1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_log.h" 32 #include "xfs_log_priv.h" 33 #include "xfs_log_recover.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_extfree_item.h" 36 #include "xfs_trans_priv.h" 37 #include "xfs_alloc.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_quota.h" 40 #include "xfs_cksum.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_bmap_btree.h" 44 #include "xfs_error.h" 45 #include "xfs_dir2.h" 46 47 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 48 49 STATIC int 50 xlog_find_zeroed( 51 struct xlog *, 52 xfs_daddr_t *); 53 STATIC int 54 xlog_clear_stale_blocks( 55 struct xlog *, 56 xfs_lsn_t); 57 #if defined(DEBUG) 58 STATIC void 59 xlog_recover_check_summary( 60 struct xlog *); 61 #else 62 #define xlog_recover_check_summary(log) 63 #endif 64 STATIC int 65 xlog_do_recovery_pass( 66 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 67 68 /* 69 * This structure is used during recovery to record the buf log items which 70 * have been canceled and should not be replayed. 71 */ 72 struct xfs_buf_cancel { 73 xfs_daddr_t bc_blkno; 74 uint bc_len; 75 int bc_refcount; 76 struct list_head bc_list; 77 }; 78 79 /* 80 * Sector aligned buffer routines for buffer create/read/write/access 81 */ 82 83 /* 84 * Verify the given count of basic blocks is valid number of blocks 85 * to specify for an operation involving the given XFS log buffer. 86 * Returns nonzero if the count is valid, 0 otherwise. 87 */ 88 89 static inline int 90 xlog_buf_bbcount_valid( 91 struct xlog *log, 92 int bbcount) 93 { 94 return bbcount > 0 && bbcount <= log->l_logBBsize; 95 } 96 97 /* 98 * Allocate a buffer to hold log data. The buffer needs to be able 99 * to map to a range of nbblks basic blocks at any valid (basic 100 * block) offset within the log. 101 */ 102 STATIC xfs_buf_t * 103 xlog_get_bp( 104 struct xlog *log, 105 int nbblks) 106 { 107 struct xfs_buf *bp; 108 109 if (!xlog_buf_bbcount_valid(log, nbblks)) { 110 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 111 nbblks); 112 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 113 return NULL; 114 } 115 116 /* 117 * We do log I/O in units of log sectors (a power-of-2 118 * multiple of the basic block size), so we round up the 119 * requested size to accommodate the basic blocks required 120 * for complete log sectors. 121 * 122 * In addition, the buffer may be used for a non-sector- 123 * aligned block offset, in which case an I/O of the 124 * requested size could extend beyond the end of the 125 * buffer. If the requested size is only 1 basic block it 126 * will never straddle a sector boundary, so this won't be 127 * an issue. Nor will this be a problem if the log I/O is 128 * done in basic blocks (sector size 1). But otherwise we 129 * extend the buffer by one extra log sector to ensure 130 * there's space to accommodate this possibility. 131 */ 132 if (nbblks > 1 && log->l_sectBBsize > 1) 133 nbblks += log->l_sectBBsize; 134 nbblks = round_up(nbblks, log->l_sectBBsize); 135 136 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 137 if (bp) 138 xfs_buf_unlock(bp); 139 return bp; 140 } 141 142 STATIC void 143 xlog_put_bp( 144 xfs_buf_t *bp) 145 { 146 xfs_buf_free(bp); 147 } 148 149 /* 150 * Return the address of the start of the given block number's data 151 * in a log buffer. The buffer covers a log sector-aligned region. 152 */ 153 STATIC char * 154 xlog_align( 155 struct xlog *log, 156 xfs_daddr_t blk_no, 157 int nbblks, 158 struct xfs_buf *bp) 159 { 160 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 161 162 ASSERT(offset + nbblks <= bp->b_length); 163 return bp->b_addr + BBTOB(offset); 164 } 165 166 167 /* 168 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 169 */ 170 STATIC int 171 xlog_bread_noalign( 172 struct xlog *log, 173 xfs_daddr_t blk_no, 174 int nbblks, 175 struct xfs_buf *bp) 176 { 177 int error; 178 179 if (!xlog_buf_bbcount_valid(log, nbblks)) { 180 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 181 nbblks); 182 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 183 return -EFSCORRUPTED; 184 } 185 186 blk_no = round_down(blk_no, log->l_sectBBsize); 187 nbblks = round_up(nbblks, log->l_sectBBsize); 188 189 ASSERT(nbblks > 0); 190 ASSERT(nbblks <= bp->b_length); 191 192 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 193 XFS_BUF_READ(bp); 194 bp->b_io_length = nbblks; 195 bp->b_error = 0; 196 197 error = xfs_buf_submit_wait(bp); 198 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) 199 xfs_buf_ioerror_alert(bp, __func__); 200 return error; 201 } 202 203 STATIC int 204 xlog_bread( 205 struct xlog *log, 206 xfs_daddr_t blk_no, 207 int nbblks, 208 struct xfs_buf *bp, 209 char **offset) 210 { 211 int error; 212 213 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 214 if (error) 215 return error; 216 217 *offset = xlog_align(log, blk_no, nbblks, bp); 218 return 0; 219 } 220 221 /* 222 * Read at an offset into the buffer. Returns with the buffer in it's original 223 * state regardless of the result of the read. 224 */ 225 STATIC int 226 xlog_bread_offset( 227 struct xlog *log, 228 xfs_daddr_t blk_no, /* block to read from */ 229 int nbblks, /* blocks to read */ 230 struct xfs_buf *bp, 231 char *offset) 232 { 233 char *orig_offset = bp->b_addr; 234 int orig_len = BBTOB(bp->b_length); 235 int error, error2; 236 237 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 238 if (error) 239 return error; 240 241 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 242 243 /* must reset buffer pointer even on error */ 244 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 245 if (error) 246 return error; 247 return error2; 248 } 249 250 /* 251 * Write out the buffer at the given block for the given number of blocks. 252 * The buffer is kept locked across the write and is returned locked. 253 * This can only be used for synchronous log writes. 254 */ 255 STATIC int 256 xlog_bwrite( 257 struct xlog *log, 258 xfs_daddr_t blk_no, 259 int nbblks, 260 struct xfs_buf *bp) 261 { 262 int error; 263 264 if (!xlog_buf_bbcount_valid(log, nbblks)) { 265 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 266 nbblks); 267 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 268 return -EFSCORRUPTED; 269 } 270 271 blk_no = round_down(blk_no, log->l_sectBBsize); 272 nbblks = round_up(nbblks, log->l_sectBBsize); 273 274 ASSERT(nbblks > 0); 275 ASSERT(nbblks <= bp->b_length); 276 277 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 278 XFS_BUF_ZEROFLAGS(bp); 279 xfs_buf_hold(bp); 280 xfs_buf_lock(bp); 281 bp->b_io_length = nbblks; 282 bp->b_error = 0; 283 284 error = xfs_bwrite(bp); 285 if (error) 286 xfs_buf_ioerror_alert(bp, __func__); 287 xfs_buf_relse(bp); 288 return error; 289 } 290 291 #ifdef DEBUG 292 /* 293 * dump debug superblock and log record information 294 */ 295 STATIC void 296 xlog_header_check_dump( 297 xfs_mount_t *mp, 298 xlog_rec_header_t *head) 299 { 300 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 301 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 302 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 303 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 304 } 305 #else 306 #define xlog_header_check_dump(mp, head) 307 #endif 308 309 /* 310 * check log record header for recovery 311 */ 312 STATIC int 313 xlog_header_check_recover( 314 xfs_mount_t *mp, 315 xlog_rec_header_t *head) 316 { 317 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 318 319 /* 320 * IRIX doesn't write the h_fmt field and leaves it zeroed 321 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 322 * a dirty log created in IRIX. 323 */ 324 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 325 xfs_warn(mp, 326 "dirty log written in incompatible format - can't recover"); 327 xlog_header_check_dump(mp, head); 328 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 329 XFS_ERRLEVEL_HIGH, mp); 330 return -EFSCORRUPTED; 331 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 332 xfs_warn(mp, 333 "dirty log entry has mismatched uuid - can't recover"); 334 xlog_header_check_dump(mp, head); 335 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 336 XFS_ERRLEVEL_HIGH, mp); 337 return -EFSCORRUPTED; 338 } 339 return 0; 340 } 341 342 /* 343 * read the head block of the log and check the header 344 */ 345 STATIC int 346 xlog_header_check_mount( 347 xfs_mount_t *mp, 348 xlog_rec_header_t *head) 349 { 350 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 351 352 if (uuid_is_nil(&head->h_fs_uuid)) { 353 /* 354 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 355 * h_fs_uuid is nil, we assume this log was last mounted 356 * by IRIX and continue. 357 */ 358 xfs_warn(mp, "nil uuid in log - IRIX style log"); 359 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 360 xfs_warn(mp, "log has mismatched uuid - can't recover"); 361 xlog_header_check_dump(mp, head); 362 XFS_ERROR_REPORT("xlog_header_check_mount", 363 XFS_ERRLEVEL_HIGH, mp); 364 return -EFSCORRUPTED; 365 } 366 return 0; 367 } 368 369 STATIC void 370 xlog_recover_iodone( 371 struct xfs_buf *bp) 372 { 373 if (bp->b_error) { 374 /* 375 * We're not going to bother about retrying 376 * this during recovery. One strike! 377 */ 378 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 379 xfs_buf_ioerror_alert(bp, __func__); 380 xfs_force_shutdown(bp->b_target->bt_mount, 381 SHUTDOWN_META_IO_ERROR); 382 } 383 } 384 bp->b_iodone = NULL; 385 xfs_buf_ioend(bp); 386 } 387 388 /* 389 * This routine finds (to an approximation) the first block in the physical 390 * log which contains the given cycle. It uses a binary search algorithm. 391 * Note that the algorithm can not be perfect because the disk will not 392 * necessarily be perfect. 393 */ 394 STATIC int 395 xlog_find_cycle_start( 396 struct xlog *log, 397 struct xfs_buf *bp, 398 xfs_daddr_t first_blk, 399 xfs_daddr_t *last_blk, 400 uint cycle) 401 { 402 char *offset; 403 xfs_daddr_t mid_blk; 404 xfs_daddr_t end_blk; 405 uint mid_cycle; 406 int error; 407 408 end_blk = *last_blk; 409 mid_blk = BLK_AVG(first_blk, end_blk); 410 while (mid_blk != first_blk && mid_blk != end_blk) { 411 error = xlog_bread(log, mid_blk, 1, bp, &offset); 412 if (error) 413 return error; 414 mid_cycle = xlog_get_cycle(offset); 415 if (mid_cycle == cycle) 416 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 417 else 418 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 419 mid_blk = BLK_AVG(first_blk, end_blk); 420 } 421 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 422 (mid_blk == end_blk && mid_blk-1 == first_blk)); 423 424 *last_blk = end_blk; 425 426 return 0; 427 } 428 429 /* 430 * Check that a range of blocks does not contain stop_on_cycle_no. 431 * Fill in *new_blk with the block offset where such a block is 432 * found, or with -1 (an invalid block number) if there is no such 433 * block in the range. The scan needs to occur from front to back 434 * and the pointer into the region must be updated since a later 435 * routine will need to perform another test. 436 */ 437 STATIC int 438 xlog_find_verify_cycle( 439 struct xlog *log, 440 xfs_daddr_t start_blk, 441 int nbblks, 442 uint stop_on_cycle_no, 443 xfs_daddr_t *new_blk) 444 { 445 xfs_daddr_t i, j; 446 uint cycle; 447 xfs_buf_t *bp; 448 xfs_daddr_t bufblks; 449 char *buf = NULL; 450 int error = 0; 451 452 /* 453 * Greedily allocate a buffer big enough to handle the full 454 * range of basic blocks we'll be examining. If that fails, 455 * try a smaller size. We need to be able to read at least 456 * a log sector, or we're out of luck. 457 */ 458 bufblks = 1 << ffs(nbblks); 459 while (bufblks > log->l_logBBsize) 460 bufblks >>= 1; 461 while (!(bp = xlog_get_bp(log, bufblks))) { 462 bufblks >>= 1; 463 if (bufblks < log->l_sectBBsize) 464 return -ENOMEM; 465 } 466 467 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 468 int bcount; 469 470 bcount = min(bufblks, (start_blk + nbblks - i)); 471 472 error = xlog_bread(log, i, bcount, bp, &buf); 473 if (error) 474 goto out; 475 476 for (j = 0; j < bcount; j++) { 477 cycle = xlog_get_cycle(buf); 478 if (cycle == stop_on_cycle_no) { 479 *new_blk = i+j; 480 goto out; 481 } 482 483 buf += BBSIZE; 484 } 485 } 486 487 *new_blk = -1; 488 489 out: 490 xlog_put_bp(bp); 491 return error; 492 } 493 494 /* 495 * Potentially backup over partial log record write. 496 * 497 * In the typical case, last_blk is the number of the block directly after 498 * a good log record. Therefore, we subtract one to get the block number 499 * of the last block in the given buffer. extra_bblks contains the number 500 * of blocks we would have read on a previous read. This happens when the 501 * last log record is split over the end of the physical log. 502 * 503 * extra_bblks is the number of blocks potentially verified on a previous 504 * call to this routine. 505 */ 506 STATIC int 507 xlog_find_verify_log_record( 508 struct xlog *log, 509 xfs_daddr_t start_blk, 510 xfs_daddr_t *last_blk, 511 int extra_bblks) 512 { 513 xfs_daddr_t i; 514 xfs_buf_t *bp; 515 char *offset = NULL; 516 xlog_rec_header_t *head = NULL; 517 int error = 0; 518 int smallmem = 0; 519 int num_blks = *last_blk - start_blk; 520 int xhdrs; 521 522 ASSERT(start_blk != 0 || *last_blk != start_blk); 523 524 if (!(bp = xlog_get_bp(log, num_blks))) { 525 if (!(bp = xlog_get_bp(log, 1))) 526 return -ENOMEM; 527 smallmem = 1; 528 } else { 529 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 530 if (error) 531 goto out; 532 offset += ((num_blks - 1) << BBSHIFT); 533 } 534 535 for (i = (*last_blk) - 1; i >= 0; i--) { 536 if (i < start_blk) { 537 /* valid log record not found */ 538 xfs_warn(log->l_mp, 539 "Log inconsistent (didn't find previous header)"); 540 ASSERT(0); 541 error = -EIO; 542 goto out; 543 } 544 545 if (smallmem) { 546 error = xlog_bread(log, i, 1, bp, &offset); 547 if (error) 548 goto out; 549 } 550 551 head = (xlog_rec_header_t *)offset; 552 553 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 554 break; 555 556 if (!smallmem) 557 offset -= BBSIZE; 558 } 559 560 /* 561 * We hit the beginning of the physical log & still no header. Return 562 * to caller. If caller can handle a return of -1, then this routine 563 * will be called again for the end of the physical log. 564 */ 565 if (i == -1) { 566 error = 1; 567 goto out; 568 } 569 570 /* 571 * We have the final block of the good log (the first block 572 * of the log record _before_ the head. So we check the uuid. 573 */ 574 if ((error = xlog_header_check_mount(log->l_mp, head))) 575 goto out; 576 577 /* 578 * We may have found a log record header before we expected one. 579 * last_blk will be the 1st block # with a given cycle #. We may end 580 * up reading an entire log record. In this case, we don't want to 581 * reset last_blk. Only when last_blk points in the middle of a log 582 * record do we update last_blk. 583 */ 584 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 585 uint h_size = be32_to_cpu(head->h_size); 586 587 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 588 if (h_size % XLOG_HEADER_CYCLE_SIZE) 589 xhdrs++; 590 } else { 591 xhdrs = 1; 592 } 593 594 if (*last_blk - i + extra_bblks != 595 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 596 *last_blk = i; 597 598 out: 599 xlog_put_bp(bp); 600 return error; 601 } 602 603 /* 604 * Head is defined to be the point of the log where the next log write 605 * could go. This means that incomplete LR writes at the end are 606 * eliminated when calculating the head. We aren't guaranteed that previous 607 * LR have complete transactions. We only know that a cycle number of 608 * current cycle number -1 won't be present in the log if we start writing 609 * from our current block number. 610 * 611 * last_blk contains the block number of the first block with a given 612 * cycle number. 613 * 614 * Return: zero if normal, non-zero if error. 615 */ 616 STATIC int 617 xlog_find_head( 618 struct xlog *log, 619 xfs_daddr_t *return_head_blk) 620 { 621 xfs_buf_t *bp; 622 char *offset; 623 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 624 int num_scan_bblks; 625 uint first_half_cycle, last_half_cycle; 626 uint stop_on_cycle; 627 int error, log_bbnum = log->l_logBBsize; 628 629 /* Is the end of the log device zeroed? */ 630 error = xlog_find_zeroed(log, &first_blk); 631 if (error < 0) { 632 xfs_warn(log->l_mp, "empty log check failed"); 633 return error; 634 } 635 if (error == 1) { 636 *return_head_blk = first_blk; 637 638 /* Is the whole lot zeroed? */ 639 if (!first_blk) { 640 /* Linux XFS shouldn't generate totally zeroed logs - 641 * mkfs etc write a dummy unmount record to a fresh 642 * log so we can store the uuid in there 643 */ 644 xfs_warn(log->l_mp, "totally zeroed log"); 645 } 646 647 return 0; 648 } 649 650 first_blk = 0; /* get cycle # of 1st block */ 651 bp = xlog_get_bp(log, 1); 652 if (!bp) 653 return -ENOMEM; 654 655 error = xlog_bread(log, 0, 1, bp, &offset); 656 if (error) 657 goto bp_err; 658 659 first_half_cycle = xlog_get_cycle(offset); 660 661 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 662 error = xlog_bread(log, last_blk, 1, bp, &offset); 663 if (error) 664 goto bp_err; 665 666 last_half_cycle = xlog_get_cycle(offset); 667 ASSERT(last_half_cycle != 0); 668 669 /* 670 * If the 1st half cycle number is equal to the last half cycle number, 671 * then the entire log is stamped with the same cycle number. In this 672 * case, head_blk can't be set to zero (which makes sense). The below 673 * math doesn't work out properly with head_blk equal to zero. Instead, 674 * we set it to log_bbnum which is an invalid block number, but this 675 * value makes the math correct. If head_blk doesn't changed through 676 * all the tests below, *head_blk is set to zero at the very end rather 677 * than log_bbnum. In a sense, log_bbnum and zero are the same block 678 * in a circular file. 679 */ 680 if (first_half_cycle == last_half_cycle) { 681 /* 682 * In this case we believe that the entire log should have 683 * cycle number last_half_cycle. We need to scan backwards 684 * from the end verifying that there are no holes still 685 * containing last_half_cycle - 1. If we find such a hole, 686 * then the start of that hole will be the new head. The 687 * simple case looks like 688 * x | x ... | x - 1 | x 689 * Another case that fits this picture would be 690 * x | x + 1 | x ... | x 691 * In this case the head really is somewhere at the end of the 692 * log, as one of the latest writes at the beginning was 693 * incomplete. 694 * One more case is 695 * x | x + 1 | x ... | x - 1 | x 696 * This is really the combination of the above two cases, and 697 * the head has to end up at the start of the x-1 hole at the 698 * end of the log. 699 * 700 * In the 256k log case, we will read from the beginning to the 701 * end of the log and search for cycle numbers equal to x-1. 702 * We don't worry about the x+1 blocks that we encounter, 703 * because we know that they cannot be the head since the log 704 * started with x. 705 */ 706 head_blk = log_bbnum; 707 stop_on_cycle = last_half_cycle - 1; 708 } else { 709 /* 710 * In this case we want to find the first block with cycle 711 * number matching last_half_cycle. We expect the log to be 712 * some variation on 713 * x + 1 ... | x ... | x 714 * The first block with cycle number x (last_half_cycle) will 715 * be where the new head belongs. First we do a binary search 716 * for the first occurrence of last_half_cycle. The binary 717 * search may not be totally accurate, so then we scan back 718 * from there looking for occurrences of last_half_cycle before 719 * us. If that backwards scan wraps around the beginning of 720 * the log, then we look for occurrences of last_half_cycle - 1 721 * at the end of the log. The cases we're looking for look 722 * like 723 * v binary search stopped here 724 * x + 1 ... | x | x + 1 | x ... | x 725 * ^ but we want to locate this spot 726 * or 727 * <---------> less than scan distance 728 * x + 1 ... | x ... | x - 1 | x 729 * ^ we want to locate this spot 730 */ 731 stop_on_cycle = last_half_cycle; 732 if ((error = xlog_find_cycle_start(log, bp, first_blk, 733 &head_blk, last_half_cycle))) 734 goto bp_err; 735 } 736 737 /* 738 * Now validate the answer. Scan back some number of maximum possible 739 * blocks and make sure each one has the expected cycle number. The 740 * maximum is determined by the total possible amount of buffering 741 * in the in-core log. The following number can be made tighter if 742 * we actually look at the block size of the filesystem. 