xref: /linux/fs/xfs/xfs_file.c (revision 803f69144f0d48863c68f9d111b56849c7cef5bb)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_trans.h"
26 #include "xfs_mount.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_error.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_da_btree.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
38 
39 #include <linux/dcache.h>
40 #include <linux/falloc.h>
41 
42 static const struct vm_operations_struct xfs_file_vm_ops;
43 
44 /*
45  * Locking primitives for read and write IO paths to ensure we consistently use
46  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
47  */
48 static inline void
49 xfs_rw_ilock(
50 	struct xfs_inode	*ip,
51 	int			type)
52 {
53 	if (type & XFS_IOLOCK_EXCL)
54 		mutex_lock(&VFS_I(ip)->i_mutex);
55 	xfs_ilock(ip, type);
56 }
57 
58 static inline void
59 xfs_rw_iunlock(
60 	struct xfs_inode	*ip,
61 	int			type)
62 {
63 	xfs_iunlock(ip, type);
64 	if (type & XFS_IOLOCK_EXCL)
65 		mutex_unlock(&VFS_I(ip)->i_mutex);
66 }
67 
68 static inline void
69 xfs_rw_ilock_demote(
70 	struct xfs_inode	*ip,
71 	int			type)
72 {
73 	xfs_ilock_demote(ip, type);
74 	if (type & XFS_IOLOCK_EXCL)
75 		mutex_unlock(&VFS_I(ip)->i_mutex);
76 }
77 
78 /*
79  *	xfs_iozero
80  *
81  *	xfs_iozero clears the specified range of buffer supplied,
82  *	and marks all the affected blocks as valid and modified.  If
83  *	an affected block is not allocated, it will be allocated.  If
84  *	an affected block is not completely overwritten, and is not
85  *	valid before the operation, it will be read from disk before
86  *	being partially zeroed.
87  */
88 STATIC int
89 xfs_iozero(
90 	struct xfs_inode	*ip,	/* inode			*/
91 	loff_t			pos,	/* offset in file		*/
92 	size_t			count)	/* size of data to zero		*/
93 {
94 	struct page		*page;
95 	struct address_space	*mapping;
96 	int			status;
97 
98 	mapping = VFS_I(ip)->i_mapping;
99 	do {
100 		unsigned offset, bytes;
101 		void *fsdata;
102 
103 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
104 		bytes = PAGE_CACHE_SIZE - offset;
105 		if (bytes > count)
106 			bytes = count;
107 
108 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
109 					AOP_FLAG_UNINTERRUPTIBLE,
110 					&page, &fsdata);
111 		if (status)
112 			break;
113 
114 		zero_user(page, offset, bytes);
115 
116 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
117 					page, fsdata);
118 		WARN_ON(status <= 0); /* can't return less than zero! */
119 		pos += bytes;
120 		count -= bytes;
121 		status = 0;
122 	} while (count);
123 
124 	return (-status);
125 }
126 
127 /*
128  * Fsync operations on directories are much simpler than on regular files,
129  * as there is no file data to flush, and thus also no need for explicit
130  * cache flush operations, and there are no non-transaction metadata updates
131  * on directories either.
132  */
133 STATIC int
134 xfs_dir_fsync(
135 	struct file		*file,
136 	loff_t			start,
137 	loff_t			end,
138 	int			datasync)
139 {
140 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
141 	struct xfs_mount	*mp = ip->i_mount;
142 	xfs_lsn_t		lsn = 0;
143 
144 	trace_xfs_dir_fsync(ip);
145 
146 	xfs_ilock(ip, XFS_ILOCK_SHARED);
147 	if (xfs_ipincount(ip))
148 		lsn = ip->i_itemp->ili_last_lsn;
149 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
150 
151 	if (!lsn)
152 		return 0;
153 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
154 }
155 
156 STATIC int
157 xfs_file_fsync(
158 	struct file		*file,
159 	loff_t			start,
160 	loff_t			end,
161 	int			datasync)
162 {
163 	struct inode		*inode = file->f_mapping->host;
164 	struct xfs_inode	*ip = XFS_I(inode);
165 	struct xfs_mount	*mp = ip->i_mount;
166 	struct xfs_trans	*tp;
167 	int			error = 0;
168 	int			log_flushed = 0;
169 	xfs_lsn_t		lsn = 0;
170 
171 	trace_xfs_file_fsync(ip);
172 
173 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
174 	if (error)
175 		return error;
176 
177 	if (XFS_FORCED_SHUTDOWN(mp))
178 		return -XFS_ERROR(EIO);
179 
180 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
181 
182 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
183 		/*
184 		 * If we have an RT and/or log subvolume we need to make sure
185 		 * to flush the write cache the device used for file data
186 		 * first.  This is to ensure newly written file data make
187 		 * it to disk before logging the new inode size in case of
188 		 * an extending write.
