xref: /linux/fs/xfs/xfs_inode.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  * Copyright (c) 2000-2003 Silicon Graphics, Inc.  All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11  *
12  * Further, this software is distributed without any warranty that it is
13  * free of the rightful claim of any third person regarding infringement
14  * or the like.  Any license provided herein, whether implied or
15  * otherwise, applies only to this software file.  Patent licenses, if
16  * any, provided herein do not apply to combinations of this program with
17  * other software, or any other product whatsoever.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24  * Mountain View, CA  94043, or:
25  *
26  * http://www.sgi.com
27  *
28  * For further information regarding this notice, see:
29  *
30  * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31  */
32 
33 #include "xfs.h"
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
36 #include "xfs_inum.h"
37 #include "xfs_log.h"
38 #include "xfs_trans.h"
39 #include "xfs_trans_priv.h"
40 #include "xfs_sb.h"
41 #include "xfs_ag.h"
42 #include "xfs_dir.h"
43 #include "xfs_dir2.h"
44 #include "xfs_dmapi.h"
45 #include "xfs_mount.h"
46 #include "xfs_alloc_btree.h"
47 #include "xfs_bmap_btree.h"
48 #include "xfs_ialloc_btree.h"
49 #include "xfs_btree.h"
50 #include "xfs_imap.h"
51 #include "xfs_alloc.h"
52 #include "xfs_ialloc.h"
53 #include "xfs_attr_sf.h"
54 #include "xfs_dir_sf.h"
55 #include "xfs_dir2_sf.h"
56 #include "xfs_dinode.h"
57 #include "xfs_inode_item.h"
58 #include "xfs_inode.h"
59 #include "xfs_bmap.h"
60 #include "xfs_buf_item.h"
61 #include "xfs_rw.h"
62 #include "xfs_error.h"
63 #include "xfs_bit.h"
64 #include "xfs_utils.h"
65 #include "xfs_dir2_trace.h"
66 #include "xfs_quota.h"
67 #include "xfs_mac.h"
68 #include "xfs_acl.h"
69 
70 
71 kmem_zone_t *xfs_ifork_zone;
72 kmem_zone_t *xfs_inode_zone;
73 kmem_zone_t *xfs_chashlist_zone;
74 
75 /*
76  * Used in xfs_itruncate().  This is the maximum number of extents
77  * freed from a file in a single transaction.
78  */
79 #define	XFS_ITRUNC_MAX_EXTENTS	2
80 
81 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
82 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
83 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
84 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
85 
86 
87 #ifdef DEBUG
88 /*
89  * Make sure that the extents in the given memory buffer
90  * are valid.
91  */
92 STATIC void
93 xfs_validate_extents(
94 	xfs_bmbt_rec_t		*ep,
95 	int			nrecs,
96 	int			disk,
97 	xfs_exntfmt_t		fmt)
98 {
99 	xfs_bmbt_irec_t		irec;
100 	xfs_bmbt_rec_t		rec;
101 	int			i;
102 
103 	for (i = 0; i < nrecs; i++) {
104 		rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
105 		rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
106 		if (disk)
107 			xfs_bmbt_disk_get_all(&rec, &irec);
108 		else
109 			xfs_bmbt_get_all(&rec, &irec);
110 		if (fmt == XFS_EXTFMT_NOSTATE)
111 			ASSERT(irec.br_state == XFS_EXT_NORM);
112 		ep++;
113 	}
114 }
115 #else /* DEBUG */
116 #define xfs_validate_extents(ep, nrecs, disk, fmt)
117 #endif /* DEBUG */
118 
119 /*
120  * Check that none of the inode's in the buffer have a next
121  * unlinked field of 0.
122  */
123 #if defined(DEBUG)
124 void
125 xfs_inobp_check(
126 	xfs_mount_t	*mp,
127 	xfs_buf_t	*bp)
128 {
129 	int		i;
130 	int		j;
131 	xfs_dinode_t	*dip;
132 
133 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
134 
135 	for (i = 0; i < j; i++) {
136 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
137 					i * mp->m_sb.sb_inodesize);
138 		if (!dip->di_next_unlinked)  {
139 			xfs_fs_cmn_err(CE_ALERT, mp,
140 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
141 				bp);
142 			ASSERT(dip->di_next_unlinked);
143 		}
144 	}
145 }
146 #endif
147 
148 /*
149  * This routine is called to map an inode number within a file
150  * system to the buffer containing the on-disk version of the
151  * inode.  It returns a pointer to the buffer containing the
152  * on-disk inode in the bpp parameter, and in the dip parameter
153  * it returns a pointer to the on-disk inode within that buffer.
154  *
155  * If a non-zero error is returned, then the contents of bpp and
156  * dipp are undefined.
157  *
158  * Use xfs_imap() to determine the size and location of the
159  * buffer to read from disk.
160  */
161 STATIC int
162 xfs_inotobp(
163 	xfs_mount_t	*mp,
164 	xfs_trans_t	*tp,
165 	xfs_ino_t	ino,
166 	xfs_dinode_t	**dipp,
167 	xfs_buf_t	**bpp,
168 	int		*offset)
169 {
170 	int		di_ok;
171 	xfs_imap_t	imap;
172 	xfs_buf_t	*bp;
173 	int		error;
174 	xfs_dinode_t	*dip;
175 
176 	/*
177 	 * Call the space managment code to find the location of the
178 	 * inode on disk.
179 	 */
180 	imap.im_blkno = 0;
181 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
182 	if (error != 0) {
183 		cmn_err(CE_WARN,
184 	"xfs_inotobp: xfs_imap()  returned an "
185 	"error %d on %s.  Returning error.", error, mp->m_fsname);
186 		return error;
187 	}
188 
189 	/*
190 	 * If the inode number maps to a block outside the bounds of the
191 	 * file system then return NULL rather than calling read_buf
192 	 * and panicing when we get an error from the driver.
193 	 */
194 	if ((imap.im_blkno + imap.im_len) >
195 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
196 		cmn_err(CE_WARN,
197 	"xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
198 	"of the file system %s.  Returning EINVAL.",
199 			imap.im_blkno, imap.im_len,mp->m_fsname);
200 		return XFS_ERROR(EINVAL);
201 	}
202 
203 	/*
204 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
205 	 * default to just a read_buf() call.
206 	 */
207 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
208 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
209 
210 	if (error) {
211 		cmn_err(CE_WARN,
212 	"xfs_inotobp: xfs_trans_read_buf()  returned an "
213 	"error %d on %s.  Returning error.", error, mp->m_fsname);
214 		return error;
215 	}
216 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
217 	di_ok =
218 		INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
219 		XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
220 	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
221 			XFS_RANDOM_ITOBP_INOTOBP))) {
222 		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
223 		xfs_trans_brelse(tp, bp);
224 		cmn_err(CE_WARN,
225 	"xfs_inotobp: XFS_TEST_ERROR()  returned an "
226 	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
227 		return XFS_ERROR(EFSCORRUPTED);
228 	}
229 
230 	xfs_inobp_check(mp, bp);
231 
232 	/*
233 	 * Set *dipp to point to the on-disk inode in the buffer.
234 	 */
235 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
236 	*bpp = bp;
237 	*offset = imap.im_boffset;
238 	return 0;
239 }
240 
241 
242 /*
243  * This routine is called to map an inode to the buffer containing
244  * the on-disk version of the inode.  It returns a pointer to the
245  * buffer containing the on-disk inode in the bpp parameter, and in
246  * the dip parameter it returns a pointer to the on-disk inode within
247  * that buffer.
248  *
249  * If a non-zero error is returned, then the contents of bpp and
250  * dipp are undefined.
251  *
252  * If the inode is new and has not yet been initialized, use xfs_imap()
253  * to determine the size and location of the buffer to read from disk.
254  * If the inode has already been mapped to its buffer and read in once,
255  * then use the mapping information stored in the inode rather than
256  * calling xfs_imap().  This allows us to avoid the overhead of looking
257  * at the inode btree for small block file systems (see xfs_dilocate()).
258  * We can tell whether the inode has been mapped in before by comparing
259  * its disk block address to 0.  Only uninitialized inodes will have
260  * 0 for the disk block address.
261  */
262 int
263 xfs_itobp(
264 	xfs_mount_t	*mp,
265 	xfs_trans_t	*tp,
266 	xfs_inode_t	*ip,
267 	xfs_dinode_t	**dipp,
268 	xfs_buf_t	**bpp,
269 	xfs_daddr_t	bno)
270 {
271 	xfs_buf_t	*bp;
272 	int		error;
273 	xfs_imap_t	imap;
274 #ifdef __KERNEL__
275 	int		i;
276 	int		ni;
277 #endif
278 
279 	if (ip->i_blkno == (xfs_daddr_t)0) {
280 		/*
281 		 * Call the space management code to find the location of the
282 		 * inode on disk.
283 		 */
284 		imap.im_blkno = bno;
285 		error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
286 		if (error != 0) {
287 			return error;
288 		}
289 
290 		/*
291 		 * If the inode number maps to a block outside the bounds
292 		 * of the file system then return NULL rather than calling
293 		 * read_buf and panicing when we get an error from the
294 		 * driver.
295 		 */
296 		if ((imap.im_blkno + imap.im_len) >
297 		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
298 #ifdef DEBUG
299 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
300 					"(imap.im_blkno (0x%llx) "
301 					"+ imap.im_len (0x%llx)) > "
302 					" XFS_FSB_TO_BB(mp, "
303 					"mp->m_sb.sb_dblocks) (0x%llx)",
304 					(unsigned long long) imap.im_blkno,
305 					(unsigned long long) imap.im_len,
306 					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
307 #endif /* DEBUG */
308 			return XFS_ERROR(EINVAL);
309 		}
310 
311 		/*
312 		 * Fill in the fields in the inode that will be used to
313 		 * map the inode to its buffer from now on.
314 		 */
315 		ip->i_blkno = imap.im_blkno;
316 		ip->i_len = imap.im_len;
317 		ip->i_boffset = imap.im_boffset;
318 	} else {
319 		/*
320 		 * We've already mapped the inode once, so just use the
321 		 * mapping that we saved the first time.
322 		 */
323 		imap.im_blkno = ip->i_blkno;
324 		imap.im_len = ip->i_len;
325 		imap.im_boffset = ip->i_boffset;
326 	}
327 	ASSERT(bno == 0 || bno == imap.im_blkno);
328 
329 	/*
330 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
331 	 * default to just a read_buf() call.
332 	 */
333 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
334 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
335 
336 	if (error) {
337 #ifdef DEBUG
338 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
339 				"xfs_trans_read_buf() returned error %d, "
340 				"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
341 				error, (unsigned long long) imap.im_blkno,
342 				(unsigned long long) imap.im_len);
343 #endif /* DEBUG */
344 		return error;
345 	}
346 #ifdef __KERNEL__
347 	/*
348 	 * Validate the magic number and version of every inode in the buffer
349 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
350 	 */
351 #ifdef DEBUG
352 	ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
353 #else
354 	ni = 1;
355 #endif
356 	for (i = 0; i < ni; i++) {
357 		int		di_ok;
358 		xfs_dinode_t	*dip;
359 
360 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
361 					(i << mp->m_sb.sb_inodelog));
362 		di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
363 			    XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
364 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
365 				 XFS_RANDOM_ITOBP_INOTOBP))) {
366 #ifdef DEBUG
367 			prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
368 				mp->m_ddev_targp,
369 				(unsigned long long)imap.im_blkno, i,
370 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
371 #endif
372 			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
373 					     mp, dip);
374 			xfs_trans_brelse(tp, bp);
375 			return XFS_ERROR(EFSCORRUPTED);
376 		}
377 	}
378 #endif	/* __KERNEL__ */
379 
380 	xfs_inobp_check(mp, bp);
381 
382 	/*
383 	 * Mark the buffer as an inode buffer now that it looks good
384 	 */
385 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
386 
387 	/*
388 	 * Set *dipp to point to the on-disk inode in the buffer.
389 	 */
390 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
391 	*bpp = bp;
392 	return 0;
393 }
394 
395 /*
396  * Move inode type and inode format specific information from the
397  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
398  * this means set if_rdev to the proper value.  For files, directories,
399  * and symlinks this means to bring in the in-line data or extent
400  * pointers.  For a file in B-tree format, only the root is immediately
401  * brought in-core.  The rest will be in-lined in if_extents when it
402  * is first referenced (see xfs_iread_extents()).
403  */
404 STATIC int
405 xfs_iformat(
406 	xfs_inode_t		*ip,
407 	xfs_dinode_t		*dip)
408 {
409 	xfs_attr_shortform_t	*atp;
410 	int			size;
411 	int			error;
412 	xfs_fsize_t             di_size;
413 	ip->i_df.if_ext_max =
414 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
415 	error = 0;
416 
417 	if (unlikely(
418 	    INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
419 		INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
420 	    INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
421 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
422 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
423 			"  Unmount and run xfs_repair.",
424 			(unsigned long long)ip->i_ino,
425 			(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
426 			    + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
427 			(unsigned long long)
428 			INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
429 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
430 				     ip->i_mount, dip);
431 		return XFS_ERROR(EFSCORRUPTED);
432 	}
433 
434 	if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
435 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
436 			"corrupt dinode %Lu, forkoff = 0x%x."
437 			"  Unmount and run xfs_repair.",
438 			(unsigned long long)ip->i_ino,
439 			(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
440 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
441 				     ip->i_mount, dip);
442 		return XFS_ERROR(EFSCORRUPTED);
443 	}
444 
445 	switch (ip->i_d.di_mode & S_IFMT) {
446 	case S_IFIFO:
447 	case S_IFCHR:
448 	case S_IFBLK:
449 	case S_IFSOCK:
450 		if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
451 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
452 					      ip->i_mount, dip);
453 			return XFS_ERROR(EFSCORRUPTED);
454 		}
455 		ip->i_d.di_size = 0;
456 		ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
457 		break;
458 
459 	case S_IFREG:
460 	case S_IFLNK:
461 	case S_IFDIR:
462 		switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
463 		case XFS_DINODE_FMT_LOCAL:
464 			/*
465 			 * no local regular files yet
466 			 */
467 			if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
468 				xfs_fs_cmn_err(CE_WARN, ip->i_mount,
469 					"corrupt inode (local format for regular file) %Lu.  Unmount and run xfs_repair.",
470 					(unsigned long long) ip->i_ino);
471 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
472 						     XFS_ERRLEVEL_LOW,
473 						     ip->i_mount, dip);
474 				return XFS_ERROR(EFSCORRUPTED);
475 			}
476 
477 			di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
478 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
479 				xfs_fs_cmn_err(CE_WARN, ip->i_mount,
480 					"corrupt inode %Lu (bad size %Ld for local inode).  Unmount and run xfs_repair.",
481 					(unsigned long long) ip->i_ino,
482 					(long long) di_size);
483 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
484 						     XFS_ERRLEVEL_LOW,
485 						     ip->i_mount, dip);
486 				return XFS_ERROR(EFSCORRUPTED);
487 			}
488 
489 			size = (int)di_size;
490 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
491 			break;
492 		case XFS_DINODE_FMT_EXTENTS:
493 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
494 			break;
495 		case XFS_DINODE_FMT_BTREE:
496 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
497 			break;
498 		default:
499 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
500 					 ip->i_mount);
501 			return XFS_ERROR(EFSCORRUPTED);
502 		}
503 		break;
504 
505 	default:
506 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
507 		return XFS_ERROR(EFSCORRUPTED);
508 	}
509 	if (error) {
510 		return error;
511 	}
512 	if (!XFS_DFORK_Q(dip))
513 		return 0;
514 	ASSERT(ip->i_afp == NULL);
515 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
516 	ip->i_afp->if_ext_max =
517 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
518 	switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
519 	case XFS_DINODE_FMT_LOCAL:
520 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
521 		size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
522 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
523 		break;
524 	case XFS_DINODE_FMT_EXTENTS:
525 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
526 		break;
527 	case XFS_DINODE_FMT_BTREE:
528 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
529 		break;
530 	default:
531 		error = XFS_ERROR(EFSCORRUPTED);
532 		break;
533 	}
534 	if (error) {
535 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
536 		ip->i_afp = NULL;
537 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
538 	}
539 	return error;
540 }
541 
542 /*
543  * The file is in-lined in the on-disk inode.
