xref: /linux/fs/xfs/xfs_mount.c (revision 54f5a57e266318d72f84fda95805099986a7e201)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_dinode.h"
45 
46 
47 #ifdef HAVE_PERCPU_SB
48 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 						int);
50 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 						int);
52 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
54 
55 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
57 #endif
58 
59 static DEFINE_MUTEX(xfs_uuid_table_mutex);
60 static int xfs_uuid_table_size;
61 static uuid_t *xfs_uuid_table;
62 
63 /*
64  * See if the UUID is unique among mounted XFS filesystems.
65  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66  */
67 STATIC int
68 xfs_uuid_mount(
69 	struct xfs_mount	*mp)
70 {
71 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
72 	int			hole, i;
73 
74 	if (mp->m_flags & XFS_MOUNT_NOUUID)
75 		return 0;
76 
77 	if (uuid_is_nil(uuid)) {
78 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
79 		return XFS_ERROR(EINVAL);
80 	}
81 
82 	mutex_lock(&xfs_uuid_table_mutex);
83 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
84 		if (uuid_is_nil(&xfs_uuid_table[i])) {
85 			hole = i;
86 			continue;
87 		}
88 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
89 			goto out_duplicate;
90 	}
91 
92 	if (hole < 0) {
93 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
94 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
95 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
96 			KM_SLEEP);
97 		hole = xfs_uuid_table_size++;
98 	}
99 	xfs_uuid_table[hole] = *uuid;
100 	mutex_unlock(&xfs_uuid_table_mutex);
101 
102 	return 0;
103 
104  out_duplicate:
105 	mutex_unlock(&xfs_uuid_table_mutex);
106 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 	return XFS_ERROR(EINVAL);
108 }
109 
110 STATIC void
111 xfs_uuid_unmount(
112 	struct xfs_mount	*mp)
113 {
114 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
115 	int			i;
116 
117 	if (mp->m_flags & XFS_MOUNT_NOUUID)
118 		return;
119 
120 	mutex_lock(&xfs_uuid_table_mutex);
121 	for (i = 0; i < xfs_uuid_table_size; i++) {
122 		if (uuid_is_nil(&xfs_uuid_table[i]))
123 			continue;
124 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 			continue;
126 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 		break;
128 	}
129 	ASSERT(i < xfs_uuid_table_size);
130 	mutex_unlock(&xfs_uuid_table_mutex);
131 }
132 
133 
134 STATIC void
135 __xfs_free_perag(
136 	struct rcu_head	*head)
137 {
138 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139 
140 	ASSERT(atomic_read(&pag->pag_ref) == 0);
141 	kmem_free(pag);
142 }
143 
144 /*
145  * Free up the per-ag resources associated with the mount structure.
146  */
147 STATIC void
148 xfs_free_perag(
149 	xfs_mount_t	*mp)
150 {
151 	xfs_agnumber_t	agno;
152 	struct xfs_perag *pag;
153 
154 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 		spin_lock(&mp->m_perag_lock);
156 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 		spin_unlock(&mp->m_perag_lock);
158 		ASSERT(pag);
159 		ASSERT(atomic_read(&pag->pag_ref) == 0);
160 		call_rcu(&pag->rcu_head, __xfs_free_perag);
161 	}
162 }
163 
164 /*
165  * Check size of device based on the (data/realtime) block count.
166  * Note: this check is used by the growfs code as well as mount.
167  */
168 int
169 xfs_sb_validate_fsb_count(
170 	xfs_sb_t	*sbp,
171 	__uint64_t	nblocks)
172 {
173 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
175 
176 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
177 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 		return EFBIG;
179 #else                  /* Limited by UINT_MAX of sectors */
180 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
181 		return EFBIG;
182 #endif
183 	return 0;
184 }
185 
186 int
187 xfs_initialize_perag(
188 	xfs_mount_t	*mp,
189 	xfs_agnumber_t	agcount,
190 	xfs_agnumber_t	*maxagi)
191 {
192 	xfs_agnumber_t	index;
193 	xfs_agnumber_t	first_initialised = 0;
194 	xfs_perag_t	*pag;
195 	xfs_agino_t	agino;
196 	xfs_ino_t	ino;
197 	xfs_sb_t	*sbp = &mp->m_sb;
198 	int		error = -ENOMEM;
199 
200 	/*
201 	 * Walk the current per-ag tree so we don't try to initialise AGs
202 	 * that already exist (growfs case). Allocate and insert all the
203 	 * AGs we don't find ready for initialisation.
204 	 */
205 	for (index = 0; index < agcount; index++) {
206 		pag = xfs_perag_get(mp, index);
207 		if (pag) {
208 			xfs_perag_put(pag);
209 			continue;
210 		}
211 		if (!first_initialised)
212 			first_initialised = index;
213 
214 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
215 		if (!pag)
216 			goto out_unwind;
217 		pag->pag_agno = index;
218 		pag->pag_mount = mp;
219 		spin_lock_init(&pag->pag_ici_lock);
220 		mutex_init(&pag->pag_ici_reclaim_lock);
221 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
222 		spin_lock_init(&pag->pag_buf_lock);
223 		pag->pag_buf_tree = RB_ROOT;
224 
225 		if (radix_tree_preload(GFP_NOFS))
226 			goto out_unwind;
227 
228 		spin_lock(&mp->m_perag_lock);
229 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
230 			BUG();
231 			spin_unlock(&mp->m_perag_lock);
232 			radix_tree_preload_end();
233 			error = -EEXIST;
234 			goto out_unwind;
235 		}
236 		spin_unlock(&mp->m_perag_lock);
237 		radix_tree_preload_end();
238 	}
239 
240 	/*
241 	 * If we mount with the inode64 option, or no inode overflows
242 	 * the legacy 32-bit address space clear the inode32 option.
243 	 */
244 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
245 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
246 
247 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
248 		mp->m_flags |= XFS_MOUNT_32BITINODES;
249 	else
250 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
251 
252 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
253 		index = xfs_set_inode32(mp);
254 	else
255 		index = xfs_set_inode64(mp);
256 
257 	if (maxagi)
258 		*maxagi = index;
259 	return 0;
260 
261 out_unwind:
262 	kmem_free(pag);
263 	for (; index > first_initialised; index--) {
264 		pag = radix_tree_delete(&mp->m_perag_tree, index);
265 		kmem_free(pag);
266 	}
267 	return error;
268 }
269 
270 /*
271  * xfs_readsb
272  *
273  * Does the initial read of the superblock.
274  */
275 int
276 xfs_readsb(
277 	struct xfs_mount *mp,
278 	int		flags)
279 {
280 	unsigned int	sector_size;
281 	struct xfs_buf	*bp;
282 	struct xfs_sb	*sbp = &mp->m_sb;
283 	int		error;
284 	int		loud = !(flags & XFS_MFSI_QUIET);
285 	const struct xfs_buf_ops *buf_ops;
286 
287 	ASSERT(mp->m_sb_bp == NULL);
288 	ASSERT(mp->m_ddev_targp != NULL);
289 
290 	/*
291 	 * For the initial read, we must guess at the sector
292 	 * size based on the block device.  It's enough to
293 	 * get the sb_sectsize out of the superblock and
294 	 * then reread with the proper length.
295 	 * We don't verify it yet, because it may not be complete.
296 	 */
297 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
298 	buf_ops = NULL;
299 
300 	/*
301 	 * Allocate a (locked) buffer to hold the superblock.
302 	 * This will be kept around at all times to optimize
303 	 * access to the superblock.
304 	 */
305 reread:
306 	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
307 				   BTOBB(sector_size), 0, buf_ops);
308 	if (!bp) {
309 		if (loud)
310 			xfs_warn(mp, "SB buffer read failed");
311 		return EIO;
312 	}
313 	if (bp->b_error) {
314 		error = bp->b_error;
315 		if (loud)
316 			xfs_warn(mp, "SB validate failed with error %d.", error);
317 		goto release_buf;
318 	}
319 
320 	/*
321 	 * Initialize the mount structure from the superblock.