189 		 */
190 		if (XFS_IS_REALTIME_INODE(ip))
191 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
192 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
193 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
194 	}
195 
196 	/*
197 	 * We always need to make sure that the required inode state is safe on
198 	 * disk.  The inode might be clean but we still might need to force the
199 	 * log because of committed transactions that haven't hit the disk yet.
200 	 * Likewise, there could be unflushed non-transactional changes to the
201 	 * inode core that have to go to disk and this requires us to issue
202 	 * a synchronous transaction to capture these changes correctly.
203 	 *
204 	 * This code relies on the assumption that if the i_update_core field
205 	 * of the inode is clear and the inode is unpinned then it is clean
206 	 * and no action is required.
207 	 */
208 	xfs_ilock(ip, XFS_ILOCK_SHARED);
209 
210 	/*
211 	 * First check if the VFS inode is marked dirty.  All the dirtying
212 	 * of non-transactional updates do not go through mark_inode_dirty*,
213 	 * which allows us to distinguish between pure timestamp updates
214 	 * and i_size updates which need to be caught for fdatasync.
215 	 * After that also check for the dirty state in the XFS inode, which
216 	 * might gets cleared when the inode gets written out via the AIL
217 	 * or xfs_iflush_cluster.
218 	 */
219 	if (((inode->i_state & I_DIRTY_DATASYNC) ||
220 	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
221 	    ip->i_update_core) {
222 		/*
223 		 * Kick off a transaction to log the inode core to get the
224 		 * updates.  The sync transaction will also force the log.
225 		 */
226 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
227 		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
228 		error = xfs_trans_reserve(tp, 0,
229 				XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
230 		if (error) {
231 			xfs_trans_cancel(tp, 0);
232 			return -error;
233 		}
234 		xfs_ilock(ip, XFS_ILOCK_EXCL);
235 
236 		/*
237 		 * Note - it's possible that we might have pushed ourselves out
238 		 * of the way during trans_reserve which would flush the inode.
239 		 * But there's no guarantee that the inode buffer has actually
240 		 * gone out yet (it's delwri).	Plus the buffer could be pinned
241 		 * anyway if it's part of an inode in another recent
242 		 * transaction.	 So we play it safe and fire off the
243 		 * transaction anyway.
244 		 */
245 		xfs_trans_ijoin(tp, ip, 0);
246 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
247 		error = xfs_trans_commit(tp, 0);
248 
249 		lsn = ip->i_itemp->ili_last_lsn;
250 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
251 	} else {
252 		/*
253 		 * Timestamps/size haven't changed since last inode flush or
254 		 * inode transaction commit.  That means either nothing got
255 		 * written or a transaction committed which caught the updates.
256 		 * If the latter happened and the transaction hasn't hit the
257 		 * disk yet, the inode will be still be pinned.  If it is,
258 		 * force the log.
259 		 */
260 		if (xfs_ipincount(ip))
261 			lsn = ip->i_itemp->ili_last_lsn;
262 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
263 	}
264 
265 	if (!error && lsn)
266 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
267 
268 	/*
269 	 * If we only have a single device, and the log force about was
270 	 * a no-op we might have to flush the data device cache here.
271 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
272 	 * an already allocated file and thus do not have any metadata to
273 	 * commit.