743 */ 744 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 745 if (head_blk >= num_scan_bblks) { 746 /* 747 * We are guaranteed that the entire check can be performed 748 * in one buffer. 749 */ 750 start_blk = head_blk - num_scan_bblks; 751 if ((error = xlog_find_verify_cycle(log, 752 start_blk, num_scan_bblks, 753 stop_on_cycle, &new_blk))) 754 goto bp_err; 755 if (new_blk != -1) 756 head_blk = new_blk; 757 } else { /* need to read 2 parts of log */ 758 /* 759 * We are going to scan backwards in the log in two parts. 760 * First we scan the physical end of the log. In this part 761 * of the log, we are looking for blocks with cycle number 762 * last_half_cycle - 1. 763 * If we find one, then we know that the log starts there, as 764 * we've found a hole that didn't get written in going around 765 * the end of the physical log. The simple case for this is 766 * x + 1 ... | x ... | x - 1 | x 767 * <---------> less than scan distance 768 * If all of the blocks at the end of the log have cycle number 769 * last_half_cycle, then we check the blocks at the start of 770 * the log looking for occurrences of last_half_cycle. If we 771 * find one, then our current estimate for the location of the 772 * first occurrence of last_half_cycle is wrong and we move 773 * back to the hole we've found. This case looks like 774 * x + 1 ... | x | x + 1 | x ... 775 * ^ binary search stopped here 776 * Another case we need to handle that only occurs in 256k 777 * logs is 778 * x + 1 ... | x ... | x+1 | x ... 779 * ^ binary search stops here 780 * In a 256k log, the scan at the end of the log will see the 781 * x + 1 blocks. We need to skip past those since that is 782 * certainly not the head of the log. By searching for 783 * last_half_cycle-1 we accomplish that. 784 */ 785 ASSERT(head_blk <= INT_MAX && 786 (xfs_daddr_t) num_scan_bblks >= head_blk); 787 start_blk = log_bbnum - (num_scan_bblks - head_blk); 788 if ((error = xlog_find_verify_cycle(log, start_blk, 789 num_scan_bblks - (int)head_blk, 790 (stop_on_cycle - 1), &new_blk))) 791 goto bp_err; 792 if (new_blk != -1) { 793 head_blk = new_blk; 794 goto validate_head; 795 } 796 797 /* 798 * Scan beginning of log now. The last part of the physical 799 * log is good. This scan needs to verify that it doesn't find 800 * the last_half_cycle. 801 */ 802 start_blk = 0; 803 ASSERT(head_blk <= INT_MAX); 804 if ((error = xlog_find_verify_cycle(log, 805 start_blk, (int)head_blk, 806 stop_on_cycle, &new_blk))) 807 goto bp_err; 808 if (new_blk != -1) 809 head_blk = new_blk; 810 } 811 812 validate_head: 813 /* 814 * Now we need to make sure head_blk is not pointing to a block in 815 * the middle of a log record. 816 */ 817 num_scan_bblks = XLOG_REC_SHIFT(log); 818 if (head_blk >= num_scan_bblks) { 819 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 820 821 /* start ptr at last block ptr before head_blk */ 822 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 823 if (error == 1) 824 error = -EIO; 825 if (error) 826 goto bp_err; 827 } else { 828 start_blk = 0; 829 ASSERT(head_blk <= INT_MAX); 830 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 831 if (error < 0) 832 goto bp_err; 833 if (error == 1) { 834 /* We hit the beginning of the log during our search */ 835 start_blk = log_bbnum - (num_scan_bblks - head_blk); 836 new_blk = log_bbnum; 837 ASSERT(start_blk <= INT_MAX && 838 (xfs_daddr_t) log_bbnum-start_blk >= 0); 839 ASSERT(head_blk <= INT_MAX); 840 error = xlog_find_verify_log_record(log, start_blk, 841 &new_blk, (int)head_blk); 842 if (error == 1) 843 error = -EIO; 844 if (error) 845 goto bp_err; 846 if (new_blk != log_bbnum) 847 head_blk = new_blk; 848 } else if (error) 849 goto bp_err; 850 } 851 852 xlog_put_bp(bp); 853 if (head_blk == log_bbnum) 854 *return_head_blk = 0; 855 else 856 *return_head_blk = head_blk; 857 /* 858 * When returning here, we have a good block number. Bad block 859 * means that during a previous crash, we didn't have a clean break 860 * from cycle number N to cycle number N-1. In this case, we need 861 * to find the first block with cycle number N-1. 862 */ 863 return 0; 864 865 bp_err: 866 xlog_put_bp(bp); 867 868 if (error) 869 xfs_warn(log->l_mp, "failed to find log head"); 870 return error; 871 } 872 873 /* 874 * Seek backwards in the log for log record headers. 875 * 876 * Given a starting log block, walk backwards until we find the provided number 877 * of records or hit the provided tail block. The return value is the number of 878 * records encountered or a negative error code. The log block and buffer 879 * pointer of the last record seen are returned in rblk and rhead respectively. 880 */ 881 STATIC int 882 xlog_rseek_logrec_hdr( 883 struct xlog *log, 884 xfs_daddr_t head_blk, 885 xfs_daddr_t tail_blk, 886 int count, 887 struct xfs_buf *bp, 888 xfs_daddr_t *rblk, 889 struct xlog_rec_header **rhead, 890 bool *wrapped) 891 { 892 int i; 893 int error; 894 int found = 0; 895 char *offset = NULL; 896 xfs_daddr_t end_blk; 897 898 *wrapped = false; 899 900 /* 901 * Walk backwards from the head block until we hit the tail or the first 902 * block in the log. 903 */ 904 end_blk = head_blk > tail_blk ? tail_blk : 0; 905 for (i = (int) head_blk - 1; i >= end_blk; i--) { 906 error = xlog_bread(log, i, 1, bp, &offset); 907 if (error) 908 goto out_error; 909 910 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 911 *rblk = i; 912 *rhead = (struct xlog_rec_header *) offset; 913 if (++found == count) 914 break; 915 } 916 } 917 918 /* 919 * If we haven't hit the tail block or the log record header count, 920 * start looking again from the end of the physical log. Note that 921 * callers can pass head == tail if the tail is not yet known. 922 */ 923 if (tail_blk >= head_blk && found != count) { 924 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 925 error = xlog_bread(log, i, 1, bp, &offset); 926 if (error) 927 goto out_error; 928 929 if (*(__be32 *)offset == 930 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 931 *wrapped = true; 932 *rblk = i; 933 *rhead = (struct xlog_rec_header *) offset; 934 if (++found == count) 935 break; 936 } 937 } 938 } 939 940 return found; 941 942 out_error: 943 return error; 944 } 945 946 /* 947 * Seek forward in the log for log record headers. 948 * 949 * Given head and tail blocks, walk forward from the tail block until we find 950 * the provided number of records or hit the head block. The return value is the 951 * number of records encountered or a negative error code. The log block and 952 * buffer pointer of the last record seen are returned in rblk and rhead 953 * respectively. 954 */ 955 STATIC int 956 xlog_seek_logrec_hdr( 957 struct xlog *log, 958 xfs_daddr_t head_blk, 959 xfs_daddr_t tail_blk, 960 int count, 961 struct xfs_buf *bp, 962 xfs_daddr_t *rblk, 963 struct xlog_rec_header **rhead, 964 bool *wrapped) 965 { 966 int i; 967 int error; 968 int found = 0; 969 char *offset = NULL; 970 xfs_daddr_t end_blk; 971 972 *wrapped = false; 973 974 /* 975 * Walk forward from the tail block until we hit the head or the last 976 * block in the log. 977 */ 978 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 979 for (i = (int) tail_blk; i <= end_blk; i++) { 980 error = xlog_bread(log, i, 1, bp, &offset); 981 if (error) 982 goto out_error; 983 984 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 985 *rblk = i; 986 *rhead = (struct xlog_rec_header *) offset; 987 if (++found == count) 988 break; 989 } 990 } 991 992 /* 993 * If we haven't hit the head block or the log record header count, 994 * start looking again from the start of the physical log. 995 */ 996 if (tail_blk > head_blk && found != count) { 997 for (i = 0; i < (int) head_blk; i++) { 998 error = xlog_bread(log, i, 1, bp, &offset); 999 if (error) 1000 goto out_error; 1001 1002 if (*(__be32 *)offset == 1003 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 1004 *wrapped = true; 1005 *rblk = i; 1006 *rhead = (struct xlog_rec_header *) offset; 1007 if (++found == count) 1008 break; 1009 } 1010 } 1011 } 1012 1013 return found; 1014 1015 out_error: 1016 return error; 1017 } 1018 1019 /* 1020 * Check the log tail for torn writes. This is required when torn writes are 1021 * detected at the head and the head had to be walked back to a previous record. 1022 * The tail of the previous record must now be verified to ensure the torn 1023 * writes didn't corrupt the previous tail. 1024 * 1025 * Return an error if CRC verification fails as recovery cannot proceed. 1026 */ 1027 STATIC int 1028 xlog_verify_tail( 1029 struct xlog *log, 1030 xfs_daddr_t head_blk, 1031 xfs_daddr_t tail_blk) 1032 { 1033 struct xlog_rec_header *thead; 1034 struct xfs_buf *bp; 1035 xfs_daddr_t first_bad; 1036 int count; 1037 int error = 0; 1038 bool wrapped; 1039 xfs_daddr_t tmp_head; 1040 1041 bp = xlog_get_bp(log, 1); 1042 if (!bp) 1043 return -ENOMEM; 1044 1045 /* 1046 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get 1047 * a temporary head block that points after the last possible 1048 * concurrently written record of the tail. 1049 */ 1050 count = xlog_seek_logrec_hdr(log, head_blk, tail_blk, 1051 XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead, 1052 &wrapped); 1053 if (count < 0) { 1054 error = count; 1055 goto out; 1056 } 1057 1058 /* 1059 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran 1060 * into the actual log head. tmp_head points to the start of the record 1061 * so update it to the actual head block. 1062 */ 1063 if (count < XLOG_MAX_ICLOGS + 1) 1064 tmp_head = head_blk; 1065 1066 /* 1067 * We now have a tail and temporary head block that covers at least 1068 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these 1069 * records were completely written. Run a CRC verification pass from 1070 * tail to head and return the result. 1071 */ 1072 error = xlog_do_recovery_pass(log, tmp_head, tail_blk, 1073 XLOG_RECOVER_CRCPASS, &first_bad); 1074 1075 out: 1076 xlog_put_bp(bp); 1077 return error; 1078 } 1079 1080 /* 1081 * Detect and trim torn writes from the head of the log. 1082 * 1083 * Storage without sector atomicity guarantees can result in torn writes in the 1084 * log in the event of a crash. Our only means to detect this scenario is via 1085 * CRC verification. While we can't always be certain that CRC verification 1086 * failure is due to a torn write vs. an unrelated corruption, we do know that 1087 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1088 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1089 * the log and treat failures in this range as torn writes as a matter of 1090 * policy. In the event of CRC failure, the head is walked back to the last good 1091 * record in the log and the tail is updated from that record and verified. 1092 */ 1093 STATIC int 1094 xlog_verify_head( 1095 struct xlog *log, 1096 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1097 xfs_daddr_t *tail_blk, /* out: tail block */ 1098 struct xfs_buf *bp, 1099 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1100 struct xlog_rec_header **rhead, /* ptr to last record */ 1101 bool *wrapped) /* last rec. wraps phys. log */ 1102 { 1103 struct xlog_rec_header *tmp_rhead; 1104 struct xfs_buf *tmp_bp; 1105 xfs_daddr_t first_bad; 1106 xfs_daddr_t tmp_rhead_blk; 1107 int found; 1108 int error; 1109 bool tmp_wrapped; 1110 1111 /* 1112 * Check the head of the log for torn writes. Search backwards from the 1113 * head until we hit the tail or the maximum number of log record I/Os 1114 * that could have been in flight at one time. Use a temporary buffer so 1115 * we don't trash the rhead/bp pointers from the caller. 1116 */ 1117 tmp_bp = xlog_get_bp(log, 1); 1118 if (!tmp_bp) 1119 return -ENOMEM; 1120 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1121 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk, 1122 &tmp_rhead, &tmp_wrapped); 1123 xlog_put_bp(tmp_bp); 1124 if (error < 0) 1125 return error; 1126 1127 /* 1128 * Now run a CRC verification pass over the records starting at the 1129 * block found above to the current head. If a CRC failure occurs, the 1130 * log block of the first bad record is saved in first_bad. 1131 */ 1132 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1133 XLOG_RECOVER_CRCPASS, &first_bad); 1134 if (error == -EFSBADCRC) { 1135 /* 1136 * We've hit a potential torn write. Reset the error and warn 1137 * about it. 1138 */ 1139 error = 0; 1140 xfs_warn(log->l_mp, 1141 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1142 first_bad, *head_blk); 1143 1144 /* 1145 * Get the header block and buffer pointer for the last good 1146 * record before the bad record. 1147 * 1148 * Note that xlog_find_tail() clears the blocks at the new head 1149 * (i.e., the records with invalid CRC) if the cycle number 1150 * matches the the current cycle. 1151 */ 1152 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp, 1153 rhead_blk, rhead, wrapped); 1154 if (found < 0) 1155 return found; 1156 if (found == 0) /* XXX: right thing to do here? */ 1157 return -EIO; 1158 1159 /* 1160 * Reset the head block to the starting block of the first bad 1161 * log record and set the tail block based on the last good 1162 * record. 1163 * 1164 * Bail out if the updated head/tail match as this indicates 1165 * possible corruption outside of the acceptable 1166 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1167 */ 1168 *head_blk = first_bad; 1169 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1170 if (*head_blk == *tail_blk) { 1171 ASSERT(0); 1172 return 0; 1173 } 1174 1175 /* 1176 * Now verify the tail based on the updated head. This is 1177 * required because the torn writes trimmed from the head could 1178 * have been written over the tail of a previous record. Return 1179 * any errors since recovery cannot proceed if the tail is 1180 * corrupt. 1181 * 1182 * XXX: This leaves a gap in truly robust protection from torn 1183 * writes in the log. If the head is behind the tail, the tail 1184 * pushes forward to create some space and then a crash occurs 1185 * causing the writes into the previous record's tail region to 1186 * tear, log recovery isn't able to recover. 1187 * 1188 * How likely is this to occur? If possible, can we do something 1189 * more intelligent here? Is it safe to push the tail forward if 1190 * we can determine that the tail is within the range of the 1191 * torn write (e.g., the kernel can only overwrite the tail if 1192 * it has actually been pushed forward)? Alternatively, could we 1193 * somehow prevent this condition at runtime? 1194 */ 1195 error = xlog_verify_tail(log, *head_blk, *tail_blk); 1196 } 1197 1198 return error; 1199 } 1200 1201 /* 1202 * Check whether the head of the log points to an unmount record. In other 1203 * words, determine whether the log is clean. If so, update the in-core state 1204 * appropriately. 1205 */ 1206 static int 1207 xlog_check_unmount_rec( 1208 struct xlog *log, 1209 xfs_daddr_t *head_blk, 1210 xfs_daddr_t *tail_blk, 1211 struct xlog_rec_header *rhead, 1212 xfs_daddr_t rhead_blk, 1213 struct xfs_buf *bp, 1214 bool *clean) 1215 { 1216 struct xlog_op_header *op_head; 1217 xfs_daddr_t umount_data_blk; 1218 xfs_daddr_t after_umount_blk; 1219 int hblks; 1220 int error; 1221 char *offset; 1222 1223 *clean = false; 1224 1225 /* 1226 * Look for unmount record. If we find it, then we know there was a 1227 * clean unmount. Since 'i' could be the last block in the physical 1228 * log, we convert to a log block before comparing to the head_blk. 1229 * 1230 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1231 * below. We won't want to clear the unmount record if there is one, so 1232 * we pass the lsn of the unmount record rather than the block after it. 1233 */ 1234 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1235 int h_size = be32_to_cpu(rhead->h_size); 1236 int h_version = be32_to_cpu(rhead->h_version); 1237 1238 if ((h_version & XLOG_VERSION_2) && 1239 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1240 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1241 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1242 hblks++; 1243 } else { 1244 hblks = 1; 1245 } 1246 } else { 1247 hblks = 1; 1248 } 1249 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)); 1250 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize); 1251 if (*head_blk == after_umount_blk && 1252 be32_to_cpu(rhead->h_num_logops) == 1) { 1253 umount_data_blk = rhead_blk + hblks; 1254 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize); 1255 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1256 if (error) 1257 return error; 1258 1259 op_head = (struct xlog_op_header *)offset; 1260 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1261 /* 1262 * Set tail and last sync so that newly written log 1263 * records will point recovery to after the current 1264 * unmount record. 1265 */ 1266 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1267 log->l_curr_cycle, after_umount_blk); 1268 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1269 log->l_curr_cycle, after_umount_blk); 1270 *tail_blk = after_umount_blk; 1271 1272 *clean = true; 1273 } 1274 } 1275 1276 return 0; 1277 } 1278 1279 static void 1280 xlog_set_state( 1281 struct xlog *log, 1282 xfs_daddr_t head_blk, 1283 struct xlog_rec_header *rhead, 1284 xfs_daddr_t rhead_blk, 1285 bool bump_cycle) 1286 { 1287 /* 1288 * Reset log values according to the state of the log when we 1289 * crashed. In the case where head_blk == 0, we bump curr_cycle 1290 * one because the next write starts a new cycle rather than 1291 * continuing the cycle of the last good log record. At this 1292 * point we have guaranteed that all partial log records have been 1293 * accounted for. Therefore, we know that the last good log record 1294 * written was complete and ended exactly on the end boundary 1295 * of the physical log. 1296 */ 1297 log->l_prev_block = rhead_blk; 1298 log->l_curr_block = (int)head_blk; 1299 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1300 if (bump_cycle) 1301 log->l_curr_cycle++; 1302 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1303 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1304 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1305 BBTOB(log->l_curr_block)); 1306 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1307 BBTOB(log->l_curr_block)); 1308 } 1309 1310 /* 1311 * Find the sync block number or the tail of the log. 1312 * 1313 * This will be the block number of the last record to have its 1314 * associated buffers synced to disk. Every log record header has 1315 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1316 * to get a sync block number. The only concern is to figure out which 1317 * log record header to believe. 1318 * 1319 * The following algorithm uses the log record header with the largest 1320 * lsn. The entire log record does not need to be valid. We only care 1321 * that the header is valid. 1322 * 1323 * We could speed up search by using current head_blk buffer, but it is not 1324 * available. 1325 */ 1326 STATIC int 1327 xlog_find_tail( 1328 struct xlog *log, 1329 xfs_daddr_t *head_blk, 1330 xfs_daddr_t *tail_blk) 1331 { 1332 xlog_rec_header_t *rhead; 1333 char *offset = NULL; 1334 xfs_buf_t *bp; 1335 int error; 1336 xfs_daddr_t rhead_blk; 1337 xfs_lsn_t tail_lsn; 1338 bool wrapped = false; 1339 bool clean = false; 1340 1341 /* 1342 * Find previous log record 1343 */ 1344 if ((error = xlog_find_head(log, head_blk))) 1345 return error; 1346 ASSERT(*head_blk < INT_MAX); 1347 1348 bp = xlog_get_bp(log, 1); 1349 if (!bp) 1350 return -ENOMEM; 1351 if (*head_blk == 0) { /* special case */ 1352 error = xlog_bread(log, 0, 1, bp, &offset); 1353 if (error) 1354 goto done; 1355 1356 if (xlog_get_cycle(offset) == 0) { 1357 *tail_blk = 0; 1358 /* leave all other log inited values alone */ 1359 goto done; 1360 } 1361 } 1362 1363 /* 1364 * Search backwards through the log looking for the log record header 1365 * block. This wraps all the way back around to the head so something is 1366 * seriously wrong if we can't find it. 1367 */ 1368 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, 1369 &rhead_blk, &rhead, &wrapped); 1370 if (error < 0) 1371 return error; 1372 if (!error) { 1373 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1374 return -EIO; 1375 } 1376 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1377 1378 /* 1379 * Set the log state based on the current head record. 