1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_inum.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_da_format.h" 30 #include "xfs_inode.h" 31 #include "xfs_dir2.h" 32 #include "xfs_ialloc.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_trans.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_log.h" 39 #include "xfs_error.h" 40 #include "xfs_quota.h" 41 #include "xfs_fsops.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_dinode.h" 45 46 47 #ifdef HAVE_PERCPU_SB 48 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 49 int); 50 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 51 int); 52 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 53 #else 54 55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 57 #endif 58 59 static DEFINE_MUTEX(xfs_uuid_table_mutex); 60 static int xfs_uuid_table_size; 61 static uuid_t *xfs_uuid_table; 62 63 /* 64 * See if the UUID is unique among mounted XFS filesystems. 65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 66 */ 67 STATIC int 68 xfs_uuid_mount( 69 struct xfs_mount *mp) 70 { 71 uuid_t *uuid = &mp->m_sb.sb_uuid; 72 int hole, i; 73 74 if (mp->m_flags & XFS_MOUNT_NOUUID) 75 return 0; 76 77 if (uuid_is_nil(uuid)) { 78 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 79 return XFS_ERROR(EINVAL); 80 } 81 82 mutex_lock(&xfs_uuid_table_mutex); 83 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 84 if (uuid_is_nil(&xfs_uuid_table[i])) { 85 hole = i; 86 continue; 87 } 88 if (uuid_equal(uuid, &xfs_uuid_table[i])) 89 goto out_duplicate; 90 } 91 92 if (hole < 0) { 93 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 94 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 95 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 96 KM_SLEEP); 97 hole = xfs_uuid_table_size++; 98 } 99 xfs_uuid_table[hole] = *uuid; 100 mutex_unlock(&xfs_uuid_table_mutex); 101 102 return 0; 103 104 out_duplicate: 105 mutex_unlock(&xfs_uuid_table_mutex); 106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 107 return XFS_ERROR(EINVAL); 108 } 109 110 STATIC void 111 xfs_uuid_unmount( 112 struct xfs_mount *mp) 113 { 114 uuid_t *uuid = &mp->m_sb.sb_uuid; 115 int i; 116 117 if (mp->m_flags & XFS_MOUNT_NOUUID) 118 return; 119 120 mutex_lock(&xfs_uuid_table_mutex); 121 for (i = 0; i < xfs_uuid_table_size; i++) { 122 if (uuid_is_nil(&xfs_uuid_table[i])) 123 continue; 124 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 125 continue; 126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 127 break; 128 } 129 ASSERT(i < xfs_uuid_table_size); 130 mutex_unlock(&xfs_uuid_table_mutex); 131 } 132 133 134 STATIC void 135 __xfs_free_perag( 136 struct rcu_head *head) 137 { 138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 139 140 ASSERT(atomic_read(&pag->pag_ref) == 0); 141 kmem_free(pag); 142 } 143 144 /* 145 * Free up the per-ag resources associated with the mount structure. 146 */ 147 STATIC void 148 xfs_free_perag( 149 xfs_mount_t *mp) 150 { 151 xfs_agnumber_t agno; 152 struct xfs_perag *pag; 153 154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 155 spin_lock(&mp->m_perag_lock); 156 pag = radix_tree_delete(&mp->m_perag_tree, agno); 157 spin_unlock(&mp->m_perag_lock); 158 ASSERT(pag); 159 ASSERT(atomic_read(&pag->pag_ref) == 0); 160 call_rcu(&pag->rcu_head, __xfs_free_perag); 161 } 162 } 163 164 /* 165 * Check size of device based on the (data/realtime) block count. 166 * Note: this check is used by the growfs code as well as mount. 167 */ 168 int 169 xfs_sb_validate_fsb_count( 170 xfs_sb_t *sbp, 171 __uint64_t nblocks) 172 { 173 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 174 ASSERT(sbp->sb_blocklog >= BBSHIFT); 175 176 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 177 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 178 return EFBIG; 179 #else /* Limited by UINT_MAX of sectors */ 180 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 181 return EFBIG; 182 #endif 183 return 0; 184 } 185 186 int 187 xfs_initialize_perag( 188 xfs_mount_t *mp, 189 xfs_agnumber_t agcount, 190 xfs_agnumber_t *maxagi) 191 { 192 xfs_agnumber_t index; 193 xfs_agnumber_t first_initialised = 0; 194 xfs_perag_t *pag; 195 xfs_agino_t agino; 196 xfs_ino_t ino; 197 xfs_sb_t *sbp = &mp->m_sb; 198 int error = -ENOMEM; 199 200 /* 201 * Walk the current per-ag tree so we don't try to initialise AGs 202 * that already exist (growfs case). Allocate and insert all the 203 * AGs we don't find ready for initialisation. 204 */ 205 for (index = 0; index < agcount; index++) { 206 pag = xfs_perag_get(mp, index); 207 if (pag) { 208 xfs_perag_put(pag); 209 continue; 210 } 211 if (!first_initialised) 212 first_initialised = index; 213 214 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 215 if (!pag) 216 goto out_unwind; 217 pag->pag_agno = index; 218 pag->pag_mount = mp; 219 spin_lock_init(&pag->pag_ici_lock); 220 mutex_init(&pag->pag_ici_reclaim_lock); 221 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 222 spin_lock_init(&pag->pag_buf_lock); 223 pag->pag_buf_tree = RB_ROOT; 224 225 if (radix_tree_preload(GFP_NOFS)) 226 goto out_unwind; 227 228 spin_lock(&mp->m_perag_lock); 229 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 230 BUG(); 231 spin_unlock(&mp->m_perag_lock); 232 radix_tree_preload_end(); 233 error = -EEXIST; 234 goto out_unwind; 235 } 236 spin_unlock(&mp->m_perag_lock); 237 radix_tree_preload_end(); 238 } 239 240 /* 241 * If we mount with the inode64 option, or no inode overflows 242 * the legacy 32-bit address space clear the inode32 option. 243 */ 244 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 245 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 246 247 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 248 mp->m_flags |= XFS_MOUNT_32BITINODES; 249 else 250 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 251 252 if (mp->m_flags & XFS_MOUNT_32BITINODES) 253 index = xfs_set_inode32(mp); 254 else 255 index = xfs_set_inode64(mp); 256 257 if (maxagi) 258 *maxagi = index; 259 return 0; 260 261 out_unwind: 262 kmem_free(pag); 263 for (; index > first_initialised; index--) { 264 pag = radix_tree_delete(&mp->m_perag_tree, index); 265 kmem_free(pag); 266 } 267 return error; 268 } 269 270 /* 271 * xfs_readsb 272 * 273 * Does the initial read of the superblock. 274 */ 275 int 276 xfs_readsb( 277 struct xfs_mount *mp, 278 int flags) 279 { 280 unsigned int sector_size; 281 struct xfs_buf *bp; 282 struct xfs_sb *sbp = &mp->m_sb; 283 int error; 284 int loud = !(flags & XFS_MFSI_QUIET); 285 const struct xfs_buf_ops *buf_ops; 286 287 ASSERT(mp->m_sb_bp == NULL); 288 ASSERT(mp->m_ddev_targp != NULL); 289 290 /* 291 * For the initial read, we must guess at the sector 292 * size based on the block device. It's enough to 293 * get the sb_sectsize out of the superblock and 294 * then reread with the proper length. 295 * We don't verify it yet, because it may not be complete. 296 */ 297 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 298 buf_ops = NULL; 299 300 /* 301 * Allocate a (locked) buffer to hold the superblock. 302 * This will be kept around at all times to optimize 303 * access to the superblock. 