274 	 */
275 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
276 	    mp->m_logdev_targp == mp->m_ddev_targp &&
277 	    !XFS_IS_REALTIME_INODE(ip) &&
278 	    !log_flushed)
279 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
280 
281 	return -error;
282 }
283 
284 STATIC ssize_t
285 xfs_file_aio_read(
286 	struct kiocb		*iocb,
287 	const struct iovec	*iovp,
288 	unsigned long		nr_segs,
289 	loff_t			pos)
290 {
291 	struct file		*file = iocb->ki_filp;
292 	struct inode		*inode = file->f_mapping->host;
293 	struct xfs_inode	*ip = XFS_I(inode);
294 	struct xfs_mount	*mp = ip->i_mount;
295 	size_t			size = 0;
296 	ssize_t			ret = 0;
297 	int			ioflags = 0;
298 	xfs_fsize_t		n;
299 	unsigned long		seg;
300 
301 	XFS_STATS_INC(xs_read_calls);
302 
303 	BUG_ON(iocb->ki_pos != pos);
304 
305 	if (unlikely(file->f_flags & O_DIRECT))
306 		ioflags |= IO_ISDIRECT;
307 	if (file->f_mode & FMODE_NOCMTIME)
308 		ioflags |= IO_INVIS;
309 
310 	/* START copy & waste from filemap.c */
311 	for (seg = 0; seg < nr_segs; seg++) {
312 		const struct iovec *iv = &iovp[seg];
313 
314 		/*
315 		 * If any segment has a negative length, or the cumulative
316 		 * length ever wraps negative then return -EINVAL.
317 		 */
318 		size += iv->iov_len;
319 		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
320 			return XFS_ERROR(-EINVAL);
321 	}
322 	/* END copy & waste from filemap.c */
323 
324 	if (unlikely(ioflags & IO_ISDIRECT)) {
325 		xfs_buftarg_t	*target =
326 			XFS_IS_REALTIME_INODE(ip) ?
327 				mp->m_rtdev_targp : mp->m_ddev_targp;
328 		if ((iocb->ki_pos & target->bt_smask) ||
329 		    (size & target->bt_smask)) {
330 			if (iocb->ki_pos == i_size_read(inode))
331 				return 0;
332 			return -XFS_ERROR(EINVAL);
333 		}
334 	}
335 
336 	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
337 	if (n <= 0 || size == 0)
338 		return 0;
339 
340 	if (n < size)
341 		size = n;
342 
343 	if (XFS_FORCED_SHUTDOWN(mp))
344 		return -EIO;
345 
346 	/*
347 	 * Locking is a bit tricky here. If we take an exclusive lock
348 	 * for direct IO, we effectively serialise all new concurrent
349 	 * read IO to this file and block it behind IO that is currently in
350 	 * progress because IO in progress holds the IO lock shared. We only
351 	 * need to hold the lock exclusive to blow away the page cache, so
352 	 * only take lock exclusively if the page cache needs invalidation.
353 	 * This allows the normal direct IO case of no page cache pages to
354 	 * proceeed concurrently without serialisation.
355 	 */
356 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
357 	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
358 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
359 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
360 
361 		if (inode->i_mapping->nrpages) {
362 			ret = -xfs_flushinval_pages(ip,
363 					(iocb->ki_pos & PAGE_CACHE_MASK),
364 					-1, FI_REMAPF_LOCKED);
365 			if (ret) {
366 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
367 				return ret;
368 			}
369 		}
370 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
371 	}
372 
373 	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
374 
375 	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
376 	if (ret > 0)
377 		XFS_STATS_ADD(xs_read_bytes, ret);
378 
379 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
380 	return ret;
381 }
382 
383 STATIC ssize_t
384 xfs_file_splice_read(
385 	struct file		*infilp,
386 	loff_t			*ppos,
387 	struct pipe_inode_info	*pipe,
388 	size_t			count,
389 	unsigned int		flags)
390 {
391 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
392 	int			ioflags = 0;
393 	ssize_t			ret;
394 
395 	XFS_STATS_INC(xs_read_calls);
396 
397 	if (infilp->f_mode & FMODE_NOCMTIME)
398 		ioflags |= IO_INVIS;
399 
400 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
401 		return -EIO;
402 
403 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
404 
405 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
406 
407 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
408 	if (ret > 0)
409 		XFS_STATS_ADD(xs_read_bytes, ret);
410 
411 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
412 	return ret;
413 }
414 
415 /*
416  * xfs_file_splice_write() does not use xfs_rw_ilock() because
417  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
418  * couuld cause lock inversions between the aio_write path and the splice path
419  * if someone is doing concurrent splice(2) based writes and write(2) based
420  * writes to the same inode. The only real way to fix this is to re-implement
421  * the generic code here with correct locking orders.
