1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 #include "xfs_reflink.h" 42 43 #include <linux/dcache.h> 44 #include <linux/falloc.h> 45 #include <linux/pagevec.h> 46 #include <linux/backing-dev.h> 47 #include <linux/mman.h> 48 49 static const struct vm_operations_struct xfs_file_vm_ops; 50 51 int 52 xfs_update_prealloc_flags( 53 struct xfs_inode *ip, 54 enum xfs_prealloc_flags flags) 55 { 56 struct xfs_trans *tp; 57 int error; 58 59 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 60 0, 0, 0, &tp); 61 if (error) 62 return error; 63 64 xfs_ilock(ip, XFS_ILOCK_EXCL); 65 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 66 67 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 68 VFS_I(ip)->i_mode &= ~S_ISUID; 69 if (VFS_I(ip)->i_mode & S_IXGRP) 70 VFS_I(ip)->i_mode &= ~S_ISGID; 71 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 72 } 73 74 if (flags & XFS_PREALLOC_SET) 75 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 76 if (flags & XFS_PREALLOC_CLEAR) 77 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 78 79 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 80 if (flags & XFS_PREALLOC_SYNC) 81 xfs_trans_set_sync(tp); 82 return xfs_trans_commit(tp); 83 } 84 85 /* 86 * Fsync operations on directories are much simpler than on regular files, 87 * as there is no file data to flush, and thus also no need for explicit 88 * cache flush operations, and there are no non-transaction metadata updates 89 * on directories either. 90 */ 91 STATIC int 92 xfs_dir_fsync( 93 struct file *file, 94 loff_t start, 95 loff_t end, 96 int datasync) 97 { 98 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 99 struct xfs_mount *mp = ip->i_mount; 100 xfs_lsn_t lsn = 0; 101 102 trace_xfs_dir_fsync(ip); 103 104 xfs_ilock(ip, XFS_ILOCK_SHARED); 105 if (xfs_ipincount(ip)) 106 lsn = ip->i_itemp->ili_last_lsn; 107 xfs_iunlock(ip, XFS_ILOCK_SHARED); 108 109 if (!lsn) 110 return 0; 111 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 112 } 113 114 STATIC int 115 xfs_file_fsync( 116 struct file *file, 117 loff_t start, 118 loff_t end, 119 int datasync) 120 { 121 struct inode *inode = file->f_mapping->host; 122 struct xfs_inode *ip = XFS_I(inode); 123 struct xfs_mount *mp = ip->i_mount; 124 int error = 0; 125 int log_flushed = 0; 126 xfs_lsn_t lsn = 0; 127 128 trace_xfs_file_fsync(ip); 129 130 error = file_write_and_wait_range(file, start, end); 131 if (error) 132 return error; 133 134 if (XFS_FORCED_SHUTDOWN(mp)) 135 return -EIO; 136 137 xfs_iflags_clear(ip, XFS_ITRUNCATED); 138 139 /* 140 * If we have an RT and/or log subvolume we need to make sure to flush 141 * the write cache the device used for file data first. This is to 142 * ensure newly written file data make it to disk before logging the new 143 * inode size in case of an extending write. 144 */ 145 if (XFS_IS_REALTIME_INODE(ip)) 146 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 147 else if (mp->m_logdev_targp != mp->m_ddev_targp) 148 xfs_blkdev_issue_flush(mp->m_ddev_targp); 149 150 /* 151 * All metadata updates are logged, which means that we just have to 152 * flush the log up to the latest LSN that touched the inode. If we have 153 * concurrent fsync/fdatasync() calls, we need them to all block on the 154 * log force before we clear the ili_fsync_fields field. This ensures 155 * that we don't get a racing sync operation that does not wait for the 156 * metadata to hit the journal before returning. If we race with 157 * clearing the ili_fsync_fields, then all that will happen is the log 158 * force will do nothing as the lsn will already be on disk. We can't 159 * race with setting ili_fsync_fields because that is done under 160 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 161 * until after the ili_fsync_fields is cleared. 