xref: /linux/fs/zonefs/super.c (revision 0475184905387dc481927f87e4abd63c3d8fa51d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 /*
31  * Get the name of a zone group directory.
32  */
33 static const char *zonefs_zgroup_name(enum zonefs_ztype ztype)
34 {
35 	switch (ztype) {
36 	case ZONEFS_ZTYPE_CNV:
37 		return "cnv";
38 	case ZONEFS_ZTYPE_SEQ:
39 		return "seq";
40 	default:
41 		WARN_ON_ONCE(1);
42 		return "???";
43 	}
44 }
45 
46 /*
47  * Manage the active zone count.
48  */
49 static void zonefs_account_active(struct super_block *sb,
50 				  struct zonefs_zone *z)
51 {
52 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
53 
54 	if (zonefs_zone_is_cnv(z))
55 		return;
56 
57 	/*
58 	 * For zones that transitioned to the offline or readonly condition,
59 	 * we only need to clear the active state.
60 	 */
61 	if (z->z_flags & (ZONEFS_ZONE_OFFLINE | ZONEFS_ZONE_READONLY))
62 		goto out;
63 
64 	/*
65 	 * If the zone is active, that is, if it is explicitly open or
66 	 * partially written, check if it was already accounted as active.
67 	 */
68 	if ((z->z_flags & ZONEFS_ZONE_OPEN) ||
69 	    (z->z_wpoffset > 0 && z->z_wpoffset < z->z_capacity)) {
70 		if (!(z->z_flags & ZONEFS_ZONE_ACTIVE)) {
71 			z->z_flags |= ZONEFS_ZONE_ACTIVE;
72 			atomic_inc(&sbi->s_active_seq_files);
73 		}
74 		return;
75 	}
76 
77 out:
78 	/* The zone is not active. If it was, update the active count */
79 	if (z->z_flags & ZONEFS_ZONE_ACTIVE) {
80 		z->z_flags &= ~ZONEFS_ZONE_ACTIVE;
81 		atomic_dec(&sbi->s_active_seq_files);
82 	}
83 }
84 
85 /*
86  * Manage the active zone count. Called with zi->i_truncate_mutex held.
87  */
88 void zonefs_inode_account_active(struct inode *inode)
89 {
90 	lockdep_assert_held(&ZONEFS_I(inode)->i_truncate_mutex);
91 
92 	return zonefs_account_active(inode->i_sb, zonefs_inode_zone(inode));
93 }
94 
95 /*
96  * Execute a zone management operation.
97  */
98 static int zonefs_zone_mgmt(struct super_block *sb,
99 			    struct zonefs_zone *z, enum req_op op)
100 {
101 	int ret;
102 
103 	/*
104 	 * With ZNS drives, closing an explicitly open zone that has not been
105 	 * written will change the zone state to "closed", that is, the zone
106 	 * will remain active. Since this can then cause failure of explicit
107 	 * open operation on other zones if the drive active zone resources
108 	 * are exceeded, make sure that the zone does not remain active by
109 	 * resetting it.
110 	 */
111 	if (op == REQ_OP_ZONE_CLOSE && !z->z_wpoffset)
112 		op = REQ_OP_ZONE_RESET;
113 
114 	trace_zonefs_zone_mgmt(sb, z, op);
115 	ret = blkdev_zone_mgmt(sb->s_bdev, op, z->z_sector,
116 			       z->z_size >> SECTOR_SHIFT, GFP_NOFS);
117 	if (ret) {
118 		zonefs_err(sb,
119 			   "Zone management operation %s at %llu failed %d\n",
120 			   blk_op_str(op), z->z_sector, ret);
121 		return ret;
122 	}
123 
124 	return 0;
125 }
126 
127 int zonefs_inode_zone_mgmt(struct inode *inode, enum req_op op)
128 {
129 	lockdep_assert_held(&ZONEFS_I(inode)->i_truncate_mutex);
130 
131 	return zonefs_zone_mgmt(inode->i_sb, zonefs_inode_zone(inode), op);
132 }
133 
134 void zonefs_i_size_write(struct inode *inode, loff_t isize)
135 {
136 	struct zonefs_zone *z = zonefs_inode_zone(inode);
137 
138 	i_size_write(inode, isize);
139 
140 	/*
141 	 * A full zone is no longer open/active and does not need
142 	 * explicit closing.
143 	 */
144 	if (isize >= z->z_capacity) {
145 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
146 
147 		if (z->z_flags & ZONEFS_ZONE_ACTIVE)
148 			atomic_dec(&sbi->s_active_seq_files);
149 		z->z_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE);
150 	}
151 }
152 
153 void zonefs_update_stats(struct inode *inode, loff_t new_isize)
154 {
155 	struct super_block *sb = inode->i_sb;
156 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
157 	loff_t old_isize = i_size_read(inode);
158 	loff_t nr_blocks;
159 
160 	if (new_isize == old_isize)
161 		return;
162 
163 	spin_lock(&sbi->s_lock);
164 
165 	/*
166 	 * This may be called for an update after an IO error.
167 	 * So beware of the values seen.
168 	 */
169 	if (new_isize < old_isize) {
170 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
171 		if (sbi->s_used_blocks > nr_blocks)
172 			sbi->s_used_blocks -= nr_blocks;
173 		else
174 			sbi->s_used_blocks = 0;
175 	} else {
176 		sbi->s_used_blocks +=
177 			(new_isize - old_isize) >> sb->s_blocksize_bits;
178 		if (sbi->s_used_blocks > sbi->s_blocks)
179 			sbi->s_used_blocks = sbi->s_blocks;
180 	}
181 
182 	spin_unlock(&sbi->s_lock);
183 }
184 
185 /*
186  * Check a zone condition. Return the amount of written (and still readable)
187  * data in the zone.