544  * If it fits into if_inline_data, then copy
545  * it there, otherwise allocate a buffer for it
546  * and copy the data there.  Either way, set
547  * if_data to point at the data.
548  * If we allocate a buffer for the data, make
549  * sure that its size is a multiple of 4 and
550  * record the real size in i_real_bytes.
551  */
552 STATIC int
553 xfs_iformat_local(
554 	xfs_inode_t	*ip,
555 	xfs_dinode_t	*dip,
556 	int		whichfork,
557 	int		size)
558 {
559 	xfs_ifork_t	*ifp;
560 	int		real_size;
561 
562 	/*
563 	 * If the size is unreasonable, then something
564 	 * is wrong and we just bail out rather than crash in
565 	 * kmem_alloc() or memcpy() below.
566 	 */
567 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
568 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
569 			"corrupt inode %Lu (bad size %d for local fork, size = %d).  Unmount and run xfs_repair.",
570 			(unsigned long long) ip->i_ino, size,
571 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
572 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
573 				     ip->i_mount, dip);
574 		return XFS_ERROR(EFSCORRUPTED);
575 	}
576 	ifp = XFS_IFORK_PTR(ip, whichfork);
577 	real_size = 0;
578 	if (size == 0)
579 		ifp->if_u1.if_data = NULL;
580 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
581 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
582 	else {
583 		real_size = roundup(size, 4);
584 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
585 	}
586 	ifp->if_bytes = size;
587 	ifp->if_real_bytes = real_size;
588 	if (size)
589 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
590 	ifp->if_flags &= ~XFS_IFEXTENTS;
591 	ifp->if_flags |= XFS_IFINLINE;
592 	return 0;
593 }
594 
595 /*
596  * The file consists of a set of extents all
597  * of which fit into the on-disk inode.
598  * If there are few enough extents to fit into
599  * the if_inline_ext, then copy them there.
600  * Otherwise allocate a buffer for them and copy
601  * them into it.  Either way, set if_extents
602  * to point at the extents.
603  */
604 STATIC int
605 xfs_iformat_extents(
606 	xfs_inode_t	*ip,
607 	xfs_dinode_t	*dip,
608 	int		whichfork)
609 {
610 	xfs_bmbt_rec_t	*ep, *dp;
611 	xfs_ifork_t	*ifp;
612 	int		nex;
613 	int		real_size;
614 	int		size;
615 	int		i;
616 
617 	ifp = XFS_IFORK_PTR(ip, whichfork);
618 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
619 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
620 
621 	/*
622 	 * If the number of extents is unreasonable, then something
623 	 * is wrong and we just bail out rather than crash in
624 	 * kmem_alloc() or memcpy() below.
625 	 */
626 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
627 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
628 			"corrupt inode %Lu ((a)extents = %d).  Unmount and run xfs_repair.",
629 			(unsigned long long) ip->i_ino, nex);
630 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
631 				     ip->i_mount, dip);
632 		return XFS_ERROR(EFSCORRUPTED);
633 	}
634 
635 	real_size = 0;
636 	if (nex == 0)
637 		ifp->if_u1.if_extents = NULL;
638 	else if (nex <= XFS_INLINE_EXTS)
639 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
640 	else {
641 		ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
642 		ASSERT(ifp->if_u1.if_extents != NULL);
643 		real_size = size;
644 	}
645 	ifp->if_bytes = size;
646 	ifp->if_real_bytes = real_size;
647 	if (size) {
648 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
649 		xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
650 		ep = ifp->if_u1.if_extents;
651 		for (i = 0; i < nex; i++, ep++, dp++) {
652 			ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
653 								ARCH_CONVERT);
654 			ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
655 								ARCH_CONVERT);
656 		}
657 		xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
658 			whichfork);
659 		if (whichfork != XFS_DATA_FORK ||
660 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
661 				if (unlikely(xfs_check_nostate_extents(
662 				    ifp->if_u1.if_extents, nex))) {
663 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
664 							 XFS_ERRLEVEL_LOW,
665 							 ip->i_mount);
666 					return XFS_ERROR(EFSCORRUPTED);
667 				}
668 	}
669 	ifp->if_flags |= XFS_IFEXTENTS;
670 	return 0;
671 }
672 
673 /*
674  * The file has too many extents to fit into
675  * the inode, so they are in B-tree format.
676  * Allocate a buffer for the root of the B-tree
677  * and copy the root into it.  The i_extents
678  * field will remain NULL until all of the
679  * extents are read in (when they are needed).
680  */
681 STATIC int
682 xfs_iformat_btree(
683 	xfs_inode_t		*ip,
684 	xfs_dinode_t		*dip,
685 	int			whichfork)
686 {
687 	xfs_bmdr_block_t	*dfp;
688 	xfs_ifork_t		*ifp;
689 	/* REFERENCED */
690 	int			nrecs;
691 	int			size;
692 
693 	ifp = XFS_IFORK_PTR(ip, whichfork);
694 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
695 	size = XFS_BMAP_BROOT_SPACE(dfp);
696 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
697 
698 	/*
699 	 * blow out if -- fork has less extents than can fit in
700 	 * fork (fork shouldn't be a btree format), root btree
701 	 * block has more records than can fit into the fork,
702 	 * or the number of extents is greater than the number of
703 	 * blocks.
704 	 */
705 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
706 	    || XFS_BMDR_SPACE_CALC(nrecs) >
707 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
708 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
709 		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
710 			"corrupt inode %Lu (btree).  Unmount and run xfs_repair.",
711 			(unsigned long long) ip->i_ino);
712 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
713 				 ip->i_mount);
714 		return XFS_ERROR(EFSCORRUPTED);
715 	}
716 
717 	ifp->if_broot_bytes = size;
718 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
719 	ASSERT(ifp->if_broot != NULL);
720 	/*
721 	 * Copy and convert from the on-disk structure
722 	 * to the in-memory structure.
723 	 */
724 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
725 		ifp->if_broot, size);
726 	ifp->if_flags &= ~XFS_IFEXTENTS;
727 	ifp->if_flags |= XFS_IFBROOT;
728 
729 	return 0;
730 }
731 
732 /*
733  * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
734  * and native format
735  *
736  * buf  = on-disk representation
737  * dip  = native representation
738  * dir  = direction - +ve -> disk to native
739  *                    -ve -> native to disk
740  */
741 void
742 xfs_xlate_dinode_core(
743 	xfs_caddr_t		buf,
744 	xfs_dinode_core_t	*dip,
745 	int			dir)
746 {
747 	xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf;
748 	xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip;
749 	xfs_arch_t		arch = ARCH_CONVERT;
750 
751 	ASSERT(dir);
752 
753 	INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
754 	INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
755 	INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch);
756 	INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
757 	INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
758 	INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
759 	INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
760 	INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
761 	INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
762 
763 	if (dir > 0) {
764 		memcpy(mem_core->di_pad, buf_core->di_pad,
765 			sizeof(buf_core->di_pad));
766 	} else {
767 		memcpy(buf_core->di_pad, mem_core->di_pad,
768 			sizeof(buf_core->di_pad));
769 	}
770 
771 	INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
772 
773 	INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
774 			dir, arch);
775 	INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
776 			dir, arch);
777 	INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
778 			dir, arch);
779 	INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
780 			dir, arch);
781 	INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
782 			dir, arch);
783 	INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
784 			dir, arch);
785 	INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
786 	INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
787 	INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
788 	INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
789 	INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
790 	INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
791 	INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
792 	INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
793 	INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
794 	INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
795 	INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
796 }
797 
798 STATIC uint
799 _xfs_dic2xflags(
800 	xfs_dinode_core_t	*dic,
801 	__uint16_t		di_flags)
802 {
803 	uint			flags = 0;
804 
805 	if (di_flags & XFS_DIFLAG_ANY) {
806 		if (di_flags & XFS_DIFLAG_REALTIME)
807 			flags |= XFS_XFLAG_REALTIME;
808 		if (di_flags & XFS_DIFLAG_PREALLOC)
809 			flags |= XFS_XFLAG_PREALLOC;
810 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
811 			flags |= XFS_XFLAG_IMMUTABLE;
812 		if (di_flags & XFS_DIFLAG_APPEND)
813 			flags |= XFS_XFLAG_APPEND;
814 		if (di_flags & XFS_DIFLAG_SYNC)
815 			flags |= XFS_XFLAG_SYNC;
816 		if (di_flags & XFS_DIFLAG_NOATIME)
817 			flags |= XFS_XFLAG_NOATIME;
818 		if (di_flags & XFS_DIFLAG_NODUMP)
819 			flags |= XFS_XFLAG_NODUMP;
820 		if (di_flags & XFS_DIFLAG_RTINHERIT)
821 			flags |= XFS_XFLAG_RTINHERIT;
822 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
823 			flags |= XFS_XFLAG_PROJINHERIT;
824 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
825 			flags |= XFS_XFLAG_NOSYMLINKS;
826 	}
827 
828 	return flags;
829 }
830 
831 uint
832 xfs_ip2xflags(
833 	xfs_inode_t		*ip)
834 {
835 	xfs_dinode_core_t	*dic = &ip->i_d;
836 
837 	return _xfs_dic2xflags(dic, dic->di_flags) |
838 		(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
839 }
840 
841 uint
842 xfs_dic2xflags(
843 	xfs_dinode_core_t	*dic)
844 {
845 	return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
846 		(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
847 }
848 
849 /*
850  * Given a mount structure and an inode number, return a pointer
851  * to a newly allocated in-core inode coresponding to the given
852  * inode number.
853  *
854  * Initialize the inode's attributes and extent pointers if it
855  * already has them (it will not if the inode has no links).
856  */
857 int
858 xfs_iread(
859 	xfs_mount_t	*mp,
860 	xfs_trans_t	*tp,
861 	xfs_ino_t	ino,
862 	xfs_inode_t	**ipp,
863 	xfs_daddr_t	bno)
864 {
865 	xfs_buf_t	*bp;
866 	xfs_dinode_t	*dip;
867 	xfs_inode_t	*ip;
868 	int		error;
869 
870 	ASSERT(xfs_inode_zone != NULL);
871 
872 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
873 	ip->i_ino = ino;
874 	ip->i_mount = mp;
875 
876 	/*
877 	 * Get pointer's to the on-disk inode and the buffer containing it.
878 	 * If the inode number refers to a block outside the file system
879 	 * then xfs_itobp() will return NULL.  In this case we should
880 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
881 	 * know that this is a new incore inode.
882 	 */
883 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
884 
885 	if (error != 0) {
886 		kmem_zone_free(xfs_inode_zone, ip);
887 		return error;
888 	}
889 
890 	/*
891 	 * Initialize inode's trace buffers.
892 	 * Do this before xfs_iformat in case it adds entries.
893 	 */
894 #ifdef XFS_BMAP_TRACE
895 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
896 #endif
897 #ifdef XFS_BMBT_TRACE
898 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
899 #endif
900 #ifdef XFS_RW_TRACE
901 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
902 #endif
903 #ifdef XFS_ILOCK_TRACE
904 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
905 #endif
906 #ifdef XFS_DIR2_TRACE
907 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
908 #endif
909 
910 	/*
911 	 * If we got something that isn't an inode it means someone
912 	 * (nfs or dmi) has a stale handle.
913 	 */
914 	if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
915 		kmem_zone_free(xfs_inode_zone, ip);
916 		xfs_trans_brelse(tp, bp);
917 #ifdef DEBUG
918 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
919 				"dip->di_core.di_magic (0x%x) != "
920 				"XFS_DINODE_MAGIC (0x%x)",
921 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
922 				XFS_DINODE_MAGIC);
923 #endif /* DEBUG */
924 		return XFS_ERROR(EINVAL);
925 	}
926 
927 	/*
928 	 * If the on-disk inode is already linked to a directory
929 	 * entry, copy all of the inode into the in-core inode.
930 	 * xfs_iformat() handles copying in the inode format
931 	 * specific information.
932 	 * Otherwise, just get the truly permanent information.
933 	 */
934 	if (dip->di_core.di_mode) {
935 		xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
936 		     &(ip->i_d), 1);
937 		error = xfs_iformat(ip, dip);
938 		if (error)  {
939 			kmem_zone_free(xfs_inode_zone, ip);
940 			xfs_trans_brelse(tp, bp);
941 #ifdef DEBUG
942 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
943 					"xfs_iformat() returned error %d",
944 					error);
945 #endif /* DEBUG */
946 			return error;
947 		}
948 	} else {
949 		ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
950 		ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
951 		ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
952 		ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
953 		/*
954 		 * Make sure to pull in the mode here as well in
955 		 * case the inode is released without being used.
956 		 * This ensures that xfs_inactive() will see that
957 		 * the inode is already free and not try to mess
958 		 * with the uninitialized part of it.
959 		 */
960 		ip->i_d.di_mode = 0;
961 		/*
962 		 * Initialize the per-fork minima and maxima for a new
963 		 * inode here.  xfs_iformat will do it for old inodes.
964 		 */
965 		ip->i_df.if_ext_max =
966 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
967 	}
968 
969 	INIT_LIST_HEAD(&ip->i_reclaim);
970 
971 	/*
972 	 * The inode format changed when we moved the link count and
973 	 * made it 32 bits long.  If this is an old format inode,
974 	 * convert it in memory to look like a new one.  If it gets
975 	 * flushed to disk we will convert back before flushing or
976 	 * logging it.  We zero out the new projid field and the old link
977 	 * count field.  We'll handle clearing the pad field (the remains
978 	 * of the old uuid field) when we actually convert the inode to
979 	 * the new format. We don't change the version number so that we
980 	 * can distinguish this from a real new format inode.
981 	 */
982 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
983 		ip->i_d.di_nlink = ip->i_d.di_onlink;
984 		ip->i_d.di_onlink = 0;
985 		ip->i_d.di_projid = 0;
986 	}
987 
988 	ip->i_delayed_blks = 0;
989 
990 	/*
991 	 * Mark the buffer containing the inode as something to keep
992 	 * around for a while.  This helps to keep recently accessed
993 	 * meta-data in-core longer.