162 */ 163 xfs_ilock(ip, XFS_ILOCK_SHARED); 164 if (xfs_ipincount(ip)) { 165 if (!datasync || 166 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 167 lsn = ip->i_itemp->ili_last_lsn; 168 } 169 170 if (lsn) { 171 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 172 ip->i_itemp->ili_fsync_fields = 0; 173 } 174 xfs_iunlock(ip, XFS_ILOCK_SHARED); 175 176 /* 177 * If we only have a single device, and the log force about was 178 * a no-op we might have to flush the data device cache here. 179 * This can only happen for fdatasync/O_DSYNC if we were overwriting 180 * an already allocated file and thus do not have any metadata to 181 * commit. 182 */ 183 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 184 mp->m_logdev_targp == mp->m_ddev_targp) 185 xfs_blkdev_issue_flush(mp->m_ddev_targp); 186 187 return error; 188 } 189 190 STATIC ssize_t 191 xfs_file_dio_aio_read( 192 struct kiocb *iocb, 193 struct iov_iter *to) 194 { 195 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 196 size_t count = iov_iter_count(to); 197 ssize_t ret; 198 199 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 200 201 if (!count) 202 return 0; /* skip atime */ 203 204 file_accessed(iocb->ki_filp); 205 206 xfs_ilock(ip, XFS_IOLOCK_SHARED); 207 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 208 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 209 210 return ret; 211 } 212 213 static noinline ssize_t 214 xfs_file_dax_read( 215 struct kiocb *iocb, 216 struct iov_iter *to) 217 { 218 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 219 size_t count = iov_iter_count(to); 220 ssize_t ret = 0; 221 222 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 223 224 if (!count) 225 return 0; /* skip atime */ 226 227 if (iocb->ki_flags & IOCB_NOWAIT) { 228 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 229 return -EAGAIN; 230 } else { 231 xfs_ilock(ip, XFS_IOLOCK_SHARED); 232 } 233 234 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 235 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 236 237 file_accessed(iocb->ki_filp); 238 return ret; 239 } 240 241 STATIC ssize_t 242 xfs_file_buffered_aio_read( 243 struct kiocb *iocb, 244 struct iov_iter *to) 245 { 246 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 247 ssize_t ret; 248 249 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 250 251 if (iocb->ki_flags & IOCB_NOWAIT) { 252 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 253 return -EAGAIN; 254 } else { 255 xfs_ilock(ip, XFS_IOLOCK_SHARED); 256 } 257 ret = generic_file_read_iter(iocb, to); 258 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 259 260 return ret; 261 } 262 263 STATIC ssize_t 264 xfs_file_read_iter( 265 struct kiocb *iocb, 266 struct iov_iter *to) 267 { 268 struct inode *inode = file_inode(iocb->ki_filp); 269 struct xfs_mount *mp = XFS_I(inode)->i_mount; 270 ssize_t ret = 0; 271 272 XFS_STATS_INC(mp, xs_read_calls); 273 274 if (XFS_FORCED_SHUTDOWN(mp)) 275 return -EIO; 276 277 if (IS_DAX(inode)) 278 ret = xfs_file_dax_read(iocb, to); 279 else if (iocb->ki_flags & IOCB_DIRECT) 280 ret = xfs_file_dio_aio_read(iocb, to); 281 else 282 ret = xfs_file_buffered_aio_read(iocb, to); 283 284 if (ret > 0) 285 XFS_STATS_ADD(mp, xs_read_bytes, ret); 286 return ret; 287 } 288 289 /* 290 * Common pre-write limit and setup checks. 291 * 292 * Called with the iolocked held either shared and exclusive according to 293 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 294 * if called for a direct write beyond i_size. 295 */ 296 STATIC ssize_t 297 xfs_file_aio_write_checks( 298 struct kiocb *iocb, 299 struct iov_iter *from, 300 int *iolock) 301 { 302 struct file *file = iocb->ki_filp; 303 struct inode *inode = file->f_mapping->host; 304 struct xfs_inode *ip = XFS_I(inode); 305 ssize_t error = 0; 306 size_t count = iov_iter_count(from); 307 bool drained_dio = false; 308 loff_t isize; 309 310 restart: 311 error = generic_write_checks(iocb, from); 312 if (error <= 0) 313 return error; 314 315 error = xfs_break_layouts(inode, iolock); 316 if (error) 317 return error; 318 319 /* 320 * For changing security info in file_remove_privs() we need i_rwsem 321 * exclusively. 