1380 */ 1381 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1382 tail_lsn = atomic64_read(&log->l_tail_lsn); 1383 1384 /* 1385 * Look for an unmount record at the head of the log. This sets the log 1386 * state to determine whether recovery is necessary. 1387 */ 1388 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1389 rhead_blk, bp, &clean); 1390 if (error) 1391 goto done; 1392 1393 /* 1394 * Verify the log head if the log is not clean (e.g., we have anything 1395 * but an unmount record at the head). This uses CRC verification to 1396 * detect and trim torn writes. If discovered, CRC failures are 1397 * considered torn writes and the log head is trimmed accordingly. 1398 * 1399 * Note that we can only run CRC verification when the log is dirty 1400 * because there's no guarantee that the log data behind an unmount 1401 * record is compatible with the current architecture. 1402 */ 1403 if (!clean) { 1404 xfs_daddr_t orig_head = *head_blk; 1405 1406 error = xlog_verify_head(log, head_blk, tail_blk, bp, 1407 &rhead_blk, &rhead, &wrapped); 1408 if (error) 1409 goto done; 1410 1411 /* update in-core state again if the head changed */ 1412 if (*head_blk != orig_head) { 1413 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1414 wrapped); 1415 tail_lsn = atomic64_read(&log->l_tail_lsn); 1416 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1417 rhead, rhead_blk, bp, 1418 &clean); 1419 if (error) 1420 goto done; 1421 } 1422 } 1423 1424 /* 1425 * Note that the unmount was clean. If the unmount was not clean, we 1426 * need to know this to rebuild the superblock counters from the perag 1427 * headers if we have a filesystem using non-persistent counters. 1428 */ 1429 if (clean) 1430 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1431 1432 /* 1433 * Make sure that there are no blocks in front of the head 1434 * with the same cycle number as the head. This can happen 1435 * because we allow multiple outstanding log writes concurrently, 1436 * and the later writes might make it out before earlier ones. 1437 * 1438 * We use the lsn from before modifying it so that we'll never 1439 * overwrite the unmount record after a clean unmount. 1440 * 1441 * Do this only if we are going to recover the filesystem 1442 * 1443 * NOTE: This used to say "if (!readonly)" 1444 * However on Linux, we can & do recover a read-only filesystem. 1445 * We only skip recovery if NORECOVERY is specified on mount, 1446 * in which case we would not be here. 1447 * 1448 * But... if the -device- itself is readonly, just skip this. 1449 * We can't recover this device anyway, so it won't matter. 1450 */ 1451 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1452 error = xlog_clear_stale_blocks(log, tail_lsn); 1453 1454 done: 1455 xlog_put_bp(bp); 1456 1457 if (error) 1458 xfs_warn(log->l_mp, "failed to locate log tail"); 1459 return error; 1460 } 1461 1462 /* 1463 * Is the log zeroed at all? 1464 * 1465 * The last binary search should be changed to perform an X block read 1466 * once X becomes small enough. You can then search linearly through 1467 * the X blocks. This will cut down on the number of reads we need to do. 1468 * 1469 * If the log is partially zeroed, this routine will pass back the blkno 1470 * of the first block with cycle number 0. It won't have a complete LR 1471 * preceding it. 1472 * 1473 * Return: 1474 * 0 => the log is completely written to 1475 * 1 => use *blk_no as the first block of the log 1476 * <0 => error has occurred 1477 */ 1478 STATIC int 1479 xlog_find_zeroed( 1480 struct xlog *log, 1481 xfs_daddr_t *blk_no) 1482 { 1483 xfs_buf_t *bp; 1484 char *offset; 1485 uint first_cycle, last_cycle; 1486 xfs_daddr_t new_blk, last_blk, start_blk; 1487 xfs_daddr_t num_scan_bblks; 1488 int error, log_bbnum = log->l_logBBsize; 1489 1490 *blk_no = 0; 1491 1492 /* check totally zeroed log */ 1493 bp = xlog_get_bp(log, 1); 1494 if (!bp) 1495 return -ENOMEM; 1496 error = xlog_bread(log, 0, 1, bp, &offset); 1497 if (error) 1498 goto bp_err; 1499 1500 first_cycle = xlog_get_cycle(offset); 1501 if (first_cycle == 0) { /* completely zeroed log */ 1502 *blk_no = 0; 1503 xlog_put_bp(bp); 1504 return 1; 1505 } 1506 1507 /* check partially zeroed log */ 1508 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1509 if (error) 1510 goto bp_err; 1511 1512 last_cycle = xlog_get_cycle(offset); 1513 if (last_cycle != 0) { /* log completely written to */ 1514 xlog_put_bp(bp); 1515 return 0; 1516 } else if (first_cycle != 1) { 1517 /* 1518 * If the cycle of the last block is zero, the cycle of 1519 * the first block must be 1. If it's not, maybe we're 1520 * not looking at a log... Bail out. 1521 */ 1522 xfs_warn(log->l_mp, 1523 "Log inconsistent or not a log (last==0, first!=1)"); 1524 error = -EINVAL; 1525 goto bp_err; 1526 } 1527 1528 /* we have a partially zeroed log */ 1529 last_blk = log_bbnum-1; 1530 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1531 goto bp_err; 1532 1533 /* 1534 * Validate the answer. Because there is no way to guarantee that 1535 * the entire log is made up of log records which are the same size, 1536 * we scan over the defined maximum blocks. At this point, the maximum 1537 * is not chosen to mean anything special. XXXmiken 1538 */ 1539 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1540 ASSERT(num_scan_bblks <= INT_MAX); 1541 1542 if (last_blk < num_scan_bblks) 1543 num_scan_bblks = last_blk; 1544 start_blk = last_blk - num_scan_bblks; 1545 1546 /* 1547 * We search for any instances of cycle number 0 that occur before 1548 * our current estimate of the head. What we're trying to detect is 1549 * 1 ... | 0 | 1 | 0... 1550 * ^ binary search ends here 1551 */ 1552 if ((error = xlog_find_verify_cycle(log, start_blk, 1553 (int)num_scan_bblks, 0, &new_blk))) 1554 goto bp_err; 1555 if (new_blk != -1) 1556 last_blk = new_blk; 1557 1558 /* 1559 * Potentially backup over partial log record write. We don't need 1560 * to search the end of the log because we know it is zero. 1561 */ 1562 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1563 if (error == 1) 1564 error = -EIO; 1565 if (error) 1566 goto bp_err; 1567 1568 *blk_no = last_blk; 1569 bp_err: 1570 xlog_put_bp(bp); 1571 if (error) 1572 return error; 1573 return 1; 1574 } 1575 1576 /* 1577 * These are simple subroutines used by xlog_clear_stale_blocks() below 1578 * to initialize a buffer full of empty log record headers and write 1579 * them into the log. 1580 */ 1581 STATIC void 1582 xlog_add_record( 1583 struct xlog *log, 1584 char *buf, 1585 int cycle, 1586 int block, 1587 int tail_cycle, 1588 int tail_block) 1589 { 1590 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1591 1592 memset(buf, 0, BBSIZE); 1593 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1594 recp->h_cycle = cpu_to_be32(cycle); 1595 recp->h_version = cpu_to_be32( 1596 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1597 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1598 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1599 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1600 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1601 } 1602 1603 STATIC int 1604 xlog_write_log_records( 1605 struct xlog *log, 1606 int cycle, 1607 int start_block, 1608 int blocks, 1609 int tail_cycle, 1610 int tail_block) 1611 { 1612 char *offset; 1613 xfs_buf_t *bp; 1614 int balign, ealign; 1615 int sectbb = log->l_sectBBsize; 1616 int end_block = start_block + blocks; 1617 int bufblks; 1618 int error = 0; 1619 int i, j = 0; 1620 1621 /* 1622 * Greedily allocate a buffer big enough to handle the full 1623 * range of basic blocks to be written. If that fails, try 1624 * a smaller size. We need to be able to write at least a 1625 * log sector, or we're out of luck. 1626 */ 1627 bufblks = 1 << ffs(blocks); 1628 while (bufblks > log->l_logBBsize) 1629 bufblks >>= 1; 1630 while (!(bp = xlog_get_bp(log, bufblks))) { 1631 bufblks >>= 1; 1632 if (bufblks < sectbb) 1633 return -ENOMEM; 1634 } 1635 1636 /* We may need to do a read at the start to fill in part of 1637 * the buffer in the starting sector not covered by the first 1638 * write below. 1639 */ 1640 balign = round_down(start_block, sectbb); 1641 if (balign != start_block) { 1642 error = xlog_bread_noalign(log, start_block, 1, bp); 1643 if (error) 1644 goto out_put_bp; 1645 1646 j = start_block - balign; 1647 } 1648 1649 for (i = start_block; i < end_block; i += bufblks) { 1650 int bcount, endcount; 1651 1652 bcount = min(bufblks, end_block - start_block); 1653 endcount = bcount - j; 1654 1655 /* We may need to do a read at the end to fill in part of 1656 * the buffer in the final sector not covered by the write. 1657 * If this is the same sector as the above read, skip it. 1658 */ 1659 ealign = round_down(end_block, sectbb); 1660 if (j == 0 && (start_block + endcount > ealign)) { 1661 offset = bp->b_addr + BBTOB(ealign - start_block); 1662 error = xlog_bread_offset(log, ealign, sectbb, 1663 bp, offset); 1664 if (error) 1665 break; 1666 1667 } 1668 1669 offset = xlog_align(log, start_block, endcount, bp); 1670 for (; j < endcount; j++) { 1671 xlog_add_record(log, offset, cycle, i+j, 1672 tail_cycle, tail_block); 1673 offset += BBSIZE; 1674 } 1675 error = xlog_bwrite(log, start_block, endcount, bp); 1676 if (error) 1677 break; 1678 start_block += endcount; 1679 j = 0; 1680 } 1681 1682 out_put_bp: 1683 xlog_put_bp(bp); 1684 return error; 1685 } 1686 1687 /* 1688 * This routine is called to blow away any incomplete log writes out 1689 * in front of the log head. We do this so that we won't become confused 1690 * if we come up, write only a little bit more, and then crash again. 1691 * If we leave the partial log records out there, this situation could 1692 * cause us to think those partial writes are valid blocks since they 1693 * have the current cycle number. We get rid of them by overwriting them 1694 * with empty log records with the old cycle number rather than the 1695 * current one. 1696 * 1697 * The tail lsn is passed in rather than taken from 1698 * the log so that we will not write over the unmount record after a 1699 * clean unmount in a 512 block log. Doing so would leave the log without 1700 * any valid log records in it until a new one was written. If we crashed 1701 * during that time we would not be able to recover. 1702 */ 1703 STATIC int 1704 xlog_clear_stale_blocks( 1705 struct xlog *log, 1706 xfs_lsn_t tail_lsn) 1707 { 1708 int tail_cycle, head_cycle; 1709 int tail_block, head_block; 1710 int tail_distance, max_distance; 1711 int distance; 1712 int error; 1713 1714 tail_cycle = CYCLE_LSN(tail_lsn); 1715 tail_block = BLOCK_LSN(tail_lsn); 1716 head_cycle = log->l_curr_cycle; 1717 head_block = log->l_curr_block; 1718 1719 /* 1720 * Figure out the distance between the new head of the log 1721 * and the tail. We want to write over any blocks beyond the 1722 * head that we may have written just before the crash, but 1723 * we don't want to overwrite the tail of the log. 1724 */ 1725 if (head_cycle == tail_cycle) { 1726 /* 1727 * The tail is behind the head in the physical log, 1728 * so the distance from the head to the tail is the 1729 * distance from the head to the end of the log plus 1730 * the distance from the beginning of the log to the 1731 * tail. 1732 */ 1733 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1734 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1735 XFS_ERRLEVEL_LOW, log->l_mp); 1736 return -EFSCORRUPTED; 1737 } 1738 tail_distance = tail_block + (log->l_logBBsize - head_block); 1739 } else { 1740 /* 1741 * The head is behind the tail in the physical log, 1742 * so the distance from the head to the tail is just 1743 * the tail block minus the head block. 1744 */ 1745 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1746 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1747 XFS_ERRLEVEL_LOW, log->l_mp); 1748 return -EFSCORRUPTED; 1749 } 1750 tail_distance = tail_block - head_block; 1751 } 1752 1753 /* 1754 * If the head is right up against the tail, we can't clear 1755 * anything. 1756 */ 1757 if (tail_distance <= 0) { 1758 ASSERT(tail_distance == 0); 1759 return 0; 1760 } 1761 1762 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1763 /* 1764 * Take the smaller of the maximum amount of outstanding I/O 1765 * we could have and the distance to the tail to clear out. 1766 * We take the smaller so that we don't overwrite the tail and 1767 * we don't waste all day writing from the head to the tail 1768 * for no reason. 1769 */ 1770 max_distance = MIN(max_distance, tail_distance); 1771 1772 if ((head_block + max_distance) <= log->l_logBBsize) { 1773 /* 1774 * We can stomp all the blocks we need to without 1775 * wrapping around the end of the log. Just do it 1776 * in a single write. Use the cycle number of the 1777 * current cycle minus one so that the log will look like: 1778 * n ... | n - 1 ... 1779 */ 1780 error = xlog_write_log_records(log, (head_cycle - 1), 1781 head_block, max_distance, tail_cycle, 1782 tail_block); 1783 if (error) 1784 return error; 1785 } else { 1786 /* 1787 * We need to wrap around the end of the physical log in 1788 * order to clear all the blocks. Do it in two separate 1789 * I/Os. The first write should be from the head to the 1790 * end of the physical log, and it should use the current 1791 * cycle number minus one just like above. 1792 */ 1793 distance = log->l_logBBsize - head_block; 1794 error = xlog_write_log_records(log, (head_cycle - 1), 1795 head_block, distance, tail_cycle, 1796 tail_block); 1797 1798 if (error) 1799 return error; 1800 1801 /* 1802 * Now write the blocks at the start of the physical log. 1803 * This writes the remainder of the blocks we want to clear. 1804 * It uses the current cycle number since we're now on the 1805 * same cycle as the head so that we get: 1806 * n ... n ... | n - 1 ... 1807 * ^^^^^ blocks we're writing 1808 */ 1809 distance = max_distance - (log->l_logBBsize - head_block); 1810 error = xlog_write_log_records(log, head_cycle, 0, distance, 1811 tail_cycle, tail_block); 1812 if (error) 1813 return error; 1814 } 1815 1816 return 0; 1817 } 1818 1819 /****************************************************************************** 1820 * 1821 * Log recover routines 1822 * 1823 ****************************************************************************** 1824 */ 1825 1826 /* 1827 * Sort the log items in the transaction. 1828 * 1829 * The ordering constraints are defined by the inode allocation and unlink 1830 * behaviour. The rules are: 1831 * 1832 * 1. Every item is only logged once in a given transaction. Hence it 1833 * represents the last logged state of the item. Hence ordering is 1834 * dependent on the order in which operations need to be performed so 1835 * required initial conditions are always met. 1836 * 1837 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1838 * there's nothing to replay from them so we can simply cull them 1839 * from the transaction. However, we can't do that until after we've 1840 * replayed all the other items because they may be dependent on the 1841 * cancelled buffer and replaying the cancelled buffer can remove it 1842 * form the cancelled buffer table. Hence they have tobe done last. 1843 * 1844 * 3. Inode allocation buffers must be replayed before inode items that 1845 * read the buffer and replay changes into it. For filesystems using the 1846 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1847 * treated the same as inode allocation buffers as they create and 1848 * initialise the buffers directly. 1849 * 1850 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1851 * This ensures that inodes are completely flushed to the inode buffer 1852 * in a "free" state before we remove the unlinked inode list pointer. 1853 * 1854 * Hence the ordering needs to be inode allocation buffers first, inode items 1855 * second, inode unlink buffers third and cancelled buffers last. 1856 * 1857 * But there's a problem with that - we can't tell an inode allocation buffer 1858 * apart from a regular buffer, so we can't separate them. We can, however, 1859 * tell an inode unlink buffer from the others, and so we can separate them out 1860 * from all the other buffers and move them to last. 1861 * 1862 * Hence, 4 lists, in order from head to tail: 1863 * - buffer_list for all buffers except cancelled/inode unlink buffers 1864 * - item_list for all non-buffer items 1865 * - inode_buffer_list for inode unlink buffers 1866 * - cancel_list for the cancelled buffers 1867 * 1868 * Note that we add objects to the tail of the lists so that first-to-last 1869 * ordering is preserved within the lists. Adding objects to the head of the 1870 * list means when we traverse from the head we walk them in last-to-first 1871 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1872 * but for all other items there may be specific ordering that we need to 1873 * preserve. 1874 */ 1875 STATIC int 1876 xlog_recover_reorder_trans( 1877 struct xlog *log, 1878 struct xlog_recover *trans, 1879 int pass) 1880 { 1881 xlog_recover_item_t *item, *n; 1882 int error = 0; 1883 LIST_HEAD(sort_list); 1884 LIST_HEAD(cancel_list); 1885 LIST_HEAD(buffer_list); 1886 LIST_HEAD(inode_buffer_list); 1887 LIST_HEAD(inode_list); 1888 1889 list_splice_init(&trans->r_itemq, &sort_list); 1890 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1891 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1892 1893 switch (ITEM_TYPE(item)) { 1894 case XFS_LI_ICREATE: 1895 list_move_tail(&item->ri_list, &buffer_list); 1896 break; 1897 case XFS_LI_BUF: 1898 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1899 trace_xfs_log_recover_item_reorder_head(log, 1900 trans, item, pass); 1901 list_move(&item->ri_list, &cancel_list); 1902 break; 1903 } 1904 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1905 list_move(&item->ri_list, &inode_buffer_list); 1906 break; 1907 } 1908 list_move_tail(&item->ri_list, &buffer_list); 1909 break; 1910 case XFS_LI_INODE: 1911 case XFS_LI_DQUOT: 1912 case XFS_LI_QUOTAOFF: 1913 case XFS_LI_EFD: 1914 case XFS_LI_EFI: 1915 trace_xfs_log_recover_item_reorder_tail(log, 1916 trans, item, pass); 1917 list_move_tail(&item->ri_list, &inode_list); 1918 break; 1919 default: 1920 xfs_warn(log->l_mp, 1921 "%s: unrecognized type of log operation", 1922 __func__); 1923 ASSERT(0); 1924 /* 1925 * return the remaining items back to the transaction 1926 * item list so they can be freed in caller. 1927 */ 1928 if (!list_empty(&sort_list)) 1929 list_splice_init(&sort_list, &trans->r_itemq); 1930 error = -EIO; 1931 goto out; 1932 } 1933 } 1934 out: 1935 ASSERT(list_empty(&sort_list)); 1936 if (!list_empty(&buffer_list)) 1937 list_splice(&buffer_list, &trans->r_itemq); 1938 if (!list_empty(&inode_list)) 1939 list_splice_tail(&inode_list, &trans->r_itemq); 1940 if (!list_empty(&inode_buffer_list)) 1941 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1942 if (!list_empty(&cancel_list)) 1943 list_splice_tail(&cancel_list, &trans->r_itemq); 1944 return error; 1945 } 1946 1947 /* 1948 * Build up the table of buf cancel records so that we don't replay 1949 * cancelled data in the second pass. For buffer records that are 1950 * not cancel records, there is nothing to do here so we just return. 