188  */
189 static loff_t zonefs_check_zone_condition(struct super_block *sb,
190 					  struct zonefs_zone *z,
191 					  struct blk_zone *zone)
192 {
193 	switch (zone->cond) {
194 	case BLK_ZONE_COND_OFFLINE:
195 		zonefs_warn(sb, "Zone %llu: offline zone\n",
196 			    z->z_sector);
197 		z->z_flags |= ZONEFS_ZONE_OFFLINE;
198 		return 0;
199 	case BLK_ZONE_COND_READONLY:
200 		/*
201 		 * The write pointer of read-only zones is invalid, so we cannot
202 		 * determine the zone wpoffset (inode size). We thus keep the
203 		 * zone wpoffset as is, which leads to an empty file
204 		 * (wpoffset == 0) on mount. For a runtime error, this keeps
205 		 * the inode size as it was when last updated so that the user
206 		 * can recover data.
207 		 */
208 		zonefs_warn(sb, "Zone %llu: read-only zone\n",
209 			    z->z_sector);
210 		z->z_flags |= ZONEFS_ZONE_READONLY;
211 		if (zonefs_zone_is_cnv(z))
212 			return z->z_capacity;
213 		return z->z_wpoffset;
214 	case BLK_ZONE_COND_FULL:
215 		/* The write pointer of full zones is invalid. */
216 		return z->z_capacity;
217 	default:
218 		if (zonefs_zone_is_cnv(z))
219 			return z->z_capacity;
220 		return (zone->wp - zone->start) << SECTOR_SHIFT;
221 	}
222 }
223 
224 /*
225  * Check a zone condition and adjust its inode access permissions for
226  * offline and readonly zones.
227  */
228 static void zonefs_inode_update_mode(struct inode *inode)
229 {
230 	struct zonefs_zone *z = zonefs_inode_zone(inode);
231 
232 	if (z->z_flags & ZONEFS_ZONE_OFFLINE) {
233 		/* Offline zones cannot be read nor written */
234 		inode->i_flags |= S_IMMUTABLE;
235 		inode->i_mode &= ~0777;
236 	} else if (z->z_flags & ZONEFS_ZONE_READONLY) {
237 		/* Readonly zones cannot be written */
238 		inode->i_flags |= S_IMMUTABLE;
239 		if (z->z_flags & ZONEFS_ZONE_INIT_MODE)
240 			inode->i_mode &= ~0777;
241 		else
242 			inode->i_mode &= ~0222;
243 	}
244 
245 	z->z_flags &= ~ZONEFS_ZONE_INIT_MODE;
246 	z->z_mode = inode->i_mode;
247 }
248 
249 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
250 			      void *data)
251 {
252 	struct blk_zone *z = data;
253 
254 	*z = *zone;
255 	return 0;
256 }
257 
258 static void zonefs_handle_io_error(struct inode *inode, struct blk_zone *zone,
259 				   bool write)
260 {
261 	struct zonefs_zone *z = zonefs_inode_zone(inode);
262 	struct super_block *sb = inode->i_sb;
263 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
264 	loff_t isize, data_size;
265 
266 	/*
267 	 * Check the zone condition: if the zone is not "bad" (offline or
268 	 * read-only), read errors are simply signaled to the IO issuer as long
269 	 * as there is no inconsistency between the inode size and the amount of
270 	 * data writen in the zone (data_size).
271 	 */
272 	data_size = zonefs_check_zone_condition(sb, z, zone);
273 	isize = i_size_read(inode);
274 	if (!(z->z_flags & (ZONEFS_ZONE_READONLY | ZONEFS_ZONE_OFFLINE)) &&
275 	    !write && isize == data_size)
276 		return;
277 
278 	/*
279 	 * At this point, we detected either a bad zone or an inconsistency
280 	 * between the inode size and the amount of data written in the zone.
281 	 * For the latter case, the cause may be a write IO error or an external
282 	 * action on the device. Two error patterns exist:
283 	 * 1) The inode size is lower than the amount of data in the zone:
284 	 *    a write operation partially failed and data was writen at the end
285 	 *    of the file. This can happen in the case of a large direct IO
286 	 *    needing several BIOs and/or write requests to be processed.
287 	 * 2) The inode size is larger than the amount of data in the zone:
288 	 *    this can happen with a deferred write error with the use of the
289 	 *    device side write cache after getting successful write IO
290 	 *    completions. Other possibilities are (a) an external corruption,
291 	 *    e.g. an application reset the zone directly, or (b) the device
292 	 *    has a serious problem (e.g. firmware bug).
293 	 *
294 	 * In all cases, warn about inode size inconsistency and handle the
295 	 * IO error according to the zone condition and to the mount options.
296 	 */
297 	if (isize != data_size)
298 		zonefs_warn(sb,
299 			    "inode %lu: invalid size %lld (should be %lld)\n",
300 			    inode->i_ino, isize, data_size);
301 
302 	/*
303 	 * First handle bad zones signaled by hardware. The mount options
304 	 * errors=zone-ro and errors=zone-offline result in changing the
305 	 * zone condition to read-only and offline respectively, as if the
306 	 * condition was signaled by the hardware.
307 	 */
308 	if ((z->z_flags & ZONEFS_ZONE_OFFLINE) ||
309 	    (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)) {
310 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
311 			    inode->i_ino);
312 		if (!(z->z_flags & ZONEFS_ZONE_OFFLINE))
313 			z->z_flags |= ZONEFS_ZONE_OFFLINE;
314 		zonefs_inode_update_mode(inode);
315 		data_size = 0;
316 	} else if ((z->z_flags & ZONEFS_ZONE_READONLY) ||
317 		   (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)) {
318 		zonefs_warn(sb, "inode %lu: write access disabled\n",
319 			    inode->i_ino);
320 		if (!(z->z_flags & ZONEFS_ZONE_READONLY))
321 			z->z_flags |= ZONEFS_ZONE_READONLY;
322 		zonefs_inode_update_mode(inode);
323 		data_size = isize;
324 	} else if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO &&
325 		   data_size > isize) {
326 		/* Do not expose garbage data */
327 		data_size = isize;
328 	}
329 
330 	/*
331 	 * If the filesystem is mounted with the explicit-open mount option, we
332 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
333 	 * the read-only or offline condition, to avoid attempting an explicit
334 	 * close of the zone when the inode file is closed.
335 	 */
336 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
337 	    (z->z_flags & (ZONEFS_ZONE_READONLY | ZONEFS_ZONE_OFFLINE)))
338 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
339 
340 	/*
341 	 * If error=remount-ro was specified, any error result in remounting
342 	 * the volume as read-only.
