xref: /linux/include/linux/compiler.h (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 #ifndef __LINUX_COMPILER_H
2 #define __LINUX_COMPILER_H
3 
4 #ifndef __ASSEMBLY__
5 
6 #ifdef __CHECKER__
7 # define __user		__attribute__((noderef, address_space(1)))
8 # define __kernel	__attribute__((address_space(0)))
9 # define __safe		__attribute__((safe))
10 # define __force	__attribute__((force))
11 # define __nocast	__attribute__((nocast))
12 # define __iomem	__attribute__((noderef, address_space(2)))
13 # define __must_hold(x)	__attribute__((context(x,1,1)))
14 # define __acquires(x)	__attribute__((context(x,0,1)))
15 # define __releases(x)	__attribute__((context(x,1,0)))
16 # define __acquire(x)	__context__(x,1)
17 # define __release(x)	__context__(x,-1)
18 # define __cond_lock(x,c)	((c) ? ({ __acquire(x); 1; }) : 0)
19 # define __percpu	__attribute__((noderef, address_space(3)))
20 #ifdef CONFIG_SPARSE_RCU_POINTER
21 # define __rcu		__attribute__((noderef, address_space(4)))
22 #else /* CONFIG_SPARSE_RCU_POINTER */
23 # define __rcu
24 #endif /* CONFIG_SPARSE_RCU_POINTER */
25 # define __private	__attribute__((noderef))
26 extern void __chk_user_ptr(const volatile void __user *);
27 extern void __chk_io_ptr(const volatile void __iomem *);
28 # define ACCESS_PRIVATE(p, member) (*((typeof((p)->member) __force *) &(p)->member))
29 #else /* __CHECKER__ */
30 # ifdef STRUCTLEAK_PLUGIN
31 #  define __user __attribute__((user))
32 # else
33 #  define __user
34 # endif
35 # define __kernel
36 # define __safe
37 # define __force
38 # define __nocast
39 # define __iomem
40 # define __chk_user_ptr(x) (void)0
41 # define __chk_io_ptr(x) (void)0
42 # define __builtin_warning(x, y...) (1)
43 # define __must_hold(x)
44 # define __acquires(x)
45 # define __releases(x)
46 # define __acquire(x) (void)0
47 # define __release(x) (void)0
48 # define __cond_lock(x,c) (c)
49 # define __percpu
50 # define __rcu
51 # define __private
52 # define ACCESS_PRIVATE(p, member) ((p)->member)
53 #endif /* __CHECKER__ */
54 
55 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */
56 #define ___PASTE(a,b) a##b
57 #define __PASTE(a,b) ___PASTE(a,b)
58 
59 #ifdef __KERNEL__
60 
61 #ifdef __GNUC__
62 #include <linux/compiler-gcc.h>
63 #endif
64 
65 #if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__)
66 #define notrace __attribute__((hotpatch(0,0)))
67 #else
68 #define notrace __attribute__((no_instrument_function))
69 #endif
70 
71 /* Intel compiler defines __GNUC__. So we will overwrite implementations
72  * coming from above header files here
73  */
74 #ifdef __INTEL_COMPILER
75 # include <linux/compiler-intel.h>
76 #endif
77 
78 /* Clang compiler defines __GNUC__. So we will overwrite implementations
79  * coming from above header files here
80  */
81 #ifdef __clang__
82 #include <linux/compiler-clang.h>
83 #endif
84 
85 /*
86  * Generic compiler-dependent macros required for kernel
87  * build go below this comment. Actual compiler/compiler version
88  * specific implementations come from the above header files
89  */
90 
91 struct ftrace_branch_data {
92 	const char *func;
93 	const char *file;
94 	unsigned line;
95 	union {
96 		struct {
97 			unsigned long correct;
98 			unsigned long incorrect;
99 		};
100 		struct {
101 			unsigned long miss;
102 			unsigned long hit;
103 		};
104 		unsigned long miss_hit[2];
105 	};
106 };
107 
108 /*
109  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
110  * to disable branch tracing on a per file basis.
111  */
112 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
113     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
114 void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect);
115 
116 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
117 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
118 
119 #define __branch_check__(x, expect) ({					\
120 			int ______r;					\
121 			static struct ftrace_branch_data		\
122 				__attribute__((__aligned__(4)))		\
123 				__attribute__((section("_ftrace_annotated_branch"))) \
124 				______f = {				\
125 				.func = __func__,			\
126 				.file = __FILE__,			\
127 				.line = __LINE__,			\
128 			};						\
129 			______r = likely_notrace(x);			\
130 			ftrace_likely_update(&______f, ______r, expect); \
131 			______r;					\
132 		})
133 
134 /*
135  * Using __builtin_constant_p(x) to ignore cases where the return
136  * value is always the same.  This idea is taken from a similar patch
137  * written by Daniel Walker.