304 */ 305 reread: 306 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 307 BTOBB(sector_size), 0, buf_ops); 308 if (!bp) { 309 if (loud) 310 xfs_warn(mp, "SB buffer read failed"); 311 return EIO; 312 } 313 if (bp->b_error) { 314 error = bp->b_error; 315 if (loud) 316 xfs_warn(mp, "SB validate failed with error %d.", error); 317 goto release_buf; 318 } 319 320 /* 321 * Initialize the mount structure from the superblock. 322 */ 323 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 324 xfs_sb_quota_from_disk(&mp->m_sb); 325 326 /* 327 * We must be able to do sector-sized and sector-aligned IO. 328 */ 329 if (sector_size > sbp->sb_sectsize) { 330 if (loud) 331 xfs_warn(mp, "device supports %u byte sectors (not %u)", 332 sector_size, sbp->sb_sectsize); 333 error = ENOSYS; 334 goto release_buf; 335 } 336 337 /* 338 * Re-read the superblock so the buffer is correctly sized, 339 * and properly verified. 340 */ 341 if (buf_ops == NULL) { 342 xfs_buf_relse(bp); 343 sector_size = sbp->sb_sectsize; 344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 345 goto reread; 346 } 347 348 /* Initialize per-cpu counters */ 349 xfs_icsb_reinit_counters(mp); 350 351 /* no need to be quiet anymore, so reset the buf ops */ 352 bp->b_ops = &xfs_sb_buf_ops; 353 354 mp->m_sb_bp = bp; 355 xfs_buf_unlock(bp); 356 return 0; 357 358 release_buf: 359 xfs_buf_relse(bp); 360 return error; 361 } 362 363 /* 364 * Update alignment values based on mount options and sb values 365 */ 366 STATIC int 367 xfs_update_alignment(xfs_mount_t *mp) 368 { 369 xfs_sb_t *sbp = &(mp->m_sb); 370 371 if (mp->m_dalign) { 372 /* 373 * If stripe unit and stripe width are not multiples 374 * of the fs blocksize turn off alignment. 375 */ 376 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 377 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 378 xfs_warn(mp, 379 "alignment check failed: sunit/swidth vs. blocksize(%d)", 380 sbp->sb_blocksize); 381 return XFS_ERROR(EINVAL); 382 } else { 383 /* 384 * Convert the stripe unit and width to FSBs. 385 */ 386 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 387 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 388 xfs_warn(mp, 389 "alignment check failed: sunit/swidth vs. agsize(%d)", 390 sbp->sb_agblocks); 391 return XFS_ERROR(EINVAL); 392 } else if (mp->m_dalign) { 393 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 394 } else { 395 xfs_warn(mp, 396 "alignment check failed: sunit(%d) less than bsize(%d)", 397 mp->m_dalign, sbp->sb_blocksize); 398 return XFS_ERROR(EINVAL); 399 } 400 } 401 402 /* 403 * Update superblock with new values 404 * and log changes 405 */ 406 if (xfs_sb_version_hasdalign(sbp)) { 407 if (sbp->sb_unit != mp->m_dalign) { 408 sbp->sb_unit = mp->m_dalign; 409 mp->m_update_flags |= XFS_SB_UNIT; 410 } 411 if (sbp->sb_width != mp->m_swidth) { 412 sbp->sb_width = mp->m_swidth; 413 mp->m_update_flags |= XFS_SB_WIDTH; 414 } 415 } else { 416 xfs_warn(mp, 417 "cannot change alignment: superblock does not support data alignment"); 418 return XFS_ERROR(EINVAL); 419 } 420 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 421 xfs_sb_version_hasdalign(&mp->m_sb)) { 422 mp->m_dalign = sbp->sb_unit; 423 mp->m_swidth = sbp->sb_width; 424 } 425 426 return 0; 427 } 428 429 /* 430 * Set the maximum inode count for this filesystem 431 */ 432 STATIC void 433 xfs_set_maxicount(xfs_mount_t *mp) 434 { 435 xfs_sb_t *sbp = &(mp->m_sb); 436 __uint64_t icount; 437 438 if (sbp->sb_imax_pct) { 439 /* 440 * Make sure the maximum inode count is a multiple 441 * of the units we allocate inodes in. 442 */ 443 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 444 do_div(icount, 100); 445 do_div(icount, mp->m_ialloc_blks); 446 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 447 sbp->sb_inopblog; 448 } else { 449 mp->m_maxicount = 0; 450 } 451 } 452 453 /* 454 * Set the default minimum read and write sizes unless 455 * already specified in a mount option. 456 * We use smaller I/O sizes when the file system 457 * is being used for NFS service (wsync mount option). 458 */ 459 STATIC void 460 xfs_set_rw_sizes(xfs_mount_t *mp) 461 { 462 xfs_sb_t *sbp = &(mp->m_sb); 463 int readio_log, writeio_log; 464 465 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 466 if (mp->m_flags & XFS_MOUNT_WSYNC) { 467 readio_log = XFS_WSYNC_READIO_LOG; 468 writeio_log = XFS_WSYNC_WRITEIO_LOG; 469 } else { 470 readio_log = XFS_READIO_LOG_LARGE; 471 writeio_log = XFS_WRITEIO_LOG_LARGE; 472 } 473 } else { 474 readio_log = mp->m_readio_log; 475 writeio_log = mp->m_writeio_log; 476 } 477 478 if (sbp->sb_blocklog > readio_log) { 479 mp->m_readio_log = sbp->sb_blocklog; 480 } else { 481 mp->m_readio_log = readio_log; 482 } 483 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 484 if (sbp->sb_blocklog > writeio_log) { 485 mp->m_writeio_log = sbp->sb_blocklog; 486 } else { 487 mp->m_writeio_log = writeio_log; 488 } 489 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 490 } 491 492 /* 493 * precalculate the low space thresholds for dynamic speculative preallocation. 494 */ 495 void 496 xfs_set_low_space_thresholds( 497 struct xfs_mount *mp) 498 { 499 int i; 500 501 for (i = 0; i < XFS_LOWSP_MAX; i++) { 502 __uint64_t space = mp->m_sb.sb_dblocks; 503 504 do_div(space, 100); 505 mp->m_low_space[i] = space * (i + 1); 506 } 507 } 508 509 510 /* 511 * Set whether we're using inode alignment. 512 */ 513 STATIC void 514 xfs_set_inoalignment(xfs_mount_t *mp) 515 { 516 if (xfs_sb_version_hasalign(&mp->m_sb) && 517 mp->m_sb.sb_inoalignmt >= 518 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 519 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 520 else 521 mp->m_inoalign_mask = 0; 522 /* 523 * If we are using stripe alignment, check whether 524 * the stripe unit is a multiple of the inode alignment 525 */ 526 if (mp->m_dalign && mp->m_inoalign_mask && 527 !(mp->m_dalign & mp->m_inoalign_mask)) 528 mp->m_sinoalign = mp->m_dalign; 529 else 530 mp->m_sinoalign = 0; 531 } 532 533 /* 534 * Check that the data (and log if separate) is an ok size. 535 */ 536 STATIC int 537 xfs_check_sizes(xfs_mount_t *mp) 538 { 539 xfs_buf_t *bp; 540 xfs_daddr_t d; 541 542 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 543 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 544 xfs_warn(mp, "filesystem size mismatch detected"); 545 return XFS_ERROR(EFBIG); 546 } 547 bp = xfs_buf_read_uncached(mp->m_ddev_targp, 548 d - XFS_FSS_TO_BB(mp, 1), 549 XFS_FSS_TO_BB(mp, 1), 0, NULL); 550 if (!bp) { 551 xfs_warn(mp, "last sector read failed"); 552 return EIO; 553 } 554 xfs_buf_relse(bp); 555 556 if (mp->m_logdev_targp != mp->m_ddev_targp) { 557 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 558 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 559 xfs_warn(mp, "log size mismatch detected"); 560 return XFS_ERROR(EFBIG); 561 } 562 bp = xfs_buf_read_uncached(mp->m_logdev_targp, 563 d - XFS_FSB_TO_BB(mp, 1), 564 XFS_FSB_TO_BB(mp, 1), 0, NULL); 565 if (!bp) { 566 xfs_warn(mp, "log device read failed"); 567 return EIO; 568 } 569 xfs_buf_relse(bp); 570 } 571 return 0; 572 } 573 574 /* 575 * Clear the quotaflags in memory and in the superblock. 