DECLARE_PER_CPU(unsigned long, process_counts); 130 extern int nr_processes(void); 131 extern unsigned long nr_running(void); 132 extern unsigned long nr_uninterruptible(void); 133 extern unsigned long nr_active(void); 134 extern unsigned long nr_iowait(void); 135 extern unsigned long weighted_cpuload(const int cpu); 136 137 struct seq_file; 138 struct cfs_rq; 139 #ifdef CONFIG_SCHED_DEBUG 140 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 141 extern void proc_sched_set_task(struct task_struct *p); 142 extern void 143 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 144 #else 145 static inline void 146 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 147 { 148 } 149 static inline void proc_sched_set_task(struct task_struct *p) 150 { 151 } 152 static inline void 153 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 154 { 155 } 156 #endif 157 158 /* 159 * Task state bitmask. NOTE! These bits are also 160 * encoded in fs/proc/array.c: get_task_state(). 161 * 162 * We have two separate sets of flags: task->state 163 * is about runnability, while task->exit_state are 164 * about the task exiting. Confusing, but this way 165 * modifying one set can't modify the other one by 166 * mistake. 167 */ 168 #define TASK_RUNNING 0 169 #define TASK_INTERRUPTIBLE 1 170 #define TASK_UNINTERRUPTIBLE 2 171 #define TASK_STOPPED 4 172 #define TASK_TRACED 8 173 /* in tsk->exit_state */ 174 #define EXIT_ZOMBIE 16 175 #define EXIT_DEAD 32 176 /* in tsk->state again */ 177 #define TASK_NONINTERACTIVE 64 178 #define TASK_DEAD 128 179 180 #define __set_task_state(tsk, state_value) \ 181 do { (tsk)->state = (state_value); } while (0) 182 #define set_task_state(tsk, state_value) \ 183 set_mb((tsk)->state, (state_value)) 184 185 /* 186 * set_current_state() includes a barrier so that the write of current->state 187 * is correctly serialised wrt the caller's subsequent test of whether to 188 * actually sleep: 189 * 190 * set_current_state(TASK_UNINTERRUPTIBLE); 191 * if (do_i_need_to_sleep()) 192 * schedule(); 193 * 194 * If the caller does not need such serialisation then use __set_current_state() 195 */ 196 #define __set_current_state(state_value) \ 197 do { current->state = (state_value); } while (0) 198 #define set_current_state(state_value) \ 199 set_mb(current->state, (state_value)) 200 201 /* Task command name length */ 202 #define TASK_COMM_LEN 16 203 204 #include <linux/spinlock.h> 205 206 /* 207 * This serializes "schedule()" and also protects 208 * the run-queue from deletions/modifications (but 209 * _adding_ to the beginning of the run-queue has 210 * a separate lock). 211 */ 212 extern rwlock_t tasklist_lock; 213 extern spinlock_t mmlist_lock; 214 215 struct task_struct; 216 217 extern void sched_init(void); 218 extern void sched_init_smp(void); 219 extern void init_idle(struct task_struct *idle, int cpu); 220 extern void init_idle_bootup_task(struct task_struct *idle); 221 222 extern cpumask_t nohz_cpu_mask; 223 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 224 extern int select_nohz_load_balancer(int cpu); 225 #else 226 static inline int select_nohz_load_balancer(int cpu) 227 { 228 return 0; 229 } 230 #endif 231 232 /* 233 * Only dump TASK_* tasks. (0 for all tasks) 234 */ 235 extern void show_state_filter(unsigned long state_filter); 236 237 static inline void show_state(void) 238 { 239 show_state_filter(0); 240 } 241 242 extern void show_regs(struct pt_regs *); 243 244 /* 245 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 246 * task), SP is the stack pointer of the first frame that should be shown in the back 247 * trace (or NULL if the entire call-chain of the task should be shown). 248 */ 249 extern void show_stack(struct task_struct *task, unsigned long *sp); 250 251 void io_schedule(void); 252 long io_schedule_timeout(long timeout); 253 254 extern void cpu_init (void); 255 extern void trap_init(void); 256 extern void update_process_times(int user); 257 extern void scheduler_tick(void); 258 259 #ifdef CONFIG_DETECT_SOFTLOCKUP 260 extern void softlockup_tick(void); 261 extern void spawn_softlockup_task(void); 262 extern void touch_softlockup_watchdog(void); 263 extern void touch_all_softlockup_watchdogs(void); 264 #else 265 static inline void softlockup_tick(void) 266 { 267 } 268 static inline void spawn_softlockup_task(void) 269 { 270 } 271 static inline void touch_softlockup_watchdog(void) 272 { 273 } 274 static inline void touch_all_softlockup_watchdogs(void) 275 { 276 } 277 #endif 278 279 280 /* Attach to any functions which should be ignored in wchan output. */ 281 #define __sched __attribute__((__section__(".sched.text"))) 282 /* Is this address in the __sched functions? */ 283 extern int in_sched_functions(unsigned long addr); 284 285 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 286 extern signed long FASTCALL(schedule_timeout(signed long timeout)); 287 extern signed long schedule_timeout_interruptible(signed long timeout); 288 extern signed long schedule_timeout_uninterruptible(signed long timeout); 289 asmlinkage void schedule(void); 290 291 struct nsproxy; 292 struct user_namespace; 293 294 /* Maximum number of active map areas.. This is a random (large) number */ 295 #define DEFAULT_MAX_MAP_COUNT 65536 296 297 extern int sysctl_max_map_count; 298 299 #include <linux/aio.h> 300 301 extern unsigned long 302 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 303 unsigned long, unsigned long); 304 extern unsigned long 305 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 306 unsigned long len, unsigned long pgoff, 307 unsigned long flags); 308 extern void arch_unmap_area(struct mm_struct *, unsigned long); 309 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 310 311 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 312 /* 313 * The mm counters are not protected by its page_table_lock, 314 * so must be incremented atomically. 315 */ 316 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 317 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 318 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 319 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 320 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 321 typedef atomic_long_t mm_counter_t; 322 323 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 324 /* 325 * The mm counters are protected by its page_table_lock, 326 * so can be incremented directly. 