422  */
423 STATIC ssize_t
424 xfs_file_splice_write(
425 	struct pipe_inode_info	*pipe,
426 	struct file		*outfilp,
427 	loff_t			*ppos,
428 	size_t			count,
429 	unsigned int		flags)
430 {
431 	struct inode		*inode = outfilp->f_mapping->host;
432 	struct xfs_inode	*ip = XFS_I(inode);
433 	int			ioflags = 0;
434 	ssize_t			ret;
435 
436 	XFS_STATS_INC(xs_write_calls);
437 
438 	if (outfilp->f_mode & FMODE_NOCMTIME)
439 		ioflags |= IO_INVIS;
440 
441 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
442 		return -EIO;
443 
444 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
445 
446 	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
447 
448 	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
449 	if (ret > 0)
450 		XFS_STATS_ADD(xs_write_bytes, ret);
451 
452 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
453 	return ret;
454 }
455 
456 /*
457  * This routine is called to handle zeroing any space in the last
458  * block of the file that is beyond the EOF.  We do this since the
459  * size is being increased without writing anything to that block
460  * and we don't want anyone to read the garbage on the disk.
461  */
462 STATIC int				/* error (positive) */
463 xfs_zero_last_block(
464 	xfs_inode_t	*ip,
465 	xfs_fsize_t	offset,
466 	xfs_fsize_t	isize)
467 {
468 	xfs_fileoff_t	last_fsb;
469 	xfs_mount_t	*mp = ip->i_mount;
470 	int		nimaps;
471 	int		zero_offset;
472 	int		zero_len;
473 	int		error = 0;
474 	xfs_bmbt_irec_t	imap;
475 
476 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
477 
478 	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
479 	if (zero_offset == 0) {
480 		/*
481 		 * There are no extra bytes in the last block on disk to
482 		 * zero, so return.
483 		 */
484 		return 0;
485 	}
486 
487 	last_fsb = XFS_B_TO_FSBT(mp, isize);
488 	nimaps = 1;
489 	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
490 	if (error)
491 		return error;
492 	ASSERT(nimaps > 0);
493 	/*
494 	 * If the block underlying isize is just a hole, then there
495 	 * is nothing to zero.
496 	 */
497 	if (imap.br_startblock == HOLESTARTBLOCK) {
498 		return 0;
499 	}
500 	/*
501 	 * Zero the part of the last block beyond the EOF, and write it
502 	 * out sync.  We need to drop the ilock while we do this so we
503 	 * don't deadlock when the buffer cache calls back to us.
504 	 */
505 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
506 
507 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
508 	if (isize + zero_len > offset)
509 		zero_len = offset - isize;
510 	error = xfs_iozero(ip, isize, zero_len);
511 
512 	xfs_ilock(ip, XFS_ILOCK_EXCL);
513 	ASSERT(error >= 0);
514 	return error;
515 }
516 
517 /*
518  * Zero any on disk space between the current EOF and the new,
519  * larger EOF.  This handles the normal case of zeroing the remainder
520  * of the last block in the file and the unusual case of zeroing blocks
521  * out beyond the size of the file.  This second case only happens
522  * with fixed size extents and when the system crashes before the inode
523  * size was updated but after blocks were allocated.  If fill is set,
524  * then any holes in the range are filled and zeroed.  If not, the holes
525  * are left alone as holes.
526  */
527 
528 int					/* error (positive) */
529 xfs_zero_eof(
530 	xfs_inode_t	*ip,
531 	xfs_off_t	offset,		/* starting I/O offset */
532 	xfs_fsize_t	isize)		/* current inode size */
533 {
534 	xfs_mount_t	*mp = ip->i_mount;
535 	xfs_fileoff_t	start_zero_fsb;
536 	xfs_fileoff_t	end_zero_fsb;
537 	xfs_fileoff_t	zero_count_fsb;
538 	xfs_fileoff_t	last_fsb;
539 	xfs_fileoff_t	zero_off;
540 	xfs_fsize_t	zero_len;
541 	int		nimaps;
542 	int		error = 0;
543 	xfs_bmbt_irec_t	imap;
544 
545 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
546 	ASSERT(offset > isize);
547 
548 	/*
549 	 * First handle zeroing the block on which isize resides.
550 	 * We only zero a part of that block so it is handled specially.