576 */ 577 int 578 xfs_mount_reset_sbqflags( 579 struct xfs_mount *mp) 580 { 581 int error; 582 struct xfs_trans *tp; 583 584 mp->m_qflags = 0; 585 586 /* 587 * It is OK to look at sb_qflags here in mount path, 588 * without m_sb_lock. 589 */ 590 if (mp->m_sb.sb_qflags == 0) 591 return 0; 592 spin_lock(&mp->m_sb_lock); 593 mp->m_sb.sb_qflags = 0; 594 spin_unlock(&mp->m_sb_lock); 595 596 /* 597 * If the fs is readonly, let the incore superblock run 598 * with quotas off but don't flush the update out to disk 599 */ 600 if (mp->m_flags & XFS_MOUNT_RDONLY) 601 return 0; 602 603 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 604 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0); 605 if (error) { 606 xfs_trans_cancel(tp, 0); 607 xfs_alert(mp, "%s: Superblock update failed!", __func__); 608 return error; 609 } 610 611 xfs_mod_sb(tp, XFS_SB_QFLAGS); 612 return xfs_trans_commit(tp, 0); 613 } 614 615 __uint64_t 616 xfs_default_resblks(xfs_mount_t *mp) 617 { 618 __uint64_t resblks; 619 620 /* 621 * We default to 5% or 8192 fsbs of space reserved, whichever is 622 * smaller. This is intended to cover concurrent allocation 623 * transactions when we initially hit enospc. These each require a 4 624 * block reservation. Hence by default we cover roughly 2000 concurrent 625 * allocation reservations. 626 */ 627 resblks = mp->m_sb.sb_dblocks; 628 do_div(resblks, 20); 629 resblks = min_t(__uint64_t, resblks, 8192); 630 return resblks; 631 } 632 633 /* 634 * This function does the following on an initial mount of a file system: 635 * - reads the superblock from disk and init the mount struct 636 * - if we're a 32-bit kernel, do a size check on the superblock 637 * so we don't mount terabyte filesystems 638 * - init mount struct realtime fields 639 * - allocate inode hash table for fs 640 * - init directory manager 641 * - perform recovery and init the log manager 642 */ 643 int 644 xfs_mountfs( 645 xfs_mount_t *mp) 646 { 647 xfs_sb_t *sbp = &(mp->m_sb); 648 xfs_inode_t *rip; 649 __uint64_t resblks; 650 uint quotamount = 0; 651 uint quotaflags = 0; 652 int error = 0; 653 654 xfs_sb_mount_common(mp, sbp); 655 656 /* 657 * Check for a mismatched features2 values. Older kernels 658 * read & wrote into the wrong sb offset for sb_features2 659 * on some platforms due to xfs_sb_t not being 64bit size aligned 660 * when sb_features2 was added, which made older superblock 661 * reading/writing routines swap it as a 64-bit value. 662 * 663 * For backwards compatibility, we make both slots equal. 664 * 665 * If we detect a mismatched field, we OR the set bits into the 666 * existing features2 field in case it has already been modified; we 667 * don't want to lose any features. We then update the bad location 668 * with the ORed value so that older kernels will see any features2 669 * flags, and mark the two fields as needing updates once the 670 * transaction subsystem is online. 671 */ 672 if (xfs_sb_has_mismatched_features2(sbp)) { 673 xfs_warn(mp, "correcting sb_features alignment problem"); 674 sbp->sb_features2 |= sbp->sb_bad_features2; 675 sbp->sb_bad_features2 = sbp->sb_features2; 676 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 677 678 /* 679 * Re-check for ATTR2 in case it was found in bad_features2 680 * slot. 681 */ 682 if (xfs_sb_version_hasattr2(&mp->m_sb) && 683 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 684 mp->m_flags |= XFS_MOUNT_ATTR2; 685 } 686 687 if (xfs_sb_version_hasattr2(&mp->m_sb) && 688 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 689 xfs_sb_version_removeattr2(&mp->m_sb); 690 mp->m_update_flags |= XFS_SB_FEATURES2; 691 692 /* update sb_versionnum for the clearing of the morebits */ 693 if (!sbp->sb_features2) 694 mp->m_update_flags |= XFS_SB_VERSIONNUM; 695 } 696 697 /* 698 * Check if sb_agblocks is aligned at stripe boundary 699 * If sb_agblocks is NOT aligned turn off m_dalign since 700 * allocator alignment is within an ag, therefore ag has 701 * to be aligned at stripe boundary. 702 */ 703 error = xfs_update_alignment(mp); 704 if (error) 705 goto out; 706 707 xfs_alloc_compute_maxlevels(mp); 708 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 709 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 710 xfs_ialloc_compute_maxlevels(mp); 711 712 xfs_set_maxicount(mp); 713 714 error = xfs_uuid_mount(mp); 715 if (error) 716 goto out; 717 718 /* 719 * Set the minimum read and write sizes 720 */ 721 xfs_set_rw_sizes(mp); 722 723 /* set the low space thresholds for dynamic preallocation */ 724 xfs_set_low_space_thresholds(mp); 725 726 /* 727 * Set the inode cluster size. 728 * This may still be overridden by the file system 729 * block size if it is larger than the chosen cluster size. 730 * 731 * For v5 filesystems, scale the cluster size with the inode size to 732 * keep a constant ratio of inode per cluster buffer, but only if mkfs 733 * has set the inode alignment value appropriately for larger cluster 734 * sizes. 735 */ 736 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 737 if (xfs_sb_version_hascrc(&mp->m_sb)) { 738 int new_size = mp->m_inode_cluster_size; 739 740 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 741 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 742 mp->m_inode_cluster_size = new_size; 743 xfs_info(mp, "Using inode cluster size of %d bytes", 744 mp->m_inode_cluster_size); 745 } 746 747 /* 748 * Set inode alignment fields 749 */ 750 xfs_set_inoalignment(mp); 751 752 /* 753 * Check that the data (and log if separate) is an ok size. 754 */ 755 error = xfs_check_sizes(mp); 756 if (error) 757 goto out_remove_uuid; 758 759 /* 760 * Initialize realtime fields in the mount structure 761 */ 762 error = xfs_rtmount_init(mp); 763 if (error) { 764 xfs_warn(mp, "RT mount failed"); 765 goto out_remove_uuid; 766 } 767 768 /* 769 * Copies the low order bits of the timestamp and the randomly 770 * set "sequence" number out of a UUID. 771 */ 772 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 773 774 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 775 776 xfs_dir_mount(mp); 777 778 /* 779 * Initialize the attribute manager's entries. 780 */ 781 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 782 783 /* 784 * Initialize the precomputed transaction reservations values. 785 */ 786 xfs_trans_init(mp); 787 788 /* 789 * Allocate and initialize the per-ag data. 790 */ 791 spin_lock_init(&mp->m_perag_lock); 792 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 793 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 794 if (error) { 795 xfs_warn(mp, "Failed per-ag init: %d", error); 796 goto out_remove_uuid; 797 } 798 799 if (!sbp->sb_logblocks) { 800 xfs_warn(mp, "no log defined"); 801 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 802 error = XFS_ERROR(EFSCORRUPTED); 803 goto out_free_perag; 804 } 805 806 /* 807 * log's mount-time initialization. Perform 1st part recovery if needed 808 */ 809 error = xfs_log_mount(mp, mp->m_logdev_targp, 810 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 811 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 812 if (error) { 813 xfs_warn(mp, "log mount failed"); 814 goto out_fail_wait; 815 } 816 817 /* 818 * Now the log is mounted, we know if it was an unclean shutdown or 819 * not. If it was, with the first phase of recovery has completed, we 820 * have consistent AG blocks on disk. We have not recovered EFIs yet, 821 * but they are recovered transactionally in the second recovery phase 822 * later. 