343 	 */
344 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
345 		zonefs_warn(sb, "remounting filesystem read-only\n");
346 		sb->s_flags |= SB_RDONLY;
347 	}
348 
349 	/*
350 	 * Update block usage stats and the inode size  to prevent access to
351 	 * invalid data.
352 	 */
353 	zonefs_update_stats(inode, data_size);
354 	zonefs_i_size_write(inode, data_size);
355 	z->z_wpoffset = data_size;
356 	zonefs_inode_account_active(inode);
357 }
358 
359 /*
360  * When an file IO error occurs, check the file zone to see if there is a change
361  * in the zone condition (e.g. offline or read-only). For a failed write to a
362  * sequential zone, the zone write pointer position must also be checked to
363  * eventually correct the file size and zonefs inode write pointer offset
364  * (which can be out of sync with the drive due to partial write failures).
365  */
366 void __zonefs_io_error(struct inode *inode, bool write)
367 {
368 	struct zonefs_zone *z = zonefs_inode_zone(inode);
369 	struct super_block *sb = inode->i_sb;
370 	unsigned int noio_flag;
371 	struct blk_zone zone;
372 	int ret;
373 
374 	/*
375 	 * Conventional zone have no write pointer and cannot become read-only
376 	 * or offline. So simply fake a report for a single or aggregated zone
377 	 * and let zonefs_handle_io_error() correct the zone inode information
378 	 * according to the mount options.
379 	 */
380 	if (!zonefs_zone_is_seq(z)) {
381 		zone.start = z->z_sector;
382 		zone.len = z->z_size >> SECTOR_SHIFT;
383 		zone.wp = zone.start + zone.len;
384 		zone.type = BLK_ZONE_TYPE_CONVENTIONAL;
385 		zone.cond = BLK_ZONE_COND_NOT_WP;
386 		zone.capacity = zone.len;
387 		goto handle_io_error;
388 	}
389 
390 	/*
391 	 * Memory allocations in blkdev_report_zones() can trigger a memory
392 	 * reclaim which may in turn cause a recursion into zonefs as well as
393 	 * struct request allocations for the same device. The former case may
394 	 * end up in a deadlock on the inode truncate mutex, while the latter
395 	 * may prevent IO forward progress. Executing the report zones under
396 	 * the GFP_NOIO context avoids both problems.
397 	 */
398 	noio_flag = memalloc_noio_save();
399 	ret = blkdev_report_zones(sb->s_bdev, z->z_sector, 1,
400 				  zonefs_io_error_cb, &zone);
401 	memalloc_noio_restore(noio_flag);
402 
403 	if (ret != 1) {
404 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
405 			   inode->i_ino, ret);
406 		zonefs_warn(sb, "remounting filesystem read-only\n");
407 		sb->s_flags |= SB_RDONLY;
408 		return;
409 	}
410 
411 handle_io_error:
412 	zonefs_handle_io_error(inode, &zone, write);
413 }
414 
415 static struct kmem_cache *zonefs_inode_cachep;
416 
417 static struct inode *zonefs_alloc_inode(struct super_block *sb)
418 {
419 	struct zonefs_inode_info *zi;
420 
421 	zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
422 	if (!zi)
423 		return NULL;
424 
425 	inode_init_once(&zi->i_vnode);
426 	mutex_init(&zi->i_truncate_mutex);
427 	zi->i_wr_refcnt = 0;
428 
429 	return &zi->i_vnode;
430 }
431 
432 static void zonefs_free_inode(struct inode *inode)
433 {
434 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
435 }
436 
437 /*
438  * File system stat.
439  */
440 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
441 {
442 	struct super_block *sb = dentry->d_sb;
443 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
444 	enum zonefs_ztype t;
445 
446 	buf->f_type = ZONEFS_MAGIC;
447 	buf->f_bsize = sb->s_blocksize;
448 	buf->f_namelen = ZONEFS_NAME_MAX;
449 
450 	spin_lock(&sbi->s_lock);
451 
452 	buf->f_blocks = sbi->s_blocks;
453 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
454 		buf->f_bfree = 0;
455 	else
456 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
457 	buf->f_bavail = buf->f_bfree;
458 
459 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
460 		if (sbi->s_zgroup[t].g_nr_zones)
461 			buf->f_files += sbi->s_zgroup[t].g_nr_zones + 1;
462 	}
463 	buf->f_ffree = 0;
464 
465 	spin_unlock(&sbi->s_lock);
466 
467 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
468 
469 	return 0;
470 }
471 
472 enum {
473 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
474 	Opt_explicit_open, Opt_err,
475 };
476 
477 static const match_table_t tokens = {
478 	{ Opt_errors_ro,	"errors=remount-ro"},
479 	{ Opt_errors_zro,	"errors=zone-ro"},
480 	{ Opt_errors_zol,	"errors=zone-offline"},
481 	{ Opt_errors_repair,	"errors=repair"},
482 	{ Opt_explicit_open,	"explicit-open" },
483 	{ Opt_err,		NULL}
484 };
485 
486 static int zonefs_parse_options(struct super_block *sb, char *options)
487 {
488 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
489 	substring_t args[MAX_OPT_ARGS];
490 	char *p;
491 
492 	if (!options)
493 		return 0;
494 
495 	while ((p = strsep(&options, ",")) != NULL) {
496 		int token;
497 
498 		if (!*p)
499 			continue;
500 
501 		token = match_token(p, tokens, args);
502 		switch (token) {
503 		case Opt_errors_ro:
504 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
505 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
506 			break;
507 		case Opt_errors_zro:
508 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
509 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
510 			break;
511 		case Opt_errors_zol:
512 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
513 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
514 			break;
515 		case Opt_errors_repair:
516 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
517 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
518 			break;
519 		case Opt_explicit_open:
520 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
521 			break;
522 		default:
523 			return -EINVAL;
524 		}
525 	}
526 
527 	return 0;
528 }
529 
530 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
531 {
532 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
533 
534 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
535 		seq_puts(seq, ",errors=remount-ro");
536 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
537 		seq_puts(seq, ",errors=zone-ro");
538 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
539 		seq_puts(seq, ",errors=zone-offline");
540 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
541 		seq_puts(seq, ",errors=repair");
542 
543 	return 0;
544 }
545 
546 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
547 {
548 	sync_filesystem(sb);
549 
550 	return zonefs_parse_options(sb, data);
551 }
552 
553 static int zonefs_inode_setattr(struct mnt_idmap *idmap,
554 				struct dentry *dentry, struct iattr *iattr)
555 {
556 	struct inode *inode = d_inode(dentry);
557 	int ret;
558 
559 	if (unlikely(IS_IMMUTABLE(inode)))
560 		return -EPERM;
561 
562 	ret = setattr_prepare(&nop_mnt_idmap, dentry, iattr);
563 	if (ret)
564 		return ret;
565 
566 	/*
567 	 * Since files and directories cannot be created nor deleted, do not
568 	 * allow setting any write attributes on the sub-directories grouping
569 	 * files by zone type.