322 	 */
323 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
324 	xfs_sb_quota_from_disk(&mp->m_sb);
325 
326 	/*
327 	 * We must be able to do sector-sized and sector-aligned IO.
328 	 */
329 	if (sector_size > sbp->sb_sectsize) {
330 		if (loud)
331 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 				sector_size, sbp->sb_sectsize);
333 		error = ENOSYS;
334 		goto release_buf;
335 	}
336 
337 	/*
338 	 * Re-read the superblock so the buffer is correctly sized,
339 	 * and properly verified.
340 	 */
341 	if (buf_ops == NULL) {
342 		xfs_buf_relse(bp);
343 		sector_size = sbp->sb_sectsize;
344 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 		goto reread;
346 	}
347 
348 	/* Initialize per-cpu counters */
349 	xfs_icsb_reinit_counters(mp);
350 
351 	/* no need to be quiet anymore, so reset the buf ops */
352 	bp->b_ops = &xfs_sb_buf_ops;
353 
354 	mp->m_sb_bp = bp;
355 	xfs_buf_unlock(bp);
356 	return 0;
357 
358 release_buf:
359 	xfs_buf_relse(bp);
360 	return error;
361 }
362 
363 /*
364  * Update alignment values based on mount options and sb values
365  */
366 STATIC int
367 xfs_update_alignment(xfs_mount_t *mp)
368 {
369 	xfs_sb_t	*sbp = &(mp->m_sb);
370 
371 	if (mp->m_dalign) {
372 		/*
373 		 * If stripe unit and stripe width are not multiples
374 		 * of the fs blocksize turn off alignment.
375 		 */
376 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
377 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
378 			xfs_warn(mp,
379 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
380 				sbp->sb_blocksize);
381 			return XFS_ERROR(EINVAL);
382 		} else {
383 			/*
384 			 * Convert the stripe unit and width to FSBs.
385 			 */
386 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
387 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
388 				xfs_warn(mp,
389 			"alignment check failed: sunit/swidth vs. agsize(%d)",
390 					 sbp->sb_agblocks);
391 				return XFS_ERROR(EINVAL);
392 			} else if (mp->m_dalign) {
393 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
394 			} else {
395 				xfs_warn(mp,
396 			"alignment check failed: sunit(%d) less than bsize(%d)",
397 					 mp->m_dalign, sbp->sb_blocksize);
398 				return XFS_ERROR(EINVAL);
399 			}
400 		}
401 
402 		/*
403 		 * Update superblock with new values
404 		 * and log changes
405 		 */
406 		if (xfs_sb_version_hasdalign(sbp)) {
407 			if (sbp->sb_unit != mp->m_dalign) {
408 				sbp->sb_unit = mp->m_dalign;
409 				mp->m_update_flags |= XFS_SB_UNIT;
410 			}
411 			if (sbp->sb_width != mp->m_swidth) {
412 				sbp->sb_width = mp->m_swidth;
413 				mp->m_update_flags |= XFS_SB_WIDTH;
414 			}
415 		} else {
416 			xfs_warn(mp,
417 	"cannot change alignment: superblock does not support data alignment");
418 			return XFS_ERROR(EINVAL);
419 		}
420 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
421 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
422 			mp->m_dalign = sbp->sb_unit;
423 			mp->m_swidth = sbp->sb_width;
424 	}
425 
426 	return 0;
427 }
428 
429 /*
430  * Set the maximum inode count for this filesystem
431  */
432 STATIC void
433 xfs_set_maxicount(xfs_mount_t *mp)
434 {
435 	xfs_sb_t	*sbp = &(mp->m_sb);
436 	__uint64_t	icount;
437 
438 	if (sbp->sb_imax_pct) {
439 		/*
440 		 * Make sure the maximum inode count is a multiple
441 		 * of the units we allocate inodes in.
442 		 */
443 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
444 		do_div(icount, 100);
445 		do_div(icount, mp->m_ialloc_blks);
446 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
447 				   sbp->sb_inopblog;
448 	} else {
449 		mp->m_maxicount = 0;
450 	}
451 }
452 
453 /*
454  * Set the default minimum read and write sizes unless
455  * already specified in a mount option.
456  * We use smaller I/O sizes when the file system
457  * is being used for NFS service (wsync mount option).
458  */
459 STATIC void
460 xfs_set_rw_sizes(xfs_mount_t *mp)
461 {
462 	xfs_sb_t	*sbp = &(mp->m_sb);
463 	int		readio_log, writeio_log;
464 
465 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
466 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
467 			readio_log = XFS_WSYNC_READIO_LOG;
468 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
469 		} else {
470 			readio_log = XFS_READIO_LOG_LARGE;
471 			writeio_log = XFS_WRITEIO_LOG_LARGE;
472 		}
473 	} else {
474 		readio_log = mp->m_readio_log;
475 		writeio_log = mp->m_writeio_log;
476 	}
477 
478 	if (sbp->sb_blocklog > readio_log) {
479 		mp->m_readio_log = sbp->sb_blocklog;
480 	} else {
481 		mp->m_readio_log = readio_log;
482 	}
483 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
484 	if (sbp->sb_blocklog > writeio_log) {
485 		mp->m_writeio_log = sbp->sb_blocklog;
486 	} else {
487 		mp->m_writeio_log = writeio_log;
488 	}
489 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
490 }
491 
492 /*
493  * precalculate the low space thresholds for dynamic speculative preallocation.
494  */
495 void
496 xfs_set_low_space_thresholds(
497 	struct xfs_mount	*mp)
498 {
499 	int i;
500 
501 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
502 		__uint64_t space = mp->m_sb.sb_dblocks;
503 
504 		do_div(space, 100);
505 		mp->m_low_space[i] = space * (i + 1);
506 	}
507 }
508 
509 
510 /*
511  * Set whether we're using inode alignment.
512  */
513 STATIC void
514 xfs_set_inoalignment(xfs_mount_t *mp)
515 {
516 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
517 	    mp->m_sb.sb_inoalignmt >=
518 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
519 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
520 	else
521 		mp->m_inoalign_mask = 0;
522 	/*
523 	 * If we are using stripe alignment, check whether
524 	 * the stripe unit is a multiple of the inode alignment
525 	 */
526 	if (mp->m_dalign && mp->m_inoalign_mask &&
527 	    !(mp->m_dalign & mp->m_inoalign_mask))
528 		mp->m_sinoalign = mp->m_dalign;
529 	else
530 		mp->m_sinoalign = 0;
531 }
532 
533 /*
534  * Check that the data (and log if separate) is an ok size.
535  */
536 STATIC int
537 xfs_check_sizes(xfs_mount_t *mp)
538 {
539 	xfs_buf_t	*bp;
540 	xfs_daddr_t	d;
541 
542 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
543 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
544 		xfs_warn(mp, "filesystem size mismatch detected");
545 		return XFS_ERROR(EFBIG);
546 	}
547 	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
548 					d - XFS_FSS_TO_BB(mp, 1),
549 					XFS_FSS_TO_BB(mp, 1), 0, NULL);
550 	if (!bp) {
551 		xfs_warn(mp, "last sector read failed");
552 		return EIO;
553 	}
554 	xfs_buf_relse(bp);
555 
556 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
557 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
558 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
559 			xfs_warn(mp, "log size mismatch detected");
560 			return XFS_ERROR(EFBIG);
561 		}
562 		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
563 					d - XFS_FSB_TO_BB(mp, 1),
564 					XFS_FSB_TO_BB(mp, 1), 0, NULL);
565 		if (!bp) {
566 			xfs_warn(mp, "log device read failed");
567 			return EIO;
568 		}
569 		xfs_buf_relse(bp);
570 	}
571 	return 0;
572 }
573 
574 /*
575  * Clear the quotaflags in memory and in the superblock.