823 * 824 * Hence we can safely re-initialise incore superblock counters from 825 * the per-ag data. These may not be correct if the filesystem was not 826 * cleanly unmounted, so we need to wait for recovery to finish before 827 * doing this. 828 * 829 * If the filesystem was cleanly unmounted, then we can trust the 830 * values in the superblock to be correct and we don't need to do 831 * anything here. 832 * 833 * If we are currently making the filesystem, the initialisation will 834 * fail as the perag data is in an undefined state. 835 */ 836 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 837 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 838 !mp->m_sb.sb_inprogress) { 839 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 840 if (error) 841 goto out_fail_wait; 842 } 843 844 /* 845 * Get and sanity-check the root inode. 846 * Save the pointer to it in the mount structure. 847 */ 848 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 849 if (error) { 850 xfs_warn(mp, "failed to read root inode"); 851 goto out_log_dealloc; 852 } 853 854 ASSERT(rip != NULL); 855 856 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 857 xfs_warn(mp, "corrupted root inode %llu: not a directory", 858 (unsigned long long)rip->i_ino); 859 xfs_iunlock(rip, XFS_ILOCK_EXCL); 860 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 861 mp); 862 error = XFS_ERROR(EFSCORRUPTED); 863 goto out_rele_rip; 864 } 865 mp->m_rootip = rip; /* save it */ 866 867 xfs_iunlock(rip, XFS_ILOCK_EXCL); 868 869 /* 870 * Initialize realtime inode pointers in the mount structure 871 */ 872 error = xfs_rtmount_inodes(mp); 873 if (error) { 874 /* 875 * Free up the root inode. 876 */ 877 xfs_warn(mp, "failed to read RT inodes"); 878 goto out_rele_rip; 879 } 880 881 /* 882 * If this is a read-only mount defer the superblock updates until 883 * the next remount into writeable mode. Otherwise we would never 884 * perform the update e.g. for the root filesystem. 885 */ 886 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 887 error = xfs_mount_log_sb(mp, mp->m_update_flags); 888 if (error) { 889 xfs_warn(mp, "failed to write sb changes"); 890 goto out_rtunmount; 891 } 892 } 893 894 /* 895 * Initialise the XFS quota management subsystem for this mount 896 */ 897 if (XFS_IS_QUOTA_RUNNING(mp)) { 898 error = xfs_qm_newmount(mp, "amount, "aflags); 899 if (error) 900 goto out_rtunmount; 901 } else { 902 ASSERT(!XFS_IS_QUOTA_ON(mp)); 903 904 /* 905 * If a file system had quotas running earlier, but decided to 906 * mount without -o uquota/pquota/gquota options, revoke the 907 * quotachecked license. 908 */ 909 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 910 xfs_notice(mp, "resetting quota flags"); 911 error = xfs_mount_reset_sbqflags(mp); 912 if (error) 913 return error; 914 } 915 } 916 917 /* 918 * Finish recovering the file system. This part needed to be 919 * delayed until after the root and real-time bitmap inodes 920 * were consistently read in. 921 */ 922 error = xfs_log_mount_finish(mp); 923 if (error) { 924 xfs_warn(mp, "log mount finish failed"); 925 goto out_rtunmount; 926 } 927 928 /* 929 * Complete the quota initialisation, post-log-replay component. 930 */ 931 if (quotamount) { 932 ASSERT(mp->m_qflags == 0); 933 mp->m_qflags = quotaflags; 934 935 xfs_qm_mount_quotas(mp); 936 } 937 938 /* 939 * Now we are mounted, reserve a small amount of unused space for 940 * privileged transactions. This is needed so that transaction 941 * space required for critical operations can dip into this pool 942 * when at ENOSPC. This is needed for operations like create with 943 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 944 * are not allowed to use this reserved space. 945 * 946 * This may drive us straight to ENOSPC on mount, but that implies 947 * we were already there on the last unmount. Warn if this occurs. 948 */ 949 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 950 resblks = xfs_default_resblks(mp); 951 error = xfs_reserve_blocks(mp, &resblks, NULL); 952 if (error) 953 xfs_warn(mp, 954 "Unable to allocate reserve blocks. Continuing without reserve pool."); 955 } 956 957 return 0; 958 959 out_rtunmount: 960 xfs_rtunmount_inodes(mp); 961 out_rele_rip: 962 IRELE(rip); 963 out_log_dealloc: 964 xfs_log_unmount(mp); 965 out_fail_wait: 966 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 967 xfs_wait_buftarg(mp->m_logdev_targp); 968 xfs_wait_buftarg(mp->m_ddev_targp); 969 out_free_perag: 970 xfs_free_perag(mp); 971 out_remove_uuid: 972 xfs_uuid_unmount(mp); 973 out: 974 return error; 975 } 976 977 /* 978 * This flushes out the inodes,dquots and the superblock, unmounts the 979 * log and makes sure that incore structures are freed. 980 */ 981 void 982 xfs_unmountfs( 983 struct xfs_mount *mp) 984 { 985 __uint64_t resblks; 986 int error; 987 988 cancel_delayed_work_sync(&mp->m_eofblocks_work); 989 990 xfs_qm_unmount_quotas(mp); 991 xfs_rtunmount_inodes(mp); 992 IRELE(mp->m_rootip); 993 994 /* 995 * We can potentially deadlock here if we have an inode cluster 996 * that has been freed has its buffer still pinned in memory because 997 * the transaction is still sitting in a iclog. The stale inodes 998 * on that buffer will have their flush locks held until the 999 * transaction hits the disk and the callbacks run. the inode 1000 * flush takes the flush lock unconditionally and with nothing to 1001 * push out the iclog we will never get that unlocked. hence we 1002 * need to force the log first. 1003 */ 1004 xfs_log_force(mp, XFS_LOG_SYNC); 1005 1006 /* 1007 * Flush all pending changes from the AIL. 1008 */ 1009 xfs_ail_push_all_sync(mp->m_ail); 1010 1011 /* 1012 * And reclaim all inodes. At this point there should be no dirty 1013 * inodes and none should be pinned or locked, but use synchronous 1014 * reclaim just to be sure. We can stop background inode reclaim 1015 * here as well if it is still running. 1016 */ 1017 cancel_delayed_work_sync(&mp->m_reclaim_work); 1018 xfs_reclaim_inodes(mp, SYNC_WAIT); 1019 1020 xfs_qm_unmount(mp); 1021 1022 /* 1023 * Unreserve any blocks we have so that when we unmount we don't account 1024 * the reserved free space as used. This is really only necessary for 1025 * lazy superblock counting because it trusts the incore superblock 1026 * counters to be absolutely correct on clean unmount. 1027 * 1028 * We don't bother correcting this elsewhere for lazy superblock 1029 * counting because on mount of an unclean filesystem we reconstruct the 1030 * correct counter value and this is irrelevant. 