327 */ 328 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 329 #define get_mm_counter(mm, member) ((mm)->_##member) 330 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 331 #define inc_mm_counter(mm, member) (mm)->_##member++ 332 #define dec_mm_counter(mm, member) (mm)->_##member-- 333 typedef unsigned long mm_counter_t; 334 335 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 336 337 #define get_mm_rss(mm) \ 338 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 339 #define update_hiwater_rss(mm) do { \ 340 unsigned long _rss = get_mm_rss(mm); \ 341 if ((mm)->hiwater_rss < _rss) \ 342 (mm)->hiwater_rss = _rss; \ 343 } while (0) 344 #define update_hiwater_vm(mm) do { \ 345 if ((mm)->hiwater_vm < (mm)->total_vm) \ 346 (mm)->hiwater_vm = (mm)->total_vm; \ 347 } while (0) 348 349 extern void set_dumpable(struct mm_struct *mm, int value); 350 extern int get_dumpable(struct mm_struct *mm); 351 352 /* mm flags */ 353 /* dumpable bits */ 354 #define MMF_DUMPABLE 0 /* core dump is permitted */ 355 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 356 #define MMF_DUMPABLE_BITS 2 357 358 /* coredump filter bits */ 359 #define MMF_DUMP_ANON_PRIVATE 2 360 #define MMF_DUMP_ANON_SHARED 3 361 #define MMF_DUMP_MAPPED_PRIVATE 4 362 #define MMF_DUMP_MAPPED_SHARED 5 363 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 364 #define MMF_DUMP_FILTER_BITS 4 365 #define MMF_DUMP_FILTER_MASK \ 366 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 367 #define MMF_DUMP_FILTER_DEFAULT \ 368 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED)) 369 370 struct mm_struct { 371 struct vm_area_struct * mmap; /* list of VMAs */ 372 struct rb_root mm_rb; 373 struct vm_area_struct * mmap_cache; /* last find_vma result */ 374 unsigned long (*get_unmapped_area) (struct file *filp, 375 unsigned long addr, unsigned long len, 376 unsigned long pgoff, unsigned long flags); 377 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 378 unsigned long mmap_base; /* base of mmap area */ 379 unsigned long task_size; /* size of task vm space */ 380 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 381 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 382 pgd_t * pgd; 383 atomic_t mm_users; /* How many users with user space? */ 384 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 385 int map_count; /* number of VMAs */ 386 struct rw_semaphore mmap_sem; 387 spinlock_t page_table_lock; /* Protects page tables and some counters */ 388 389 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 390 * together off init_mm.mmlist, and are protected 391 * by mmlist_lock 392 */ 393 394 /* Special counters, in some configurations protected by the 395 * page_table_lock, in other configurations by being atomic. 396 */ 397 mm_counter_t _file_rss; 398 mm_counter_t _anon_rss; 399 400 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 401 unsigned long hiwater_vm; /* High-water virtual memory usage */ 402 403 unsigned long total_vm, locked_vm, shared_vm, exec_vm; 404 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; 405 unsigned long start_code, end_code, start_data, end_data; 406 unsigned long start_brk, brk, start_stack; 407 unsigned long arg_start, arg_end, env_start, env_end; 408 409 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 410 411 cpumask_t cpu_vm_mask; 412 413 /* Architecture-specific MM context */ 414 mm_context_t context; 415 416 /* Swap token stuff */ 417 /* 418 * Last value of global fault stamp as seen by this process. 419 * In other words, this value gives an indication of how long 420 * it has been since this task got the token. 421 * Look at mm/thrash.c 422 */ 423 unsigned int faultstamp; 424 unsigned int token_priority; 425 unsigned int last_interval; 426 427 unsigned long flags; /* Must use atomic bitops to access the bits */ 428 429 /* coredumping support */ 430 int core_waiters; 431 struct completion *core_startup_done, core_done; 432 433 /* aio bits */ 434 rwlock_t ioctx_list_lock; 435 struct kioctx *ioctx_list; 436 }; 437 438 struct sighand_struct { 439 atomic_t count; 440 struct k_sigaction action[_NSIG]; 441 spinlock_t siglock; 442 wait_queue_head_t signalfd_wqh; 443 }; 444 445 struct pacct_struct { 446 int ac_flag; 447 long ac_exitcode; 448 unsigned long ac_mem; 449 cputime_t ac_utime, ac_stime; 450 unsigned long ac_minflt, ac_majflt; 451 }; 452 453 /* 454 * NOTE! "signal_struct" does not have it's own 455 * locking, because a shared signal_struct always 456 * implies a shared sighand_struct, so locking 457 * sighand_struct is always a proper superset of 458 * the locking of signal_struct. 459 */ 460 struct signal_struct { 461 atomic_t count; 462 atomic_t live; 463 464 wait_queue_head_t wait_chldexit; /* for wait4() */ 465 466 /* current thread group signal load-balancing target: */ 467 struct task_struct *curr_target; 468 469 /* shared signal handling: */ 470 struct sigpending shared_pending; 471 472 /* thread group exit support */ 473 int group_exit_code; 474 /* overloaded: 475 * - notify group_exit_task when ->count is equal to notify_count 476 * - everyone except group_exit_task is stopped during signal delivery 477 * of fatal signals, group_exit_task processes the signal. 478 */ 479 struct task_struct *group_exit_task; 480 int notify_count; 481 482 /* thread group stop support, overloads group_exit_code too */ 483 int group_stop_count; 484 unsigned int flags; /* see SIGNAL_* flags below */ 485 486 /* POSIX.1b Interval Timers */ 487 struct list_head posix_timers; 488 489 /* ITIMER_REAL timer for the process */ 490 struct hrtimer real_timer; 491 struct task_struct *tsk; 492 ktime_t it_real_incr; 493 494 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 495 cputime_t it_prof_expires, it_virt_expires; 496 cputime_t it_prof_incr, it_virt_incr; 497 498 /* job control IDs */ 499 pid_t pgrp; 500 struct pid *tty_old_pgrp; 501 502 union { 503 pid_t session __deprecated; 504 pid_t __session; 505 }; 506 507 /* boolean value for session group leader */ 508 int leader; 509 510 struct tty_struct *tty; /* NULL if no tty */ 511 512 /* 513 * Cumulative resource counters for dead threads in the group, 514 * and for reaped dead child processes forked by this group. 515 * Live threads maintain their own counters and add to these 516 * in __exit_signal, except for the group leader. 517 */ 518 cputime_t utime, stime, cutime, cstime; 519 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 520 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 521 unsigned long inblock, oublock, cinblock, coublock; 522 523 /* 524 * Cumulative ns of scheduled CPU time for dead threads in the 525 * group, not including a zombie group leader. (This only differs 526 * from jiffies_to_ns(utime + stime) if sched_clock uses something 527 * other than jiffies.) 528 */ 529 unsigned long long sum_sched_runtime; 530 531 /* 532 * We don't bother to synchronize most readers of this at all, 533 * because there is no reader checking a limit that actually needs 534 * to get both rlim_cur and rlim_max atomically, and either one 535 * alone is a single word that can safely be read normally. 536 * getrlimit/setrlimit use task_lock(current->group_leader) to 537 * protect this instead of the siglock, because they really 538 * have no need to disable irqs. 539 */ 540 struct rlimit rlim[RLIM_NLIMITS]; 541 542 struct list_head cpu_timers[3]; 543 544 /* keep the process-shared keyrings here so that they do the right 545 * thing in threads created with CLONE_THREAD */ 546 #ifdef CONFIG_KEYS 547 struct key *session_keyring; /* keyring inherited over fork */ 548 struct key *process_keyring; /* keyring private to this process */ 549 #endif 550 #ifdef CONFIG_BSD_PROCESS_ACCT 551 struct pacct_struct pacct; /* per-process accounting information */ 552 #endif 553 #ifdef CONFIG_TASKSTATS 554 struct taskstats *stats; 555 #endif 556 #ifdef CONFIG_AUDIT 557 unsigned audit_tty; 558 struct tty_audit_buf *tty_audit_buf; 559 #endif 560 }; 561 562 /* Context switch must be unlocked if interrupts are to be enabled */ 563 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 564 # define __ARCH_WANT_UNLOCKED_CTXSW 565 #endif 566 567 /* 568 * Bits in flags field of signal_struct. 