994 	 */
995 	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
996 
997 	/*
998 	 * Use xfs_trans_brelse() to release the buffer containing the
999 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1000 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
1001 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
1002 	 * will only release the buffer if it is not dirty within the
1003 	 * transaction.  It will be OK to release the buffer in this case,
1004 	 * because inodes on disk are never destroyed and we will be
1005 	 * locking the new in-core inode before putting it in the hash
1006 	 * table where other processes can find it.  Thus we don't have
1007 	 * to worry about the inode being changed just because we released
1008 	 * the buffer.
1009 	 */
1010 	xfs_trans_brelse(tp, bp);
1011 	*ipp = ip;
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Read in extents from a btree-format inode.
1017  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1018  */
1019 int
1020 xfs_iread_extents(
1021 	xfs_trans_t	*tp,
1022 	xfs_inode_t	*ip,
1023 	int		whichfork)
1024 {
1025 	int		error;
1026 	xfs_ifork_t	*ifp;
1027 	size_t		size;
1028 
1029 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1030 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1031 				 ip->i_mount);
1032 		return XFS_ERROR(EFSCORRUPTED);
1033 	}
1034 	size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
1035 	ifp = XFS_IFORK_PTR(ip, whichfork);
1036 	/*
1037 	 * We know that the size is valid (it's checked in iformat_btree)
1038 	 */
1039 	ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1040 	ASSERT(ifp->if_u1.if_extents != NULL);
1041 	ifp->if_lastex = NULLEXTNUM;
1042 	ifp->if_bytes = ifp->if_real_bytes = (int)size;
1043 	ifp->if_flags |= XFS_IFEXTENTS;
1044 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1045 	if (error) {
1046 		kmem_free(ifp->if_u1.if_extents, size);
1047 		ifp->if_u1.if_extents = NULL;
1048 		ifp->if_bytes = ifp->if_real_bytes = 0;
1049 		ifp->if_flags &= ~XFS_IFEXTENTS;
1050 		return error;
1051 	}
1052 	xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1053 		XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1054 	return 0;
1055 }
1056 
1057 /*
1058  * Allocate an inode on disk and return a copy of its in-core version.
1059  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1060  * appropriately within the inode.  The uid and gid for the inode are
1061  * set according to the contents of the given cred structure.
1062  *
1063  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1064  * has a free inode available, call xfs_iget()
1065  * to obtain the in-core version of the allocated inode.  Finally,
1066  * fill in the inode and log its initial contents.  In this case,
1067  * ialloc_context would be set to NULL and call_again set to false.
1068  *
1069  * If xfs_dialloc() does not have an available inode,
1070  * it will replenish its supply by doing an allocation. Since we can
1071  * only do one allocation within a transaction without deadlocks, we
1072  * must commit the current transaction before returning the inode itself.
1073  * In this case, therefore, we will set call_again to true and return.
1074  * The caller should then commit the current transaction, start a new
1075  * transaction, and call xfs_ialloc() again to actually get the inode.
1076  *
1077  * To ensure that some other process does not grab the inode that
1078  * was allocated during the first call to xfs_ialloc(), this routine
1079  * also returns the [locked] bp pointing to the head of the freelist
1080  * as ialloc_context.  The caller should hold this buffer across
1081  * the commit and pass it back into this routine on the second call.
1082  */
1083 int
1084 xfs_ialloc(
1085 	xfs_trans_t	*tp,
1086 	xfs_inode_t	*pip,
1087 	mode_t		mode,
1088 	xfs_nlink_t	nlink,
1089 	xfs_dev_t	rdev,
1090 	cred_t		*cr,
1091 	xfs_prid_t	prid,
1092 	int		okalloc,
1093 	xfs_buf_t	**ialloc_context,
1094 	boolean_t	*call_again,
1095 	xfs_inode_t	**ipp)
1096 {
1097 	xfs_ino_t	ino;
1098 	xfs_inode_t	*ip;
1099 	vnode_t		*vp;
1100 	uint		flags;
1101 	int		error;
1102 
1103 	/*
1104 	 * Call the space management code to pick
1105 	 * the on-disk inode to be allocated.
1106 	 */
1107 	error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1108 			    ialloc_context, call_again, &ino);
1109 	if (error != 0) {
1110 		return error;
1111 	}
1112 	if (*call_again || ino == NULLFSINO) {
1113 		*ipp = NULL;
1114 		return 0;
1115 	}
1116 	ASSERT(*ialloc_context == NULL);
1117 
1118 	/*
1119 	 * Get the in-core inode with the lock held exclusively.
1120 	 * This is because we're setting fields here we need
1121 	 * to prevent others from looking at until we're done.
1122 	 */
1123 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1124 			IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1125 	if (error != 0) {
1126 		return error;
1127 	}
1128 	ASSERT(ip != NULL);
1129 
1130 	vp = XFS_ITOV(ip);
1131 	vp->v_type = IFTOVT(mode);
1132 	ip->i_d.di_mode = (__uint16_t)mode;
1133 	ip->i_d.di_onlink = 0;
1134 	ip->i_d.di_nlink = nlink;
1135 	ASSERT(ip->i_d.di_nlink == nlink);
1136 	ip->i_d.di_uid = current_fsuid(cr);
1137 	ip->i_d.di_gid = current_fsgid(cr);
1138 	ip->i_d.di_projid = prid;
1139 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1140 
1141 	/*
1142 	 * If the superblock version is up to where we support new format
1143 	 * inodes and this is currently an old format inode, then change
1144 	 * the inode version number now.  This way we only do the conversion
1145 	 * here rather than here and in the flush/logging code.
1146 	 */
1147 	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1148 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1149 		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1150 		/*
1151 		 * We've already zeroed the old link count, the projid field,
1152 		 * and the pad field.
1153 		 */
1154 	}
1155 
1156 	/*
1157 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1158 	 */
1159 	if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1160 		xfs_bump_ino_vers2(tp, ip);
1161 
1162 	if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1163 		ip->i_d.di_gid = pip->i_d.di_gid;
1164 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1165 			ip->i_d.di_mode |= S_ISGID;
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * If the group ID of the new file does not match the effective group
1171 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1172 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1173 	 */
1174 	if ((irix_sgid_inherit) &&
1175 	    (ip->i_d.di_mode & S_ISGID) &&
1176 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1177 		ip->i_d.di_mode &= ~S_ISGID;
1178 	}
1179 
1180 	ip->i_d.di_size = 0;
1181 	ip->i_d.di_nextents = 0;
1182 	ASSERT(ip->i_d.di_nblocks == 0);
1183 	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1184 	/*
1185 	 * di_gen will have been taken care of in xfs_iread.
1186 	 */
1187 	ip->i_d.di_extsize = 0;
1188 	ip->i_d.di_dmevmask = 0;
1189 	ip->i_d.di_dmstate = 0;
1190 	ip->i_d.di_flags = 0;
1191 	flags = XFS_ILOG_CORE;
1192 	switch (mode & S_IFMT) {
1193 	case S_IFIFO:
1194 	case S_IFCHR:
1195 	case S_IFBLK:
1196 	case S_IFSOCK:
1197 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1198 		ip->i_df.if_u2.if_rdev = rdev;
1199 		ip->i_df.if_flags = 0;
1200 		flags |= XFS_ILOG_DEV;
1201 		break;
1202 	case S_IFREG:
1203 	case S_IFDIR:
1204 		if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1205 			uint	di_flags = 0;
1206 
1207 			if ((mode & S_IFMT) == S_IFDIR) {
1208 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1209 					di_flags |= XFS_DIFLAG_RTINHERIT;
1210 			} else {
1211 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1212 					di_flags |= XFS_DIFLAG_REALTIME;
1213 					ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1214 				}
1215 			}
1216 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1217 			    xfs_inherit_noatime)
1218 				di_flags |= XFS_DIFLAG_NOATIME;
1219 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1220 			    xfs_inherit_nodump)
1221 				di_flags |= XFS_DIFLAG_NODUMP;
1222 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1223 			    xfs_inherit_sync)
1224 				di_flags |= XFS_DIFLAG_SYNC;
1225 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1226 			    xfs_inherit_nosymlinks)
1227 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1228 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1229 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1230 			ip->i_d.di_flags |= di_flags;
1231 		}
1232 		/* FALLTHROUGH */
1233 	case S_IFLNK:
1234 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1235 		ip->i_df.if_flags = XFS_IFEXTENTS;
1236 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1237 		ip->i_df.if_u1.if_extents = NULL;
1238 		break;
1239 	default:
1240 		ASSERT(0);
1241 	}
1242 	/*
1243 	 * Attribute fork settings for new inode.
1244 	 */
1245 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1246 	ip->i_d.di_anextents = 0;
1247 
1248 	/*
1249 	 * Log the new values stuffed into the inode.
1250 	 */
1251 	xfs_trans_log_inode(tp, ip, flags);
1252 
1253 	/* now that we have a v_type we can set Linux inode ops (& unlock) */
1254 	VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1255 
1256 	*ipp = ip;
1257 	return 0;
1258 }
1259 
1260 /*
1261  * Check to make sure that there are no blocks allocated to the
1262  * file beyond the size of the file.  We don't check this for
1263  * files with fixed size extents or real time extents, but we
1264  * at least do it for regular files.
1265  */
1266 #ifdef DEBUG
1267 void
1268 xfs_isize_check(
1269 	xfs_mount_t	*mp,
1270 	xfs_inode_t	*ip,
1271 	xfs_fsize_t	isize)
1272 {
1273 	xfs_fileoff_t	map_first;
1274 	int		nimaps;
1275 	xfs_bmbt_irec_t	imaps[2];
1276 
1277 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1278 		return;
1279 
1280 	if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
1281 		return;
1282 
1283 	nimaps = 2;
1284 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1285 	/*
1286 	 * The filesystem could be shutting down, so bmapi may return
1287 	 * an error.
1288 	 */
1289 	if (xfs_bmapi(NULL, ip, map_first,
1290 			 (XFS_B_TO_FSB(mp,
1291 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1292 			  map_first),
1293 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1294 			 NULL))
1295 	    return;
1296 	ASSERT(nimaps == 1);
1297 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1298 }
1299 #endif	/* DEBUG */
1300 
1301 /*
1302  * Calculate the last possible buffered byte in a file.  This must
1303  * include data that was buffered beyond the EOF by the write code.
1304  * This also needs to deal with overflowing the xfs_fsize_t type
1305  * which can happen for sizes near the limit.
1306  *
1307  * We also need to take into account any blocks beyond the EOF.  It
1308  * may be the case that they were buffered by a write which failed.
1309  * In that case the pages will still be in memory, but the inode size
1310  * will never have been updated.
1311  */
1312 xfs_fsize_t
1313 xfs_file_last_byte(
1314 	xfs_inode_t	*ip)
1315 {
1316 	xfs_mount_t	*mp;
1317 	xfs_fsize_t	last_byte;
1318 	xfs_fileoff_t	last_block;
1319 	xfs_fileoff_t	size_last_block;
1320 	int		error;
1321 
1322 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1323 
1324 	mp = ip->i_mount;
1325 	/*
1326 	 * Only check for blocks beyond the EOF if the extents have
1327 	 * been read in.  This eliminates the need for the inode lock,
1328 	 * and it also saves us from looking when it really isn't
1329 	 * necessary.
1330 	 */
1331 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1332 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1333 			XFS_DATA_FORK);
1334 		if (error) {
1335 			last_block = 0;
1336 		}
1337 	} else {
1338 		last_block = 0;
1339 	}
1340 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1341 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1342 
1343 	last_byte = XFS_FSB_TO_B(mp, last_block);
1344 	if (last_byte < 0) {
1345 		return XFS_MAXIOFFSET(mp);
1346 	}
1347 	last_byte += (1 << mp->m_writeio_log);
1348 	if (last_byte < 0) {
1349 		return XFS_MAXIOFFSET(mp);
1350 	}
1351 	return last_byte;
1352 }
1353 
1354 #if defined(XFS_RW_TRACE)
1355 STATIC void
1356 xfs_itrunc_trace(
1357 	int		tag,
1358 	xfs_inode_t	*ip,
1359 	int		flag,
1360 	xfs_fsize_t	new_size,
1361 	xfs_off_t	toss_start,
1362 	xfs_off_t	toss_finish)
1363 {
1364 	if (ip->i_rwtrace == NULL) {
1365 		return;
1366 	}
1367 
1368 	ktrace_enter(ip->i_rwtrace,
1369 		     (void*)((long)tag),
1370 		     (void*)ip,
1371 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1372 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1373 		     (void*)((long)flag),
1374 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1375 		     (void*)(unsigned long)(new_size & 0xffffffff),
1376 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1377 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1378 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1379 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1380 		     (void*)(unsigned long)current_cpu(),
1381 		     (void*)0,
1382 		     (void*)0,
1383 		     (void*)0,
1384 		     (void*)0);
1385 }
1386 #else
1387 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1388 #endif
1389 
1390 /*
1391  * Start the truncation of the file to new_size.  The new size
1392  * must be smaller than the current size.  This routine will
1393  * clear the buffer and page caches of file data in the removed
1394  * range, and xfs_itruncate_finish() will remove the underlying
1395  * disk blocks.
1396  *
1397  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1398  * must NOT have the inode lock held at all.  This is because we're
1399  * calling into the buffer/page cache code and we can't hold the
1400  * inode lock when we do so.
1401  *
1402  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1403  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1404  * in the case that the caller is locking things out of order and
1405  * may not be able to call xfs_itruncate_finish() with the inode lock
1406  * held without dropping the I/O lock.  If the caller must drop the
1407  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1408  * must be called again with all the same restrictions as the initial
1409  * call.
1410  */
1411 void
1412 xfs_itruncate_start(
1413 	xfs_inode_t	*ip,
1414 	uint		flags,
1415 	xfs_fsize_t	new_size)
1416 {
1417 	xfs_fsize_t	last_byte;
1418 	xfs_off_t	toss_start;
1419 	xfs_mount_t	*mp;
1420 	vnode_t		*vp;
1421 
1422 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1423 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1424 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1425 	       (flags == XFS_ITRUNC_MAYBE));
1426 
1427 	mp = ip->i_mount;
1428 	vp = XFS_ITOV(ip);
1429 	/*
1430 	 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1431 	 * overlapping the region being removed.  We have to use
1432 	 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1433 	 * caller may not be able to finish the truncate without
1434 	 * dropping the inode's I/O lock.  Make sure
1435 	 * to catch any pages brought in by buffers overlapping
1436 	 * the EOF by searching out beyond the isize by our
1437 	 * block size. We round new_size up to a block boundary
1438 	 * so that we don't toss things on the same block as
1439 	 * new_size but before it.
1440 	 *
1441 	 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1442 	 * call remapf() over the same region if the file is mapped.
1443 	 * This frees up mapped file references to the pages in the
1444 	 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1445 	 * that we get the latest mapped changes flushed out.
1446 	 */
1447 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1448 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1449 	if (toss_start < 0) {
1450 		/*
1451 		 * The place to start tossing is beyond our maximum
1452 		 * file size, so there is no way that the data extended
1453 		 * out there.
1454 		 */
1455 		return;
1456 	}
1457 	last_byte = xfs_file_last_byte(ip);
1458 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1459 			 last_byte);
1460 	if (last_byte > toss_start) {
1461 		if (flags & XFS_ITRUNC_DEFINITE) {
1462 			VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1463 		} else {
1464 			VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1465 		}
1466 	}
1467 
1468 #ifdef DEBUG
1469 	if (new_size == 0) {
1470 		ASSERT(VN_CACHED(vp) == 0);
1471 	}
1472 #endif
1473 }
1474 
1475 /*
1476  * Shrink the file to the given new_size.  The new
1477  * size must be smaller than the current size.