322 */ 323 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 324 xfs_iunlock(ip, *iolock); 325 *iolock = XFS_IOLOCK_EXCL; 326 xfs_ilock(ip, *iolock); 327 goto restart; 328 } 329 /* 330 * If the offset is beyond the size of the file, we need to zero any 331 * blocks that fall between the existing EOF and the start of this 332 * write. If zeroing is needed and we are currently holding the 333 * iolock shared, we need to update it to exclusive which implies 334 * having to redo all checks before. 335 * 336 * We need to serialise against EOF updates that occur in IO 337 * completions here. We want to make sure that nobody is changing the 338 * size while we do this check until we have placed an IO barrier (i.e. 339 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 340 * The spinlock effectively forms a memory barrier once we have the 341 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 342 * and hence be able to correctly determine if we need to run zeroing. 343 */ 344 spin_lock(&ip->i_flags_lock); 345 isize = i_size_read(inode); 346 if (iocb->ki_pos > isize) { 347 spin_unlock(&ip->i_flags_lock); 348 if (!drained_dio) { 349 if (*iolock == XFS_IOLOCK_SHARED) { 350 xfs_iunlock(ip, *iolock); 351 *iolock = XFS_IOLOCK_EXCL; 352 xfs_ilock(ip, *iolock); 353 iov_iter_reexpand(from, count); 354 } 355 /* 356 * We now have an IO submission barrier in place, but 357 * AIO can do EOF updates during IO completion and hence 358 * we now need to wait for all of them to drain. Non-AIO 359 * DIO will have drained before we are given the 360 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 361 * no-op. 362 */ 363 inode_dio_wait(inode); 364 drained_dio = true; 365 goto restart; 366 } 367 368 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 369 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 370 NULL, &xfs_iomap_ops); 371 if (error) 372 return error; 373 } else 374 spin_unlock(&ip->i_flags_lock); 375 376 /* 377 * Updating the timestamps will grab the ilock again from 378 * xfs_fs_dirty_inode, so we have to call it after dropping the 379 * lock above. Eventually we should look into a way to avoid 380 * the pointless lock roundtrip. 381 */ 382 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 383 error = file_update_time(file); 384 if (error) 385 return error; 386 } 387 388 /* 389 * If we're writing the file then make sure to clear the setuid and 390 * setgid bits if the process is not being run by root. This keeps 391 * people from modifying setuid and setgid binaries. 392 */ 393 if (!IS_NOSEC(inode)) 394 return file_remove_privs(file); 395 return 0; 396 } 397 398 static int 399 xfs_dio_write_end_io( 400 struct kiocb *iocb, 401 ssize_t size, 402 unsigned flags) 403 { 404 struct inode *inode = file_inode(iocb->ki_filp); 405 struct xfs_inode *ip = XFS_I(inode); 406 loff_t offset = iocb->ki_pos; 407 int error = 0; 408 409 trace_xfs_end_io_direct_write(ip, offset, size); 410 411 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 412 return -EIO; 413 414 if (size <= 0) 415 return size; 416 417 /* 418 * Capture amount written on completion as we can't reliably account 419 * for it on submission. 420 */ 421 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 422 423 if (flags & IOMAP_DIO_COW) { 424 error = xfs_reflink_end_cow(ip, offset, size); 425 if (error) 426 return error; 427 } 428 429 /* 430 * Unwritten conversion updates the in-core isize after extent 431 * conversion but before updating the on-disk size. Updating isize any 432 * earlier allows a racing dio read to find unwritten extents before 433 * they are converted. 434 */ 435 if (flags & IOMAP_DIO_UNWRITTEN) 436 return xfs_iomap_write_unwritten(ip, offset, size, true); 437 438 /* 439 * We need to update the in-core inode size here so that we don't end up 440 * with the on-disk inode size being outside the in-core inode size. We 441 * have no other method of updating EOF for AIO, so always do it here 442 * if necessary. 443 * 444 * We need to lock the test/set EOF update as we can be racing with 445 * other IO completions here to update the EOF. Failing to serialise 446 * here can result in EOF moving backwards and Bad Things Happen when 447 * that occurs. 