xref: /linux/fs/xfs/xfs_log_recover.c (revision 59024954a1e7e26b62680e1f2b5725249a6c09f7)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46 #include "xfs_rmap_item.h"
47 #include "xfs_buf_item.h"
48 
49 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
50 
51 STATIC int
52 xlog_find_zeroed(
53 	struct xlog	*,
54 	xfs_daddr_t	*);
55 STATIC int
56 xlog_clear_stale_blocks(
57 	struct xlog	*,
58 	xfs_lsn_t);
59 #if defined(DEBUG)
60 STATIC void
61 xlog_recover_check_summary(
62 	struct xlog *);
63 #else
64 #define	xlog_recover_check_summary(log)
65 #endif
66 STATIC int
67 xlog_do_recovery_pass(
68         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
69 
70 /*
71  * This structure is used during recovery to record the buf log items which
72  * have been canceled and should not be replayed.
73  */
74 struct xfs_buf_cancel {
75 	xfs_daddr_t		bc_blkno;
76 	uint			bc_len;
77 	int			bc_refcount;
78 	struct list_head	bc_list;
79 };
80 
81 /*
82  * Sector aligned buffer routines for buffer create/read/write/access
83  */
84 
85 /*
86  * Verify the given count of basic blocks is valid number of blocks
87  * to specify for an operation involving the given XFS log buffer.
88  * Returns nonzero if the count is valid, 0 otherwise.
89  */
90 
91 static inline int
92 xlog_buf_bbcount_valid(
93 	struct xlog	*log,
94 	int		bbcount)
95 {
96 	return bbcount > 0 && bbcount <= log->l_logBBsize;
97 }
98 
99 /*
100  * Allocate a buffer to hold log data.  The buffer needs to be able
101  * to map to a range of nbblks basic blocks at any valid (basic
102  * block) offset within the log.
103  */
104 STATIC xfs_buf_t *
105 xlog_get_bp(
106 	struct xlog	*log,
107 	int		nbblks)
108 {
109 	struct xfs_buf	*bp;
110 
111 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
112 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
113 			nbblks);
114 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
115 		return NULL;
116 	}
117 
118 	/*
119 	 * We do log I/O in units of log sectors (a power-of-2
120 	 * multiple of the basic block size), so we round up the
121 	 * requested size to accommodate the basic blocks required
122 	 * for complete log sectors.
123 	 *
124 	 * In addition, the buffer may be used for a non-sector-
125 	 * aligned block offset, in which case an I/O of the
126 	 * requested size could extend beyond the end of the
127 	 * buffer.  If the requested size is only 1 basic block it
128 	 * will never straddle a sector boundary, so this won't be
129 	 * an issue.  Nor will this be a problem if the log I/O is
130 	 * done in basic blocks (sector size 1).  But otherwise we
131 	 * extend the buffer by one extra log sector to ensure
132 	 * there's space to accommodate this possibility.
133 	 */
134 	if (nbblks > 1 && log->l_sectBBsize > 1)
135 		nbblks += log->l_sectBBsize;
136 	nbblks = round_up(nbblks, log->l_sectBBsize);
137 
138 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
139 	if (bp)
140 		xfs_buf_unlock(bp);
141 	return bp;
142 }
143 
144 STATIC void
145 xlog_put_bp(
146 	xfs_buf_t	*bp)
147 {
148 	xfs_buf_free(bp);
149 }
150 
151 /*
152  * Return the address of the start of the given block number's data
153  * in a log buffer.  The buffer covers a log sector-aligned region.
154  */
155 STATIC char *
156 xlog_align(
157 	struct xlog	*log,
158 	xfs_daddr_t	blk_no,
159 	int		nbblks,
160 	struct xfs_buf	*bp)
161 {
162 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
163 
164 	ASSERT(offset + nbblks <= bp->b_length);
165 	return bp->b_addr + BBTOB(offset);
166 }
167 
168 
169 /*
170  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
171  */
172 STATIC int
173 xlog_bread_noalign(
174 	struct xlog	*log,
175 	xfs_daddr_t	blk_no,
176 	int		nbblks,
177 	struct xfs_buf	*bp)
178 {
179 	int		error;
180 
181 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
182 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
183 			nbblks);
184 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
185 		return -EFSCORRUPTED;
186 	}
187 
188 	blk_no = round_down(blk_no, log->l_sectBBsize);
189 	nbblks = round_up(nbblks, log->l_sectBBsize);
190 
191 	ASSERT(nbblks > 0);
192 	ASSERT(nbblks <= bp->b_length);
193 
194 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
195 	bp->b_flags |= XBF_READ;
196 	bp->b_io_length = nbblks;
197 	bp->b_error = 0;
198 
199 	error = xfs_buf_submit_wait(bp);
200 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
201 		xfs_buf_ioerror_alert(bp, __func__);
202 	return error;
203 }
204 
205 STATIC int
206 xlog_bread(
207 	struct xlog	*log,
208 	xfs_daddr_t	blk_no,
209 	int		nbblks,
210 	struct xfs_buf	*bp,
211 	char		**offset)
212 {
213 	int		error;
214 
215 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
216 	if (error)
217 		return error;
218 
219 	*offset = xlog_align(log, blk_no, nbblks, bp);
220 	return 0;
221 }
222 
223 /*
224  * Read at an offset into the buffer. Returns with the buffer in it's original
225  * state regardless of the result of the read.
226  */
227 STATIC int
228 xlog_bread_offset(
229 	struct xlog	*log,
230 	xfs_daddr_t	blk_no,		/* block to read from */
231 	int		nbblks,		/* blocks to read */
232 	struct xfs_buf	*bp,
233 	char		*offset)
234 {
235 	char		*orig_offset = bp->b_addr;
236 	int		orig_len = BBTOB(bp->b_length);
237 	int		error, error2;
238 
239 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
240 	if (error)
241 		return error;
242 
243 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
244 
245 	/* must reset buffer pointer even on error */
246 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
247 	if (error)
248 		return error;
249 	return error2;
250 }
251 
252 /*
253  * Write out the buffer at the given block for the given number of blocks.
254  * The buffer is kept locked across the write and is returned locked.
255  * This can only be used for synchronous log writes.
256  */
257 STATIC int
258 xlog_bwrite(
259 	struct xlog	*log,
260 	xfs_daddr_t	blk_no,
261 	int		nbblks,
262 	struct xfs_buf	*bp)
263 {
264 	int		error;
265 
266 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
267 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
268 			nbblks);
269 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
270 		return -EFSCORRUPTED;
271 	}
272 
273 	blk_no = round_down(blk_no, log->l_sectBBsize);
274 	nbblks = round_up(nbblks, log->l_sectBBsize);
275 
276 	ASSERT(nbblks > 0);
277 	ASSERT(nbblks <= bp->b_length);
278 
279 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
280 	xfs_buf_hold(bp);
281 	xfs_buf_lock(bp);
282 	bp->b_io_length = nbblks;
283 	bp->b_error = 0;
284 
285 	error = xfs_bwrite(bp);
286 	if (error)
287 		xfs_buf_ioerror_alert(bp, __func__);
288 	xfs_buf_relse(bp);
289 	return error;
290 }
291 
292 #ifdef DEBUG
293 /*
294  * dump debug superblock and log record information
295  */
296 STATIC void
297 xlog_header_check_dump(
298 	xfs_mount_t		*mp,
299 	xlog_rec_header_t	*head)
300 {
301 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
302 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
303 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
304 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
305 }
306 #else
307 #define xlog_header_check_dump(mp, head)
308 #endif
309 
310 /*
311  * check log record header for recovery
312  */
313 STATIC int
314 xlog_header_check_recover(
315 	xfs_mount_t		*mp,
316 	xlog_rec_header_t	*head)
317 {
318 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
319 
320 	/*
321 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
322 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
323 	 * a dirty log created in IRIX.
324 	 */
325 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
326 		xfs_warn(mp,
327 	"dirty log written in incompatible format - can't recover");
328 		xlog_header_check_dump(mp, head);
329 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
330 				 XFS_ERRLEVEL_HIGH, mp);
331 		return -EFSCORRUPTED;
332 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
333 		xfs_warn(mp,
334 	"dirty log entry has mismatched uuid - can't recover");
335 		xlog_header_check_dump(mp, head);
336 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
337 				 XFS_ERRLEVEL_HIGH, mp);
338 		return -EFSCORRUPTED;
339 	}
340 	return 0;
341 }
342 
343 /*
344  * read the head block of the log and check the header
345  */
346 STATIC int
347 xlog_header_check_mount(
348 	xfs_mount_t		*mp,
349 	xlog_rec_header_t	*head)
350 {
351 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
352 
353 	if (uuid_is_nil(&head->h_fs_uuid)) {
354 		/*
355 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
356 		 * h_fs_uuid is nil, we assume this log was last mounted
357 		 * by IRIX and continue.
358 		 */
359 		xfs_warn(mp, "nil uuid in log - IRIX style log");
360 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
361 		xfs_warn(mp, "log has mismatched uuid - can't recover");
362 		xlog_header_check_dump(mp, head);
363 		XFS_ERROR_REPORT("xlog_header_check_mount",
364 				 XFS_ERRLEVEL_HIGH, mp);
365 		return -EFSCORRUPTED;
366 	}
367 	return 0;
368 }
369 
370 STATIC void
371 xlog_recover_iodone(
372 	struct xfs_buf	*bp)
373 {
374 	if (bp->b_error) {
375 		/*
376 		 * We're not going to bother about retrying
377 		 * this during recovery. One strike!
378 		 */
379 		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
380 			xfs_buf_ioerror_alert(bp, __func__);
381 			xfs_force_shutdown(bp->b_target->bt_mount,
382 						SHUTDOWN_META_IO_ERROR);
383 		}
384 	}
385 
386 	/*
387 	 * On v5 supers, a bli could be attached to update the metadata LSN.
388 	 * Clean it up.
389 	 */
390 	if (bp->b_fspriv)
391 		xfs_buf_item_relse(bp);
392 	ASSERT(bp->b_fspriv == NULL);
393 
394 	bp->b_iodone = NULL;
395 	xfs_buf_ioend(bp);
396 }
397 
398 /*
399  * This routine finds (to an approximation) the first block in the physical
400  * log which contains the given cycle.  It uses a binary search algorithm.
401  * Note that the algorithm can not be perfect because the disk will not
402  * necessarily be perfect.
403  */
404 STATIC int
405 xlog_find_cycle_start(
406 	struct xlog	*log,
407 	struct xfs_buf	*bp,
408 	xfs_daddr_t	first_blk,
409 	xfs_daddr_t	*last_blk,
410 	uint		cycle)
411 {
412 	char		*offset;
413 	xfs_daddr_t	mid_blk;
414 	xfs_daddr_t	end_blk;
415 	uint		mid_cycle;
416 	int		error;
417 
418 	end_blk = *last_blk;
419 	mid_blk = BLK_AVG(first_blk, end_blk);
420 	while (mid_blk != first_blk && mid_blk != end_blk) {
421 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
422 		if (error)
423 			return error;
424 		mid_cycle = xlog_get_cycle(offset);
425 		if (mid_cycle == cycle)
426 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
427 		else
428 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
429 		mid_blk = BLK_AVG(first_blk, end_blk);
430 	}
431 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
432 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
433 
434 	*last_blk = end_blk;
435 
436 	return 0;
437 }
438 
439 /*
440  * Check that a range of blocks does not contain stop_on_cycle_no.
441  * Fill in *new_blk with the block offset where such a block is
442  * found, or with -1 (an invalid block number) if there is no such
443  * block in the range.  The scan needs to occur from front to back
444  * and the pointer into the region must be updated since a later
445  * routine will need to perform another test.
446  */
447 STATIC int
448 xlog_find_verify_cycle(
449 	struct xlog	*log,
450 	xfs_daddr_t	start_blk,
451 	int		nbblks,
452 	uint		stop_on_cycle_no,
453 	xfs_daddr_t	*new_blk)
454 {
455 	xfs_daddr_t	i, j;
456 	uint		cycle;
457 	xfs_buf_t	*bp;
458 	xfs_daddr_t	bufblks;
459 	char		*buf = NULL;
460 	int		error = 0;
461 
462 	/*
463 	 * Greedily allocate a buffer big enough to handle the full
464 	 * range of basic blocks we'll be examining.  If that fails,
465 	 * try a smaller size.  We need to be able to read at least
466 	 * a log sector, or we're out of luck.
467 	 */
468 	bufblks = 1 << ffs(nbblks);
469 	while (bufblks > log->l_logBBsize)
470 		bufblks >>= 1;
471 	while (!(bp = xlog_get_bp(log, bufblks))) {
472 		bufblks >>= 1;
473 		if (bufblks < log->l_sectBBsize)
474 			return -ENOMEM;
475 	}
476 
477 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
478 		int	bcount;
479 
480 		bcount = min(bufblks, (start_blk + nbblks - i));
481 
482 		error = xlog_bread(log, i, bcount, bp, &buf);
483 		if (error)
484 			goto out;
485 
486 		for (j = 0; j < bcount; j++) {
487 			cycle = xlog_get_cycle(buf);
488 			if (cycle == stop_on_cycle_no) {
489 				*new_blk = i+j;
490 				goto out;
491 			}
492 
493 			buf += BBSIZE;
494 		}
495 	}
496 
497 	*new_blk = -1;
498 
499 out:
500 	xlog_put_bp(bp);
501 	return error;
502 }
503 
504 /*
505  * Potentially backup over partial log record write.
506  *
507  * In the typical case, last_blk is the number of the block directly after
508  * a good log record.  Therefore, we subtract one to get the block number
509  * of the last block in the given buffer.  extra_bblks contains the number
510  * of blocks we would have read on a previous read.  This happens when the
511  * last log record is split over the end of the physical log.
512  *
513  * extra_bblks is the number of blocks potentially verified on a previous
514  * call to this routine.
515  */
516 STATIC int
517 xlog_find_verify_log_record(
518 	struct xlog		*log,
519 	xfs_daddr_t		start_blk,
520 	xfs_daddr_t		*last_blk,
521 	int			extra_bblks)
522 {
523 	xfs_daddr_t		i;
524 	xfs_buf_t		*bp;
525 	char			*offset = NULL;
526 	xlog_rec_header_t	*head = NULL;
527 	int			error = 0;
528 	int			smallmem = 0;
529 	int			num_blks = *last_blk - start_blk;
530 	int			xhdrs;
531 
532 	ASSERT(start_blk != 0 || *last_blk != start_blk);
533 
534 	if (!(bp = xlog_get_bp(log, num_blks))) {
535 		if (!(bp = xlog_get_bp(log, 1)))
536 			return -ENOMEM;
537 		smallmem = 1;
538 	} else {
539 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
540 		if (error)
541 			goto out;
542 		offset += ((num_blks - 1) << BBSHIFT);
543 	}
544 
545 	for (i = (*last_blk) - 1; i >= 0; i--) {
546 		if (i < start_blk) {
547 			/* valid log record not found */
548 			xfs_warn(log->l_mp,
549 		"Log inconsistent (didn't find previous header)");
550 			ASSERT(0);
551 			error = -EIO;
552 			goto out;
553 		}
554 
555 		if (smallmem) {
556 			error = xlog_bread(log, i, 1, bp, &offset);
557 			if (error)
558 				goto out;
559 		}
560 
561 		head = (xlog_rec_header_t *)offset;
562 
563 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
564 			break;
565 
566 		if (!smallmem)
567 			offset -= BBSIZE;
568 	}
569 
570 	/*
571 	 * We hit the beginning of the physical log & still no header.  Return
572 	 * to caller.  If caller can handle a return of -1, then this routine
573 	 * will be called again for the end of the physical log.
574 	 */
575 	if (i == -1) {
576 		error = 1;
577 		goto out;
578 	}
579 
580 	/*
581 	 * We have the final block of the good log (the first block
582 	 * of the log record _before_ the head. So we check the uuid.
583 	 */
584 	if ((error = xlog_header_check_mount(log->l_mp, head)))
585 		goto out;
586 
587 	/*
588 	 * We may have found a log record header before we expected one.
589 	 * last_blk will be the 1st block # with a given cycle #.  We may end
590 	 * up reading an entire log record.  In this case, we don't want to
591 	 * reset last_blk.  Only when last_blk points in the middle of a log
592 	 * record do we update last_blk.
593 	 */
594 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
595 		uint	h_size = be32_to_cpu(head->h_size);
596 
597 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
598 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
599 			xhdrs++;
600 	} else {
601 		xhdrs = 1;
602 	}
603 
604 	if (*last_blk - i + extra_bblks !=
605 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
606 		*last_blk = i;
607 
608 out:
609 	xlog_put_bp(bp);
610 	return error;
611 }
612 
613 /*
614  * Head is defined to be the point of the log where the next log write
615  * could go.  This means that incomplete LR writes at the end are
616  * eliminated when calculating the head.  We aren't guaranteed that previous
617  * LR have complete transactions.  We only know that a cycle number of
618  * current cycle number -1 won't be present in the log if we start writing
619  * from our current block number.
620  *
621  * last_blk contains the block number of the first block with a given
622  * cycle number.
623  *
624  * Return: zero if normal, non-zero if error.
625  */
626 STATIC int
627 xlog_find_head(
628 	struct xlog	*log,
629 	xfs_daddr_t	*return_head_blk)
630 {
631 	xfs_buf_t	*bp;
632 	char		*offset;
633 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
634 	int		num_scan_bblks;
635 	uint		first_half_cycle, last_half_cycle;
636 	uint		stop_on_cycle;
637 	int		error, log_bbnum = log->l_logBBsize;
638 
639 	/* Is the end of the log device zeroed? */
640 	error = xlog_find_zeroed(log, &first_blk);
641 	if (error < 0) {
642 		xfs_warn(log->l_mp, "empty log check failed");
643 		return error;
644 	}
645 	if (error == 1) {
646 		*return_head_blk = first_blk;
647 
648 		/* Is the whole lot zeroed? */
649 		if (!first_blk) {
650 			/* Linux XFS shouldn't generate totally zeroed logs -
651 			 * mkfs etc write a dummy unmount record to a fresh
652 			 * log so we can store the uuid in there
653 			 */
654 			xfs_warn(log->l_mp, "totally zeroed log");
655 		}
656 
657 		return 0;
658 	}
659 
660 	first_blk = 0;			/* get cycle # of 1st block */
661 	bp = xlog_get_bp(log, 1);
662 	if (!bp)
663 		return -ENOMEM;
664 
665 	error = xlog_bread(log, 0, 1, bp, &offset);
666 	if (error)
667 		goto bp_err;
668 
669 	first_half_cycle = xlog_get_cycle(offset);
670 
671 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
672 	error = xlog_bread(log, last_blk, 1, bp, &offset);
673 	if (error)
674 		goto bp_err;
675 
676 	last_half_cycle = xlog_get_cycle(offset);
677 	ASSERT(last_half_cycle != 0);
678 
679 	/*
680 	 * If the 1st half cycle number is equal to the last half cycle number,
681 	 * then the entire log is stamped with the same cycle number.  In this
682 	 * case, head_blk can't be set to zero (which makes sense).  The below
683 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
684 	 * we set it to log_bbnum which is an invalid block number, but this
685 	 * value makes the math correct.  If head_blk doesn't changed through
686 	 * all the tests below, *head_blk is set to zero at the very end rather
687 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
688 	 * in a circular file.
689 	 */
690 	if (first_half_cycle == last_half_cycle) {
691 		/*
692 		 * In this case we believe that the entire log should have
693 		 * cycle number last_half_cycle.  We need to scan backwards
694 		 * from the end verifying that there are no holes still
695 		 * containing last_half_cycle - 1.  If we find such a hole,
696 		 * then the start of that hole will be the new head.  The
697 		 * simple case looks like
698 		 *        x | x ... | x - 1 | x
699 		 * Another case that fits this picture would be
700 		 *        x | x + 1 | x ... | x
701 		 * In this case the head really is somewhere at the end of the
702 		 * log, as one of the latest writes at the beginning was
703 		 * incomplete.
704 		 * One more case is
705 		 *        x | x + 1 | x ... | x - 1 | x
706 		 * This is really the combination of the above two cases, and
707 		 * the head has to end up at the start of the x-1 hole at the
708 		 * end of the log.
709 		 *
710 		 * In the 256k log case, we will read from the beginning to the
711 		 * end of the log and search for cycle numbers equal to x-1.
712 		 * We don't worry about the x+1 blocks that we encounter,
713 		 * because we know that they cannot be the head since the log
714 		 * started with x.
715 		 */
716 		head_blk = log_bbnum;
717 		stop_on_cycle = last_half_cycle - 1;
718 	} else {
719 		/*
720 		 * In this case we want to find the first block with cycle
721 		 * number matching last_half_cycle.  We expect the log to be
722 		 * some variation on
723 		 *        x + 1 ... | x ... | x
724 		 * The first block with cycle number x (last_half_cycle) will
725 		 * be where the new head belongs.  First we do a binary search
726 		 * for the first occurrence of last_half_cycle.  The binary
727 		 * search may not be totally accurate, so then we scan back
728 		 * from there looking for occurrences of last_half_cycle before
729 		 * us.  If that backwards scan wraps around the beginning of
730 		 * the log, then we look for occurrences of last_half_cycle - 1
731 		 * at the end of the log.  The cases we're looking for look
732 		 * like
733 		 *                               v binary search stopped here
734 		 *        x + 1 ... | x | x + 1 | x ... | x
735 		 *                   ^ but we want to locate this spot
736 		 * or
737 		 *        <---------> less than scan distance
738 		 *        x + 1 ... | x ... | x - 1 | x
739 		 *                           ^ we want to locate this spot
740 		 */
741 		stop_on_cycle = last_half_cycle;
742 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
743 						&head_blk, last_half_cycle)))
744 			goto bp_err;
745 	}
746 
747 	/*
748 	 * Now validate the answer.  Scan back some number of maximum possible
749 	 * blocks and make sure each one has the expected cycle number.  The
750 	 * maximum is determined by the total possible amount of buffering
751 	 * in the in-core log.  The following number can be made tighter if
752 	 * we actually look at the block size of the filesystem.
753 	 */
754 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
755 	if (head_blk >= num_scan_bblks) {
756 		/*
757 		 * We are guaranteed that the entire check can be performed
758 		 * in one buffer.