576  */
577 int
578 xfs_mount_reset_sbqflags(
579 	struct xfs_mount	*mp)
580 {
581 	int			error;
582 	struct xfs_trans	*tp;
583 
584 	mp->m_qflags = 0;
585 
586 	/*
587 	 * It is OK to look at sb_qflags here in mount path,
588 	 * without m_sb_lock.
589 	 */
590 	if (mp->m_sb.sb_qflags == 0)
591 		return 0;
592 	spin_lock(&mp->m_sb_lock);
593 	mp->m_sb.sb_qflags = 0;
594 	spin_unlock(&mp->m_sb_lock);
595 
596 	/*
597 	 * If the fs is readonly, let the incore superblock run
598 	 * with quotas off but don't flush the update out to disk
599 	 */
600 	if (mp->m_flags & XFS_MOUNT_RDONLY)
601 		return 0;
602 
603 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
604 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
605 	if (error) {
606 		xfs_trans_cancel(tp, 0);
607 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
608 		return error;
609 	}
610 
611 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
612 	return xfs_trans_commit(tp, 0);
613 }
614 
615 __uint64_t
616 xfs_default_resblks(xfs_mount_t *mp)
617 {
618 	__uint64_t resblks;
619 
620 	/*
621 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
622 	 * smaller.  This is intended to cover concurrent allocation
623 	 * transactions when we initially hit enospc. These each require a 4
624 	 * block reservation. Hence by default we cover roughly 2000 concurrent
625 	 * allocation reservations.
626 	 */
627 	resblks = mp->m_sb.sb_dblocks;
628 	do_div(resblks, 20);
629 	resblks = min_t(__uint64_t, resblks, 8192);
630 	return resblks;
631 }
632 
633 /*
634  * This function does the following on an initial mount of a file system:
635  *	- reads the superblock from disk and init the mount struct
636  *	- if we're a 32-bit kernel, do a size check on the superblock
637  *		so we don't mount terabyte filesystems
638  *	- init mount struct realtime fields
639  *	- allocate inode hash table for fs
640  *	- init directory manager
641  *	- perform recovery and init the log manager
642  */
643 int
644 xfs_mountfs(
645 	xfs_mount_t	*mp)
646 {
647 	xfs_sb_t	*sbp = &(mp->m_sb);
648 	xfs_inode_t	*rip;
649 	__uint64_t	resblks;
650 	uint		quotamount = 0;
651 	uint		quotaflags = 0;
652 	int		error = 0;
653 
654 	xfs_sb_mount_common(mp, sbp);
655 
656 	/*
657 	 * Check for a mismatched features2 values.  Older kernels
658 	 * read & wrote into the wrong sb offset for sb_features2
659 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
660 	 * when sb_features2 was added, which made older superblock
661 	 * reading/writing routines swap it as a 64-bit value.
662 	 *
663 	 * For backwards compatibility, we make both slots equal.
664 	 *
665 	 * If we detect a mismatched field, we OR the set bits into the
666 	 * existing features2 field in case it has already been modified; we
667 	 * don't want to lose any features.  We then update the bad location
668 	 * with the ORed value so that older kernels will see any features2
669 	 * flags, and mark the two fields as needing updates once the
670 	 * transaction subsystem is online.
671 	 */
672 	if (xfs_sb_has_mismatched_features2(sbp)) {
673 		xfs_warn(mp, "correcting sb_features alignment problem");
674 		sbp->sb_features2 |= sbp->sb_bad_features2;
675 		sbp->sb_bad_features2 = sbp->sb_features2;
676 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
677 
678 		/*
679 		 * Re-check for ATTR2 in case it was found in bad_features2
680 		 * slot.
681 		 */
682 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
683 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
684 			mp->m_flags |= XFS_MOUNT_ATTR2;
685 	}
686 
687 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
688 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
689 		xfs_sb_version_removeattr2(&mp->m_sb);
690 		mp->m_update_flags |= XFS_SB_FEATURES2;
691 
692 		/* update sb_versionnum for the clearing of the morebits */
693 		if (!sbp->sb_features2)
694 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
695 	}
696 
697 	/*
698 	 * Check if sb_agblocks is aligned at stripe boundary
699 	 * If sb_agblocks is NOT aligned turn off m_dalign since
700 	 * allocator alignment is within an ag, therefore ag has
701 	 * to be aligned at stripe boundary.
702 	 */
703 	error = xfs_update_alignment(mp);
704 	if (error)
705 		goto out;
706 
707 	xfs_alloc_compute_maxlevels(mp);
708 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
709 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
710 	xfs_ialloc_compute_maxlevels(mp);
711 
712 	xfs_set_maxicount(mp);
713 
714 	error = xfs_uuid_mount(mp);
715 	if (error)
716 		goto out;
717 
718 	/*
719 	 * Set the minimum read and write sizes
720 	 */
721 	xfs_set_rw_sizes(mp);
722 
723 	/* set the low space thresholds for dynamic preallocation */
724 	xfs_set_low_space_thresholds(mp);
725 
726 	/*
727 	 * Set the inode cluster size.
728 	 * This may still be overridden by the file system
729 	 * block size if it is larger than the chosen cluster size.
730 	 *
731 	 * For v5 filesystems, scale the cluster size with the inode size to
732 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
733 	 * has set the inode alignment value appropriately for larger cluster
734 	 * sizes.
735 	 */
736 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
737 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
738 		int	new_size = mp->m_inode_cluster_size;
739 
740 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
741 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
742 			mp->m_inode_cluster_size = new_size;
743 		xfs_info(mp, "Using inode cluster size of %d bytes",
744 			 mp->m_inode_cluster_size);
745 	}
746 
747 	/*
748 	 * Set inode alignment fields
749 	 */
750 	xfs_set_inoalignment(mp);
751 
752 	/*
753 	 * Check that the data (and log if separate) is an ok size.
754 	 */
755 	error = xfs_check_sizes(mp);
756 	if (error)
757 		goto out_remove_uuid;
758 
759 	/*
760 	 * Initialize realtime fields in the mount structure
761 	 */
762 	error = xfs_rtmount_init(mp);
763 	if (error) {
764 		xfs_warn(mp, "RT mount failed");
765 		goto out_remove_uuid;
766 	}
767 
768 	/*
769 	 *  Copies the low order bits of the timestamp and the randomly
770 	 *  set "sequence" number out of a UUID.
771 	 */
772 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
773 
774 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
775 
776 	xfs_dir_mount(mp);
777 
778 	/*
779 	 * Initialize the attribute manager's entries.
780 	 */
781 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
782 
783 	/*
784 	 * Initialize the precomputed transaction reservations values.
785 	 */
786 	xfs_trans_init(mp);
787 
788 	/*
789 	 * Allocate and initialize the per-ag data.
790 	 */
791 	spin_lock_init(&mp->m_perag_lock);
792 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
793 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
794 	if (error) {
795 		xfs_warn(mp, "Failed per-ag init: %d", error);
796 		goto out_remove_uuid;
797 	}
798 
799 	if (!sbp->sb_logblocks) {
800 		xfs_warn(mp, "no log defined");
801 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
802 		error = XFS_ERROR(EFSCORRUPTED);
803 		goto out_free_perag;
804 	}
805 
806 	/*
807 	 * log's mount-time initialization. Perform 1st part recovery if needed
808 	 */
809 	error = xfs_log_mount(mp, mp->m_logdev_targp,
810 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
811 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
812 	if (error) {
813 		xfs_warn(mp, "log mount failed");
814 		goto out_fail_wait;
815 	}
816 
817 	/*
818 	 * Now the log is mounted, we know if it was an unclean shutdown or
819 	 * not. If it was, with the first phase of recovery has completed, we
820 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
821 	 * but they are recovered transactionally in the second recovery phase
822 	 * later.