1478  * This will free up the underlying blocks
1479  * in the removed range after a call to xfs_itruncate_start()
1480  * or xfs_atruncate_start().
1481  *
1482  * The transaction passed to this routine must have made
1483  * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1484  * This routine may commit the given transaction and
1485  * start new ones, so make sure everything involved in
1486  * the transaction is tidy before calling here.
1487  * Some transaction will be returned to the caller to be
1488  * committed.  The incoming transaction must already include
1489  * the inode, and both inode locks must be held exclusively.
1490  * The inode must also be "held" within the transaction.  On
1491  * return the inode will be "held" within the returned transaction.
1492  * This routine does NOT require any disk space to be reserved
1493  * for it within the transaction.
1494  *
1495  * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1496  * and it indicates the fork which is to be truncated.  For the
1497  * attribute fork we only support truncation to size 0.
1498  *
1499  * We use the sync parameter to indicate whether or not the first
1500  * transaction we perform might have to be synchronous.  For the attr fork,
1501  * it needs to be so if the unlink of the inode is not yet known to be
1502  * permanent in the log.  This keeps us from freeing and reusing the
1503  * blocks of the attribute fork before the unlink of the inode becomes
1504  * permanent.
1505  *
1506  * For the data fork, we normally have to run synchronously if we're
1507  * being called out of the inactive path or we're being called
1508  * out of the create path where we're truncating an existing file.
1509  * Either way, the truncate needs to be sync so blocks don't reappear
1510  * in the file with altered data in case of a crash.  wsync filesystems
1511  * can run the first case async because anything that shrinks the inode
1512  * has to run sync so by the time we're called here from inactive, the
1513  * inode size is permanently set to 0.
1514  *
1515  * Calls from the truncate path always need to be sync unless we're
1516  * in a wsync filesystem and the file has already been unlinked.
1517  *
1518  * The caller is responsible for correctly setting the sync parameter.
1519  * It gets too hard for us to guess here which path we're being called
1520  * out of just based on inode state.
1521  */
1522 int
1523 xfs_itruncate_finish(
1524 	xfs_trans_t	**tp,
1525 	xfs_inode_t	*ip,
1526 	xfs_fsize_t	new_size,
1527 	int		fork,
1528 	int		sync)
1529 {
1530 	xfs_fsblock_t	first_block;
1531 	xfs_fileoff_t	first_unmap_block;
1532 	xfs_fileoff_t	last_block;
1533 	xfs_filblks_t	unmap_len=0;
1534 	xfs_mount_t	*mp;
1535 	xfs_trans_t	*ntp;
1536 	int		done;
1537 	int		committed;
1538 	xfs_bmap_free_t	free_list;
1539 	int		error;
1540 
1541 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1542 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1543 	ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1544 	ASSERT(*tp != NULL);
1545 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1546 	ASSERT(ip->i_transp == *tp);
1547 	ASSERT(ip->i_itemp != NULL);
1548 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1549 
1550 
1551 	ntp = *tp;
1552 	mp = (ntp)->t_mountp;
1553 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1554 
1555 	/*
1556 	 * We only support truncating the entire attribute fork.
1557 	 */
1558 	if (fork == XFS_ATTR_FORK) {
1559 		new_size = 0LL;
1560 	}
1561 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1562 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1563 	/*
1564 	 * The first thing we do is set the size to new_size permanently
1565 	 * on disk.  This way we don't have to worry about anyone ever
1566 	 * being able to look at the data being freed even in the face
1567 	 * of a crash.  What we're getting around here is the case where
1568 	 * we free a block, it is allocated to another file, it is written
1569 	 * to, and then we crash.  If the new data gets written to the
1570 	 * file but the log buffers containing the free and reallocation
1571 	 * don't, then we'd end up with garbage in the blocks being freed.
1572 	 * As long as we make the new_size permanent before actually
1573 	 * freeing any blocks it doesn't matter if they get writtten to.
1574 	 *
1575 	 * The callers must signal into us whether or not the size
1576 	 * setting here must be synchronous.  There are a few cases
1577 	 * where it doesn't have to be synchronous.  Those cases
1578 	 * occur if the file is unlinked and we know the unlink is
1579 	 * permanent or if the blocks being truncated are guaranteed
1580 	 * to be beyond the inode eof (regardless of the link count)
1581 	 * and the eof value is permanent.  Both of these cases occur
1582 	 * only on wsync-mounted filesystems.  In those cases, we're
1583 	 * guaranteed that no user will ever see the data in the blocks
1584 	 * that are being truncated so the truncate can run async.
1585 	 * In the free beyond eof case, the file may wind up with
1586 	 * more blocks allocated to it than it needs if we crash
1587 	 * and that won't get fixed until the next time the file
1588 	 * is re-opened and closed but that's ok as that shouldn't
1589 	 * be too many blocks.
1590 	 *
1591 	 * However, we can't just make all wsync xactions run async
1592 	 * because there's one call out of the create path that needs
1593 	 * to run sync where it's truncating an existing file to size
1594 	 * 0 whose size is > 0.
1595 	 *
1596 	 * It's probably possible to come up with a test in this
1597 	 * routine that would correctly distinguish all the above
1598 	 * cases from the values of the function parameters and the
1599 	 * inode state but for sanity's sake, I've decided to let the
1600 	 * layers above just tell us.  It's simpler to correctly figure
1601 	 * out in the layer above exactly under what conditions we
1602 	 * can run async and I think it's easier for others read and
1603 	 * follow the logic in case something has to be changed.
1604 	 * cscope is your friend -- rcc.
1605 	 *
1606 	 * The attribute fork is much simpler.
1607 	 *
1608 	 * For the attribute fork we allow the caller to tell us whether
1609 	 * the unlink of the inode that led to this call is yet permanent
1610 	 * in the on disk log.  If it is not and we will be freeing extents
1611 	 * in this inode then we make the first transaction synchronous
1612 	 * to make sure that the unlink is permanent by the time we free
1613 	 * the blocks.
1614 	 */
1615 	if (fork == XFS_DATA_FORK) {
1616 		if (ip->i_d.di_nextents > 0) {
1617 			ip->i_d.di_size = new_size;
1618 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1619 		}
1620 	} else if (sync) {
1621 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1622 		if (ip->i_d.di_anextents > 0)
1623 			xfs_trans_set_sync(ntp);
1624 	}
1625 	ASSERT(fork == XFS_DATA_FORK ||
1626 		(fork == XFS_ATTR_FORK &&
1627 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1628 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1629 
1630 	/*
1631 	 * Since it is possible for space to become allocated beyond
1632 	 * the end of the file (in a crash where the space is allocated
1633 	 * but the inode size is not yet updated), simply remove any
1634 	 * blocks which show up between the new EOF and the maximum
1635 	 * possible file size.  If the first block to be removed is
1636 	 * beyond the maximum file size (ie it is the same as last_block),
1637 	 * then there is nothing to do.
1638 	 */
1639 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1640 	ASSERT(first_unmap_block <= last_block);
1641 	done = 0;
1642 	if (last_block == first_unmap_block) {
1643 		done = 1;
1644 	} else {
1645 		unmap_len = last_block - first_unmap_block + 1;
1646 	}
1647 	while (!done) {
1648 		/*
1649 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1650 		 * will tell us whether it freed the entire range or
1651 		 * not.  If this is a synchronous mount (wsync),
1652 		 * then we can tell bunmapi to keep all the
1653 		 * transactions asynchronous since the unlink
1654 		 * transaction that made this inode inactive has
1655 		 * already hit the disk.  There's no danger of
1656 		 * the freed blocks being reused, there being a
1657 		 * crash, and the reused blocks suddenly reappearing
1658 		 * in this file with garbage in them once recovery
1659 		 * runs.
1660 		 */
1661 		XFS_BMAP_INIT(&free_list, &first_block);
1662 		error = xfs_bunmapi(ntp, ip, first_unmap_block,
1663 				    unmap_len,
1664 				    XFS_BMAPI_AFLAG(fork) |
1665 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1666 				    XFS_ITRUNC_MAX_EXTENTS,
1667 				    &first_block, &free_list, &done);
1668 		if (error) {
1669 			/*
1670 			 * If the bunmapi call encounters an error,
1671 			 * return to the caller where the transaction
1672 			 * can be properly aborted.  We just need to
1673 			 * make sure we're not holding any resources
1674 			 * that we were not when we came in.
1675 			 */
1676 			xfs_bmap_cancel(&free_list);
1677 			return error;
1678 		}
1679 
1680 		/*
1681 		 * Duplicate the transaction that has the permanent
1682 		 * reservation and commit the old transaction.
1683 		 */
1684 		error = xfs_bmap_finish(tp, &free_list, first_block,
1685 					&committed);
1686 		ntp = *tp;
1687 		if (error) {
1688 			/*
1689 			 * If the bmap finish call encounters an error,
1690 			 * return to the caller where the transaction
1691 			 * can be properly aborted.  We just need to
1692 			 * make sure we're not holding any resources
1693 			 * that we were not when we came in.
1694 			 *
1695 			 * Aborting from this point might lose some
1696 			 * blocks in the file system, but oh well.
1697 			 */
1698 			xfs_bmap_cancel(&free_list);
1699 			if (committed) {
1700 				/*
1701 				 * If the passed in transaction committed
1702 				 * in xfs_bmap_finish(), then we want to
1703 				 * add the inode to this one before returning.
1704 				 * This keeps things simple for the higher
1705 				 * level code, because it always knows that
1706 				 * the inode is locked and held in the
1707 				 * transaction that returns to it whether
1708 				 * errors occur or not.  We don't mark the
1709 				 * inode dirty so that this transaction can
1710 				 * be easily aborted if possible.
1711 				 */
1712 				xfs_trans_ijoin(ntp, ip,
1713 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1714 				xfs_trans_ihold(ntp, ip);
1715 			}
1716 			return error;
1717 		}
1718 
1719 		if (committed) {
1720 			/*
1721 			 * The first xact was committed,
1722 			 * so add the inode to the new one.
1723 			 * Mark it dirty so it will be logged
1724 			 * and moved forward in the log as
1725 			 * part of every commit.
1726 			 */
1727 			xfs_trans_ijoin(ntp, ip,
1728 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1729 			xfs_trans_ihold(ntp, ip);
1730 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1731 		}
1732 		ntp = xfs_trans_dup(ntp);
1733 		(void) xfs_trans_commit(*tp, 0, NULL);
1734 		*tp = ntp;
1735 		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1736 					  XFS_TRANS_PERM_LOG_RES,
1737 					  XFS_ITRUNCATE_LOG_COUNT);
1738 		/*
1739 		 * Add the inode being truncated to the next chained
1740 		 * transaction.
1741 		 */
1742 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1743 		xfs_trans_ihold(ntp, ip);
1744 		if (error)
1745 			return (error);
1746 	}
1747 	/*
1748 	 * Only update the size in the case of the data fork, but
1749 	 * always re-log the inode so that our permanent transaction
1750 	 * can keep on rolling it forward in the log.
1751 	 */
1752 	if (fork == XFS_DATA_FORK) {
1753 		xfs_isize_check(mp, ip, new_size);
1754 		ip->i_d.di_size = new_size;
1755 	}
1756 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1757 	ASSERT((new_size != 0) ||
1758 	       (fork == XFS_ATTR_FORK) ||
1759 	       (ip->i_delayed_blks == 0));
1760 	ASSERT((new_size != 0) ||
1761 	       (fork == XFS_ATTR_FORK) ||
1762 	       (ip->i_d.di_nextents == 0));
1763 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1764 	return 0;
1765 }
1766 
1767 
1768 /*
1769  * xfs_igrow_start
1770  *
1771  * Do the first part of growing a file: zero any data in the last
1772  * block that is beyond the old EOF.  We need to do this before
1773  * the inode is joined to the transaction to modify the i_size.
1774  * That way we can drop the inode lock and call into the buffer
1775  * cache to get the buffer mapping the EOF.
1776  */
1777 int
1778 xfs_igrow_start(
1779 	xfs_inode_t	*ip,
1780 	xfs_fsize_t	new_size,
1781 	cred_t		*credp)
1782 {
1783 	xfs_fsize_t	isize;
1784 	int		error;
1785 
1786 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1787 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1788 	ASSERT(new_size > ip->i_d.di_size);
1789 
1790 	error = 0;
1791 	isize = ip->i_d.di_size;
1792 	/*
1793 	 * Zero any pages that may have been created by
1794 	 * xfs_write_file() beyond the end of the file
1795 	 * and any blocks between the old and new file sizes.
1796 	 */
1797 	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
1798 				new_size);
1799 	return error;
1800 }
1801 
1802 /*
1803  * xfs_igrow_finish
1804  *
1805  * This routine is called to extend the size of a file.
1806  * The inode must have both the iolock and the ilock locked
1807  * for update and it must be a part of the current transaction.
1808  * The xfs_igrow_start() function must have been called previously.
1809  * If the change_flag is not zero, the inode change timestamp will
1810  * be updated.
1811  */
1812 void
1813 xfs_igrow_finish(
1814 	xfs_trans_t	*tp,
1815 	xfs_inode_t	*ip,
1816 	xfs_fsize_t	new_size,
1817 	int		change_flag)
1818 {
1819 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1820 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1821 	ASSERT(ip->i_transp == tp);
1822 	ASSERT(new_size > ip->i_d.di_size);
1823 
1824 	/*
1825 	 * Update the file size.  Update the inode change timestamp
1826 	 * if change_flag set.
1827 	 */
1828 	ip->i_d.di_size = new_size;
1829 	if (change_flag)
1830 		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1831 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1832 
1833 }
1834 
1835 
1836 /*
1837  * This is called when the inode's link count goes to 0.
1838  * We place the on-disk inode on a list in the AGI.  It
1839  * will be pulled from this list when the inode is freed.
1840  */
1841 int
1842 xfs_iunlink(
1843 	xfs_trans_t	*tp,
1844 	xfs_inode_t	*ip)
1845 {
1846 	xfs_mount_t	*mp;
1847 	xfs_agi_t	*agi;
1848 	xfs_dinode_t	*dip;
1849 	xfs_buf_t	*agibp;
1850 	xfs_buf_t	*ibp;
1851 	xfs_agnumber_t	agno;
1852 	xfs_daddr_t	agdaddr;
1853 	xfs_agino_t	agino;
1854 	short		bucket_index;
1855 	int		offset;
1856 	int		error;
1857 	int		agi_ok;
1858 
1859 	ASSERT(ip->i_d.di_nlink == 0);
1860 	ASSERT(ip->i_d.di_mode != 0);
1861 	ASSERT(ip->i_transp == tp);
1862 
1863 	mp = tp->t_mountp;
1864 
1865 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1866 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1867 
1868 	/*
1869 	 * Get the agi buffer first.  It ensures lock ordering
1870 	 * on the list.
1871 	 */
1872 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1873 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1874 	if (error) {
1875 		return error;
1876 	}
1877 	/*
1878 	 * Validate the magic number of the agi block.