448 */ 449 spin_lock(&ip->i_flags_lock); 450 if (offset + size > i_size_read(inode)) { 451 i_size_write(inode, offset + size); 452 spin_unlock(&ip->i_flags_lock); 453 error = xfs_setfilesize(ip, offset, size); 454 } else { 455 spin_unlock(&ip->i_flags_lock); 456 } 457 458 return error; 459 } 460 461 /* 462 * xfs_file_dio_aio_write - handle direct IO writes 463 * 464 * Lock the inode appropriately to prepare for and issue a direct IO write. 465 * By separating it from the buffered write path we remove all the tricky to 466 * follow locking changes and looping. 467 * 468 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 469 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 470 * pages are flushed out. 471 * 472 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 473 * allowing them to be done in parallel with reads and other direct IO writes. 474 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 475 * needs to do sub-block zeroing and that requires serialisation against other 476 * direct IOs to the same block. In this case we need to serialise the 477 * submission of the unaligned IOs so that we don't get racing block zeroing in 478 * the dio layer. To avoid the problem with aio, we also need to wait for 479 * outstanding IOs to complete so that unwritten extent conversion is completed 480 * before we try to map the overlapping block. This is currently implemented by 481 * hitting it with a big hammer (i.e. inode_dio_wait()). 482 * 483 * Returns with locks held indicated by @iolock and errors indicated by 484 * negative return values. 485 */ 486 STATIC ssize_t 487 xfs_file_dio_aio_write( 488 struct kiocb *iocb, 489 struct iov_iter *from) 490 { 491 struct file *file = iocb->ki_filp; 492 struct address_space *mapping = file->f_mapping; 493 struct inode *inode = mapping->host; 494 struct xfs_inode *ip = XFS_I(inode); 495 struct xfs_mount *mp = ip->i_mount; 496 ssize_t ret = 0; 497 int unaligned_io = 0; 498 int iolock; 499 size_t count = iov_iter_count(from); 500 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 501 mp->m_rtdev_targp : mp->m_ddev_targp; 502 503 /* DIO must be aligned to device logical sector size */ 504 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 505 return -EINVAL; 506 507 /* 508 * Don't take the exclusive iolock here unless the I/O is unaligned to 509 * the file system block size. We don't need to consider the EOF 510 * extension case here because xfs_file_aio_write_checks() will relock 511 * the inode as necessary for EOF zeroing cases and fill out the new 512 * inode size as appropriate. 513 */ 514 if ((iocb->ki_pos & mp->m_blockmask) || 515 ((iocb->ki_pos + count) & mp->m_blockmask)) { 516 unaligned_io = 1; 517 518 /* 519 * We can't properly handle unaligned direct I/O to reflink 520 * files yet, as we can't unshare a partial block. 521 */ 522 if (xfs_is_reflink_inode(ip)) { 523 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 524 return -EREMCHG; 525 } 526 iolock = XFS_IOLOCK_EXCL; 527 } else { 528 iolock = XFS_IOLOCK_SHARED; 529 } 530 531 if (iocb->ki_flags & IOCB_NOWAIT) { 532 if (!xfs_ilock_nowait(ip, iolock)) 533 return -EAGAIN; 534 } else { 535 xfs_ilock(ip, iolock); 536 } 537 538 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 539 if (ret) 540 goto out; 541 count = iov_iter_count(from); 542 543 /* 544 * If we are doing unaligned IO, wait for all other IO to drain, 545 * otherwise demote the lock if we had to take the exclusive lock 546 * for other reasons in xfs_file_aio_write_checks. 