1031 * 1032 * For non-lazy counter filesystems, this doesn't matter at all because 1033 * we only every apply deltas to the superblock and hence the incore 1034 * value does not matter.... 1035 */ 1036 resblks = 0; 1037 error = xfs_reserve_blocks(mp, &resblks, NULL); 1038 if (error) 1039 xfs_warn(mp, "Unable to free reserved block pool. " 1040 "Freespace may not be correct on next mount."); 1041 1042 error = xfs_log_sbcount(mp); 1043 if (error) 1044 xfs_warn(mp, "Unable to update superblock counters. " 1045 "Freespace may not be correct on next mount."); 1046 1047 xfs_log_unmount(mp); 1048 xfs_uuid_unmount(mp); 1049 1050 #if defined(DEBUG) 1051 xfs_errortag_clearall(mp, 0); 1052 #endif 1053 xfs_free_perag(mp); 1054 } 1055 1056 int 1057 xfs_fs_writable(xfs_mount_t *mp) 1058 { 1059 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) || 1060 (mp->m_flags & XFS_MOUNT_RDONLY)); 1061 } 1062 1063 /* 1064 * xfs_log_sbcount 1065 * 1066 * Sync the superblock counters to disk. 1067 * 1068 * Note this code can be called during the process of freezing, so 1069 * we may need to use the transaction allocator which does not 1070 * block when the transaction subsystem is in its frozen state. 1071 */ 1072 int 1073 xfs_log_sbcount(xfs_mount_t *mp) 1074 { 1075 xfs_trans_t *tp; 1076 int error; 1077 1078 if (!xfs_fs_writable(mp)) 1079 return 0; 1080 1081 xfs_icsb_sync_counters(mp, 0); 1082 1083 /* 1084 * we don't need to do this if we are updating the superblock 1085 * counters on every modification. 1086 */ 1087 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1088 return 0; 1089 1090 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1091 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1092 if (error) { 1093 xfs_trans_cancel(tp, 0); 1094 return error; 1095 } 1096 1097 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1098 xfs_trans_set_sync(tp); 1099 error = xfs_trans_commit(tp, 0); 1100 return error; 1101 } 1102 1103 /* 1104 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply 1105 * a delta to a specified field in the in-core superblock. Simply 1106 * switch on the field indicated and apply the delta to that field. 1107 * Fields are not allowed to dip below zero, so if the delta would 1108 * do this do not apply it and return EINVAL. 1109 * 1110 * The m_sb_lock must be held when this routine is called. 1111 */ 1112 STATIC int 1113 xfs_mod_incore_sb_unlocked( 1114 xfs_mount_t *mp, 1115 xfs_sb_field_t field, 1116 int64_t delta, 1117 int rsvd) 1118 { 1119 int scounter; /* short counter for 32 bit fields */ 1120 long long lcounter; /* long counter for 64 bit fields */ 1121 long long res_used, rem; 1122 1123 /* 1124 * With the in-core superblock spin lock held, switch 1125 * on the indicated field. Apply the delta to the 1126 * proper field. If the fields value would dip below 1127 * 0, then do not apply the delta and return EINVAL. 1128 */ 1129 switch (field) { 1130 case XFS_SBS_ICOUNT: 1131 lcounter = (long long)mp->m_sb.sb_icount; 1132 lcounter += delta; 1133 if (lcounter < 0) { 1134 ASSERT(0); 1135 return XFS_ERROR(EINVAL); 1136 } 1137 mp->m_sb.sb_icount = lcounter; 1138 return 0; 1139 case XFS_SBS_IFREE: 1140 lcounter = (long long)mp->m_sb.sb_ifree; 1141 lcounter += delta; 1142 if (lcounter < 0) { 1143 ASSERT(0); 1144 return XFS_ERROR(EINVAL); 1145 } 1146 mp->m_sb.sb_ifree = lcounter; 1147 return 0; 1148 case XFS_SBS_FDBLOCKS: 1149 lcounter = (long long) 1150 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1151 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1152 1153 if (delta > 0) { /* Putting blocks back */ 1154 if (res_used > delta) { 1155 mp->m_resblks_avail += delta; 1156 } else { 1157 rem = delta - res_used; 1158 mp->m_resblks_avail = mp->m_resblks; 1159 lcounter += rem; 1160 } 1161 } else { /* Taking blocks away */ 1162 lcounter += delta; 1163 if (lcounter >= 0) { 1164 mp->m_sb.sb_fdblocks = lcounter + 1165 XFS_ALLOC_SET_ASIDE(mp); 1166 return 0; 1167 } 1168 1169 /* 1170 * We are out of blocks, use any available reserved 1171 * blocks if were allowed to. 1172 */ 1173 if (!rsvd) 1174 return XFS_ERROR(ENOSPC); 1175 1176 lcounter = (long long)mp->m_resblks_avail + delta; 1177 if (lcounter >= 0) { 1178 mp->m_resblks_avail = lcounter; 1179 return 0; 1180 } 1181 printk_once(KERN_WARNING 1182 "Filesystem \"%s\": reserve blocks depleted! " 1183 "Consider increasing reserve pool size.", 1184 mp->m_fsname); 1185 return XFS_ERROR(ENOSPC); 1186 } 1187 1188 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1189 return 0; 1190 case XFS_SBS_FREXTENTS: 1191 lcounter = (long long)mp->m_sb.sb_frextents; 1192 lcounter += delta; 1193 if (lcounter < 0) { 1194 return XFS_ERROR(ENOSPC); 1195 } 1196 mp->m_sb.sb_frextents = lcounter; 1197 return 0; 1198 case XFS_SBS_DBLOCKS: 1199 lcounter = (long long)mp->m_sb.sb_dblocks; 1200 lcounter += delta; 1201 if (lcounter < 0) { 1202 ASSERT(0); 1203 return XFS_ERROR(EINVAL); 1204 } 1205 mp->m_sb.sb_dblocks = lcounter; 1206 return 0; 1207 case XFS_SBS_AGCOUNT: 1208 scounter = mp->m_sb.sb_agcount; 1209 scounter += delta; 1210 if (scounter < 0) { 1211 ASSERT(0); 1212 return XFS_ERROR(EINVAL); 1213 } 1214 mp->m_sb.sb_agcount = scounter; 1215 return 0; 1216 case XFS_SBS_IMAX_PCT: 1217 scounter = mp->m_sb.sb_imax_pct; 1218 scounter += delta; 1219 if (scounter < 0) { 1220 ASSERT(0); 1221 return XFS_ERROR(EINVAL); 1222 } 1223 mp->m_sb.sb_imax_pct = scounter; 1224 return 0; 1225 case XFS_SBS_REXTSIZE: 1226 scounter = mp->m_sb.sb_rextsize; 1227 scounter += delta; 1228 if (scounter < 0) { 1229 ASSERT(0); 1230 return XFS_ERROR(EINVAL); 1231 } 1232 mp->m_sb.sb_rextsize = scounter; 1233 return 0; 1234 case XFS_SBS_RBMBLOCKS: 1235 scounter = mp->m_sb.sb_rbmblocks; 1236 scounter += delta; 1237 if (scounter < 0) { 1238 ASSERT(0); 1239 return XFS_ERROR(EINVAL); 1240 } 1241 mp->m_sb.sb_rbmblocks = scounter; 1242 return 0; 1243 case XFS_SBS_RBLOCKS: 1244 lcounter = (long long)mp->m_sb.sb_rblocks; 1245 lcounter += delta; 1246 if (lcounter < 0) { 1247 ASSERT(0); 1248 return XFS_ERROR(EINVAL); 1249 } 1250 mp->m_sb.sb_rblocks = lcounter; 1251 return 0; 1252 case XFS_SBS_REXTENTS: 1253 lcounter = (long long)mp->m_sb.sb_rextents; 1254 lcounter += delta; 1255 if (lcounter < 0) { 1256 ASSERT(0); 1257 return XFS_ERROR(EINVAL); 1258 } 1259 mp->m_sb.sb_rextents = lcounter; 1260 return 0; 1261 case XFS_SBS_REXTSLOG: 1262 scounter = mp->m_sb.sb_rextslog; 1263 scounter += delta; 1264 if (scounter < 0) { 1265 ASSERT(0); 1266 return XFS_ERROR(EINVAL); 1267 } 1268 mp->m_sb.sb_rextslog = scounter; 1269 return 0; 1270 default: 1271 ASSERT(0); 1272 return XFS_ERROR(EINVAL); 1273 } 1274 } 1275 1276 /* 1277 * xfs_mod_incore_sb() is used to change a field in the in-core 1278 * superblock structure by the specified delta. This modification 1279 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1280 * routine to do the work. 1281 */ 1282 int 1283 xfs_mod_incore_sb( 1284 struct xfs_mount *mp, 1285 xfs_sb_field_t field, 1286 int64_t delta, 1287 int rsvd) 1288 { 1289 int status; 1290 1291 #ifdef HAVE_PERCPU_SB 1292 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1293 #endif 1294 spin_lock(&mp->m_sb_lock); 1295 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1296 spin_unlock(&mp->m_sb_lock); 1297 1298 return status; 1299 } 1300 1301 /* 1302 * Change more than one field in the in-core superblock structure at a time. 1303 * 1304 * The fields and changes to those fields are specified in the array of 1305 * xfs_mod_sb structures passed in. Either all of the specified deltas 1306 * will be applied or none of them will. If any modified field dips below 0, 1307 * then all modifications will be backed out and EINVAL will be returned. 