1879 	 */
1880 	agi = XFS_BUF_TO_AGI(agibp);
1881 	agi_ok =
1882 		INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1883 		XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1884 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1885 			XFS_RANDOM_IUNLINK))) {
1886 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1887 		xfs_trans_brelse(tp, agibp);
1888 		return XFS_ERROR(EFSCORRUPTED);
1889 	}
1890 	/*
1891 	 * Get the index into the agi hash table for the
1892 	 * list this inode will go on.
1893 	 */
1894 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1895 	ASSERT(agino != 0);
1896 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1897 	ASSERT(agi->agi_unlinked[bucket_index]);
1898 	ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino);
1899 
1900 	if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) {
1901 		/*
1902 		 * There is already another inode in the bucket we need
1903 		 * to add ourselves to.  Add us at the front of the list.
1904 		 * Here we put the head pointer into our next pointer,
1905 		 * and then we fall through to point the head at us.
1906 		 */
1907 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1908 		if (error) {
1909 			return error;
1910 		}
1911 		ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1912 		ASSERT(dip->di_next_unlinked);
1913 		/* both on-disk, don't endian flip twice */
1914 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1915 		offset = ip->i_boffset +
1916 			offsetof(xfs_dinode_t, di_next_unlinked);
1917 		xfs_trans_inode_buf(tp, ibp);
1918 		xfs_trans_log_buf(tp, ibp, offset,
1919 				  (offset + sizeof(xfs_agino_t) - 1));
1920 		xfs_inobp_check(mp, ibp);
1921 	}
1922 
1923 	/*
1924 	 * Point the bucket head pointer at the inode being inserted.
1925 	 */
1926 	ASSERT(agino != 0);
1927 	INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino);
1928 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1929 		(sizeof(xfs_agino_t) * bucket_index);
1930 	xfs_trans_log_buf(tp, agibp, offset,
1931 			  (offset + sizeof(xfs_agino_t) - 1));
1932 	return 0;
1933 }
1934 
1935 /*
1936  * Pull the on-disk inode from the AGI unlinked list.
1937  */
1938 STATIC int
1939 xfs_iunlink_remove(
1940 	xfs_trans_t	*tp,
1941 	xfs_inode_t	*ip)
1942 {
1943 	xfs_ino_t	next_ino;
1944 	xfs_mount_t	*mp;
1945 	xfs_agi_t	*agi;
1946 	xfs_dinode_t	*dip;
1947 	xfs_buf_t	*agibp;
1948 	xfs_buf_t	*ibp;
1949 	xfs_agnumber_t	agno;
1950 	xfs_daddr_t	agdaddr;
1951 	xfs_agino_t	agino;
1952 	xfs_agino_t	next_agino;
1953 	xfs_buf_t	*last_ibp;
1954 	xfs_dinode_t	*last_dip;
1955 	short		bucket_index;
1956 	int		offset, last_offset;
1957 	int		error;
1958 	int		agi_ok;
1959 
1960 	/*
1961 	 * First pull the on-disk inode from the AGI unlinked list.
1962 	 */
1963 	mp = tp->t_mountp;
1964 
1965 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1966 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1967 
1968 	/*
1969 	 * Get the agi buffer first.  It ensures lock ordering
1970 	 * on the list.
1971 	 */
1972 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1973 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1974 	if (error) {
1975 		cmn_err(CE_WARN,
1976 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
1977 			error, mp->m_fsname);
1978 		return error;
1979 	}
1980 	/*
1981 	 * Validate the magic number of the agi block.
1982 	 */
1983 	agi = XFS_BUF_TO_AGI(agibp);
1984 	agi_ok =
1985 		INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1986 		XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1987 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1988 			XFS_RANDOM_IUNLINK_REMOVE))) {
1989 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1990 				     mp, agi);
1991 		xfs_trans_brelse(tp, agibp);
1992 		cmn_err(CE_WARN,
1993 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
1994 			 mp->m_fsname);
1995 		return XFS_ERROR(EFSCORRUPTED);
1996 	}
1997 	/*
1998 	 * Get the index into the agi hash table for the
1999 	 * list this inode will go on.
2000 	 */
2001 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2002 	ASSERT(agino != 0);
2003 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2004 	ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO);
2005 	ASSERT(agi->agi_unlinked[bucket_index]);
2006 
2007 	if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) {
2008 		/*
2009 		 * We're at the head of the list.  Get the inode's
2010 		 * on-disk buffer to see if there is anyone after us
2011 		 * on the list.  Only modify our next pointer if it
2012 		 * is not already NULLAGINO.  This saves us the overhead
2013 		 * of dealing with the buffer when there is no need to
2014 		 * change it.
2015 		 */
2016 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2017 		if (error) {
2018 			cmn_err(CE_WARN,
2019 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2020 				error, mp->m_fsname);
2021 			return error;
2022 		}
2023 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2024 		ASSERT(next_agino != 0);
2025 		if (next_agino != NULLAGINO) {
2026 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2027 			offset = ip->i_boffset +
2028 				offsetof(xfs_dinode_t, di_next_unlinked);
2029 			xfs_trans_inode_buf(tp, ibp);
2030 			xfs_trans_log_buf(tp, ibp, offset,
2031 					  (offset + sizeof(xfs_agino_t) - 1));
2032 			xfs_inobp_check(mp, ibp);
2033 		} else {
2034 			xfs_trans_brelse(tp, ibp);
2035 		}
2036 		/*
2037 		 * Point the bucket head pointer at the next inode.
2038 		 */
2039 		ASSERT(next_agino != 0);
2040 		ASSERT(next_agino != agino);
2041 		INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino);
2042 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2043 			(sizeof(xfs_agino_t) * bucket_index);
2044 		xfs_trans_log_buf(tp, agibp, offset,
2045 				  (offset + sizeof(xfs_agino_t) - 1));
2046 	} else {
2047 		/*
2048 		 * We need to search the list for the inode being freed.
2049 		 */
2050 		next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT);
2051 		last_ibp = NULL;
2052 		while (next_agino != agino) {
2053 			/*
2054 			 * If the last inode wasn't the one pointing to
2055 			 * us, then release its buffer since we're not
2056 			 * going to do anything with it.
2057 			 */
2058 			if (last_ibp != NULL) {
2059 				xfs_trans_brelse(tp, last_ibp);
2060 			}
2061 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2062 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2063 					    &last_ibp, &last_offset);
2064 			if (error) {
2065 				cmn_err(CE_WARN,
2066 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2067 					error, mp->m_fsname);
2068 				return error;
2069 			}
2070 			next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2071 			ASSERT(next_agino != NULLAGINO);
2072 			ASSERT(next_agino != 0);
2073 		}
2074 		/*
2075 		 * Now last_ibp points to the buffer previous to us on
2076 		 * the unlinked list.  Pull us from the list.
2077 		 */
2078 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2079 		if (error) {
2080 			cmn_err(CE_WARN,
2081 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2082 				error, mp->m_fsname);
2083 			return error;
2084 		}
2085 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2086 		ASSERT(next_agino != 0);
2087 		ASSERT(next_agino != agino);
2088 		if (next_agino != NULLAGINO) {
2089 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2090 			offset = ip->i_boffset +
2091 				offsetof(xfs_dinode_t, di_next_unlinked);
2092 			xfs_trans_inode_buf(tp, ibp);
2093 			xfs_trans_log_buf(tp, ibp, offset,
2094 					  (offset + sizeof(xfs_agino_t) - 1));
2095 			xfs_inobp_check(mp, ibp);
2096 		} else {
2097 			xfs_trans_brelse(tp, ibp);
2098 		}
2099 		/*
2100 		 * Point the previous inode on the list to the next inode.
2101 		 */
2102 		INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2103 		ASSERT(next_agino != 0);
2104 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2105 		xfs_trans_inode_buf(tp, last_ibp);
2106 		xfs_trans_log_buf(tp, last_ibp, offset,
2107 				  (offset + sizeof(xfs_agino_t) - 1));
2108 		xfs_inobp_check(mp, last_ibp);
2109 	}
2110 	return 0;
2111 }
2112 
2113 static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2114 {
2115 	return (((ip->i_itemp == NULL) ||
2116 		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2117 		(ip->i_update_core == 0));
2118 }
2119 
2120 STATIC void
2121 xfs_ifree_cluster(
2122 	xfs_inode_t	*free_ip,
2123 	xfs_trans_t	*tp,
2124 	xfs_ino_t	inum)
2125 {
2126 	xfs_mount_t		*mp = free_ip->i_mount;
2127 	int			blks_per_cluster;
2128 	int			nbufs;
2129 	int			ninodes;
2130 	int			i, j, found, pre_flushed;
2131 	xfs_daddr_t		blkno;
2132 	xfs_buf_t		*bp;
2133 	xfs_ihash_t		*ih;
2134 	xfs_inode_t		*ip, **ip_found;
2135 	xfs_inode_log_item_t	*iip;
2136 	xfs_log_item_t		*lip;
2137 	SPLDECL(s);
2138 
2139 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2140 		blks_per_cluster = 1;
2141 		ninodes = mp->m_sb.sb_inopblock;
2142 		nbufs = XFS_IALLOC_BLOCKS(mp);
2143 	} else {
2144 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2145 					mp->m_sb.sb_blocksize;
2146 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2147 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2148 	}
2149 
2150 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2151 
2152 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2153 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2154 					 XFS_INO_TO_AGBNO(mp, inum));
2155 
2156 
2157 		/*
2158 		 * Look for each inode in memory and attempt to lock it,
2159 		 * we can be racing with flush and tail pushing here.
2160 		 * any inode we get the locks on, add to an array of
2161 		 * inode items to process later.
2162 		 *
2163 		 * The get the buffer lock, we could beat a flush
2164 		 * or tail pushing thread to the lock here, in which
2165 		 * case they will go looking for the inode buffer
2166 		 * and fail, we need some other form of interlock
2167 		 * here.
2168 		 */
2169 		found = 0;
2170 		for (i = 0; i < ninodes; i++) {
2171 			ih = XFS_IHASH(mp, inum + i);
2172 			read_lock(&ih->ih_lock);
2173 			for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2174 				if (ip->i_ino == inum + i)
2175 					break;
2176 			}
2177 
2178 			/* Inode not in memory or we found it already,
2179 			 * nothing to do
2180 			 */
2181 			if (!ip || (ip->i_flags & XFS_ISTALE)) {
2182 				read_unlock(&ih->ih_lock);
2183 				continue;
2184 			}
2185 
2186 			if (xfs_inode_clean(ip)) {
2187 				read_unlock(&ih->ih_lock);
2188 				continue;
2189 			}
2190 
2191 			/* If we can get the locks then add it to the
2192 			 * list, otherwise by the time we get the bp lock
2193 			 * below it will already be attached to the
2194 			 * inode buffer.
2195 			 */
2196 
2197 			/* This inode will already be locked - by us, lets
2198 			 * keep it that way.
2199 			 */
2200 
2201 			if (ip == free_ip) {
2202 				if (xfs_iflock_nowait(ip)) {
2203 					ip->i_flags |= XFS_ISTALE;
2204 
2205 					if (xfs_inode_clean(ip)) {
2206 						xfs_ifunlock(ip);
2207 					} else {
2208 						ip_found[found++] = ip;
2209 					}
2210 				}
2211 				read_unlock(&ih->ih_lock);
2212 				continue;
2213 			}
2214 
2215 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2216 				if (xfs_iflock_nowait(ip)) {
2217 					ip->i_flags |= XFS_ISTALE;
2218 
2219 					if (xfs_inode_clean(ip)) {
2220 						xfs_ifunlock(ip);
2221 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2222 					} else {
2223 						ip_found[found++] = ip;
2224 					}
2225 				} else {
2226 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2227 				}
2228 			}
2229 
2230 			read_unlock(&ih->ih_lock);
2231 		}
2232 
2233 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2234 					mp->m_bsize * blks_per_cluster,
2235 					XFS_BUF_LOCK);
2236 
2237 		pre_flushed = 0;
2238 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2239 		while (lip) {
2240 			if (lip->li_type == XFS_LI_INODE) {
2241 				iip = (xfs_inode_log_item_t *)lip;
2242 				ASSERT(iip->ili_logged == 1);
2243 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2244 				AIL_LOCK(mp,s);
2245 				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2246 				AIL_UNLOCK(mp, s);
2247 				iip->ili_inode->i_flags |= XFS_ISTALE;
2248 				pre_flushed++;
2249 			}
2250 			lip = lip->li_bio_list;
2251 		}
2252 
2253 		for (i = 0; i < found; i++) {
2254 			ip = ip_found[i];
2255 			iip = ip->i_itemp;
2256 
2257 			if (!iip) {
2258 				ip->i_update_core = 0;
2259 				xfs_ifunlock(ip);
2260 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2261 				continue;
2262 			}
2263 
2264 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2265 			iip->ili_format.ilf_fields = 0;
2266 			iip->ili_logged = 1;
2267 			AIL_LOCK(mp,s);
2268 			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2269 			AIL_UNLOCK(mp, s);
2270 
2271 			xfs_buf_attach_iodone(bp,
2272 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2273 				xfs_istale_done, (xfs_log_item_t *)iip);
2274 			if (ip != free_ip) {
2275 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2276 			}
2277 		}
2278 
2279 		if (found || pre_flushed)
2280 			xfs_trans_stale_inode_buf(tp, bp);
2281 		xfs_trans_binval(tp, bp);
2282 	}
2283 
2284 	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2285 }
2286 
2287 /*
2288  * This is called to return an inode to the inode free list.
2289  * The inode should already be truncated to 0 length and have
2290  * no pages associated with it.  This routine also assumes that
2291  * the inode is already a part of the transaction.
2292  *
2293  * The on-disk copy of the inode will have been added to the list
2294  * of unlinked inodes in the AGI. We need to remove the inode from
2295  * that list atomically with respect to freeing it here.
2296  */
2297 int
2298 xfs_ifree(
2299 	xfs_trans_t	*tp,
2300 	xfs_inode_t	*ip,
2301 	xfs_bmap_free_t	*flist)
2302 {
2303 	int			error;
2304 	int			delete;
2305 	xfs_ino_t		first_ino;
2306 
2307 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2308 	ASSERT(ip->i_transp == tp);
2309 	ASSERT(ip->i_d.di_nlink == 0);
2310 	ASSERT(ip->i_d.di_nextents == 0);
2311 	ASSERT(ip->i_d.di_anextents == 0);
2312 	ASSERT((ip->i_d.di_size == 0) ||
2313 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2314 	ASSERT(ip->i_d.di_nblocks == 0);
2315 
2316 	/*
2317 	 * Pull the on-disk inode from the AGI unlinked list.
2318 	 */
2319 	error = xfs_iunlink_remove(tp, ip);
2320 	if (error != 0) {
2321 		return error;
2322 	}
2323 
2324 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2325 	if (error != 0) {
2326 		return error;
2327 	}
2328 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2329 	ip->i_d.di_flags = 0;
2330 	ip->i_d.di_dmevmask = 0;
2331 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2332 	ip->i_df.if_ext_max =
2333 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2334 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2335 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2336 	/*
2337 	 * Bump the generation count so no one will be confused
2338 	 * by reincarnations of this inode.