569 */ 570 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 571 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 572 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 573 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 574 575 /* 576 * Some day this will be a full-fledged user tracking system.. 577 */ 578 struct user_struct { 579 atomic_t __count; /* reference count */ 580 atomic_t processes; /* How many processes does this user have? */ 581 atomic_t files; /* How many open files does this user have? */ 582 atomic_t sigpending; /* How many pending signals does this user have? */ 583 #ifdef CONFIG_INOTIFY_USER 584 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 585 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 586 #endif 587 /* protected by mq_lock */ 588 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 589 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 590 591 #ifdef CONFIG_KEYS 592 struct key *uid_keyring; /* UID specific keyring */ 593 struct key *session_keyring; /* UID's default session keyring */ 594 #endif 595 596 /* Hash table maintenance information */ 597 struct hlist_node uidhash_node; 598 uid_t uid; 599 }; 600 601 extern struct user_struct *find_user(uid_t); 602 603 extern struct user_struct root_user; 604 #define INIT_USER (&root_user) 605 606 struct backing_dev_info; 607 struct reclaim_state; 608 609 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 610 struct sched_info { 611 /* cumulative counters */ 612 unsigned long pcnt; /* # of times run on this cpu */ 613 unsigned long long cpu_time, /* time spent on the cpu */ 614 run_delay; /* time spent waiting on a runqueue */ 615 616 /* timestamps */ 617 unsigned long long last_arrival,/* when we last ran on a cpu */ 618 last_queued; /* when we were last queued to run */ 619 }; 620 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 621 622 #ifdef CONFIG_SCHEDSTATS 623 extern const struct file_operations proc_schedstat_operations; 624 #endif /* CONFIG_SCHEDSTATS */ 625 626 #ifdef CONFIG_TASK_DELAY_ACCT 627 struct task_delay_info { 628 spinlock_t lock; 629 unsigned int flags; /* Private per-task flags */ 630 631 /* For each stat XXX, add following, aligned appropriately 632 * 633 * struct timespec XXX_start, XXX_end; 634 * u64 XXX_delay; 635 * u32 XXX_count; 636 * 637 * Atomicity of updates to XXX_delay, XXX_count protected by 638 * single lock above (split into XXX_lock if contention is an issue). 639 */ 640 641 /* 642 * XXX_count is incremented on every XXX operation, the delay 643 * associated with the operation is added to XXX_delay. 644 * XXX_delay contains the accumulated delay time in nanoseconds. 645 */ 646 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 647 u64 blkio_delay; /* wait for sync block io completion */ 648 u64 swapin_delay; /* wait for swapin block io completion */ 649 u32 blkio_count; /* total count of the number of sync block */ 650 /* io operations performed */ 651 u32 swapin_count; /* total count of the number of swapin block */ 652 /* io operations performed */ 653 }; 654 #endif /* CONFIG_TASK_DELAY_ACCT */ 655 656 static inline int sched_info_on(void) 657 { 658 #ifdef CONFIG_SCHEDSTATS 659 return 1; 660 #elif defined(CONFIG_TASK_DELAY_ACCT) 661 extern int delayacct_on; 662 return delayacct_on; 663 #else 664 return 0; 665 #endif 666 } 667 668 enum cpu_idle_type { 669 CPU_IDLE, 670 CPU_NOT_IDLE, 671 CPU_NEWLY_IDLE, 672 CPU_MAX_IDLE_TYPES 673 }; 674 675 /* 676 * sched-domains (multiprocessor balancing) declarations: 677 */ 678 679 /* 680 * Increase resolution of nice-level calculations: 681 */ 682 #define SCHED_LOAD_SHIFT 10 683 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 684 685 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 686 687 #ifdef CONFIG_SMP 688 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 689 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 690 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 691 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 692 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 693 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 694 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 695 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 696 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 697 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 698 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 699 700 #define BALANCE_FOR_MC_POWER \ 701 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 702 703 #define BALANCE_FOR_PKG_POWER \ 704 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 705 SD_POWERSAVINGS_BALANCE : 0) 706 707 #define test_sd_parent(sd, flag) ((sd->parent && \ 708 (sd->parent->flags & flag)) ? 1 : 0) 709 710 711 struct sched_group { 712 struct sched_group *next; /* Must be a circular list */ 713 cpumask_t cpumask; 714 715 /* 716 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 717 * single CPU. This is read only (except for setup, hotplug CPU). 718 * Note : Never change cpu_power without recompute its reciprocal 719 */ 720 unsigned int __cpu_power; 721 /* 722 * reciprocal value of cpu_power to avoid expensive divides 723 * (see include/linux/reciprocal_div.h) 724 */ 725 u32 reciprocal_cpu_power; 726 }; 727 728 struct sched_domain { 729 /* These fields must be setup */ 730 struct sched_domain *parent; /* top domain must be null terminated */ 731 struct sched_domain *child; /* bottom domain must be null terminated */ 732 struct sched_group *groups; /* the balancing groups of the domain */ 733 cpumask_t span; /* span of all CPUs in this domain */ 734 unsigned long min_interval; /* Minimum balance interval ms */ 735 unsigned long max_interval; /* Maximum balance interval ms */ 736 unsigned int busy_factor; /* less balancing by factor if busy */ 737 unsigned int imbalance_pct; /* No balance until over watermark */ 738 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 739 unsigned int busy_idx; 740 unsigned int idle_idx; 741 unsigned int newidle_idx; 742 unsigned int wake_idx; 743 unsigned int forkexec_idx; 744 int flags; /* See SD_* */ 745 746 /* Runtime fields. */ 747 unsigned long last_balance; /* init to jiffies. units in jiffies */ 748 unsigned int balance_interval; /* initialise to 1. units in ms. */ 749 unsigned int nr_balance_failed; /* initialise to 0 */ 750 751 #ifdef CONFIG_SCHEDSTATS 752 /* load_balance() stats */ 753 unsigned long lb_cnt[CPU_MAX_IDLE_TYPES]; 754 unsigned long lb_failed[CPU_MAX_IDLE_TYPES]; 755 unsigned long lb_balanced[CPU_MAX_IDLE_TYPES]; 756 unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES]; 757 unsigned long lb_gained[CPU_MAX_IDLE_TYPES]; 758 unsigned long lb_hot_gained[CPU_MAX_IDLE_TYPES]; 759 unsigned long lb_nobusyg[CPU_MAX_IDLE_TYPES]; 760 unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES]; 761 762 /* Active load balancing */ 763 unsigned long alb_cnt; 764 unsigned long alb_failed; 765 unsigned long alb_pushed; 766 767 /* SD_BALANCE_EXEC stats */ 768 unsigned long sbe_cnt; 769 unsigned long sbe_balanced; 770 unsigned long