823 	 *
824 	 * Hence we can safely re-initialise incore superblock counters from
825 	 * the per-ag data. These may not be correct if the filesystem was not
826 	 * cleanly unmounted, so we need to wait for recovery to finish before
827 	 * doing this.
828 	 *
829 	 * If the filesystem was cleanly unmounted, then we can trust the
830 	 * values in the superblock to be correct and we don't need to do
831 	 * anything here.
832 	 *
833 	 * If we are currently making the filesystem, the initialisation will
834 	 * fail as the perag data is in an undefined state.
835 	 */
836 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
837 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
838 	     !mp->m_sb.sb_inprogress) {
839 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
840 		if (error)
841 			goto out_fail_wait;
842 	}
843 
844 	/*
845 	 * Get and sanity-check the root inode.
846 	 * Save the pointer to it in the mount structure.
847 	 */
848 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
849 	if (error) {
850 		xfs_warn(mp, "failed to read root inode");
851 		goto out_log_dealloc;
852 	}
853 
854 	ASSERT(rip != NULL);
855 
856 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
857 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
858 			(unsigned long long)rip->i_ino);
859 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
860 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
861 				 mp);
862 		error = XFS_ERROR(EFSCORRUPTED);
863 		goto out_rele_rip;
864 	}
865 	mp->m_rootip = rip;	/* save it */
866 
867 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
868 
869 	/*
870 	 * Initialize realtime inode pointers in the mount structure
871 	 */
872 	error = xfs_rtmount_inodes(mp);
873 	if (error) {
874 		/*
875 		 * Free up the root inode.
876 		 */
877 		xfs_warn(mp, "failed to read RT inodes");
878 		goto out_rele_rip;
879 	}
880 
881 	/*
882 	 * If this is a read-only mount defer the superblock updates until
883 	 * the next remount into writeable mode.  Otherwise we would never
884 	 * perform the update e.g. for the root filesystem.
885 	 */
886 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
887 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
888 		if (error) {
889 			xfs_warn(mp, "failed to write sb changes");
890 			goto out_rtunmount;
891 		}
892 	}
893 
894 	/*
895 	 * Initialise the XFS quota management subsystem for this mount
896 	 */
897 	if (XFS_IS_QUOTA_RUNNING(mp)) {
898 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
899 		if (error)
900 			goto out_rtunmount;
901 	} else {
902 		ASSERT(!XFS_IS_QUOTA_ON(mp));
903 
904 		/*
905 		 * If a file system had quotas running earlier, but decided to
906 		 * mount without -o uquota/pquota/gquota options, revoke the
907 		 * quotachecked license.
908 		 */
909 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
910 			xfs_notice(mp, "resetting quota flags");
911 			error = xfs_mount_reset_sbqflags(mp);
912 			if (error)
913 				return error;
914 		}
915 	}
916 
917 	/*
918 	 * Finish recovering the file system.  This part needed to be
919 	 * delayed until after the root and real-time bitmap inodes
920 	 * were consistently read in.
921 	 */
922 	error = xfs_log_mount_finish(mp);
923 	if (error) {
924 		xfs_warn(mp, "log mount finish failed");
925 		goto out_rtunmount;
926 	}
927 
928 	/*
929 	 * Complete the quota initialisation, post-log-replay component.
930 	 */
931 	if (quotamount) {
932 		ASSERT(mp->m_qflags == 0);
933 		mp->m_qflags = quotaflags;
934 
935 		xfs_qm_mount_quotas(mp);
936 	}
937 
938 	/*
939 	 * Now we are mounted, reserve a small amount of unused space for
940 	 * privileged transactions. This is needed so that transaction
941 	 * space required for critical operations can dip into this pool
942 	 * when at ENOSPC. This is needed for operations like create with
943 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
944 	 * are not allowed to use this reserved space.
945 	 *
946 	 * This may drive us straight to ENOSPC on mount, but that implies
947 	 * we were already there on the last unmount. Warn if this occurs.
948 	 */
949 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
950 		resblks = xfs_default_resblks(mp);
951 		error = xfs_reserve_blocks(mp, &resblks, NULL);
952 		if (error)
953 			xfs_warn(mp,
954 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
955 	}
956 
957 	return 0;
958 
959  out_rtunmount:
960 	xfs_rtunmount_inodes(mp);
961  out_rele_rip:
962 	IRELE(rip);
963  out_log_dealloc:
964 	xfs_log_unmount(mp);
965  out_fail_wait:
966 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
967 		xfs_wait_buftarg(mp->m_logdev_targp);
968 	xfs_wait_buftarg(mp->m_ddev_targp);
969  out_free_perag:
970 	xfs_free_perag(mp);
971  out_remove_uuid:
972 	xfs_uuid_unmount(mp);
973  out:
974 	return error;
975 }
976 
977 /*
978  * This flushes out the inodes,dquots and the superblock, unmounts the
979  * log and makes sure that incore structures are freed.
980  */
981 void
982 xfs_unmountfs(
983 	struct xfs_mount	*mp)
984 {
985 	__uint64_t		resblks;
986 	int			error;
987 
988 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
989 
990 	xfs_qm_unmount_quotas(mp);
991 	xfs_rtunmount_inodes(mp);
992 	IRELE(mp->m_rootip);
993 
994 	/*
995 	 * We can potentially deadlock here if we have an inode cluster
996 	 * that has been freed has its buffer still pinned in memory because
997 	 * the transaction is still sitting in a iclog. The stale inodes
998 	 * on that buffer will have their flush locks held until the
999 	 * transaction hits the disk and the callbacks run. the inode
1000 	 * flush takes the flush lock unconditionally and with nothing to
1001 	 * push out the iclog we will never get that unlocked. hence we
1002 	 * need to force the log first.
1003 	 */
1004 	xfs_log_force(mp, XFS_LOG_SYNC);
1005 
1006 	/*
1007 	 * Flush all pending changes from the AIL.
1008 	 */
1009 	xfs_ail_push_all_sync(mp->m_ail);
1010 
1011 	/*
1012 	 * And reclaim all inodes.  At this point there should be no dirty
1013 	 * inodes and none should be pinned or locked, but use synchronous
1014 	 * reclaim just to be sure. We can stop background inode reclaim
1015 	 * here as well if it is still running.
1016 	 */
1017 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1018 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1019 
1020 	xfs_qm_unmount(mp);
1021 
1022 	/*
1023 	 * Unreserve any blocks we have so that when we unmount we don't account
1024 	 * the reserved free space as used. This is really only necessary for
1025 	 * lazy superblock counting because it trusts the incore superblock
1026 	 * counters to be absolutely correct on clean unmount.
1027 	 *
1028 	 * We don't bother correcting this elsewhere for lazy superblock
1029 	 * counting because on mount of an unclean filesystem we reconstruct the
1030 	 * correct counter value and this is irrelevant.
1031 	 *
1032 	 * For non-lazy counter filesystems, this doesn't matter at all because
1033 	 * we only every apply deltas to the superblock and hence the incore
1034 	 * value does not matter....
1035 	 */
1036 	resblks = 0;
1037 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1038 	if (error)
1039 		xfs_warn(mp, "Unable to free reserved block pool. "
1040 				"Freespace may not be correct on next mount.");
1041 
1042 	error = xfs_log_sbcount(mp);
1043 	if (error)
1044 		xfs_warn(mp, "Unable to update superblock counters. "
1045 				"Freespace may not be correct on next mount.");
1046 
1047 	xfs_log_unmount(mp);
1048 	xfs_uuid_unmount(mp);
1049 
1050 #if defined(DEBUG)
1051 	xfs_errortag_clearall(mp, 0);
1052 #endif
1053 	xfs_free_perag(mp);
1054 }
1055 
1056 int
1057 xfs_fs_writable(xfs_mount_t *mp)
1058 {
1059 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1060 		(mp->m_flags & XFS_MOUNT_RDONLY));
1061 }
1062 
1063 /*
1064  * xfs_log_sbcount
1065  *
1066  * Sync the superblock counters to disk.