547 */ 548 if (unaligned_io) { 549 /* If we are going to wait for other DIO to finish, bail */ 550 if (iocb->ki_flags & IOCB_NOWAIT) { 551 if (atomic_read(&inode->i_dio_count)) 552 return -EAGAIN; 553 } else { 554 inode_dio_wait(inode); 555 } 556 } else if (iolock == XFS_IOLOCK_EXCL) { 557 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 558 iolock = XFS_IOLOCK_SHARED; 559 } 560 561 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 562 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 563 out: 564 xfs_iunlock(ip, iolock); 565 566 /* 567 * No fallback to buffered IO on errors for XFS, direct IO will either 568 * complete fully or fail. 569 */ 570 ASSERT(ret < 0 || ret == count); 571 return ret; 572 } 573 574 static noinline ssize_t 575 xfs_file_dax_write( 576 struct kiocb *iocb, 577 struct iov_iter *from) 578 { 579 struct inode *inode = iocb->ki_filp->f_mapping->host; 580 struct xfs_inode *ip = XFS_I(inode); 581 int iolock = XFS_IOLOCK_EXCL; 582 ssize_t ret, error = 0; 583 size_t count; 584 loff_t pos; 585 586 if (iocb->ki_flags & IOCB_NOWAIT) { 587 if (!xfs_ilock_nowait(ip, iolock)) 588 return -EAGAIN; 589 } else { 590 xfs_ilock(ip, iolock); 591 } 592 593 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 594 if (ret) 595 goto out; 596 597 pos = iocb->ki_pos; 598 count = iov_iter_count(from); 599 600 trace_xfs_file_dax_write(ip, count, pos); 601 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 602 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 603 i_size_write(inode, iocb->ki_pos); 604 error = xfs_setfilesize(ip, pos, ret); 605 } 606 out: 607 xfs_iunlock(ip, iolock); 608 if (error) 609 return error; 610 611 if (ret > 0) { 612 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 613 614 /* Handle various SYNC-type writes */ 615 ret = generic_write_sync(iocb, ret); 616 } 617 return ret; 618 } 619 620 STATIC ssize_t 621 xfs_file_buffered_aio_write( 622 struct kiocb *iocb, 623 struct iov_iter *from) 624 { 625 struct file *file = iocb->ki_filp; 626 struct address_space *mapping = file->f_mapping; 627 struct inode *inode = mapping->host; 628 struct xfs_inode *ip = XFS_I(inode); 629 ssize_t ret; 630 int enospc = 0; 631 int iolock; 632 633 if (iocb->ki_flags & IOCB_NOWAIT) 634 return -EOPNOTSUPP; 635 636 write_retry: 637 iolock = XFS_IOLOCK_EXCL; 638 xfs_ilock(ip, iolock); 639 640 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 641 if (ret) 642 goto out; 643 644 /* We can write back this queue in page reclaim */ 645 current->backing_dev_info = inode_to_bdi(inode); 646 647 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 648 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 649 if (likely(ret >= 0)) 650 iocb->ki_pos += ret; 651 652 /* 653 * If we hit a space limit, try to free up some lingering preallocated 654 * space before returning an error. In the case of ENOSPC, first try to 655 * write back all dirty inodes to free up some of the excess reserved 656 * metadata space. This reduces the chances that the eofblocks scan 657 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 658 * also behaves as a filter to prevent too many eofblocks scans from 659 * running at the same time. 660 */ 661 if (ret == -EDQUOT && !enospc) { 662 xfs_iunlock(ip, iolock); 663 enospc = xfs_inode_free_quota_eofblocks(ip); 664 if (enospc) 665 goto write_retry; 666 enospc = xfs_inode_free_quota_cowblocks(ip); 667 if (enospc) 668 goto write_retry; 669 iolock = 0; 670 } else if (ret == -ENOSPC && !enospc) { 671 struct xfs_eofblocks eofb = {0}; 672 673 enospc = 1; 674 xfs_flush_inodes(ip->i_mount); 675 676 xfs_iunlock(ip, iolock); 677 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 678 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 679 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 680 goto write_retry; 681 } 682 683 current->backing_dev_info = NULL; 684 out: 685 if (iolock) 686 xfs_iunlock(ip, iolock); 687 688 if (ret > 0) { 689 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 690 /* Handle various SYNC-type writes */ 691 ret = generic_write_sync(iocb, ret); 692 } 693 return ret; 694 } 695 696 STATIC ssize_t 697 xfs_file_write_iter( 698 struct kiocb *iocb, 699 struct iov_iter *from) 700 { 701 struct file *file = iocb->ki_filp; 702 struct address_space *mapping = file->f_mapping; 703 struct inode *inode = mapping->host; 704 struct xfs_inode *ip = XFS_I(inode); 705 ssize_t ret; 706 size_t ocount = iov_iter_count(from); 707 708 XFS_STATS_INC(ip->i_mount, xs_write_calls); 709 710 if (ocount == 0) 711 return 0; 712 713 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 