1308 * 1309 * Note that this function may not be used for the superblock values that 1310 * are tracked with the in-memory per-cpu counters - a direct call to 1311 * xfs_icsb_modify_counters is required for these. 1312 */ 1313 int 1314 xfs_mod_incore_sb_batch( 1315 struct xfs_mount *mp, 1316 xfs_mod_sb_t *msb, 1317 uint nmsb, 1318 int rsvd) 1319 { 1320 xfs_mod_sb_t *msbp; 1321 int error = 0; 1322 1323 /* 1324 * Loop through the array of mod structures and apply each individually. 1325 * If any fail, then back out all those which have already been applied. 1326 * Do all of this within the scope of the m_sb_lock so that all of the 1327 * changes will be atomic. 1328 */ 1329 spin_lock(&mp->m_sb_lock); 1330 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1331 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1332 msbp->msb_field > XFS_SBS_FDBLOCKS); 1333 1334 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1335 msbp->msb_delta, rsvd); 1336 if (error) 1337 goto unwind; 1338 } 1339 spin_unlock(&mp->m_sb_lock); 1340 return 0; 1341 1342 unwind: 1343 while (--msbp >= msb) { 1344 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1345 -msbp->msb_delta, rsvd); 1346 ASSERT(error == 0); 1347 } 1348 spin_unlock(&mp->m_sb_lock); 1349 return error; 1350 } 1351 1352 /* 1353 * xfs_getsb() is called to obtain the buffer for the superblock. 1354 * The buffer is returned locked and read in from disk. 1355 * The buffer should be released with a call to xfs_brelse(). 1356 * 1357 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1358 * the superblock buffer if it can be locked without sleeping. 1359 * If it can't then we'll return NULL. 1360 */ 1361 struct xfs_buf * 1362 xfs_getsb( 1363 struct xfs_mount *mp, 1364 int flags) 1365 { 1366 struct xfs_buf *bp = mp->m_sb_bp; 1367 1368 if (!xfs_buf_trylock(bp)) { 1369 if (flags & XBF_TRYLOCK) 1370 return NULL; 1371 xfs_buf_lock(bp); 1372 } 1373 1374 xfs_buf_hold(bp); 1375 ASSERT(XFS_BUF_ISDONE(bp)); 1376 return bp; 1377 } 1378 1379 /* 1380 * Used to free the superblock along various error paths. 1381 */ 1382 void 1383 xfs_freesb( 1384 struct xfs_mount *mp) 1385 { 1386 struct xfs_buf *bp = mp->m_sb_bp; 1387 1388 xfs_buf_lock(bp); 1389 mp->m_sb_bp = NULL; 1390 xfs_buf_relse(bp); 1391 } 1392 1393 /* 1394 * Used to log changes to the superblock unit and width fields which could 1395 * be altered by the mount options, as well as any potential sb_features2 1396 * fixup. Only the first superblock is updated. 1397 */ 1398 int 1399 xfs_mount_log_sb( 1400 xfs_mount_t *mp, 1401 __int64_t fields) 1402 { 1403 xfs_trans_t *tp; 1404 int error; 1405 1406 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1407 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1408 XFS_SB_VERSIONNUM)); 1409 1410 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1411 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1412 if (error) { 1413 xfs_trans_cancel(tp, 0); 1414 return error; 1415 } 1416 xfs_mod_sb(tp, fields); 1417 error = xfs_trans_commit(tp, 0); 1418 return error; 1419 } 1420 1421 /* 1422 * If the underlying (data/log/rt) device is readonly, there are some 1423 * operations that cannot proceed. 1424 */ 1425 int 1426 xfs_dev_is_read_only( 1427 struct xfs_mount *mp, 1428 char *message) 1429 { 1430 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1431 xfs_readonly_buftarg(mp->m_logdev_targp) || 1432 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1433 xfs_notice(mp, "%s required on read-only device.", message); 1434 xfs_notice(mp, "write access unavailable, cannot proceed."); 1435 return EROFS; 1436 } 1437 return 0; 1438 } 1439 1440 #ifdef HAVE_PERCPU_SB 1441 /* 1442 * Per-cpu incore superblock counters 1443 * 1444 * Simple concept, difficult implementation 1445 * 1446 * Basically, replace the incore superblock counters with a distributed per cpu 1447 * counter for contended fields (e.g. free block count). 1448 * 1449 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1450 * hence needs to be accurately read when we are running low on space. Hence 1451 * there is a method to enable and disable the per-cpu counters based on how 1452 * much "stuff" is available in them. 1453 * 1454 * Basically, a counter is enabled if there is enough free resource to justify 1455 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1456 * ENOSPC), then we disable the counters to synchronise all callers and 1457 * re-distribute the available resources. 1458 * 1459 * If, once we redistributed the available resources, we still get a failure, 1460 * we disable the per-cpu counter and go through the slow path. 1461 * 1462 * The slow path is the current xfs_mod_incore_sb() function. This means that 1463 * when we disable a per-cpu counter, we need to drain its resources back to 1464 * the global superblock. We do this after disabling the counter to prevent 1465 * more threads from queueing up on the counter. 1466 * 1467 * Essentially, this means that we still need a lock in the fast path to enable 1468 * synchronisation between the global counters and the per-cpu counters. This 1469 * is not a problem because the lock will be local to a CPU almost all the time 1470 * and have little contention except when we get to ENOSPC conditions. 1471 * 1472 * Basically, this lock becomes a barrier that enables us to lock out the fast 1473 * path while we do things like enabling and disabling counters and 1474 * synchronising the counters. 1475 * 1476 * Locking rules: 1477 * 1478 * 1. m_sb_lock before picking up per-cpu locks 1479 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1480 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1481 * 4. modifying per-cpu counters requires holding per-cpu lock 1482 * 5. modifying global counters requires holding m_sb_lock 1483 * 6. enabling or disabling a counter requires holding the m_sb_lock 1484 * and _none_ of the per-cpu locks. 1485 * 1486 * Disabled counters are only ever re-enabled by a balance operation 1487 * that results in more free resources per CPU than a given threshold. 1488 * To ensure counters don't remain disabled, they are rebalanced when 1489 * the global resource goes above a higher threshold (i.e. some hysteresis 1490 * is present to prevent thrashing). 1491 */ 1492 1493 #ifdef CONFIG_HOTPLUG_CPU 1494 /* 1495 * hot-plug CPU notifier support. 1496 * 1497 * We need a notifier per filesystem as we need to be able to identify 1498 * the filesystem to balance the counters out. This is achieved by 1499 * having a notifier block embedded in the xfs_mount_t and doing pointer 1500 * magic to get the mount pointer from the notifier block address. 