138  */
139 # ifndef likely
140 #  define likely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 1))
141 # endif
142 # ifndef unlikely
143 #  define unlikely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 0))
144 # endif
145 
146 #ifdef CONFIG_PROFILE_ALL_BRANCHES
147 /*
148  * "Define 'is'", Bill Clinton
149  * "Define 'if'", Steven Rostedt
150  */
151 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
152 #define __trace_if(cond) \
153 	if (__builtin_constant_p(!!(cond)) ? !!(cond) :			\
154 	({								\
155 		int ______r;						\
156 		static struct ftrace_branch_data			\
157 			__attribute__((__aligned__(4)))			\
158 			__attribute__((section("_ftrace_branch")))	\
159 			______f = {					\
160 				.func = __func__,			\
161 				.file = __FILE__,			\
162 				.line = __LINE__,			\
163 			};						\
164 		______r = !!(cond);					\
165 		______f.miss_hit[______r]++;					\
166 		______r;						\
167 	}))
168 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
169 
170 #else
171 # define likely(x)	__builtin_expect(!!(x), 1)
172 # define unlikely(x)	__builtin_expect(!!(x), 0)
173 #endif
174 
175 /* Optimization barrier */
176 #ifndef barrier
177 # define barrier() __memory_barrier()
178 #endif
179 
180 #ifndef barrier_data
181 # define barrier_data(ptr) barrier()
182 #endif
183 
184 /* Unreachable code */
185 #ifndef unreachable
186 # define unreachable() do { } while (1)
187 #endif
188 
189 /*
190  * KENTRY - kernel entry point
191  * This can be used to annotate symbols (functions or data) that are used
192  * without their linker symbol being referenced explicitly. For example,
193  * interrupt vector handlers, or functions in the kernel image that are found
194  * programatically.
195  *
196  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
197  * are handled in their own way (with KEEP() in linker scripts).
198  *
199  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
200  * linker script. For example an architecture could KEEP() its entire
201  * boot/exception vector code rather than annotate each function and data.
202  */
203 #ifndef KENTRY
204 # define KENTRY(sym)						\
205 	extern typeof(sym) sym;					\
206 	static const unsigned long __kentry_##sym		\
207 	__used							\
208 	__attribute__((section("___kentry" "+" #sym ), used))	\
209 	= (unsigned long)&sym;
210 #endif
211 
212 #ifndef RELOC_HIDE
213 # define RELOC_HIDE(ptr, off)					\
214   ({ unsigned long __ptr;					\
215      __ptr = (unsigned long) (ptr);				\
216     (typeof(ptr)) (__ptr + (off)); })
217 #endif
218 
219 #ifndef OPTIMIZER_HIDE_VAR
220 #define OPTIMIZER_HIDE_VAR(var) barrier()
221 #endif
222 
223 /* Not-quite-unique ID. */
224 #ifndef __UNIQUE_ID
225 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
226 #endif
227 
228 #include <uapi/linux/types.h>
229 
230 #define __READ_ONCE_SIZE						\
231 ({									\
232 	switch (size) {							\
233 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
234 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
235 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
236 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
237 	default:							\
238 		barrier();						\
239 		__builtin_memcpy((void *)res, (const void *)p, size);	\
240 		barrier();						\
241 	}								\
242 })
243 
244 static __always_inline
245 void __read_once_size(const volatile void *p, void *res, int size)
246 {
247 	__READ_ONCE_SIZE;
248 }
249 
250 #ifdef CONFIG_KASAN
251 /*
252  * This function is not 'inline' because __no_sanitize_address confilcts
253  * with inlining. Attempt to inline it may cause a build failure.
254  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
255  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
256  */
257 static __no_sanitize_address __maybe_unused
258 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
259 {
260 	__READ_ONCE_SIZE;
261 }
262 #else
263 static __always_inline
264 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
265 {
266 	__READ_ONCE_SIZE;
267 }
268 #endif
269 
270 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
271 {
272 	switch (size) {
273 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
274 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
275 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
276 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
277 	default:
278 		barrier();
279 		__builtin_memcpy((void *)p, (const void *)res, size);
280 		barrier();
281 	}
282 }
283 
284 /*
285  * Prevent the compiler from merging or refetching reads or writes. The
286  * compiler is also forbidden from reordering successive instances of
287  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
288  * compiler is aware of some particular ordering.  One way to make the
289  * compiler aware of ordering is to put the two invocations of READ_ONCE,
290  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
291  *
292  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
293  * data types like structs or unions. If the size of the accessed data
294  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
295  * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at
296  * least two memcpy()s: one for the __builtin_memcpy() and then one for
297  * the macro doing the copy of variable - '__u' allocated on the stack.