1067  *
1068  * Note this code can be called during the process of freezing, so
1069  * we may need to use the transaction allocator which does not
1070  * block when the transaction subsystem is in its frozen state.
1071  */
1072 int
1073 xfs_log_sbcount(xfs_mount_t *mp)
1074 {
1075 	xfs_trans_t	*tp;
1076 	int		error;
1077 
1078 	if (!xfs_fs_writable(mp))
1079 		return 0;
1080 
1081 	xfs_icsb_sync_counters(mp, 0);
1082 
1083 	/*
1084 	 * we don't need to do this if we are updating the superblock
1085 	 * counters on every modification.
1086 	 */
1087 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1088 		return 0;
1089 
1090 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1091 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1092 	if (error) {
1093 		xfs_trans_cancel(tp, 0);
1094 		return error;
1095 	}
1096 
1097 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1098 	xfs_trans_set_sync(tp);
1099 	error = xfs_trans_commit(tp, 0);
1100 	return error;
1101 }
1102 
1103 /*
1104  * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1105  * a delta to a specified field in the in-core superblock.  Simply
1106  * switch on the field indicated and apply the delta to that field.
1107  * Fields are not allowed to dip below zero, so if the delta would
1108  * do this do not apply it and return EINVAL.
1109  *
1110  * The m_sb_lock must be held when this routine is called.
1111  */
1112 STATIC int
1113 xfs_mod_incore_sb_unlocked(
1114 	xfs_mount_t	*mp,
1115 	xfs_sb_field_t	field,
1116 	int64_t		delta,
1117 	int		rsvd)
1118 {
1119 	int		scounter;	/* short counter for 32 bit fields */
1120 	long long	lcounter;	/* long counter for 64 bit fields */
1121 	long long	res_used, rem;
1122 
1123 	/*
1124 	 * With the in-core superblock spin lock held, switch
1125 	 * on the indicated field.  Apply the delta to the
1126 	 * proper field.  If the fields value would dip below
1127 	 * 0, then do not apply the delta and return EINVAL.
1128 	 */
1129 	switch (field) {
1130 	case XFS_SBS_ICOUNT:
1131 		lcounter = (long long)mp->m_sb.sb_icount;
1132 		lcounter += delta;
1133 		if (lcounter < 0) {
1134 			ASSERT(0);
1135 			return XFS_ERROR(EINVAL);
1136 		}
1137 		mp->m_sb.sb_icount = lcounter;
1138 		return 0;
1139 	case XFS_SBS_IFREE:
1140 		lcounter = (long long)mp->m_sb.sb_ifree;
1141 		lcounter += delta;
1142 		if (lcounter < 0) {
1143 			ASSERT(0);
1144 			return XFS_ERROR(EINVAL);
1145 		}
1146 		mp->m_sb.sb_ifree = lcounter;
1147 		return 0;
1148 	case XFS_SBS_FDBLOCKS:
1149 		lcounter = (long long)
1150 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1151 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1152 
1153 		if (delta > 0) {		/* Putting blocks back */
1154 			if (res_used > delta) {
1155 				mp->m_resblks_avail += delta;
1156 			} else {
1157 				rem = delta - res_used;
1158 				mp->m_resblks_avail = mp->m_resblks;
1159 				lcounter += rem;
1160 			}
1161 		} else {				/* Taking blocks away */
1162 			lcounter += delta;
1163 			if (lcounter >= 0) {
1164 				mp->m_sb.sb_fdblocks = lcounter +
1165 							XFS_ALLOC_SET_ASIDE(mp);
1166 				return 0;
1167 			}
1168 
1169 			/*
1170 			 * We are out of blocks, use any available reserved
1171 			 * blocks if were allowed to.
1172 			 */
1173 			if (!rsvd)
1174 				return XFS_ERROR(ENOSPC);
1175 
1176 			lcounter = (long long)mp->m_resblks_avail + delta;
1177 			if (lcounter >= 0) {
1178 				mp->m_resblks_avail = lcounter;
1179 				return 0;
1180 			}
1181 			printk_once(KERN_WARNING
1182 				"Filesystem \"%s\": reserve blocks depleted! "
1183 				"Consider increasing reserve pool size.",
1184 				mp->m_fsname);
1185 			return XFS_ERROR(ENOSPC);
1186 		}
1187 
1188 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1189 		return 0;
1190 	case XFS_SBS_FREXTENTS:
1191 		lcounter = (long long)mp->m_sb.sb_frextents;
1192 		lcounter += delta;
1193 		if (lcounter < 0) {
1194 			return XFS_ERROR(ENOSPC);
1195 		}
1196 		mp->m_sb.sb_frextents = lcounter;
1197 		return 0;
1198 	case XFS_SBS_DBLOCKS:
1199 		lcounter = (long long)mp->m_sb.sb_dblocks;
1200 		lcounter += delta;
1201 		if (lcounter < 0) {
1202 			ASSERT(0);
1203 			return XFS_ERROR(EINVAL);
1204 		}
1205 		mp->m_sb.sb_dblocks = lcounter;
1206 		return 0;
1207 	case XFS_SBS_AGCOUNT:
1208 		scounter = mp->m_sb.sb_agcount;
1209 		scounter += delta;
1210 		if (scounter < 0) {
1211 			ASSERT(0);
1212 			return XFS_ERROR(EINVAL);
1213 		}
1214 		mp->m_sb.sb_agcount = scounter;
1215 		return 0;
1216 	case XFS_SBS_IMAX_PCT:
1217 		scounter = mp->m_sb.sb_imax_pct;
1218 		scounter += delta;
1219 		if (scounter < 0) {
1220 			ASSERT(0);
1221 			return XFS_ERROR(EINVAL);
1222 		}
1223 		mp->m_sb.sb_imax_pct = scounter;
1224 		return 0;
1225 	case XFS_SBS_REXTSIZE:
1226 		scounter = mp->m_sb.sb_rextsize;
1227 		scounter += delta;
1228 		if (scounter < 0) {
1229 			ASSERT(0);
1230 			return XFS_ERROR(EINVAL);
1231 		}
1232 		mp->m_sb.sb_rextsize = scounter;
1233 		return 0;
1234 	case XFS_SBS_RBMBLOCKS:
1235 		scounter = mp->m_sb.sb_rbmblocks;
1236 		scounter += delta;
1237 		if (scounter < 0) {
1238 			ASSERT(0);
1239 			return XFS_ERROR(EINVAL);
1240 		}
1241 		mp->m_sb.sb_rbmblocks = scounter;
1242 		return 0;
1243 	case XFS_SBS_RBLOCKS:
1244 		lcounter = (long long)mp->m_sb.sb_rblocks;
1245 		lcounter += delta;
1246 		if (lcounter < 0) {
1247 			ASSERT(0);
1248 			return XFS_ERROR(EINVAL);
1249 		}
1250 		mp->m_sb.sb_rblocks = lcounter;
1251 		return 0;
1252 	case XFS_SBS_REXTENTS:
1253 		lcounter = (long long)mp->m_sb.sb_rextents;
1254 		lcounter += delta;
1255 		if (lcounter < 0) {
1256 			ASSERT(0);
1257 			return XFS_ERROR(EINVAL);
1258 		}
1259 		mp->m_sb.sb_rextents = lcounter;
1260 		return 0;
1261 	case XFS_SBS_REXTSLOG:
1262 		scounter = mp->m_sb.sb_rextslog;
1263 		scounter += delta;
1264 		if (scounter < 0) {
1265 			ASSERT(0);
1266 			return XFS_ERROR(EINVAL);
1267 		}
1268 		mp->m_sb.sb_rextslog = scounter;
1269 		return 0;
1270 	default:
1271 		ASSERT(0);
1272 		return XFS_ERROR(EINVAL);
1273 	}
1274 }
1275 
1276 /*
1277  * xfs_mod_incore_sb() is used to change a field in the in-core
1278  * superblock structure by the specified delta.  This modification
1279  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1280  * routine to do the work.