759 		 */
760 		start_blk = head_blk - num_scan_bblks;
761 		if ((error = xlog_find_verify_cycle(log,
762 						start_blk, num_scan_bblks,
763 						stop_on_cycle, &new_blk)))
764 			goto bp_err;
765 		if (new_blk != -1)
766 			head_blk = new_blk;
767 	} else {		/* need to read 2 parts of log */
768 		/*
769 		 * We are going to scan backwards in the log in two parts.
770 		 * First we scan the physical end of the log.  In this part
771 		 * of the log, we are looking for blocks with cycle number
772 		 * last_half_cycle - 1.
773 		 * If we find one, then we know that the log starts there, as
774 		 * we've found a hole that didn't get written in going around
775 		 * the end of the physical log.  The simple case for this is
776 		 *        x + 1 ... | x ... | x - 1 | x
777 		 *        <---------> less than scan distance
778 		 * If all of the blocks at the end of the log have cycle number
779 		 * last_half_cycle, then we check the blocks at the start of
780 		 * the log looking for occurrences of last_half_cycle.  If we
781 		 * find one, then our current estimate for the location of the
782 		 * first occurrence of last_half_cycle is wrong and we move
783 		 * back to the hole we've found.  This case looks like
784 		 *        x + 1 ... | x | x + 1 | x ...
785 		 *                               ^ binary search stopped here
786 		 * Another case we need to handle that only occurs in 256k
787 		 * logs is
788 		 *        x + 1 ... | x ... | x+1 | x ...
789 		 *                   ^ binary search stops here
790 		 * In a 256k log, the scan at the end of the log will see the
791 		 * x + 1 blocks.  We need to skip past those since that is
792 		 * certainly not the head of the log.  By searching for
793 		 * last_half_cycle-1 we accomplish that.
794 		 */
795 		ASSERT(head_blk <= INT_MAX &&
796 			(xfs_daddr_t) num_scan_bblks >= head_blk);
797 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
798 		if ((error = xlog_find_verify_cycle(log, start_blk,
799 					num_scan_bblks - (int)head_blk,
800 					(stop_on_cycle - 1), &new_blk)))
801 			goto bp_err;
802 		if (new_blk != -1) {
803 			head_blk = new_blk;
804 			goto validate_head;
805 		}
806 
807 		/*
808 		 * Scan beginning of log now.  The last part of the physical
809 		 * log is good.  This scan needs to verify that it doesn't find
810 		 * the last_half_cycle.
811 		 */
812 		start_blk = 0;
813 		ASSERT(head_blk <= INT_MAX);
814 		if ((error = xlog_find_verify_cycle(log,
815 					start_blk, (int)head_blk,
816 					stop_on_cycle, &new_blk)))
817 			goto bp_err;
818 		if (new_blk != -1)
819 			head_blk = new_blk;
820 	}
821 
822 validate_head:
823 	/*
824 	 * Now we need to make sure head_blk is not pointing to a block in
825 	 * the middle of a log record.
826 	 */
827 	num_scan_bblks = XLOG_REC_SHIFT(log);
828 	if (head_blk >= num_scan_bblks) {
829 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
830 
831 		/* start ptr at last block ptr before head_blk */
832 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
833 		if (error == 1)
834 			error = -EIO;
835 		if (error)
836 			goto bp_err;
837 	} else {
838 		start_blk = 0;
839 		ASSERT(head_blk <= INT_MAX);
840 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
841 		if (error < 0)
842 			goto bp_err;
843 		if (error == 1) {
844 			/* We hit the beginning of the log during our search */
845 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
846 			new_blk = log_bbnum;
847 			ASSERT(start_blk <= INT_MAX &&
848 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
849 			ASSERT(head_blk <= INT_MAX);
850 			error = xlog_find_verify_log_record(log, start_blk,
851 							&new_blk, (int)head_blk);
852 			if (error == 1)
853 				error = -EIO;
854 			if (error)
855 				goto bp_err;
856 			if (new_blk != log_bbnum)
857 				head_blk = new_blk;
858 		} else if (error)
859 			goto bp_err;
860 	}
861 
862 	xlog_put_bp(bp);
863 	if (head_blk == log_bbnum)
864 		*return_head_blk = 0;
865 	else
866 		*return_head_blk = head_blk;
867 	/*
868 	 * When returning here, we have a good block number.  Bad block
869 	 * means that during a previous crash, we didn't have a clean break
870 	 * from cycle number N to cycle number N-1.  In this case, we need
871 	 * to find the first block with cycle number N-1.
872 	 */
873 	return 0;
874 
875  bp_err:
876 	xlog_put_bp(bp);
877 
878 	if (error)
879 		xfs_warn(log->l_mp, "failed to find log head");
880 	return error;
881 }
882 
883 /*
884  * Seek backwards in the log for log record headers.
885  *
886  * Given a starting log block, walk backwards until we find the provided number
887  * of records or hit the provided tail block. The return value is the number of
888  * records encountered or a negative error code. The log block and buffer
889  * pointer of the last record seen are returned in rblk and rhead respectively.
890  */
891 STATIC int
892 xlog_rseek_logrec_hdr(
893 	struct xlog		*log,
894 	xfs_daddr_t		head_blk,
895 	xfs_daddr_t		tail_blk,
896 	int			count,
897 	struct xfs_buf		*bp,
898 	xfs_daddr_t		*rblk,
899 	struct xlog_rec_header	**rhead,
900 	bool			*wrapped)
901 {
902 	int			i;
903 	int			error;
904 	int			found = 0;
905 	char			*offset = NULL;
906 	xfs_daddr_t		end_blk;
907 
908 	*wrapped = false;
909 
910 	/*
911 	 * Walk backwards from the head block until we hit the tail or the first
912 	 * block in the log.
913 	 */
914 	end_blk = head_blk > tail_blk ? tail_blk : 0;
915 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
916 		error = xlog_bread(log, i, 1, bp, &offset);
917 		if (error)
918 			goto out_error;
919 
920 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
921 			*rblk = i;
922 			*rhead = (struct xlog_rec_header *) offset;
923 			if (++found == count)
924 				break;
925 		}
926 	}
927 
928 	/*
929 	 * If we haven't hit the tail block or the log record header count,
930 	 * start looking again from the end of the physical log. Note that
931 	 * callers can pass head == tail if the tail is not yet known.
932 	 */
933 	if (tail_blk >= head_blk && found != count) {
934 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
935 			error = xlog_bread(log, i, 1, bp, &offset);
936 			if (error)
937 				goto out_error;
938 
939 			if (*(__be32 *)offset ==
940 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
941 				*wrapped = true;
942 				*rblk = i;
943 				*rhead = (struct xlog_rec_header *) offset;
944 				if (++found == count)
945 					break;
946 			}
947 		}
948 	}
949 
950 	return found;
951 
952 out_error:
953 	return error;
954 }
955 
956 /*
957  * Seek forward in the log for log record headers.
958  *
959  * Given head and tail blocks, walk forward from the tail block until we find
960  * the provided number of records or hit the head block. The return value is the
961  * number of records encountered or a negative error code. The log block and
962  * buffer pointer of the last record seen are returned in rblk and rhead
963  * respectively.
964  */
965 STATIC int
966 xlog_seek_logrec_hdr(
967 	struct xlog		*log,
968 	xfs_daddr_t		head_blk,
969 	xfs_daddr_t		tail_blk,
970 	int			count,
971 	struct xfs_buf		*bp,
972 	xfs_daddr_t		*rblk,
973 	struct xlog_rec_header	**rhead,
974 	bool			*wrapped)
975 {
976 	int			i;
977 	int			error;
978 	int			found = 0;
979 	char			*offset = NULL;
980 	xfs_daddr_t		end_blk;
981 
982 	*wrapped = false;
983 
984 	/*
985 	 * Walk forward from the tail block until we hit the head or the last
986 	 * block in the log.
987 	 */
988 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
989 	for (i = (int) tail_blk; i <= end_blk; i++) {
990 		error = xlog_bread(log, i, 1, bp, &offset);
991 		if (error)
992 			goto out_error;
993 
994 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
995 			*rblk = i;
996 			*rhead = (struct xlog_rec_header *) offset;
997 			if (++found == count)
998 				break;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * If we haven't hit the head block or the log record header count,
1004 	 * start looking again from the start of the physical log.
1005 	 */
1006 	if (tail_blk > head_blk && found != count) {
1007 		for (i = 0; i < (int) head_blk; i++) {
1008 			error = xlog_bread(log, i, 1, bp, &offset);
1009 			if (error)
1010 				goto out_error;
1011 
1012 			if (*(__be32 *)offset ==
1013 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1014 				*wrapped = true;
1015 				*rblk = i;
1016 				*rhead = (struct xlog_rec_header *) offset;
1017 				if (++found == count)
1018 					break;
1019 			}
1020 		}
1021 	}
1022 
1023 	return found;
1024 
1025 out_error:
1026 	return error;
1027 }
1028 
1029 /*
1030  * Check the log tail for torn writes. This is required when torn writes are
1031  * detected at the head and the head had to be walked back to a previous record.
1032  * The tail of the previous record must now be verified to ensure the torn
1033  * writes didn't corrupt the previous tail.
1034  *
1035  * Return an error if CRC verification fails as recovery cannot proceed.
1036  */
1037 STATIC int
1038 xlog_verify_tail(
1039 	struct xlog		*log,
1040 	xfs_daddr_t		head_blk,
1041 	xfs_daddr_t		tail_blk)
1042 {
1043 	struct xlog_rec_header	*thead;
1044 	struct xfs_buf		*bp;
1045 	xfs_daddr_t		first_bad;
1046 	int			count;
1047 	int			error = 0;
1048 	bool			wrapped;
1049 	xfs_daddr_t		tmp_head;
1050 
1051 	bp = xlog_get_bp(log, 1);
1052 	if (!bp)
1053 		return -ENOMEM;
1054 
1055 	/*
1056 	 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1057 	 * a temporary head block that points after the last possible
1058 	 * concurrently written record of the tail.
1059 	 */
1060 	count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1061 				     XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1062 				     &wrapped);
1063 	if (count < 0) {
1064 		error = count;
1065 		goto out;
1066 	}
1067 
1068 	/*
1069 	 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1070 	 * into the actual log head. tmp_head points to the start of the record
1071 	 * so update it to the actual head block.
1072 	 */
1073 	if (count < XLOG_MAX_ICLOGS + 1)
1074 		tmp_head = head_blk;
1075 
1076 	/*
1077 	 * We now have a tail and temporary head block that covers at least
1078 	 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1079 	 * records were completely written. Run a CRC verification pass from
1080 	 * tail to head and return the result.
1081 	 */
1082 	error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1083 				      XLOG_RECOVER_CRCPASS, &first_bad);
1084 
1085 out:
1086 	xlog_put_bp(bp);
1087 	return error;
1088 }
1089 
1090 /*
1091  * Detect and trim torn writes from the head of the log.
1092  *
1093  * Storage without sector atomicity guarantees can result in torn writes in the
1094  * log in the event of a crash. Our only means to detect this scenario is via
1095  * CRC verification. While we can't always be certain that CRC verification
1096  * failure is due to a torn write vs. an unrelated corruption, we do know that
1097  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1098  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1099  * the log and treat failures in this range as torn writes as a matter of
1100  * policy. In the event of CRC failure, the head is walked back to the last good
1101  * record in the log and the tail is updated from that record and verified.
1102  */
1103 STATIC int
1104 xlog_verify_head(
1105 	struct xlog		*log,
1106 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1107 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1108 	struct xfs_buf		*bp,
1109 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1110 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1111 	bool			*wrapped)	/* last rec. wraps phys. log */
1112 {
1113 	struct xlog_rec_header	*tmp_rhead;
1114 	struct xfs_buf		*tmp_bp;
1115 	xfs_daddr_t		first_bad;
1116 	xfs_daddr_t		tmp_rhead_blk;
1117 	int			found;
1118 	int			error;
1119 	bool			tmp_wrapped;
1120 
1121 	/*
1122 	 * Check the head of the log for torn writes. Search backwards from the
1123 	 * head until we hit the tail or the maximum number of log record I/Os
1124 	 * that could have been in flight at one time. Use a temporary buffer so
1125 	 * we don't trash the rhead/bp pointers from the caller.
1126 	 */
1127 	tmp_bp = xlog_get_bp(log, 1);
1128 	if (!tmp_bp)
1129 		return -ENOMEM;
1130 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1131 				      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1132 				      &tmp_rhead, &tmp_wrapped);
1133 	xlog_put_bp(tmp_bp);
1134 	if (error < 0)
1135 		return error;
1136 
1137 	/*
1138 	 * Now run a CRC verification pass over the records starting at the
1139 	 * block found above to the current head. If a CRC failure occurs, the
1140 	 * log block of the first bad record is saved in first_bad.
1141 	 */
1142 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1143 				      XLOG_RECOVER_CRCPASS, &first_bad);
1144 	if (error == -EFSBADCRC) {
1145 		/*
1146 		 * We've hit a potential torn write. Reset the error and warn
1147 		 * about it.
1148 		 */
1149 		error = 0;
1150 		xfs_warn(log->l_mp,
1151 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1152 			 first_bad, *head_blk);
1153 
1154 		/*
1155 		 * Get the header block and buffer pointer for the last good
1156 		 * record before the bad record.
1157 		 *
1158 		 * Note that xlog_find_tail() clears the blocks at the new head
1159 		 * (i.e., the records with invalid CRC) if the cycle number
1160 		 * matches the the current cycle.
1161 		 */
1162 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1163 					      rhead_blk, rhead, wrapped);
1164 		if (found < 0)
1165 			return found;
1166 		if (found == 0)		/* XXX: right thing to do here? */
1167 			return -EIO;
1168 
1169 		/*
1170 		 * Reset the head block to the starting block of the first bad
1171 		 * log record and set the tail block based on the last good
1172 		 * record.
1173 		 *
1174 		 * Bail out if the updated head/tail match as this indicates
1175 		 * possible corruption outside of the acceptable
1176 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1177 		 */
1178 		*head_blk = first_bad;
1179 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1180 		if (*head_blk == *tail_blk) {
1181 			ASSERT(0);
1182 			return 0;
1183 		}
1184 
1185 		/*
1186 		 * Now verify the tail based on the updated head. This is
1187 		 * required because the torn writes trimmed from the head could
1188 		 * have been written over the tail of a previous record. Return
1189 		 * any errors since recovery cannot proceed if the tail is
1190 		 * corrupt.
1191 		 *
1192 		 * XXX: This leaves a gap in truly robust protection from torn
1193 		 * writes in the log. If the head is behind the tail, the tail
1194 		 * pushes forward to create some space and then a crash occurs
1195 		 * causing the writes into the previous record's tail region to
1196 		 * tear, log recovery isn't able to recover.
1197 		 *
1198 		 * How likely is this to occur? If possible, can we do something
1199 		 * more intelligent here? Is it safe to push the tail forward if
1200 		 * we can determine that the tail is within the range of the
1201 		 * torn write (e.g., the kernel can only overwrite the tail if
1202 		 * it has actually been pushed forward)? Alternatively, could we
1203 		 * somehow prevent this condition at runtime?
1204 		 */
1205 		error = xlog_verify_tail(log, *head_blk, *tail_blk);
1206 	}
1207 
1208 	return error;
1209 }
1210 
1211 /*
1212  * Check whether the head of the log points to an unmount record. In other
1213  * words, determine whether the log is clean. If so, update the in-core state
1214  * appropriately.
1215  */
1216 static int
1217 xlog_check_unmount_rec(
1218 	struct xlog		*log,
1219 	xfs_daddr_t		*head_blk,
1220 	xfs_daddr_t		*tail_blk,
1221 	struct xlog_rec_header	*rhead,
1222 	xfs_daddr_t		rhead_blk,
1223 	struct xfs_buf		*bp,
1224 	bool			*clean)
1225 {
1226 	struct xlog_op_header	*op_head;
1227 	xfs_daddr_t		umount_data_blk;
1228 	xfs_daddr_t		after_umount_blk;
1229 	int			hblks;
1230 	int			error;
1231 	char			*offset;
1232 
1233 	*clean = false;
1234 
1235 	/*
1236 	 * Look for unmount record. If we find it, then we know there was a
1237 	 * clean unmount. Since 'i' could be the last block in the physical
1238 	 * log, we convert to a log block before comparing to the head_blk.
1239 	 *
1240 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1241 	 * below. We won't want to clear the unmount record if there is one, so
1242 	 * we pass the lsn of the unmount record rather than the block after it.
1243 	 */
1244 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1245 		int	h_size = be32_to_cpu(rhead->h_size);
1246 		int	h_version = be32_to_cpu(rhead->h_version);
1247 
1248 		if ((h_version & XLOG_VERSION_2) &&
1249 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1250 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1251 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1252 				hblks++;
1253 		} else {
1254 			hblks = 1;
1255 		}
1256 	} else {
1257 		hblks = 1;
1258 	}
1259 	after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1260 	after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1261 	if (*head_blk == after_umount_blk &&
1262 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1263 		umount_data_blk = rhead_blk + hblks;
1264 		umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1265 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1266 		if (error)
1267 			return error;
1268 
1269 		op_head = (struct xlog_op_header *)offset;
1270 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1271 			/*
1272 			 * Set tail and last sync so that newly written log
1273 			 * records will point recovery to after the current
1274 			 * unmount record.
1275 			 */
1276 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1277 					log->l_curr_cycle, after_umount_blk);
1278 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1279 					log->l_curr_cycle, after_umount_blk);
1280 			*tail_blk = after_umount_blk;
1281 
1282 			*clean = true;
1283 		}
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 static void
1290 xlog_set_state(
1291 	struct xlog		*log,
1292 	xfs_daddr_t		head_blk,
1293 	struct xlog_rec_header	*rhead,
1294 	xfs_daddr_t		rhead_blk,
1295 	bool			bump_cycle)
1296 {
1297 	/*
1298 	 * Reset log values according to the state of the log when we
1299 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1300 	 * one because the next write starts a new cycle rather than
1301 	 * continuing the cycle of the last good log record.  At this
1302 	 * point we have guaranteed that all partial log records have been
1303 	 * accounted for.  Therefore, we know that the last good log record
1304 	 * written was complete and ended exactly on the end boundary
1305 	 * of the physical log.
1306 	 */
1307 	log->l_prev_block = rhead_blk;
1308 	log->l_curr_block = (int)head_blk;
1309 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1310 	if (bump_cycle)
1311 		log->l_curr_cycle++;
1312 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1313 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1314 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1315 					BBTOB(log->l_curr_block));
1316 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1317 					BBTOB(log->l_curr_block));
1318 }
1319 
1320 /*
1321  * Find the sync block number or the tail of the log.
1322  *
1323  * This will be the block number of the last record to have its
1324  * associated buffers synced to disk.  Every log record header has
1325  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1326  * to get a sync block number.  The only concern is to figure out which
1327  * log record header to believe.
1328  *
1329  * The following algorithm uses the log record header with the largest
1330  * lsn.  The entire log record does not need to be valid.  We only care
1331  * that the header is valid.
1332  *
1333  * We could speed up search by using current head_blk buffer, but it is not
1334  * available.
1335  */
1336 STATIC int
1337 xlog_find_tail(
1338 	struct xlog		*log,
1339 	xfs_daddr_t		*head_blk,
1340 	xfs_daddr_t		*tail_blk)
1341 {
1342 	xlog_rec_header_t	*rhead;
1343 	char			*offset = NULL;
1344 	xfs_buf_t		*bp;
1345 	int			error;
1346 	xfs_daddr_t		rhead_blk;
1347 	xfs_lsn_t		tail_lsn;
1348 	bool			wrapped = false;
1349 	bool			clean = false;
1350 
1351 	/*
1352 	 * Find previous log record
1353 	 */
1354 	if ((error = xlog_find_head(log, head_blk)))
1355 		return error;
1356 	ASSERT(*head_blk < INT_MAX);
1357 
1358 	bp = xlog_get_bp(log, 1);
1359 	if (!bp)
1360 		return -ENOMEM;
1361 	if (*head_blk == 0) {				/* special case */
1362 		error = xlog_bread(log, 0, 1, bp, &offset);
1363 		if (error)
1364 			goto done;
1365 
1366 		if (xlog_get_cycle(offset) == 0) {
1367 			*tail_blk = 0;
1368 			/* leave all other log inited values alone */
1369 			goto done;
1370 		}
1371 	}
1372 
1373 	/*
1374 	 * Search backwards through the log looking for the log record header
1375 	 * block. This wraps all the way back around to the head so something is
1376 	 * seriously wrong if we can't find it.
1377 	 */
1378 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1379 				      &rhead_blk, &rhead, &wrapped);
1380 	if (error < 0)
1381 		return error;
1382 	if (!error) {
1383 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1384 		return -EIO;
1385 	}
1386 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1387 
1388 	/*
1389 	 * Set the log state based on the current head record.
1390 	 */
1391 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1392 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1393 
1394 	/*
1395 	 * Look for an unmount record at the head of the log. This sets the log
1396 	 * state to determine whether recovery is necessary.
1397 	 */
1398 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1399 				       rhead_blk, bp, &clean);
1400 	if (error)
1401 		goto done;
1402 
1403 	/*
1404 	 * Verify the log head if the log is not clean (e.g., we have anything
1405 	 * but an unmount record at the head). This uses CRC verification to
1406 	 * detect and trim torn writes. If discovered, CRC failures are
1407 	 * considered torn writes and the log head is trimmed accordingly.
1408 	 *
1409 	 * Note that we can only run CRC verification when the log is dirty
1410 	 * because there's no guarantee that the log data behind an unmount
1411 	 * record is compatible with the current architecture.
1412 	 */
1413 	if (!clean) {
1414 		xfs_daddr_t	orig_head = *head_blk;
1415 
1416 		error = xlog_verify_head(log, head_blk, tail_blk, bp,
1417 					 &rhead_blk, &rhead, &wrapped);
1418 		if (error)
1419 			goto done;
1420 
1421 		/* update in-core state again if the head changed */
1422 		if (*head_blk != orig_head) {
1423 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1424 				       wrapped);
1425 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1426 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1427 						       rhead, rhead_blk, bp,
1428 						       &clean);
1429 			if (error)
1430 				goto done;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * Note that the unmount was clean. If the unmount was not clean, we
1436 	 * need to know this to rebuild the superblock counters from the perag
1437 	 * headers if we have a filesystem using non-persistent counters.