714 return -EIO; 715 716 if (IS_DAX(inode)) 717 return xfs_file_dax_write(iocb, from); 718 719 if (iocb->ki_flags & IOCB_DIRECT) { 720 /* 721 * Allow a directio write to fall back to a buffered 722 * write *only* in the case that we're doing a reflink 723 * CoW. In all other directio scenarios we do not 724 * allow an operation to fall back to buffered mode. 725 */ 726 ret = xfs_file_dio_aio_write(iocb, from); 727 if (ret != -EREMCHG) 728 return ret; 729 } 730 731 return xfs_file_buffered_aio_write(iocb, from); 732 } 733 734 #define XFS_FALLOC_FL_SUPPORTED \ 735 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 736 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 737 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 738 739 STATIC long 740 xfs_file_fallocate( 741 struct file *file, 742 int mode, 743 loff_t offset, 744 loff_t len) 745 { 746 struct inode *inode = file_inode(file); 747 struct xfs_inode *ip = XFS_I(inode); 748 long error; 749 enum xfs_prealloc_flags flags = 0; 750 uint iolock = XFS_IOLOCK_EXCL; 751 loff_t new_size = 0; 752 bool do_file_insert = false; 753 754 if (!S_ISREG(inode->i_mode)) 755 return -EINVAL; 756 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 757 return -EOPNOTSUPP; 758 759 xfs_ilock(ip, iolock); 760 error = xfs_break_layouts(inode, &iolock); 761 if (error) 762 goto out_unlock; 763 764 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 765 iolock |= XFS_MMAPLOCK_EXCL; 766 767 if (mode & FALLOC_FL_PUNCH_HOLE) { 768 error = xfs_free_file_space(ip, offset, len); 769 if (error) 770 goto out_unlock; 771 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 772 unsigned int blksize_mask = i_blocksize(inode) - 1; 773 774 if (offset & blksize_mask || len & blksize_mask) { 775 error = -EINVAL; 776 goto out_unlock; 777 } 778 779 /* 780 * There is no need to overlap collapse range with EOF, 781 * in which case it is effectively a truncate operation 782 */ 783 if (offset + len >= i_size_read(inode)) { 784 error = -EINVAL; 785 goto out_unlock; 786 } 787 788 new_size = i_size_read(inode) - len; 789 790 error = xfs_collapse_file_space(ip, offset, len); 791 if (error) 792 goto out_unlock; 793 } else if (mode & FALLOC_FL_INSERT_RANGE) { 794 unsigned int blksize_mask = i_blocksize(inode) - 1; 795 loff_t isize = i_size_read(inode); 796 797 if (offset & blksize_mask || len & blksize_mask) { 798 error = -EINVAL; 799 goto out_unlock; 800 } 801 802 /* 803 * New inode size must not exceed ->s_maxbytes, accounting for 804 * possible signed overflow. 805 */ 806 if (inode->i_sb->s_maxbytes - isize < len) { 807 error = -EFBIG; 808 goto out_unlock; 809 } 810 new_size = isize + len; 811 812 /* Offset should be less than i_size */ 813 if (offset >= isize) { 814 error = -EINVAL; 815 goto out_unlock; 816 } 817 do_file_insert = true; 818 } else { 819 flags |= XFS_PREALLOC_SET; 820 821 if (!(mode & FALLOC_FL_KEEP_SIZE) && 822 offset + len > i_size_read(inode)) { 823 new_size = offset + len; 824 error = inode_newsize_ok(inode, new_size); 825 if (error) 826 goto out_unlock; 827 } 828 829 if (mode & FALLOC_FL_ZERO_RANGE) 830 error = xfs_zero_file_space(ip, offset, len); 831 else { 832 if (mode & FALLOC_FL_UNSHARE_RANGE) { 833 error = xfs_reflink_unshare(ip, offset, len); 834 if (error) 835 goto out_unlock; 836 } 837 error = xfs_alloc_file_space(ip, offset, len, 838 XFS_BMAPI_PREALLOC); 839 } 840 if (error) 841 goto out_unlock; 842 } 843 844 if (file->f_flags & O_DSYNC) 845 flags |= XFS_PREALLOC_SYNC; 846 847 error = xfs_update_prealloc_flags(ip, flags); 848 if (error) 849 goto out_unlock; 850 851 /* Change file size if needed */ 852 if (new_size) { 853 struct iattr iattr; 854 855 iattr.ia_valid = ATTR_SIZE; 856 iattr.ia_size = new_size; 857 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 858 if (error) 859 goto out_unlock; 860 } 861 862 /* 863 * Perform hole insertion now that the file size has been 864 * updated so that if we crash during the operation we don't 865 * leave shifted extents past EOF and hence losing access to 866 * the