551 	 */
552 	error = xfs_zero_last_block(ip, offset, isize);
553 	if (error) {
554 		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
555 		return error;
556 	}
557 
558 	/*
559 	 * Calculate the range between the new size and the old
560 	 * where blocks needing to be zeroed may exist.  To get the
561 	 * block where the last byte in the file currently resides,
562 	 * we need to subtract one from the size and truncate back
563 	 * to a block boundary.  We subtract 1 in case the size is
564 	 * exactly on a block boundary.
565 	 */
566 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
567 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
568 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
569 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
570 	if (last_fsb == end_zero_fsb) {
571 		/*
572 		 * The size was only incremented on its last block.
573 		 * We took care of that above, so just return.
574 		 */
575 		return 0;
576 	}
577 
578 	ASSERT(start_zero_fsb <= end_zero_fsb);
579 	while (start_zero_fsb <= end_zero_fsb) {
580 		nimaps = 1;
581 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
582 		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
583 					  &imap, &nimaps, 0);
584 		if (error) {
585 			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
586 			return error;
587 		}
588 		ASSERT(nimaps > 0);
589 
590 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
591 		    imap.br_startblock == HOLESTARTBLOCK) {
592 			/*
593 			 * This loop handles initializing pages that were
594 			 * partially initialized by the code below this
595 			 * loop. It basically zeroes the part of the page
596 			 * that sits on a hole and sets the page as P_HOLE
597 			 * and calls remapf if it is a mapped file.
598 			 */
599 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
600 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
601 			continue;
602 		}
603 
604 		/*
605 		 * There are blocks we need to zero.
606 		 * Drop the inode lock while we're doing the I/O.
607 		 * We'll still have the iolock to protect us.
608 		 */
609 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
610 
611 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
612 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
613 
614 		if ((zero_off + zero_len) > offset)
615 			zero_len = offset - zero_off;
616 
617 		error = xfs_iozero(ip, zero_off, zero_len);
618 		if (error) {
619 			goto out_lock;
620 		}
621 
622 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
623 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
624 
625 		xfs_ilock(ip, XFS_ILOCK_EXCL);
626 	}
627 
628 	return 0;
629 
630 out_lock:
631 	xfs_ilock(ip, XFS_ILOCK_EXCL);
632 	ASSERT(error >= 0);
633 	return error;
634 }
635 
636 /*
637  * Common pre-write limit and setup checks.
638  *
639  * Called with the iolocked held either shared and exclusive according to
640  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
641  * if called for a direct write beyond i_size.
642  */
643 STATIC ssize_t
644 xfs_file_aio_write_checks(
645 	struct file		*file,
646 	loff_t			*pos,
647 	size_t			*count,
648 	int			*iolock)
649 {
650 	struct inode		*inode = file->f_mapping->host;
651 	struct xfs_inode	*ip = XFS_I(inode);
652 	int			error = 0;
653 
654 	xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
655 restart:
656 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
657 	if (error) {
658 		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
659 		return error;
660 	}
661 
662 	if (likely(!(file->f_mode & FMODE_NOCMTIME)))
663 		file_update_time(file);
664 
665 	/*
666 	 * If the offset is beyond the size of the file, we need to zero any
667 	 * blocks that fall between the existing EOF and the start of this
668 	 * write.  If zeroing is needed and we are currently holding the
669 	 * iolock shared, we need to update it to exclusive which involves
670 	 * dropping all locks and relocking to maintain correct locking order.
671 	 * If we do this, restart the function to ensure all checks and values
672 	 * are still valid.
673 	 */
674 	if (*pos > i_size_read(inode)) {
675 		if (*iolock == XFS_IOLOCK_SHARED) {
676 			xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
677 			*iolock = XFS_IOLOCK_EXCL;
678 			xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
679 			goto restart;
680 		}
681 		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
682 	}
683 	xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
684 	if (error)
685 		return error;
686 
687 	/*
688 	 * If we're writing the file then make sure to clear the setuid and
689 	 * setgid bits if the process is not being run by root.  This keeps
690 	 * people from modifying setuid and setgid binaries.
691 	 */
692 	return file_remove_suid(file);
693 
694 }
695 
696 /*
697  * xfs_file_dio_aio_write - handle direct IO writes
698  *
699  * Lock the inode appropriately to prepare for and issue a direct IO write.
700  * By separating it from the buffered write path we remove all the tricky to
701  * follow locking changes and looping.
702  *
703  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
704  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
705  * pages are flushed out.