1438 	 */
1439 	if (clean)
1440 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1441 
1442 	/*
1443 	 * Make sure that there are no blocks in front of the head
1444 	 * with the same cycle number as the head.  This can happen
1445 	 * because we allow multiple outstanding log writes concurrently,
1446 	 * and the later writes might make it out before earlier ones.
1447 	 *
1448 	 * We use the lsn from before modifying it so that we'll never
1449 	 * overwrite the unmount record after a clean unmount.
1450 	 *
1451 	 * Do this only if we are going to recover the filesystem
1452 	 *
1453 	 * NOTE: This used to say "if (!readonly)"
1454 	 * However on Linux, we can & do recover a read-only filesystem.
1455 	 * We only skip recovery if NORECOVERY is specified on mount,
1456 	 * in which case we would not be here.
1457 	 *
1458 	 * But... if the -device- itself is readonly, just skip this.
1459 	 * We can't recover this device anyway, so it won't matter.
1460 	 */
1461 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1462 		error = xlog_clear_stale_blocks(log, tail_lsn);
1463 
1464 done:
1465 	xlog_put_bp(bp);
1466 
1467 	if (error)
1468 		xfs_warn(log->l_mp, "failed to locate log tail");
1469 	return error;
1470 }
1471 
1472 /*
1473  * Is the log zeroed at all?
1474  *
1475  * The last binary search should be changed to perform an X block read
1476  * once X becomes small enough.  You can then search linearly through
1477  * the X blocks.  This will cut down on the number of reads we need to do.
1478  *
1479  * If the log is partially zeroed, this routine will pass back the blkno
1480  * of the first block with cycle number 0.  It won't have a complete LR
1481  * preceding it.
1482  *
1483  * Return:
1484  *	0  => the log is completely written to
1485  *	1 => use *blk_no as the first block of the log
1486  *	<0 => error has occurred
1487  */
1488 STATIC int
1489 xlog_find_zeroed(
1490 	struct xlog	*log,
1491 	xfs_daddr_t	*blk_no)
1492 {
1493 	xfs_buf_t	*bp;
1494 	char		*offset;
1495 	uint	        first_cycle, last_cycle;
1496 	xfs_daddr_t	new_blk, last_blk, start_blk;
1497 	xfs_daddr_t     num_scan_bblks;
1498 	int	        error, log_bbnum = log->l_logBBsize;
1499 
1500 	*blk_no = 0;
1501 
1502 	/* check totally zeroed log */
1503 	bp = xlog_get_bp(log, 1);
1504 	if (!bp)
1505 		return -ENOMEM;
1506 	error = xlog_bread(log, 0, 1, bp, &offset);
1507 	if (error)
1508 		goto bp_err;
1509 
1510 	first_cycle = xlog_get_cycle(offset);
1511 	if (first_cycle == 0) {		/* completely zeroed log */
1512 		*blk_no = 0;
1513 		xlog_put_bp(bp);
1514 		return 1;
1515 	}
1516 
1517 	/* check partially zeroed log */
1518 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1519 	if (error)
1520 		goto bp_err;
1521 
1522 	last_cycle = xlog_get_cycle(offset);
1523 	if (last_cycle != 0) {		/* log completely written to */
1524 		xlog_put_bp(bp);
1525 		return 0;
1526 	} else if (first_cycle != 1) {
1527 		/*
1528 		 * If the cycle of the last block is zero, the cycle of
1529 		 * the first block must be 1. If it's not, maybe we're
1530 		 * not looking at a log... Bail out.
1531 		 */
1532 		xfs_warn(log->l_mp,
1533 			"Log inconsistent or not a log (last==0, first!=1)");
1534 		error = -EINVAL;
1535 		goto bp_err;
1536 	}
1537 
1538 	/* we have a partially zeroed log */
1539 	last_blk = log_bbnum-1;
1540 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1541 		goto bp_err;
1542 
1543 	/*
1544 	 * Validate the answer.  Because there is no way to guarantee that
1545 	 * the entire log is made up of log records which are the same size,
1546 	 * we scan over the defined maximum blocks.  At this point, the maximum
1547 	 * is not chosen to mean anything special.   XXXmiken
1548 	 */
1549 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1550 	ASSERT(num_scan_bblks <= INT_MAX);
1551 
1552 	if (last_blk < num_scan_bblks)
1553 		num_scan_bblks = last_blk;
1554 	start_blk = last_blk - num_scan_bblks;
1555 
1556 	/*
1557 	 * We search for any instances of cycle number 0 that occur before
1558 	 * our current estimate of the head.  What we're trying to detect is
1559 	 *        1 ... | 0 | 1 | 0...
1560 	 *                       ^ binary search ends here
1561 	 */
1562 	if ((error = xlog_find_verify_cycle(log, start_blk,
1563 					 (int)num_scan_bblks, 0, &new_blk)))
1564 		goto bp_err;
1565 	if (new_blk != -1)
1566 		last_blk = new_blk;
1567 
1568 	/*
1569 	 * Potentially backup over partial log record write.  We don't need
1570 	 * to search the end of the log because we know it is zero.
1571 	 */
1572 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1573 	if (error == 1)
1574 		error = -EIO;
1575 	if (error)
1576 		goto bp_err;
1577 
1578 	*blk_no = last_blk;
1579 bp_err:
1580 	xlog_put_bp(bp);
1581 	if (error)
1582 		return error;
1583 	return 1;
1584 }
1585 
1586 /*
1587  * These are simple subroutines used by xlog_clear_stale_blocks() below
1588  * to initialize a buffer full of empty log record headers and write
1589  * them into the log.
1590  */
1591 STATIC void
1592 xlog_add_record(
1593 	struct xlog		*log,
1594 	char			*buf,
1595 	int			cycle,
1596 	int			block,
1597 	int			tail_cycle,
1598 	int			tail_block)
1599 {
1600 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1601 
1602 	memset(buf, 0, BBSIZE);
1603 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1604 	recp->h_cycle = cpu_to_be32(cycle);
1605 	recp->h_version = cpu_to_be32(
1606 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1607 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1608 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1609 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1610 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1611 }
1612 
1613 STATIC int
1614 xlog_write_log_records(
1615 	struct xlog	*log,
1616 	int		cycle,
1617 	int		start_block,
1618 	int		blocks,
1619 	int		tail_cycle,
1620 	int		tail_block)
1621 {
1622 	char		*offset;
1623 	xfs_buf_t	*bp;
1624 	int		balign, ealign;
1625 	int		sectbb = log->l_sectBBsize;
1626 	int		end_block = start_block + blocks;
1627 	int		bufblks;
1628 	int		error = 0;
1629 	int		i, j = 0;
1630 
1631 	/*
1632 	 * Greedily allocate a buffer big enough to handle the full
1633 	 * range of basic blocks to be written.  If that fails, try
1634 	 * a smaller size.  We need to be able to write at least a
1635 	 * log sector, or we're out of luck.
1636 	 */
1637 	bufblks = 1 << ffs(blocks);
1638 	while (bufblks > log->l_logBBsize)
1639 		bufblks >>= 1;
1640 	while (!(bp = xlog_get_bp(log, bufblks))) {
1641 		bufblks >>= 1;
1642 		if (bufblks < sectbb)
1643 			return -ENOMEM;
1644 	}
1645 
1646 	/* We may need to do a read at the start to fill in part of
1647 	 * the buffer in the starting sector not covered by the first
1648 	 * write below.
1649 	 */
1650 	balign = round_down(start_block, sectbb);
1651 	if (balign != start_block) {
1652 		error = xlog_bread_noalign(log, start_block, 1, bp);
1653 		if (error)
1654 			goto out_put_bp;
1655 
1656 		j = start_block - balign;
1657 	}
1658 
1659 	for (i = start_block; i < end_block; i += bufblks) {
1660 		int		bcount, endcount;
1661 
1662 		bcount = min(bufblks, end_block - start_block);
1663 		endcount = bcount - j;
1664 
1665 		/* We may need to do a read at the end to fill in part of
1666 		 * the buffer in the final sector not covered by the write.
1667 		 * If this is the same sector as the above read, skip it.
1668 		 */
1669 		ealign = round_down(end_block, sectbb);
1670 		if (j == 0 && (start_block + endcount > ealign)) {
1671 			offset = bp->b_addr + BBTOB(ealign - start_block);
1672 			error = xlog_bread_offset(log, ealign, sectbb,
1673 							bp, offset);
1674 			if (error)
1675 				break;
1676 
1677 		}
1678 
1679 		offset = xlog_align(log, start_block, endcount, bp);
1680 		for (; j < endcount; j++) {
1681 			xlog_add_record(log, offset, cycle, i+j,
1682 					tail_cycle, tail_block);
1683 			offset += BBSIZE;
1684 		}
1685 		error = xlog_bwrite(log, start_block, endcount, bp);
1686 		if (error)
1687 			break;
1688 		start_block += endcount;
1689 		j = 0;
1690 	}
1691 
1692  out_put_bp:
1693 	xlog_put_bp(bp);
1694 	return error;
1695 }
1696 
1697 /*
1698  * This routine is called to blow away any incomplete log writes out
1699  * in front of the log head.  We do this so that we won't become confused
1700  * if we come up, write only a little bit more, and then crash again.
1701  * If we leave the partial log records out there, this situation could
1702  * cause us to think those partial writes are valid blocks since they
1703  * have the current cycle number.  We get rid of them by overwriting them
1704  * with empty log records with the old cycle number rather than the
1705  * current one.
1706  *
1707  * The tail lsn is passed in rather than taken from
1708  * the log so that we will not write over the unmount record after a
1709  * clean unmount in a 512 block log.  Doing so would leave the log without
1710  * any valid log records in it until a new one was written.  If we crashed
1711  * during that time we would not be able to recover.
1712  */
1713 STATIC int
1714 xlog_clear_stale_blocks(
1715 	struct xlog	*log,
1716 	xfs_lsn_t	tail_lsn)
1717 {
1718 	int		tail_cycle, head_cycle;
1719 	int		tail_block, head_block;
1720 	int		tail_distance, max_distance;
1721 	int		distance;
1722 	int		error;
1723 
1724 	tail_cycle = CYCLE_LSN(tail_lsn);
1725 	tail_block = BLOCK_LSN(tail_lsn);
1726 	head_cycle = log->l_curr_cycle;
1727 	head_block = log->l_curr_block;
1728 
1729 	/*
1730 	 * Figure out the distance between the new head of the log
1731 	 * and the tail.  We want to write over any blocks beyond the
1732 	 * head that we may have written just before the crash, but
1733 	 * we don't want to overwrite the tail of the log.
1734 	 */
1735 	if (head_cycle == tail_cycle) {
1736 		/*
1737 		 * The tail is behind the head in the physical log,
1738 		 * so the distance from the head to the tail is the
1739 		 * distance from the head to the end of the log plus
1740 		 * the distance from the beginning of the log to the
1741 		 * tail.
1742 		 */
1743 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1744 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1745 					 XFS_ERRLEVEL_LOW, log->l_mp);
1746 			return -EFSCORRUPTED;
1747 		}
1748 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1749 	} else {
1750 		/*
1751 		 * The head is behind the tail in the physical log,
1752 		 * so the distance from the head to the tail is just
1753 		 * the tail block minus the head block.
1754 		 */
1755 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1756 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1757 					 XFS_ERRLEVEL_LOW, log->l_mp);
1758 			return -EFSCORRUPTED;
1759 		}
1760 		tail_distance = tail_block - head_block;
1761 	}
1762 
1763 	/*
1764 	 * If the head is right up against the tail, we can't clear
1765 	 * anything.
1766 	 */
1767 	if (tail_distance <= 0) {
1768 		ASSERT(tail_distance == 0);
1769 		return 0;
1770 	}
1771 
1772 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1773 	/*
1774 	 * Take the smaller of the maximum amount of outstanding I/O
1775 	 * we could have and the distance to the tail to clear out.
1776 	 * We take the smaller so that we don't overwrite the tail and
1777 	 * we don't waste all day writing from the head to the tail
1778 	 * for no reason.
1779 	 */
1780 	max_distance = MIN(max_distance, tail_distance);
1781 
1782 	if ((head_block + max_distance) <= log->l_logBBsize) {
1783 		/*
1784 		 * We can stomp all the blocks we need to without
1785 		 * wrapping around the end of the log.  Just do it
1786 		 * in a single write.  Use the cycle number of the
1787 		 * current cycle minus one so that the log will look like:
1788 		 *     n ... | n - 1 ...
1789 		 */
1790 		error = xlog_write_log_records(log, (head_cycle - 1),
1791 				head_block, max_distance, tail_cycle,
1792 				tail_block);
1793 		if (error)
1794 			return error;
1795 	} else {
1796 		/*
1797 		 * We need to wrap around the end of the physical log in
1798 		 * order to clear all the blocks.  Do it in two separate
1799 		 * I/Os.  The first write should be from the head to the
1800 		 * end of the physical log, and it should use the current
1801 		 * cycle number minus one just like above.
1802 		 */
1803 		distance = log->l_logBBsize - head_block;
1804 		error = xlog_write_log_records(log, (head_cycle - 1),
1805 				head_block, distance, tail_cycle,
1806 				tail_block);
1807 
1808 		if (error)
1809 			return error;
1810 
1811 		/*
1812 		 * Now write the blocks at the start of the physical log.
1813 		 * This writes the remainder of the blocks we want to clear.
1814 		 * It uses the current cycle number since we're now on the
1815 		 * same cycle as the head so that we get:
1816 		 *    n ... n ... | n - 1 ...
1817 		 *    ^^^^^ blocks we're writing
1818 		 */
1819 		distance = max_distance - (log->l_logBBsize - head_block);
1820 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1821 				tail_cycle, tail_block);
1822 		if (error)
1823 			return error;
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 /******************************************************************************
1830  *
1831  *		Log recover routines
1832  *
1833  ******************************************************************************
1834  */
1835 
1836 /*
1837  * Sort the log items in the transaction.
1838  *
1839  * The ordering constraints are defined by the inode allocation and unlink
1840  * behaviour. The rules are:
1841  *
1842  *	1. Every item is only logged once in a given transaction. Hence it
1843  *	   represents the last logged state of the item. Hence ordering is
1844  *	   dependent on the order in which operations need to be performed so
1845  *	   required initial conditions are always met.
1846  *
1847  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1848  *	   there's nothing to replay from them so we can simply cull them
1849  *	   from the transaction. However, we can't do that until after we've
1850  *	   replayed all the other items because they may be dependent on the
1851  *	   cancelled buffer and replaying the cancelled buffer can remove it
1852  *	   form the cancelled buffer table. Hence they have tobe done last.
1853  *
1854  *	3. Inode allocation buffers must be replayed before inode items that
1855  *	   read the buffer and replay changes into it. For filesystems using the
1856  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1857  *	   treated the same as inode allocation buffers as they create and
1858  *	   initialise the buffers directly.
1859  *
1860  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1861  *	   This ensures that inodes are completely flushed to the inode buffer
1862  *	   in a "free" state before we remove the unlinked inode list pointer.
1863  *
1864  * Hence the ordering needs to be inode allocation buffers first, inode items
1865  * second, inode unlink buffers third and cancelled buffers last.
1866  *
1867  * But there's a problem with that - we can't tell an inode allocation buffer
1868  * apart from a regular buffer, so we can't separate them. We can, however,
1869  * tell an inode unlink buffer from the others, and so we can separate them out
1870  * from all the other buffers and move them to last.
1871  *
1872  * Hence, 4 lists, in order from head to tail:
1873  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1874  *	- item_list for all non-buffer items
1875  *	- inode_buffer_list for inode unlink buffers
1876  *	- cancel_list for the cancelled buffers
1877  *
1878  * Note that we add objects to the tail of the lists so that first-to-last
1879  * ordering is preserved within the lists. Adding objects to the head of the
1880  * list means when we traverse from the head we walk them in last-to-first
1881  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1882  * but for all other items there may be specific ordering that we need to
1883  * preserve.
1884  */
1885 STATIC int
1886 xlog_recover_reorder_trans(
1887 	struct xlog		*log,
1888 	struct xlog_recover	*trans,
1889 	int			pass)
1890 {
1891 	xlog_recover_item_t	*item, *n;
1892 	int			error = 0;
1893 	LIST_HEAD(sort_list);
1894 	LIST_HEAD(cancel_list);
1895 	LIST_HEAD(buffer_list);
1896 	LIST_HEAD(inode_buffer_list);
1897 	LIST_HEAD(inode_list);
1898 
1899 	list_splice_init(&trans->r_itemq, &sort_list);
1900 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1901 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1902 
1903 		switch (ITEM_TYPE(item)) {
1904 		case XFS_LI_ICREATE:
1905 			list_move_tail(&item->ri_list, &buffer_list);
1906 			break;
1907 		case XFS_LI_BUF:
1908 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1909 				trace_xfs_log_recover_item_reorder_head(log,
1910 							trans, item, pass);
1911 				list_move(&item->ri_list, &cancel_list);
1912 				break;
1913 			}
1914 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1915 				list_move(&item->ri_list, &inode_buffer_list);
1916 				break;
1917 			}
1918 			list_move_tail(&item->ri_list, &buffer_list);
1919 			break;
1920 		case XFS_LI_INODE:
1921 		case XFS_LI_DQUOT:
1922 		case XFS_LI_QUOTAOFF:
1923 		case XFS_LI_EFD:
1924 		case XFS_LI_EFI:
1925 		case XFS_LI_RUI:
1926 		case XFS_LI_RUD:
1927 			trace_xfs_log_recover_item_reorder_tail(log,
1928 							trans, item, pass);
1929 			list_move_tail(&item->ri_list, &inode_list);
1930 			break;
1931 		default:
1932 			xfs_warn(log->l_mp,
1933 				"%s: unrecognized type of log operation",
1934 				__func__);
1935 			ASSERT(0);
1936 			/*
1937 			 * return the remaining items back to the transaction
1938 			 * item list so they can be freed in caller.
1939 			 */
1940 			if (!list_empty(&sort_list))
1941 				list_splice_init(&sort_list, &trans->r_itemq);
1942 			error = -EIO;
1943 			goto out;
1944 		}
1945 	}
1946 out:
1947 	ASSERT(list_empty(&sort_list));
1948 	if (!list_empty(&buffer_list))
1949 		list_splice(&buffer_list, &trans->r_itemq);
1950 	if (!list_empty(&inode_list))
1951 		list_splice_tail(&inode_list, &trans->r_itemq);
1952 	if (!list_empty(&inode_buffer_list))
1953 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1954 	if (!list_empty(&cancel_list))
1955 		list_splice_tail(&cancel_list, &trans->r_itemq);
1956 	return error;
1957 }
1958 
1959 /*
1960  * Build up the table of buf cancel records so that we don't replay
1961  * cancelled data in the second pass.  For buffer records that are
1962  * not cancel records, there is nothing to do here so we just return.
1963  *
1964  * If we get a cancel record which is already in the table, this indicates
1965  * that the buffer was cancelled multiple times.  In order to ensure
1966  * that during pass 2 we keep the record in the table until we reach its
1967  * last occurrence in the log, we keep a reference count in the cancel
1968  * record in the table to tell us how many times we expect to see this
1969  * record during the second pass.
1970  */
1971 STATIC int
1972 xlog_recover_buffer_pass1(
1973 	struct xlog			*log,
1974 	struct xlog_recover_item	*item)
1975 {
1976 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1977 	struct list_head	*bucket;
1978 	struct xfs_buf_cancel	*bcp;
1979 
1980 	/*
1981 	 * If this isn't a cancel buffer item, then just return.
1982 	 */
1983 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1984 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1985 		return 0;
1986 	}
1987 
1988 	/*
1989 	 * Insert an xfs_buf_cancel record into the hash table of them.
1990 	 * If there is already an identical record, bump its reference count.
1991 	 */
1992 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1993 	list_for_each_entry(bcp, bucket, bc_list) {
1994 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1995 		    bcp->bc_len == buf_f->blf_len) {
1996 			bcp->bc_refcount++;
1997 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1998 			return 0;
1999 		}
2000 	}
2001 
2002 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2003 	bcp->bc_blkno = buf_f->blf_blkno;
2004 	bcp->bc_len = buf_f->blf_len;
2005 	bcp->bc_refcount = 1;
2006 	list_add_tail(&bcp->bc_list, bucket);
2007 
2008 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2009 	return 0;
2010 }
2011 
2012 /*
2013  * Check to see whether the buffer being recovered has a corresponding
2014  * entry in the buffer cancel record table. If it is, return the cancel
2015  * buffer structure to the caller.
2016  */
2017 STATIC struct xfs_buf_cancel *
2018 xlog_peek_buffer_cancelled(
2019 	struct xlog		*log,
2020 	xfs_daddr_t		blkno,
2021 	uint			len,
2022 	ushort			flags)
2023 {
2024 	struct list_head	*bucket;
2025 	struct xfs_buf_cancel	*bcp;
2026 
2027 	if (!log->l_buf_cancel_table) {
2028 		/* empty table means no cancelled buffers in the log */
2029 		ASSERT(!(flags & XFS_BLF_CANCEL));
2030 		return NULL;
2031 	}
2032 
2033 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2034 	list_for_each_entry(bcp, bucket, bc_list) {
2035 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2036 			return bcp;
2037 	}
2038 
2039 	/*
2040 	 * We didn't find a corresponding entry in the table, so return 0 so
2041 	 * that the buffer is NOT cancelled.
2042 	 */
2043 	ASSERT(!(flags & XFS_BLF_CANCEL));
2044 	return NULL;
2045 }
2046 
2047 /*
2048  * If the buffer is being cancelled then return 1 so that it will be cancelled,
2049  * otherwise return 0.  If the buffer is actually a buffer cancel item
2050  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2051  * table and remove it from the table if this is the last reference.
2052  *
2053  * We remove the cancel record from the table when we encounter its last
2054  * occurrence in the log so that if the same buffer is re-used again after its
2055  * last cancellation we actually replay the changes made at that point.