298  *
299  * Their two major use cases are: (1) Mediating communication between
300  * process-level code and irq/NMI handlers, all running on the same CPU,
301  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
302  * mutilate accesses that either do not require ordering or that interact
303  * with an explicit memory barrier or atomic instruction that provides the
304  * required ordering.
305  */
306 
307 #define __READ_ONCE(x, check)						\
308 ({									\
309 	union { typeof(x) __val; char __c[1]; } __u;			\
310 	if (check)							\
311 		__read_once_size(&(x), __u.__c, sizeof(x));		\
312 	else								\
313 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
314 	__u.__val;							\
315 })
316 #define READ_ONCE(x) __READ_ONCE(x, 1)
317 
318 /*
319  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
320  * to hide memory access from KASAN.
321  */
322 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
323 
324 #define WRITE_ONCE(x, val) \
325 ({							\
326 	union { typeof(x) __val; char __c[1]; } __u =	\
327 		{ .__val = (__force typeof(x)) (val) }; \
328 	__write_once_size(&(x), __u.__c, sizeof(x));	\
329 	__u.__val;					\
330 })
331 
332 #endif /* __KERNEL__ */
333 
334 #endif /* __ASSEMBLY__ */
335 
336 #ifdef __KERNEL__
337 /*
338  * Allow us to mark functions as 'deprecated' and have gcc emit a nice
339  * warning for each use, in hopes of speeding the functions removal.
340  * Usage is:
341  * 		int __deprecated foo(void)
342  */
343 #ifndef __deprecated
344 # define __deprecated		/* unimplemented */
345 #endif
346 
347 #ifdef MODULE
348 #define __deprecated_for_modules __deprecated
349 #else
350 #define __deprecated_for_modules
351 #endif
352 
353 #ifndef __must_check
354 #define __must_check
355 #endif
356 
357 #ifndef CONFIG_ENABLE_MUST_CHECK
358 #undef __must_check
359 #define __must_check
360 #endif
361 #ifndef CONFIG_ENABLE_WARN_DEPRECATED
362 #undef __deprecated
363 #undef __deprecated_for_modules
364 #define __deprecated
365 #define __deprecated_for_modules
366 #endif
367 
368 #ifndef __malloc
369 #define __malloc
370 #endif
371 
372 /*
373  * Allow us to avoid 'defined but not used' warnings on functions and data,
374  * as well as force them to be emitted to the assembly file.
375  *
376  * As of gcc 3.4, static functions that are not marked with attribute((used))
377  * may be elided from the assembly file.  As of gcc 3.4, static data not so
378  * marked will not be elided, but this may change in a future gcc version.
379  *
380  * NOTE: Because distributions shipped with a backported unit-at-a-time
381  * compiler in gcc 3.3, we must define __used to be __attribute__((used))
382  * for gcc >=3.3 instead of 3.4.
383  *
384  * In prior versions of gcc, such functions and data would be emitted, but
385  * would be warned about except with attribute((unused)).
386  *
387  * Mark functions that are referenced only in inline assembly as __used so
388  * the code is emitted even though it appears to be unreferenced.
389  */
390 #ifndef __used
391 # define __used			/* unimplemented */
392 #endif
393 
394 #ifndef __maybe_unused
395 # define __maybe_unused		/* unimplemented */
396 #endif
397 
398 #ifndef __always_unused
399 # define __always_unused	/* unimplemented */
400 #endif
401 
402 #ifndef noinline
403 #define noinline
404 #endif
405 
406 /*
407  * Rather then using noinline to prevent stack consumption, use
408  * noinline_for_stack instead.  For documentation reasons.
409  */
410 #define noinline_for_stack noinline
411 
412 #ifndef __always_inline
413 #define __always_inline inline
414 #endif
415 
416 #endif /* __KERNEL__ */
417 
418 /*
419  * From the GCC manual:
420  *
421  * Many functions do not examine any values except their arguments,
422  * and have no effects except the return value.  Basically this is
423  * just slightly more strict class than the `pure' attribute above,
424  * since function is not allowed to read global memory.
425  *
426  * Note that a function that has pointer arguments and examines the
427  * data pointed to must _not_ be declared `const'.  Likewise, a
428  * function that calls a non-`const' function usually must not be
429  * `const'.  It does not make sense for a `const' function to return
430  * `void'.
431  */
432 #ifndef __attribute_const__
433 # define __attribute_const__	/* unimplemented */
434 #endif
435 
436 #ifndef __latent_entropy
437 # define __latent_entropy
438 #endif
439 
440 /*
441  * Tell gcc if a function is cold. The compiler will assume any path
442  * directly leading to the call is unlikely.