1951 * 1952 * If we get a cancel record which is already in the table, this indicates 1953 * that the buffer was cancelled multiple times. In order to ensure 1954 * that during pass 2 we keep the record in the table until we reach its 1955 * last occurrence in the log, we keep a reference count in the cancel 1956 * record in the table to tell us how many times we expect to see this 1957 * record during the second pass. 1958 */ 1959 STATIC int 1960 xlog_recover_buffer_pass1( 1961 struct xlog *log, 1962 struct xlog_recover_item *item) 1963 { 1964 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1965 struct list_head *bucket; 1966 struct xfs_buf_cancel *bcp; 1967 1968 /* 1969 * If this isn't a cancel buffer item, then just return. 1970 */ 1971 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1972 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1973 return 0; 1974 } 1975 1976 /* 1977 * Insert an xfs_buf_cancel record into the hash table of them. 1978 * If there is already an identical record, bump its reference count. 1979 */ 1980 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1981 list_for_each_entry(bcp, bucket, bc_list) { 1982 if (bcp->bc_blkno == buf_f->blf_blkno && 1983 bcp->bc_len == buf_f->blf_len) { 1984 bcp->bc_refcount++; 1985 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1986 return 0; 1987 } 1988 } 1989 1990 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1991 bcp->bc_blkno = buf_f->blf_blkno; 1992 bcp->bc_len = buf_f->blf_len; 1993 bcp->bc_refcount = 1; 1994 list_add_tail(&bcp->bc_list, bucket); 1995 1996 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1997 return 0; 1998 } 1999 2000 /* 2001 * Check to see whether the buffer being recovered has a corresponding 2002 * entry in the buffer cancel record table. If it is, return the cancel 2003 * buffer structure to the caller. 2004 */ 2005 STATIC struct xfs_buf_cancel * 2006 xlog_peek_buffer_cancelled( 2007 struct xlog *log, 2008 xfs_daddr_t blkno, 2009 uint len, 2010 ushort flags) 2011 { 2012 struct list_head *bucket; 2013 struct xfs_buf_cancel *bcp; 2014 2015 if (!log->l_buf_cancel_table) { 2016 /* empty table means no cancelled buffers in the log */ 2017 ASSERT(!(flags & XFS_BLF_CANCEL)); 2018 return NULL; 2019 } 2020 2021 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 2022 list_for_each_entry(bcp, bucket, bc_list) { 2023 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 2024 return bcp; 2025 } 2026 2027 /* 2028 * We didn't find a corresponding entry in the table, so return 0 so 2029 * that the buffer is NOT cancelled. 2030 */ 2031 ASSERT(!(flags & XFS_BLF_CANCEL)); 2032 return NULL; 2033 } 2034 2035 /* 2036 * If the buffer is being cancelled then return 1 so that it will be cancelled, 2037 * otherwise return 0. If the buffer is actually a buffer cancel item 2038 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 2039 * table and remove it from the table if this is the last reference. 2040 * 2041 * We remove the cancel record from the table when we encounter its last 2042 * occurrence in the log so that if the same buffer is re-used again after its 2043 * last cancellation we actually replay the changes made at that point. 2044 */ 2045 STATIC int 2046 xlog_check_buffer_cancelled( 2047 struct xlog *log, 2048 xfs_daddr_t blkno, 2049 uint len, 2050 ushort flags) 2051 { 2052 struct xfs_buf_cancel *bcp; 2053 2054 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 2055 if (!bcp) 2056 return 0; 2057 2058 /* 2059 * We've go a match, so return 1 so that the recovery of this buffer 2060 * is cancelled. If this buffer is actually a buffer cancel log 2061 * item, then decrement the refcount on the one in the table and 2062 * remove it if this is the last reference. 2063 */ 2064 if (flags & XFS_BLF_CANCEL) { 2065 if (--bcp->bc_refcount == 0) { 2066 list_del(&bcp->bc_list); 2067 kmem_free(bcp); 2068 } 2069 } 2070 return 1; 2071 } 2072 2073 /* 2074 * Perform recovery for a buffer full of inodes. In these buffers, the only 2075 * data which should be recovered is that which corresponds to the 2076 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2077 * data for the inodes is always logged through the inodes themselves rather 2078 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2079 * 2080 * The only time when buffers full of inodes are fully recovered is when the 2081 * buffer is full of newly allocated inodes. In this case the buffer will 2082 * not be marked as an inode buffer and so will be sent to 2083 * xlog_recover_do_reg_buffer() below during recovery. 2084 */ 2085 STATIC int 2086 xlog_recover_do_inode_buffer( 2087 struct xfs_mount *mp, 2088 xlog_recover_item_t *item, 2089 struct xfs_buf *bp, 2090 xfs_buf_log_format_t *buf_f) 2091 { 2092 int i; 2093 int item_index = 0; 2094 int bit = 0; 2095 int nbits = 0; 2096 int reg_buf_offset = 0; 2097 int reg_buf_bytes = 0; 2098 int next_unlinked_offset; 2099 int inodes_per_buf; 2100 xfs_agino_t *logged_nextp; 2101 xfs_agino_t *buffer_nextp; 2102 2103 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2104 2105 /* 2106 * Post recovery validation only works properly on CRC enabled 2107 * filesystems. 2108 */ 2109 if (xfs_sb_version_hascrc(&mp->m_sb)) 2110 bp->b_ops = &xfs_inode_buf_ops; 2111 2112 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 2113 for (i = 0; i < inodes_per_buf; i++) { 2114 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2115 offsetof(xfs_dinode_t, di_next_unlinked); 2116 2117 while (next_unlinked_offset >= 2118 (reg_buf_offset + reg_buf_bytes)) { 2119 /* 2120 * The next di_next_unlinked field is beyond 2121 * the current logged region. Find the next 2122 * logged region that contains or is beyond 2123 * the current di_next_unlinked field. 2124 */ 2125 bit += nbits; 2126 bit = xfs_next_bit(buf_f->blf_data_map, 2127 buf_f->blf_map_size, bit); 2128 2129 /* 2130 * If there are no more logged regions in the 2131 * buffer, then we're done. 2132 */ 2133 if (bit == -1) 2134 return 0; 2135 2136 nbits = xfs_contig_bits(buf_f->blf_data_map, 2137 buf_f->blf_map_size, bit); 2138 ASSERT(nbits > 0); 2139 reg_buf_offset = bit << XFS_BLF_SHIFT; 2140 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2141 item_index++; 2142 } 2143 2144 /* 2145 * If the current logged region starts after the current 2146 * di_next_unlinked field, then move on to the next 2147 * di_next_unlinked field. 2148 */ 2149 if (next_unlinked_offset < reg_buf_offset) 2150 continue; 2151 2152 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2153 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2154 ASSERT((reg_buf_offset + reg_buf_bytes) <= 2155 BBTOB(bp->b_io_length)); 2156 2157 /* 2158 * The current logged region contains a copy of the 2159 * current di_next_unlinked field. Extract its value 2160 * and copy it to the buffer copy. 2161 */ 2162 logged_nextp = item->ri_buf[item_index].i_addr + 2163 next_unlinked_offset - reg_buf_offset; 2164 if (unlikely(*logged_nextp == 0)) { 2165 xfs_alert(mp, 2166 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 2167 "Trying to replay bad (0) inode di_next_unlinked field.", 2168 item, bp); 2169 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 2170 XFS_ERRLEVEL_LOW, mp); 2171 return -EFSCORRUPTED; 2172 } 2173 2174 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2175 *buffer_nextp = *logged_nextp; 2176 2177 /* 2178 * If necessary, recalculate the CRC in the on-disk inode. We 2179 * have to leave the inode in a consistent state for whoever 2180 * reads it next.... 2181 */ 2182 xfs_dinode_calc_crc(mp, 2183 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2184 2185 } 2186 2187 return 0; 2188 } 2189 2190 /* 2191 * V5 filesystems know the age of the buffer on disk being recovered. We can 2192 * have newer objects on disk than we are replaying, and so for these cases we 2193 * don't want to replay the current change as that will make the buffer contents 2194 * temporarily invalid on disk. 2195 * 2196 * The magic number might not match the buffer type we are going to recover 2197 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2198 * extract the LSN of the existing object in the buffer based on it's current 2199 * magic number. If we don't recognise the magic number in the buffer, then 2200 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2201 * so can recover the buffer. 2202 * 2203 * Note: we cannot rely solely on magic number matches to determine that the 2204 * buffer has a valid LSN - we also need to verify that it belongs to this 2205 * filesystem, so we need to extract the object's LSN and compare it to that 2206 * which we read from the superblock. If the UUIDs don't match, then we've got a 2207 * stale metadata block from an old filesystem instance that we need to recover 2208 * over the top of. 2209 */ 2210 static xfs_lsn_t 2211 xlog_recover_get_buf_lsn( 2212 struct xfs_mount *mp, 2213 struct xfs_buf *bp) 2214 { 2215 __uint32_t magic32; 2216 __uint16_t magic16; 2217 __uint16_t magicda; 2218 void *blk = bp->b_addr; 2219 uuid_t *uuid; 2220 xfs_lsn_t lsn = -1; 2221 2222 /* v4 filesystems always recover immediately */ 2223 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2224 goto recover_immediately; 2225 2226 magic32 = be32_to_cpu(*(__be32 *)blk); 2227 switch (magic32) { 2228 case XFS_ABTB_CRC_MAGIC: 2229 case XFS_ABTC_CRC_MAGIC: 2230 case XFS_ABTB_MAGIC: 2231 case XFS_ABTC_MAGIC: 2232 case XFS_IBT_CRC_MAGIC: 2233 case XFS_IBT_MAGIC: { 2234 struct xfs_btree_block *btb = blk; 2235 2236 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2237 uuid = &btb->bb_u.s.bb_uuid; 2238 break; 2239 } 2240 case XFS_BMAP_CRC_MAGIC: 2241 case XFS_BMAP_MAGIC: { 2242 struct xfs_btree_block *btb = blk; 2243 2244 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2245 uuid = &btb->bb_u.l.bb_uuid; 2246 break; 2247 } 2248 case XFS_AGF_MAGIC: 2249 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2250 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2251 break; 2252 case XFS_AGFL_MAGIC: 2253 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2254 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2255 break; 2256 case XFS_AGI_MAGIC: 2257 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2258 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2259 break; 2260 case XFS_SYMLINK_MAGIC: 2261 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2262 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2263 break; 2264 case XFS_DIR3_BLOCK_MAGIC: 2265 case XFS_DIR3_DATA_MAGIC: 2266 case XFS_DIR3_FREE_MAGIC: 2267 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2268 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2269 break; 2270 case XFS_ATTR3_RMT_MAGIC: 2271 /* 2272 * Remote attr blocks are written synchronously, rather than 2273 * being logged. That means they do not contain a valid LSN 2274 * (i.e. transactionally ordered) in them, and hence any time we 2275 * see a buffer to replay over the top of a remote attribute 2276 * block we should simply do so. 2277 */ 2278 goto recover_immediately; 2279 case XFS_SB_MAGIC: 2280 /* 2281 * superblock uuids are magic. We may or may not have a 2282 * sb_meta_uuid on disk, but it will be set in the in-core 2283 * superblock. We set the uuid pointer for verification 2284 * according to the superblock feature mask to ensure we check 2285 * the relevant UUID in the superblock. 2286 */ 2287 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2288 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2289 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2290 else 2291 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2292 break; 2293 default: 2294 break; 2295 } 2296 2297 if (lsn != (xfs_lsn_t)-1) { 2298 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2299 goto recover_immediately; 2300 return lsn; 2301 } 2302 2303 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2304 switch (magicda) { 2305 case XFS_DIR3_LEAF1_MAGIC: 2306 case XFS_DIR3_LEAFN_MAGIC: 2307 case XFS_DA3_NODE_MAGIC: 2308 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2309 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2310 break; 2311 default: 2312 break; 2313 } 2314 2315 if (lsn != (xfs_lsn_t)-1) { 2316 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2317 goto recover_immediately; 2318 return lsn; 2319 } 2320 2321 /* 2322 * We do individual object checks on dquot and inode buffers as they 2323 * have their own individual LSN records. Also, we could have a stale 2324 * buffer here, so we have to at least recognise these buffer types. 2325 * 2326 * A notd complexity here is inode unlinked list processing - it logs 2327 * the inode directly in the buffer, but we don't know which inodes have 2328 * been modified, and there is no global buffer LSN. Hence we need to 2329 * recover all inode buffer types immediately. This problem will be 2330 * fixed by logical logging of the unlinked list modifications. 2331 */ 2332 magic16 = be16_to_cpu(*(__be16 *)blk); 2333 switch (magic16) { 2334 case XFS_DQUOT_MAGIC: 2335 case XFS_DINODE_MAGIC: 2336 goto recover_immediately; 2337 default: 2338 break; 2339 } 2340 2341 /* unknown buffer contents, recover immediately */ 2342 2343 recover_immediately: 2344 return (xfs_lsn_t)-1; 2345 2346 } 2347 2348 /* 2349 * Validate the recovered buffer is of the correct type and attach the 2350 * appropriate buffer operations to them for writeback. Magic numbers are in a 2351 * few places: 2352 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2353 * the first 32 bits of the buffer (most blocks), 2354 * inside a struct xfs_da_blkinfo at the start of the buffer. 2355 */ 2356 static void 2357 xlog_recover_validate_buf_type( 2358 struct xfs_mount *mp, 2359 struct xfs_buf *bp, 2360 xfs_buf_log_format_t *buf_f) 2361 { 2362 struct xfs_da_blkinfo *info = bp->b_addr; 2363 __uint32_t magic32; 2364 __uint16_t magic16; 2365 __uint16_t magicda; 2366 2367 /* 2368 * We can only do post recovery validation on items on CRC enabled 2369 * fielsystems as we need to know when the buffer was written to be able 2370 * to determine if we should have replayed the item. If we replay old 2371 * metadata over a newer buffer, then it will enter a temporarily 2372 * inconsistent state resulting in verification failures. Hence for now 2373 * just avoid the verification stage for non-crc filesystems 2374 */ 2375 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2376 return; 2377 2378 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2379 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2380 magicda = be16_to_cpu(info->magic); 2381 switch (xfs_blft_from_flags(buf_f)) { 2382 case XFS_BLFT_BTREE_BUF: 2383 switch (magic32) { 2384 case XFS_ABTB_CRC_MAGIC: 2385 case XFS_ABTC_CRC_MAGIC: 2386 case XFS_ABTB_MAGIC: 2387 case XFS_ABTC_MAGIC: 2388 bp->b_ops = &xfs_allocbt_buf_ops; 2389 break; 2390 case XFS_IBT_CRC_MAGIC: 2391 case XFS_FIBT_CRC_MAGIC: 2392 case XFS_IBT_MAGIC: 2393 case XFS_FIBT_MAGIC: 2394 bp->b_ops = &xfs_inobt_buf_ops; 2395 break; 2396 case XFS_BMAP_CRC_MAGIC: 2397 case XFS_BMAP_MAGIC: 2398 bp->b_ops = &xfs_bmbt_buf_ops; 2399 break; 2400 default: 2401 xfs_warn(mp, "Bad btree block magic!"); 2402 ASSERT(0); 2403 break; 2404 } 2405 break; 2406 case XFS_BLFT_AGF_BUF: 2407 if (magic32 != XFS_AGF_MAGIC) { 2408 xfs_warn(mp, "Bad AGF block magic!"); 2409 ASSERT(0); 2410 break; 2411 } 2412 bp->b_ops = &xfs_agf_buf_ops; 2413 break; 2414 case XFS_BLFT_AGFL_BUF: 2415 if (magic32 != XFS_AGFL_MAGIC) { 2416 xfs_warn(mp, "Bad AGFL block magic!"); 2417 ASSERT(0); 2418 break; 2419 } 2420 bp->b_ops = &xfs_agfl_buf_ops; 2421 break; 2422 case XFS_BLFT_AGI_BUF: 2423 if (magic32 != XFS_AGI_MAGIC) { 2424 xfs_warn(mp, "Bad AGI block magic!"); 2425 ASSERT(0); 2426 break; 2427 } 2428 bp->b_ops = &xfs_agi_buf_ops; 2429 break; 2430 case XFS_BLFT_UDQUOT_BUF: 2431 case XFS_BLFT_PDQUOT_BUF: 2432 case XFS_BLFT_GDQUOT_BUF: 2433 #ifdef CONFIG_XFS_QUOTA 2434 if (magic16 != XFS_DQUOT_MAGIC) { 2435 xfs_warn(mp, "Bad DQUOT block magic!"); 2436 ASSERT(0); 2437 break; 2438 } 2439 bp->b_ops = &xfs_dquot_buf_ops; 2440 #else 2441 xfs_alert(mp, 2442 "Trying to recover dquots without QUOTA support built in!"); 2443 ASSERT(0); 2444 #endif 2445 break; 2446 case XFS_BLFT_DINO_BUF: 2447 if (magic16 != XFS_DINODE_MAGIC) { 2448 xfs_warn(mp, "Bad INODE block magic!"); 2449 ASSERT(0); 2450 break; 2451 } 2452 bp->b_ops = &xfs_inode_buf_ops; 2453 break; 2454 case XFS_BLFT_SYMLINK_BUF: 2455 if (magic32 != XFS_SYMLINK_MAGIC) { 2456 xfs_warn(mp, "Bad symlink block magic!"); 2457 ASSERT(0); 2458 break; 2459 } 2460 bp->b_ops = &xfs_symlink_buf_ops; 2461 break; 2462 case XFS_BLFT_DIR_BLOCK_BUF: 2463 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2464 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2465 xfs_warn(mp, "Bad dir block magic!"); 2466 ASSERT(0); 2467 break; 2468 } 2469 bp->b_ops = &xfs_dir3_block_buf_ops; 2470 break; 2471 case XFS_BLFT_DIR_DATA_BUF: 2472 if (magic32 != XFS_DIR2_DATA_MAGIC && 2473 magic32 != XFS_DIR3_DATA_MAGIC) { 2474 xfs_warn(mp, "Bad dir data magic!"); 2475 ASSERT(0); 2476 break; 2477 } 2478 bp->b_ops = &xfs_dir3_data_buf_ops; 2479 break; 2480 case XFS_BLFT_DIR_FREE_BUF: 2481 if (magic32 != XFS_DIR2_FREE_MAGIC && 2482 magic32 != XFS_DIR3_FREE_MAGIC) { 2483 xfs_warn(mp, "Bad dir3 free magic!"); 2484 ASSERT(0); 2485 break; 2486 } 2487 bp->b_ops = &xfs_dir3_free_buf_ops; 2488 break; 2489 case XFS_BLFT_DIR_LEAF1_BUF: 2490 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2491 magicda != XFS_DIR3_LEAF1_MAGIC) { 2492 xfs_warn(mp, "Bad dir leaf1 magic!"); 2493 ASSERT(0); 2494 break; 2495 } 2496 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2497 break; 2498 case XFS_BLFT_DIR_LEAFN_BUF: 2499 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2500 magicda != XFS_DIR3_LEAFN_MAGIC) { 2501 xfs_warn(mp, "Bad dir leafn magic!"); 2502 ASSERT(0); 2503 break; 2504 } 2505 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2506 break; 2507 case XFS_BLFT_DA_NODE_BUF: 2508 if (magicda != XFS_DA_NODE_MAGIC && 2509 magicda != XFS_DA3_NODE_MAGIC) { 2510 xfs_warn(mp, "Bad da node magic!"); 2511 ASSERT(0); 2512 break; 2513 } 2514 bp->b_ops = &xfs_da3_node_buf_ops; 2515 break; 2516 case XFS_BLFT_ATTR_LEAF_BUF: 2517 if (magicda != XFS_ATTR_LEAF_MAGIC && 2518 magicda != XFS_ATTR3_LEAF_MAGIC) { 2519 xfs_warn(mp, "Bad attr leaf magic!"); 2520 ASSERT(0); 2521 break; 2522 } 2523 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2524 break; 2525 case XFS_BLFT_ATTR_RMT_BUF: 2526 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2527 xfs_warn(mp, "Bad attr remote magic!"); 2528 ASSERT(0); 2529 break; 2530 } 2531 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2532 break; 2533 case XFS_BLFT_SB_BUF: 2534 if (magic32 != XFS_SB_MAGIC) { 2535 xfs_warn(mp, "Bad SB block magic!"); 2536 ASSERT(0); 2537 break; 2538 } 2539 bp->b_ops = &xfs_sb_buf_ops; 2540 break; 2541 default: 2542 xfs_warn(mp, "Unknown buffer type %d!", 2543 xfs_blft_from_flags(buf_f)); 2544 break; 2545 } 2546 } 2547 2548 /* 2549 * Perform a 'normal' buffer recovery. Each logged region of the 2550 * buffer should be copied over the corresponding region in the 2551 * given buffer. The bitmap in the buf log format structure indicates 2552 * where to place the logged data. 2553 */ 2554 STATIC void 2555 xlog_recover_do_reg_buffer( 2556 struct xfs_mount *mp, 2557 xlog_recover_item_t *item, 2558 struct xfs_buf *bp, 2559 xfs_buf_log_format_t *buf_f) 2560 { 2561 int i; 2562 int bit; 2563 int nbits; 2564 int error; 2565 2566 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2567 2568 bit = 0; 2569 i = 1; /* 0 is the buf format structure */ 2570 while (1) { 2571 bit = xfs_next_bit(buf_f->blf_data_map, 2572 buf_f->blf_map_size, bit); 2573 if (bit == -1) 2574 break; 2575 nbits = xfs_contig_bits(buf_f->blf_data_map, 2576 buf_f->blf_map_size, bit); 2577 ASSERT(nbits > 0); 2578 ASSERT(item->ri_buf[i].i_addr != NULL); 2579 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2580 ASSERT(BBTOB(bp->b_io_length) >= 2581 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2582 2583 /* 2584 * The dirty regions logged in the buffer, even though 2585 * contiguous, may span multiple chunks. This is because the 2586 * dirty region may span a physical page boundary in a buffer 2587 * and hence be split into two separate vectors for writing into 2588 * the log. Hence we need to trim nbits back to the length of 2589 * the current region being copied out of the log. 2590 */ 2591 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2592 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2593 2594 /* 2595 * Do a sanity check if this is a dquot buffer. Just checking 2596 * the first dquot in the buffer should do. XXXThis is 2597 * probably a good thing to do for other buf types also. 2598 */ 2599 error = 0; 2600 if (buf_f->blf_flags & 2601 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2602 if (item->ri_buf[i].i_addr == NULL) { 2603 xfs_alert(mp, 2604 "XFS: NULL dquot in %s.", __func__); 2605 goto next; 2606 } 2607 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2608 xfs_alert(mp, 2609 "XFS: dquot too small (%d) in %s.", 2610 item->ri_buf[i].i_len, __func__); 2611 goto next; 2612 } 2613 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr, 2614 -1, 0, XFS_QMOPT_DOWARN, 2615 "dquot_buf_recover"); 2616 if (error) 2617 goto next; 2618 } 2619 2620 memcpy(xfs_buf_offset(bp, 2621 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2622 item->ri_buf[i].i_addr, /* source */ 2623 nbits<<XFS_BLF_SHIFT); /* length */ 2624 next: 2625 i++; 2626 bit += nbits; 2627 } 2628 2629 /* Shouldn't be any more regions */ 2630 ASSERT(i == item->ri_total); 2631 2632 xlog_recover_validate_buf_type(mp, bp, buf_f); 2633 } 2634 2635 /* 2636 * Perform a dquot buffer recovery. 