sbe_pushed; 771 772 /* SD_BALANCE_FORK stats */ 773 unsigned long sbf_cnt; 774 unsigned long sbf_balanced; 775 unsigned long sbf_pushed; 776 777 /* try_to_wake_up() stats */ 778 unsigned long ttwu_wake_remote; 779 unsigned long ttwu_move_affine; 780 unsigned long ttwu_move_balance; 781 #endif 782 }; 783 784 extern int partition_sched_domains(cpumask_t *partition1, 785 cpumask_t *partition2); 786 787 #endif /* CONFIG_SMP */ 788 789 /* 790 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of 791 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a 792 * task of nice 0 or enough lower priority tasks to bring up the 793 * weighted_cpuload 794 */ 795 static inline int above_background_load(void) 796 { 797 unsigned long cpu; 798 799 for_each_online_cpu(cpu) { 800 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE) 801 return 1; 802 } 803 return 0; 804 } 805 806 struct io_context; /* See blkdev.h */ 807 struct cpuset; 808 809 #define NGROUPS_SMALL 32 810 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 811 struct group_info { 812 int ngroups; 813 atomic_t usage; 814 gid_t small_block[NGROUPS_SMALL]; 815 int nblocks; 816 gid_t *blocks[0]; 817 }; 818 819 /* 820 * get_group_info() must be called with the owning task locked (via task_lock()) 821 * when task != current. The reason being that the vast majority of callers are 822 * looking at current->group_info, which can not be changed except by the 823 * current task. Changing current->group_info requires the task lock, too. 824 */ 825 #define get_group_info(group_info) do { \ 826 atomic_inc(&(group_info)->usage); \ 827 } while (0) 828 829 #define put_group_info(group_info) do { \ 830 if (atomic_dec_and_test(&(group_info)->usage)) \ 831 groups_free(group_info); \ 832 } while (0) 833 834 extern struct group_info *groups_alloc(int gidsetsize); 835 extern void groups_free(struct group_info *group_info); 836 extern int set_current_groups(struct group_info *group_info); 837 extern int groups_search(struct group_info *group_info, gid_t grp); 838 /* access the groups "array" with this macro */ 839 #define GROUP_AT(gi, i) \ 840 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 841 842 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 843 extern void prefetch_stack(struct task_struct *t); 844 #else 845 static inline void prefetch_stack(struct task_struct *t) { } 846 #endif 847 848 struct audit_context; /* See audit.c */ 849 struct mempolicy; 850 struct pipe_inode_info; 851 struct uts_namespace; 852 853 struct rq; 854 struct sched_domain; 855 856 struct sched_class { 857 struct sched_class *next; 858 859 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 860 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 861 void (*yield_task) (struct rq *rq, struct task_struct *p); 862 863 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p); 864 865 struct task_struct * (*pick_next_task) (struct rq *rq); 866 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 867 868 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 869 struct rq *busiest, 870 unsigned long max_nr_move, unsigned long max_load_move, 871 struct sched_domain *sd, enum cpu_idle_type idle, 872 int *all_pinned, int *this_best_prio); 873 874 void (*set_curr_task) (struct rq *rq); 875 void (*task_tick) (struct rq *rq, struct task_struct *p); 876 void (*task_new) (struct rq *rq, struct task_struct *p); 877 }; 878 879 struct load_weight { 880 unsigned long weight, inv_weight; 881 }; 882 883 /* 884 * CFS stats for a schedulable entity (task, task-group etc) 885 * 886 * Current field usage histogram: 887 * 888 * 4 se->block_start 889 * 4 se->run_node 890 * 4 se->sleep_start 891 * 4 se->sleep_start_fair 892 * 6 se->load.weight 893 * 7 se->delta_fair 894 * 15 se->wait_runtime 895 */ 896 struct sched_entity { 897 long wait_runtime; 898 unsigned long delta_fair_run; 899 unsigned long delta_fair_sleep; 900 unsigned long delta_exec; 901 s64 fair_key; 902 struct load_weight load; /* for load-balancing */ 903 struct rb_node run_node; 904 unsigned int on_rq; 905 906 u64 exec_start; 907 u64 sum_exec_runtime; 908 u64 prev_sum_exec_runtime; 909 u64 wait_start_fair; 910 u64 sleep_start_fair; 911 912 #ifdef CONFIG_SCHEDSTATS 913 u64 wait_start; 914 u64 wait_max; 915 s64 sum_wait_runtime; 916 917 u64 sleep_start; 918 u64 sleep_max; 919 s64 sum_sleep_runtime; 920 921 u64 block_start; 922 u64 block_max; 923 u64 exec_max; 924 925 unsigned long wait_runtime_overruns; 926 unsigned long wait_runtime_underruns; 927 #endif 928 929 #ifdef CONFIG_FAIR_GROUP_SCHED 930 struct sched_entity *parent; 931 /* rq on which this entity is (to be) queued: */ 932 struct cfs_rq *cfs_rq; 933 /* rq "owned" by this entity/group: */ 934 struct cfs_rq *my_q; 935 #endif 936 }; 937 938 struct task_struct { 939 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 940 void *stack; 941 atomic_t usage; 942 unsigned int flags; /* per process flags, defined below */ 943 unsigned int ptrace; 944 945 int lock_depth; /* BKL lock depth */ 946 947 #ifdef CONFIG_SMP 948 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 949 int oncpu; 950 #endif 951 #endif 952 953 int prio, static_prio, normal_prio; 954 struct list_head run_list; 955 struct sched_class *sched_class; 956 struct sched_entity se; 957 958 #ifdef CONFIG_PREEMPT_NOTIFIERS 959 /* list of struct preempt_notifier: */ 960 struct hlist_head preempt_notifiers; 961 #endif 962 963 unsigned short ioprio; 964 #ifdef CONFIG_BLK_DEV_IO_TRACE 965 unsigned int btrace_seq; 966 #endif 967 968 unsigned int policy; 969 cpumask_t cpus_allowed; 970 unsigned int time_slice; 971 972 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 973 struct sched_info sched_info; 974 #endif 975 976 struct list_head tasks; 977 /* 978 * ptrace_list/ptrace_children forms the list of my children 979 * that were stolen by a ptracer. 980 */ 981 struct list_head ptrace_children; 982 struct list_head ptrace_list; 983 984 struct mm_struct *mm, *active_mm; 985 986 /* task state */ 987 struct linux_binfmt *binfmt; 988 int exit_state; 989 int exit_code, exit_signal; 990 int pdeath_signal; /* The signal sent when the parent dies */ 991 /* ??? */ 992 unsigned int personality; 993 unsigned did_exec:1; 994 pid_t pid; 995 pid_t tgid; 996 997 #ifdef CONFIG_CC_STACKPROTECTOR 998 /* Canary value for the -fstack-protector gcc feature */ 999 unsigned long stack_canary; 1000 #endif 1001 /* 1002 * pointers to (original) parent process, youngest child, younger sibling, 1003 * older sibling, respectively. (p->father can be replaced with 1004 * p->parent->pid) 1005 */ 1006 struct task_struct *real_parent; /* real parent process (when being debugged) */ 1007 struct task_struct *parent; /* parent process */ 1008 /* 1009 * children/sibling forms the list of my children plus the 1010 * tasks I'm ptracing. 