570 	 */
571 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
572 	    (iattr->ia_mode & 0222))
573 		return -EPERM;
574 
575 	if (((iattr->ia_valid & ATTR_UID) &&
576 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
577 	    ((iattr->ia_valid & ATTR_GID) &&
578 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
579 		ret = dquot_transfer(&nop_mnt_idmap, inode, iattr);
580 		if (ret)
581 			return ret;
582 	}
583 
584 	if (iattr->ia_valid & ATTR_SIZE) {
585 		ret = zonefs_file_truncate(inode, iattr->ia_size);
586 		if (ret)
587 			return ret;
588 	}
589 
590 	setattr_copy(&nop_mnt_idmap, inode, iattr);
591 
592 	if (S_ISREG(inode->i_mode)) {
593 		struct zonefs_zone *z = zonefs_inode_zone(inode);
594 
595 		z->z_mode = inode->i_mode;
596 		z->z_uid = inode->i_uid;
597 		z->z_gid = inode->i_gid;
598 	}
599 
600 	return 0;
601 }
602 
603 static const struct inode_operations zonefs_file_inode_operations = {
604 	.setattr	= zonefs_inode_setattr,
605 };
606 
607 static long zonefs_fname_to_fno(const struct qstr *fname)
608 {
609 	const char *name = fname->name;
610 	unsigned int len = fname->len;
611 	long fno = 0, shift = 1;
612 	const char *rname;
613 	char c = *name;
614 	unsigned int i;
615 
616 	/*
617 	 * File names are always a base-10 number string without any
618 	 * leading 0s.
619 	 */
620 	if (!isdigit(c))
621 		return -ENOENT;
622 
623 	if (len > 1 && c == '0')
624 		return -ENOENT;
625 
626 	if (len == 1)
627 		return c - '0';
628 
629 	for (i = 0, rname = name + len - 1; i < len; i++, rname--) {
630 		c = *rname;
631 		if (!isdigit(c))
632 			return -ENOENT;
633 		fno += (c - '0') * shift;
634 		shift *= 10;
635 	}
636 
637 	return fno;
638 }
639 
640 static struct inode *zonefs_get_file_inode(struct inode *dir,
641 					   struct dentry *dentry)
642 {
643 	struct zonefs_zone_group *zgroup = dir->i_private;
644 	struct super_block *sb = dir->i_sb;
645 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
646 	struct zonefs_zone *z;
647 	struct inode *inode;
648 	ino_t ino;
649 	long fno;
650 
651 	/* Get the file number from the file name */
652 	fno = zonefs_fname_to_fno(&dentry->d_name);
653 	if (fno < 0)
654 		return ERR_PTR(fno);
655 
656 	if (!zgroup->g_nr_zones || fno >= zgroup->g_nr_zones)
657 		return ERR_PTR(-ENOENT);
658 
659 	z = &zgroup->g_zones[fno];
660 	ino = z->z_sector >> sbi->s_zone_sectors_shift;
661 	inode = iget_locked(sb, ino);
662 	if (!inode)
663 		return ERR_PTR(-ENOMEM);
664 	if (!(inode->i_state & I_NEW)) {
665 		WARN_ON_ONCE(inode->i_private != z);
666 		return inode;
667 	}
668 
669 	inode->i_ino = ino;
670 	inode->i_mode = z->z_mode;
671 	inode_set_mtime_to_ts(inode,
672 			      inode_set_atime_to_ts(inode, inode_set_ctime_to_ts(inode, inode_get_ctime(dir))));
673 	inode->i_uid = z->z_uid;
674 	inode->i_gid = z->z_gid;
675 	inode->i_size = z->z_wpoffset;
676 	inode->i_blocks = z->z_capacity >> SECTOR_SHIFT;
677 	inode->i_private = z;
678 
679 	inode->i_op = &zonefs_file_inode_operations;
680 	inode->i_fop = &zonefs_file_operations;
681 	inode->i_mapping->a_ops = &zonefs_file_aops;
682 
683 	/* Update the inode access rights depending on the zone condition */
684 	zonefs_inode_update_mode(inode);
685 
686 	unlock_new_inode(inode);
687 
688 	return inode;
689 }
690 
691 static struct inode *zonefs_get_zgroup_inode(struct super_block *sb,
692 					     enum zonefs_ztype ztype)
693 {
694 	struct inode *root = d_inode(sb->s_root);
695 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
696 	struct inode *inode;
697 	ino_t ino = bdev_nr_zones(sb->s_bdev) + ztype + 1;
698 
699 	inode = iget_locked(sb, ino);
700 	if (!inode)
701 		return ERR_PTR(-ENOMEM);
702 	if (!(inode->i_state & I_NEW))
703 		return inode;
704 
705 	inode->i_ino = ino;
706 	inode_init_owner(&nop_mnt_idmap, inode, root, S_IFDIR | 0555);
707 	inode->i_size = sbi->s_zgroup[ztype].g_nr_zones;
708 	inode_set_mtime_to_ts(inode,
709 			      inode_set_atime_to_ts(inode, inode_set_ctime_to_ts(inode, inode_get_ctime(root))));
710 	inode->i_private = &sbi->s_zgroup[ztype];
711 	set_nlink(inode, 2);
712 
713 	inode->i_op = &zonefs_dir_inode_operations;
714 	inode->i_fop = &zonefs_dir_operations;
715 
716 	unlock_new_inode(inode);
717 
718 	return inode;
719 }
720 
721 
722 static struct inode *zonefs_get_dir_inode(struct inode *dir,
723 					  struct dentry *dentry)
724 {
725 	struct super_block *sb = dir->i_sb;
726 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
727 	const char *name = dentry->d_name.name;
728 	enum zonefs_ztype ztype;
729 
730 	/*
731 	 * We only need to check for the "seq" directory and
732 	 * the "cnv" directory if we have conventional zones.