2637 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2638 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2639 * Else, treat it as a regular buffer and do recovery. 2640 * 2641 * Return false if the buffer was tossed and true if we recovered the buffer to 2642 * indicate to the caller if the buffer needs writing. 2643 */ 2644 STATIC bool 2645 xlog_recover_do_dquot_buffer( 2646 struct xfs_mount *mp, 2647 struct xlog *log, 2648 struct xlog_recover_item *item, 2649 struct xfs_buf *bp, 2650 struct xfs_buf_log_format *buf_f) 2651 { 2652 uint type; 2653 2654 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2655 2656 /* 2657 * Filesystems are required to send in quota flags at mount time. 2658 */ 2659 if (!mp->m_qflags) 2660 return false; 2661 2662 type = 0; 2663 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2664 type |= XFS_DQ_USER; 2665 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2666 type |= XFS_DQ_PROJ; 2667 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2668 type |= XFS_DQ_GROUP; 2669 /* 2670 * This type of quotas was turned off, so ignore this buffer 2671 */ 2672 if (log->l_quotaoffs_flag & type) 2673 return false; 2674 2675 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2676 return true; 2677 } 2678 2679 /* 2680 * This routine replays a modification made to a buffer at runtime. 2681 * There are actually two types of buffer, regular and inode, which 2682 * are handled differently. Inode buffers are handled differently 2683 * in that we only recover a specific set of data from them, namely 2684 * the inode di_next_unlinked fields. This is because all other inode 2685 * data is actually logged via inode records and any data we replay 2686 * here which overlaps that may be stale. 2687 * 2688 * When meta-data buffers are freed at run time we log a buffer item 2689 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2690 * of the buffer in the log should not be replayed at recovery time. 2691 * This is so that if the blocks covered by the buffer are reused for 2692 * file data before we crash we don't end up replaying old, freed 2693 * meta-data into a user's file. 2694 * 2695 * To handle the cancellation of buffer log items, we make two passes 2696 * over the log during recovery. During the first we build a table of 2697 * those buffers which have been cancelled, and during the second we 2698 * only replay those buffers which do not have corresponding cancel 2699 * records in the table. See xlog_recover_buffer_pass[1,2] above 2700 * for more details on the implementation of the table of cancel records. 2701 */ 2702 STATIC int 2703 xlog_recover_buffer_pass2( 2704 struct xlog *log, 2705 struct list_head *buffer_list, 2706 struct xlog_recover_item *item, 2707 xfs_lsn_t current_lsn) 2708 { 2709 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2710 xfs_mount_t *mp = log->l_mp; 2711 xfs_buf_t *bp; 2712 int error; 2713 uint buf_flags; 2714 xfs_lsn_t lsn; 2715 2716 /* 2717 * In this pass we only want to recover all the buffers which have 2718 * not been cancelled and are not cancellation buffers themselves. 2719 */ 2720 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2721 buf_f->blf_len, buf_f->blf_flags)) { 2722 trace_xfs_log_recover_buf_cancel(log, buf_f); 2723 return 0; 2724 } 2725 2726 trace_xfs_log_recover_buf_recover(log, buf_f); 2727 2728 buf_flags = 0; 2729 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2730 buf_flags |= XBF_UNMAPPED; 2731 2732 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2733 buf_flags, NULL); 2734 if (!bp) 2735 return -ENOMEM; 2736 error = bp->b_error; 2737 if (error) { 2738 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2739 goto out_release; 2740 } 2741 2742 /* 2743 * Recover the buffer only if we get an LSN from it and it's less than 2744 * the lsn of the transaction we are replaying. 2745 * 2746 * Note that we have to be extremely careful of readahead here. 2747 * Readahead does not attach verfiers to the buffers so if we don't 2748 * actually do any replay after readahead because of the LSN we found 2749 * in the buffer if more recent than that current transaction then we 2750 * need to attach the verifier directly. Failure to do so can lead to 2751 * future recovery actions (e.g. EFI and unlinked list recovery) can 2752 * operate on the buffers and they won't get the verifier attached. This 2753 * can lead to blocks on disk having the correct content but a stale 2754 * CRC. 2755 * 2756 * It is safe to assume these clean buffers are currently up to date. 2757 * If the buffer is dirtied by a later transaction being replayed, then 2758 * the verifier will be reset to match whatever recover turns that 2759 * buffer into. 2760 */ 2761 lsn = xlog_recover_get_buf_lsn(mp, bp); 2762 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2763 xlog_recover_validate_buf_type(mp, bp, buf_f); 2764 goto out_release; 2765 } 2766 2767 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2768 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2769 if (error) 2770 goto out_release; 2771 } else if (buf_f->blf_flags & 2772 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2773 bool dirty; 2774 2775 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2776 if (!dirty) 2777 goto out_release; 2778 } else { 2779 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2780 } 2781 2782 /* 2783 * Perform delayed write on the buffer. Asynchronous writes will be 2784 * slower when taking into account all the buffers to be flushed. 2785 * 2786 * Also make sure that only inode buffers with good sizes stay in 2787 * the buffer cache. The kernel moves inodes in buffers of 1 block 2788 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode 2789 * buffers in the log can be a different size if the log was generated 2790 * by an older kernel using unclustered inode buffers or a newer kernel 2791 * running with a different inode cluster size. Regardless, if the 2792 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size) 2793 * for *our* value of mp->m_inode_cluster_size, then we need to keep 2794 * the buffer out of the buffer cache so that the buffer won't 2795 * overlap with future reads of those inodes. 2796 */ 2797 if (XFS_DINODE_MAGIC == 2798 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2799 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2800 (__uint32_t)log->l_mp->m_inode_cluster_size))) { 2801 xfs_buf_stale(bp); 2802 error = xfs_bwrite(bp); 2803 } else { 2804 ASSERT(bp->b_target->bt_mount == mp); 2805 bp->b_iodone = xlog_recover_iodone; 2806 xfs_buf_delwri_queue(bp, buffer_list); 2807 } 2808 2809 out_release: 2810 xfs_buf_relse(bp); 2811 return error; 2812 } 2813 2814 /* 2815 * Inode fork owner changes 2816 * 2817 * If we have been told that we have to reparent the inode fork, it's because an 2818 * extent swap operation on a CRC enabled filesystem has been done and we are 2819 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2820 * owners of it. 2821 * 2822 * The complexity here is that we don't have an inode context to work with, so 2823 * after we've replayed the inode we need to instantiate one. This is where the 2824 * fun begins. 2825 * 2826 * We are in the middle of log recovery, so we can't run transactions. That 2827 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2828 * that will result in the corresponding iput() running the inode through 2829 * xfs_inactive(). If we've just replayed an inode core that changes the link 2830 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2831 * transactions (bad!). 2832 * 2833 * So, to avoid this, we instantiate an inode directly from the inode core we've 2834 * just recovered. We have the buffer still locked, and all we really need to 2835 * instantiate is the inode core and the forks being modified. We can do this 2836 * manually, then run the inode btree owner change, and then tear down the 2837 * xfs_inode without having to run any transactions at all. 2838 * 2839 * Also, because we don't have a transaction context available here but need to 2840 * gather all the buffers we modify for writeback so we pass the buffer_list 2841 * instead for the operation to use. 2842 */ 2843 2844 STATIC int 2845 xfs_recover_inode_owner_change( 2846 struct xfs_mount *mp, 2847 struct xfs_dinode *dip, 2848 struct xfs_inode_log_format *in_f, 2849 struct list_head *buffer_list) 2850 { 2851 struct xfs_inode *ip; 2852 int error; 2853 2854 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2855 2856 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2857 if (!ip) 2858 return -ENOMEM; 2859 2860 /* instantiate the inode */ 2861 xfs_dinode_from_disk(&ip->i_d, dip); 2862 ASSERT(ip->i_d.di_version >= 3); 2863 2864 error = xfs_iformat_fork(ip, dip); 2865 if (error) 2866 goto out_free_ip; 2867 2868 2869 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2870 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2871 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2872 ip->i_ino, buffer_list); 2873 if (error) 2874 goto out_free_ip; 2875 } 2876 2877 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2878 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2879 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2880 ip->i_ino, buffer_list); 2881 if (error) 2882 goto out_free_ip; 2883 } 2884 2885 out_free_ip: 2886 xfs_inode_free(ip); 2887 return error; 2888 } 2889 2890 STATIC int 2891 xlog_recover_inode_pass2( 2892 struct xlog *log, 2893 struct list_head *buffer_list, 2894 struct xlog_recover_item *item, 2895 xfs_lsn_t current_lsn) 2896 { 2897 xfs_inode_log_format_t *in_f; 2898 xfs_mount_t *mp = log->l_mp; 2899 xfs_buf_t *bp; 2900 xfs_dinode_t *dip; 2901 int len; 2902 char *src; 2903 char *dest; 2904 int error; 2905 int attr_index; 2906 uint fields; 2907 xfs_icdinode_t *dicp; 2908 uint isize; 2909 int need_free = 0; 2910 2911 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2912 in_f = item->ri_buf[0].i_addr; 2913 } else { 2914 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2915 need_free = 1; 2916 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2917 if (error) 2918 goto error; 2919 } 2920 2921 /* 2922 * Inode buffers can be freed, look out for it, 2923 * and do not replay the inode. 2924 */ 2925 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2926 in_f->ilf_len, 0)) { 2927 error = 0; 2928 trace_xfs_log_recover_inode_cancel(log, in_f); 2929 goto error; 2930 } 2931 trace_xfs_log_recover_inode_recover(log, in_f); 2932 2933 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2934 &xfs_inode_buf_ops); 2935 if (!bp) { 2936 error = -ENOMEM; 2937 goto error; 2938 } 2939 error = bp->b_error; 2940 if (error) { 2941 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2942 goto out_release; 2943 } 2944 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2945 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 2946 2947 /* 2948 * Make sure the place we're flushing out to really looks 2949 * like an inode! 2950 */ 2951 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2952 xfs_alert(mp, 2953 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2954 __func__, dip, bp, in_f->ilf_ino); 2955 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2956 XFS_ERRLEVEL_LOW, mp); 2957 error = -EFSCORRUPTED; 2958 goto out_release; 2959 } 2960 dicp = item->ri_buf[1].i_addr; 2961 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2962 xfs_alert(mp, 2963 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2964 __func__, item, in_f->ilf_ino); 2965 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2966 XFS_ERRLEVEL_LOW, mp); 2967 error = -EFSCORRUPTED; 2968 goto out_release; 2969 } 2970 2971 /* 2972 * If the inode has an LSN in it, recover the inode only if it's less 2973 * than the lsn of the transaction we are replaying. Note: we still 2974 * need to replay an owner change even though the inode is more recent 2975 * than the transaction as there is no guarantee that all the btree 2976 * blocks are more recent than this transaction, too. 2977 */ 2978 if (dip->di_version >= 3) { 2979 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 2980 2981 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2982 trace_xfs_log_recover_inode_skip(log, in_f); 2983 error = 0; 2984 goto out_owner_change; 2985 } 2986 } 2987 2988 /* 2989 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 2990 * are transactional and if ordering is necessary we can determine that 2991 * more accurately by the LSN field in the V3 inode core. Don't trust 2992 * the inode versions we might be changing them here - use the 2993 * superblock flag to determine whether we need to look at di_flushiter 2994 * to skip replay when the on disk inode is newer than the log one 2995 */ 2996 if (!xfs_sb_version_hascrc(&mp->m_sb) && 2997 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2998 /* 2999 * Deal with the wrap case, DI_MAX_FLUSH is less 3000 * than smaller numbers 3001 */ 3002 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 3003 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 3004 /* do nothing */ 3005 } else { 3006 trace_xfs_log_recover_inode_skip(log, in_f); 3007 error = 0; 3008 goto out_release; 3009 } 3010 } 3011 3012 /* Take the opportunity to reset the flush iteration count */ 3013 dicp->di_flushiter = 0; 3014 3015 if (unlikely(S_ISREG(dicp->di_mode))) { 3016 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 3017 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 3018 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 3019 XFS_ERRLEVEL_LOW, mp, dicp); 3020 xfs_alert(mp, 3021 "%s: Bad regular inode log record, rec ptr 0x%p, " 3022 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 3023 __func__, item, dip, bp, in_f->ilf_ino); 3024 error = -EFSCORRUPTED; 3025 goto out_release; 3026 } 3027 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 3028 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 3029 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 3030 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 3031 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 3032 XFS_ERRLEVEL_LOW, mp, dicp); 3033 xfs_alert(mp, 3034 "%s: Bad dir inode log record, rec ptr 0x%p, " 3035 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 3036 __func__, item, dip, bp, in_f->ilf_ino); 3037 error = -EFSCORRUPTED; 3038 goto out_release; 3039 } 3040 } 3041 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 3042 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 3043 XFS_ERRLEVEL_LOW, mp, dicp); 3044 xfs_alert(mp, 3045 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 3046 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 3047 __func__, item, dip, bp, in_f->ilf_ino, 3048 dicp->di_nextents + dicp->di_anextents, 3049 dicp->di_nblocks); 3050 error = -EFSCORRUPTED; 3051 goto out_release; 3052 } 3053 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 3054 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 3055 XFS_ERRLEVEL_LOW, mp, dicp); 3056 xfs_alert(mp, 3057 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 3058 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 3059 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 3060 error = -EFSCORRUPTED; 3061 goto out_release; 3062 } 3063 isize = xfs_icdinode_size(dicp->di_version); 3064 if (unlikely(item->ri_buf[1].i_len > isize)) { 3065 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3066 XFS_ERRLEVEL_LOW, mp, dicp); 3067 xfs_alert(mp, 3068 "%s: Bad inode log record length %d, rec ptr 0x%p", 3069 __func__, item->ri_buf[1].i_len, item); 3070 error = -EFSCORRUPTED; 3071 goto out_release; 3072 } 3073 3074 /* The core is in in-core format */ 3075 xfs_dinode_to_disk(dip, dicp); 3076 3077 /* the rest is in on-disk format */ 3078 if (item->ri_buf[1].i_len > isize) { 3079 memcpy((char *)dip + isize, 3080 item->ri_buf[1].i_addr + isize, 3081 item->ri_buf[1].i_len - isize); 3082 } 3083 3084 fields = in_f->ilf_fields; 3085 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 3086 case XFS_ILOG_DEV: 3087 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3088 break; 3089 case XFS_ILOG_UUID: 3090 memcpy(XFS_DFORK_DPTR(dip), 3091 &in_f->ilf_u.ilfu_uuid, 3092 sizeof(uuid_t)); 3093 break; 3094 } 3095 3096 if (in_f->ilf_size == 2) 3097 goto out_owner_change; 3098 len = item->ri_buf[2].i_len; 3099 src = item->ri_buf[2].i_addr; 3100 ASSERT(in_f->ilf_size <= 4); 3101 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3102 ASSERT(!(fields & XFS_ILOG_DFORK) || 3103 (len == in_f->ilf_dsize)); 3104 3105 switch (fields & XFS_ILOG_DFORK) { 3106 case XFS_ILOG_DDATA: 3107 case XFS_ILOG_DEXT: 3108 memcpy(XFS_DFORK_DPTR(dip), src, len); 3109 break; 3110 3111 case XFS_ILOG_DBROOT: 3112 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3113 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3114 XFS_DFORK_DSIZE(dip, mp)); 3115 break; 3116 3117 default: 3118 /* 3119 * There are no data fork flags set. 3120 */ 3121 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3122 break; 3123 } 3124 3125 /* 3126 * If we logged any attribute data, recover it. There may or 3127 * may not have been any other non-core data logged in this 3128 * transaction. 3129 */ 3130 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3131 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3132 attr_index = 3; 3133 } else { 3134 attr_index = 2; 3135 } 3136 len = item->ri_buf[attr_index].i_len; 3137 src = item->ri_buf[attr_index].i_addr; 3138 ASSERT(len == in_f->ilf_asize); 3139 3140 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3141 case XFS_ILOG_ADATA: 3142 case XFS_ILOG_AEXT: 3143 dest = XFS_DFORK_APTR(dip); 3144 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3145 memcpy(dest, src, len); 3146 break; 3147 3148 case XFS_ILOG_ABROOT: 3149 dest = XFS_DFORK_APTR(dip); 3150 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3151 len, (xfs_bmdr_block_t*)dest, 3152 XFS_DFORK_ASIZE(dip, mp)); 3153 break; 3154 3155 default: 3156 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3157 ASSERT(0); 3158 error = -EIO; 3159 goto out_release; 3160 } 3161 } 3162 3163 out_owner_change: 3164 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) 3165 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3166 buffer_list); 3167 /* re-generate the checksum. */ 3168 xfs_dinode_calc_crc(log->l_mp, dip); 3169 3170 ASSERT(bp->b_target->bt_mount == mp); 3171 bp->b_iodone = xlog_recover_iodone; 3172 xfs_buf_delwri_queue(bp, buffer_list); 3173 3174 out_release: 3175 xfs_buf_relse(bp); 3176 error: 3177 if (need_free) 3178 kmem_free(in_f); 3179 return error; 3180 } 3181 3182 /* 3183 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3184 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3185 * of that type. 3186 */ 3187 STATIC int 3188 xlog_recover_quotaoff_pass1( 3189 struct xlog *log, 3190 struct xlog_recover_item *item) 3191 { 3192 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3193 ASSERT(qoff_f); 3194 3195 /* 3196 * The logitem format's flag tells us if this was user quotaoff, 3197 * group/project quotaoff or both. 3198 */ 3199 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3200 log->l_quotaoffs_flag |= XFS_DQ_USER; 3201 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3202 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3203 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3204 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3205 3206 return 0; 3207 } 3208 3209 /* 3210 * Recover a dquot record 3211 */ 3212 STATIC int 3213 xlog_recover_dquot_pass2( 3214 struct xlog *log, 3215 struct list_head *buffer_list, 3216 struct xlog_recover_item *item, 3217 xfs_lsn_t current_lsn) 3218 { 3219 xfs_mount_t *mp = log->l_mp; 3220 xfs_buf_t *bp; 3221 struct xfs_disk_dquot *ddq, *recddq; 3222 int error; 3223 xfs_dq_logformat_t *dq_f; 3224 uint type; 3225 3226 3227 /* 3228 * Filesystems are required to send in quota flags at mount time. 3229 */ 3230 if (mp->m_qflags == 0) 3231 return 0; 3232 3233 recddq = item->ri_buf[1].i_addr; 3234 if (recddq == NULL) { 3235 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3236 return -EIO; 3237 } 3238 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3239 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3240 item->ri_buf[1].i_len, __func__); 3241 return -EIO; 3242 } 3243 3244 /* 3245 * This type of quotas was turned off, so ignore this record. 