2339 	 */
2340 	ip->i_d.di_gen++;
2341 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2342 
2343 	if (delete) {
2344 		xfs_ifree_cluster(ip, tp, first_ino);
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 /*
2351  * Reallocate the space for if_broot based on the number of records
2352  * being added or deleted as indicated in rec_diff.  Move the records
2353  * and pointers in if_broot to fit the new size.  When shrinking this
2354  * will eliminate holes between the records and pointers created by
2355  * the caller.  When growing this will create holes to be filled in
2356  * by the caller.
2357  *
2358  * The caller must not request to add more records than would fit in
2359  * the on-disk inode root.  If the if_broot is currently NULL, then
2360  * if we adding records one will be allocated.  The caller must also
2361  * not request that the number of records go below zero, although
2362  * it can go to zero.
2363  *
2364  * ip -- the inode whose if_broot area is changing
2365  * ext_diff -- the change in the number of records, positive or negative,
2366  *	 requested for the if_broot array.
2367  */
2368 void
2369 xfs_iroot_realloc(
2370 	xfs_inode_t		*ip,
2371 	int			rec_diff,
2372 	int			whichfork)
2373 {
2374 	int			cur_max;
2375 	xfs_ifork_t		*ifp;
2376 	xfs_bmbt_block_t	*new_broot;
2377 	int			new_max;
2378 	size_t			new_size;
2379 	char			*np;
2380 	char			*op;
2381 
2382 	/*
2383 	 * Handle the degenerate case quietly.
2384 	 */
2385 	if (rec_diff == 0) {
2386 		return;
2387 	}
2388 
2389 	ifp = XFS_IFORK_PTR(ip, whichfork);
2390 	if (rec_diff > 0) {
2391 		/*
2392 		 * If there wasn't any memory allocated before, just
2393 		 * allocate it now and get out.
2394 		 */
2395 		if (ifp->if_broot_bytes == 0) {
2396 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2397 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2398 								     KM_SLEEP);
2399 			ifp->if_broot_bytes = (int)new_size;
2400 			return;
2401 		}
2402 
2403 		/*
2404 		 * If there is already an existing if_broot, then we need
2405 		 * to realloc() it and shift the pointers to their new
2406 		 * location.  The records don't change location because
2407 		 * they are kept butted up against the btree block header.
2408 		 */
2409 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2410 		new_max = cur_max + rec_diff;
2411 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2412 		ifp->if_broot = (xfs_bmbt_block_t *)
2413 		  kmem_realloc(ifp->if_broot,
2414 				new_size,
2415 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2416 				KM_SLEEP);
2417 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2418 						      ifp->if_broot_bytes);
2419 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2420 						      (int)new_size);
2421 		ifp->if_broot_bytes = (int)new_size;
2422 		ASSERT(ifp->if_broot_bytes <=
2423 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2424 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2425 		return;
2426 	}
2427 
2428 	/*
2429 	 * rec_diff is less than 0.  In this case, we are shrinking the
2430 	 * if_broot buffer.  It must already exist.  If we go to zero
2431 	 * records, just get rid of the root and clear the status bit.
2432 	 */
2433 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2434 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2435 	new_max = cur_max + rec_diff;
2436 	ASSERT(new_max >= 0);
2437 	if (new_max > 0)
2438 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2439 	else
2440 		new_size = 0;
2441 	if (new_size > 0) {
2442 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2443 		/*
2444 		 * First copy over the btree block header.
2445 		 */
2446 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2447 	} else {
2448 		new_broot = NULL;
2449 		ifp->if_flags &= ~XFS_IFBROOT;
2450 	}
2451 
2452 	/*
2453 	 * Only copy the records and pointers if there are any.
2454 	 */
2455 	if (new_max > 0) {
2456 		/*
2457 		 * First copy the records.
2458 		 */
2459 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2460 						     ifp->if_broot_bytes);
2461 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2462 						     (int)new_size);
2463 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2464 
2465 		/*
2466 		 * Then copy the pointers.
2467 		 */
2468 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2469 						     ifp->if_broot_bytes);
2470 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2471 						     (int)new_size);
2472 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2473 	}
2474 	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2475 	ifp->if_broot = new_broot;
2476 	ifp->if_broot_bytes = (int)new_size;
2477 	ASSERT(ifp->if_broot_bytes <=
2478 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2479 	return;
2480 }
2481 
2482 
2483 /*
2484  * This is called when the amount of space needed for if_extents
2485  * is increased or decreased.  The change in size is indicated by
2486  * the number of extents that need to be added or deleted in the
2487  * ext_diff parameter.
2488  *
2489  * If the amount of space needed has decreased below the size of the
2490  * inline buffer, then switch to using the inline buffer.  Otherwise,
2491  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2492  * to what is needed.
2493  *
2494  * ip -- the inode whose if_extents area is changing
2495  * ext_diff -- the change in the number of extents, positive or negative,
2496  *	 requested for the if_extents array.
2497  */
2498 void
2499 xfs_iext_realloc(
2500 	xfs_inode_t	*ip,
2501 	int		ext_diff,
2502 	int		whichfork)
2503 {
2504 	int		byte_diff;
2505 	xfs_ifork_t	*ifp;
2506 	int		new_size;
2507 	uint		rnew_size;
2508 
2509 	if (ext_diff == 0) {
2510 		return;
2511 	}
2512 
2513 	ifp = XFS_IFORK_PTR(ip, whichfork);
2514 	byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2515 	new_size = (int)ifp->if_bytes + byte_diff;
2516 	ASSERT(new_size >= 0);
2517 
2518 	if (new_size == 0) {
2519 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2520 			ASSERT(ifp->if_real_bytes != 0);
2521 			kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2522 		}
2523 		ifp->if_u1.if_extents = NULL;
2524 		rnew_size = 0;
2525 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2526 		/*
2527 		 * If the valid extents can fit in if_inline_ext,
2528 		 * copy them from the malloc'd vector and free it.
2529 		 */
2530 		if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2531 			/*
2532 			 * For now, empty files are format EXTENTS,
2533 			 * so the if_extents pointer is null.
2534 			 */
2535 			if (ifp->if_u1.if_extents) {
2536 				memcpy(ifp->if_u2.if_inline_ext,
2537 					ifp->if_u1.if_extents, new_size);
2538 				kmem_free(ifp->if_u1.if_extents,
2539 					  ifp->if_real_bytes);
2540 			}
2541 			ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2542 		}
2543 		rnew_size = 0;
2544 	} else {
2545 		rnew_size = new_size;
2546 		if ((rnew_size & (rnew_size - 1)) != 0)
2547 			rnew_size = xfs_iroundup(rnew_size);
2548 		/*
2549 		 * Stuck with malloc/realloc.
2550 		 */
2551 		if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2552 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2553 				kmem_alloc(rnew_size, KM_SLEEP);
2554 			memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2555 			      sizeof(ifp->if_u2.if_inline_ext));
2556 		} else if (rnew_size != ifp->if_real_bytes) {
2557 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2558 			  kmem_realloc(ifp->if_u1.if_extents,
2559 					rnew_size,
2560 					ifp->if_real_bytes,
2561 					KM_NOFS);
2562 		}
2563 	}
2564 	ifp->if_real_bytes = rnew_size;
2565 	ifp->if_bytes = new_size;
2566 }
2567 
2568 
2569 /*
2570  * This is called when the amount of space needed for if_data
2571  * is increased or decreased.  The change in size is indicated by
2572  * the number of bytes that need to be added or deleted in the
2573  * byte_diff parameter.
2574  *
2575  * If the amount of space needed has decreased below the size of the
2576  * inline buffer, then switch to using the inline buffer.  Otherwise,
2577  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2578  * to what is needed.
2579  *
2580  * ip -- the inode whose if_data area is changing
2581  * byte_diff -- the change in the number of bytes, positive or negative,
2582  *	 requested for the if_data array.
2583  */
2584 void
2585 xfs_idata_realloc(
2586 	xfs_inode_t	*ip,
2587 	int		byte_diff,
2588 	int		whichfork)
2589 {
2590 	xfs_ifork_t	*ifp;
2591 	int		new_size;
2592 	int		real_size;
2593 
2594 	if (byte_diff == 0) {
2595 		return;
2596 	}
2597 
2598 	ifp = XFS_IFORK_PTR(ip, whichfork);
2599 	new_size = (int)ifp->if_bytes + byte_diff;
2600 	ASSERT(new_size >= 0);
2601 
2602 	if (new_size == 0) {
2603 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2604 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2605 		}
2606 		ifp->if_u1.if_data = NULL;
2607 		real_size = 0;
2608 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2609 		/*
2610 		 * If the valid extents/data can fit in if_inline_ext/data,
2611 		 * copy them from the malloc'd vector and free it.
2612 		 */
2613 		if (ifp->if_u1.if_data == NULL) {
2614 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2615 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2616 			ASSERT(ifp->if_real_bytes != 0);
2617 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2618 			      new_size);
2619 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2620 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2621 		}
2622 		real_size = 0;
2623 	} else {
2624 		/*
2625 		 * Stuck with malloc/realloc.
2626 		 * For inline data, the underlying buffer must be
2627 		 * a multiple of 4 bytes in size so that it can be
2628 		 * logged and stay on word boundaries.  We enforce
2629 		 * that here.
2630 		 */
2631 		real_size = roundup(new_size, 4);
2632 		if (ifp->if_u1.if_data == NULL) {
2633 			ASSERT(ifp->if_real_bytes == 0);
2634 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2635 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2636 			/*
2637 			 * Only do the realloc if the underlying size
2638 			 * is really changing.
2639 			 */
2640 			if (ifp->if_real_bytes != real_size) {
2641 				ifp->if_u1.if_data =
2642 					kmem_realloc(ifp->if_u1.if_data,
2643 							real_size,
2644 							ifp->if_real_bytes,
2645 							KM_SLEEP);
2646 			}
2647 		} else {
2648 			ASSERT(ifp->if_real_bytes == 0);
2649 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2650 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2651 				ifp->if_bytes);
2652 		}
2653 	}
2654 	ifp->if_real_bytes = real_size;
2655 	ifp->if_bytes = new_size;
2656 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2657 }
2658 
2659 
2660 
2661 
2662 /*
2663  * Map inode to disk block and offset.
2664  *
2665  * mp -- the mount point structure for the current file system
2666  * tp -- the current transaction
2667  * ino -- the inode number of the inode to be located
2668  * imap -- this structure is filled in with the information necessary
2669  *	 to retrieve the given inode from disk
2670  * flags -- flags to pass to xfs_dilocate indicating whether or not
2671  *	 lookups in the inode btree were OK or not
2672  */
2673 int
2674 xfs_imap(
2675 	xfs_mount_t	*mp,
2676 	xfs_trans_t	*tp,
2677 	xfs_ino_t	ino,
2678 	xfs_imap_t	*imap,
2679 	uint		flags)
2680 {
2681 	xfs_fsblock_t	fsbno;
2682 	int		len;
2683 	int		off;
2684 	int		error;
2685 
2686 	fsbno = imap->im_blkno ?
2687 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2688 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2689 	if (error != 0) {
2690 		return error;
2691 	}
2692 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2693 	imap->im_len = XFS_FSB_TO_BB(mp, len);
2694 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2695 	imap->im_ioffset = (ushort)off;
2696 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2697 	return 0;
2698 }
2699 
2700 void
2701 xfs_idestroy_fork(
2702 	xfs_inode_t	*ip,
2703 	int		whichfork)
2704 {
2705 	xfs_ifork_t	*ifp;
2706 
2707 	ifp = XFS_IFORK_PTR(ip, whichfork);
2708 	if (ifp->if_broot != NULL) {
2709 		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2710 		ifp->if_broot = NULL;
2711 	}
2712 
2713 	/*
2714 	 * If the format is local, then we can't have an extents
2715 	 * array so just look for an inline data array.  If we're
2716 	 * not local then we may or may not have an extents list,
2717 	 * so check and free it up if we do.
2718 	 */
2719 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2720 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2721 		    (ifp->if_u1.if_data != NULL)) {
2722 			ASSERT(ifp->if_real_bytes != 0);
2723 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2724 			ifp->if_u1.if_data = NULL;
2725 			ifp->if_real_bytes = 0;
2726 		}
2727 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2728 		   (ifp->if_u1.if_extents != NULL) &&
2729 		   (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2730 		ASSERT(ifp->if_real_bytes != 0);
2731 		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2732 		ifp->if_u1.if_extents = NULL;
2733 		ifp->if_real_bytes = 0;
2734 	}
2735 	ASSERT(ifp->if_u1.if_extents == NULL ||
2736 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2737 	ASSERT(ifp->if_real_bytes == 0);
2738 	if (whichfork == XFS_ATTR_FORK) {
2739 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2740 		ip->i_afp = NULL;
2741 	}
2742 }
2743 
2744 /*
2745  * This is called free all the memory associated with an inode.
2746  * It must free the inode itself and any buffers allocated for
2747  * if_extents/if_data and if_broot.  It must also free the lock
2748  * associated with the inode.
2749  */
2750 void
2751 xfs_idestroy(
2752 	xfs_inode_t	*ip)
2753 {
2754 
2755 	switch (ip->i_d.di_mode & S_IFMT) {
2756 	case S_IFREG:
2757 	case S_IFDIR:
2758 	case S_IFLNK:
2759 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2760 		break;
2761 	}
2762 	if (ip->i_afp)
2763 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2764 	mrfree(&ip->i_lock);
2765 	mrfree(&ip->i_iolock);
2766 	freesema(&ip->i_flock);
2767 #ifdef XFS_BMAP_TRACE
2768 	ktrace_free(ip->i_xtrace);
2769 #endif
2770 #ifdef XFS_BMBT_TRACE
2771 	ktrace_free(ip->i_btrace);
2772 #endif
2773 #ifdef XFS_RW_TRACE
2774 	ktrace_free(ip->i_rwtrace);
2775 #endif
2776 #ifdef XFS_ILOCK_TRACE
2777 	ktrace_free(ip->i_lock_trace);
2778 #endif
2779 #ifdef XFS_DIR2_TRACE
2780 	ktrace_free(ip->i_dir_trace);
2781 #endif
2782 	if (ip->i_itemp) {
2783 		/* XXXdpd should be able to assert this but shutdown
2784 		 * is leaving the AIL behind. */
2785 		ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2786 		       XFS_FORCED_SHUTDOWN(ip->i_mount));
2787 		xfs_inode_item_destroy(ip);
2788 	}
2789 	kmem_zone_free(xfs_inode_zone, ip);
2790 }
2791 
2792 
2793 /*
2794  * Increment the pin count of the given buffer.
2795  * This value is protected by ipinlock spinlock in the mount structure.
2796  */
2797 void
2798 xfs_ipin(
2799 	xfs_inode_t	*ip)
2800 {
2801 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2802 
2803 	atomic_inc(&ip->i_pincount);
2804 }
2805 
2806 /*
2807  * Decrement the pin count of the given inode, and wake up
2808  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2809  * inode must have been previoulsy pinned with a call to xfs_ipin().
2810  */
2811 void
2812 xfs_iunpin(
2813 	xfs_inode_t	*ip)
2814 {
2815 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2816 
2817 	if (atomic_dec_and_test(&ip->i_pincount)) {
2818 		vnode_t	*vp = XFS_ITOV_NULL(ip);
2819 
2820 		/* make sync come back and flush this inode */
2821 		if (vp) {
2822 			struct inode	*inode = LINVFS_GET_IP(vp);
2823 
2824 			if (!(inode->i_state & I_NEW))
2825 				mark_inode_dirty_sync(inode);
2826 		}
2827 
2828 		wake_up(&ip->i_ipin_wait);
2829 	}
2830 }
2831 
2832 /*
2833  * This is called to wait for the given inode to be unpinned.