1281  */
1282 int
1283 xfs_mod_incore_sb(
1284 	struct xfs_mount	*mp,
1285 	xfs_sb_field_t		field,
1286 	int64_t			delta,
1287 	int			rsvd)
1288 {
1289 	int			status;
1290 
1291 #ifdef HAVE_PERCPU_SB
1292 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1293 #endif
1294 	spin_lock(&mp->m_sb_lock);
1295 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1296 	spin_unlock(&mp->m_sb_lock);
1297 
1298 	return status;
1299 }
1300 
1301 /*
1302  * Change more than one field in the in-core superblock structure at a time.
1303  *
1304  * The fields and changes to those fields are specified in the array of
1305  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1306  * will be applied or none of them will.  If any modified field dips below 0,
1307  * then all modifications will be backed out and EINVAL will be returned.
1308  *
1309  * Note that this function may not be used for the superblock values that
1310  * are tracked with the in-memory per-cpu counters - a direct call to
1311  * xfs_icsb_modify_counters is required for these.
1312  */
1313 int
1314 xfs_mod_incore_sb_batch(
1315 	struct xfs_mount	*mp,
1316 	xfs_mod_sb_t		*msb,
1317 	uint			nmsb,
1318 	int			rsvd)
1319 {
1320 	xfs_mod_sb_t		*msbp;
1321 	int			error = 0;
1322 
1323 	/*
1324 	 * Loop through the array of mod structures and apply each individually.
1325 	 * If any fail, then back out all those which have already been applied.
1326 	 * Do all of this within the scope of the m_sb_lock so that all of the
1327 	 * changes will be atomic.
1328 	 */
1329 	spin_lock(&mp->m_sb_lock);
1330 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1331 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1332 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1333 
1334 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1335 						   msbp->msb_delta, rsvd);
1336 		if (error)
1337 			goto unwind;
1338 	}
1339 	spin_unlock(&mp->m_sb_lock);
1340 	return 0;
1341 
1342 unwind:
1343 	while (--msbp >= msb) {
1344 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1345 						   -msbp->msb_delta, rsvd);
1346 		ASSERT(error == 0);
1347 	}
1348 	spin_unlock(&mp->m_sb_lock);
1349 	return error;
1350 }
1351 
1352 /*
1353  * xfs_getsb() is called to obtain the buffer for the superblock.
1354  * The buffer is returned locked and read in from disk.
1355  * The buffer should be released with a call to xfs_brelse().
1356  *
1357  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1358  * the superblock buffer if it can be locked without sleeping.
1359  * If it can't then we'll return NULL.
1360  */
1361 struct xfs_buf *
1362 xfs_getsb(
1363 	struct xfs_mount	*mp,
1364 	int			flags)
1365 {
1366 	struct xfs_buf		*bp = mp->m_sb_bp;
1367 
1368 	if (!xfs_buf_trylock(bp)) {
1369 		if (flags & XBF_TRYLOCK)
1370 			return NULL;
1371 		xfs_buf_lock(bp);
1372 	}
1373 
1374 	xfs_buf_hold(bp);
1375 	ASSERT(XFS_BUF_ISDONE(bp));
1376 	return bp;
1377 }
1378 
1379 /*
1380  * Used to free the superblock along various error paths.
1381  */
1382 void
1383 xfs_freesb(
1384 	struct xfs_mount	*mp)
1385 {
1386 	struct xfs_buf		*bp = mp->m_sb_bp;
1387 
1388 	xfs_buf_lock(bp);
1389 	mp->m_sb_bp = NULL;
1390 	xfs_buf_relse(bp);
1391 }
1392 
1393 /*
1394  * Used to log changes to the superblock unit and width fields which could
1395  * be altered by the mount options, as well as any potential sb_features2
1396  * fixup. Only the first superblock is updated.
1397  */
1398 int
1399 xfs_mount_log_sb(
1400 	xfs_mount_t	*mp,
1401 	__int64_t	fields)
1402 {
1403 	xfs_trans_t	*tp;
1404 	int		error;
1405 
1406 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1407 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1408 			 XFS_SB_VERSIONNUM));
1409 
1410 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1411 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1412 	if (error) {
1413 		xfs_trans_cancel(tp, 0);
1414 		return error;
1415 	}
1416 	xfs_mod_sb(tp, fields);
1417 	error = xfs_trans_commit(tp, 0);
1418 	return error;
1419 }
1420 
1421 /*
1422  * If the underlying (data/log/rt) device is readonly, there are some
1423  * operations that cannot proceed.
1424  */
1425 int
1426 xfs_dev_is_read_only(
1427 	struct xfs_mount	*mp,
1428 	char			*message)
1429 {
1430 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1431 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1432 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1433 		xfs_notice(mp, "%s required on read-only device.", message);
1434 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1435 		return EROFS;
1436 	}
1437 	return 0;
1438 }
1439 
1440 #ifdef HAVE_PERCPU_SB
1441 /*
1442  * Per-cpu incore superblock counters
1443  *
1444  * Simple concept, difficult implementation
1445  *
1446  * Basically, replace the incore superblock counters with a distributed per cpu
1447  * counter for contended fields (e.g.  free block count).
1448  *
1449  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1450  * hence needs to be accurately read when we are running low on space. Hence
1451  * there is a method to enable and disable the per-cpu counters based on how
1452  * much "stuff" is available in them.
1453  *
1454  * Basically, a counter is enabled if there is enough free resource to justify
1455  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1456  * ENOSPC), then we disable the counters to synchronise all callers and
1457  * re-distribute the available resources.
1458  *
1459  * If, once we redistributed the available resources, we still get a failure,
1460  * we disable the per-cpu counter and go through the slow path.
1461  *
1462  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1463  * when we disable a per-cpu counter, we need to drain its resources back to
1464  * the global superblock. We do this after disabling the counter to prevent
1465  * more threads from queueing up on the counter.
1466  *
1467  * Essentially, this means that we still need a lock in the fast path to enable
1468  * synchronisation between the global counters and the per-cpu counters. This
1469  * is not a problem because the lock will be local to a CPU almost all the time
1470  * and have little contention except when we get to ENOSPC conditions.
1471  *
1472  * Basically, this lock becomes a barrier that enables us to lock out the fast
1473  * path while we do things like enabling and disabling counters and
1474  * synchronising the counters.
1475  *
1476  * Locking rules:
1477  *
1478  * 	1. m_sb_lock before picking up per-cpu locks
1479  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1480  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1481  * 	4. modifying per-cpu counters requires holding per-cpu lock
1482  * 	5. modifying global counters requires holding m_sb_lock
1483  *	6. enabling or disabling a counter requires holding the m_sb_lock
1484  *	   and _none_ of the per-cpu locks.
1485  *
1486  * Disabled counters are only ever re-enabled by a balance operation
1487  * that results in more free resources per CPU than a given threshold.
1488  * To ensure counters don't remain disabled, they are rebalanced when
1489  * the global resource goes above a higher threshold (i.e. some hysteresis
1490  * is present to prevent thrashing).
1491  */
1492 
1493 #ifdef CONFIG_HOTPLUG_CPU
1494 /*
1495  * hot-plug CPU notifier support.
1496  *
1497  * We need a notifier per filesystem as we need to be able to identify
1498  * the filesystem to balance the counters out. This is achieved by
1499  * having a notifier block embedded in the xfs_mount_t and doing pointer
1500  * magic to get the mount pointer from the notifier block address.