3246 */ 3247 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3248 ASSERT(type); 3249 if (log->l_quotaoffs_flag & type) 3250 return 0; 3251 3252 /* 3253 * At this point we know that quota was _not_ turned off. 3254 * Since the mount flags are not indicating to us otherwise, this 3255 * must mean that quota is on, and the dquot needs to be replayed. 3256 * Remember that we may not have fully recovered the superblock yet, 3257 * so we can't do the usual trick of looking at the SB quota bits. 3258 * 3259 * The other possibility, of course, is that the quota subsystem was 3260 * removed since the last mount - ENOSYS. 3261 */ 3262 dq_f = item->ri_buf[0].i_addr; 3263 ASSERT(dq_f); 3264 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 3265 "xlog_recover_dquot_pass2 (log copy)"); 3266 if (error) 3267 return -EIO; 3268 ASSERT(dq_f->qlf_len == 1); 3269 3270 /* 3271 * At this point we are assuming that the dquots have been allocated 3272 * and hence the buffer has valid dquots stamped in it. It should, 3273 * therefore, pass verifier validation. If the dquot is bad, then the 3274 * we'll return an error here, so we don't need to specifically check 3275 * the dquot in the buffer after the verifier has run. 3276 */ 3277 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3278 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3279 &xfs_dquot_buf_ops); 3280 if (error) 3281 return error; 3282 3283 ASSERT(bp); 3284 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3285 3286 /* 3287 * If the dquot has an LSN in it, recover the dquot only if it's less 3288 * than the lsn of the transaction we are replaying. 3289 */ 3290 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3291 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3292 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3293 3294 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3295 goto out_release; 3296 } 3297 } 3298 3299 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3300 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3301 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3302 XFS_DQUOT_CRC_OFF); 3303 } 3304 3305 ASSERT(dq_f->qlf_size == 2); 3306 ASSERT(bp->b_target->bt_mount == mp); 3307 bp->b_iodone = xlog_recover_iodone; 3308 xfs_buf_delwri_queue(bp, buffer_list); 3309 3310 out_release: 3311 xfs_buf_relse(bp); 3312 return 0; 3313 } 3314 3315 /* 3316 * This routine is called to create an in-core extent free intent 3317 * item from the efi format structure which was logged on disk. 3318 * It allocates an in-core efi, copies the extents from the format 3319 * structure into it, and adds the efi to the AIL with the given 3320 * LSN. 3321 */ 3322 STATIC int 3323 xlog_recover_efi_pass2( 3324 struct xlog *log, 3325 struct xlog_recover_item *item, 3326 xfs_lsn_t lsn) 3327 { 3328 int error; 3329 struct xfs_mount *mp = log->l_mp; 3330 struct xfs_efi_log_item *efip; 3331 struct xfs_efi_log_format *efi_formatp; 3332 3333 efi_formatp = item->ri_buf[0].i_addr; 3334 3335 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3336 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3337 if (error) { 3338 xfs_efi_item_free(efip); 3339 return error; 3340 } 3341 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3342 3343 spin_lock(&log->l_ailp->xa_lock); 3344 /* 3345 * The EFI has two references. One for the EFD and one for EFI to ensure 3346 * it makes it into the AIL. Insert the EFI into the AIL directly and 3347 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3348 * AIL lock. 3349 */ 3350 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3351 xfs_efi_release(efip); 3352 return 0; 3353 } 3354 3355 3356 /* 3357 * This routine is called when an EFD format structure is found in a committed 3358 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3359 * was still in the log. To do this it searches the AIL for the EFI with an id 3360 * equal to that in the EFD format structure. If we find it we drop the EFD 3361 * reference, which removes the EFI from the AIL and frees it. 3362 */ 3363 STATIC int 3364 xlog_recover_efd_pass2( 3365 struct xlog *log, 3366 struct xlog_recover_item *item) 3367 { 3368 xfs_efd_log_format_t *efd_formatp; 3369 xfs_efi_log_item_t *efip = NULL; 3370 xfs_log_item_t *lip; 3371 __uint64_t efi_id; 3372 struct xfs_ail_cursor cur; 3373 struct xfs_ail *ailp = log->l_ailp; 3374 3375 efd_formatp = item->ri_buf[0].i_addr; 3376 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3377 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3378 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3379 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3380 efi_id = efd_formatp->efd_efi_id; 3381 3382 /* 3383 * Search for the EFI with the id in the EFD format structure in the 3384 * AIL. 3385 */ 3386 spin_lock(&ailp->xa_lock); 3387 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3388 while (lip != NULL) { 3389 if (lip->li_type == XFS_LI_EFI) { 3390 efip = (xfs_efi_log_item_t *)lip; 3391 if (efip->efi_format.efi_id == efi_id) { 3392 /* 3393 * Drop the EFD reference to the EFI. This 3394 * removes the EFI from the AIL and frees it. 3395 */ 3396 spin_unlock(&ailp->xa_lock); 3397 xfs_efi_release(efip); 3398 spin_lock(&ailp->xa_lock); 3399 break; 3400 } 3401 } 3402 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3403 } 3404 3405 xfs_trans_ail_cursor_done(&cur); 3406 spin_unlock(&ailp->xa_lock); 3407 3408 return 0; 3409 } 3410 3411 /* 3412 * This routine is called when an inode create format structure is found in a 3413 * committed transaction in the log. It's purpose is to initialise the inodes 3414 * being allocated on disk. This requires us to get inode cluster buffers that 3415 * match the range to be intialised, stamped with inode templates and written 3416 * by delayed write so that subsequent modifications will hit the cached buffer 3417 * and only need writing out at the end of recovery. 3418 */ 3419 STATIC int 3420 xlog_recover_do_icreate_pass2( 3421 struct xlog *log, 3422 struct list_head *buffer_list, 3423 xlog_recover_item_t *item) 3424 { 3425 struct xfs_mount *mp = log->l_mp; 3426 struct xfs_icreate_log *icl; 3427 xfs_agnumber_t agno; 3428 xfs_agblock_t agbno; 3429 unsigned int count; 3430 unsigned int isize; 3431 xfs_agblock_t length; 3432 int blks_per_cluster; 3433 int bb_per_cluster; 3434 int cancel_count; 3435 int nbufs; 3436 int i; 3437 3438 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3439 if (icl->icl_type != XFS_LI_ICREATE) { 3440 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3441 return -EINVAL; 3442 } 3443 3444 if (icl->icl_size != 1) { 3445 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3446 return -EINVAL; 3447 } 3448 3449 agno = be32_to_cpu(icl->icl_ag); 3450 if (agno >= mp->m_sb.sb_agcount) { 3451 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3452 return -EINVAL; 3453 } 3454 agbno = be32_to_cpu(icl->icl_agbno); 3455 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3456 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3457 return -EINVAL; 3458 } 3459 isize = be32_to_cpu(icl->icl_isize); 3460 if (isize != mp->m_sb.sb_inodesize) { 3461 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3462 return -EINVAL; 3463 } 3464 count = be32_to_cpu(icl->icl_count); 3465 if (!count) { 3466 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3467 return -EINVAL; 3468 } 3469 length = be32_to_cpu(icl->icl_length); 3470 if (!length || length >= mp->m_sb.sb_agblocks) { 3471 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3472 return -EINVAL; 3473 } 3474 3475 /* 3476 * The inode chunk is either full or sparse and we only support 3477 * m_ialloc_min_blks sized sparse allocations at this time. 3478 */ 3479 if (length != mp->m_ialloc_blks && 3480 length != mp->m_ialloc_min_blks) { 3481 xfs_warn(log->l_mp, 3482 "%s: unsupported chunk length", __FUNCTION__); 3483 return -EINVAL; 3484 } 3485 3486 /* verify inode count is consistent with extent length */ 3487 if ((count >> mp->m_sb.sb_inopblog) != length) { 3488 xfs_warn(log->l_mp, 3489 "%s: inconsistent inode count and chunk length", 3490 __FUNCTION__); 3491 return -EINVAL; 3492 } 3493 3494 /* 3495 * The icreate transaction can cover multiple cluster buffers and these 3496 * buffers could have been freed and reused. Check the individual 3497 * buffers for cancellation so we don't overwrite anything written after 3498 * a cancellation. 3499 */ 3500 blks_per_cluster = xfs_icluster_size_fsb(mp); 3501 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster); 3502 nbufs = length / blks_per_cluster; 3503 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3504 xfs_daddr_t daddr; 3505 3506 daddr = XFS_AGB_TO_DADDR(mp, agno, 3507 agbno + i * blks_per_cluster); 3508 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3509 cancel_count++; 3510 } 3511 3512 /* 3513 * We currently only use icreate for a single allocation at a time. This 3514 * means we should expect either all or none of the buffers to be 3515 * cancelled. Be conservative and skip replay if at least one buffer is 3516 * cancelled, but warn the user that something is awry if the buffers 3517 * are not consistent. 3518 * 3519 * XXX: This must be refined to only skip cancelled clusters once we use 3520 * icreate for multiple chunk allocations. 3521 */ 3522 ASSERT(!cancel_count || cancel_count == nbufs); 3523 if (cancel_count) { 3524 if (cancel_count != nbufs) 3525 xfs_warn(mp, 3526 "WARNING: partial inode chunk cancellation, skipped icreate."); 3527 trace_xfs_log_recover_icreate_cancel(log, icl); 3528 return 0; 3529 } 3530 3531 trace_xfs_log_recover_icreate_recover(log, icl); 3532 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3533 length, be32_to_cpu(icl->icl_gen)); 3534 } 3535 3536 STATIC void 3537 xlog_recover_buffer_ra_pass2( 3538 struct xlog *log, 3539 struct xlog_recover_item *item) 3540 { 3541 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3542 struct xfs_mount *mp = log->l_mp; 3543 3544 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3545 buf_f->blf_len, buf_f->blf_flags)) { 3546 return; 3547 } 3548 3549 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3550 buf_f->blf_len, NULL); 3551 } 3552 3553 STATIC void 3554 xlog_recover_inode_ra_pass2( 3555 struct xlog *log, 3556 struct xlog_recover_item *item) 3557 { 3558 struct xfs_inode_log_format ilf_buf; 3559 struct xfs_inode_log_format *ilfp; 3560 struct xfs_mount *mp = log->l_mp; 3561 int error; 3562 3563 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3564 ilfp = item->ri_buf[0].i_addr; 3565 } else { 3566 ilfp = &ilf_buf; 3567 memset(ilfp, 0, sizeof(*ilfp)); 3568 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3569 if (error) 3570 return; 3571 } 3572 3573 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3574 return; 3575 3576 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3577 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3578 } 3579 3580 STATIC void 3581 xlog_recover_dquot_ra_pass2( 3582 struct xlog *log, 3583 struct xlog_recover_item *item) 3584 { 3585 struct xfs_mount *mp = log->l_mp; 3586 struct xfs_disk_dquot *recddq; 3587 struct xfs_dq_logformat *dq_f; 3588 uint type; 3589 int len; 3590 3591 3592 if (mp->m_qflags == 0) 3593 return; 3594 3595 recddq = item->ri_buf[1].i_addr; 3596 if (recddq == NULL) 3597 return; 3598 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 3599 return; 3600 3601 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3602 ASSERT(type); 3603 if (log->l_quotaoffs_flag & type) 3604 return; 3605 3606 dq_f = item->ri_buf[0].i_addr; 3607 ASSERT(dq_f); 3608 ASSERT(dq_f->qlf_len == 1); 3609 3610 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 3611 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 3612 return; 3613 3614 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 3615 &xfs_dquot_buf_ra_ops); 3616 } 3617 3618 STATIC void 3619 xlog_recover_ra_pass2( 3620 struct xlog *log, 3621 struct xlog_recover_item *item) 3622 { 3623 switch (ITEM_TYPE(item)) { 3624 case XFS_LI_BUF: 3625 xlog_recover_buffer_ra_pass2(log, item); 3626 break; 3627 case XFS_LI_INODE: 3628 xlog_recover_inode_ra_pass2(log, item); 3629 break; 3630 case XFS_LI_DQUOT: 3631 xlog_recover_dquot_ra_pass2(log, item); 3632 break; 3633 case XFS_LI_EFI: 3634 case XFS_LI_EFD: 3635 case XFS_LI_QUOTAOFF: 3636 default: 3637 break; 3638 } 3639 } 3640 3641 STATIC int 3642 xlog_recover_commit_pass1( 3643 struct xlog *log, 3644 struct xlog_recover *trans, 3645 struct xlog_recover_item *item) 3646 { 3647 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 3648 3649 switch (ITEM_TYPE(item)) { 3650 case XFS_LI_BUF: 3651 return xlog_recover_buffer_pass1(log, item); 3652 case XFS_LI_QUOTAOFF: 3653 return xlog_recover_quotaoff_pass1(log, item); 3654 case XFS_LI_INODE: 3655 case XFS_LI_EFI: 3656 case XFS_LI_EFD: 3657 case XFS_LI_DQUOT: 3658 case XFS_LI_ICREATE: 3659 /* nothing to do in pass 1 */ 3660 return 0; 3661 default: 3662 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3663 __func__, ITEM_TYPE(item)); 3664 ASSERT(0); 3665 return -EIO; 3666 } 3667 } 3668 3669 STATIC int 3670 xlog_recover_commit_pass2( 3671 struct xlog *log, 3672 struct xlog_recover *trans, 3673 struct list_head *buffer_list, 3674 struct xlog_recover_item *item) 3675 { 3676 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 3677 3678 switch (ITEM_TYPE(item)) { 3679 case XFS_LI_BUF: 3680 return xlog_recover_buffer_pass2(log, buffer_list, item, 3681 trans->r_lsn); 3682 case XFS_LI_INODE: 3683 return xlog_recover_inode_pass2(log, buffer_list, item, 3684 trans->r_lsn); 3685 case XFS_LI_EFI: 3686 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 3687 case XFS_LI_EFD: 3688 return xlog_recover_efd_pass2(log, item); 3689 case XFS_LI_DQUOT: 3690 return xlog_recover_dquot_pass2(log, buffer_list, item, 3691 trans->r_lsn); 3692 case XFS_LI_ICREATE: 3693 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 3694 case XFS_LI_QUOTAOFF: 3695 /* nothing to do in pass2 */ 3696 return 0; 3697 default: 3698 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 3699 __func__, ITEM_TYPE(item)); 3700 ASSERT(0); 3701 return -EIO; 3702 } 3703 } 3704 3705 STATIC int 3706 xlog_recover_items_pass2( 3707 struct xlog *log, 3708 struct xlog_recover *trans, 3709 struct list_head *buffer_list, 3710 struct list_head *item_list) 3711 { 3712 struct xlog_recover_item *item; 3713 int error = 0; 3714 3715 list_for_each_entry(item, item_list, ri_list) { 3716 error = xlog_recover_commit_pass2(log, trans, 3717 buffer_list, item); 3718 if (error) 3719 return error; 3720 } 3721 3722 return error; 3723 } 3724 3725 /* 3726 * Perform the transaction. 3727 * 3728 * If the transaction modifies a buffer or inode, do it now. Otherwise, 3729 * EFIs and EFDs get queued up by adding entries into the AIL for them. 3730 */ 3731 STATIC int 3732 xlog_recover_commit_trans( 3733 struct xlog *log, 3734 struct xlog_recover *trans, 3735 int pass) 3736 { 3737 int error = 0; 3738 int error2; 3739 int items_queued = 0; 3740 struct xlog_recover_item *item; 3741 struct xlog_recover_item *next; 3742 LIST_HEAD (buffer_list); 3743 LIST_HEAD (ra_list); 3744 LIST_HEAD (done_list); 3745 3746 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 3747 3748 hlist_del(&trans->r_list); 3749 3750 error = xlog_recover_reorder_trans(log, trans, pass); 3751 if (error) 3752 return error; 3753 3754 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 3755 switch (pass) { 3756 case XLOG_RECOVER_PASS1: 3757 error = xlog_recover_commit_pass1(log, trans, item); 3758 break; 3759 case XLOG_RECOVER_PASS2: 3760 xlog_recover_ra_pass2(log, item); 3761 list_move_tail(&item->ri_list, &ra_list); 3762 items_queued++; 3763 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 3764 error = xlog_recover_items_pass2(log, trans, 3765 &buffer_list, &ra_list); 3766 list_splice_tail_init(&ra_list, &done_list); 3767 items_queued = 0; 3768 } 3769 3770 break; 3771 default: 3772 ASSERT(0); 3773 } 3774 3775 if (error) 3776 goto out; 3777 } 3778 3779 out: 3780 if (!list_empty(&ra_list)) { 3781 if (!error) 3782 error = xlog_recover_items_pass2(log, trans, 3783 &buffer_list, &ra_list); 3784 list_splice_tail_init(&ra_list, &done_list); 3785 } 3786 3787 if (!list_empty(&done_list)) 3788 list_splice_init(&done_list, &trans->r_itemq); 3789 3790 error2 = xfs_buf_delwri_submit(&buffer_list); 3791 return error ? error : error2; 3792 } 3793 3794 STATIC void 3795 xlog_recover_add_item( 3796 struct list_head *head) 3797 { 3798 xlog_recover_item_t *item; 3799 3800 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 3801 INIT_LIST_HEAD(&item->ri_list); 3802 list_add_tail(&item->ri_list, head); 3803 } 3804 3805 STATIC int 3806 xlog_recover_add_to_cont_trans( 3807 struct xlog *log, 3808 struct xlog_recover *trans, 3809 char *dp, 3810 int len) 3811 { 3812 xlog_recover_item_t *item; 3813 char *ptr, *old_ptr; 3814 int old_len; 3815 3816 /* 3817 * If the transaction is empty, the header was split across this and the 3818 * previous record. Copy the rest of the header. 3819 */ 3820 if (list_empty(&trans->r_itemq)) { 3821 ASSERT(len <= sizeof(struct xfs_trans_header)); 3822 if (len > sizeof(struct xfs_trans_header)) { 3823 xfs_warn(log->l_mp, "%s: bad header length", __func__); 3824 return -EIO; 3825 } 3826 3827 xlog_recover_add_item(&trans->r_itemq); 3828 ptr = (char *)&trans->r_theader + 3829 sizeof(struct xfs_trans_header) - len; 3830 memcpy(ptr, dp, len); 3831 return 0; 3832 } 3833 3834 /* take the tail entry */ 3835 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 3836 3837 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 3838 old_len = item->ri_buf[item->ri_cnt-1].i_len; 3839 3840 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); 3841 memcpy(&ptr[old_len], dp, len); 3842 item->ri_buf[item->ri_cnt-1].i_len += len; 3843 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 3844 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 3845 return 0; 3846 } 3847 3848 /* 3849 * The next region to add is the start of a new region. It could be 3850 * a whole region or it could be the first part of a new region. Because 3851 * of this, the assumption here is that the type and size fields of all 3852 * format structures fit into the first 32 bits of the structure. 