1011 */ 1012 struct list_head children; /* list of my children */ 1013 struct list_head sibling; /* linkage in my parent's children list */ 1014 struct task_struct *group_leader; /* threadgroup leader */ 1015 1016 /* PID/PID hash table linkage. */ 1017 struct pid_link pids[PIDTYPE_MAX]; 1018 struct list_head thread_group; 1019 1020 struct completion *vfork_done; /* for vfork() */ 1021 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1022 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1023 1024 unsigned int rt_priority; 1025 cputime_t utime, stime; 1026 unsigned long nvcsw, nivcsw; /* context switch counts */ 1027 struct timespec start_time; /* monotonic time */ 1028 struct timespec real_start_time; /* boot based time */ 1029 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1030 unsigned long min_flt, maj_flt; 1031 1032 cputime_t it_prof_expires, it_virt_expires; 1033 unsigned long long it_sched_expires; 1034 struct list_head cpu_timers[3]; 1035 1036 /* process credentials */ 1037 uid_t uid,euid,suid,fsuid; 1038 gid_t gid,egid,sgid,fsgid; 1039 struct group_info *group_info; 1040 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 1041 unsigned keep_capabilities:1; 1042 struct user_struct *user; 1043 #ifdef CONFIG_KEYS 1044 struct key *request_key_auth; /* assumed request_key authority */ 1045 struct key *thread_keyring; /* keyring private to this thread */ 1046 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 1047 #endif 1048 /* 1049 * fpu_counter contains the number of consecutive context switches 1050 * that the FPU is used. If this is over a threshold, the lazy fpu 1051 * saving becomes unlazy to save the trap. This is an unsigned char 1052 * so that after 256 times the counter wraps and the behavior turns 1053 * lazy again; this to deal with bursty apps that only use FPU for 1054 * a short time 1055 */ 1056 unsigned char fpu_counter; 1057 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 1058 char comm[TASK_COMM_LEN]; /* executable name excluding path 1059 - access with [gs]et_task_comm (which lock 1060 it with task_lock()) 1061 - initialized normally by flush_old_exec */ 1062 /* file system info */ 1063 int link_count, total_link_count; 1064 #ifdef CONFIG_SYSVIPC 1065 /* ipc stuff */ 1066 struct sysv_sem sysvsem; 1067 #endif 1068 /* CPU-specific state of this task */ 1069 struct thread_struct thread; 1070 /* filesystem information */ 1071 struct fs_struct *fs; 1072 /* open file information */ 1073 struct files_struct *files; 1074 /* namespaces */ 1075 struct nsproxy *nsproxy; 1076 /* signal handlers */ 1077 struct signal_struct *signal; 1078 struct sighand_struct *sighand; 1079 1080 sigset_t blocked, real_blocked; 1081 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 1082 struct sigpending pending; 1083 1084 unsigned long sas_ss_sp; 1085 size_t sas_ss_size; 1086 int (*notifier)(void *priv); 1087 void *notifier_data; 1088 sigset_t *notifier_mask; 1089 1090 void *security; 1091 struct audit_context *audit_context; 1092 seccomp_t seccomp; 1093 1094 /* Thread group tracking */ 1095 u32 parent_exec_id; 1096 u32 self_exec_id; 1097 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1098 spinlock_t alloc_lock; 1099 1100 /* Protection of the PI data structures: */ 1101 spinlock_t pi_lock; 1102 1103 #ifdef CONFIG_RT_MUTEXES 1104 /* PI waiters blocked on a rt_mutex held by this task */ 1105 struct plist_head pi_waiters; 1106 /* Deadlock detection and priority inheritance handling */ 1107 struct rt_mutex_waiter *pi_blocked_on; 1108 #endif 1109 1110 #ifdef CONFIG_DEBUG_MUTEXES 1111 /* mutex deadlock detection */ 1112 struct mutex_waiter *blocked_on; 1113 #endif 1114 #ifdef CONFIG_TRACE_IRQFLAGS 1115 unsigned int irq_events; 1116 int hardirqs_enabled; 1117 unsigned long hardirq_enable_ip; 1118 unsigned int hardirq_enable_event; 1119 unsigned long hardirq_disable_ip; 1120 unsigned int hardirq_disable_event; 1121 int softirqs_enabled; 1122 unsigned long softirq_disable_ip; 1123 unsigned int softirq_disable_event; 1124 unsigned long softirq_enable_ip; 1125 unsigned int softirq_enable_event; 1126 int hardirq_context; 1127 int softirq_context; 1128 #endif 1129 #ifdef CONFIG_LOCKDEP 1130 # define MAX_LOCK_DEPTH 30UL 1131 u64 curr_chain_key; 1132 int lockdep_depth; 1133 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1134 unsigned int lockdep_recursion; 1135 #endif 1136 1137 /* journalling filesystem info */ 1138 void *journal_info; 1139 1140 /* stacked block device info */ 1141 struct bio *bio_list, **bio_tail; 1142 1143 /* VM state */ 1144 struct reclaim_state *reclaim_state; 1145 1146 struct backing_dev_info *backing_dev_info; 1147 1148 struct io_context *io_context; 1149 1150 unsigned long ptrace_message; 1151 siginfo_t *last_siginfo; /* For ptrace use. */ 1152 /* 1153 * current io wait handle: wait queue entry to use for io waits 1154 * If this thread is processing aio, this points at the waitqueue 1155 * inside the currently handled kiocb. It may be NULL (i.e. default 1156 * to a stack based synchronous wait) if its doing sync IO. 1157 */ 1158 wait_queue_t *io_wait; 1159 #ifdef CONFIG_TASK_XACCT 1160 /* i/o counters(bytes read/written, #syscalls */ 1161 u64 rchar, wchar, syscr, syscw; 1162 #endif 1163 struct task_io_accounting ioac; 1164 #if defined(CONFIG_TASK_XACCT) 1165 u64 acct_rss_mem1; /* accumulated rss usage */ 1166 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1167 cputime_t acct_stimexpd;/* stime since last update */ 1168 #endif 1169 #ifdef CONFIG_NUMA 1170 struct mempolicy *mempolicy; 1171 short il_next; 1172 #endif 1173 #ifdef CONFIG_CPUSETS 1174 struct cpuset *cpuset; 1175 nodemask_t mems_allowed; 1176 int cpuset_mems_generation; 1177 int cpuset_mem_spread_rotor; 1178 #endif 1179 struct robust_list_head __user *robust_list; 1180 #ifdef CONFIG_COMPAT 1181 struct compat_robust_list_head __user *compat_robust_list; 1182 #endif 1183 struct list_head pi_state_list; 1184 struct futex_pi_state *pi_state_cache; 1185 1186 atomic_t fs_excl; /* holding fs exclusive resources */ 1187 struct rcu_head rcu; 1188 1189 /* 1190 * cache last used pipe for splice 1191 */ 1192 struct pipe_inode_info *splice_pipe; 1193 #ifdef CONFIG_TASK_DELAY_ACCT 1194 struct task_delay_info *delays; 1195 #endif 1196 #ifdef CONFIG_FAULT_INJECTION 1197 int make_it_fail; 1198 #endif 1199 }; 1200 1201 /* 1202 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1203 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1204 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1205 * values are inverted: lower p->prio value means higher priority. 1206 * 1207 * The MAX_USER_RT_PRIO value allows the actual maximum 1208 * RT priority to be separate from the value exported to 1209 * user-space. This allows kernel threads to set their 1210 * priority to a value higher than any user task. Note: 1211 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1212 */ 1213 1214 #define MAX_USER_RT_PRIO 100 1215 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1216 1217 #define MAX_PRIO (MAX_RT_PRIO + 40) 1218 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1219 1220 static inline int rt_prio(int prio) 1221 { 1222 if (unlikely(prio < MAX_RT_PRIO)) 1223 return 1; 1224 return 0; 1225 } 1226 1227 static inline int rt_task(struct task_struct *p) 1228 { 1229 return rt_prio(p->prio); 1230 } 1231 1232 static inline pid_t process_group(struct task_struct *tsk) 1233 { 1234 return tsk->signal->pgrp; 1235 } 1236 1237 static inline pid_t signal_session(struct signal_struct *sig) 1238 { 1239 return sig->__session; 1240 } 1241 1242 static inline pid_t process_session(struct task_struct *tsk) 1243 { 1244 return signal_session(tsk->signal); 1245 } 1246 1247 static inline void set_signal_session(struct signal_struct *sig, pid_t session) 1248 { 1249 sig->__session = session; 1250 } 1251 1252 static inline struct pid *task_pid(struct task_struct *task) 1253 { 1254 return task->pids[PIDTYPE_PID].pid; 1255 } 1256 1257 static inline struct pid *task_tgid(struct task_struct *task) 1258 { 1259 return task->group_leader->pids[PIDTYPE_PID].pid; 1260 } 1261 1262 static inline struct pid *task_pgrp(struct task_struct *task) 1263 { 1264 return task->group_leader->pids[PIDTYPE_PGID].pid; 1265 } 1266 1267 static inline struct pid *task_session(struct task_struct *task) 1268 { 1269 return task->group_leader->pids[PIDTYPE_SID].pid; 1270 } 1271 1272 /** 1273 * pid_alive - check that a task structure is not stale 1274 * @p: Task structure to be checked. 