data that is contained within them. 867 */ 868 if (do_file_insert) 869 error = xfs_insert_file_space(ip, offset, len); 870 871 out_unlock: 872 xfs_iunlock(ip, iolock); 873 return error; 874 } 875 876 STATIC int 877 xfs_file_clone_range( 878 struct file *file_in, 879 loff_t pos_in, 880 struct file *file_out, 881 loff_t pos_out, 882 u64 len) 883 { 884 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 885 len, false); 886 } 887 888 STATIC ssize_t 889 xfs_file_dedupe_range( 890 struct file *src_file, 891 u64 loff, 892 u64 len, 893 struct file *dst_file, 894 u64 dst_loff) 895 { 896 struct inode *srci = file_inode(src_file); 897 u64 max_dedupe; 898 int error; 899 900 /* 901 * Since we have to read all these pages in to compare them, cut 902 * it off at MAX_RW_COUNT/2 rounded down to the nearest block. 903 * That means we won't do more than MAX_RW_COUNT IO per request. 904 */ 905 max_dedupe = (MAX_RW_COUNT >> 1) & ~(i_blocksize(srci) - 1); 906 if (len > max_dedupe) 907 len = max_dedupe; 908 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff, 909 len, true); 910 if (error) 911 return error; 912 return len; 913 } 914 915 STATIC int 916 xfs_file_open( 917 struct inode *inode, 918 struct file *file) 919 { 920 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 921 return -EFBIG; 922 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 923 return -EIO; 924 file->f_mode |= FMODE_NOWAIT; 925 return 0; 926 } 927 928 STATIC int 929 xfs_dir_open( 930 struct inode *inode, 931 struct file *file) 932 { 933 struct xfs_inode *ip = XFS_I(inode); 934 int mode; 935 int error; 936 937 error = xfs_file_open(inode, file); 938 if (error) 939 return error; 940 941 /* 942 * If there are any blocks, read-ahead block 0 as we're almost 943 * certain to have the next operation be a read there. 944 */ 945 mode = xfs_ilock_data_map_shared(ip); 946 if (ip->i_d.di_nextents > 0) 947 error = xfs_dir3_data_readahead(ip, 0, -1); 948 xfs_iunlock(ip, mode); 949 return error; 950 } 951 952 STATIC int 953 xfs_file_release( 954 struct inode *inode, 955 struct file *filp) 956 { 957 return xfs_release(XFS_I(inode)); 958 } 959 960 STATIC int 961 xfs_file_readdir( 962 struct file *file, 963 struct dir_context *ctx) 964 { 965 struct inode *inode = file_inode(file); 966 xfs_inode_t *ip = XFS_I(inode); 967 size_t bufsize; 968 969 /* 970 * The Linux API doesn't pass down the total size of the buffer 971 * we read into down to the filesystem. With the filldir concept 972 * it's not needed for correct information, but the XFS dir2 leaf 973 * code wants an estimate of the buffer size to calculate it's 974 * readahead window and size the buffers used for mapping to 975 * physical blocks. 976 * 977 * Try to give it an estimate that's good enough, maybe at some 978 * point we can change the ->readdir prototype to include the 979 * buffer size. For now we use the current glibc buffer size. 980 */ 981 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 982 983 return xfs_readdir(NULL, ip, ctx, bufsize); 984 } 985 986 STATIC loff_t 987 xfs_file_llseek( 988 struct file *file, 989 loff_t offset, 990 int whence) 991 { 992 struct inode *inode = file->f_mapping->host; 993 994 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 995 return -EIO; 996 997 switch (whence) { 998 default: 999 return generic_file_llseek(file, offset, whence); 1000 case SEEK_HOLE: 1001 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops); 1002 break; 1003 case SEEK_DATA: 1004 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops); 1005 break; 1006 } 1007 1008 if (offset < 0) 1009 return offset; 1010 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1011 } 1012 1013 /* 1014 * Locking for serialisation of IO during page faults. This results in a lock 1015 * ordering of: 1016 * 1017 * mmap_sem (MM) 1018 * sb_start_pagefault(vfs, freeze) 1019 * i_mmaplock (XFS - truncate serialisation) 1020 * page_lock (MM) 1021 * i_lock (XFS - extent map serialisation) 1022 */ 1023 static vm_fault_t 1024 __xfs_filemap_fault( 1025 struct vm_fault *vmf, 1026 enum