2834  * It will sleep until this happens.  The caller must have the
2835  * inode locked in at least shared mode so that the buffer cannot
2836  * be subsequently pinned once someone is waiting for it to be
2837  * unpinned.
2838  */
2839 STATIC void
2840 xfs_iunpin_wait(
2841 	xfs_inode_t	*ip)
2842 {
2843 	xfs_inode_log_item_t	*iip;
2844 	xfs_lsn_t	lsn;
2845 
2846 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2847 
2848 	if (atomic_read(&ip->i_pincount) == 0) {
2849 		return;
2850 	}
2851 
2852 	iip = ip->i_itemp;
2853 	if (iip && iip->ili_last_lsn) {
2854 		lsn = iip->ili_last_lsn;
2855 	} else {
2856 		lsn = (xfs_lsn_t)0;
2857 	}
2858 
2859 	/*
2860 	 * Give the log a push so we don't wait here too long.
2861 	 */
2862 	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2863 
2864 	wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2865 }
2866 
2867 
2868 /*
2869  * xfs_iextents_copy()
2870  *
2871  * This is called to copy the REAL extents (as opposed to the delayed
2872  * allocation extents) from the inode into the given buffer.  It
2873  * returns the number of bytes copied into the buffer.
2874  *
2875  * If there are no delayed allocation extents, then we can just
2876  * memcpy() the extents into the buffer.  Otherwise, we need to
2877  * examine each extent in turn and skip those which are delayed.
2878  */
2879 int
2880 xfs_iextents_copy(
2881 	xfs_inode_t		*ip,
2882 	xfs_bmbt_rec_t		*buffer,
2883 	int			whichfork)
2884 {
2885 	int			copied;
2886 	xfs_bmbt_rec_t		*dest_ep;
2887 	xfs_bmbt_rec_t		*ep;
2888 #ifdef XFS_BMAP_TRACE
2889 	static char		fname[] = "xfs_iextents_copy";
2890 #endif
2891 	int			i;
2892 	xfs_ifork_t		*ifp;
2893 	int			nrecs;
2894 	xfs_fsblock_t		start_block;
2895 
2896 	ifp = XFS_IFORK_PTR(ip, whichfork);
2897 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2898 	ASSERT(ifp->if_bytes > 0);
2899 
2900 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2901 	xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2902 	ASSERT(nrecs > 0);
2903 
2904 	/*
2905 	 * There are some delayed allocation extents in the
2906 	 * inode, so copy the extents one at a time and skip
2907 	 * the delayed ones.  There must be at least one
2908 	 * non-delayed extent.
2909 	 */
2910 	ep = ifp->if_u1.if_extents;
2911 	dest_ep = buffer;
2912 	copied = 0;
2913 	for (i = 0; i < nrecs; i++) {
2914 		start_block = xfs_bmbt_get_startblock(ep);
2915 		if (ISNULLSTARTBLOCK(start_block)) {
2916 			/*
2917 			 * It's a delayed allocation extent, so skip it.
2918 			 */
2919 			ep++;
2920 			continue;
2921 		}
2922 
2923 		/* Translate to on disk format */
2924 		put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2925 			      (__uint64_t*)&dest_ep->l0);
2926 		put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2927 			      (__uint64_t*)&dest_ep->l1);
2928 		dest_ep++;
2929 		ep++;
2930 		copied++;
2931 	}
2932 	ASSERT(copied != 0);
2933 	xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2934 
2935 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2936 }
2937 
2938 /*
2939  * Each of the following cases stores data into the same region
2940  * of the on-disk inode, so only one of them can be valid at
2941  * any given time. While it is possible to have conflicting formats
2942  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2943  * in EXTENTS format, this can only happen when the fork has
2944  * changed formats after being modified but before being flushed.
2945  * In these cases, the format always takes precedence, because the
2946  * format indicates the current state of the fork.
2947  */
2948 /*ARGSUSED*/
2949 STATIC int
2950 xfs_iflush_fork(
2951 	xfs_inode_t		*ip,
2952 	xfs_dinode_t		*dip,
2953 	xfs_inode_log_item_t	*iip,
2954 	int			whichfork,
2955 	xfs_buf_t		*bp)
2956 {
2957 	char			*cp;
2958 	xfs_ifork_t		*ifp;
2959 	xfs_mount_t		*mp;
2960 #ifdef XFS_TRANS_DEBUG
2961 	int			first;
2962 #endif
2963 	static const short	brootflag[2] =
2964 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2965 	static const short	dataflag[2] =
2966 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2967 	static const short	extflag[2] =
2968 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2969 
2970 	if (iip == NULL)
2971 		return 0;
2972 	ifp = XFS_IFORK_PTR(ip, whichfork);
2973 	/*
2974 	 * This can happen if we gave up in iformat in an error path,
2975 	 * for the attribute fork.
2976 	 */
2977 	if (ifp == NULL) {
2978 		ASSERT(whichfork == XFS_ATTR_FORK);
2979 		return 0;
2980 	}
2981 	cp = XFS_DFORK_PTR(dip, whichfork);
2982 	mp = ip->i_mount;
2983 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2984 	case XFS_DINODE_FMT_LOCAL:
2985 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2986 		    (ifp->if_bytes > 0)) {
2987 			ASSERT(ifp->if_u1.if_data != NULL);
2988 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2989 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2990 		}
2991 		if (whichfork == XFS_DATA_FORK) {
2992 			if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2993 				XFS_ERROR_REPORT("xfs_iflush_fork",
2994 						 XFS_ERRLEVEL_LOW, mp);
2995 				return XFS_ERROR(EFSCORRUPTED);
2996 			}
2997 		}
2998 		break;
2999 
3000 	case XFS_DINODE_FMT_EXTENTS:
3001 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
3002 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
3003 		ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
3004 		ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
3005 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3006 		    (ifp->if_bytes > 0)) {
3007 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3008 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3009 				whichfork);
3010 		}
3011 		break;
3012 
3013 	case XFS_DINODE_FMT_BTREE:
3014 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3015 		    (ifp->if_broot_bytes > 0)) {
3016 			ASSERT(ifp->if_broot != NULL);
3017 			ASSERT(ifp->if_broot_bytes <=
3018 			       (XFS_IFORK_SIZE(ip, whichfork) +
3019 				XFS_BROOT_SIZE_ADJ));
3020 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3021 				(xfs_bmdr_block_t *)cp,
3022 				XFS_DFORK_SIZE(dip, mp, whichfork));
3023 		}
3024 		break;
3025 
3026 	case XFS_DINODE_FMT_DEV:
3027 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3028 			ASSERT(whichfork == XFS_DATA_FORK);
3029 			INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3030 		}
3031 		break;
3032 
3033 	case XFS_DINODE_FMT_UUID:
3034 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3035 			ASSERT(whichfork == XFS_DATA_FORK);
3036 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3037 				sizeof(uuid_t));
3038 		}
3039 		break;
3040 
3041 	default:
3042 		ASSERT(0);
3043 		break;
3044 	}
3045 
3046 	return 0;
3047 }
3048 
3049 /*
3050  * xfs_iflush() will write a modified inode's changes out to the
3051  * inode's on disk home.  The caller must have the inode lock held
3052  * in at least shared mode and the inode flush semaphore must be
3053  * held as well.  The inode lock will still be held upon return from
3054  * the call and the caller is free to unlock it.
3055  * The inode flush lock will be unlocked when the inode reaches the disk.
3056  * The flags indicate how the inode's buffer should be written out.
3057  */
3058 int
3059 xfs_iflush(
3060 	xfs_inode_t		*ip,
3061 	uint			flags)
3062 {
3063 	xfs_inode_log_item_t	*iip;
3064 	xfs_buf_t		*bp;
3065 	xfs_dinode_t		*dip;
3066 	xfs_mount_t		*mp;
3067 	int			error;
3068 	/* REFERENCED */
3069 	xfs_chash_t		*ch;
3070 	xfs_inode_t		*iq;
3071 	int			clcount;	/* count of inodes clustered */
3072 	int			bufwasdelwri;
3073 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3074 	SPLDECL(s);
3075 
3076 	XFS_STATS_INC(xs_iflush_count);
3077 
3078 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3079 	ASSERT(valusema(&ip->i_flock) <= 0);
3080 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3081 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3082 
3083 	iip = ip->i_itemp;
3084 	mp = ip->i_mount;
3085 
3086 	/*
3087 	 * If the inode isn't dirty, then just release the inode
3088 	 * flush lock and do nothing.
3089 	 */
3090 	if ((ip->i_update_core == 0) &&
3091 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3092 		ASSERT((iip != NULL) ?
3093 			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3094 		xfs_ifunlock(ip);
3095 		return 0;
3096 	}
3097 
3098 	/*
3099 	 * We can't flush the inode until it is unpinned, so
3100 	 * wait for it.  We know noone new can pin it, because
3101 	 * we are holding the inode lock shared and you need
3102 	 * to hold it exclusively to pin the inode.
3103 	 */
3104 	xfs_iunpin_wait(ip);
3105 
3106 	/*
3107 	 * This may have been unpinned because the filesystem is shutting
3108 	 * down forcibly. If that's the case we must not write this inode
3109 	 * to disk, because the log record didn't make it to disk!
3110 	 */
3111 	if (XFS_FORCED_SHUTDOWN(mp)) {
3112 		ip->i_update_core = 0;
3113 		if (iip)
3114 			iip->ili_format.ilf_fields = 0;
3115 		xfs_ifunlock(ip);
3116 		return XFS_ERROR(EIO);
3117 	}
3118 
3119 	/*
3120 	 * Get the buffer containing the on-disk inode.
3121 	 */
3122 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3123 	if (error != 0) {
3124 		xfs_ifunlock(ip);
3125 		return error;
3126 	}
3127 
3128 	/*
3129 	 * Decide how buffer will be flushed out.  This is done before
3130 	 * the call to xfs_iflush_int because this field is zeroed by it.
3131 	 */
3132 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3133 		/*
3134 		 * Flush out the inode buffer according to the directions
3135 		 * of the caller.  In the cases where the caller has given
3136 		 * us a choice choose the non-delwri case.  This is because
3137 		 * the inode is in the AIL and we need to get it out soon.
3138 		 */
3139 		switch (flags) {
3140 		case XFS_IFLUSH_SYNC:
3141 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3142 			flags = 0;
3143 			break;
3144 		case XFS_IFLUSH_ASYNC:
3145 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3146 			flags = INT_ASYNC;
3147 			break;
3148 		case XFS_IFLUSH_DELWRI:
3149 			flags = INT_DELWRI;
3150 			break;
3151 		default:
3152 			ASSERT(0);
3153 			flags = 0;
3154 			break;
3155 		}
3156 	} else {
3157 		switch (flags) {
3158 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3159 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3160 		case XFS_IFLUSH_DELWRI:
3161 			flags = INT_DELWRI;
3162 			break;
3163 		case XFS_IFLUSH_ASYNC:
3164 			flags = INT_ASYNC;
3165 			break;
3166 		case XFS_IFLUSH_SYNC:
3167 			flags = 0;
3168 			break;
3169 		default:
3170 			ASSERT(0);
3171 			flags = 0;
3172 			break;
3173 		}
3174 	}
3175 
3176 	/*
3177 	 * First flush out the inode that xfs_iflush was called with.
3178 	 */
3179 	error = xfs_iflush_int(ip, bp);
3180 	if (error) {
3181 		goto corrupt_out;
3182 	}
3183 
3184 	/*
3185 	 * inode clustering:
3186 	 * see if other inodes can be gathered into this write
3187 	 */
3188 
3189 	ip->i_chash->chl_buf = bp;
3190 
3191 	ch = XFS_CHASH(mp, ip->i_blkno);
3192 	s = mutex_spinlock(&ch->ch_lock);
3193 
3194 	clcount = 0;
3195 	for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3196 		/*
3197 		 * Do an un-protected check to see if the inode is dirty and
3198 		 * is a candidate for flushing.  These checks will be repeated
3199 		 * later after the appropriate locks are acquired.
3200 		 */
3201 		iip = iq->i_itemp;
3202 		if ((iq->i_update_core == 0) &&
3203 		    ((iip == NULL) ||
3204 		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3205 		      xfs_ipincount(iq) == 0) {
3206 			continue;
3207 		}
3208 
3209 		/*
3210 		 * Try to get locks.  If any are unavailable,
3211 		 * then this inode cannot be flushed and is skipped.
3212 		 */
3213 
3214 		/* get inode locks (just i_lock) */
3215 		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3216 			/* get inode flush lock */
3217 			if (xfs_iflock_nowait(iq)) {
3218 				/* check if pinned */
3219 				if (xfs_ipincount(iq) == 0) {
3220 					/* arriving here means that
3221 					 * this inode can be flushed.
3222 					 * first re-check that it's
3223 					 * dirty
3224 					 */
3225 					iip = iq->i_itemp;
3226 					if ((iq->i_update_core != 0)||
3227 					    ((iip != NULL) &&
3228 					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3229 						clcount++;
3230 						error = xfs_iflush_int(iq, bp);
3231 						if (error) {
3232 							xfs_iunlock(iq,
3233 								    XFS_ILOCK_SHARED);
3234 							goto cluster_corrupt_out;
3235 						}
3236 					} else {
3237 						xfs_ifunlock(iq);
3238 					}
3239 				} else {
3240 					xfs_ifunlock(iq);
3241 				}
3242 			}
3243 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3244 		}
3245 	}
3246 	mutex_spinunlock(&ch->ch_lock, s);
3247 
3248 	if (clcount) {
3249 		XFS_STATS_INC(xs_icluster_flushcnt);
3250 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3251 	}
3252 
3253 	/*
3254 	 * If the buffer is pinned then push on the log so we won't
3255 	 * get stuck waiting in the write for too long.
3256 	 */
3257 	if (XFS_BUF_ISPINNED(bp)){
3258 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3259 	}
3260 
3261 	if (flags & INT_DELWRI) {
3262 		xfs_bdwrite(mp, bp);
3263 	} else if (flags & INT_ASYNC) {
3264 		xfs_bawrite(mp, bp);
3265 	} else {
3266 		error = xfs_bwrite(mp, bp);
3267 	}
3268 	return error;
3269 
3270 corrupt_out:
3271 	xfs_buf_relse(bp);
3272 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3273 	xfs_iflush_abort(ip);
3274 	/*
3275 	 * Unlocks the flush lock
3276 	 */
3277 	return XFS_ERROR(EFSCORRUPTED);
3278 
3279 cluster_corrupt_out:
3280 	/* Corruption detected in the clustering loop.  Invalidate the
3281 	 * inode buffer and shut down the filesystem.
3282 	 */
3283 	mutex_spinunlock(&ch->ch_lock, s);
3284 
3285 	/*
3286 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3287 	 * brelse can handle it with no problems.  If not, shut down the
3288 	 * filesystem before releasing the buffer.