1275 * 1276 * Test if a process is not yet dead (at most zombie state) 1277 * If pid_alive fails, then pointers within the task structure 1278 * can be stale and must not be dereferenced. 1279 */ 1280 static inline int pid_alive(struct task_struct *p) 1281 { 1282 return p->pids[PIDTYPE_PID].pid != NULL; 1283 } 1284 1285 /** 1286 * is_init - check if a task structure is init 1287 * @tsk: Task structure to be checked. 1288 * 1289 * Check if a task structure is the first user space task the kernel created. 1290 */ 1291 static inline int is_init(struct task_struct *tsk) 1292 { 1293 return tsk->pid == 1; 1294 } 1295 1296 extern struct pid *cad_pid; 1297 1298 extern void free_task(struct task_struct *tsk); 1299 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1300 1301 extern void __put_task_struct(struct task_struct *t); 1302 1303 static inline void put_task_struct(struct task_struct *t) 1304 { 1305 if (atomic_dec_and_test(&t->usage)) 1306 __put_task_struct(t); 1307 } 1308 1309 /* 1310 * Per process flags 1311 */ 1312 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1313 /* Not implemented yet, only for 486*/ 1314 #define PF_STARTING 0x00000002 /* being created */ 1315 #define PF_EXITING 0x00000004 /* getting shut down */ 1316 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1317 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1318 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1319 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1320 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1321 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1322 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1323 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1324 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1325 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1326 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1327 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1328 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1329 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1330 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 1331 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1332 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1333 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1334 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1335 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1336 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1337 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1338 1339 /* 1340 * Only the _current_ task can read/write to tsk->flags, but other 1341 * tasks can access tsk->flags in readonly mode for example 1342 * with tsk_used_math (like during threaded core dumping). 1343 * There is however an exception to this rule during ptrace 1344 * or during fork: the ptracer task is allowed to write to the 1345 * child->flags of its traced child (same goes for fork, the parent 1346 * can write to the child->flags), because we're guaranteed the 1347 * child is not running and in turn not changing child->flags 1348 * at the same time the parent does it. 1349 */ 1350 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1351 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1352 #define clear_used_math() clear_stopped_child_used_math(current) 1353 #define set_used_math() set_stopped_child_used_math(current) 1354 #define conditional_stopped_child_used_math(condition, child) \ 1355 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1356 #define conditional_used_math(condition) \ 1357 conditional_stopped_child_used_math(condition, current) 1358 #define copy_to_stopped_child_used_math(child) \ 1359 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1360 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1361 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1362 #define used_math() tsk_used_math(current) 1363 1364 #ifdef CONFIG_SMP 1365 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask); 1366 #else 1367 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1368 { 1369 if (!cpu_isset(0, new_mask)) 1370 return -EINVAL; 1371 return 0; 1372 } 1373 #endif 1374 1375 extern unsigned long long sched_clock(void); 1376 1377 /* 1378 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1379 * clock constructed from sched_clock(): 1380 */ 1381 extern unsigned long long cpu_clock(int cpu); 1382 1383 extern unsigned long long 1384 task_sched_runtime(struct task_struct *task); 1385 1386 /* sched_exec is called by processes performing an exec */ 1387 #ifdef CONFIG_SMP 1388 extern void sched_exec(void); 1389 #else 1390 #define sched_exec() {} 1391 #endif 1392 1393 extern void sched_clock_idle_sleep_event(void); 1394 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1395 1396 #ifdef CONFIG_HOTPLUG_CPU 1397 extern void idle_task_exit(void); 1398 #else 1399 static inline void idle_task_exit(void) {} 1400 #endif 1401 1402 extern void sched_idle_next(void); 1403 1404 extern unsigned int sysctl_sched_latency; 1405 extern unsigned int sysctl_sched_min_granularity; 1406 extern unsigned int sysctl_sched_wakeup_granularity; 1407 extern unsigned int sysctl_sched_batch_wakeup_granularity; 1408 extern unsigned int sysctl_sched_stat_granularity; 1409 extern unsigned int sysctl_sched_runtime_limit; 1410 extern unsigned int sysctl_sched_compat_yield; 1411 extern unsigned int sysctl_sched_child_runs_first; 1412 extern unsigned int sysctl_sched_features; 1413 1414 #ifdef CONFIG_RT_MUTEXES 1415 extern int rt_mutex_getprio(struct task_struct *p); 1416 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1417 extern void rt_mutex_adjust_pi(struct task_struct *p); 1418 #else 1419 static inline int rt_mutex_getprio(struct task_struct *p) 1420 { 1421 return p->normal_prio; 1422 } 1423 # define rt_mutex_adjust_pi(p) do { } while (0) 1424 #endif 1425 1426 extern void set_user_nice(struct task_struct *p, long nice); 1427 extern int task_prio(const struct task_struct *p); 1428 extern int task_nice(const struct task_struct *p); 1429 extern int can_nice(const struct task_struct *p, const int nice); 1430 extern int task_curr(const struct task_struct *p); 1431 extern int idle_cpu(int cpu); 1432 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1433 extern struct task_struct *idle_task(int cpu); 1434 extern struct task_struct *curr_task(int cpu); 1435 extern void set_curr_task(int cpu, struct task_struct *p); 1436 1437 void yield(void); 1438 1439 /* 1440 * The default (Linux) execution domain. 