page_entry_size pe_size, 1027 bool write_fault) 1028 { 1029 struct inode *inode = file_inode(vmf->vma->vm_file); 1030 struct xfs_inode *ip = XFS_I(inode); 1031 vm_fault_t ret; 1032 1033 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1034 1035 if (write_fault) { 1036 sb_start_pagefault(inode->i_sb); 1037 file_update_time(vmf->vma->vm_file); 1038 } 1039 1040 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1041 if (IS_DAX(inode)) { 1042 pfn_t pfn; 1043 1044 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); 1045 if (ret & VM_FAULT_NEEDDSYNC) 1046 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1047 } else { 1048 if (write_fault) 1049 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1050 else 1051 ret = filemap_fault(vmf); 1052 } 1053 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1054 1055 if (write_fault) 1056 sb_end_pagefault(inode->i_sb); 1057 return ret; 1058 } 1059 1060 static vm_fault_t 1061 xfs_filemap_fault( 1062 struct vm_fault *vmf) 1063 { 1064 /* DAX can shortcut the normal fault path on write faults! */ 1065 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1066 IS_DAX(file_inode(vmf->vma->vm_file)) && 1067 (vmf->flags & FAULT_FLAG_WRITE)); 1068 } 1069 1070 static vm_fault_t 1071 xfs_filemap_huge_fault( 1072 struct vm_fault *vmf, 1073 enum page_entry_size pe_size) 1074 { 1075 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1076 return VM_FAULT_FALLBACK; 1077 1078 /* DAX can shortcut the normal fault path on write faults! */ 1079 return __xfs_filemap_fault(vmf, pe_size, 1080 (vmf->flags & FAULT_FLAG_WRITE)); 1081 } 1082 1083 static vm_fault_t 1084 xfs_filemap_page_mkwrite( 1085 struct vm_fault *vmf) 1086 { 1087 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1088 } 1089 1090 /* 1091 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1092 * on write faults. In reality, it needs to serialise against truncate and 1093 * prepare memory for writing so handle is as standard write fault. 1094 */ 1095 static vm_fault_t 1096 xfs_filemap_pfn_mkwrite( 1097 struct vm_fault *vmf) 1098 { 1099 1100 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1101 } 1102 1103 static const struct vm_operations_struct xfs_file_vm_ops = { 1104 .fault = xfs_filemap_fault, 1105 .huge_fault = xfs_filemap_huge_fault, 1106 .map_pages = filemap_map_pages, 1107 .page_mkwrite = xfs_filemap_page_mkwrite, 1108 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1109 }; 1110 1111 STATIC int 1112 xfs_file_mmap( 1113 struct file *filp, 1114 struct vm_area_struct *vma) 1115 { 1116 /* 1117 * We don't support synchronous mappings for non-DAX files. At least 1118 * until someone comes with a sensible use case. 1119 */ 1120 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC)) 1121 return -EOPNOTSUPP; 1122 1123 file_accessed(filp); 1124 vma->vm_ops = &xfs_file_vm_ops; 1125 if (IS_DAX(file_inode(filp))) 1126 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1127 return 0; 1128 } 1129 1130 const struct file_operations xfs_file_operations = { 1131 .llseek = xfs_file_llseek, 1132 .read_iter = xfs_file_read_iter, 1133 .write_iter = xfs_file_write_iter, 1134 .splice_read = generic_file_splice_read, 1135 .splice_write = iter_file_splice_write, 1136 .unlocked_ioctl = xfs_file_ioctl, 1137 #ifdef CONFIG_COMPAT 1138 .compat_ioctl = xfs_file_compat_ioctl, 1139 #endif 1140 .mmap = xfs_file_mmap, 1141 .mmap_supported_flags = MAP_SYNC, 1142 .open = xfs_file_open, 1143 .release = xfs_file_release, 1144 .fsync = xfs_file_fsync, 1145 .get_unmapped_area = thp_get_unmapped_area, 1146 .fallocate = xfs_file_fallocate, 1147 .clone_file_range = xfs_file_clone_range, 1148 .dedupe_file_range = xfs_file_dedupe_range, 1149 }; 1150 1151 const struct file_operations xfs_dir_file_operations = { 1152 .open = xfs_dir_open, 1153 .read = generic_read_dir, 1154 .iterate_shared = xfs_file_readdir, 1155 .llseek = generic_file_llseek, 1156 .unlocked_ioctl = xfs_file_ioctl, 1157 #ifdef CONFIG_COMPAT 1158 .compat_ioctl = xfs_file_compat_ioctl, 1159 #endif 1160 .fsync = xfs_dir_fsync, 1161 }; 1162