733 	 */
734 	if (dentry->d_name.len != 3)
735 		return ERR_PTR(-ENOENT);
736 
737 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
738 		if (sbi->s_zgroup[ztype].g_nr_zones &&
739 		    memcmp(name, zonefs_zgroup_name(ztype), 3) == 0)
740 			break;
741 	}
742 	if (ztype == ZONEFS_ZTYPE_MAX)
743 		return ERR_PTR(-ENOENT);
744 
745 	return zonefs_get_zgroup_inode(sb, ztype);
746 }
747 
748 static struct dentry *zonefs_lookup(struct inode *dir, struct dentry *dentry,
749 				    unsigned int flags)
750 {
751 	struct inode *inode;
752 
753 	if (dentry->d_name.len > ZONEFS_NAME_MAX)
754 		return ERR_PTR(-ENAMETOOLONG);
755 
756 	if (dir == d_inode(dir->i_sb->s_root))
757 		inode = zonefs_get_dir_inode(dir, dentry);
758 	else
759 		inode = zonefs_get_file_inode(dir, dentry);
760 
761 	return d_splice_alias(inode, dentry);
762 }
763 
764 static int zonefs_readdir_root(struct file *file, struct dir_context *ctx)
765 {
766 	struct inode *inode = file_inode(file);
767 	struct super_block *sb = inode->i_sb;
768 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
769 	enum zonefs_ztype ztype = ZONEFS_ZTYPE_CNV;
770 	ino_t base_ino = bdev_nr_zones(sb->s_bdev) + 1;
771 
772 	if (ctx->pos >= inode->i_size)
773 		return 0;
774 
775 	if (!dir_emit_dots(file, ctx))
776 		return 0;
777 
778 	if (ctx->pos == 2) {
779 		if (!sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones)
780 			ztype = ZONEFS_ZTYPE_SEQ;
781 
782 		if (!dir_emit(ctx, zonefs_zgroup_name(ztype), 3,
783 			      base_ino + ztype, DT_DIR))
784 			return 0;
785 		ctx->pos++;
786 	}
787 
788 	if (ctx->pos == 3 && ztype != ZONEFS_ZTYPE_SEQ) {
789 		ztype = ZONEFS_ZTYPE_SEQ;
790 		if (!dir_emit(ctx, zonefs_zgroup_name(ztype), 3,
791 			      base_ino + ztype, DT_DIR))
792 			return 0;
793 		ctx->pos++;
794 	}
795 
796 	return 0;
797 }
798 
799 static int zonefs_readdir_zgroup(struct file *file,
800 				 struct dir_context *ctx)
801 {
802 	struct inode *inode = file_inode(file);
803 	struct zonefs_zone_group *zgroup = inode->i_private;
804 	struct super_block *sb = inode->i_sb;
805 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
806 	struct zonefs_zone *z;
807 	int fname_len;
808 	char *fname;
809 	ino_t ino;
810 	int f;
811 
812 	/*
813 	 * The size of zone group directories is equal to the number
814 	 * of zone files in the group and does note include the "." and
815 	 * ".." entries. Hence the "+ 2" here.
816 	 */
817 	if (ctx->pos >= inode->i_size + 2)
818 		return 0;
819 
820 	if (!dir_emit_dots(file, ctx))
821 		return 0;
822 
823 	fname = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
824 	if (!fname)
825 		return -ENOMEM;
826 
827 	for (f = ctx->pos - 2; f < zgroup->g_nr_zones; f++) {
828 		z = &zgroup->g_zones[f];
829 		ino = z->z_sector >> sbi->s_zone_sectors_shift;
830 		fname_len = snprintf(fname, ZONEFS_NAME_MAX - 1, "%u", f);
831 		if (!dir_emit(ctx, fname, fname_len, ino, DT_REG))
832 			break;
833 		ctx->pos++;
834 	}
835 
836 	kfree(fname);
837 
838 	return 0;
839 }
840 
841 static int zonefs_readdir(struct file *file, struct dir_context *ctx)
842 {
843 	struct inode *inode = file_inode(file);
844 
845 	if (inode == d_inode(inode->i_sb->s_root))
846 		return zonefs_readdir_root(file, ctx);
847 
848 	return zonefs_readdir_zgroup(file, ctx);
849 }
850 
851 const struct inode_operations zonefs_dir_inode_operations = {
852 	.lookup		= zonefs_lookup,
853 	.setattr	= zonefs_inode_setattr,
854 };
855 
856 const struct file_operations zonefs_dir_operations = {
857 	.llseek		= generic_file_llseek,
858 	.read		= generic_read_dir,
859 	.iterate_shared	= zonefs_readdir,
860 };
861 
862 struct zonefs_zone_data {
863 	struct super_block	*sb;
864 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
865 	sector_t		cnv_zone_start;
866 	struct blk_zone		*zones;
867 };
868 
869 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
870 				   void *data)
871 {
872 	struct zonefs_zone_data *zd = data;
873 	struct super_block *sb = zd->sb;
874 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
875 
876 	/*
877 	 * We do not care about the first zone: it contains the super block
878 	 * and not exposed as a file.
879 	 */
880 	if (!idx)
881 		return 0;
882 
883 	/*
884 	 * Count the number of zones that will be exposed as files.
885 	 * For sequential zones, we always have as many files as zones.
886 	 * FOr conventional zones, the number of files depends on if we have
887 	 * conventional zones aggregation enabled.