2056  */
2057 STATIC int
2058 xlog_check_buffer_cancelled(
2059 	struct xlog		*log,
2060 	xfs_daddr_t		blkno,
2061 	uint			len,
2062 	ushort			flags)
2063 {
2064 	struct xfs_buf_cancel	*bcp;
2065 
2066 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2067 	if (!bcp)
2068 		return 0;
2069 
2070 	/*
2071 	 * We've go a match, so return 1 so that the recovery of this buffer
2072 	 * is cancelled.  If this buffer is actually a buffer cancel log
2073 	 * item, then decrement the refcount on the one in the table and
2074 	 * remove it if this is the last reference.
2075 	 */
2076 	if (flags & XFS_BLF_CANCEL) {
2077 		if (--bcp->bc_refcount == 0) {
2078 			list_del(&bcp->bc_list);
2079 			kmem_free(bcp);
2080 		}
2081 	}
2082 	return 1;
2083 }
2084 
2085 /*
2086  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2087  * data which should be recovered is that which corresponds to the
2088  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2089  * data for the inodes is always logged through the inodes themselves rather
2090  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2091  *
2092  * The only time when buffers full of inodes are fully recovered is when the
2093  * buffer is full of newly allocated inodes.  In this case the buffer will
2094  * not be marked as an inode buffer and so will be sent to
2095  * xlog_recover_do_reg_buffer() below during recovery.
2096  */
2097 STATIC int
2098 xlog_recover_do_inode_buffer(
2099 	struct xfs_mount	*mp,
2100 	xlog_recover_item_t	*item,
2101 	struct xfs_buf		*bp,
2102 	xfs_buf_log_format_t	*buf_f)
2103 {
2104 	int			i;
2105 	int			item_index = 0;
2106 	int			bit = 0;
2107 	int			nbits = 0;
2108 	int			reg_buf_offset = 0;
2109 	int			reg_buf_bytes = 0;
2110 	int			next_unlinked_offset;
2111 	int			inodes_per_buf;
2112 	xfs_agino_t		*logged_nextp;
2113 	xfs_agino_t		*buffer_nextp;
2114 
2115 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2116 
2117 	/*
2118 	 * Post recovery validation only works properly on CRC enabled
2119 	 * filesystems.
2120 	 */
2121 	if (xfs_sb_version_hascrc(&mp->m_sb))
2122 		bp->b_ops = &xfs_inode_buf_ops;
2123 
2124 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2125 	for (i = 0; i < inodes_per_buf; i++) {
2126 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2127 			offsetof(xfs_dinode_t, di_next_unlinked);
2128 
2129 		while (next_unlinked_offset >=
2130 		       (reg_buf_offset + reg_buf_bytes)) {
2131 			/*
2132 			 * The next di_next_unlinked field is beyond
2133 			 * the current logged region.  Find the next
2134 			 * logged region that contains or is beyond
2135 			 * the current di_next_unlinked field.
2136 			 */
2137 			bit += nbits;
2138 			bit = xfs_next_bit(buf_f->blf_data_map,
2139 					   buf_f->blf_map_size, bit);
2140 
2141 			/*
2142 			 * If there are no more logged regions in the
2143 			 * buffer, then we're done.
2144 			 */
2145 			if (bit == -1)
2146 				return 0;
2147 
2148 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2149 						buf_f->blf_map_size, bit);
2150 			ASSERT(nbits > 0);
2151 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2152 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2153 			item_index++;
2154 		}
2155 
2156 		/*
2157 		 * If the current logged region starts after the current
2158 		 * di_next_unlinked field, then move on to the next
2159 		 * di_next_unlinked field.
2160 		 */
2161 		if (next_unlinked_offset < reg_buf_offset)
2162 			continue;
2163 
2164 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2165 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2166 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
2167 							BBTOB(bp->b_io_length));
2168 
2169 		/*
2170 		 * The current logged region contains a copy of the
2171 		 * current di_next_unlinked field.  Extract its value
2172 		 * and copy it to the buffer copy.
2173 		 */
2174 		logged_nextp = item->ri_buf[item_index].i_addr +
2175 				next_unlinked_offset - reg_buf_offset;
2176 		if (unlikely(*logged_nextp == 0)) {
2177 			xfs_alert(mp,
2178 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2179 		"Trying to replay bad (0) inode di_next_unlinked field.",
2180 				item, bp);
2181 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2182 					 XFS_ERRLEVEL_LOW, mp);
2183 			return -EFSCORRUPTED;
2184 		}
2185 
2186 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2187 		*buffer_nextp = *logged_nextp;
2188 
2189 		/*
2190 		 * If necessary, recalculate the CRC in the on-disk inode. We
2191 		 * have to leave the inode in a consistent state for whoever
2192 		 * reads it next....
2193 		 */
2194 		xfs_dinode_calc_crc(mp,
2195 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2196 
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 /*
2203  * V5 filesystems know the age of the buffer on disk being recovered. We can
2204  * have newer objects on disk than we are replaying, and so for these cases we
2205  * don't want to replay the current change as that will make the buffer contents
2206  * temporarily invalid on disk.
2207  *
2208  * The magic number might not match the buffer type we are going to recover
2209  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2210  * extract the LSN of the existing object in the buffer based on it's current
2211  * magic number.  If we don't recognise the magic number in the buffer, then
2212  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2213  * so can recover the buffer.
2214  *
2215  * Note: we cannot rely solely on magic number matches to determine that the
2216  * buffer has a valid LSN - we also need to verify that it belongs to this
2217  * filesystem, so we need to extract the object's LSN and compare it to that
2218  * which we read from the superblock. If the UUIDs don't match, then we've got a
2219  * stale metadata block from an old filesystem instance that we need to recover
2220  * over the top of.
2221  */
2222 static xfs_lsn_t
2223 xlog_recover_get_buf_lsn(
2224 	struct xfs_mount	*mp,
2225 	struct xfs_buf		*bp)
2226 {
2227 	__uint32_t		magic32;
2228 	__uint16_t		magic16;
2229 	__uint16_t		magicda;
2230 	void			*blk = bp->b_addr;
2231 	uuid_t			*uuid;
2232 	xfs_lsn_t		lsn = -1;
2233 
2234 	/* v4 filesystems always recover immediately */
2235 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2236 		goto recover_immediately;
2237 
2238 	magic32 = be32_to_cpu(*(__be32 *)blk);
2239 	switch (magic32) {
2240 	case XFS_ABTB_CRC_MAGIC:
2241 	case XFS_ABTC_CRC_MAGIC:
2242 	case XFS_ABTB_MAGIC:
2243 	case XFS_ABTC_MAGIC:
2244 	case XFS_RMAP_CRC_MAGIC:
2245 	case XFS_IBT_CRC_MAGIC:
2246 	case XFS_IBT_MAGIC: {
2247 		struct xfs_btree_block *btb = blk;
2248 
2249 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2250 		uuid = &btb->bb_u.s.bb_uuid;
2251 		break;
2252 	}
2253 	case XFS_BMAP_CRC_MAGIC:
2254 	case XFS_BMAP_MAGIC: {
2255 		struct xfs_btree_block *btb = blk;
2256 
2257 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2258 		uuid = &btb->bb_u.l.bb_uuid;
2259 		break;
2260 	}
2261 	case XFS_AGF_MAGIC:
2262 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2263 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2264 		break;
2265 	case XFS_AGFL_MAGIC:
2266 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2267 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2268 		break;
2269 	case XFS_AGI_MAGIC:
2270 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2271 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2272 		break;
2273 	case XFS_SYMLINK_MAGIC:
2274 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2275 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2276 		break;
2277 	case XFS_DIR3_BLOCK_MAGIC:
2278 	case XFS_DIR3_DATA_MAGIC:
2279 	case XFS_DIR3_FREE_MAGIC:
2280 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2281 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2282 		break;
2283 	case XFS_ATTR3_RMT_MAGIC:
2284 		/*
2285 		 * Remote attr blocks are written synchronously, rather than
2286 		 * being logged. That means they do not contain a valid LSN
2287 		 * (i.e. transactionally ordered) in them, and hence any time we
2288 		 * see a buffer to replay over the top of a remote attribute
2289 		 * block we should simply do so.
2290 		 */
2291 		goto recover_immediately;
2292 	case XFS_SB_MAGIC:
2293 		/*
2294 		 * superblock uuids are magic. We may or may not have a
2295 		 * sb_meta_uuid on disk, but it will be set in the in-core
2296 		 * superblock. We set the uuid pointer for verification
2297 		 * according to the superblock feature mask to ensure we check
2298 		 * the relevant UUID in the superblock.
2299 		 */
2300 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2301 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2302 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2303 		else
2304 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2305 		break;
2306 	default:
2307 		break;
2308 	}
2309 
2310 	if (lsn != (xfs_lsn_t)-1) {
2311 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2312 			goto recover_immediately;
2313 		return lsn;
2314 	}
2315 
2316 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2317 	switch (magicda) {
2318 	case XFS_DIR3_LEAF1_MAGIC:
2319 	case XFS_DIR3_LEAFN_MAGIC:
2320 	case XFS_DA3_NODE_MAGIC:
2321 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2322 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2323 		break;
2324 	default:
2325 		break;
2326 	}
2327 
2328 	if (lsn != (xfs_lsn_t)-1) {
2329 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2330 			goto recover_immediately;
2331 		return lsn;
2332 	}
2333 
2334 	/*
2335 	 * We do individual object checks on dquot and inode buffers as they
2336 	 * have their own individual LSN records. Also, we could have a stale
2337 	 * buffer here, so we have to at least recognise these buffer types.
2338 	 *
2339 	 * A notd complexity here is inode unlinked list processing - it logs
2340 	 * the inode directly in the buffer, but we don't know which inodes have
2341 	 * been modified, and there is no global buffer LSN. Hence we need to
2342 	 * recover all inode buffer types immediately. This problem will be
2343 	 * fixed by logical logging of the unlinked list modifications.
2344 	 */
2345 	magic16 = be16_to_cpu(*(__be16 *)blk);
2346 	switch (magic16) {
2347 	case XFS_DQUOT_MAGIC:
2348 	case XFS_DINODE_MAGIC:
2349 		goto recover_immediately;
2350 	default:
2351 		break;
2352 	}
2353 
2354 	/* unknown buffer contents, recover immediately */
2355 
2356 recover_immediately:
2357 	return (xfs_lsn_t)-1;
2358 
2359 }
2360 
2361 /*
2362  * Validate the recovered buffer is of the correct type and attach the
2363  * appropriate buffer operations to them for writeback. Magic numbers are in a
2364  * few places:
2365  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2366  *	the first 32 bits of the buffer (most blocks),
2367  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2368  */
2369 static void
2370 xlog_recover_validate_buf_type(
2371 	struct xfs_mount	*mp,
2372 	struct xfs_buf		*bp,
2373 	xfs_buf_log_format_t	*buf_f,
2374 	xfs_lsn_t		current_lsn)
2375 {
2376 	struct xfs_da_blkinfo	*info = bp->b_addr;
2377 	__uint32_t		magic32;
2378 	__uint16_t		magic16;
2379 	__uint16_t		magicda;
2380 	char			*warnmsg = NULL;
2381 
2382 	/*
2383 	 * We can only do post recovery validation on items on CRC enabled
2384 	 * fielsystems as we need to know when the buffer was written to be able
2385 	 * to determine if we should have replayed the item. If we replay old
2386 	 * metadata over a newer buffer, then it will enter a temporarily
2387 	 * inconsistent state resulting in verification failures. Hence for now
2388 	 * just avoid the verification stage for non-crc filesystems
2389 	 */
2390 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2391 		return;
2392 
2393 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2394 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2395 	magicda = be16_to_cpu(info->magic);
2396 	switch (xfs_blft_from_flags(buf_f)) {
2397 	case XFS_BLFT_BTREE_BUF:
2398 		switch (magic32) {
2399 		case XFS_ABTB_CRC_MAGIC:
2400 		case XFS_ABTC_CRC_MAGIC:
2401 		case XFS_ABTB_MAGIC:
2402 		case XFS_ABTC_MAGIC:
2403 			bp->b_ops = &xfs_allocbt_buf_ops;
2404 			break;
2405 		case XFS_IBT_CRC_MAGIC:
2406 		case XFS_FIBT_CRC_MAGIC:
2407 		case XFS_IBT_MAGIC:
2408 		case XFS_FIBT_MAGIC:
2409 			bp->b_ops = &xfs_inobt_buf_ops;
2410 			break;
2411 		case XFS_BMAP_CRC_MAGIC:
2412 		case XFS_BMAP_MAGIC:
2413 			bp->b_ops = &xfs_bmbt_buf_ops;
2414 			break;
2415 		case XFS_RMAP_CRC_MAGIC:
2416 			bp->b_ops = &xfs_rmapbt_buf_ops;
2417 			break;
2418 		default:
2419 			warnmsg = "Bad btree block magic!";
2420 			break;
2421 		}
2422 		break;
2423 	case XFS_BLFT_AGF_BUF:
2424 		if (magic32 != XFS_AGF_MAGIC) {
2425 			warnmsg = "Bad AGF block magic!";
2426 			break;
2427 		}
2428 		bp->b_ops = &xfs_agf_buf_ops;
2429 		break;
2430 	case XFS_BLFT_AGFL_BUF:
2431 		if (magic32 != XFS_AGFL_MAGIC) {
2432 			warnmsg = "Bad AGFL block magic!";
2433 			break;
2434 		}
2435 		bp->b_ops = &xfs_agfl_buf_ops;
2436 		break;
2437 	case XFS_BLFT_AGI_BUF:
2438 		if (magic32 != XFS_AGI_MAGIC) {
2439 			warnmsg = "Bad AGI block magic!";
2440 			break;
2441 		}
2442 		bp->b_ops = &xfs_agi_buf_ops;
2443 		break;
2444 	case XFS_BLFT_UDQUOT_BUF:
2445 	case XFS_BLFT_PDQUOT_BUF:
2446 	case XFS_BLFT_GDQUOT_BUF:
2447 #ifdef CONFIG_XFS_QUOTA
2448 		if (magic16 != XFS_DQUOT_MAGIC) {
2449 			warnmsg = "Bad DQUOT block magic!";
2450 			break;
2451 		}
2452 		bp->b_ops = &xfs_dquot_buf_ops;
2453 #else
2454 		xfs_alert(mp,
2455 	"Trying to recover dquots without QUOTA support built in!");
2456 		ASSERT(0);
2457 #endif
2458 		break;
2459 	case XFS_BLFT_DINO_BUF:
2460 		if (magic16 != XFS_DINODE_MAGIC) {
2461 			warnmsg = "Bad INODE block magic!";
2462 			break;
2463 		}
2464 		bp->b_ops = &xfs_inode_buf_ops;
2465 		break;
2466 	case XFS_BLFT_SYMLINK_BUF:
2467 		if (magic32 != XFS_SYMLINK_MAGIC) {
2468 			warnmsg = "Bad symlink block magic!";
2469 			break;
2470 		}
2471 		bp->b_ops = &xfs_symlink_buf_ops;
2472 		break;
2473 	case XFS_BLFT_DIR_BLOCK_BUF:
2474 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2475 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2476 			warnmsg = "Bad dir block magic!";
2477 			break;
2478 		}
2479 		bp->b_ops = &xfs_dir3_block_buf_ops;
2480 		break;
2481 	case XFS_BLFT_DIR_DATA_BUF:
2482 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2483 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2484 			warnmsg = "Bad dir data magic!";
2485 			break;
2486 		}
2487 		bp->b_ops = &xfs_dir3_data_buf_ops;
2488 		break;
2489 	case XFS_BLFT_DIR_FREE_BUF:
2490 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2491 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2492 			warnmsg = "Bad dir3 free magic!";
2493 			break;
2494 		}
2495 		bp->b_ops = &xfs_dir3_free_buf_ops;
2496 		break;
2497 	case XFS_BLFT_DIR_LEAF1_BUF:
2498 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2499 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2500 			warnmsg = "Bad dir leaf1 magic!";
2501 			break;
2502 		}
2503 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2504 		break;
2505 	case XFS_BLFT_DIR_LEAFN_BUF:
2506 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2507 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2508 			warnmsg = "Bad dir leafn magic!";
2509 			break;
2510 		}
2511 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2512 		break;
2513 	case XFS_BLFT_DA_NODE_BUF:
2514 		if (magicda != XFS_DA_NODE_MAGIC &&
2515 		    magicda != XFS_DA3_NODE_MAGIC) {
2516 			warnmsg = "Bad da node magic!";
2517 			break;
2518 		}
2519 		bp->b_ops = &xfs_da3_node_buf_ops;
2520 		break;
2521 	case XFS_BLFT_ATTR_LEAF_BUF:
2522 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2523 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2524 			warnmsg = "Bad attr leaf magic!";
2525 			break;
2526 		}
2527 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2528 		break;
2529 	case XFS_BLFT_ATTR_RMT_BUF:
2530 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2531 			warnmsg = "Bad attr remote magic!";
2532 			break;
2533 		}
2534 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2535 		break;
2536 	case XFS_BLFT_SB_BUF:
2537 		if (magic32 != XFS_SB_MAGIC) {
2538 			warnmsg = "Bad SB block magic!";
2539 			break;
2540 		}
2541 		bp->b_ops = &xfs_sb_buf_ops;
2542 		break;
2543 #ifdef CONFIG_XFS_RT
2544 	case XFS_BLFT_RTBITMAP_BUF:
2545 	case XFS_BLFT_RTSUMMARY_BUF:
2546 		/* no magic numbers for verification of RT buffers */
2547 		bp->b_ops = &xfs_rtbuf_ops;
2548 		break;
2549 #endif /* CONFIG_XFS_RT */
2550 	default:
2551 		xfs_warn(mp, "Unknown buffer type %d!",
2552 			 xfs_blft_from_flags(buf_f));
2553 		break;
2554 	}
2555 
2556 	/*
2557 	 * Nothing else to do in the case of a NULL current LSN as this means
2558 	 * the buffer is more recent than the change in the log and will be
2559 	 * skipped.
2560 	 */
2561 	if (current_lsn == NULLCOMMITLSN)
2562 		return;
2563 
2564 	if (warnmsg) {
2565 		xfs_warn(mp, warnmsg);
2566 		ASSERT(0);
2567 	}
2568 
2569 	/*
2570 	 * We must update the metadata LSN of the buffer as it is written out to
2571 	 * ensure that older transactions never replay over this one and corrupt
2572 	 * the buffer. This can occur if log recovery is interrupted at some
2573 	 * point after the current transaction completes, at which point a
2574 	 * subsequent mount starts recovery from the beginning.
2575 	 *
2576 	 * Write verifiers update the metadata LSN from log items attached to
2577 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2578 	 * the verifier. We'll clean it up in our ->iodone() callback.
2579 	 */
2580 	if (bp->b_ops) {
2581 		struct xfs_buf_log_item	*bip;
2582 
2583 		ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2584 		bp->b_iodone = xlog_recover_iodone;
2585 		xfs_buf_item_init(bp, mp);
2586 		bip = bp->b_fspriv;
2587 		bip->bli_item.li_lsn = current_lsn;
2588 	}
2589 }
2590 
2591 /*
2592  * Perform a 'normal' buffer recovery.  Each logged region of the
2593  * buffer should be copied over the corresponding region in the
2594  * given buffer.  The bitmap in the buf log format structure indicates
2595  * where to place the logged data.
2596  */
2597 STATIC void
2598 xlog_recover_do_reg_buffer(
2599 	struct xfs_mount	*mp,
2600 	xlog_recover_item_t	*item,
2601 	struct xfs_buf		*bp,
2602 	xfs_buf_log_format_t	*buf_f,
2603 	xfs_lsn_t		current_lsn)
2604 {
2605 	int			i;
2606 	int			bit;
2607 	int			nbits;
2608 	int                     error;
2609 
2610 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2611 
2612 	bit = 0;
2613 	i = 1;  /* 0 is the buf format structure */
2614 	while (1) {
2615 		bit = xfs_next_bit(buf_f->blf_data_map,
2616 				   buf_f->blf_map_size, bit);
2617 		if (bit == -1)
2618 			break;
2619 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2620 					buf_f->blf_map_size, bit);
2621 		ASSERT(nbits > 0);
2622 		ASSERT(item->ri_buf[i].i_addr != NULL);
2623 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2624 		ASSERT(BBTOB(bp->b_io_length) >=
2625 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2626 
2627 		/*
2628 		 * The dirty regions logged in the buffer, even though
2629 		 * contiguous, may span multiple chunks. This is because the
2630 		 * dirty region may span a physical page boundary in a buffer
2631 		 * and hence be split into two separate vectors for writing into
2632 		 * the log. Hence we need to trim nbits back to the length of
2633 		 * the current region being copied out of the log.
2634 		 */
2635 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2636 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2637 
2638 		/*
2639 		 * Do a sanity check if this is a dquot buffer. Just checking
2640 		 * the first dquot in the buffer should do. XXXThis is
2641 		 * probably a good thing to do for other buf types also.
2642 		 */
2643 		error = 0;
2644 		if (buf_f->blf_flags &
2645 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2646 			if (item->ri_buf[i].i_addr == NULL) {
2647 				xfs_alert(mp,
2648 					"XFS: NULL dquot in %s.", __func__);
2649 				goto next;
2650 			}
2651 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2652 				xfs_alert(mp,
2653 					"XFS: dquot too small (%d) in %s.",
2654 					item->ri_buf[i].i_len, __func__);
2655 				goto next;
2656 			}
2657 			error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2658 					       -1, 0, XFS_QMOPT_DOWARN,
2659 					       "dquot_buf_recover");
2660 			if (error)
2661 				goto next;
2662 		}
2663 
2664 		memcpy(xfs_buf_offset(bp,
2665 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2666 			item->ri_buf[i].i_addr,		/* source */
2667 			nbits<<XFS_BLF_SHIFT);		/* length */
2668  next:
2669 		i++;
2670 		bit += nbits;
2671 	}
2672 
2673 	/* Shouldn't be any more regions */
2674 	ASSERT(i == item->ri_total);
2675 
2676 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2677 }
2678 
2679 /*
2680  * Perform a dquot buffer recovery.
2681  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2682  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2683  * Else, treat it as a regular buffer and do recovery.
2684  *
2685  * Return false if the buffer was tossed and true if we recovered the buffer to
2686  * indicate to the caller if the buffer needs writing.