443  */
444 
445 #ifndef __cold
446 #define __cold
447 #endif
448 
449 /* Simple shorthand for a section definition */
450 #ifndef __section
451 # define __section(S) __attribute__ ((__section__(#S)))
452 #endif
453 
454 #ifndef __visible
455 #define __visible
456 #endif
457 
458 /*
459  * Assume alignment of return value.
460  */
461 #ifndef __assume_aligned
462 #define __assume_aligned(a, ...)
463 #endif
464 
465 
466 /* Are two types/vars the same type (ignoring qualifiers)? */
467 #ifndef __same_type
468 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
469 #endif
470 
471 /* Is this type a native word size -- useful for atomic operations */
472 #ifndef __native_word
473 # define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long))
474 #endif
475 
476 /* Compile time object size, -1 for unknown */
477 #ifndef __compiletime_object_size
478 # define __compiletime_object_size(obj) -1
479 #endif
480 #ifndef __compiletime_warning
481 # define __compiletime_warning(message)
482 #endif
483 #ifndef __compiletime_error
484 # define __compiletime_error(message)
485 /*
486  * Sparse complains of variable sized arrays due to the temporary variable in
487  * __compiletime_assert. Unfortunately we can't just expand it out to make
488  * sparse see a constant array size without breaking compiletime_assert on old
489  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
490  */
491 # ifndef __CHECKER__
492 #  define __compiletime_error_fallback(condition) \
493 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
494 # endif
495 #endif
496 #ifndef __compiletime_error_fallback
497 # define __compiletime_error_fallback(condition) do { } while (0)
498 #endif
499 
500 #define __compiletime_assert(condition, msg, prefix, suffix)		\
501 	do {								\
502 		bool __cond = !(condition);				\
503 		extern void prefix ## suffix(void) __compiletime_error(msg); \
504 		if (__cond)						\
505 			prefix ## suffix();				\
506 		__compiletime_error_fallback(__cond);			\
507 	} while (0)
508 
509 #define _compiletime_assert(condition, msg, prefix, suffix) \
510 	__compiletime_assert(condition, msg, prefix, suffix)
511 
512 /**
513  * compiletime_assert - break build and emit msg if condition is false
514  * @condition: a compile-time constant condition to check
515  * @msg:       a message to emit if condition is false
516  *
517  * In tradition of POSIX assert, this macro will break the build if the
518  * supplied condition is *false*, emitting the supplied error message if the
519  * compiler has support to do so.
520  */
521 #define compiletime_assert(condition, msg) \
522 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
523 
524 #define compiletime_assert_atomic_type(t)				\
525 	compiletime_assert(__native_word(t),				\
526 		"Need native word sized stores/loads for atomicity.")
527 
528 /*
529  * Prevent the compiler from merging or refetching accesses.  The compiler
530  * is also forbidden from reordering successive instances of ACCESS_ONCE(),
531  * but only when the compiler is aware of some particular ordering.  One way
532  * to make the compiler aware of ordering is to put the two invocations of
533  * ACCESS_ONCE() in different C statements.
534  *
535  * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
536  * on a union member will work as long as the size of the member matches the
537  * size of the union and the size is smaller than word size.
538  *
539  * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
540  * between process-level code and irq/NMI handlers, all running on the same CPU,
541  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
542  * mutilate accesses that either do not require ordering or that interact
543  * with an explicit memory barrier or atomic instruction that provides the
544  * required ordering.
545  *
546  * If possible use READ_ONCE()/WRITE_ONCE() instead.
547  */
548 #define __ACCESS_ONCE(x) ({ \
549 	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
550 	(volatile typeof(x) *)&(x); })
551 #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
552 
553 /**
554  * lockless_dereference() - safely load a pointer for later dereference
555  * @p: The pointer to load
556  *
557  * Similar to rcu_dereference(), but for situations where the pointed-to
558  * object's lifetime is managed by something other than RCU.  That
559  * "something other" might be reference counting or simple immortality.
560  *
561  * The seemingly unused variable ___typecheck_p validates that @p is
562  * indeed a pointer type by using a pointer to typeof(*p) as the type.
563  * Taking a pointer to typeof(*p) again is needed in case p is void *.
564  */
565 #define lockless_dereference(p) \
566 ({ \
567 	typeof(p) _________p1 = READ_ONCE(p); \
568 	typeof(*(p)) *___typecheck_p __maybe_unused; \
569 	smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
570 	(_________p1); \
571 })
572 
573 /* Ignore/forbid kprobes attach on very low level functions marked by this attribute: */
574 #ifdef CONFIG_KPROBES
575 # define __kprobes	__attribute__((__section__(".kprobes.text")))
576 # define nokprobe_inline	__always_inline
577 #else
578 # define __kprobes
579 # define nokprobe_inline	inline
580 #endif
581 #endif /* __LINUX_COMPILER_H */
582