1501 */ 1502 STATIC int 1503 xfs_icsb_cpu_notify( 1504 struct notifier_block *nfb, 1505 unsigned long action, 1506 void *hcpu) 1507 { 1508 xfs_icsb_cnts_t *cntp; 1509 xfs_mount_t *mp; 1510 1511 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 1512 cntp = (xfs_icsb_cnts_t *) 1513 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 1514 switch (action) { 1515 case CPU_UP_PREPARE: 1516 case CPU_UP_PREPARE_FROZEN: 1517 /* Easy Case - initialize the area and locks, and 1518 * then rebalance when online does everything else for us. */ 1519 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1520 break; 1521 case CPU_ONLINE: 1522 case CPU_ONLINE_FROZEN: 1523 xfs_icsb_lock(mp); 1524 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1525 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1526 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1527 xfs_icsb_unlock(mp); 1528 break; 1529 case CPU_DEAD: 1530 case CPU_DEAD_FROZEN: 1531 /* Disable all the counters, then fold the dead cpu's 1532 * count into the total on the global superblock and 1533 * re-enable the counters. */ 1534 xfs_icsb_lock(mp); 1535 spin_lock(&mp->m_sb_lock); 1536 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 1537 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 1538 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 1539 1540 mp->m_sb.sb_icount += cntp->icsb_icount; 1541 mp->m_sb.sb_ifree += cntp->icsb_ifree; 1542 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 1543 1544 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1545 1546 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 1547 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 1548 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 1549 spin_unlock(&mp->m_sb_lock); 1550 xfs_icsb_unlock(mp); 1551 break; 1552 } 1553 1554 return NOTIFY_OK; 1555 } 1556 #endif /* CONFIG_HOTPLUG_CPU */ 1557 1558 int 1559 xfs_icsb_init_counters( 1560 xfs_mount_t *mp) 1561 { 1562 xfs_icsb_cnts_t *cntp; 1563 int i; 1564 1565 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 1566 if (mp->m_sb_cnts == NULL) 1567 return -ENOMEM; 1568 1569 for_each_online_cpu(i) { 1570 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1571 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1572 } 1573 1574 mutex_init(&mp->m_icsb_mutex); 1575 1576 /* 1577 * start with all counters disabled so that the 1578 * initial balance kicks us off correctly 1579 */ 1580 mp->m_icsb_counters = -1; 1581 1582 #ifdef CONFIG_HOTPLUG_CPU 1583 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 1584 mp->m_icsb_notifier.priority = 0; 1585 register_hotcpu_notifier(&mp->m_icsb_notifier); 1586 #endif /* CONFIG_HOTPLUG_CPU */ 1587 1588 return 0; 1589 } 1590 1591 void 1592 xfs_icsb_reinit_counters( 1593 xfs_mount_t *mp) 1594 { 1595 xfs_icsb_lock(mp); 1596 /* 1597 * start with all counters disabled so that the 1598 * initial balance kicks us off correctly 1599 */ 1600 mp->m_icsb_counters = -1; 1601 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1602 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1603 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1604 xfs_icsb_unlock(mp); 1605 } 1606 1607 void 1608 xfs_icsb_destroy_counters( 1609 xfs_mount_t *mp) 1610 { 1611 if (mp->m_sb_cnts) { 1612 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 1613 free_percpu(mp->m_sb_cnts); 1614 } 1615 mutex_destroy(&mp->m_icsb_mutex); 1616 } 1617 1618 STATIC void 1619 xfs_icsb_lock_cntr( 1620 xfs_icsb_cnts_t *icsbp) 1621 { 1622 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 1623 ndelay(1000); 1624 } 1625 } 1626 1627 STATIC void 1628 xfs_icsb_unlock_cntr( 1629 xfs_icsb_cnts_t *icsbp) 1630 { 1631 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 1632 } 1633 1634 1635 STATIC void 1636 xfs_icsb_lock_all_counters( 1637 xfs_mount_t *mp) 1638 { 1639 xfs_icsb_cnts_t *cntp; 1640 int i; 1641 1642 for_each_online_cpu(i) { 1643 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1644 xfs_icsb_lock_cntr(cntp); 1645 } 1646 } 1647 1648 STATIC void 1649 xfs_icsb_unlock_all_counters( 1650 xfs_mount_t *mp) 1651 { 1652 xfs_icsb_cnts_t *cntp; 1653 int i; 1654 1655 for_each_online_cpu(i) { 1656 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1657 xfs_icsb_unlock_cntr(cntp); 1658 } 1659 } 1660 1661 STATIC void 1662 xfs_icsb_count( 1663 xfs_mount_t *mp, 1664 xfs_icsb_cnts_t *cnt, 1665 int flags) 1666 { 1667 xfs_icsb_cnts_t *cntp; 1668 int i; 1669 1670 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 1671 1672 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1673 xfs_icsb_lock_all_counters(mp); 1674 1675 for_each_online_cpu(i) { 1676 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1677 cnt->icsb_icount += cntp->icsb_icount; 1678 cnt->icsb_ifree += cntp->icsb_ifree; 1679 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 1680 } 1681 1682 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1683 xfs_icsb_unlock_all_counters(mp); 1684 } 1685 1686 STATIC int 1687 xfs_icsb_counter_disabled( 1688 xfs_mount_t *mp, 1689 xfs_sb_field_t field) 1690 { 1691 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1692 return test_bit(field, &mp->m_icsb_counters); 1693 } 1694 1695 STATIC void 1696 xfs_icsb_disable_counter( 1697 xfs_mount_t *mp, 1698 xfs_sb_field_t field) 1699 { 1700 xfs_icsb_cnts_t cnt; 1701 1702 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1703 1704 /* 1705 * If we are already disabled, then there is nothing to do 1706 * here. We check before locking all the counters to avoid 1707 * the expensive lock operation when being called in the 1708 * slow path and the counter is already disabled. This is 1709 * safe because the only time we set or clear this state is under 1710 * the m_icsb_mutex. 1711 */ 1712 if (xfs_icsb_counter_disabled(mp, field)) 1713 return; 1714 1715 xfs_icsb_lock_all_counters(mp); 1716 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 1717 /* drain back to superblock */ 1718 1719 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 1720 switch(field) { 1721 case XFS_SBS_ICOUNT: 1722 mp->m_sb.sb_icount = cnt.icsb_icount; 1723 break; 1724 case XFS_SBS_IFREE: 1725 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1726 break; 1727 case XFS_SBS_FDBLOCKS: 1728 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1729 break; 1730 default: 1731 BUG(); 1732 } 1733 } 1734 1735 xfs_icsb_unlock_all_counters(mp); 1736 } 1737 1738 STATIC void 1739 xfs_icsb_enable_counter( 1740 xfs_mount_t *mp, 1741 xfs_sb_field_t field, 1742 uint64_t count, 1743 uint64_t resid) 1744 { 1745 xfs_icsb_cnts_t *cntp; 1746 int i; 1747 1748 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1749 1750 xfs_icsb_lock_all_counters(mp); 1751 for_each_online_cpu(i) { 1752 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 1753 switch (field) { 1754 case XFS_SBS_ICOUNT: 1755 cntp->icsb_icount = count + resid; 1756 break; 1757 case XFS_SBS_IFREE: 1758 cntp->icsb_ifree = count + resid; 1759 break; 1760 case XFS_SBS_FDBLOCKS: 1761 cntp->icsb_fdblocks = count + resid; 1762 break; 1763 default: 1764 BUG(); 1765 break; 1766 } 1767 resid = 0; 1768 } 1769 clear_bit(field, &mp->m_icsb_counters); 1770 xfs_icsb_unlock_all_counters(mp); 1771 } 1772 1773 void 1774 xfs_icsb_sync_counters_locked( 1775 xfs_mount_t *mp, 1776 int flags) 1777 { 1778 xfs_icsb_cnts_t cnt; 1779 1780 xfs_icsb_count(mp, &cnt, flags); 1781 1782 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 1783 mp->m_sb.sb_icount = cnt.icsb_icount; 1784 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 1785 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1786 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 1787 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1788 } 1789 1790 /* 1791 * Accurate update of per-cpu counters to incore superblock 1792 */ 1793 void 1794 xfs_icsb_sync_counters( 1795 xfs_mount_t *mp, 1796 int flags) 1797 { 1798 spin_lock(&mp->m_sb_lock); 1799 xfs_icsb_sync_counters_locked(mp, flags); 1800 spin_unlock(&mp->m_sb_lock); 1801 } 1802 1803 /* 1804 * Balance and enable/disable counters as necessary. 