888 	 */
889 	switch (zone->type) {
890 	case BLK_ZONE_TYPE_CONVENTIONAL:
891 		if (sbi->s_features & ZONEFS_F_AGGRCNV) {
892 			/* One file per set of contiguous conventional zones */
893 			if (!(sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones) ||
894 			    zone->start != zd->cnv_zone_start)
895 				sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones++;
896 			zd->cnv_zone_start = zone->start + zone->len;
897 		} else {
898 			/* One file per zone */
899 			sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones++;
900 		}
901 		break;
902 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
903 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
904 		sbi->s_zgroup[ZONEFS_ZTYPE_SEQ].g_nr_zones++;
905 		break;
906 	default:
907 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
908 			   zone->type);
909 		return -EIO;
910 	}
911 
912 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
913 
914 	return 0;
915 }
916 
917 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
918 {
919 	struct block_device *bdev = zd->sb->s_bdev;
920 	int ret;
921 
922 	zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone),
923 			     GFP_KERNEL);
924 	if (!zd->zones)
925 		return -ENOMEM;
926 
927 	/* Get zones information from the device */
928 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
929 				  zonefs_get_zone_info_cb, zd);
930 	if (ret < 0) {
931 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
932 		return ret;
933 	}
934 
935 	if (ret != bdev_nr_zones(bdev)) {
936 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
937 			   ret, bdev_nr_zones(bdev));
938 		return -EIO;
939 	}
940 
941 	return 0;
942 }
943 
944 static inline void zonefs_free_zone_info(struct zonefs_zone_data *zd)
945 {
946 	kvfree(zd->zones);
947 }
948 
949 /*
950  * Create a zone group and populate it with zone files.
951  */
952 static int zonefs_init_zgroup(struct super_block *sb,
953 			      struct zonefs_zone_data *zd,
954 			      enum zonefs_ztype ztype)
955 {
956 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
957 	struct zonefs_zone_group *zgroup = &sbi->s_zgroup[ztype];
958 	struct blk_zone *zone, *next, *end;
959 	struct zonefs_zone *z;
960 	unsigned int n = 0;
961 	int ret;
962 
963 	/* Allocate the zone group. If it is empty, we have nothing to do. */
964 	if (!zgroup->g_nr_zones)
965 		return 0;
966 
967 	zgroup->g_zones = kvcalloc(zgroup->g_nr_zones,
968 				   sizeof(struct zonefs_zone), GFP_KERNEL);
969 	if (!zgroup->g_zones)
970 		return -ENOMEM;
971 
972 	/*
973 	 * Initialize the zone groups using the device zone information.
974 	 * We always skip the first zone as it contains the super block
975 	 * and is not use to back a file.
976 	 */
977 	end = zd->zones + bdev_nr_zones(sb->s_bdev);
978 	for (zone = &zd->zones[1]; zone < end; zone = next) {
979 
980 		next = zone + 1;
981 		if (zonefs_zone_type(zone) != ztype)
982 			continue;
983 
984 		if (WARN_ON_ONCE(n >= zgroup->g_nr_zones))
985 			return -EINVAL;
986 
987 		/*
988 		 * For conventional zones, contiguous zones can be aggregated
989 		 * together to form larger files. Note that this overwrites the
990 		 * length of the first zone of the set of contiguous zones
991 		 * aggregated together. If one offline or read-only zone is
992 		 * found, assume that all zones aggregated have the same
993 		 * condition.
994 		 */
995 		if (ztype == ZONEFS_ZTYPE_CNV &&
996 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
997 			for (; next < end; next++) {
998 				if (zonefs_zone_type(next) != ztype)
999 					break;
1000 				zone->len += next->len;
1001 				zone->capacity += next->capacity;
1002 				if (next->cond == BLK_ZONE_COND_READONLY &&
1003 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1004 					zone->cond = BLK_ZONE_COND_READONLY;
1005 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1006 					zone->cond = BLK_ZONE_COND_OFFLINE;
1007 			}
1008 		}
1009 
1010 		z = &zgroup->g_zones[n];
1011 		if (ztype == ZONEFS_ZTYPE_CNV)
1012 			z->z_flags |= ZONEFS_ZONE_CNV;
1013 		z->z_sector = zone->start;
1014 		z->z_size = zone->len << SECTOR_SHIFT;
1015 		if (z->z_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT &&
1016 		    !(sbi->s_features & ZONEFS_F_AGGRCNV)) {
1017 			zonefs_err(sb,
1018 				"Invalid zone size %llu (device zone sectors %llu)\n",
1019 				z->z_size,
1020 				bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT);
1021 			return -EINVAL;
1022 		}
1023 
1024 		z->z_capacity = min_t(loff_t, MAX_LFS_FILESIZE,
1025 				      zone->capacity << SECTOR_SHIFT);
1026 		z->z_wpoffset = zonefs_check_zone_condition(sb, z, zone);
1027 
1028 		z->z_mode = S_IFREG | sbi->s_perm;
1029 		z->z_uid = sbi->s_uid;
1030 		z->z_gid = sbi->s_gid;
1031 
1032 		/*
1033 		 * Let zonefs_inode_update_mode() know that we will need
1034 		 * special initialization of the inode mode the first time
1035 		 * it is accessed.
1036 		 */
1037 		z->z_flags |= ZONEFS_ZONE_INIT_MODE;
1038 
1039 		sb->s_maxbytes = max(z->z_capacity, sb->s_maxbytes);
1040 		sbi->s_blocks += z->z_capacity >> sb->s_blocksize_bits;
1041 		sbi->s_used_blocks += z->z_wpoffset >> sb->s_blocksize_bits;
1042 
1043 		/*
1044 		 * For sequential zones, make sure that any open zone is closed
1045 		 * first to ensure that the initial number of open zones is 0,
1046 		 * in sync with the open zone accounting done when the mount
1047 		 * option ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1048 		 */
1049 		if (ztype == ZONEFS_ZTYPE_SEQ &&
1050 		    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1051 		     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1052 			ret = zonefs_zone_mgmt(sb, z, REQ_OP_ZONE_CLOSE);
1053 			if (ret)
1054 				return ret;
1055 		}
1056 
1057 		zonefs_account_active(sb, z);
1058 
1059 		n++;
1060 	}
1061 
1062 	if (WARN_ON_ONCE(n != zgroup->g_nr_zones))
1063 		return -EINVAL;
1064 
1065 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1066 		    zonefs_zgroup_name(ztype),
1067 		    zgroup->g_nr_zones,
1068 		    zgroup->g_nr_zones > 1 ? "s" : "");
1069 
1070 	return 0;
1071 }
1072 
1073 static void zonefs_free_zgroups(struct super_block *sb)
1074 {
1075 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1076 	enum zonefs_ztype ztype;
1077 
1078 	if (!sbi)
1079 		return;
1080 
1081 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1082 		kvfree(sbi->s_zgroup[ztype].g_zones);
1083 		sbi->s_zgroup[ztype].g_zones = NULL;
1084 	}
1085 }
1086 
1087 /*
1088  * Create a zone group and populate it with zone files.