706  *
707  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
708  * allowing them to be done in parallel with reads and other direct IO writes.
709  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
710  * needs to do sub-block zeroing and that requires serialisation against other
711  * direct IOs to the same block. In this case we need to serialise the
712  * submission of the unaligned IOs so that we don't get racing block zeroing in
713  * the dio layer.  To avoid the problem with aio, we also need to wait for
714  * outstanding IOs to complete so that unwritten extent conversion is completed
715  * before we try to map the overlapping block. This is currently implemented by
716  * hitting it with a big hammer (i.e. inode_dio_wait()).
717  *
718  * Returns with locks held indicated by @iolock and errors indicated by
719  * negative return values.
720  */
721 STATIC ssize_t
722 xfs_file_dio_aio_write(
723 	struct kiocb		*iocb,
724 	const struct iovec	*iovp,
725 	unsigned long		nr_segs,
726 	loff_t			pos,
727 	size_t			ocount)
728 {
729 	struct file		*file = iocb->ki_filp;
730 	struct address_space	*mapping = file->f_mapping;
731 	struct inode		*inode = mapping->host;
732 	struct xfs_inode	*ip = XFS_I(inode);
733 	struct xfs_mount	*mp = ip->i_mount;
734 	ssize_t			ret = 0;
735 	size_t			count = ocount;
736 	int			unaligned_io = 0;
737 	int			iolock;
738 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
739 					mp->m_rtdev_targp : mp->m_ddev_targp;
740 
741 	if ((pos & target->bt_smask) || (count & target->bt_smask))
742 		return -XFS_ERROR(EINVAL);
743 
744 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
745 		unaligned_io = 1;
746 
747 	/*
748 	 * We don't need to take an exclusive lock unless there page cache needs
749 	 * to be invalidated or unaligned IO is being executed. We don't need to
750 	 * consider the EOF extension case here because
751 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
752 	 * EOF zeroing cases and fill out the new inode size as appropriate.
753 	 */
754 	if (unaligned_io || mapping->nrpages)
755 		iolock = XFS_IOLOCK_EXCL;
756 	else
757 		iolock = XFS_IOLOCK_SHARED;
758 	xfs_rw_ilock(ip, iolock);
759 
760 	/*
761 	 * Recheck if there are cached pages that need invalidate after we got
762 	 * the iolock to protect against other threads adding new pages while
763 	 * we were waiting for the iolock.
764 	 */
765 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
766 		xfs_rw_iunlock(ip, iolock);
767 		iolock = XFS_IOLOCK_EXCL;
768 		xfs_rw_ilock(ip, iolock);
769 	}
770 
771 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
772 	if (ret)
773 		goto out;
774 
775 	if (mapping->nrpages) {
776 		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
777 							FI_REMAPF_LOCKED);
778 		if (ret)
779 			goto out;
780 	}
781 
782 	/*
783 	 * If we are doing unaligned IO, wait for all other IO to drain,
784 	 * otherwise demote the lock if we had to flush cached pages
785 	 */
786 	if (unaligned_io)
787 		inode_dio_wait(inode);
788 	else if (iolock == XFS_IOLOCK_EXCL) {
789 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
790 		iolock = XFS_IOLOCK_SHARED;
791 	}
792 
793 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
794 	ret = generic_file_direct_write(iocb, iovp,
795 			&nr_segs, pos, &iocb->ki_pos, count, ocount);
796 
797 out:
798 	xfs_rw_iunlock(ip, iolock);
799 
800 	/* No fallback to buffered IO on errors for XFS. */
801 	ASSERT(ret < 0 || ret == count);
802 	return ret;
803 }
804 
805 STATIC ssize_t
806 xfs_file_buffered_aio_write(
807 	struct kiocb		*iocb,
808 	const struct iovec	*iovp,
809 	unsigned long		nr_segs,
810 	loff_t			pos,
811 	size_t			ocount)
812 {
813 	struct file		*file = iocb->ki_filp;
814 	struct address_space	*mapping = file->f_mapping;
815 	struct inode		*inode = mapping->host;
816 	struct xfs_inode	*ip = XFS_I(inode);
817 	ssize_t			ret;
818 	int			enospc = 0;
819 	int			iolock = XFS_IOLOCK_EXCL;
820 	size_t			count = ocount;
821 
822 	xfs_rw_ilock(ip, iolock);
823 
824 	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