1501  */
1502 STATIC int
1503 xfs_icsb_cpu_notify(
1504 	struct notifier_block *nfb,
1505 	unsigned long action,
1506 	void *hcpu)
1507 {
1508 	xfs_icsb_cnts_t *cntp;
1509 	xfs_mount_t	*mp;
1510 
1511 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1512 	cntp = (xfs_icsb_cnts_t *)
1513 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1514 	switch (action) {
1515 	case CPU_UP_PREPARE:
1516 	case CPU_UP_PREPARE_FROZEN:
1517 		/* Easy Case - initialize the area and locks, and
1518 		 * then rebalance when online does everything else for us. */
1519 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1520 		break;
1521 	case CPU_ONLINE:
1522 	case CPU_ONLINE_FROZEN:
1523 		xfs_icsb_lock(mp);
1524 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1525 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1526 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1527 		xfs_icsb_unlock(mp);
1528 		break;
1529 	case CPU_DEAD:
1530 	case CPU_DEAD_FROZEN:
1531 		/* Disable all the counters, then fold the dead cpu's
1532 		 * count into the total on the global superblock and
1533 		 * re-enable the counters. */
1534 		xfs_icsb_lock(mp);
1535 		spin_lock(&mp->m_sb_lock);
1536 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1537 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1538 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1539 
1540 		mp->m_sb.sb_icount += cntp->icsb_icount;
1541 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1542 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1543 
1544 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1545 
1546 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1547 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1548 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1549 		spin_unlock(&mp->m_sb_lock);
1550 		xfs_icsb_unlock(mp);
1551 		break;
1552 	}
1553 
1554 	return NOTIFY_OK;
1555 }
1556 #endif /* CONFIG_HOTPLUG_CPU */
1557 
1558 int
1559 xfs_icsb_init_counters(
1560 	xfs_mount_t	*mp)
1561 {
1562 	xfs_icsb_cnts_t *cntp;
1563 	int		i;
1564 
1565 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1566 	if (mp->m_sb_cnts == NULL)
1567 		return -ENOMEM;
1568 
1569 	for_each_online_cpu(i) {
1570 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1571 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1572 	}
1573 
1574 	mutex_init(&mp->m_icsb_mutex);
1575 
1576 	/*
1577 	 * start with all counters disabled so that the
1578 	 * initial balance kicks us off correctly
1579 	 */
1580 	mp->m_icsb_counters = -1;
1581 
1582 #ifdef CONFIG_HOTPLUG_CPU
1583 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1584 	mp->m_icsb_notifier.priority = 0;
1585 	register_hotcpu_notifier(&mp->m_icsb_notifier);
1586 #endif /* CONFIG_HOTPLUG_CPU */
1587 
1588 	return 0;
1589 }
1590 
1591 void
1592 xfs_icsb_reinit_counters(
1593 	xfs_mount_t	*mp)
1594 {
1595 	xfs_icsb_lock(mp);
1596 	/*
1597 	 * start with all counters disabled so that the
1598 	 * initial balance kicks us off correctly
1599 	 */
1600 	mp->m_icsb_counters = -1;
1601 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1602 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1603 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1604 	xfs_icsb_unlock(mp);
1605 }
1606 
1607 void
1608 xfs_icsb_destroy_counters(
1609 	xfs_mount_t	*mp)
1610 {
1611 	if (mp->m_sb_cnts) {
1612 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1613 		free_percpu(mp->m_sb_cnts);
1614 	}
1615 	mutex_destroy(&mp->m_icsb_mutex);
1616 }
1617 
1618 STATIC void
1619 xfs_icsb_lock_cntr(
1620 	xfs_icsb_cnts_t	*icsbp)
1621 {
1622 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1623 		ndelay(1000);
1624 	}
1625 }
1626 
1627 STATIC void
1628 xfs_icsb_unlock_cntr(
1629 	xfs_icsb_cnts_t	*icsbp)
1630 {
1631 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1632 }
1633 
1634 
1635 STATIC void
1636 xfs_icsb_lock_all_counters(
1637 	xfs_mount_t	*mp)
1638 {
1639 	xfs_icsb_cnts_t *cntp;
1640 	int		i;
1641 
1642 	for_each_online_cpu(i) {
1643 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1644 		xfs_icsb_lock_cntr(cntp);
1645 	}
1646 }
1647 
1648 STATIC void
1649 xfs_icsb_unlock_all_counters(
1650 	xfs_mount_t	*mp)
1651 {
1652 	xfs_icsb_cnts_t *cntp;
1653 	int		i;
1654 
1655 	for_each_online_cpu(i) {
1656 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1657 		xfs_icsb_unlock_cntr(cntp);
1658 	}
1659 }
1660 
1661 STATIC void
1662 xfs_icsb_count(
1663 	xfs_mount_t	*mp,
1664 	xfs_icsb_cnts_t	*cnt,
1665 	int		flags)
1666 {
1667 	xfs_icsb_cnts_t *cntp;
1668 	int		i;
1669 
1670 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1671 
1672 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1673 		xfs_icsb_lock_all_counters(mp);
1674 
1675 	for_each_online_cpu(i) {
1676 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1677 		cnt->icsb_icount += cntp->icsb_icount;
1678 		cnt->icsb_ifree += cntp->icsb_ifree;
1679 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1680 	}
1681 
1682 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1683 		xfs_icsb_unlock_all_counters(mp);
1684 }
1685 
1686 STATIC int
1687 xfs_icsb_counter_disabled(
1688 	xfs_mount_t	*mp,
1689 	xfs_sb_field_t	field)
1690 {
1691 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1692 	return test_bit(field, &mp->m_icsb_counters);
1693 }
1694 
1695 STATIC void
1696 xfs_icsb_disable_counter(
1697 	xfs_mount_t	*mp,
1698 	xfs_sb_field_t	field)
1699 {
1700 	xfs_icsb_cnts_t	cnt;
1701 
1702 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1703 
1704 	/*
1705 	 * If we are already disabled, then there is nothing to do
1706 	 * here. We check before locking all the counters to avoid
1707 	 * the expensive lock operation when being called in the
1708 	 * slow path and the counter is already disabled. This is
1709 	 * safe because the only time we set or clear this state is under
1710 	 * the m_icsb_mutex.
1711 	 */
1712 	if (xfs_icsb_counter_disabled(mp, field))
1713 		return;
1714 
1715 	xfs_icsb_lock_all_counters(mp);
1716 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1717 		/* drain back to superblock */
1718 
1719 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1720 		switch(field) {
1721 		case XFS_SBS_ICOUNT:
1722 			mp->m_sb.sb_icount = cnt.icsb_icount;
1723 			break;
1724 		case XFS_SBS_IFREE:
1725 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
1726 			break;
1727 		case XFS_SBS_FDBLOCKS:
1728 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1729 			break;
1730 		default:
1731 			BUG();
1732 		}
1733 	}
1734 
1735 	xfs_icsb_unlock_all_counters(mp);
1736 }
1737 
1738 STATIC void
1739 xfs_icsb_enable_counter(
1740 	xfs_mount_t	*mp,
1741 	xfs_sb_field_t	field,
1742 	uint64_t	count,
1743 	uint64_t	resid)
1744 {
1745 	xfs_icsb_cnts_t	*cntp;
1746 	int		i;
1747 
1748 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1749 
1750 	xfs_icsb_lock_all_counters(mp);
1751 	for_each_online_cpu(i) {
1752 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1753 		switch (field) {
1754 		case XFS_SBS_ICOUNT:
1755 			cntp->icsb_icount = count + resid;
1756 			break;
1757 		case XFS_SBS_IFREE:
1758 			cntp->icsb_ifree = count + resid;
1759 			break;
1760 		case XFS_SBS_FDBLOCKS:
1761 			cntp->icsb_fdblocks = count + resid;
1762 			break;
1763 		default:
1764 			BUG();
1765 			break;
1766 		}
1767 		resid = 0;
1768 	}
1769 	clear_bit(field, &mp->m_icsb_counters);
1770 	xfs_icsb_unlock_all_counters(mp);
1771 }
1772 
1773 void
1774 xfs_icsb_sync_counters_locked(
1775 	xfs_mount_t	*mp,
1776 	int		flags)
1777 {
1778 	xfs_icsb_cnts_t	cnt;
1779 
1780 	xfs_icsb_count(mp, &cnt, flags);
1781 
1782 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1783 		mp->m_sb.sb_icount = cnt.icsb_icount;
1784 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1785 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
1786 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1787 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1788 }
1789 
1790 /*
1791  * Accurate update of per-cpu counters to incore superblock
1792  */
1793 void
1794 xfs_icsb_sync_counters(
1795 	xfs_mount_t	*mp,
1796 	int		flags)
1797 {
1798 	spin_lock(&mp->m_sb_lock);
1799 	xfs_icsb_sync_counters_locked(mp, flags);
1800 	spin_unlock(&mp->m_sb_lock);
1801 }
1802 
1803 /*
1804  * Balance and enable/disable counters as necessary.