1089  */
1090 static int zonefs_init_zgroups(struct super_block *sb)
1091 {
1092 	struct zonefs_zone_data zd;
1093 	enum zonefs_ztype ztype;
1094 	int ret;
1095 
1096 	/* First get the device zone information */
1097 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1098 	zd.sb = sb;
1099 	ret = zonefs_get_zone_info(&zd);
1100 	if (ret)
1101 		goto cleanup;
1102 
1103 	/* Allocate and initialize the zone groups */
1104 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1105 		ret = zonefs_init_zgroup(sb, &zd, ztype);
1106 		if (ret) {
1107 			zonefs_info(sb,
1108 				    "Zone group \"%s\" initialization failed\n",
1109 				    zonefs_zgroup_name(ztype));
1110 			break;
1111 		}
1112 	}
1113 
1114 cleanup:
1115 	zonefs_free_zone_info(&zd);
1116 	if (ret)
1117 		zonefs_free_zgroups(sb);
1118 
1119 	return ret;
1120 }
1121 
1122 /*
1123  * Read super block information from the device.
1124  */
1125 static int zonefs_read_super(struct super_block *sb)
1126 {
1127 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1128 	struct zonefs_super *super;
1129 	u32 crc, stored_crc;
1130 	struct page *page;
1131 	struct bio_vec bio_vec;
1132 	struct bio bio;
1133 	int ret;
1134 
1135 	page = alloc_page(GFP_KERNEL);
1136 	if (!page)
1137 		return -ENOMEM;
1138 
1139 	bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1140 	bio.bi_iter.bi_sector = 0;
1141 	__bio_add_page(&bio, page, PAGE_SIZE, 0);
1142 
1143 	ret = submit_bio_wait(&bio);
1144 	if (ret)
1145 		goto free_page;
1146 
1147 	super = page_address(page);
1148 
1149 	ret = -EINVAL;
1150 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1151 		goto free_page;
1152 
1153 	stored_crc = le32_to_cpu(super->s_crc);
1154 	super->s_crc = 0;
1155 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1156 	if (crc != stored_crc) {
1157 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1158 			   crc, stored_crc);
1159 		goto free_page;
1160 	}
1161 
1162 	sbi->s_features = le64_to_cpu(super->s_features);
1163 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1164 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1165 			   sbi->s_features);
1166 		goto free_page;
1167 	}
1168 
1169 	if (sbi->s_features & ZONEFS_F_UID) {
1170 		sbi->s_uid = make_kuid(current_user_ns(),
1171 				       le32_to_cpu(super->s_uid));
1172 		if (!uid_valid(sbi->s_uid)) {
1173 			zonefs_err(sb, "Invalid UID feature\n");
1174 			goto free_page;
1175 		}
1176 	}
1177 
1178 	if (sbi->s_features & ZONEFS_F_GID) {
1179 		sbi->s_gid = make_kgid(current_user_ns(),
1180 				       le32_to_cpu(super->s_gid));
1181 		if (!gid_valid(sbi->s_gid)) {
1182 			zonefs_err(sb, "Invalid GID feature\n");
1183 			goto free_page;
1184 		}
1185 	}
1186 
1187 	if (sbi->s_features & ZONEFS_F_PERM)
1188 		sbi->s_perm = le32_to_cpu(super->s_perm);
1189 
1190 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1191 		zonefs_err(sb, "Reserved area is being used\n");
1192 		goto free_page;
1193 	}
1194 
1195 	import_uuid(&sbi->s_uuid, super->s_uuid);
1196 	ret = 0;
1197 
1198 free_page:
1199 	__free_page(page);
1200 
1201 	return ret;
1202 }
1203 
1204 static const struct super_operations zonefs_sops = {
1205 	.alloc_inode	= zonefs_alloc_inode,
1206 	.free_inode	= zonefs_free_inode,
1207 	.statfs		= zonefs_statfs,
1208 	.remount_fs	= zonefs_remount,
1209 	.show_options	= zonefs_show_options,
1210 };
1211 
1212 static int zonefs_get_zgroup_inodes(struct super_block *sb)
1213 {
1214 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1215 	struct inode *dir_inode;
1216 	enum zonefs_ztype ztype;
1217 
1218 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1219 		if (!sbi->s_zgroup[ztype].g_nr_zones)
1220 			continue;
1221 
1222 		dir_inode = zonefs_get_zgroup_inode(sb, ztype);
1223 		if (IS_ERR(dir_inode))
1224 			return PTR_ERR(dir_inode);
1225 
1226 		sbi->s_zgroup[ztype].g_inode = dir_inode;
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static void zonefs_release_zgroup_inodes(struct super_block *sb)
1233 {
1234 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1235 	enum zonefs_ztype ztype;
1236 
1237 	if (!sbi)
1238 		return;
1239 
1240 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1241 		if (sbi->s_zgroup[ztype].g_inode) {
1242 			iput(sbi->s_zgroup[ztype].g_inode);
1243 			sbi->s_zgroup[ztype].g_inode = NULL;
1244 		}
1245 	}
1246 }
1247 
1248 /*
1249  * Check that the device is zoned. If it is, get the list of zones and create
1250  * sub-directories and files according to the device zone configuration and
1251  * format options.
1252  */
1253 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1254 {
1255 	struct zonefs_sb_info *sbi;
1256 	struct inode *inode;
1257 	enum zonefs_ztype ztype;
1258 	int ret;
1259 
1260 	if (!bdev_is_zoned(sb->s_bdev)) {
1261 		zonefs_err(sb, "Not a zoned block device\n");
1262 		return -EINVAL;
1263 	}
1264 
1265 	/*
1266 	 * Initialize super block information: the maximum file size is updated
1267 	 * when the zone files are created so that the format option
1268 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1269 	 * beyond the zone size is taken into account.