2687  */
2688 STATIC bool
2689 xlog_recover_do_dquot_buffer(
2690 	struct xfs_mount		*mp,
2691 	struct xlog			*log,
2692 	struct xlog_recover_item	*item,
2693 	struct xfs_buf			*bp,
2694 	struct xfs_buf_log_format	*buf_f)
2695 {
2696 	uint			type;
2697 
2698 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2699 
2700 	/*
2701 	 * Filesystems are required to send in quota flags at mount time.
2702 	 */
2703 	if (!mp->m_qflags)
2704 		return false;
2705 
2706 	type = 0;
2707 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2708 		type |= XFS_DQ_USER;
2709 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2710 		type |= XFS_DQ_PROJ;
2711 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2712 		type |= XFS_DQ_GROUP;
2713 	/*
2714 	 * This type of quotas was turned off, so ignore this buffer
2715 	 */
2716 	if (log->l_quotaoffs_flag & type)
2717 		return false;
2718 
2719 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2720 	return true;
2721 }
2722 
2723 /*
2724  * This routine replays a modification made to a buffer at runtime.
2725  * There are actually two types of buffer, regular and inode, which
2726  * are handled differently.  Inode buffers are handled differently
2727  * in that we only recover a specific set of data from them, namely
2728  * the inode di_next_unlinked fields.  This is because all other inode
2729  * data is actually logged via inode records and any data we replay
2730  * here which overlaps that may be stale.
2731  *
2732  * When meta-data buffers are freed at run time we log a buffer item
2733  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2734  * of the buffer in the log should not be replayed at recovery time.
2735  * This is so that if the blocks covered by the buffer are reused for
2736  * file data before we crash we don't end up replaying old, freed
2737  * meta-data into a user's file.
2738  *
2739  * To handle the cancellation of buffer log items, we make two passes
2740  * over the log during recovery.  During the first we build a table of
2741  * those buffers which have been cancelled, and during the second we
2742  * only replay those buffers which do not have corresponding cancel
2743  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2744  * for more details on the implementation of the table of cancel records.
2745  */
2746 STATIC int
2747 xlog_recover_buffer_pass2(
2748 	struct xlog			*log,
2749 	struct list_head		*buffer_list,
2750 	struct xlog_recover_item	*item,
2751 	xfs_lsn_t			current_lsn)
2752 {
2753 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2754 	xfs_mount_t		*mp = log->l_mp;
2755 	xfs_buf_t		*bp;
2756 	int			error;
2757 	uint			buf_flags;
2758 	xfs_lsn_t		lsn;
2759 
2760 	/*
2761 	 * In this pass we only want to recover all the buffers which have
2762 	 * not been cancelled and are not cancellation buffers themselves.
2763 	 */
2764 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2765 			buf_f->blf_len, buf_f->blf_flags)) {
2766 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2767 		return 0;
2768 	}
2769 
2770 	trace_xfs_log_recover_buf_recover(log, buf_f);
2771 
2772 	buf_flags = 0;
2773 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2774 		buf_flags |= XBF_UNMAPPED;
2775 
2776 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2777 			  buf_flags, NULL);
2778 	if (!bp)
2779 		return -ENOMEM;
2780 	error = bp->b_error;
2781 	if (error) {
2782 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2783 		goto out_release;
2784 	}
2785 
2786 	/*
2787 	 * Recover the buffer only if we get an LSN from it and it's less than
2788 	 * the lsn of the transaction we are replaying.
2789 	 *
2790 	 * Note that we have to be extremely careful of readahead here.
2791 	 * Readahead does not attach verfiers to the buffers so if we don't
2792 	 * actually do any replay after readahead because of the LSN we found
2793 	 * in the buffer if more recent than that current transaction then we
2794 	 * need to attach the verifier directly. Failure to do so can lead to
2795 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2796 	 * operate on the buffers and they won't get the verifier attached. This
2797 	 * can lead to blocks on disk having the correct content but a stale
2798 	 * CRC.
2799 	 *
2800 	 * It is safe to assume these clean buffers are currently up to date.
2801 	 * If the buffer is dirtied by a later transaction being replayed, then
2802 	 * the verifier will be reset to match whatever recover turns that
2803 	 * buffer into.
2804 	 */
2805 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2806 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2807 		trace_xfs_log_recover_buf_skip(log, buf_f);
2808 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2809 		goto out_release;
2810 	}
2811 
2812 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2813 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2814 		if (error)
2815 			goto out_release;
2816 	} else if (buf_f->blf_flags &
2817 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2818 		bool	dirty;
2819 
2820 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2821 		if (!dirty)
2822 			goto out_release;
2823 	} else {
2824 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2825 	}
2826 
2827 	/*
2828 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2829 	 * slower when taking into account all the buffers to be flushed.
2830 	 *
2831 	 * Also make sure that only inode buffers with good sizes stay in
2832 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2833 	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2834 	 * buffers in the log can be a different size if the log was generated
2835 	 * by an older kernel using unclustered inode buffers or a newer kernel
2836 	 * running with a different inode cluster size.  Regardless, if the
2837 	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2838 	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2839 	 * the buffer out of the buffer cache so that the buffer won't
2840 	 * overlap with future reads of those inodes.
2841 	 */
2842 	if (XFS_DINODE_MAGIC ==
2843 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2844 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2845 			(__uint32_t)log->l_mp->m_inode_cluster_size))) {
2846 		xfs_buf_stale(bp);
2847 		error = xfs_bwrite(bp);
2848 	} else {
2849 		ASSERT(bp->b_target->bt_mount == mp);
2850 		bp->b_iodone = xlog_recover_iodone;
2851 		xfs_buf_delwri_queue(bp, buffer_list);
2852 	}
2853 
2854 out_release:
2855 	xfs_buf_relse(bp);
2856 	return error;
2857 }
2858 
2859 /*
2860  * Inode fork owner changes
2861  *
2862  * If we have been told that we have to reparent the inode fork, it's because an
2863  * extent swap operation on a CRC enabled filesystem has been done and we are
2864  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2865  * owners of it.
2866  *
2867  * The complexity here is that we don't have an inode context to work with, so
2868  * after we've replayed the inode we need to instantiate one.  This is where the
2869  * fun begins.
2870  *
2871  * We are in the middle of log recovery, so we can't run transactions. That
2872  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2873  * that will result in the corresponding iput() running the inode through
2874  * xfs_inactive(). If we've just replayed an inode core that changes the link
2875  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2876  * transactions (bad!).
2877  *
2878  * So, to avoid this, we instantiate an inode directly from the inode core we've
2879  * just recovered. We have the buffer still locked, and all we really need to
2880  * instantiate is the inode core and the forks being modified. We can do this
2881  * manually, then run the inode btree owner change, and then tear down the
2882  * xfs_inode without having to run any transactions at all.
2883  *
2884  * Also, because we don't have a transaction context available here but need to
2885  * gather all the buffers we modify for writeback so we pass the buffer_list
2886  * instead for the operation to use.
2887  */
2888 
2889 STATIC int
2890 xfs_recover_inode_owner_change(
2891 	struct xfs_mount	*mp,
2892 	struct xfs_dinode	*dip,
2893 	struct xfs_inode_log_format *in_f,
2894 	struct list_head	*buffer_list)
2895 {
2896 	struct xfs_inode	*ip;
2897 	int			error;
2898 
2899 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2900 
2901 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2902 	if (!ip)
2903 		return -ENOMEM;
2904 
2905 	/* instantiate the inode */
2906 	xfs_inode_from_disk(ip, dip);
2907 	ASSERT(ip->i_d.di_version >= 3);
2908 
2909 	error = xfs_iformat_fork(ip, dip);
2910 	if (error)
2911 		goto out_free_ip;
2912 
2913 
2914 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2915 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2916 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2917 					      ip->i_ino, buffer_list);
2918 		if (error)
2919 			goto out_free_ip;
2920 	}
2921 
2922 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2923 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2924 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2925 					      ip->i_ino, buffer_list);
2926 		if (error)
2927 			goto out_free_ip;
2928 	}
2929 
2930 out_free_ip:
2931 	xfs_inode_free(ip);
2932 	return error;
2933 }
2934 
2935 STATIC int
2936 xlog_recover_inode_pass2(
2937 	struct xlog			*log,
2938 	struct list_head		*buffer_list,
2939 	struct xlog_recover_item	*item,
2940 	xfs_lsn_t			current_lsn)
2941 {
2942 	xfs_inode_log_format_t	*in_f;
2943 	xfs_mount_t		*mp = log->l_mp;
2944 	xfs_buf_t		*bp;
2945 	xfs_dinode_t		*dip;
2946 	int			len;
2947 	char			*src;
2948 	char			*dest;
2949 	int			error;
2950 	int			attr_index;
2951 	uint			fields;
2952 	struct xfs_log_dinode	*ldip;
2953 	uint			isize;
2954 	int			need_free = 0;
2955 
2956 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2957 		in_f = item->ri_buf[0].i_addr;
2958 	} else {
2959 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2960 		need_free = 1;
2961 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2962 		if (error)
2963 			goto error;
2964 	}
2965 
2966 	/*
2967 	 * Inode buffers can be freed, look out for it,
2968 	 * and do not replay the inode.
2969 	 */
2970 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2971 					in_f->ilf_len, 0)) {
2972 		error = 0;
2973 		trace_xfs_log_recover_inode_cancel(log, in_f);
2974 		goto error;
2975 	}
2976 	trace_xfs_log_recover_inode_recover(log, in_f);
2977 
2978 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2979 			  &xfs_inode_buf_ops);
2980 	if (!bp) {
2981 		error = -ENOMEM;
2982 		goto error;
2983 	}
2984 	error = bp->b_error;
2985 	if (error) {
2986 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2987 		goto out_release;
2988 	}
2989 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2990 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2991 
2992 	/*
2993 	 * Make sure the place we're flushing out to really looks
2994 	 * like an inode!
2995 	 */
2996 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2997 		xfs_alert(mp,
2998 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2999 			__func__, dip, bp, in_f->ilf_ino);
3000 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3001 				 XFS_ERRLEVEL_LOW, mp);
3002 		error = -EFSCORRUPTED;
3003 		goto out_release;
3004 	}
3005 	ldip = item->ri_buf[1].i_addr;
3006 	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3007 		xfs_alert(mp,
3008 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3009 			__func__, item, in_f->ilf_ino);
3010 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3011 				 XFS_ERRLEVEL_LOW, mp);
3012 		error = -EFSCORRUPTED;
3013 		goto out_release;
3014 	}
3015 
3016 	/*
3017 	 * If the inode has an LSN in it, recover the inode only if it's less
3018 	 * than the lsn of the transaction we are replaying. Note: we still
3019 	 * need to replay an owner change even though the inode is more recent
3020 	 * than the transaction as there is no guarantee that all the btree
3021 	 * blocks are more recent than this transaction, too.
3022 	 */
3023 	if (dip->di_version >= 3) {
3024 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
3025 
3026 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3027 			trace_xfs_log_recover_inode_skip(log, in_f);
3028 			error = 0;
3029 			goto out_owner_change;
3030 		}
3031 	}
3032 
3033 	/*
3034 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3035 	 * are transactional and if ordering is necessary we can determine that
3036 	 * more accurately by the LSN field in the V3 inode core. Don't trust
3037 	 * the inode versions we might be changing them here - use the
3038 	 * superblock flag to determine whether we need to look at di_flushiter
3039 	 * to skip replay when the on disk inode is newer than the log one
3040 	 */
3041 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3042 	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3043 		/*
3044 		 * Deal with the wrap case, DI_MAX_FLUSH is less
3045 		 * than smaller numbers
3046 		 */
3047 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3048 		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3049 			/* do nothing */
3050 		} else {
3051 			trace_xfs_log_recover_inode_skip(log, in_f);
3052 			error = 0;
3053 			goto out_release;
3054 		}
3055 	}
3056 
3057 	/* Take the opportunity to reset the flush iteration count */
3058 	ldip->di_flushiter = 0;
3059 
3060 	if (unlikely(S_ISREG(ldip->di_mode))) {
3061 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3062 		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3063 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3064 					 XFS_ERRLEVEL_LOW, mp, ldip);
3065 			xfs_alert(mp,
3066 		"%s: Bad regular inode log record, rec ptr 0x%p, "
3067 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3068 				__func__, item, dip, bp, in_f->ilf_ino);
3069 			error = -EFSCORRUPTED;
3070 			goto out_release;
3071 		}
3072 	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3073 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3074 		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3075 		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3076 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3077 					     XFS_ERRLEVEL_LOW, mp, ldip);
3078 			xfs_alert(mp,
3079 		"%s: Bad dir inode log record, rec ptr 0x%p, "
3080 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3081 				__func__, item, dip, bp, in_f->ilf_ino);
3082 			error = -EFSCORRUPTED;
3083 			goto out_release;
3084 		}
3085 	}
3086 	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3087 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3088 				     XFS_ERRLEVEL_LOW, mp, ldip);
3089 		xfs_alert(mp,
3090 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3091 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3092 			__func__, item, dip, bp, in_f->ilf_ino,
3093 			ldip->di_nextents + ldip->di_anextents,
3094 			ldip->di_nblocks);
3095 		error = -EFSCORRUPTED;
3096 		goto out_release;
3097 	}
3098 	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3099 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3100 				     XFS_ERRLEVEL_LOW, mp, ldip);
3101 		xfs_alert(mp,
3102 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3103 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3104 			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3105 		error = -EFSCORRUPTED;
3106 		goto out_release;
3107 	}
3108 	isize = xfs_log_dinode_size(ldip->di_version);
3109 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3110 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3111 				     XFS_ERRLEVEL_LOW, mp, ldip);
3112 		xfs_alert(mp,
3113 			"%s: Bad inode log record length %d, rec ptr 0x%p",
3114 			__func__, item->ri_buf[1].i_len, item);
3115 		error = -EFSCORRUPTED;
3116 		goto out_release;
3117 	}
3118 
3119 	/* recover the log dinode inode into the on disk inode */
3120 	xfs_log_dinode_to_disk(ldip, dip);
3121 
3122 	/* the rest is in on-disk format */
3123 	if (item->ri_buf[1].i_len > isize) {
3124 		memcpy((char *)dip + isize,
3125 			item->ri_buf[1].i_addr + isize,
3126 			item->ri_buf[1].i_len - isize);
3127 	}
3128 
3129 	fields = in_f->ilf_fields;
3130 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3131 	case XFS_ILOG_DEV:
3132 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3133 		break;
3134 	case XFS_ILOG_UUID:
3135 		memcpy(XFS_DFORK_DPTR(dip),
3136 		       &in_f->ilf_u.ilfu_uuid,
3137 		       sizeof(uuid_t));
3138 		break;
3139 	}
3140 
3141 	if (in_f->ilf_size == 2)
3142 		goto out_owner_change;
3143 	len = item->ri_buf[2].i_len;
3144 	src = item->ri_buf[2].i_addr;
3145 	ASSERT(in_f->ilf_size <= 4);
3146 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3147 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3148 	       (len == in_f->ilf_dsize));
3149 
3150 	switch (fields & XFS_ILOG_DFORK) {
3151 	case XFS_ILOG_DDATA:
3152 	case XFS_ILOG_DEXT:
3153 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3154 		break;
3155 
3156 	case XFS_ILOG_DBROOT:
3157 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3158 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3159 				 XFS_DFORK_DSIZE(dip, mp));
3160 		break;
3161 
3162 	default:
3163 		/*
3164 		 * There are no data fork flags set.
3165 		 */
3166 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3167 		break;
3168 	}
3169 
3170 	/*
3171 	 * If we logged any attribute data, recover it.  There may or
3172 	 * may not have been any other non-core data logged in this
3173 	 * transaction.
3174 	 */
3175 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3176 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3177 			attr_index = 3;
3178 		} else {
3179 			attr_index = 2;
3180 		}
3181 		len = item->ri_buf[attr_index].i_len;
3182 		src = item->ri_buf[attr_index].i_addr;
3183 		ASSERT(len == in_f->ilf_asize);
3184 
3185 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3186 		case XFS_ILOG_ADATA:
3187 		case XFS_ILOG_AEXT:
3188 			dest = XFS_DFORK_APTR(dip);
3189 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3190 			memcpy(dest, src, len);
3191 			break;
3192 
3193 		case XFS_ILOG_ABROOT:
3194 			dest = XFS_DFORK_APTR(dip);
3195 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3196 					 len, (xfs_bmdr_block_t*)dest,
3197 					 XFS_DFORK_ASIZE(dip, mp));
3198 			break;
3199 
3200 		default:
3201 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3202 			ASSERT(0);
3203 			error = -EIO;
3204 			goto out_release;
3205 		}
3206 	}
3207 
3208 out_owner_change:
3209 	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3210 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3211 						       buffer_list);
3212 	/* re-generate the checksum. */
3213 	xfs_dinode_calc_crc(log->l_mp, dip);
3214 
3215 	ASSERT(bp->b_target->bt_mount == mp);
3216 	bp->b_iodone = xlog_recover_iodone;
3217 	xfs_buf_delwri_queue(bp, buffer_list);
3218 
3219 out_release:
3220 	xfs_buf_relse(bp);
3221 error:
3222 	if (need_free)
3223 		kmem_free(in_f);
3224 	return error;
3225 }
3226 
3227 /*
3228  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3229  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3230  * of that type.
3231  */
3232 STATIC int
3233 xlog_recover_quotaoff_pass1(
3234 	struct xlog			*log,
3235 	struct xlog_recover_item	*item)
3236 {
3237 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3238 	ASSERT(qoff_f);
3239 
3240 	/*
3241 	 * The logitem format's flag tells us if this was user quotaoff,
3242 	 * group/project quotaoff or both.
3243 	 */
3244 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3245 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3246 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3247 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3248 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3249 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3250 
3251 	return 0;
3252 }
3253 
3254 /*
3255  * Recover a dquot record
3256  */
3257 STATIC int
3258 xlog_recover_dquot_pass2(
3259 	struct xlog			*log,
3260 	struct list_head		*buffer_list,
3261 	struct xlog_recover_item	*item,
3262 	xfs_lsn_t			current_lsn)
3263 {
3264 	xfs_mount_t		*mp = log->l_mp;
3265 	xfs_buf_t		*bp;
3266 	struct xfs_disk_dquot	*ddq, *recddq;
3267 	int			error;
3268 	xfs_dq_logformat_t	*dq_f;
3269 	uint			type;
3270 
3271 
3272 	/*
3273 	 * Filesystems are required to send in quota flags at mount time.
3274 	 */
3275 	if (mp->m_qflags == 0)
3276 		return 0;
3277 
3278 	recddq = item->ri_buf[1].i_addr;
3279 	if (recddq == NULL) {
3280 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3281 		return -EIO;
3282 	}
3283 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3284 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3285 			item->ri_buf[1].i_len, __func__);
3286 		return -EIO;
3287 	}
3288 
3289 	/*
3290 	 * This type of quotas was turned off, so ignore this record.
3291 	 */
3292 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3293 	ASSERT(type);
3294 	if (log->l_quotaoffs_flag & type)
3295 		return 0;
3296 
3297 	/*
3298 	 * At this point we know that quota was _not_ turned off.
3299 	 * Since the mount flags are not indicating to us otherwise, this
3300 	 * must mean that quota is on, and the dquot needs to be replayed.
3301 	 * Remember that we may not have fully recovered the superblock yet,
3302 	 * so we can't do the usual trick of looking at the SB quota bits.
3303 	 *
3304 	 * The other possibility, of course, is that the quota subsystem was
3305 	 * removed since the last mount - ENOSYS.
3306 	 */
3307 	dq_f = item->ri_buf[0].i_addr;
3308 	ASSERT(dq_f);
3309 	error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3310 			   "xlog_recover_dquot_pass2 (log copy)");
3311 	if (error)
3312 		return -EIO;
3313 	ASSERT(dq_f->qlf_len == 1);
3314 
3315 	/*
3316 	 * At this point we are assuming that the dquots have been allocated
3317 	 * and hence the buffer has valid dquots stamped in it. It should,
3318 	 * therefore, pass verifier validation. If the dquot is bad, then the
3319 	 * we'll return an error here, so we don't need to specifically check
3320 	 * the dquot in the buffer after the verifier has run.
3321 	 */
3322 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3323 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3324 				   &xfs_dquot_buf_ops);
3325 	if (error)
3326 		return error;
3327 
3328 	ASSERT(bp);
3329 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3330 
3331 	/*
3332 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3333 	 * than the lsn of the transaction we are replaying.
3334 	 */
3335 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3336 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3337 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3338 
3339 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3340 			goto out_release;
3341 		}
3342 	}
3343 
3344 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3345 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3346 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3347 				 XFS_DQUOT_CRC_OFF);
3348 	}
3349 
3350 	ASSERT(dq_f->qlf_size == 2);
3351 	ASSERT(bp->b_target->bt_mount == mp);
3352 	bp->b_iodone = xlog_recover_iodone;
3353 	xfs_buf_delwri_queue(bp, buffer_list);
3354 
3355 out_release:
3356 	xfs_buf_relse(bp);
3357 	return 0;
3358 }
3359 
3360 /*
3361  * This routine is called to create an in-core extent free intent
3362  * item from the efi format structure which was logged on disk.
3363  * It allocates an in-core efi, copies the extents from the format
3364  * structure into it, and adds the efi to the AIL with the given
3365  * LSN.
3366  */
3367 STATIC int
3368 xlog_recover_efi_pass2(
3369 	struct xlog			*log,
3370 	struct xlog_recover_item	*item,
3371 	xfs_lsn_t			lsn)
3372 {
3373 	int				error;
3374 	struct xfs_mount		*mp = log->l_mp;
3375 	struct xfs_efi_log_item		*efip;
3376 	struct xfs_efi_log_format	*efi_formatp;
3377 
3378 	efi_formatp = item->ri_buf[0].i_addr;
3379 
3380 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3381 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3382 	if (error) {
3383 		xfs_efi_item_free(efip);
3384 		return error;
3385 	}
3386 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3387 
3388 	spin_lock(&log->l_ailp->xa_lock);
3389 	/*
3390 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3391 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3392 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3393 	 * AIL lock.
3394 	 */
3395 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3396 	xfs_efi_release(efip);
3397 	return 0;
3398 }
3399 
3400 
3401 /*
3402  * This routine is called when an EFD format structure is found in a committed
3403  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3404  * was still in the log. To do this it searches the AIL for the EFI with an id
3405  * equal to that in the EFD format structure. If we find it we drop the EFD
3406  * reference, which removes the EFI from the AIL and frees it.