3853 * 3854 * This works because all regions must be 32 bit aligned. Therefore, we 3855 * either have both fields or we have neither field. In the case we have 3856 * neither field, the data part of the region is zero length. We only have 3857 * a log_op_header and can throw away the header since a new one will appear 3858 * later. If we have at least 4 bytes, then we can determine how many regions 3859 * will appear in the current log item. 3860 */ 3861 STATIC int 3862 xlog_recover_add_to_trans( 3863 struct xlog *log, 3864 struct xlog_recover *trans, 3865 char *dp, 3866 int len) 3867 { 3868 xfs_inode_log_format_t *in_f; /* any will do */ 3869 xlog_recover_item_t *item; 3870 char *ptr; 3871 3872 if (!len) 3873 return 0; 3874 if (list_empty(&trans->r_itemq)) { 3875 /* we need to catch log corruptions here */ 3876 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 3877 xfs_warn(log->l_mp, "%s: bad header magic number", 3878 __func__); 3879 ASSERT(0); 3880 return -EIO; 3881 } 3882 3883 if (len > sizeof(struct xfs_trans_header)) { 3884 xfs_warn(log->l_mp, "%s: bad header length", __func__); 3885 ASSERT(0); 3886 return -EIO; 3887 } 3888 3889 /* 3890 * The transaction header can be arbitrarily split across op 3891 * records. If we don't have the whole thing here, copy what we 3892 * do have and handle the rest in the next record. 3893 */ 3894 if (len == sizeof(struct xfs_trans_header)) 3895 xlog_recover_add_item(&trans->r_itemq); 3896 memcpy(&trans->r_theader, dp, len); 3897 return 0; 3898 } 3899 3900 ptr = kmem_alloc(len, KM_SLEEP); 3901 memcpy(ptr, dp, len); 3902 in_f = (xfs_inode_log_format_t *)ptr; 3903 3904 /* take the tail entry */ 3905 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 3906 if (item->ri_total != 0 && 3907 item->ri_total == item->ri_cnt) { 3908 /* tail item is in use, get a new one */ 3909 xlog_recover_add_item(&trans->r_itemq); 3910 item = list_entry(trans->r_itemq.prev, 3911 xlog_recover_item_t, ri_list); 3912 } 3913 3914 if (item->ri_total == 0) { /* first region to be added */ 3915 if (in_f->ilf_size == 0 || 3916 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 3917 xfs_warn(log->l_mp, 3918 "bad number of regions (%d) in inode log format", 3919 in_f->ilf_size); 3920 ASSERT(0); 3921 kmem_free(ptr); 3922 return -EIO; 3923 } 3924 3925 item->ri_total = in_f->ilf_size; 3926 item->ri_buf = 3927 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 3928 KM_SLEEP); 3929 } 3930 ASSERT(item->ri_total > item->ri_cnt); 3931 /* Description region is ri_buf[0] */ 3932 item->ri_buf[item->ri_cnt].i_addr = ptr; 3933 item->ri_buf[item->ri_cnt].i_len = len; 3934 item->ri_cnt++; 3935 trace_xfs_log_recover_item_add(log, trans, item, 0); 3936 return 0; 3937 } 3938 3939 /* 3940 * Free up any resources allocated by the transaction 3941 * 3942 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 3943 */ 3944 STATIC void 3945 xlog_recover_free_trans( 3946 struct xlog_recover *trans) 3947 { 3948 xlog_recover_item_t *item, *n; 3949 int i; 3950 3951 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 3952 /* Free the regions in the item. */ 3953 list_del(&item->ri_list); 3954 for (i = 0; i < item->ri_cnt; i++) 3955 kmem_free(item->ri_buf[i].i_addr); 3956 /* Free the item itself */ 3957 kmem_free(item->ri_buf); 3958 kmem_free(item); 3959 } 3960 /* Free the transaction recover structure */ 3961 kmem_free(trans); 3962 } 3963 3964 /* 3965 * On error or completion, trans is freed. 3966 */ 3967 STATIC int 3968 xlog_recovery_process_trans( 3969 struct xlog *log, 3970 struct xlog_recover *trans, 3971 char *dp, 3972 unsigned int len, 3973 unsigned int flags, 3974 int pass) 3975 { 3976 int error = 0; 3977 bool freeit = false; 3978 3979 /* mask off ophdr transaction container flags */ 3980 flags &= ~XLOG_END_TRANS; 3981 if (flags & XLOG_WAS_CONT_TRANS) 3982 flags &= ~XLOG_CONTINUE_TRANS; 3983 3984 /* 3985 * Callees must not free the trans structure. We'll decide if we need to 3986 * free it or not based on the operation being done and it's result. 3987 */ 3988 switch (flags) { 3989 /* expected flag values */ 3990 case 0: 3991 case XLOG_CONTINUE_TRANS: 3992 error = xlog_recover_add_to_trans(log, trans, dp, len); 3993 break; 3994 case XLOG_WAS_CONT_TRANS: 3995 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 3996 break; 3997 case XLOG_COMMIT_TRANS: 3998 error = xlog_recover_commit_trans(log, trans, pass); 3999 /* success or fail, we are now done with this transaction. */ 4000 freeit = true; 4001 break; 4002 4003 /* unexpected flag values */ 4004 case XLOG_UNMOUNT_TRANS: 4005 /* just skip trans */ 4006 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 4007 freeit = true; 4008 break; 4009 case XLOG_START_TRANS: 4010 default: 4011 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 4012 ASSERT(0); 4013 error = -EIO; 4014 break; 4015 } 4016 if (error || freeit) 4017 xlog_recover_free_trans(trans); 4018 return error; 4019 } 4020 4021 /* 4022 * Lookup the transaction recovery structure associated with the ID in the 4023 * current ophdr. If the transaction doesn't exist and the start flag is set in 4024 * the ophdr, then allocate a new transaction for future ID matches to find. 4025 * Either way, return what we found during the lookup - an existing transaction 4026 * or nothing. 4027 */ 4028 STATIC struct xlog_recover * 4029 xlog_recover_ophdr_to_trans( 4030 struct hlist_head rhash[], 4031 struct xlog_rec_header *rhead, 4032 struct xlog_op_header *ohead) 4033 { 4034 struct xlog_recover *trans; 4035 xlog_tid_t tid; 4036 struct hlist_head *rhp; 4037 4038 tid = be32_to_cpu(ohead->oh_tid); 4039 rhp = &rhash[XLOG_RHASH(tid)]; 4040 hlist_for_each_entry(trans, rhp, r_list) { 4041 if (trans->r_log_tid == tid) 4042 return trans; 4043 } 4044 4045 /* 4046 * skip over non-start transaction headers - we could be 4047 * processing slack space before the next transaction starts 4048 */ 4049 if (!(ohead->oh_flags & XLOG_START_TRANS)) 4050 return NULL; 4051 4052 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 4053 4054 /* 4055 * This is a new transaction so allocate a new recovery container to 4056 * hold the recovery ops that will follow. 4057 */ 4058 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 4059 trans->r_log_tid = tid; 4060 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 4061 INIT_LIST_HEAD(&trans->r_itemq); 4062 INIT_HLIST_NODE(&trans->r_list); 4063 hlist_add_head(&trans->r_list, rhp); 4064 4065 /* 4066 * Nothing more to do for this ophdr. Items to be added to this new 4067 * transaction will be in subsequent ophdr containers. 4068 */ 4069 return NULL; 4070 } 4071 4072 STATIC int 4073 xlog_recover_process_ophdr( 4074 struct xlog *log, 4075 struct hlist_head rhash[], 4076 struct xlog_rec_header *rhead, 4077 struct xlog_op_header *ohead, 4078 char *dp, 4079 char *end, 4080 int pass) 4081 { 4082 struct xlog_recover *trans; 4083 unsigned int len; 4084 4085 /* Do we understand who wrote this op? */ 4086 if (ohead->oh_clientid != XFS_TRANSACTION && 4087 ohead->oh_clientid != XFS_LOG) { 4088 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4089 __func__, ohead->oh_clientid); 4090 ASSERT(0); 4091 return -EIO; 4092 } 4093 4094 /* 4095 * Check the ophdr contains all the data it is supposed to contain. 4096 */ 4097 len = be32_to_cpu(ohead->oh_len); 4098 if (dp + len > end) { 4099 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4100 WARN_ON(1); 4101 return -EIO; 4102 } 4103 4104 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4105 if (!trans) { 4106 /* nothing to do, so skip over this ophdr */ 4107 return 0; 4108 } 4109 4110 return xlog_recovery_process_trans(log, trans, dp, len, 4111 ohead->oh_flags, pass); 4112 } 4113 4114 /* 4115 * There are two valid states of the r_state field. 0 indicates that the 4116 * transaction structure is in a normal state. We have either seen the 4117 * start of the transaction or the last operation we added was not a partial 4118 * operation. If the last operation we added to the transaction was a 4119 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4120 * 4121 * NOTE: skip LRs with 0 data length. 4122 */ 4123 STATIC int 4124 xlog_recover_process_data( 4125 struct xlog *log, 4126 struct hlist_head rhash[], 4127 struct xlog_rec_header *rhead, 4128 char *dp, 4129 int pass) 4130 { 4131 struct xlog_op_header *ohead; 4132 char *end; 4133 int num_logops; 4134 int error; 4135 4136 end = dp + be32_to_cpu(rhead->h_len); 4137 num_logops = be32_to_cpu(rhead->h_num_logops); 4138 4139 /* check the log format matches our own - else we can't recover */ 4140 if (xlog_header_check_recover(log->l_mp, rhead)) 4141 return -EIO; 4142 4143 while ((dp < end) && num_logops) { 4144 4145 ohead = (struct xlog_op_header *)dp; 4146 dp += sizeof(*ohead); 4147 ASSERT(dp <= end); 4148 4149 /* errors will abort recovery */ 4150 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4151 dp, end, pass); 4152 if (error) 4153 return error; 4154 4155 dp += be32_to_cpu(ohead->oh_len); 4156 num_logops--; 4157 } 4158 return 0; 4159 } 4160 4161 /* 4162 * Process an extent free intent item that was recovered from 4163 * the log. We need to free the extents that it describes. 4164 */ 4165 STATIC int 4166 xlog_recover_process_efi( 4167 xfs_mount_t *mp, 4168 xfs_efi_log_item_t *efip) 4169 { 4170 xfs_efd_log_item_t *efdp; 4171 xfs_trans_t *tp; 4172 int i; 4173 int error = 0; 4174 xfs_extent_t *extp; 4175 xfs_fsblock_t startblock_fsb; 4176 4177 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 4178 4179 /* 4180 * First check the validity of the extents described by the 4181 * EFI. If any are bad, then assume that all are bad and 4182 * just toss the EFI. 4183 */ 4184 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 4185 extp = &(efip->efi_format.efi_extents[i]); 4186 startblock_fsb = XFS_BB_TO_FSB(mp, 4187 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 4188 if ((startblock_fsb == 0) || 4189 (extp->ext_len == 0) || 4190 (startblock_fsb >= mp->m_sb.sb_dblocks) || 4191 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 4192 /* 4193 * This will pull the EFI from the AIL and 4194 * free the memory associated with it. 4195 */ 4196 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 4197 xfs_efi_release(efip); 4198 return -EIO; 4199 } 4200 } 4201 4202 tp = xfs_trans_alloc(mp, 0); 4203 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 4204 if (error) 4205 goto abort_error; 4206 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 4207 4208 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 4209 extp = &(efip->efi_format.efi_extents[i]); 4210 error = xfs_trans_free_extent(tp, efdp, extp->ext_start, 4211 extp->ext_len); 4212 if (error) 4213 goto abort_error; 4214 4215 } 4216 4217 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 4218 error = xfs_trans_commit(tp); 4219 return error; 4220 4221 abort_error: 4222 xfs_trans_cancel(tp); 4223 return error; 4224 } 4225 4226 /* 4227 * When this is called, all of the EFIs which did not have 4228 * corresponding EFDs should be in the AIL. What we do now 4229 * is free the extents associated with each one. 4230 * 4231 * Since we process the EFIs in normal transactions, they 4232 * will be removed at some point after the commit. This prevents 4233 * us from just walking down the list processing each one. 4234 * We'll use a flag in the EFI to skip those that we've already 4235 * processed and use the AIL iteration mechanism's generation 4236 * count to try to speed this up at least a bit. 4237 * 4238 * When we start, we know that the EFIs are the only things in 4239 * the AIL. As we process them, however, other items are added 4240 * to the AIL. Since everything added to the AIL must come after 4241 * everything already in the AIL, we stop processing as soon as 4242 * we see something other than an EFI in the AIL. 4243 */ 4244 STATIC int 4245 xlog_recover_process_efis( 4246 struct xlog *log) 4247 { 4248 struct xfs_log_item *lip; 4249 struct xfs_efi_log_item *efip; 4250 int error = 0; 4251 struct xfs_ail_cursor cur; 4252 struct xfs_ail *ailp; 4253 4254 ailp = log->l_ailp; 4255 spin_lock(&ailp->xa_lock); 4256 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4257 while (lip != NULL) { 4258 /* 4259 * We're done when we see something other than an EFI. 4260 * There should be no EFIs left in the AIL now. 4261 */ 4262 if (lip->li_type != XFS_LI_EFI) { 4263 #ifdef DEBUG 4264 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4265 ASSERT(lip->li_type != XFS_LI_EFI); 4266 #endif 4267 break; 4268 } 4269 4270 /* 4271 * Skip EFIs that we've already processed. 4272 */ 4273 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4274 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 4275 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4276 continue; 4277 } 4278 4279 spin_unlock(&ailp->xa_lock); 4280 error = xlog_recover_process_efi(log->l_mp, efip); 4281 spin_lock(&ailp->xa_lock); 4282 if (error) 4283 goto out; 4284 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4285 } 4286 out: 4287 xfs_trans_ail_cursor_done(&cur); 4288 spin_unlock(&ailp->xa_lock); 4289 return error; 4290 } 4291 4292 /* 4293 * A cancel occurs when the mount has failed and we're bailing out. Release all 4294 * pending EFIs so they don't pin the AIL. 4295 */ 4296 STATIC int 4297 xlog_recover_cancel_efis( 4298 struct xlog *log) 4299 { 4300 struct xfs_log_item *lip; 4301 struct xfs_efi_log_item *efip; 4302 int error = 0; 4303 struct xfs_ail_cursor cur; 4304 struct xfs_ail *ailp; 4305 4306 ailp = log->l_ailp; 4307 spin_lock(&ailp->xa_lock); 4308 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4309 while (lip != NULL) { 4310 /* 4311 * We're done when we see something other than an EFI. 4312 * There should be no EFIs left in the AIL now. 4313 */ 4314 if (lip->li_type != XFS_LI_EFI) { 4315 #ifdef DEBUG 4316 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4317 ASSERT(lip->li_type != XFS_LI_EFI); 4318 #endif 4319 break; 4320 } 4321 4322 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4323 4324 spin_unlock(&ailp->xa_lock); 4325 xfs_efi_release(efip); 4326 spin_lock(&ailp->xa_lock); 4327 4328 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4329 } 4330 4331 xfs_trans_ail_cursor_done(&cur); 4332 spin_unlock(&ailp->xa_lock); 4333 return error; 4334 } 4335 4336 /* 4337 * This routine performs a transaction to null out a bad inode pointer 4338 * in an agi unlinked inode hash bucket. 4339 */ 4340 STATIC void 4341 xlog_recover_clear_agi_bucket( 4342 xfs_mount_t *mp, 4343 xfs_agnumber_t agno, 4344 int bucket) 4345 { 4346 xfs_trans_t *tp; 4347 xfs_agi_t *agi; 4348 xfs_buf_t *agibp; 4349 int offset; 4350 int error; 4351 4352 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 4353 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0); 4354 if (error) 4355 goto out_abort; 4356 4357 error = xfs_read_agi(mp, tp, agno, &agibp); 4358 if (error) 4359 goto out_abort; 4360 4361 agi = XFS_BUF_TO_AGI(agibp); 4362 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 4363 offset = offsetof(xfs_agi_t, agi_unlinked) + 4364 (sizeof(xfs_agino_t) * bucket); 4365 xfs_trans_log_buf(tp, agibp, offset, 4366 (offset + sizeof(xfs_agino_t) - 1)); 4367 4368 error = xfs_trans_commit(tp); 4369 if (error) 4370 goto out_error; 4371 return; 4372 4373 out_abort: 4374 xfs_trans_cancel(tp); 4375 out_error: 4376 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 4377 return; 4378 } 4379 4380 STATIC xfs_agino_t 4381 xlog_recover_process_one_iunlink( 4382 struct xfs_mount *mp, 4383 xfs_agnumber_t agno, 4384 xfs_agino_t agino, 4385 int bucket) 4386 { 4387 struct xfs_buf *ibp; 4388 struct xfs_dinode *dip; 4389 struct xfs_inode *ip; 4390 xfs_ino_t ino; 4391 int error; 4392 4393 ino = XFS_AGINO_TO_INO(mp, agno, agino); 4394 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 4395 if (error) 4396 goto fail; 4397 4398 /* 4399 * Get the on disk inode to find the next inode in the bucket. 4400 */ 4401 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 4402 if (error) 4403 goto fail_iput; 4404 4405 ASSERT(ip->i_d.di_nlink == 0); 4406 ASSERT(ip->i_d.di_mode != 0); 4407 4408 /* setup for the next pass */ 4409 agino = be32_to_cpu(dip->di_next_unlinked); 4410 xfs_buf_relse(ibp); 4411 4412 /* 4413 * Prevent any DMAPI event from being sent when the reference on 4414 * the inode is dropped. 4415 */ 4416 ip->i_d.di_dmevmask = 0; 4417 4418 IRELE(ip); 4419 return agino; 4420 4421 fail_iput: 4422 IRELE(ip); 4423 fail: 4424 /* 4425 * We can't read in the inode this bucket points to, or this inode 4426 * is messed up. Just ditch this bucket of inodes. We will lose 4427 * some inodes and space, but at least we won't hang. 4428 * 4429 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 4430 * clear the inode pointer in the bucket. 4431 */ 4432 xlog_recover_clear_agi_bucket(mp, agno, bucket); 4433 return NULLAGINO; 4434 } 4435 4436 /* 4437 * xlog_iunlink_recover 4438 * 4439 * This is called during recovery to process any inodes which 4440 * we unlinked but not freed when the system crashed. These 4441 * inodes will be on the lists in the AGI blocks. What we do 4442 * here is scan all the AGIs and fully truncate and free any 4443 * inodes found on the lists. Each inode is removed from the 4444 * lists when it has been fully truncated and is freed. The 4445 * freeing of the inode and its removal from the list must be 4446 * atomic. 4447 */ 4448 STATIC void 4449 xlog_recover_process_iunlinks( 4450 struct xlog *log) 4451 { 4452 xfs_mount_t *mp; 4453 xfs_agnumber_t agno; 4454 xfs_agi_t *agi; 4455 xfs_buf_t *agibp; 4456 xfs_agino_t agino; 4457 int bucket; 4458 int error; 4459 uint mp_dmevmask; 4460 4461 mp = log->l_mp; 4462 4463 /* 4464 * Prevent any DMAPI event from being sent while in this function. 4465 */ 4466 mp_dmevmask = mp->m_dmevmask; 4467 mp->m_dmevmask = 0; 4468 4469 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4470 /* 4471 * Find the agi for this ag. 4472 */ 4473 error = xfs_read_agi(mp, NULL, agno, &agibp); 4474 if (error) { 4475 /* 4476 * AGI is b0rked. Don't process it. 4477 * 4478 * We should probably mark the filesystem as corrupt 4479 * after we've recovered all the ag's we can.... 4480 */ 4481 continue; 4482 } 4483 /* 4484 * Unlock the buffer so that it can be acquired in the normal 4485 * course of the transaction to truncate and free each inode. 4486 * Because we are not racing with anyone else here for the AGI 4487 * buffer, we don't even need to hold it locked to read the 4488 * initial unlinked bucket entries out of the buffer. We keep 4489 * buffer reference though, so that it stays pinned in memory 4490 * while we need the buffer. 4491 */ 4492 agi = XFS_BUF_TO_AGI(agibp); 4493 xfs_buf_unlock(agibp); 4494 4495 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 4496 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 4497 while (agino != NULLAGINO) { 4498 agino = xlog_recover_process_one_iunlink(mp, 4499 agno, agino, bucket); 4500 } 4501 } 4502 xfs_buf_rele(agibp); 4503 } 4504 4505 mp->m_dmevmask = mp_dmevmask; 4506 } 4507 4508 STATIC int 4509 xlog_unpack_data( 4510 struct xlog_rec_header *rhead, 4511 char *dp, 4512 struct xlog *log) 4513 { 4514 int i, j, k; 4515 4516 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 4517 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 4518 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 4519 dp += BBSIZE; 4520 } 4521 4522 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 4523 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 4524 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 4525 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 4526 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 4527 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 4528 dp += BBSIZE; 4529 } 4530 } 4531 4532 return 0; 4533 } 4534 4535 /* 4536 * CRC check, unpack and process a log record. 4537 */ 4538 STATIC int 4539 xlog_recover_process( 4540 struct xlog *log, 4541 struct hlist_head rhash[], 4542 struct xlog_rec_header *rhead, 4543 char *dp, 4544 int pass) 4545 { 4546 int error; 4547 __le32 crc; 4548 4549 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 4550 4551 /* 4552 * Nothing else to do if this is a CRC verification pass. Just return 4553 * if this a record with a non-zero crc. Unfortunately, mkfs always 4554 * sets h_crc to 0 so we must consider this valid even on v5 supers. 4555 * Otherwise, return EFSBADCRC on failure so the callers up the stack 4556 * know precisely what failed. 