1270 	 */
1271 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1272 	if (!sbi)
1273 		return -ENOMEM;
1274 
1275 	spin_lock_init(&sbi->s_lock);
1276 	sb->s_fs_info = sbi;
1277 	sb->s_magic = ZONEFS_MAGIC;
1278 	sb->s_maxbytes = 0;
1279 	sb->s_op = &zonefs_sops;
1280 	sb->s_time_gran	= 1;
1281 
1282 	/*
1283 	 * The block size is set to the device zone write granularity to ensure
1284 	 * that write operations are always aligned according to the device
1285 	 * interface constraints.
1286 	 */
1287 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1288 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1289 	sbi->s_uid = GLOBAL_ROOT_UID;
1290 	sbi->s_gid = GLOBAL_ROOT_GID;
1291 	sbi->s_perm = 0640;
1292 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1293 
1294 	atomic_set(&sbi->s_wro_seq_files, 0);
1295 	sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev);
1296 	atomic_set(&sbi->s_active_seq_files, 0);
1297 	sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev);
1298 
1299 	ret = zonefs_read_super(sb);
1300 	if (ret)
1301 		return ret;
1302 
1303 	ret = zonefs_parse_options(sb, data);
1304 	if (ret)
1305 		return ret;
1306 
1307 	zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev));
1308 
1309 	if (!sbi->s_max_wro_seq_files &&
1310 	    !sbi->s_max_active_seq_files &&
1311 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1312 		zonefs_info(sb,
1313 			"No open and active zone limits. Ignoring explicit_open mount option\n");
1314 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1315 	}
1316 
1317 	/* Initialize the zone groups */
1318 	ret = zonefs_init_zgroups(sb);
1319 	if (ret)
1320 		goto cleanup;
1321 
1322 	/* Create the root directory inode */
1323 	ret = -ENOMEM;
1324 	inode = new_inode(sb);
1325 	if (!inode)
1326 		goto cleanup;
1327 
1328 	inode->i_ino = bdev_nr_zones(sb->s_bdev);
1329 	inode->i_mode = S_IFDIR | 0555;
1330 	simple_inode_init_ts(inode);
1331 	inode->i_op = &zonefs_dir_inode_operations;
1332 	inode->i_fop = &zonefs_dir_operations;
1333 	inode->i_size = 2;
1334 	set_nlink(inode, 2);
1335 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1336 		if (sbi->s_zgroup[ztype].g_nr_zones) {
1337 			inc_nlink(inode);
1338 			inode->i_size++;
1339 		}
1340 	}
1341 
1342 	sb->s_root = d_make_root(inode);
1343 	if (!sb->s_root)
1344 		goto cleanup;
1345 
1346 	/*
1347 	 * Take a reference on the zone groups directory inodes
1348 	 * to keep them in the inode cache.
1349 	 */
1350 	ret = zonefs_get_zgroup_inodes(sb);
1351 	if (ret)
1352 		goto cleanup;
1353 
1354 	ret = zonefs_sysfs_register(sb);
1355 	if (ret)
1356 		goto cleanup;
1357 
1358 	return 0;
1359 
1360 cleanup:
1361 	zonefs_release_zgroup_inodes(sb);
1362 	zonefs_free_zgroups(sb);
1363 
1364 	return ret;
1365 }
1366 
1367 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1368 				   int flags, const char *dev_name, void *data)
1369 {
1370 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1371 }
1372 
1373 static void zonefs_kill_super(struct super_block *sb)
1374 {
1375 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1376 
1377 	/* Release the reference on the zone group directory inodes */
1378 	zonefs_release_zgroup_inodes(sb);
1379 
1380 	kill_block_super(sb);
1381 
1382 	zonefs_sysfs_unregister(sb);
1383 	zonefs_free_zgroups(sb);
1384 	kfree(sbi);
1385 }
1386 
1387 /*
1388  * File system definition and registration.
1389  */
1390 static struct file_system_type zonefs_type = {
1391 	.owner		= THIS_MODULE,
1392 	.name		= "zonefs",
1393 	.mount		= zonefs_mount,
1394 	.kill_sb	= zonefs_kill_super,
1395 	.fs_flags	= FS_REQUIRES_DEV,
1396 };
1397 
1398 static int __init zonefs_init_inodecache(void)
1399 {
1400 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1401 			sizeof(struct zonefs_inode_info), 0,
1402 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1403 			NULL);
1404 	if (zonefs_inode_cachep == NULL)
1405 		return -ENOMEM;
1406 	return 0;
1407 }
1408 
1409 static void zonefs_destroy_inodecache(void)
1410 {
1411 	/*
1412 	 * Make sure all delayed rcu free inodes are flushed before we
1413 	 * destroy the inode cache.
1414 	 */
1415 	rcu_barrier();
1416 	kmem_cache_destroy(zonefs_inode_cachep);
1417 }
1418 
1419 static int __init zonefs_init(void)
1420 {
1421 	int ret;
1422 
1423 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1424 
1425 	ret = zonefs_init_inodecache();
1426 	if (ret)
1427 		return ret;
1428 
1429 	ret = zonefs_sysfs_init();
1430 	if (ret)
1431 		goto destroy_inodecache;
1432 
1433 	ret = register_filesystem(&zonefs_type);
1434 	if (ret)
1435 		goto sysfs_exit;
1436 
1437 	return 0;
1438 
1439 sysfs_exit:
1440 	zonefs_sysfs_exit();
1441 destroy_inodecache:
1442 	zonefs_destroy_inodecache();
1443 
1444 	return ret;
1445 }
1446 
1447 static void __exit zonefs_exit(void)
1448 {
1449 	unregister_filesystem(&zonefs_type);
1450 	zonefs_sysfs_exit();
1451 	zonefs_destroy_inodecache();
1452 }
1453 
1454 MODULE_AUTHOR("Damien Le Moal");
1455 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1456 MODULE_LICENSE("GPL");
1457 MODULE_ALIAS_FS("zonefs");
1458 module_init(zonefs_init);
1459 module_exit(zonefs_exit);
1460