1805  *
1806  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1807  * chosen to be the same number as single on disk allocation chunk per CPU, and
1808  * free blocks is something far enough zero that we aren't going thrash when we
1809  * get near ENOSPC. We also need to supply a minimum we require per cpu to
1810  * prevent looping endlessly when xfs_alloc_space asks for more than will
1811  * be distributed to a single CPU but each CPU has enough blocks to be
1812  * reenabled.
1813  *
1814  * Note that we can be called when counters are already disabled.
1815  * xfs_icsb_disable_counter() optimises the counter locking in this case to
1816  * prevent locking every per-cpu counter needlessly.
1817  */
1818 
1819 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
1820 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1821 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1822 STATIC void
1823 xfs_icsb_balance_counter_locked(
1824 	xfs_mount_t	*mp,
1825 	xfs_sb_field_t  field,
1826 	int		min_per_cpu)
1827 {
1828 	uint64_t	count, resid;
1829 	int		weight = num_online_cpus();
1830 	uint64_t	min = (uint64_t)min_per_cpu;
1831 
1832 	/* disable counter and sync counter */
1833 	xfs_icsb_disable_counter(mp, field);
1834 
1835 	/* update counters  - first CPU gets residual*/
1836 	switch (field) {
1837 	case XFS_SBS_ICOUNT:
1838 		count = mp->m_sb.sb_icount;
1839 		resid = do_div(count, weight);
1840 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1841 			return;
1842 		break;
1843 	case XFS_SBS_IFREE:
1844 		count = mp->m_sb.sb_ifree;
1845 		resid = do_div(count, weight);
1846 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1847 			return;
1848 		break;
1849 	case XFS_SBS_FDBLOCKS:
1850 		count = mp->m_sb.sb_fdblocks;
1851 		resid = do_div(count, weight);
1852 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1853 			return;
1854 		break;
1855 	default:
1856 		BUG();
1857 		count = resid = 0;	/* quiet, gcc */
1858 		break;
1859 	}
1860 
1861 	xfs_icsb_enable_counter(mp, field, count, resid);
1862 }
1863 
1864 STATIC void
1865 xfs_icsb_balance_counter(
1866 	xfs_mount_t	*mp,
1867 	xfs_sb_field_t  fields,
1868 	int		min_per_cpu)
1869 {
1870 	spin_lock(&mp->m_sb_lock);
1871 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1872 	spin_unlock(&mp->m_sb_lock);
1873 }
1874 
1875 int
1876 xfs_icsb_modify_counters(
1877 	xfs_mount_t	*mp,
1878 	xfs_sb_field_t	field,
1879 	int64_t		delta,
1880 	int		rsvd)
1881 {
1882 	xfs_icsb_cnts_t	*icsbp;
1883 	long long	lcounter;	/* long counter for 64 bit fields */
1884 	int		ret = 0;
1885 
1886 	might_sleep();
1887 again:
1888 	preempt_disable();
1889 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
1890 
1891 	/*
1892 	 * if the counter is disabled, go to slow path
1893 	 */
1894 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1895 		goto slow_path;
1896 	xfs_icsb_lock_cntr(icsbp);
1897 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1898 		xfs_icsb_unlock_cntr(icsbp);
1899 		goto slow_path;
1900 	}
1901 
1902 	switch (field) {
1903 	case XFS_SBS_ICOUNT:
1904 		lcounter = icsbp->icsb_icount;
1905 		lcounter += delta;
1906 		if (unlikely(lcounter < 0))
1907 			goto balance_counter;
1908 		icsbp->icsb_icount = lcounter;
1909 		break;
1910 
1911 	case XFS_SBS_IFREE:
1912 		lcounter = icsbp->icsb_ifree;
1913 		lcounter += delta;
1914 		if (unlikely(lcounter < 0))
1915 			goto balance_counter;
1916 		icsbp->icsb_ifree = lcounter;
1917 		break;
1918 
1919 	case XFS_SBS_FDBLOCKS:
1920 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1921 
1922 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1923 		lcounter += delta;
1924 		if (unlikely(lcounter < 0))
1925 			goto balance_counter;
1926 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1927 		break;
1928 	default:
1929 		BUG();
1930 		break;
1931 	}
1932 	xfs_icsb_unlock_cntr(icsbp);
1933 	preempt_enable();
1934 	return 0;
1935 
1936 slow_path:
1937 	preempt_enable();
1938 
1939 	/*
1940 	 * serialise with a mutex so we don't burn lots of cpu on
1941 	 * the superblock lock. We still need to hold the superblock
1942 	 * lock, however, when we modify the global structures.
1943 	 */
1944 	xfs_icsb_lock(mp);
1945 
1946 	/*
1947 	 * Now running atomically.
1948 	 *
1949 	 * If the counter is enabled, someone has beaten us to rebalancing.
1950 	 * Drop the lock and try again in the fast path....
1951 	 */
1952 	if (!(xfs_icsb_counter_disabled(mp, field))) {
1953 		xfs_icsb_unlock(mp);
1954 		goto again;
1955 	}
1956 
1957 	/*
1958 	 * The counter is currently disabled. Because we are
1959 	 * running atomically here, we know a rebalance cannot
1960 	 * be in progress. Hence we can go straight to operating
1961 	 * on the global superblock. We do not call xfs_mod_incore_sb()
1962 	 * here even though we need to get the m_sb_lock. Doing so
1963 	 * will cause us to re-enter this function and deadlock.
1964 	 * Hence we get the m_sb_lock ourselves and then call
1965 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1966 	 * directly on the global counters.
1967 	 */
1968 	spin_lock(&mp->m_sb_lock);
1969 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1970 	spin_unlock(&mp->m_sb_lock);
1971 
1972 	/*
1973 	 * Now that we've modified the global superblock, we
1974 	 * may be able to re-enable the distributed counters
1975 	 * (e.g. lots of space just got freed). After that
1976 	 * we are done.
1977 	 */
1978 	if (ret != ENOSPC)
1979 		xfs_icsb_balance_counter(mp, field, 0);
1980 	xfs_icsb_unlock(mp);
1981 	return ret;
1982 
1983 balance_counter:
1984 	xfs_icsb_unlock_cntr(icsbp);
1985 	preempt_enable();
1986 
1987 	/*
1988 	 * We may have multiple threads here if multiple per-cpu
1989 	 * counters run dry at the same time. This will mean we can
1990 	 * do more balances than strictly necessary but it is not
1991 	 * the common slowpath case.
1992 	 */
1993 	xfs_icsb_lock(mp);
1994 
1995 	/*
1996 	 * running atomically.
1997 	 *
1998 	 * This will leave the counter in the correct state for future
1999 	 * accesses. After the rebalance, we simply try again and our retry
2000 	 * will either succeed through the fast path or slow path without
2001 	 * another balance operation being required.
2002 	 */
2003 	xfs_icsb_balance_counter(mp, field, delta);
2004 	xfs_icsb_unlock(mp);
2005 	goto again;
2006 }
2007 
2008 #endif
2009