3407  */
3408 STATIC int
3409 xlog_recover_efd_pass2(
3410 	struct xlog			*log,
3411 	struct xlog_recover_item	*item)
3412 {
3413 	xfs_efd_log_format_t	*efd_formatp;
3414 	xfs_efi_log_item_t	*efip = NULL;
3415 	xfs_log_item_t		*lip;
3416 	__uint64_t		efi_id;
3417 	struct xfs_ail_cursor	cur;
3418 	struct xfs_ail		*ailp = log->l_ailp;
3419 
3420 	efd_formatp = item->ri_buf[0].i_addr;
3421 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3422 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3423 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3424 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3425 	efi_id = efd_formatp->efd_efi_id;
3426 
3427 	/*
3428 	 * Search for the EFI with the id in the EFD format structure in the
3429 	 * AIL.
3430 	 */
3431 	spin_lock(&ailp->xa_lock);
3432 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3433 	while (lip != NULL) {
3434 		if (lip->li_type == XFS_LI_EFI) {
3435 			efip = (xfs_efi_log_item_t *)lip;
3436 			if (efip->efi_format.efi_id == efi_id) {
3437 				/*
3438 				 * Drop the EFD reference to the EFI. This
3439 				 * removes the EFI from the AIL and frees it.
3440 				 */
3441 				spin_unlock(&ailp->xa_lock);
3442 				xfs_efi_release(efip);
3443 				spin_lock(&ailp->xa_lock);
3444 				break;
3445 			}
3446 		}
3447 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3448 	}
3449 
3450 	xfs_trans_ail_cursor_done(&cur);
3451 	spin_unlock(&ailp->xa_lock);
3452 
3453 	return 0;
3454 }
3455 
3456 /*
3457  * This routine is called to create an in-core extent rmap update
3458  * item from the rui format structure which was logged on disk.
3459  * It allocates an in-core rui, copies the extents from the format
3460  * structure into it, and adds the rui to the AIL with the given
3461  * LSN.
3462  */
3463 STATIC int
3464 xlog_recover_rui_pass2(
3465 	struct xlog			*log,
3466 	struct xlog_recover_item	*item,
3467 	xfs_lsn_t			lsn)
3468 {
3469 	int				error;
3470 	struct xfs_mount		*mp = log->l_mp;
3471 	struct xfs_rui_log_item		*ruip;
3472 	struct xfs_rui_log_format	*rui_formatp;
3473 
3474 	rui_formatp = item->ri_buf[0].i_addr;
3475 
3476 	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3477 	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3478 	if (error) {
3479 		xfs_rui_item_free(ruip);
3480 		return error;
3481 	}
3482 	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3483 
3484 	spin_lock(&log->l_ailp->xa_lock);
3485 	/*
3486 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3487 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3488 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3489 	 * AIL lock.
3490 	 */
3491 	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3492 	xfs_rui_release(ruip);
3493 	return 0;
3494 }
3495 
3496 
3497 /*
3498  * This routine is called when an RUD format structure is found in a committed
3499  * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3500  * was still in the log. To do this it searches the AIL for the RUI with an id
3501  * equal to that in the RUD format structure. If we find it we drop the RUD
3502  * reference, which removes the RUI from the AIL and frees it.
3503  */
3504 STATIC int
3505 xlog_recover_rud_pass2(
3506 	struct xlog			*log,
3507 	struct xlog_recover_item	*item)
3508 {
3509 	struct xfs_rud_log_format	*rud_formatp;
3510 	struct xfs_rui_log_item		*ruip = NULL;
3511 	struct xfs_log_item		*lip;
3512 	__uint64_t			rui_id;
3513 	struct xfs_ail_cursor		cur;
3514 	struct xfs_ail			*ailp = log->l_ailp;
3515 
3516 	rud_formatp = item->ri_buf[0].i_addr;
3517 	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3518 	rui_id = rud_formatp->rud_rui_id;
3519 
3520 	/*
3521 	 * Search for the RUI with the id in the RUD format structure in the
3522 	 * AIL.
3523 	 */
3524 	spin_lock(&ailp->xa_lock);
3525 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3526 	while (lip != NULL) {
3527 		if (lip->li_type == XFS_LI_RUI) {
3528 			ruip = (struct xfs_rui_log_item *)lip;
3529 			if (ruip->rui_format.rui_id == rui_id) {
3530 				/*
3531 				 * Drop the RUD reference to the RUI. This
3532 				 * removes the RUI from the AIL and frees it.
3533 				 */
3534 				spin_unlock(&ailp->xa_lock);
3535 				xfs_rui_release(ruip);
3536 				spin_lock(&ailp->xa_lock);
3537 				break;
3538 			}
3539 		}
3540 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3541 	}
3542 
3543 	xfs_trans_ail_cursor_done(&cur);
3544 	spin_unlock(&ailp->xa_lock);
3545 
3546 	return 0;
3547 }
3548 
3549 /*
3550  * This routine is called when an inode create format structure is found in a
3551  * committed transaction in the log.  It's purpose is to initialise the inodes
3552  * being allocated on disk. This requires us to get inode cluster buffers that
3553  * match the range to be intialised, stamped with inode templates and written
3554  * by delayed write so that subsequent modifications will hit the cached buffer
3555  * and only need writing out at the end of recovery.
3556  */
3557 STATIC int
3558 xlog_recover_do_icreate_pass2(
3559 	struct xlog		*log,
3560 	struct list_head	*buffer_list,
3561 	xlog_recover_item_t	*item)
3562 {
3563 	struct xfs_mount	*mp = log->l_mp;
3564 	struct xfs_icreate_log	*icl;
3565 	xfs_agnumber_t		agno;
3566 	xfs_agblock_t		agbno;
3567 	unsigned int		count;
3568 	unsigned int		isize;
3569 	xfs_agblock_t		length;
3570 	int			blks_per_cluster;
3571 	int			bb_per_cluster;
3572 	int			cancel_count;
3573 	int			nbufs;
3574 	int			i;
3575 
3576 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3577 	if (icl->icl_type != XFS_LI_ICREATE) {
3578 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3579 		return -EINVAL;
3580 	}
3581 
3582 	if (icl->icl_size != 1) {
3583 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3584 		return -EINVAL;
3585 	}
3586 
3587 	agno = be32_to_cpu(icl->icl_ag);
3588 	if (agno >= mp->m_sb.sb_agcount) {
3589 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3590 		return -EINVAL;
3591 	}
3592 	agbno = be32_to_cpu(icl->icl_agbno);
3593 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3594 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3595 		return -EINVAL;
3596 	}
3597 	isize = be32_to_cpu(icl->icl_isize);
3598 	if (isize != mp->m_sb.sb_inodesize) {
3599 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3600 		return -EINVAL;
3601 	}
3602 	count = be32_to_cpu(icl->icl_count);
3603 	if (!count) {
3604 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3605 		return -EINVAL;
3606 	}
3607 	length = be32_to_cpu(icl->icl_length);
3608 	if (!length || length >= mp->m_sb.sb_agblocks) {
3609 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3610 		return -EINVAL;
3611 	}
3612 
3613 	/*
3614 	 * The inode chunk is either full or sparse and we only support
3615 	 * m_ialloc_min_blks sized sparse allocations at this time.
3616 	 */
3617 	if (length != mp->m_ialloc_blks &&
3618 	    length != mp->m_ialloc_min_blks) {
3619 		xfs_warn(log->l_mp,
3620 			 "%s: unsupported chunk length", __FUNCTION__);
3621 		return -EINVAL;
3622 	}
3623 
3624 	/* verify inode count is consistent with extent length */
3625 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3626 		xfs_warn(log->l_mp,
3627 			 "%s: inconsistent inode count and chunk length",
3628 			 __FUNCTION__);
3629 		return -EINVAL;
3630 	}
3631 
3632 	/*
3633 	 * The icreate transaction can cover multiple cluster buffers and these
3634 	 * buffers could have been freed and reused. Check the individual
3635 	 * buffers for cancellation so we don't overwrite anything written after
3636 	 * a cancellation.
3637 	 */
3638 	blks_per_cluster = xfs_icluster_size_fsb(mp);
3639 	bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3640 	nbufs = length / blks_per_cluster;
3641 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3642 		xfs_daddr_t	daddr;
3643 
3644 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3645 					 agbno + i * blks_per_cluster);
3646 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3647 			cancel_count++;
3648 	}
3649 
3650 	/*
3651 	 * We currently only use icreate for a single allocation at a time. This
3652 	 * means we should expect either all or none of the buffers to be
3653 	 * cancelled. Be conservative and skip replay if at least one buffer is
3654 	 * cancelled, but warn the user that something is awry if the buffers
3655 	 * are not consistent.
3656 	 *
3657 	 * XXX: This must be refined to only skip cancelled clusters once we use
3658 	 * icreate for multiple chunk allocations.
3659 	 */
3660 	ASSERT(!cancel_count || cancel_count == nbufs);
3661 	if (cancel_count) {
3662 		if (cancel_count != nbufs)
3663 			xfs_warn(mp,
3664 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3665 		trace_xfs_log_recover_icreate_cancel(log, icl);
3666 		return 0;
3667 	}
3668 
3669 	trace_xfs_log_recover_icreate_recover(log, icl);
3670 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3671 				     length, be32_to_cpu(icl->icl_gen));
3672 }
3673 
3674 STATIC void
3675 xlog_recover_buffer_ra_pass2(
3676 	struct xlog                     *log,
3677 	struct xlog_recover_item        *item)
3678 {
3679 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3680 	struct xfs_mount		*mp = log->l_mp;
3681 
3682 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3683 			buf_f->blf_len, buf_f->blf_flags)) {
3684 		return;
3685 	}
3686 
3687 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3688 				buf_f->blf_len, NULL);
3689 }
3690 
3691 STATIC void
3692 xlog_recover_inode_ra_pass2(
3693 	struct xlog                     *log,
3694 	struct xlog_recover_item        *item)
3695 {
3696 	struct xfs_inode_log_format	ilf_buf;
3697 	struct xfs_inode_log_format	*ilfp;
3698 	struct xfs_mount		*mp = log->l_mp;
3699 	int			error;
3700 
3701 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3702 		ilfp = item->ri_buf[0].i_addr;
3703 	} else {
3704 		ilfp = &ilf_buf;
3705 		memset(ilfp, 0, sizeof(*ilfp));
3706 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3707 		if (error)
3708 			return;
3709 	}
3710 
3711 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3712 		return;
3713 
3714 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3715 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3716 }
3717 
3718 STATIC void
3719 xlog_recover_dquot_ra_pass2(
3720 	struct xlog			*log,
3721 	struct xlog_recover_item	*item)
3722 {
3723 	struct xfs_mount	*mp = log->l_mp;
3724 	struct xfs_disk_dquot	*recddq;
3725 	struct xfs_dq_logformat	*dq_f;
3726 	uint			type;
3727 	int			len;
3728 
3729 
3730 	if (mp->m_qflags == 0)
3731 		return;
3732 
3733 	recddq = item->ri_buf[1].i_addr;
3734 	if (recddq == NULL)
3735 		return;
3736 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3737 		return;
3738 
3739 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3740 	ASSERT(type);
3741 	if (log->l_quotaoffs_flag & type)
3742 		return;
3743 
3744 	dq_f = item->ri_buf[0].i_addr;
3745 	ASSERT(dq_f);
3746 	ASSERT(dq_f->qlf_len == 1);
3747 
3748 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3749 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3750 		return;
3751 
3752 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3753 			  &xfs_dquot_buf_ra_ops);
3754 }
3755 
3756 STATIC void
3757 xlog_recover_ra_pass2(
3758 	struct xlog			*log,
3759 	struct xlog_recover_item	*item)
3760 {
3761 	switch (ITEM_TYPE(item)) {
3762 	case XFS_LI_BUF:
3763 		xlog_recover_buffer_ra_pass2(log, item);
3764 		break;
3765 	case XFS_LI_INODE:
3766 		xlog_recover_inode_ra_pass2(log, item);
3767 		break;
3768 	case XFS_LI_DQUOT:
3769 		xlog_recover_dquot_ra_pass2(log, item);
3770 		break;
3771 	case XFS_LI_EFI:
3772 	case XFS_LI_EFD:
3773 	case XFS_LI_QUOTAOFF:
3774 	case XFS_LI_RUI:
3775 	case XFS_LI_RUD:
3776 	default:
3777 		break;
3778 	}
3779 }
3780 
3781 STATIC int
3782 xlog_recover_commit_pass1(
3783 	struct xlog			*log,
3784 	struct xlog_recover		*trans,
3785 	struct xlog_recover_item	*item)
3786 {
3787 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3788 
3789 	switch (ITEM_TYPE(item)) {
3790 	case XFS_LI_BUF:
3791 		return xlog_recover_buffer_pass1(log, item);
3792 	case XFS_LI_QUOTAOFF:
3793 		return xlog_recover_quotaoff_pass1(log, item);
3794 	case XFS_LI_INODE:
3795 	case XFS_LI_EFI:
3796 	case XFS_LI_EFD:
3797 	case XFS_LI_DQUOT:
3798 	case XFS_LI_ICREATE:
3799 	case XFS_LI_RUI:
3800 	case XFS_LI_RUD:
3801 		/* nothing to do in pass 1 */
3802 		return 0;
3803 	default:
3804 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3805 			__func__, ITEM_TYPE(item));
3806 		ASSERT(0);
3807 		return -EIO;
3808 	}
3809 }
3810 
3811 STATIC int
3812 xlog_recover_commit_pass2(
3813 	struct xlog			*log,
3814 	struct xlog_recover		*trans,
3815 	struct list_head		*buffer_list,
3816 	struct xlog_recover_item	*item)
3817 {
3818 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3819 
3820 	switch (ITEM_TYPE(item)) {
3821 	case XFS_LI_BUF:
3822 		return xlog_recover_buffer_pass2(log, buffer_list, item,
3823 						 trans->r_lsn);
3824 	case XFS_LI_INODE:
3825 		return xlog_recover_inode_pass2(log, buffer_list, item,
3826 						 trans->r_lsn);
3827 	case XFS_LI_EFI:
3828 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3829 	case XFS_LI_EFD:
3830 		return xlog_recover_efd_pass2(log, item);
3831 	case XFS_LI_RUI:
3832 		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
3833 	case XFS_LI_RUD:
3834 		return xlog_recover_rud_pass2(log, item);
3835 	case XFS_LI_DQUOT:
3836 		return xlog_recover_dquot_pass2(log, buffer_list, item,
3837 						trans->r_lsn);
3838 	case XFS_LI_ICREATE:
3839 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3840 	case XFS_LI_QUOTAOFF:
3841 		/* nothing to do in pass2 */
3842 		return 0;
3843 	default:
3844 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3845 			__func__, ITEM_TYPE(item));
3846 		ASSERT(0);
3847 		return -EIO;
3848 	}
3849 }
3850 
3851 STATIC int
3852 xlog_recover_items_pass2(
3853 	struct xlog                     *log,
3854 	struct xlog_recover             *trans,
3855 	struct list_head                *buffer_list,
3856 	struct list_head                *item_list)
3857 {
3858 	struct xlog_recover_item	*item;
3859 	int				error = 0;
3860 
3861 	list_for_each_entry(item, item_list, ri_list) {
3862 		error = xlog_recover_commit_pass2(log, trans,
3863 					  buffer_list, item);
3864 		if (error)
3865 			return error;
3866 	}
3867 
3868 	return error;
3869 }
3870 
3871 /*
3872  * Perform the transaction.
3873  *
3874  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3875  * EFIs and EFDs get queued up by adding entries into the AIL for them.
3876  */
3877 STATIC int
3878 xlog_recover_commit_trans(
3879 	struct xlog		*log,
3880 	struct xlog_recover	*trans,
3881 	int			pass,
3882 	struct list_head	*buffer_list)
3883 {
3884 	int				error = 0;
3885 	int				items_queued = 0;
3886 	struct xlog_recover_item	*item;
3887 	struct xlog_recover_item	*next;
3888 	LIST_HEAD			(ra_list);
3889 	LIST_HEAD			(done_list);
3890 
3891 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3892 
3893 	hlist_del(&trans->r_list);
3894 
3895 	error = xlog_recover_reorder_trans(log, trans, pass);
3896 	if (error)
3897 		return error;
3898 
3899 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3900 		switch (pass) {
3901 		case XLOG_RECOVER_PASS1:
3902 			error = xlog_recover_commit_pass1(log, trans, item);
3903 			break;
3904 		case XLOG_RECOVER_PASS2:
3905 			xlog_recover_ra_pass2(log, item);
3906 			list_move_tail(&item->ri_list, &ra_list);
3907 			items_queued++;
3908 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3909 				error = xlog_recover_items_pass2(log, trans,
3910 						buffer_list, &ra_list);
3911 				list_splice_tail_init(&ra_list, &done_list);
3912 				items_queued = 0;
3913 			}
3914 
3915 			break;
3916 		default:
3917 			ASSERT(0);
3918 		}
3919 
3920 		if (error)
3921 			goto out;
3922 	}
3923 
3924 out:
3925 	if (!list_empty(&ra_list)) {
3926 		if (!error)
3927 			error = xlog_recover_items_pass2(log, trans,
3928 					buffer_list, &ra_list);
3929 		list_splice_tail_init(&ra_list, &done_list);
3930 	}
3931 
3932 	if (!list_empty(&done_list))
3933 		list_splice_init(&done_list, &trans->r_itemq);
3934 
3935 	return error;
3936 }
3937 
3938 STATIC void
3939 xlog_recover_add_item(
3940 	struct list_head	*head)
3941 {
3942 	xlog_recover_item_t	*item;
3943 
3944 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3945 	INIT_LIST_HEAD(&item->ri_list);
3946 	list_add_tail(&item->ri_list, head);
3947 }
3948 
3949 STATIC int
3950 xlog_recover_add_to_cont_trans(
3951 	struct xlog		*log,
3952 	struct xlog_recover	*trans,
3953 	char			*dp,
3954 	int			len)
3955 {
3956 	xlog_recover_item_t	*item;
3957 	char			*ptr, *old_ptr;
3958 	int			old_len;
3959 
3960 	/*
3961 	 * If the transaction is empty, the header was split across this and the
3962 	 * previous record. Copy the rest of the header.
3963 	 */
3964 	if (list_empty(&trans->r_itemq)) {
3965 		ASSERT(len <= sizeof(struct xfs_trans_header));
3966 		if (len > sizeof(struct xfs_trans_header)) {
3967 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
3968 			return -EIO;
3969 		}
3970 
3971 		xlog_recover_add_item(&trans->r_itemq);
3972 		ptr = (char *)&trans->r_theader +
3973 				sizeof(struct xfs_trans_header) - len;
3974 		memcpy(ptr, dp, len);
3975 		return 0;
3976 	}
3977 
3978 	/* take the tail entry */
3979 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3980 
3981 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3982 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
3983 
3984 	ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
3985 	memcpy(&ptr[old_len], dp, len);
3986 	item->ri_buf[item->ri_cnt-1].i_len += len;
3987 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3988 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3989 	return 0;
3990 }
3991 
3992 /*
3993  * The next region to add is the start of a new region.  It could be
3994  * a whole region or it could be the first part of a new region.  Because
3995  * of this, the assumption here is that the type and size fields of all
3996  * format structures fit into the first 32 bits of the structure.
3997  *
3998  * This works because all regions must be 32 bit aligned.  Therefore, we
3999  * either have both fields or we have neither field.  In the case we have
4000  * neither field, the data part of the region is zero length.  We only have
4001  * a log_op_header and can throw away the header since a new one will appear
4002  * later.  If we have at least 4 bytes, then we can determine how many regions
4003  * will appear in the current log item.
4004  */
4005 STATIC int
4006 xlog_recover_add_to_trans(
4007 	struct xlog		*log,
4008 	struct xlog_recover	*trans,
4009 	char			*dp,
4010 	int			len)
4011 {
4012 	xfs_inode_log_format_t	*in_f;			/* any will do */
4013 	xlog_recover_item_t	*item;
4014 	char			*ptr;
4015 
4016 	if (!len)
4017 		return 0;
4018 	if (list_empty(&trans->r_itemq)) {
4019 		/* we need to catch log corruptions here */
4020 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4021 			xfs_warn(log->l_mp, "%s: bad header magic number",
4022 				__func__);
4023 			ASSERT(0);
4024 			return -EIO;
4025 		}
4026 
4027 		if (len > sizeof(struct xfs_trans_header)) {
4028 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4029 			ASSERT(0);
4030 			return -EIO;
4031 		}
4032 
4033 		/*
4034 		 * The transaction header can be arbitrarily split across op
4035 		 * records. If we don't have the whole thing here, copy what we
4036 		 * do have and handle the rest in the next record.
4037 		 */
4038 		if (len == sizeof(struct xfs_trans_header))
4039 			xlog_recover_add_item(&trans->r_itemq);
4040 		memcpy(&trans->r_theader, dp, len);
4041 		return 0;
4042 	}
4043 
4044 	ptr = kmem_alloc(len, KM_SLEEP);
4045 	memcpy(ptr, dp, len);
4046 	in_f = (xfs_inode_log_format_t *)ptr;
4047 
4048 	/* take the tail entry */
4049 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4050 	if (item->ri_total != 0 &&
4051 	     item->ri_total == item->ri_cnt) {
4052 		/* tail item is in use, get a new one */
4053 		xlog_recover_add_item(&trans->r_itemq);
4054 		item = list_entry(trans->r_itemq.prev,
4055 					xlog_recover_item_t, ri_list);
4056 	}
4057 
4058 	if (item->ri_total == 0) {		/* first region to be added */
4059 		if (in_f->ilf_size == 0 ||
4060 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4061 			xfs_warn(log->l_mp,
4062 		"bad number of regions (%d) in inode log format",
4063 				  in_f->ilf_size);
4064 			ASSERT(0);
4065 			kmem_free(ptr);
4066 			return -EIO;
4067 		}
4068 
4069 		item->ri_total = in_f->ilf_size;
4070 		item->ri_buf =
4071 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4072 				    KM_SLEEP);
4073 	}
4074 	ASSERT(item->ri_total > item->ri_cnt);
4075 	/* Description region is ri_buf[0] */
4076 	item->ri_buf[item->ri_cnt].i_addr = ptr;
4077 	item->ri_buf[item->ri_cnt].i_len  = len;
4078 	item->ri_cnt++;
4079 	trace_xfs_log_recover_item_add(log, trans, item, 0);
4080 	return 0;
4081 }
4082 
4083 /*
4084  * Free up any resources allocated by the transaction
4085  *
4086  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4087  */
4088 STATIC void
4089 xlog_recover_free_trans(
4090 	struct xlog_recover	*trans)
4091 {
4092 	xlog_recover_item_t	*item, *n;
4093 	int			i;
4094 
4095 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4096 		/* Free the regions in the item. */
4097 		list_del(&item->ri_list);
4098 		for (i = 0; i < item->ri_cnt; i++)
4099 			kmem_free(item->ri_buf[i].i_addr);
4100 		/* Free the item itself */
4101 		kmem_free(item->ri_buf);
4102 		kmem_free(item);
4103 	}
4104 	/* Free the transaction recover structure */
4105 	kmem_free(trans);
4106 }
4107 
4108 /*
4109  * On error or completion, trans is freed.