825 	if (ret)
826 		goto out;
827 
828 	/* We can write back this queue in page reclaim */
829 	current->backing_dev_info = mapping->backing_dev_info;
830 
831 write_retry:
832 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
833 	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
834 			pos, &iocb->ki_pos, count, ret);
835 	/*
836 	 * if we just got an ENOSPC, flush the inode now we aren't holding any
837 	 * page locks and retry *once*
838 	 */
839 	if (ret == -ENOSPC && !enospc) {
840 		enospc = 1;
841 		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
842 		if (!ret)
843 			goto write_retry;
844 	}
845 
846 	current->backing_dev_info = NULL;
847 out:
848 	xfs_rw_iunlock(ip, iolock);
849 	return ret;
850 }
851 
852 STATIC ssize_t
853 xfs_file_aio_write(
854 	struct kiocb		*iocb,
855 	const struct iovec	*iovp,
856 	unsigned long		nr_segs,
857 	loff_t			pos)
858 {
859 	struct file		*file = iocb->ki_filp;
860 	struct address_space	*mapping = file->f_mapping;
861 	struct inode		*inode = mapping->host;
862 	struct xfs_inode	*ip = XFS_I(inode);
863 	ssize_t			ret;
864 	size_t			ocount = 0;
865 
866 	XFS_STATS_INC(xs_write_calls);
867 
868 	BUG_ON(iocb->ki_pos != pos);
869 
870 	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
871 	if (ret)
872 		return ret;
873 
874 	if (ocount == 0)
875 		return 0;
876 
877 	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
878 
879 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
880 		return -EIO;
881 
882 	if (unlikely(file->f_flags & O_DIRECT))
883 		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
884 	else
885 		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
886 						  ocount);
887 
888 	if (ret > 0) {
889 		ssize_t err;
890 
891 		XFS_STATS_ADD(xs_write_bytes, ret);
892 
893 		/* Handle various SYNC-type writes */
894 		err = generic_write_sync(file, pos, ret);
895 		if (err < 0)
896 			ret = err;
897 	}
898 
899 	return ret;
900 }
901 
902 STATIC long
903 xfs_file_fallocate(
904 	struct file	*file,
905 	int		mode,
906 	loff_t		offset,
907 	loff_t		len)
908 {
909 	struct inode	*inode = file->f_path.dentry->d_inode;
910 	long		error;
911 	loff_t		new_size = 0;
912 	xfs_flock64_t	bf;
913 	xfs_inode_t	*ip = XFS_I(inode);
914 	int		cmd = XFS_IOC_RESVSP;
915 	int		attr_flags = XFS_ATTR_NOLOCK;
916 
917 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
918 		return -EOPNOTSUPP;
919 
920 	bf.l_whence = 0;
921 	bf.l_start = offset;
922 	bf.l_len = len;
923 
924 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
925 
926 	if (mode & FALLOC_FL_PUNCH_HOLE)
927 		cmd = XFS_IOC_UNRESVSP;
928 
929 	/* check the new inode size is valid before allocating */
930 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
931 	    offset + len > i_size_read(inode)) {
932 		new_size = offset + len;
933 		error = inode_newsize_ok(inode, new_size);
934 		if (error)
935 			goto out_unlock;
936 	}
937 
938 	if (file->f_flags & O_DSYNC)
939 		attr_flags |= XFS_ATTR_SYNC;
940 
941 	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
942 	if (error)
943 		goto out_unlock;
944 
945 	/* Change file size if needed */
946 	if (new_size) {
947 		struct iattr iattr;
948 
949 		iattr.ia_valid = ATTR_SIZE;
950 		iattr.ia_size = new_size;
951 		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
952 	}
953 
954 out_unlock:
955 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
956 	return error;
957 }
958 
959 
960 STATIC int
961 xfs_file_open(
962 	struct inode	*inode,
963 	struct file	*file)
964 {
965 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
966 		return -EFBIG;
967 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
968 		return -EIO;
969 	return 0;
970 }
971 
972 STATIC int
973 xfs_dir_open(
974 	struct inode	*inode,
975 	struct file	*file)
976 {
977 	struct xfs_inode *ip = XFS_I(inode);
978 	int		mode;
979 	int		error;
980 
981 	error = xfs_file_open(inode, file);
982 	if (error)
983 		return error;
984 
985 	/*
986 	 * If there are any blocks, read-ahead block 0 as we're almost
987 	 * certain to have the next operation be a read there.