1441 */ 1442 extern struct exec_domain default_exec_domain; 1443 1444 union thread_union { 1445 struct thread_info thread_info; 1446 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1447 }; 1448 1449 #ifndef __HAVE_ARCH_KSTACK_END 1450 static inline int kstack_end(void *addr) 1451 { 1452 /* Reliable end of stack detection: 1453 * Some APM bios versions misalign the stack 1454 */ 1455 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1456 } 1457 #endif 1458 1459 extern union thread_union init_thread_union; 1460 extern struct task_struct init_task; 1461 1462 extern struct mm_struct init_mm; 1463 1464 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 1465 extern struct task_struct *find_task_by_pid_type(int type, int pid); 1466 extern void __set_special_pids(pid_t session, pid_t pgrp); 1467 1468 /* per-UID process charging. */ 1469 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1470 static inline struct user_struct *get_uid(struct user_struct *u) 1471 { 1472 atomic_inc(&u->__count); 1473 return u; 1474 } 1475 extern void free_uid(struct user_struct *); 1476 extern void switch_uid(struct user_struct *); 1477 extern void release_uids(struct user_namespace *ns); 1478 1479 #include <asm/current.h> 1480 1481 extern void do_timer(unsigned long ticks); 1482 1483 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 1484 extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 1485 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 1486 unsigned long clone_flags)); 1487 #ifdef CONFIG_SMP 1488 extern void kick_process(struct task_struct *tsk); 1489 #else 1490 static inline void kick_process(struct task_struct *tsk) { } 1491 #endif 1492 extern void sched_fork(struct task_struct *p, int clone_flags); 1493 extern void sched_dead(struct task_struct *p); 1494 1495 extern int in_group_p(gid_t); 1496 extern int in_egroup_p(gid_t); 1497 1498 extern void proc_caches_init(void); 1499 extern void flush_signals(struct task_struct *); 1500 extern void ignore_signals(struct task_struct *); 1501 extern void flush_signal_handlers(struct task_struct *, int force_default); 1502 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1503 1504 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1505 { 1506 unsigned long flags; 1507 int ret; 1508 1509 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1510 ret = dequeue_signal(tsk, mask, info); 1511 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1512 1513 return ret; 1514 } 1515 1516 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1517 sigset_t *mask); 1518 extern void unblock_all_signals(void); 1519 extern void release_task(struct task_struct * p); 1520 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1521 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1522 extern int force_sigsegv(int, struct task_struct *); 1523 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1524 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1525 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1526 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1527 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1528 extern int kill_pgrp(struct pid *pid, int sig, int priv); 1529 extern int kill_pid(struct pid *pid, int sig, int priv); 1530 extern int kill_proc_info(int, struct siginfo *, pid_t); 1531 extern void do_notify_parent(struct task_struct *, int); 1532 extern void force_sig(int, struct task_struct *); 1533 extern void force_sig_specific(int, struct task_struct *); 1534 extern int send_sig(int, struct task_struct *, int); 1535 extern void zap_other_threads(struct task_struct *p); 1536 extern int kill_proc(pid_t, int, int); 1537 extern struct sigqueue *sigqueue_alloc(void); 1538 extern void sigqueue_free(struct sigqueue *); 1539 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1540 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1541 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1542 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1543 1544 static inline int kill_cad_pid(int sig, int priv) 1545 { 1546 return kill_pid(cad_pid, sig, priv); 1547 } 1548 1549 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1550 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1551 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1552 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1553 1554 static inline int is_si_special(const struct siginfo *info) 1555 { 1556 return info <= SEND_SIG_FORCED; 1557 } 1558 1559 /* True if we are on the alternate signal stack. */ 1560 1561 static inline int on_sig_stack(unsigned long sp) 1562 { 1563 return (sp - current->sas_ss_sp < current->sas_ss_size); 1564 } 1565 1566 static inline int sas_ss_flags(unsigned long sp) 1567 { 1568 return (current->sas_ss_size == 0 ? SS_DISABLE 1569 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1570 } 1571 1572 /* 1573 * Routines for handling mm_structs 1574 */ 1575 extern struct mm_struct * mm_alloc(void); 1576 1577 /* mmdrop drops the mm and the page tables */ 1578 extern void FASTCALL(__mmdrop(struct mm_struct *)); 1579 static inline void mmdrop(struct mm_struct * mm) 1580 { 1581 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1582 __mmdrop(mm); 1583 } 1584 1585 /* mmput gets rid of the mappings and all user-space */ 1586 extern void mmput(struct mm_struct *); 1587 /* Grab a reference to a task's mm, if it is not already going away */ 1588 extern struct mm_struct *get_task_mm(struct task_struct *task); 1589 /* Remove the current tasks stale references to the old mm_struct */ 1590 extern void mm_release(struct task_struct *, struct mm_struct *); 1591 1592 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1593 extern void flush_thread(void); 1594 extern void exit_thread(void); 1595 1596 extern void exit_files(struct task_struct *); 1597 extern void __cleanup_signal(struct signal_struct *); 1598 extern void __cleanup_sighand(struct sighand_struct *); 1599 extern void exit_itimers(struct signal_struct *); 1600 1601 extern NORET_TYPE void do_group_exit(int); 1602 1603 extern void daemonize(const char *, ...); 1604 extern int allow_signal(int); 1605 extern int disallow_signal(int); 1606 1607 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1608 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1609 struct task_struct *fork_idle(int); 1610 1611 extern void set_task_comm(struct task_struct *tsk, char *from); 1612 extern void get_task_comm(char *to, struct task_struct *tsk); 1613 1614 #ifdef CONFIG_SMP 1615 extern void wait_task_inactive(struct task_struct * p); 1616 #else 1617 #define wait_task_inactive(p) do { } while (0) 1618 #endif 1619 1620 #define remove_parent(p) list_del_init(&(p)->sibling) 1621 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1622 1623 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1624 1625 #define for_each_process(p) \ 1626 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1627 1628 /* 1629 * Careful: do_each_thread/while_each_thread is a double loop so 1630 * 'break' will not work as expected - use goto instead. 