3289 	 */
3290 	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3291 		xfs_buf_relse(bp);
3292 	}
3293 
3294 	xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3295 
3296 	if(!bufwasdelwri)  {
3297 		/*
3298 		 * Just like incore_relse: if we have b_iodone functions,
3299 		 * mark the buffer as an error and call them.  Otherwise
3300 		 * mark it as stale and brelse.
3301 		 */
3302 		if (XFS_BUF_IODONE_FUNC(bp)) {
3303 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3304 			XFS_BUF_UNDONE(bp);
3305 			XFS_BUF_STALE(bp);
3306 			XFS_BUF_SHUT(bp);
3307 			XFS_BUF_ERROR(bp,EIO);
3308 			xfs_biodone(bp);
3309 		} else {
3310 			XFS_BUF_STALE(bp);
3311 			xfs_buf_relse(bp);
3312 		}
3313 	}
3314 
3315 	xfs_iflush_abort(iq);
3316 	/*
3317 	 * Unlocks the flush lock
3318 	 */
3319 	return XFS_ERROR(EFSCORRUPTED);
3320 }
3321 
3322 
3323 STATIC int
3324 xfs_iflush_int(
3325 	xfs_inode_t		*ip,
3326 	xfs_buf_t		*bp)
3327 {
3328 	xfs_inode_log_item_t	*iip;
3329 	xfs_dinode_t		*dip;
3330 	xfs_mount_t		*mp;
3331 #ifdef XFS_TRANS_DEBUG
3332 	int			first;
3333 #endif
3334 	SPLDECL(s);
3335 
3336 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3337 	ASSERT(valusema(&ip->i_flock) <= 0);
3338 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3339 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3340 
3341 	iip = ip->i_itemp;
3342 	mp = ip->i_mount;
3343 
3344 
3345 	/*
3346 	 * If the inode isn't dirty, then just release the inode
3347 	 * flush lock and do nothing.
3348 	 */
3349 	if ((ip->i_update_core == 0) &&
3350 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3351 		xfs_ifunlock(ip);
3352 		return 0;
3353 	}
3354 
3355 	/* set *dip = inode's place in the buffer */
3356 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3357 
3358 	/*
3359 	 * Clear i_update_core before copying out the data.
3360 	 * This is for coordination with our timestamp updates
3361 	 * that don't hold the inode lock. They will always
3362 	 * update the timestamps BEFORE setting i_update_core,
3363 	 * so if we clear i_update_core after they set it we
3364 	 * are guaranteed to see their updates to the timestamps.
3365 	 * I believe that this depends on strongly ordered memory
3366 	 * semantics, but we have that.  We use the SYNCHRONIZE
3367 	 * macro to make sure that the compiler does not reorder
3368 	 * the i_update_core access below the data copy below.
3369 	 */
3370 	ip->i_update_core = 0;
3371 	SYNCHRONIZE();
3372 
3373 	if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3374 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3375 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3376 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3377 			ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3378 		goto corrupt_out;
3379 	}
3380 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3381 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3382 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3383 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3384 			ip->i_ino, ip, ip->i_d.di_magic);
3385 		goto corrupt_out;
3386 	}
3387 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3388 		if (XFS_TEST_ERROR(
3389 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3390 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3391 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3392 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3393 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3394 				ip->i_ino, ip);
3395 			goto corrupt_out;
3396 		}
3397 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3398 		if (XFS_TEST_ERROR(
3399 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3400 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3401 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3402 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3403 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3404 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3405 				ip->i_ino, ip);
3406 			goto corrupt_out;
3407 		}
3408 	}
3409 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3410 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3411 				XFS_RANDOM_IFLUSH_5)) {
3412 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3413 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3414 			ip->i_ino,
3415 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3416 			ip->i_d.di_nblocks,
3417 			ip);
3418 		goto corrupt_out;
3419 	}
3420 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3421 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3422 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3423 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3424 			ip->i_ino, ip->i_d.di_forkoff, ip);
3425 		goto corrupt_out;
3426 	}
3427 	/*
3428 	 * bump the flush iteration count, used to detect flushes which
3429 	 * postdate a log record during recovery.
3430 	 */
3431 
3432 	ip->i_d.di_flushiter++;
3433 
3434 	/*
3435 	 * Copy the dirty parts of the inode into the on-disk
3436 	 * inode.  We always copy out the core of the inode,
3437 	 * because if the inode is dirty at all the core must
3438 	 * be.
3439 	 */
3440 	xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3441 
3442 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3443 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3444 		ip->i_d.di_flushiter = 0;
3445 
3446 	/*
3447 	 * If this is really an old format inode and the superblock version
3448 	 * has not been updated to support only new format inodes, then
3449 	 * convert back to the old inode format.  If the superblock version
3450 	 * has been updated, then make the conversion permanent.
3451 	 */
3452 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3453 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3454 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3455 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3456 			/*
3457 			 * Convert it back.
3458 			 */
3459 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3460 			INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3461 		} else {
3462 			/*
3463 			 * The superblock version has already been bumped,
3464 			 * so just make the conversion to the new inode
3465 			 * format permanent.
3466 			 */
3467 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3468 			INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3469 			ip->i_d.di_onlink = 0;
3470 			dip->di_core.di_onlink = 0;
3471 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3472 			memset(&(dip->di_core.di_pad[0]), 0,
3473 			      sizeof(dip->di_core.di_pad));
3474 			ASSERT(ip->i_d.di_projid == 0);
3475 		}
3476 	}
3477 
3478 	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3479 		goto corrupt_out;
3480 	}
3481 
3482 	if (XFS_IFORK_Q(ip)) {
3483 		/*
3484 		 * The only error from xfs_iflush_fork is on the data fork.
3485 		 */
3486 		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3487 	}
3488 	xfs_inobp_check(mp, bp);
3489 
3490 	/*
3491 	 * We've recorded everything logged in the inode, so we'd
3492 	 * like to clear the ilf_fields bits so we don't log and
3493 	 * flush things unnecessarily.  However, we can't stop
3494 	 * logging all this information until the data we've copied
3495 	 * into the disk buffer is written to disk.  If we did we might
3496 	 * overwrite the copy of the inode in the log with all the
3497 	 * data after re-logging only part of it, and in the face of
3498 	 * a crash we wouldn't have all the data we need to recover.
3499 	 *
3500 	 * What we do is move the bits to the ili_last_fields field.
3501 	 * When logging the inode, these bits are moved back to the
3502 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3503 	 * clear ili_last_fields, since we know that the information
3504 	 * those bits represent is permanently on disk.  As long as
3505 	 * the flush completes before the inode is logged again, then
3506 	 * both ilf_fields and ili_last_fields will be cleared.
3507 	 *
3508 	 * We can play with the ilf_fields bits here, because the inode
3509 	 * lock must be held exclusively in order to set bits there
3510 	 * and the flush lock protects the ili_last_fields bits.
3511 	 * Set ili_logged so the flush done
3512 	 * routine can tell whether or not to look in the AIL.
3513 	 * Also, store the current LSN of the inode so that we can tell
3514 	 * whether the item has moved in the AIL from xfs_iflush_done().
3515 	 * In order to read the lsn we need the AIL lock, because
3516 	 * it is a 64 bit value that cannot be read atomically.
3517 	 */
3518 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3519 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3520 		iip->ili_format.ilf_fields = 0;
3521 		iip->ili_logged = 1;
3522 
3523 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3524 		AIL_LOCK(mp,s);
3525 		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3526 		AIL_UNLOCK(mp, s);
3527 
3528 		/*
3529 		 * Attach the function xfs_iflush_done to the inode's
3530 		 * buffer.  This will remove the inode from the AIL
3531 		 * and unlock the inode's flush lock when the inode is
3532 		 * completely written to disk.
3533 		 */
3534 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3535 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3536 
3537 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3538 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3539 	} else {
3540 		/*
3541 		 * We're flushing an inode which is not in the AIL and has
3542 		 * not been logged but has i_update_core set.  For this
3543 		 * case we can use a B_DELWRI flush and immediately drop
3544 		 * the inode flush lock because we can avoid the whole
3545 		 * AIL state thing.  It's OK to drop the flush lock now,
3546 		 * because we've already locked the buffer and to do anything
3547 		 * you really need both.
3548 		 */
3549 		if (iip != NULL) {
3550 			ASSERT(iip->ili_logged == 0);
3551 			ASSERT(iip->ili_last_fields == 0);
3552 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3553 		}
3554 		xfs_ifunlock(ip);
3555 	}
3556 
3557 	return 0;
3558 
3559 corrupt_out:
3560 	return XFS_ERROR(EFSCORRUPTED);
3561 }
3562 
3563 
3564 /*
3565  * Flush all inactive inodes in mp.
3566  */
3567 void
3568 xfs_iflush_all(
3569 	xfs_mount_t	*mp)
3570 {
3571 	xfs_inode_t	*ip;
3572 	vnode_t		*vp;
3573 
3574  again:
3575 	XFS_MOUNT_ILOCK(mp);
3576 	ip = mp->m_inodes;
3577 	if (ip == NULL)
3578 		goto out;
3579 
3580 	do {
3581 		/* Make sure we skip markers inserted by sync */
3582 		if (ip->i_mount == NULL) {
3583 			ip = ip->i_mnext;
3584 			continue;
3585 		}
3586 
3587 		vp = XFS_ITOV_NULL(ip);
3588 		if (!vp) {
3589 			XFS_MOUNT_IUNLOCK(mp);
3590 			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3591 			goto again;
3592 		}
3593 
3594 		ASSERT(vn_count(vp) == 0);
3595 
3596 		ip = ip->i_mnext;
3597 	} while (ip != mp->m_inodes);
3598  out:
3599 	XFS_MOUNT_IUNLOCK(mp);
3600 }
3601 
3602 /*
3603  * xfs_iaccess: check accessibility of inode for mode.
3604  */
3605 int
3606 xfs_iaccess(
3607 	xfs_inode_t	*ip,
3608 	mode_t		mode,
3609 	cred_t		*cr)
3610 {
3611 	int		error;
3612 	mode_t		orgmode = mode;
3613 	struct inode	*inode = LINVFS_GET_IP(XFS_ITOV(ip));
3614 
3615 	if (mode & S_IWUSR) {
3616 		umode_t		imode = inode->i_mode;
3617 
3618 		if (IS_RDONLY(inode) &&
3619 		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3620 			return XFS_ERROR(EROFS);
3621 
3622 		if (IS_IMMUTABLE(inode))
3623 			return XFS_ERROR(EACCES);
3624 	}
3625 
3626 	/*
3627 	 * If there's an Access Control List it's used instead of
3628 	 * the mode bits.
3629 	 */
3630 	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3631 		return error ? XFS_ERROR(error) : 0;
3632 
3633 	if (current_fsuid(cr) != ip->i_d.di_uid) {
3634 		mode >>= 3;
3635 		if (!in_group_p((gid_t)ip->i_d.di_gid))
3636 			mode >>= 3;
3637 	}
3638 
3639 	/*
3640 	 * If the DACs are ok we don't need any capability check.
3641 	 */
3642 	if ((ip->i_d.di_mode & mode) == mode)
3643 		return 0;
3644 	/*
3645 	 * Read/write DACs are always overridable.
3646 	 * Executable DACs are overridable if at least one exec bit is set.
3647 	 */
3648 	if (!(orgmode & S_IXUSR) ||
3649 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3650 		if (capable_cred(cr, CAP_DAC_OVERRIDE))
3651 			return 0;
3652 
3653 	if ((orgmode == S_IRUSR) ||
3654 	    (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3655 		if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3656 			return 0;
3657 #ifdef	NOISE
3658 		cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3659 #endif	/* NOISE */
3660 		return XFS_ERROR(EACCES);
3661 	}
3662 	return XFS_ERROR(EACCES);
3663 }
3664 
3665 /*
3666  * xfs_iroundup: round up argument to next power of two
3667  */
3668 uint
3669 xfs_iroundup(
3670 	uint	v)
3671 {
3672 	int i;
3673 	uint m;
3674 
3675 	if ((v & (v - 1)) == 0)
3676 		return v;
3677 	ASSERT((v & 0x80000000) == 0);
3678 	if ((v & (v + 1)) == 0)
3679 		return v + 1;
3680 	for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3681 		if (v & m)
3682 			continue;
3683 		v |= m;
3684 		if ((v & (v + 1)) == 0)
3685 			return v + 1;
3686 	}
3687 	ASSERT(0);
3688 	return( 0 );
3689 }
3690 
3691 /*
3692  * Change the requested timestamp in the given inode.
3693  * We don't lock across timestamp updates, and we don't log them but
3694  * we do record the fact that there is dirty information in core.
3695  *
3696  * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
3697  *		with XFS_ICHGTIME_ACC to be sure that access time
3698  *		update will take.  Calling first with XFS_ICHGTIME_ACC
3699  *		and then XFS_ICHGTIME_MOD may fail to modify the access
3700  *		timestamp if the filesystem is mounted noacctm.
3701  */
3702 void
3703 xfs_ichgtime(xfs_inode_t *ip,
3704 	     int flags)
3705 {
3706 	timespec_t	tv;
3707 	vnode_t		*vp = XFS_ITOV(ip);
3708 	struct inode	*inode = LINVFS_GET_IP(vp);
3709 
3710 	/*
3711 	 * We're not supposed to change timestamps in readonly-mounted
3712 	 * filesystems.  Throw it away if anyone asks us.
3713 	 */
3714 	if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY))
3715 		return;
3716 
3717 	/*
3718 	 * Don't update access timestamps on reads if mounted "noatime"
3719 	 * Throw it away if anyone asks us.
3720 	 */
3721 	if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) &&
3722 	    ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG))
3723 			== XFS_ICHGTIME_ACC))
3724 		return;
3725 
3726 	nanotime(&tv);
3727 	if (flags & XFS_ICHGTIME_MOD) {
3728 		VN_MTIMESET(vp, &tv);
3729 		ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
3730 		ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
3731 	}
3732 	if (flags & XFS_ICHGTIME_ACC) {
3733 		VN_ATIMESET(vp, &tv);
3734 		ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec;
3735 		ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec;
3736 	}
3737 	if (flags & XFS_ICHGTIME_CHG) {
3738 		VN_CTIMESET(vp, &tv);
3739 		ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec;
3740 		ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec;
3741 	}
3742 
3743 	/*
3744 	 * We update the i_update_core field _after_ changing
3745 	 * the timestamps in order to coordinate properly with
3746 	 * xfs_iflush() so that we don't lose timestamp updates.
3747 	 * This keeps us from having to hold the inode lock
3748 	 * while doing this.  We use the SYNCHRONIZE macro to
3749 	 * ensure that the compiler does not reorder the update
3750 	 * of i_update_core above the timestamp updates above.
3751 	 */
3752 	SYNCHRONIZE();
3753 	ip->i_update_core = 1;
3754 	if (!(inode->i_state & I_LOCK))
3755 		mark_inode_dirty_sync(inode);
3756 }
3757 
3758 #ifdef XFS_ILOCK_TRACE
3759 ktrace_t	*xfs_ilock_trace_buf;
3760 
3761 void
3762 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3763 {
3764 	ktrace_enter(ip->i_lock_trace,
3765 		     (void *)ip,
3766 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3767 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3768 		     (void *)ra,		/* caller of ilock */
3769 		     (void *)(unsigned long)current_cpu(),
3770 		     (void *)(unsigned long)current_pid(),
3771 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3772 }
3773 #endif
3774