988 	 */
989 	mode = xfs_ilock_map_shared(ip);
990 	if (ip->i_d.di_nextents > 0)
991 		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
992 	xfs_iunlock(ip, mode);
993 	return 0;
994 }
995 
996 STATIC int
997 xfs_file_release(
998 	struct inode	*inode,
999 	struct file	*filp)
1000 {
1001 	return -xfs_release(XFS_I(inode));
1002 }
1003 
1004 STATIC int
1005 xfs_file_readdir(
1006 	struct file	*filp,
1007 	void		*dirent,
1008 	filldir_t	filldir)
1009 {
1010 	struct inode	*inode = filp->f_path.dentry->d_inode;
1011 	xfs_inode_t	*ip = XFS_I(inode);
1012 	int		error;
1013 	size_t		bufsize;
1014 
1015 	/*
1016 	 * The Linux API doesn't pass down the total size of the buffer
1017 	 * we read into down to the filesystem.  With the filldir concept
1018 	 * it's not needed for correct information, but the XFS dir2 leaf
1019 	 * code wants an estimate of the buffer size to calculate it's
1020 	 * readahead window and size the buffers used for mapping to
1021 	 * physical blocks.
1022 	 *
1023 	 * Try to give it an estimate that's good enough, maybe at some
1024 	 * point we can change the ->readdir prototype to include the
1025 	 * buffer size.  For now we use the current glibc buffer size.
1026 	 */
1027 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1028 
1029 	error = xfs_readdir(ip, dirent, bufsize,
1030 				(xfs_off_t *)&filp->f_pos, filldir);
1031 	if (error)
1032 		return -error;
1033 	return 0;
1034 }
1035 
1036 STATIC int
1037 xfs_file_mmap(
1038 	struct file	*filp,
1039 	struct vm_area_struct *vma)
1040 {
1041 	vma->vm_ops = &xfs_file_vm_ops;
1042 	vma->vm_flags |= VM_CAN_NONLINEAR;
1043 
1044 	file_accessed(filp);
1045 	return 0;
1046 }
1047 
1048 /*
1049  * mmap()d file has taken write protection fault and is being made
1050  * writable. We can set the page state up correctly for a writable
1051  * page, which means we can do correct delalloc accounting (ENOSPC
1052  * checking!) and unwritten extent mapping.
1053  */
1054 STATIC int
1055 xfs_vm_page_mkwrite(
1056 	struct vm_area_struct	*vma,
1057 	struct vm_fault		*vmf)
1058 {
1059 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1060 }
1061 
1062 const struct file_operations xfs_file_operations = {
1063 	.llseek		= generic_file_llseek,
1064 	.read		= do_sync_read,
1065 	.write		= do_sync_write,
1066 	.aio_read	= xfs_file_aio_read,
1067 	.aio_write	= xfs_file_aio_write,
1068 	.splice_read	= xfs_file_splice_read,
1069 	.splice_write	= xfs_file_splice_write,
1070 	.unlocked_ioctl	= xfs_file_ioctl,
1071 #ifdef CONFIG_COMPAT
1072 	.compat_ioctl	= xfs_file_compat_ioctl,
1073 #endif
1074 	.mmap		= xfs_file_mmap,
1075 	.open		= xfs_file_open,
1076 	.release	= xfs_file_release,
1077 	.fsync		= xfs_file_fsync,
1078 	.fallocate	= xfs_file_fallocate,
1079 };
1080 
1081 const struct file_operations xfs_dir_file_operations = {
1082 	.open		= xfs_dir_open,
1083 	.read		= generic_read_dir,
1084 	.readdir	= xfs_file_readdir,
1085 	.llseek		= generic_file_llseek,
1086 	.unlocked_ioctl	= xfs_file_ioctl,
1087 #ifdef CONFIG_COMPAT
1088 	.compat_ioctl	= xfs_file_compat_ioctl,
1089 #endif
1090 	.fsync		= xfs_dir_fsync,
1091 };
1092 
1093 static const struct vm_operations_struct xfs_file_vm_ops = {
1094 	.fault		= filemap_fault,
1095 	.page_mkwrite	= xfs_vm_page_mkwrite,
1096 };
1097