1805 * 1806 * Thresholds for re-enabling counters are somewhat magic. inode counts are 1807 * chosen to be the same number as single on disk allocation chunk per CPU, and 1808 * free blocks is something far enough zero that we aren't going thrash when we 1809 * get near ENOSPC. We also need to supply a minimum we require per cpu to 1810 * prevent looping endlessly when xfs_alloc_space asks for more than will 1811 * be distributed to a single CPU but each CPU has enough blocks to be 1812 * reenabled. 1813 * 1814 * Note that we can be called when counters are already disabled. 1815 * xfs_icsb_disable_counter() optimises the counter locking in this case to 1816 * prevent locking every per-cpu counter needlessly. 1817 */ 1818 1819 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 1820 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 1821 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 1822 STATIC void 1823 xfs_icsb_balance_counter_locked( 1824 xfs_mount_t *mp, 1825 xfs_sb_field_t field, 1826 int min_per_cpu) 1827 { 1828 uint64_t count, resid; 1829 int weight = num_online_cpus(); 1830 uint64_t min = (uint64_t)min_per_cpu; 1831 1832 /* disable counter and sync counter */ 1833 xfs_icsb_disable_counter(mp, field); 1834 1835 /* update counters - first CPU gets residual*/ 1836 switch (field) { 1837 case XFS_SBS_ICOUNT: 1838 count = mp->m_sb.sb_icount; 1839 resid = do_div(count, weight); 1840 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1841 return; 1842 break; 1843 case XFS_SBS_IFREE: 1844 count = mp->m_sb.sb_ifree; 1845 resid = do_div(count, weight); 1846 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1847 return; 1848 break; 1849 case XFS_SBS_FDBLOCKS: 1850 count = mp->m_sb.sb_fdblocks; 1851 resid = do_div(count, weight); 1852 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 1853 return; 1854 break; 1855 default: 1856 BUG(); 1857 count = resid = 0; /* quiet, gcc */ 1858 break; 1859 } 1860 1861 xfs_icsb_enable_counter(mp, field, count, resid); 1862 } 1863 1864 STATIC void 1865 xfs_icsb_balance_counter( 1866 xfs_mount_t *mp, 1867 xfs_sb_field_t fields, 1868 int min_per_cpu) 1869 { 1870 spin_lock(&mp->m_sb_lock); 1871 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 1872 spin_unlock(&mp->m_sb_lock); 1873 } 1874 1875 int 1876 xfs_icsb_modify_counters( 1877 xfs_mount_t *mp, 1878 xfs_sb_field_t field, 1879 int64_t delta, 1880 int rsvd) 1881 { 1882 xfs_icsb_cnts_t *icsbp; 1883 long long lcounter; /* long counter for 64 bit fields */ 1884 int ret = 0; 1885 1886 might_sleep(); 1887 again: 1888 preempt_disable(); 1889 icsbp = this_cpu_ptr(mp->m_sb_cnts); 1890 1891 /* 1892 * if the counter is disabled, go to slow path 1893 */ 1894 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 1895 goto slow_path; 1896 xfs_icsb_lock_cntr(icsbp); 1897 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 1898 xfs_icsb_unlock_cntr(icsbp); 1899 goto slow_path; 1900 } 1901 1902 switch (field) { 1903 case XFS_SBS_ICOUNT: 1904 lcounter = icsbp->icsb_icount; 1905 lcounter += delta; 1906 if (unlikely(lcounter < 0)) 1907 goto balance_counter; 1908 icsbp->icsb_icount = lcounter; 1909 break; 1910 1911 case XFS_SBS_IFREE: 1912 lcounter = icsbp->icsb_ifree; 1913 lcounter += delta; 1914 if (unlikely(lcounter < 0)) 1915 goto balance_counter; 1916 icsbp->icsb_ifree = lcounter; 1917 break; 1918 1919 case XFS_SBS_FDBLOCKS: 1920 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 1921 1922 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1923 lcounter += delta; 1924 if (unlikely(lcounter < 0)) 1925 goto balance_counter; 1926 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1927 break; 1928 default: 1929 BUG(); 1930 break; 1931 } 1932 xfs_icsb_unlock_cntr(icsbp); 1933 preempt_enable(); 1934 return 0; 1935 1936 slow_path: 1937 preempt_enable(); 1938 1939 /* 1940 * serialise with a mutex so we don't burn lots of cpu on 1941 * the superblock lock. We still need to hold the superblock 1942 * lock, however, when we modify the global structures. 1943 */ 1944 xfs_icsb_lock(mp); 1945 1946 /* 1947 * Now running atomically. 1948 * 1949 * If the counter is enabled, someone has beaten us to rebalancing. 1950 * Drop the lock and try again in the fast path.... 1951 */ 1952 if (!(xfs_icsb_counter_disabled(mp, field))) { 1953 xfs_icsb_unlock(mp); 1954 goto again; 1955 } 1956 1957 /* 1958 * The counter is currently disabled. Because we are 1959 * running atomically here, we know a rebalance cannot 1960 * be in progress. Hence we can go straight to operating 1961 * on the global superblock. We do not call xfs_mod_incore_sb() 1962 * here even though we need to get the m_sb_lock. Doing so 1963 * will cause us to re-enter this function and deadlock. 1964 * Hence we get the m_sb_lock ourselves and then call 1965 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 1966 * directly on the global counters. 1967 */ 1968 spin_lock(&mp->m_sb_lock); 1969 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1970 spin_unlock(&mp->m_sb_lock); 1971 1972 /* 1973 * Now that we've modified the global superblock, we 1974 * may be able to re-enable the distributed counters 1975 * (e.g. lots of space just got freed). After that 1976 * we are done. 1977 */ 1978 if (ret != ENOSPC) 1979 xfs_icsb_balance_counter(mp, field, 0); 1980 xfs_icsb_unlock(mp); 1981 return ret; 1982 1983 balance_counter: 1984 xfs_icsb_unlock_cntr(icsbp); 1985 preempt_enable(); 1986 1987 /* 1988 * We may have multiple threads here if multiple per-cpu 1989 * counters run dry at the same time. This will mean we can 1990 * do more balances than strictly necessary but it is not 1991 * the common slowpath case. 1992 */ 1993 xfs_icsb_lock(mp); 1994 1995 /* 1996 * running atomically. 1997 * 1998 * This will leave the counter in the correct state for future 1999 * accesses. After the rebalance, we simply try again and our retry 2000 * will either succeed through the fast path or slow path without 2001 * another balance operation being required. 2002 */ 2003 xfs_icsb_balance_counter(mp, field, delta); 2004 xfs_icsb_unlock(mp); 2005 goto again; 2006 } 2007 2008 #endif 2009