4110  */
4111 STATIC int
4112 xlog_recovery_process_trans(
4113 	struct xlog		*log,
4114 	struct xlog_recover	*trans,
4115 	char			*dp,
4116 	unsigned int		len,
4117 	unsigned int		flags,
4118 	int			pass,
4119 	struct list_head	*buffer_list)
4120 {
4121 	int			error = 0;
4122 	bool			freeit = false;
4123 
4124 	/* mask off ophdr transaction container flags */
4125 	flags &= ~XLOG_END_TRANS;
4126 	if (flags & XLOG_WAS_CONT_TRANS)
4127 		flags &= ~XLOG_CONTINUE_TRANS;
4128 
4129 	/*
4130 	 * Callees must not free the trans structure. We'll decide if we need to
4131 	 * free it or not based on the operation being done and it's result.
4132 	 */
4133 	switch (flags) {
4134 	/* expected flag values */
4135 	case 0:
4136 	case XLOG_CONTINUE_TRANS:
4137 		error = xlog_recover_add_to_trans(log, trans, dp, len);
4138 		break;
4139 	case XLOG_WAS_CONT_TRANS:
4140 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4141 		break;
4142 	case XLOG_COMMIT_TRANS:
4143 		error = xlog_recover_commit_trans(log, trans, pass,
4144 						  buffer_list);
4145 		/* success or fail, we are now done with this transaction. */
4146 		freeit = true;
4147 		break;
4148 
4149 	/* unexpected flag values */
4150 	case XLOG_UNMOUNT_TRANS:
4151 		/* just skip trans */
4152 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4153 		freeit = true;
4154 		break;
4155 	case XLOG_START_TRANS:
4156 	default:
4157 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4158 		ASSERT(0);
4159 		error = -EIO;
4160 		break;
4161 	}
4162 	if (error || freeit)
4163 		xlog_recover_free_trans(trans);
4164 	return error;
4165 }
4166 
4167 /*
4168  * Lookup the transaction recovery structure associated with the ID in the
4169  * current ophdr. If the transaction doesn't exist and the start flag is set in
4170  * the ophdr, then allocate a new transaction for future ID matches to find.
4171  * Either way, return what we found during the lookup - an existing transaction
4172  * or nothing.
4173  */
4174 STATIC struct xlog_recover *
4175 xlog_recover_ophdr_to_trans(
4176 	struct hlist_head	rhash[],
4177 	struct xlog_rec_header	*rhead,
4178 	struct xlog_op_header	*ohead)
4179 {
4180 	struct xlog_recover	*trans;
4181 	xlog_tid_t		tid;
4182 	struct hlist_head	*rhp;
4183 
4184 	tid = be32_to_cpu(ohead->oh_tid);
4185 	rhp = &rhash[XLOG_RHASH(tid)];
4186 	hlist_for_each_entry(trans, rhp, r_list) {
4187 		if (trans->r_log_tid == tid)
4188 			return trans;
4189 	}
4190 
4191 	/*
4192 	 * skip over non-start transaction headers - we could be
4193 	 * processing slack space before the next transaction starts
4194 	 */
4195 	if (!(ohead->oh_flags & XLOG_START_TRANS))
4196 		return NULL;
4197 
4198 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4199 
4200 	/*
4201 	 * This is a new transaction so allocate a new recovery container to
4202 	 * hold the recovery ops that will follow.
4203 	 */
4204 	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4205 	trans->r_log_tid = tid;
4206 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4207 	INIT_LIST_HEAD(&trans->r_itemq);
4208 	INIT_HLIST_NODE(&trans->r_list);
4209 	hlist_add_head(&trans->r_list, rhp);
4210 
4211 	/*
4212 	 * Nothing more to do for this ophdr. Items to be added to this new
4213 	 * transaction will be in subsequent ophdr containers.
4214 	 */
4215 	return NULL;
4216 }
4217 
4218 STATIC int
4219 xlog_recover_process_ophdr(
4220 	struct xlog		*log,
4221 	struct hlist_head	rhash[],
4222 	struct xlog_rec_header	*rhead,
4223 	struct xlog_op_header	*ohead,
4224 	char			*dp,
4225 	char			*end,
4226 	int			pass,
4227 	struct list_head	*buffer_list)
4228 {
4229 	struct xlog_recover	*trans;
4230 	unsigned int		len;
4231 	int			error;
4232 
4233 	/* Do we understand who wrote this op? */
4234 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4235 	    ohead->oh_clientid != XFS_LOG) {
4236 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4237 			__func__, ohead->oh_clientid);
4238 		ASSERT(0);
4239 		return -EIO;
4240 	}
4241 
4242 	/*
4243 	 * Check the ophdr contains all the data it is supposed to contain.
4244 	 */
4245 	len = be32_to_cpu(ohead->oh_len);
4246 	if (dp + len > end) {
4247 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4248 		WARN_ON(1);
4249 		return -EIO;
4250 	}
4251 
4252 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4253 	if (!trans) {
4254 		/* nothing to do, so skip over this ophdr */
4255 		return 0;
4256 	}
4257 
4258 	/*
4259 	 * The recovered buffer queue is drained only once we know that all
4260 	 * recovery items for the current LSN have been processed. This is
4261 	 * required because:
4262 	 *
4263 	 * - Buffer write submission updates the metadata LSN of the buffer.
4264 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
4265 	 *   the recovery item.
4266 	 * - Separate recovery items against the same metadata buffer can share
4267 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
4268 	 *   defined as the starting LSN of the first record in which its
4269 	 *   transaction appears, that a record can hold multiple transactions,
4270 	 *   and/or that a transaction can span multiple records.
4271 	 *
4272 	 * In other words, we are allowed to submit a buffer from log recovery
4273 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
4274 	 * items and cause corruption.
4275 	 *
4276 	 * We don't know up front whether buffers are updated multiple times per
4277 	 * LSN. Therefore, track the current LSN of each commit log record as it
4278 	 * is processed and drain the queue when it changes. Use commit records
4279 	 * because they are ordered correctly by the logging code.
4280 	 */
4281 	if (log->l_recovery_lsn != trans->r_lsn &&
4282 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
4283 		error = xfs_buf_delwri_submit(buffer_list);
4284 		if (error)
4285 			return error;
4286 		log->l_recovery_lsn = trans->r_lsn;
4287 	}
4288 
4289 	return xlog_recovery_process_trans(log, trans, dp, len,
4290 					   ohead->oh_flags, pass, buffer_list);
4291 }
4292 
4293 /*
4294  * There are two valid states of the r_state field.  0 indicates that the
4295  * transaction structure is in a normal state.  We have either seen the
4296  * start of the transaction or the last operation we added was not a partial
4297  * operation.  If the last operation we added to the transaction was a
4298  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4299  *
4300  * NOTE: skip LRs with 0 data length.
4301  */
4302 STATIC int
4303 xlog_recover_process_data(
4304 	struct xlog		*log,
4305 	struct hlist_head	rhash[],
4306 	struct xlog_rec_header	*rhead,
4307 	char			*dp,
4308 	int			pass,
4309 	struct list_head	*buffer_list)
4310 {
4311 	struct xlog_op_header	*ohead;
4312 	char			*end;
4313 	int			num_logops;
4314 	int			error;
4315 
4316 	end = dp + be32_to_cpu(rhead->h_len);
4317 	num_logops = be32_to_cpu(rhead->h_num_logops);
4318 
4319 	/* check the log format matches our own - else we can't recover */
4320 	if (xlog_header_check_recover(log->l_mp, rhead))
4321 		return -EIO;
4322 
4323 	trace_xfs_log_recover_record(log, rhead, pass);
4324 	while ((dp < end) && num_logops) {
4325 
4326 		ohead = (struct xlog_op_header *)dp;
4327 		dp += sizeof(*ohead);
4328 		ASSERT(dp <= end);
4329 
4330 		/* errors will abort recovery */
4331 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4332 						   dp, end, pass, buffer_list);
4333 		if (error)
4334 			return error;
4335 
4336 		dp += be32_to_cpu(ohead->oh_len);
4337 		num_logops--;
4338 	}
4339 	return 0;
4340 }
4341 
4342 /* Recover the EFI if necessary. */
4343 STATIC int
4344 xlog_recover_process_efi(
4345 	struct xfs_mount		*mp,
4346 	struct xfs_ail			*ailp,
4347 	struct xfs_log_item		*lip)
4348 {
4349 	struct xfs_efi_log_item		*efip;
4350 	int				error;
4351 
4352 	/*
4353 	 * Skip EFIs that we've already processed.
4354 	 */
4355 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4356 	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4357 		return 0;
4358 
4359 	spin_unlock(&ailp->xa_lock);
4360 	error = xfs_efi_recover(mp, efip);
4361 	spin_lock(&ailp->xa_lock);
4362 
4363 	return error;
4364 }
4365 
4366 /* Release the EFI since we're cancelling everything. */
4367 STATIC void
4368 xlog_recover_cancel_efi(
4369 	struct xfs_mount		*mp,
4370 	struct xfs_ail			*ailp,
4371 	struct xfs_log_item		*lip)
4372 {
4373 	struct xfs_efi_log_item		*efip;
4374 
4375 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4376 
4377 	spin_unlock(&ailp->xa_lock);
4378 	xfs_efi_release(efip);
4379 	spin_lock(&ailp->xa_lock);
4380 }
4381 
4382 /* Recover the RUI if necessary. */
4383 STATIC int
4384 xlog_recover_process_rui(
4385 	struct xfs_mount		*mp,
4386 	struct xfs_ail			*ailp,
4387 	struct xfs_log_item		*lip)
4388 {
4389 	struct xfs_rui_log_item		*ruip;
4390 	int				error;
4391 
4392 	/*
4393 	 * Skip RUIs that we've already processed.
4394 	 */
4395 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4396 	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4397 		return 0;
4398 
4399 	spin_unlock(&ailp->xa_lock);
4400 	error = xfs_rui_recover(mp, ruip);
4401 	spin_lock(&ailp->xa_lock);
4402 
4403 	return error;
4404 }
4405 
4406 /* Release the RUI since we're cancelling everything. */
4407 STATIC void
4408 xlog_recover_cancel_rui(
4409 	struct xfs_mount		*mp,
4410 	struct xfs_ail			*ailp,
4411 	struct xfs_log_item		*lip)
4412 {
4413 	struct xfs_rui_log_item		*ruip;
4414 
4415 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4416 
4417 	spin_unlock(&ailp->xa_lock);
4418 	xfs_rui_release(ruip);
4419 	spin_lock(&ailp->xa_lock);
4420 }
4421 
4422 /* Is this log item a deferred action intent? */
4423 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4424 {
4425 	switch (lip->li_type) {
4426 	case XFS_LI_EFI:
4427 	case XFS_LI_RUI:
4428 		return true;
4429 	default:
4430 		return false;
4431 	}
4432 }
4433 
4434 /*
4435  * When this is called, all of the log intent items which did not have
4436  * corresponding log done items should be in the AIL.  What we do now
4437  * is update the data structures associated with each one.
4438  *
4439  * Since we process the log intent items in normal transactions, they
4440  * will be removed at some point after the commit.  This prevents us
4441  * from just walking down the list processing each one.  We'll use a
4442  * flag in the intent item to skip those that we've already processed
4443  * and use the AIL iteration mechanism's generation count to try to
4444  * speed this up at least a bit.
4445  *
4446  * When we start, we know that the intents are the only things in the
4447  * AIL.  As we process them, however, other items are added to the
4448  * AIL.
4449  */
4450 STATIC int
4451 xlog_recover_process_intents(
4452 	struct xlog		*log)
4453 {
4454 	struct xfs_log_item	*lip;
4455 	int			error = 0;
4456 	struct xfs_ail_cursor	cur;
4457 	struct xfs_ail		*ailp;
4458 	xfs_lsn_t		last_lsn;
4459 
4460 	ailp = log->l_ailp;
4461 	spin_lock(&ailp->xa_lock);
4462 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4463 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4464 	while (lip != NULL) {
4465 		/*
4466 		 * We're done when we see something other than an intent.
4467 		 * There should be no intents left in the AIL now.
4468 		 */
4469 		if (!xlog_item_is_intent(lip)) {
4470 #ifdef DEBUG
4471 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4472 				ASSERT(!xlog_item_is_intent(lip));
4473 #endif
4474 			break;
4475 		}
4476 
4477 		/*
4478 		 * We should never see a redo item with a LSN higher than
4479 		 * the last transaction we found in the log at the start
4480 		 * of recovery.
4481 		 */
4482 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4483 
4484 		switch (lip->li_type) {
4485 		case XFS_LI_EFI:
4486 			error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4487 			break;
4488 		case XFS_LI_RUI:
4489 			error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4490 			break;
4491 		}
4492 		if (error)
4493 			goto out;
4494 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4495 	}
4496 out:
4497 	xfs_trans_ail_cursor_done(&cur);
4498 	spin_unlock(&ailp->xa_lock);
4499 	return error;
4500 }
4501 
4502 /*
4503  * A cancel occurs when the mount has failed and we're bailing out.
4504  * Release all pending log intent items so they don't pin the AIL.
4505  */
4506 STATIC int
4507 xlog_recover_cancel_intents(
4508 	struct xlog		*log)
4509 {
4510 	struct xfs_log_item	*lip;
4511 	int			error = 0;
4512 	struct xfs_ail_cursor	cur;
4513 	struct xfs_ail		*ailp;
4514 
4515 	ailp = log->l_ailp;
4516 	spin_lock(&ailp->xa_lock);
4517 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4518 	while (lip != NULL) {
4519 		/*
4520 		 * We're done when we see something other than an intent.
4521 		 * There should be no intents left in the AIL now.
4522 		 */
4523 		if (!xlog_item_is_intent(lip)) {
4524 #ifdef DEBUG
4525 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4526 				ASSERT(!xlog_item_is_intent(lip));
4527 #endif
4528 			break;
4529 		}
4530 
4531 		switch (lip->li_type) {
4532 		case XFS_LI_EFI:
4533 			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4534 			break;
4535 		case XFS_LI_RUI:
4536 			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4537 			break;
4538 		}
4539 
4540 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4541 	}
4542 
4543 	xfs_trans_ail_cursor_done(&cur);
4544 	spin_unlock(&ailp->xa_lock);
4545 	return error;
4546 }
4547 
4548 /*
4549  * This routine performs a transaction to null out a bad inode pointer
4550  * in an agi unlinked inode hash bucket.
4551  */
4552 STATIC void
4553 xlog_recover_clear_agi_bucket(
4554 	xfs_mount_t	*mp,
4555 	xfs_agnumber_t	agno,
4556 	int		bucket)
4557 {
4558 	xfs_trans_t	*tp;
4559 	xfs_agi_t	*agi;
4560 	xfs_buf_t	*agibp;
4561 	int		offset;
4562 	int		error;
4563 
4564 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4565 	if (error)
4566 		goto out_error;
4567 
4568 	error = xfs_read_agi(mp, tp, agno, &agibp);
4569 	if (error)
4570 		goto out_abort;
4571 
4572 	agi = XFS_BUF_TO_AGI(agibp);
4573 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4574 	offset = offsetof(xfs_agi_t, agi_unlinked) +
4575 		 (sizeof(xfs_agino_t) * bucket);
4576 	xfs_trans_log_buf(tp, agibp, offset,
4577 			  (offset + sizeof(xfs_agino_t) - 1));
4578 
4579 	error = xfs_trans_commit(tp);
4580 	if (error)
4581 		goto out_error;
4582 	return;
4583 
4584 out_abort:
4585 	xfs_trans_cancel(tp);
4586 out_error:
4587 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4588 	return;
4589 }
4590 
4591 STATIC xfs_agino_t
4592 xlog_recover_process_one_iunlink(
4593 	struct xfs_mount		*mp,
4594 	xfs_agnumber_t			agno,
4595 	xfs_agino_t			agino,
4596 	int				bucket)
4597 {
4598 	struct xfs_buf			*ibp;
4599 	struct xfs_dinode		*dip;
4600 	struct xfs_inode		*ip;
4601 	xfs_ino_t			ino;
4602 	int				error;
4603 
4604 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
4605 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4606 	if (error)
4607 		goto fail;
4608 
4609 	/*
4610 	 * Get the on disk inode to find the next inode in the bucket.
4611 	 */
4612 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4613 	if (error)
4614 		goto fail_iput;
4615 
4616 	ASSERT(VFS_I(ip)->i_nlink == 0);
4617 	ASSERT(VFS_I(ip)->i_mode != 0);
4618 
4619 	/* setup for the next pass */
4620 	agino = be32_to_cpu(dip->di_next_unlinked);
4621 	xfs_buf_relse(ibp);
4622 
4623 	/*
4624 	 * Prevent any DMAPI event from being sent when the reference on
4625 	 * the inode is dropped.
4626 	 */
4627 	ip->i_d.di_dmevmask = 0;
4628 
4629 	IRELE(ip);
4630 	return agino;
4631 
4632  fail_iput:
4633 	IRELE(ip);
4634  fail:
4635 	/*
4636 	 * We can't read in the inode this bucket points to, or this inode
4637 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
4638 	 * some inodes and space, but at least we won't hang.
4639 	 *
4640 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4641 	 * clear the inode pointer in the bucket.
4642 	 */
4643 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
4644 	return NULLAGINO;
4645 }
4646 
4647 /*
4648  * xlog_iunlink_recover
4649  *
4650  * This is called during recovery to process any inodes which
4651  * we unlinked but not freed when the system crashed.  These
4652  * inodes will be on the lists in the AGI blocks.  What we do
4653  * here is scan all the AGIs and fully truncate and free any
4654  * inodes found on the lists.  Each inode is removed from the
4655  * lists when it has been fully truncated and is freed.  The
4656  * freeing of the inode and its removal from the list must be
4657  * atomic.
4658  */
4659 STATIC void
4660 xlog_recover_process_iunlinks(
4661 	struct xlog	*log)
4662 {
4663 	xfs_mount_t	*mp;
4664 	xfs_agnumber_t	agno;
4665 	xfs_agi_t	*agi;
4666 	xfs_buf_t	*agibp;
4667 	xfs_agino_t	agino;
4668 	int		bucket;
4669 	int		error;
4670 	uint		mp_dmevmask;
4671 
4672 	mp = log->l_mp;
4673 
4674 	/*
4675 	 * Prevent any DMAPI event from being sent while in this function.
4676 	 */
4677 	mp_dmevmask = mp->m_dmevmask;
4678 	mp->m_dmevmask = 0;
4679 
4680 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4681 		/*
4682 		 * Find the agi for this ag.
4683 		 */
4684 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4685 		if (error) {
4686 			/*
4687 			 * AGI is b0rked. Don't process it.
4688 			 *
4689 			 * We should probably mark the filesystem as corrupt
4690 			 * after we've recovered all the ag's we can....
4691 			 */
4692 			continue;
4693 		}
4694 		/*
4695 		 * Unlock the buffer so that it can be acquired in the normal
4696 		 * course of the transaction to truncate and free each inode.
4697 		 * Because we are not racing with anyone else here for the AGI
4698 		 * buffer, we don't even need to hold it locked to read the
4699 		 * initial unlinked bucket entries out of the buffer. We keep
4700 		 * buffer reference though, so that it stays pinned in memory
4701 		 * while we need the buffer.
4702 		 */
4703 		agi = XFS_BUF_TO_AGI(agibp);
4704 		xfs_buf_unlock(agibp);
4705 
4706 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
4707 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
4708 			while (agino != NULLAGINO) {
4709 				agino = xlog_recover_process_one_iunlink(mp,
4710 							agno, agino, bucket);
4711 			}
4712 		}
4713 		xfs_buf_rele(agibp);
4714 	}
4715 
4716 	mp->m_dmevmask = mp_dmevmask;
4717 }
4718 
4719 STATIC int
4720 xlog_unpack_data(
4721 	struct xlog_rec_header	*rhead,
4722 	char			*dp,
4723 	struct xlog		*log)
4724 {
4725 	int			i, j, k;
4726 
4727 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4728 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4729 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4730 		dp += BBSIZE;
4731 	}
4732 
4733 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4734 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4735 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4736 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4737 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4738 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4739 			dp += BBSIZE;
4740 		}
4741 	}
4742 
4743 	return 0;
4744 }
4745 
4746 /*
4747  * CRC check, unpack and process a log record.
4748  */
4749 STATIC int
4750 xlog_recover_process(
4751 	struct xlog		*log,
4752 	struct hlist_head	rhash[],
4753 	struct xlog_rec_header	*rhead,
4754 	char			*dp,
4755 	int			pass,
4756 	struct list_head	*buffer_list)
4757 {
4758 	int			error;
4759 	__le32			crc;
4760 
4761 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4762 
4763 	/*
4764 	 * Nothing else to do if this is a CRC verification pass. Just return
4765 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
4766 	 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4767 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4768 	 * know precisely what failed.
4769 	 */
4770 	if (pass == XLOG_RECOVER_CRCPASS) {
4771 		if (rhead->h_crc && crc != rhead->h_crc)
4772 			return -EFSBADCRC;
4773 		return 0;
4774 	}
4775 
4776 	/*
4777 	 * We're in the normal recovery path. Issue a warning if and only if the
4778 	 * CRC in the header is non-zero. This is an advisory warning and the
4779 	 * zero CRC check prevents warnings from being emitted when upgrading
4780 	 * the kernel from one that does not add CRCs by default.