1631 */ 1632 #define do_each_thread(g, t) \ 1633 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1634 1635 #define while_each_thread(g, t) \ 1636 while ((t = next_thread(t)) != g) 1637 1638 /* de_thread depends on thread_group_leader not being a pid based check */ 1639 #define thread_group_leader(p) (p == p->group_leader) 1640 1641 /* Do to the insanities of de_thread it is possible for a process 1642 * to have the pid of the thread group leader without actually being 1643 * the thread group leader. For iteration through the pids in proc 1644 * all we care about is that we have a task with the appropriate 1645 * pid, we don't actually care if we have the right task. 1646 */ 1647 static inline int has_group_leader_pid(struct task_struct *p) 1648 { 1649 return p->pid == p->tgid; 1650 } 1651 1652 static inline struct task_struct *next_thread(const struct task_struct *p) 1653 { 1654 return list_entry(rcu_dereference(p->thread_group.next), 1655 struct task_struct, thread_group); 1656 } 1657 1658 static inline int thread_group_empty(struct task_struct *p) 1659 { 1660 return list_empty(&p->thread_group); 1661 } 1662 1663 #define delay_group_leader(p) \ 1664 (thread_group_leader(p) && !thread_group_empty(p)) 1665 1666 /* 1667 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1668 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1669 * pins the final release of task.io_context. Also protects ->cpuset. 1670 * 1671 * Nests both inside and outside of read_lock(&tasklist_lock). 1672 * It must not be nested with write_lock_irq(&tasklist_lock), 1673 * neither inside nor outside. 1674 */ 1675 static inline void task_lock(struct task_struct *p) 1676 { 1677 spin_lock(&p->alloc_lock); 1678 } 1679 1680 static inline void task_unlock(struct task_struct *p) 1681 { 1682 spin_unlock(&p->alloc_lock); 1683 } 1684 1685 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1686 unsigned long *flags); 1687 1688 static inline void unlock_task_sighand(struct task_struct *tsk, 1689 unsigned long *flags) 1690 { 1691 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1692 } 1693 1694 #ifndef __HAVE_THREAD_FUNCTIONS 1695 1696 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 1697 #define task_stack_page(task) ((task)->stack) 1698 1699 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1700 { 1701 *task_thread_info(p) = *task_thread_info(org); 1702 task_thread_info(p)->task = p; 1703 } 1704 1705 static inline unsigned long *end_of_stack(struct task_struct *p) 1706 { 1707 return (unsigned long *)(task_thread_info(p) + 1); 1708 } 1709 1710 #endif 1711 1712 /* set thread flags in other task's structures 1713 * - see asm/thread_info.h for TIF_xxxx flags available 1714 */ 1715 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1716 { 1717 set_ti_thread_flag(task_thread_info(tsk), flag); 1718 } 1719 1720 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1721 { 1722 clear_ti_thread_flag(task_thread_info(tsk), flag); 1723 } 1724 1725 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1726 { 1727 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1728 } 1729 1730 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1731 { 1732 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1733 } 1734 1735 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1736 { 1737 return test_ti_thread_flag(task_thread_info(tsk), flag); 1738 } 1739 1740 static inline void set_tsk_need_resched(struct task_struct *tsk) 1741 { 1742 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1743 } 1744 1745 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1746 { 1747 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1748 } 1749 1750 static inline int signal_pending(struct task_struct *p) 1751 { 1752 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1753 } 1754 1755 static inline int need_resched(void) 1756 { 1757 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1758 } 1759 1760 /* 1761 * cond_resched() and cond_resched_lock(): latency reduction via 1762 * explicit rescheduling in places that are safe. The return 1763 * value indicates whether a reschedule was done in fact. 1764 * cond_resched_lock() will drop the spinlock before scheduling, 1765 * cond_resched_softirq() will enable bhs before scheduling. 1766 */ 1767 extern int cond_resched(void); 1768 extern int cond_resched_lock(spinlock_t * lock); 1769 extern int cond_resched_softirq(void); 1770 1771 /* 1772 * Does a critical section need to be broken due to another 1773 * task waiting?: 1774 */ 1775 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1776 # define need_lockbreak(lock) ((lock)->break_lock) 1777 #else 1778 # define need_lockbreak(lock) 0 1779 #endif 1780 1781 /* 1782 * Does a critical section need to be broken due to another 1783 * task waiting or preemption being signalled: 1784 */ 1785 static inline int lock_need_resched(spinlock_t *lock) 1786 { 1787 if (need_lockbreak(lock) || need_resched()) 1788 return 1; 1789 return 0; 1790 } 1791 1792 /* 1793 * Reevaluate whether the task has signals pending delivery. 1794 * Wake the task if so. 1795 * This is required every time the blocked sigset_t changes. 1796 * callers must hold sighand->siglock. 1797 */ 1798 extern void recalc_sigpending_and_wake(struct task_struct *t); 1799 extern void recalc_sigpending(void); 1800 1801 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1802 1803 /* 1804 * Wrappers for p->thread_info->cpu access. No-op on UP. 1805 */ 1806 #ifdef CONFIG_SMP 1807 1808 static inline unsigned int task_cpu(const struct task_struct *p) 1809 { 1810 return task_thread_info(p)->cpu; 1811 } 1812 1813 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1814 1815 #else 1816 1817 static inline unsigned int task_cpu(const struct task_struct *p) 1818 { 1819 return 0; 1820 } 1821 1822 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1823 { 1824 } 1825 1826 #endif /* CONFIG_SMP */ 1827 1828 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1829 extern void arch_pick_mmap_layout(struct mm_struct *mm); 1830 #else 1831 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1832 { 1833 mm->mmap_base = TASK_UNMAPPED_BASE; 1834 mm->get_unmapped_area = arch_get_unmapped_area; 1835 mm->unmap_area = arch_unmap_area; 1836 } 1837 #endif 1838 1839 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1840 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1841 1842 extern int sched_mc_power_savings, sched_smt_power_savings; 1843 1844 extern void normalize_rt_tasks(void); 1845 1846 #ifdef CONFIG_TASK_XACCT 1847 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 1848 { 1849 tsk->rchar += amt; 1850 } 1851 1852 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 1853 { 1854 tsk->wchar += amt; 1855 } 1856 1857 static inline void inc_syscr(struct task_struct *tsk) 1858 { 1859 tsk->syscr++; 1860 } 1861 1862 static inline void inc_syscw(struct task_struct *tsk) 1863 { 1864 tsk->syscw++; 1865 } 1866 #else 1867 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 1868 { 1869 } 1870 1871 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 1872 { 1873 } 1874 1875 static inline void inc_syscr(struct task_struct *tsk) 1876 { 1877 } 1878 1879 static inline void inc_syscw(struct task_struct *tsk) 1880 { 1881 } 1882 #endif 1883 1884 #endif /* __KERNEL__ */ 1885 1886 #endif 1887