4557 */ 4558 if (pass == XLOG_RECOVER_CRCPASS) { 4559 if (rhead->h_crc && crc != rhead->h_crc) 4560 return -EFSBADCRC; 4561 return 0; 4562 } 4563 4564 /* 4565 * We're in the normal recovery path. Issue a warning if and only if the 4566 * CRC in the header is non-zero. This is an advisory warning and the 4567 * zero CRC check prevents warnings from being emitted when upgrading 4568 * the kernel from one that does not add CRCs by default. 4569 */ 4570 if (crc != rhead->h_crc) { 4571 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 4572 xfs_alert(log->l_mp, 4573 "log record CRC mismatch: found 0x%x, expected 0x%x.", 4574 le32_to_cpu(rhead->h_crc), 4575 le32_to_cpu(crc)); 4576 xfs_hex_dump(dp, 32); 4577 } 4578 4579 /* 4580 * If the filesystem is CRC enabled, this mismatch becomes a 4581 * fatal log corruption failure. 4582 */ 4583 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 4584 return -EFSCORRUPTED; 4585 } 4586 4587 error = xlog_unpack_data(rhead, dp, log); 4588 if (error) 4589 return error; 4590 4591 return xlog_recover_process_data(log, rhash, rhead, dp, pass); 4592 } 4593 4594 STATIC int 4595 xlog_valid_rec_header( 4596 struct xlog *log, 4597 struct xlog_rec_header *rhead, 4598 xfs_daddr_t blkno) 4599 { 4600 int hlen; 4601 4602 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 4603 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 4604 XFS_ERRLEVEL_LOW, log->l_mp); 4605 return -EFSCORRUPTED; 4606 } 4607 if (unlikely( 4608 (!rhead->h_version || 4609 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 4610 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 4611 __func__, be32_to_cpu(rhead->h_version)); 4612 return -EIO; 4613 } 4614 4615 /* LR body must have data or it wouldn't have been written */ 4616 hlen = be32_to_cpu(rhead->h_len); 4617 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 4618 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 4619 XFS_ERRLEVEL_LOW, log->l_mp); 4620 return -EFSCORRUPTED; 4621 } 4622 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 4623 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 4624 XFS_ERRLEVEL_LOW, log->l_mp); 4625 return -EFSCORRUPTED; 4626 } 4627 return 0; 4628 } 4629 4630 /* 4631 * Read the log from tail to head and process the log records found. 4632 * Handle the two cases where the tail and head are in the same cycle 4633 * and where the active portion of the log wraps around the end of 4634 * the physical log separately. The pass parameter is passed through 4635 * to the routines called to process the data and is not looked at 4636 * here. 4637 */ 4638 STATIC int 4639 xlog_do_recovery_pass( 4640 struct xlog *log, 4641 xfs_daddr_t head_blk, 4642 xfs_daddr_t tail_blk, 4643 int pass, 4644 xfs_daddr_t *first_bad) /* out: first bad log rec */ 4645 { 4646 xlog_rec_header_t *rhead; 4647 xfs_daddr_t blk_no; 4648 xfs_daddr_t rhead_blk; 4649 char *offset; 4650 xfs_buf_t *hbp, *dbp; 4651 int error = 0, h_size, h_len; 4652 int bblks, split_bblks; 4653 int hblks, split_hblks, wrapped_hblks; 4654 struct hlist_head rhash[XLOG_RHASH_SIZE]; 4655 4656 ASSERT(head_blk != tail_blk); 4657 rhead_blk = 0; 4658 4659 /* 4660 * Read the header of the tail block and get the iclog buffer size from 4661 * h_size. Use this to tell how many sectors make up the log header. 4662 */ 4663 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 4664 /* 4665 * When using variable length iclogs, read first sector of 4666 * iclog header and extract the header size from it. Get a 4667 * new hbp that is the correct size. 4668 */ 4669 hbp = xlog_get_bp(log, 1); 4670 if (!hbp) 4671 return -ENOMEM; 4672 4673 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 4674 if (error) 4675 goto bread_err1; 4676 4677 rhead = (xlog_rec_header_t *)offset; 4678 error = xlog_valid_rec_header(log, rhead, tail_blk); 4679 if (error) 4680 goto bread_err1; 4681 4682 /* 4683 * xfsprogs has a bug where record length is based on lsunit but 4684 * h_size (iclog size) is hardcoded to 32k. Now that we 4685 * unconditionally CRC verify the unmount record, this means the 4686 * log buffer can be too small for the record and cause an 4687 * overrun. 4688 * 4689 * Detect this condition here. Use lsunit for the buffer size as 4690 * long as this looks like the mkfs case. Otherwise, return an 4691 * error to avoid a buffer overrun. 4692 */ 4693 h_size = be32_to_cpu(rhead->h_size); 4694 h_len = be32_to_cpu(rhead->h_len); 4695 if (h_len > h_size) { 4696 if (h_len <= log->l_mp->m_logbsize && 4697 be32_to_cpu(rhead->h_num_logops) == 1) { 4698 xfs_warn(log->l_mp, 4699 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 4700 h_size, log->l_mp->m_logbsize); 4701 h_size = log->l_mp->m_logbsize; 4702 } else 4703 return -EFSCORRUPTED; 4704 } 4705 4706 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 4707 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 4708 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 4709 if (h_size % XLOG_HEADER_CYCLE_SIZE) 4710 hblks++; 4711 xlog_put_bp(hbp); 4712 hbp = xlog_get_bp(log, hblks); 4713 } else { 4714 hblks = 1; 4715 } 4716 } else { 4717 ASSERT(log->l_sectBBsize == 1); 4718 hblks = 1; 4719 hbp = xlog_get_bp(log, 1); 4720 h_size = XLOG_BIG_RECORD_BSIZE; 4721 } 4722 4723 if (!hbp) 4724 return -ENOMEM; 4725 dbp = xlog_get_bp(log, BTOBB(h_size)); 4726 if (!dbp) { 4727 xlog_put_bp(hbp); 4728 return -ENOMEM; 4729 } 4730 4731 memset(rhash, 0, sizeof(rhash)); 4732 blk_no = rhead_blk = tail_blk; 4733 if (tail_blk > head_blk) { 4734 /* 4735 * Perform recovery around the end of the physical log. 4736 * When the head is not on the same cycle number as the tail, 4737 * we can't do a sequential recovery. 4738 */ 4739 while (blk_no < log->l_logBBsize) { 4740 /* 4741 * Check for header wrapping around physical end-of-log 4742 */ 4743 offset = hbp->b_addr; 4744 split_hblks = 0; 4745 wrapped_hblks = 0; 4746 if (blk_no + hblks <= log->l_logBBsize) { 4747 /* Read header in one read */ 4748 error = xlog_bread(log, blk_no, hblks, hbp, 4749 &offset); 4750 if (error) 4751 goto bread_err2; 4752 } else { 4753 /* This LR is split across physical log end */ 4754 if (blk_no != log->l_logBBsize) { 4755 /* some data before physical log end */ 4756 ASSERT(blk_no <= INT_MAX); 4757 split_hblks = log->l_logBBsize - (int)blk_no; 4758 ASSERT(split_hblks > 0); 4759 error = xlog_bread(log, blk_no, 4760 split_hblks, hbp, 4761 &offset); 4762 if (error) 4763 goto bread_err2; 4764 } 4765 4766 /* 4767 * Note: this black magic still works with 4768 * large sector sizes (non-512) only because: 4769 * - we increased the buffer size originally 4770 * by 1 sector giving us enough extra space 4771 * for the second read; 4772 * - the log start is guaranteed to be sector 4773 * aligned; 4774 * - we read the log end (LR header start) 4775 * _first_, then the log start (LR header end) 4776 * - order is important. 4777 */ 4778 wrapped_hblks = hblks - split_hblks; 4779 error = xlog_bread_offset(log, 0, 4780 wrapped_hblks, hbp, 4781 offset + BBTOB(split_hblks)); 4782 if (error) 4783 goto bread_err2; 4784 } 4785 rhead = (xlog_rec_header_t *)offset; 4786 error = xlog_valid_rec_header(log, rhead, 4787 split_hblks ? blk_no : 0); 4788 if (error) 4789 goto bread_err2; 4790 4791 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4792 blk_no += hblks; 4793 4794 /* Read in data for log record */ 4795 if (blk_no + bblks <= log->l_logBBsize) { 4796 error = xlog_bread(log, blk_no, bblks, dbp, 4797 &offset); 4798 if (error) 4799 goto bread_err2; 4800 } else { 4801 /* This log record is split across the 4802 * physical end of log */ 4803 offset = dbp->b_addr; 4804 split_bblks = 0; 4805 if (blk_no != log->l_logBBsize) { 4806 /* some data is before the physical 4807 * end of log */ 4808 ASSERT(!wrapped_hblks); 4809 ASSERT(blk_no <= INT_MAX); 4810 split_bblks = 4811 log->l_logBBsize - (int)blk_no; 4812 ASSERT(split_bblks > 0); 4813 error = xlog_bread(log, blk_no, 4814 split_bblks, dbp, 4815 &offset); 4816 if (error) 4817 goto bread_err2; 4818 } 4819 4820 /* 4821 * Note: this black magic still works with 4822 * large sector sizes (non-512) only because: 4823 * - we increased the buffer size originally 4824 * by 1 sector giving us enough extra space 4825 * for the second read; 4826 * - the log start is guaranteed to be sector 4827 * aligned; 4828 * - we read the log end (LR header start) 4829 * _first_, then the log start (LR header end) 4830 * - order is important. 4831 */ 4832 error = xlog_bread_offset(log, 0, 4833 bblks - split_bblks, dbp, 4834 offset + BBTOB(split_bblks)); 4835 if (error) 4836 goto bread_err2; 4837 } 4838 4839 error = xlog_recover_process(log, rhash, rhead, offset, 4840 pass); 4841 if (error) 4842 goto bread_err2; 4843 4844 blk_no += bblks; 4845 rhead_blk = blk_no; 4846 } 4847 4848 ASSERT(blk_no >= log->l_logBBsize); 4849 blk_no -= log->l_logBBsize; 4850 rhead_blk = blk_no; 4851 } 4852 4853 /* read first part of physical log */ 4854 while (blk_no < head_blk) { 4855 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 4856 if (error) 4857 goto bread_err2; 4858 4859 rhead = (xlog_rec_header_t *)offset; 4860 error = xlog_valid_rec_header(log, rhead, blk_no); 4861 if (error) 4862 goto bread_err2; 4863 4864 /* blocks in data section */ 4865 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 4866 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 4867 &offset); 4868 if (error) 4869 goto bread_err2; 4870 4871 error = xlog_recover_process(log, rhash, rhead, offset, pass); 4872 if (error) 4873 goto bread_err2; 4874 4875 blk_no += bblks + hblks; 4876 rhead_blk = blk_no; 4877 } 4878 4879 bread_err2: 4880 xlog_put_bp(dbp); 4881 bread_err1: 4882 xlog_put_bp(hbp); 4883 4884 if (error && first_bad) 4885 *first_bad = rhead_blk; 4886 4887 return error; 4888 } 4889 4890 /* 4891 * Do the recovery of the log. We actually do this in two phases. 4892 * The two passes are necessary in order to implement the function 4893 * of cancelling a record written into the log. The first pass 4894 * determines those things which have been cancelled, and the 4895 * second pass replays log items normally except for those which 4896 * have been cancelled. The handling of the replay and cancellations 4897 * takes place in the log item type specific routines. 4898 * 4899 * The table of items which have cancel records in the log is allocated 4900 * and freed at this level, since only here do we know when all of 4901 * the log recovery has been completed. 4902 */ 4903 STATIC int 4904 xlog_do_log_recovery( 4905 struct xlog *log, 4906 xfs_daddr_t head_blk, 4907 xfs_daddr_t tail_blk) 4908 { 4909 int error, i; 4910 4911 ASSERT(head_blk != tail_blk); 4912 4913 /* 4914 * First do a pass to find all of the cancelled buf log items. 4915 * Store them in the buf_cancel_table for use in the second pass. 4916 */ 4917 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 4918 sizeof(struct list_head), 4919 KM_SLEEP); 4920 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4921 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 4922 4923 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4924 XLOG_RECOVER_PASS1, NULL); 4925 if (error != 0) { 4926 kmem_free(log->l_buf_cancel_table); 4927 log->l_buf_cancel_table = NULL; 4928 return error; 4929 } 4930 /* 4931 * Then do a second pass to actually recover the items in the log. 4932 * When it is complete free the table of buf cancel items. 4933 */ 4934 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 4935 XLOG_RECOVER_PASS2, NULL); 4936 #ifdef DEBUG 4937 if (!error) { 4938 int i; 4939 4940 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 4941 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 4942 } 4943 #endif /* DEBUG */ 4944 4945 kmem_free(log->l_buf_cancel_table); 4946 log->l_buf_cancel_table = NULL; 4947 4948 return error; 4949 } 4950 4951 /* 4952 * Do the actual recovery 4953 */ 4954 STATIC int 4955 xlog_do_recover( 4956 struct xlog *log, 4957 xfs_daddr_t head_blk, 4958 xfs_daddr_t tail_blk) 4959 { 4960 int error; 4961 xfs_buf_t *bp; 4962 xfs_sb_t *sbp; 4963 4964 /* 4965 * First replay the images in the log. 4966 */ 4967 error = xlog_do_log_recovery(log, head_blk, tail_blk); 4968 if (error) 4969 return error; 4970 4971 /* 4972 * If IO errors happened during recovery, bail out. 4973 */ 4974 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 4975 return -EIO; 4976 } 4977 4978 /* 4979 * We now update the tail_lsn since much of the recovery has completed 4980 * and there may be space available to use. If there were no extent 4981 * or iunlinks, we can free up the entire log and set the tail_lsn to 4982 * be the last_sync_lsn. This was set in xlog_find_tail to be the 4983 * lsn of the last known good LR on disk. If there are extent frees 4984 * or iunlinks they will have some entries in the AIL; so we look at 4985 * the AIL to determine how to set the tail_lsn. 4986 */ 4987 xlog_assign_tail_lsn(log->l_mp); 4988 4989 /* 4990 * Now that we've finished replaying all buffer and inode 4991 * updates, re-read in the superblock and reverify it. 4992 */ 4993 bp = xfs_getsb(log->l_mp, 0); 4994 XFS_BUF_UNDONE(bp); 4995 ASSERT(!(XFS_BUF_ISWRITE(bp))); 4996 XFS_BUF_READ(bp); 4997 XFS_BUF_UNASYNC(bp); 4998 bp->b_ops = &xfs_sb_buf_ops; 4999 5000 error = xfs_buf_submit_wait(bp); 5001 if (error) { 5002 if (!XFS_FORCED_SHUTDOWN(log->l_mp)) { 5003 xfs_buf_ioerror_alert(bp, __func__); 5004 ASSERT(0); 5005 } 5006 xfs_buf_relse(bp); 5007 return error; 5008 } 5009 5010 /* Convert superblock from on-disk format */ 5011 sbp = &log->l_mp->m_sb; 5012 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 5013 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 5014 ASSERT(xfs_sb_good_version(sbp)); 5015 xfs_reinit_percpu_counters(log->l_mp); 5016 5017 xfs_buf_relse(bp); 5018 5019 5020 xlog_recover_check_summary(log); 5021 5022 /* Normal transactions can now occur */ 5023 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 5024 return 0; 5025 } 5026 5027 /* 5028 * Perform recovery and re-initialize some log variables in xlog_find_tail. 5029 * 5030 * Return error or zero. 5031 */ 5032 int 5033 xlog_recover( 5034 struct xlog *log) 5035 { 5036 xfs_daddr_t head_blk, tail_blk; 5037 int error; 5038 5039 /* find the tail of the log */ 5040 error = xlog_find_tail(log, &head_blk, &tail_blk); 5041 if (error) 5042 return error; 5043 5044 /* 5045 * The superblock was read before the log was available and thus the LSN 5046 * could not be verified. Check the superblock LSN against the current 5047 * LSN now that it's known. 5048 */ 5049 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 5050 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 5051 return -EINVAL; 5052 5053 if (tail_blk != head_blk) { 5054 /* There used to be a comment here: 5055 * 5056 * disallow recovery on read-only mounts. note -- mount 5057 * checks for ENOSPC and turns it into an intelligent 5058 * error message. 5059 * ...but this is no longer true. Now, unless you specify 5060 * NORECOVERY (in which case this function would never be 5061 * called), we just go ahead and recover. We do this all 5062 * under the vfs layer, so we can get away with it unless 5063 * the device itself is read-only, in which case we fail. 5064 */ 5065 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5066 return error; 5067 } 5068 5069 /* 5070 * Version 5 superblock log feature mask validation. We know the 5071 * log is dirty so check if there are any unknown log features 5072 * in what we need to recover. If there are unknown features 5073 * (e.g. unsupported transactions, then simply reject the 5074 * attempt at recovery before touching anything. 5075 */ 5076 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5077 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5078 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5079 xfs_warn(log->l_mp, 5080 "Superblock has unknown incompatible log features (0x%x) enabled.", 5081 (log->l_mp->m_sb.sb_features_log_incompat & 5082 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5083 xfs_warn(log->l_mp, 5084 "The log can not be fully and/or safely recovered by this kernel."); 5085 xfs_warn(log->l_mp, 5086 "Please recover the log on a kernel that supports the unknown features."); 5087 return -EINVAL; 5088 } 5089 5090 /* 5091 * Delay log recovery if the debug hook is set. This is debug 5092 * instrumention to coordinate simulation of I/O failures with 5093 * log recovery. 5094 */ 5095 if (xfs_globals.log_recovery_delay) { 5096 xfs_notice(log->l_mp, 5097 "Delaying log recovery for %d seconds.", 5098 xfs_globals.log_recovery_delay); 5099 msleep(xfs_globals.log_recovery_delay * 1000); 5100 } 5101 5102 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5103 log->l_mp->m_logname ? log->l_mp->m_logname 5104 : "internal"); 5105 5106 error = xlog_do_recover(log, head_blk, tail_blk); 5107 log->l_flags |= XLOG_RECOVERY_NEEDED; 5108 } 5109 return error; 5110 } 5111 5112 /* 5113 * In the first part of recovery we replay inodes and buffers and build 5114 * up the list of extent free items which need to be processed. Here 5115 * we process the extent free items and clean up the on disk unlinked 5116 * inode lists. This is separated from the first part of recovery so 5117 * that the root and real-time bitmap inodes can be read in from disk in 5118 * between the two stages. This is necessary so that we can free space 5119 * in the real-time portion of the file system. 5120 */ 5121 int 5122 xlog_recover_finish( 5123 struct xlog *log) 5124 { 5125 /* 5126 * Now we're ready to do the transactions needed for the 5127 * rest of recovery. Start with completing all the extent 5128 * free intent records and then process the unlinked inode 5129 * lists. At this point, we essentially run in normal mode 5130 * except that we're still performing recovery actions 5131 * rather than accepting new requests. 5132 */ 5133 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5134 int error; 5135 error = xlog_recover_process_efis(log); 5136 if (error) { 5137 xfs_alert(log->l_mp, "Failed to recover EFIs"); 5138 return error; 5139 } 5140 /* 5141 * Sync the log to get all the EFIs out of the AIL. 5142 * This isn't absolutely necessary, but it helps in 5143 * case the unlink transactions would have problems 5144 * pushing the EFIs out of the way. 5145 */ 5146 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5147 5148 xlog_recover_process_iunlinks(log); 5149 5150 xlog_recover_check_summary(log); 5151 5152 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5153 log->l_mp->m_logname ? log->l_mp->m_logname 5154 : "internal"); 5155 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5156 } else { 5157 xfs_info(log->l_mp, "Ending clean mount"); 5158 } 5159 return 0; 5160 } 5161 5162 int 5163 xlog_recover_cancel( 5164 struct xlog *log) 5165 { 5166 int error = 0; 5167 5168 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5169 error = xlog_recover_cancel_efis(log); 5170 5171 return error; 5172 } 5173 5174 #if defined(DEBUG) 5175 /* 5176 * Read all of the agf and agi counters and check that they 5177 * are consistent with the superblock counters. 5178 */ 5179 void 5180 xlog_recover_check_summary( 5181 struct xlog *log) 5182 { 5183 xfs_mount_t *mp; 5184 xfs_agf_t *agfp; 5185 xfs_buf_t *agfbp; 5186 xfs_buf_t *agibp; 5187 xfs_agnumber_t agno; 5188 __uint64_t freeblks; 5189 __uint64_t itotal; 5190 __uint64_t ifree; 5191 int error; 5192 5193 mp = log->l_mp; 5194 5195 freeblks = 0LL; 5196 itotal = 0LL; 5197 ifree = 0LL; 5198 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5199 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5200 if (error) { 5201 xfs_alert(mp, "%s agf read failed agno %d error %d", 5202 __func__, agno, error); 5203 } else { 5204 agfp = XFS_BUF_TO_AGF(agfbp); 5205 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5206 be32_to_cpu(agfp->agf_flcount); 5207 xfs_buf_relse(agfbp); 5208 } 5209 5210 error = xfs_read_agi(mp, NULL, agno, &agibp); 5211 if (error) { 5212 xfs_alert(mp, "%s agi read failed agno %d error %d", 5213 __func__, agno, error); 5214 } else { 5215 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5216 5217 itotal += be32_to_cpu(agi->agi_count); 5218 ifree += be32_to_cpu(agi->agi_freecount); 5219 xfs_buf_relse(agibp); 5220 } 5221 } 5222 } 5223 #endif /* DEBUG */ 5224