4781 	 */
4782 	if (crc != rhead->h_crc) {
4783 		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4784 			xfs_alert(log->l_mp,
4785 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
4786 					le32_to_cpu(rhead->h_crc),
4787 					le32_to_cpu(crc));
4788 			xfs_hex_dump(dp, 32);
4789 		}
4790 
4791 		/*
4792 		 * If the filesystem is CRC enabled, this mismatch becomes a
4793 		 * fatal log corruption failure.
4794 		 */
4795 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4796 			return -EFSCORRUPTED;
4797 	}
4798 
4799 	error = xlog_unpack_data(rhead, dp, log);
4800 	if (error)
4801 		return error;
4802 
4803 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
4804 					 buffer_list);
4805 }
4806 
4807 STATIC int
4808 xlog_valid_rec_header(
4809 	struct xlog		*log,
4810 	struct xlog_rec_header	*rhead,
4811 	xfs_daddr_t		blkno)
4812 {
4813 	int			hlen;
4814 
4815 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4816 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4817 				XFS_ERRLEVEL_LOW, log->l_mp);
4818 		return -EFSCORRUPTED;
4819 	}
4820 	if (unlikely(
4821 	    (!rhead->h_version ||
4822 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4823 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4824 			__func__, be32_to_cpu(rhead->h_version));
4825 		return -EIO;
4826 	}
4827 
4828 	/* LR body must have data or it wouldn't have been written */
4829 	hlen = be32_to_cpu(rhead->h_len);
4830 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4831 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4832 				XFS_ERRLEVEL_LOW, log->l_mp);
4833 		return -EFSCORRUPTED;
4834 	}
4835 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4836 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4837 				XFS_ERRLEVEL_LOW, log->l_mp);
4838 		return -EFSCORRUPTED;
4839 	}
4840 	return 0;
4841 }
4842 
4843 /*
4844  * Read the log from tail to head and process the log records found.
4845  * Handle the two cases where the tail and head are in the same cycle
4846  * and where the active portion of the log wraps around the end of
4847  * the physical log separately.  The pass parameter is passed through
4848  * to the routines called to process the data and is not looked at
4849  * here.
4850  */
4851 STATIC int
4852 xlog_do_recovery_pass(
4853 	struct xlog		*log,
4854 	xfs_daddr_t		head_blk,
4855 	xfs_daddr_t		tail_blk,
4856 	int			pass,
4857 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
4858 {
4859 	xlog_rec_header_t	*rhead;
4860 	xfs_daddr_t		blk_no;
4861 	xfs_daddr_t		rhead_blk;
4862 	char			*offset;
4863 	xfs_buf_t		*hbp, *dbp;
4864 	int			error = 0, h_size, h_len;
4865 	int			error2 = 0;
4866 	int			bblks, split_bblks;
4867 	int			hblks, split_hblks, wrapped_hblks;
4868 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
4869 	LIST_HEAD		(buffer_list);
4870 
4871 	ASSERT(head_blk != tail_blk);
4872 	rhead_blk = 0;
4873 
4874 	/*
4875 	 * Read the header of the tail block and get the iclog buffer size from
4876 	 * h_size.  Use this to tell how many sectors make up the log header.
4877 	 */
4878 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4879 		/*
4880 		 * When using variable length iclogs, read first sector of
4881 		 * iclog header and extract the header size from it.  Get a
4882 		 * new hbp that is the correct size.
4883 		 */
4884 		hbp = xlog_get_bp(log, 1);
4885 		if (!hbp)
4886 			return -ENOMEM;
4887 
4888 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4889 		if (error)
4890 			goto bread_err1;
4891 
4892 		rhead = (xlog_rec_header_t *)offset;
4893 		error = xlog_valid_rec_header(log, rhead, tail_blk);
4894 		if (error)
4895 			goto bread_err1;
4896 
4897 		/*
4898 		 * xfsprogs has a bug where record length is based on lsunit but
4899 		 * h_size (iclog size) is hardcoded to 32k. Now that we
4900 		 * unconditionally CRC verify the unmount record, this means the
4901 		 * log buffer can be too small for the record and cause an
4902 		 * overrun.
4903 		 *
4904 		 * Detect this condition here. Use lsunit for the buffer size as
4905 		 * long as this looks like the mkfs case. Otherwise, return an
4906 		 * error to avoid a buffer overrun.
4907 		 */
4908 		h_size = be32_to_cpu(rhead->h_size);
4909 		h_len = be32_to_cpu(rhead->h_len);
4910 		if (h_len > h_size) {
4911 			if (h_len <= log->l_mp->m_logbsize &&
4912 			    be32_to_cpu(rhead->h_num_logops) == 1) {
4913 				xfs_warn(log->l_mp,
4914 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
4915 					 h_size, log->l_mp->m_logbsize);
4916 				h_size = log->l_mp->m_logbsize;
4917 			} else
4918 				return -EFSCORRUPTED;
4919 		}
4920 
4921 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4922 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4923 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4924 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
4925 				hblks++;
4926 			xlog_put_bp(hbp);
4927 			hbp = xlog_get_bp(log, hblks);
4928 		} else {
4929 			hblks = 1;
4930 		}
4931 	} else {
4932 		ASSERT(log->l_sectBBsize == 1);
4933 		hblks = 1;
4934 		hbp = xlog_get_bp(log, 1);
4935 		h_size = XLOG_BIG_RECORD_BSIZE;
4936 	}
4937 
4938 	if (!hbp)
4939 		return -ENOMEM;
4940 	dbp = xlog_get_bp(log, BTOBB(h_size));
4941 	if (!dbp) {
4942 		xlog_put_bp(hbp);
4943 		return -ENOMEM;
4944 	}
4945 
4946 	memset(rhash, 0, sizeof(rhash));
4947 	blk_no = rhead_blk = tail_blk;
4948 	if (tail_blk > head_blk) {
4949 		/*
4950 		 * Perform recovery around the end of the physical log.
4951 		 * When the head is not on the same cycle number as the tail,
4952 		 * we can't do a sequential recovery.
4953 		 */
4954 		while (blk_no < log->l_logBBsize) {
4955 			/*
4956 			 * Check for header wrapping around physical end-of-log
4957 			 */
4958 			offset = hbp->b_addr;
4959 			split_hblks = 0;
4960 			wrapped_hblks = 0;
4961 			if (blk_no + hblks <= log->l_logBBsize) {
4962 				/* Read header in one read */
4963 				error = xlog_bread(log, blk_no, hblks, hbp,
4964 						   &offset);
4965 				if (error)
4966 					goto bread_err2;
4967 			} else {
4968 				/* This LR is split across physical log end */
4969 				if (blk_no != log->l_logBBsize) {
4970 					/* some data before physical log end */
4971 					ASSERT(blk_no <= INT_MAX);
4972 					split_hblks = log->l_logBBsize - (int)blk_no;
4973 					ASSERT(split_hblks > 0);
4974 					error = xlog_bread(log, blk_no,
4975 							   split_hblks, hbp,
4976 							   &offset);
4977 					if (error)
4978 						goto bread_err2;
4979 				}
4980 
4981 				/*
4982 				 * Note: this black magic still works with
4983 				 * large sector sizes (non-512) only because:
4984 				 * - we increased the buffer size originally
4985 				 *   by 1 sector giving us enough extra space
4986 				 *   for the second read;
4987 				 * - the log start is guaranteed to be sector
4988 				 *   aligned;
4989 				 * - we read the log end (LR header start)
4990 				 *   _first_, then the log start (LR header end)
4991 				 *   - order is important.
4992 				 */
4993 				wrapped_hblks = hblks - split_hblks;
4994 				error = xlog_bread_offset(log, 0,
4995 						wrapped_hblks, hbp,
4996 						offset + BBTOB(split_hblks));
4997 				if (error)
4998 					goto bread_err2;
4999 			}
5000 			rhead = (xlog_rec_header_t *)offset;
5001 			error = xlog_valid_rec_header(log, rhead,
5002 						split_hblks ? blk_no : 0);
5003 			if (error)
5004 				goto bread_err2;
5005 
5006 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5007 			blk_no += hblks;
5008 
5009 			/* Read in data for log record */
5010 			if (blk_no + bblks <= log->l_logBBsize) {
5011 				error = xlog_bread(log, blk_no, bblks, dbp,
5012 						   &offset);
5013 				if (error)
5014 					goto bread_err2;
5015 			} else {
5016 				/* This log record is split across the
5017 				 * physical end of log */
5018 				offset = dbp->b_addr;
5019 				split_bblks = 0;
5020 				if (blk_no != log->l_logBBsize) {
5021 					/* some data is before the physical
5022 					 * end of log */
5023 					ASSERT(!wrapped_hblks);
5024 					ASSERT(blk_no <= INT_MAX);
5025 					split_bblks =
5026 						log->l_logBBsize - (int)blk_no;
5027 					ASSERT(split_bblks > 0);
5028 					error = xlog_bread(log, blk_no,
5029 							split_bblks, dbp,
5030 							&offset);
5031 					if (error)
5032 						goto bread_err2;
5033 				}
5034 
5035 				/*
5036 				 * Note: this black magic still works with
5037 				 * large sector sizes (non-512) only because:
5038 				 * - we increased the buffer size originally
5039 				 *   by 1 sector giving us enough extra space
5040 				 *   for the second read;
5041 				 * - the log start is guaranteed to be sector
5042 				 *   aligned;
5043 				 * - we read the log end (LR header start)
5044 				 *   _first_, then the log start (LR header end)
5045 				 *   - order is important.
5046 				 */
5047 				error = xlog_bread_offset(log, 0,
5048 						bblks - split_bblks, dbp,
5049 						offset + BBTOB(split_bblks));
5050 				if (error)
5051 					goto bread_err2;
5052 			}
5053 
5054 			error = xlog_recover_process(log, rhash, rhead, offset,
5055 						     pass, &buffer_list);
5056 			if (error)
5057 				goto bread_err2;
5058 
5059 			blk_no += bblks;
5060 			rhead_blk = blk_no;
5061 		}
5062 
5063 		ASSERT(blk_no >= log->l_logBBsize);
5064 		blk_no -= log->l_logBBsize;
5065 		rhead_blk = blk_no;
5066 	}
5067 
5068 	/* read first part of physical log */
5069 	while (blk_no < head_blk) {
5070 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5071 		if (error)
5072 			goto bread_err2;
5073 
5074 		rhead = (xlog_rec_header_t *)offset;
5075 		error = xlog_valid_rec_header(log, rhead, blk_no);
5076 		if (error)
5077 			goto bread_err2;
5078 
5079 		/* blocks in data section */
5080 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5081 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5082 				   &offset);
5083 		if (error)
5084 			goto bread_err2;
5085 
5086 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
5087 					     &buffer_list);
5088 		if (error)
5089 			goto bread_err2;
5090 
5091 		blk_no += bblks + hblks;
5092 		rhead_blk = blk_no;
5093 	}
5094 
5095  bread_err2:
5096 	xlog_put_bp(dbp);
5097  bread_err1:
5098 	xlog_put_bp(hbp);
5099 
5100 	/*
5101 	 * Submit buffers that have been added from the last record processed,
5102 	 * regardless of error status.
5103 	 */
5104 	if (!list_empty(&buffer_list))
5105 		error2 = xfs_buf_delwri_submit(&buffer_list);
5106 
5107 	if (error && first_bad)
5108 		*first_bad = rhead_blk;
5109 
5110 	return error ? error : error2;
5111 }
5112 
5113 /*
5114  * Do the recovery of the log.  We actually do this in two phases.
5115  * The two passes are necessary in order to implement the function
5116  * of cancelling a record written into the log.  The first pass
5117  * determines those things which have been cancelled, and the
5118  * second pass replays log items normally except for those which
5119  * have been cancelled.  The handling of the replay and cancellations
5120  * takes place in the log item type specific routines.
5121  *
5122  * The table of items which have cancel records in the log is allocated
5123  * and freed at this level, since only here do we know when all of
5124  * the log recovery has been completed.
5125  */
5126 STATIC int
5127 xlog_do_log_recovery(
5128 	struct xlog	*log,
5129 	xfs_daddr_t	head_blk,
5130 	xfs_daddr_t	tail_blk)
5131 {
5132 	int		error, i;
5133 
5134 	ASSERT(head_blk != tail_blk);
5135 
5136 	/*
5137 	 * First do a pass to find all of the cancelled buf log items.
5138 	 * Store them in the buf_cancel_table for use in the second pass.
5139 	 */
5140 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5141 						 sizeof(struct list_head),
5142 						 KM_SLEEP);
5143 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5144 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5145 
5146 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5147 				      XLOG_RECOVER_PASS1, NULL);
5148 	if (error != 0) {
5149 		kmem_free(log->l_buf_cancel_table);
5150 		log->l_buf_cancel_table = NULL;
5151 		return error;
5152 	}
5153 	/*
5154 	 * Then do a second pass to actually recover the items in the log.
5155 	 * When it is complete free the table of buf cancel items.
5156 	 */
5157 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5158 				      XLOG_RECOVER_PASS2, NULL);
5159 #ifdef DEBUG
5160 	if (!error) {
5161 		int	i;
5162 
5163 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5164 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5165 	}
5166 #endif	/* DEBUG */
5167 
5168 	kmem_free(log->l_buf_cancel_table);
5169 	log->l_buf_cancel_table = NULL;
5170 
5171 	return error;
5172 }
5173 
5174 /*
5175  * Do the actual recovery
5176  */
5177 STATIC int
5178 xlog_do_recover(
5179 	struct xlog	*log,
5180 	xfs_daddr_t	head_blk,
5181 	xfs_daddr_t	tail_blk)
5182 {
5183 	struct xfs_mount *mp = log->l_mp;
5184 	int		error;
5185 	xfs_buf_t	*bp;
5186 	xfs_sb_t	*sbp;
5187 
5188 	/*
5189 	 * First replay the images in the log.
5190 	 */
5191 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5192 	if (error)
5193 		return error;
5194 
5195 	/*
5196 	 * If IO errors happened during recovery, bail out.
5197 	 */
5198 	if (XFS_FORCED_SHUTDOWN(mp)) {
5199 		return -EIO;
5200 	}
5201 
5202 	/*
5203 	 * We now update the tail_lsn since much of the recovery has completed
5204 	 * and there may be space available to use.  If there were no extent
5205 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5206 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5207 	 * lsn of the last known good LR on disk.  If there are extent frees
5208 	 * or iunlinks they will have some entries in the AIL; so we look at
5209 	 * the AIL to determine how to set the tail_lsn.
5210 	 */
5211 	xlog_assign_tail_lsn(mp);
5212 
5213 	/*
5214 	 * Now that we've finished replaying all buffer and inode
5215 	 * updates, re-read in the superblock and reverify it.
5216 	 */
5217 	bp = xfs_getsb(mp, 0);
5218 	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5219 	ASSERT(!(bp->b_flags & XBF_WRITE));
5220 	bp->b_flags |= XBF_READ;
5221 	bp->b_ops = &xfs_sb_buf_ops;
5222 
5223 	error = xfs_buf_submit_wait(bp);
5224 	if (error) {
5225 		if (!XFS_FORCED_SHUTDOWN(mp)) {
5226 			xfs_buf_ioerror_alert(bp, __func__);
5227 			ASSERT(0);
5228 		}
5229 		xfs_buf_relse(bp);
5230 		return error;
5231 	}
5232 
5233 	/* Convert superblock from on-disk format */
5234 	sbp = &mp->m_sb;
5235 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5236 	xfs_buf_relse(bp);
5237 
5238 	/* re-initialise in-core superblock and geometry structures */
5239 	xfs_reinit_percpu_counters(mp);
5240 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5241 	if (error) {
5242 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5243 		return error;
5244 	}
5245 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5246 
5247 	xlog_recover_check_summary(log);
5248 
5249 	/* Normal transactions can now occur */
5250 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5251 	return 0;
5252 }
5253 
5254 /*
5255  * Perform recovery and re-initialize some log variables in xlog_find_tail.
5256  *
5257  * Return error or zero.
5258  */
5259 int
5260 xlog_recover(
5261 	struct xlog	*log)
5262 {
5263 	xfs_daddr_t	head_blk, tail_blk;
5264 	int		error;
5265 
5266 	/* find the tail of the log */
5267 	error = xlog_find_tail(log, &head_blk, &tail_blk);
5268 	if (error)
5269 		return error;
5270 
5271 	/*
5272 	 * The superblock was read before the log was available and thus the LSN
5273 	 * could not be verified. Check the superblock LSN against the current
5274 	 * LSN now that it's known.
5275 	 */
5276 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5277 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5278 		return -EINVAL;
5279 
5280 	if (tail_blk != head_blk) {
5281 		/* There used to be a comment here:
5282 		 *
5283 		 * disallow recovery on read-only mounts.  note -- mount
5284 		 * checks for ENOSPC and turns it into an intelligent
5285 		 * error message.
5286 		 * ...but this is no longer true.  Now, unless you specify
5287 		 * NORECOVERY (in which case this function would never be
5288 		 * called), we just go ahead and recover.  We do this all
5289 		 * under the vfs layer, so we can get away with it unless
5290 		 * the device itself is read-only, in which case we fail.
5291 		 */
5292 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5293 			return error;
5294 		}
5295 
5296 		/*
5297 		 * Version 5 superblock log feature mask validation. We know the
5298 		 * log is dirty so check if there are any unknown log features
5299 		 * in what we need to recover. If there are unknown features
5300 		 * (e.g. unsupported transactions, then simply reject the
5301 		 * attempt at recovery before touching anything.
5302 		 */
5303 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5304 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5305 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5306 			xfs_warn(log->l_mp,
5307 "Superblock has unknown incompatible log features (0x%x) enabled.",
5308 				(log->l_mp->m_sb.sb_features_log_incompat &
5309 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5310 			xfs_warn(log->l_mp,
5311 "The log can not be fully and/or safely recovered by this kernel.");
5312 			xfs_warn(log->l_mp,
5313 "Please recover the log on a kernel that supports the unknown features.");
5314 			return -EINVAL;
5315 		}
5316 
5317 		/*
5318 		 * Delay log recovery if the debug hook is set. This is debug
5319 		 * instrumention to coordinate simulation of I/O failures with
5320 		 * log recovery.
5321 		 */
5322 		if (xfs_globals.log_recovery_delay) {
5323 			xfs_notice(log->l_mp,
5324 				"Delaying log recovery for %d seconds.",
5325 				xfs_globals.log_recovery_delay);
5326 			msleep(xfs_globals.log_recovery_delay * 1000);
5327 		}
5328 
5329 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5330 				log->l_mp->m_logname ? log->l_mp->m_logname
5331 						     : "internal");
5332 
5333 		error = xlog_do_recover(log, head_blk, tail_blk);
5334 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5335 	}
5336 	return error;
5337 }
5338 
5339 /*
5340  * In the first part of recovery we replay inodes and buffers and build
5341  * up the list of extent free items which need to be processed.  Here
5342  * we process the extent free items and clean up the on disk unlinked
5343  * inode lists.  This is separated from the first part of recovery so
5344  * that the root and real-time bitmap inodes can be read in from disk in
5345  * between the two stages.  This is necessary so that we can free space
5346  * in the real-time portion of the file system.
5347  */
5348 int
5349 xlog_recover_finish(
5350 	struct xlog	*log)
5351 {
5352 	/*
5353 	 * Now we're ready to do the transactions needed for the
5354 	 * rest of recovery.  Start with completing all the extent
5355 	 * free intent records and then process the unlinked inode
5356 	 * lists.  At this point, we essentially run in normal mode
5357 	 * except that we're still performing recovery actions
5358 	 * rather than accepting new requests.
5359 	 */
5360 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5361 		int	error;
5362 		error = xlog_recover_process_intents(log);
5363 		if (error) {
5364 			xfs_alert(log->l_mp, "Failed to recover intents");
5365 			return error;
5366 		}
5367 
5368 		/*
5369 		 * Sync the log to get all the intents out of the AIL.
5370 		 * This isn't absolutely necessary, but it helps in
5371 		 * case the unlink transactions would have problems
5372 		 * pushing the intents out of the way.
5373 		 */
5374 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5375 
5376 		xlog_recover_process_iunlinks(log);
5377 
5378 		xlog_recover_check_summary(log);
5379 
5380 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5381 				log->l_mp->m_logname ? log->l_mp->m_logname
5382 						     : "internal");
5383 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5384 	} else {
5385 		xfs_info(log->l_mp, "Ending clean mount");
5386 	}
5387 	return 0;
5388 }
5389 
5390 int
5391 xlog_recover_cancel(
5392 	struct xlog	*log)
5393 {
5394 	int		error = 0;
5395 
5396 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5397 		error = xlog_recover_cancel_intents(log);
5398 
5399 	return error;
5400 }
5401 
5402 #if defined(DEBUG)
5403 /*
5404  * Read all of the agf and agi counters and check that they
5405  * are consistent with the superblock counters.
5406  */
5407 void
5408 xlog_recover_check_summary(
5409 	struct xlog	*log)
5410 {
5411 	xfs_mount_t	*mp;
5412 	xfs_agf_t	*agfp;
5413 	xfs_buf_t	*agfbp;
5414 	xfs_buf_t	*agibp;
5415 	xfs_agnumber_t	agno;
5416 	__uint64_t	freeblks;
5417 	__uint64_t	itotal;
5418 	__uint64_t	ifree;
5419 	int		error;
5420 
5421 	mp = log->l_mp;
5422 
5423 	freeblks = 0LL;
5424 	itotal = 0LL;
5425 	ifree = 0LL;
5426 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5427 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5428 		if (error) {
5429 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5430 						__func__, agno, error);
5431 		} else {
5432 			agfp = XFS_BUF_TO_AGF(agfbp);
5433 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5434 				    be32_to_cpu(agfp->agf_flcount);
5435 			xfs_buf_relse(agfbp);
5436 		}
5437 
5438 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5439 		if (error) {
5440 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5441 						__func__, agno, error);
5442 		} else {
5443 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5444 
5445 			itotal += be32_to_cpu(agi->agi_count);
5446 			ifree += be32_to_cpu(agi->agi_freecount);
5447 			xfs_buf_relse(agibp);
5448 		}
5449 	}
5450 }
5451 #endif /* DEBUG */
5452