xref: /linux/fs/xfs/xfs_file.c (revision 6a61b70b43c9c4cbc7314bf6c8b5ba8b0d6e1e7b)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42 
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47 #include <linux/mman.h>
48 
49 static const struct vm_operations_struct xfs_file_vm_ops;
50 
51 int
52 xfs_update_prealloc_flags(
53 	struct xfs_inode	*ip,
54 	enum xfs_prealloc_flags	flags)
55 {
56 	struct xfs_trans	*tp;
57 	int			error;
58 
59 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
60 			0, 0, 0, &tp);
61 	if (error)
62 		return error;
63 
64 	xfs_ilock(ip, XFS_ILOCK_EXCL);
65 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
66 
67 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
68 		VFS_I(ip)->i_mode &= ~S_ISUID;
69 		if (VFS_I(ip)->i_mode & S_IXGRP)
70 			VFS_I(ip)->i_mode &= ~S_ISGID;
71 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
72 	}
73 
74 	if (flags & XFS_PREALLOC_SET)
75 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
76 	if (flags & XFS_PREALLOC_CLEAR)
77 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
78 
79 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
80 	if (flags & XFS_PREALLOC_SYNC)
81 		xfs_trans_set_sync(tp);
82 	return xfs_trans_commit(tp);
83 }
84 
85 /*
86  * Fsync operations on directories are much simpler than on regular files,
87  * as there is no file data to flush, and thus also no need for explicit
88  * cache flush operations, and there are no non-transaction metadata updates
89  * on directories either.
90  */
91 STATIC int
92 xfs_dir_fsync(
93 	struct file		*file,
94 	loff_t			start,
95 	loff_t			end,
96 	int			datasync)
97 {
98 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
99 	struct xfs_mount	*mp = ip->i_mount;
100 	xfs_lsn_t		lsn = 0;
101 
102 	trace_xfs_dir_fsync(ip);
103 
104 	xfs_ilock(ip, XFS_ILOCK_SHARED);
105 	if (xfs_ipincount(ip))
106 		lsn = ip->i_itemp->ili_last_lsn;
107 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
108 
109 	if (!lsn)
110 		return 0;
111 	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
112 }
113 
114 STATIC int
115 xfs_file_fsync(
116 	struct file		*file,
117 	loff_t			start,
118 	loff_t			end,
119 	int			datasync)
120 {
121 	struct inode		*inode = file->f_mapping->host;
122 	struct xfs_inode	*ip = XFS_I(inode);
123 	struct xfs_mount	*mp = ip->i_mount;
124 	int			error = 0;
125 	int			log_flushed = 0;
126 	xfs_lsn_t		lsn = 0;
127 
128 	trace_xfs_file_fsync(ip);
129 
130 	error = file_write_and_wait_range(file, start, end);
131 	if (error)
132 		return error;
133 
134 	if (XFS_FORCED_SHUTDOWN(mp))
135 		return -EIO;
136 
137 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
138 
139 	/*
140 	 * If we have an RT and/or log subvolume we need to make sure to flush
141 	 * the write cache the device used for file data first.  This is to
142 	 * ensure newly written file data make it to disk before logging the new
143 	 * inode size in case of an extending write.
144 	 */
145 	if (XFS_IS_REALTIME_INODE(ip))
146 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
147 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
148 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
149 
150 	/*
151 	 * All metadata updates are logged, which means that we just have to
152 	 * flush the log up to the latest LSN that touched the inode. If we have
153 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
154 	 * log force before we clear the ili_fsync_fields field. This ensures
155 	 * that we don't get a racing sync operation that does not wait for the
156 	 * metadata to hit the journal before returning. If we race with
157 	 * clearing the ili_fsync_fields, then all that will happen is the log
158 	 * force will do nothing as the lsn will already be on disk. We can't
159 	 * race with setting ili_fsync_fields because that is done under
160 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
161 	 * until after the ili_fsync_fields is cleared.
162 	 */
163 	xfs_ilock(ip, XFS_ILOCK_SHARED);
164 	if (xfs_ipincount(ip)) {
165 		if (!datasync ||
166 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
167 			lsn = ip->i_itemp->ili_last_lsn;
168 	}
169 
170 	if (lsn) {
171 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
172 		ip->i_itemp->ili_fsync_fields = 0;
173 	}
174 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
175 
176 	/*
177 	 * If we only have a single device, and the log force about was
178 	 * a no-op we might have to flush the data device cache here.
179 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
180 	 * an already allocated file and thus do not have any metadata to
181 	 * commit.
182 	 */
183 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
184 	    mp->m_logdev_targp == mp->m_ddev_targp)
185 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
186 
187 	return error;
188 }
189 
190 STATIC ssize_t
191 xfs_file_dio_aio_read(
192 	struct kiocb		*iocb,
193 	struct iov_iter		*to)
194 {
195 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
196 	size_t			count = iov_iter_count(to);
197 	ssize_t			ret;
198 
199 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
200 
201 	if (!count)
202 		return 0; /* skip atime */
203 
204 	file_accessed(iocb->ki_filp);
205 
206 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
207 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
208 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
209 
210 	return ret;
211 }
212 
213 static noinline ssize_t
214 xfs_file_dax_read(
215 	struct kiocb		*iocb,
216 	struct iov_iter		*to)
217 {
218 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
219 	size_t			count = iov_iter_count(to);
220 	ssize_t			ret = 0;
221 
222 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
223 
224 	if (!count)
225 		return 0; /* skip atime */
226 
227 	if (iocb->ki_flags & IOCB_NOWAIT) {
228 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
229 			return -EAGAIN;
230 	} else {
231 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
232 	}
233 
234 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
235 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
236 
237 	file_accessed(iocb->ki_filp);
238 	return ret;
239 }
240 
241 STATIC ssize_t
242 xfs_file_buffered_aio_read(
243 	struct kiocb		*iocb,
244 	struct iov_iter		*to)
245 {
246 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
247 	ssize_t			ret;
248 
249 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
250 
251 	if (iocb->ki_flags & IOCB_NOWAIT) {
252 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
253 			return -EAGAIN;
254 	} else {
255 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
256 	}
257 	ret = generic_file_read_iter(iocb, to);
258 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
259 
260 	return ret;
261 }
262 
263 STATIC ssize_t
264 xfs_file_read_iter(
265 	struct kiocb		*iocb,
266 	struct iov_iter		*to)
267 {
268 	struct inode		*inode = file_inode(iocb->ki_filp);
269 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
270 	ssize_t			ret = 0;
271 
272 	XFS_STATS_INC(mp, xs_read_calls);
273 
274 	if (XFS_FORCED_SHUTDOWN(mp))
275 		return -EIO;
276 
277 	if (IS_DAX(inode))
278 		ret = xfs_file_dax_read(iocb, to);
279 	else if (iocb->ki_flags & IOCB_DIRECT)
280 		ret = xfs_file_dio_aio_read(iocb, to);
281 	else
282 		ret = xfs_file_buffered_aio_read(iocb, to);
283 
284 	if (ret > 0)
285 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
286 	return ret;
287 }
288 
289 /*
290  * Common pre-write limit and setup checks.
291  *
292  * Called with the iolocked held either shared and exclusive according to
293  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
294  * if called for a direct write beyond i_size.
295  */
296 STATIC ssize_t
297 xfs_file_aio_write_checks(
298 	struct kiocb		*iocb,
299 	struct iov_iter		*from,
300 	int			*iolock)
301 {
302 	struct file		*file = iocb->ki_filp;
303 	struct inode		*inode = file->f_mapping->host;
304 	struct xfs_inode	*ip = XFS_I(inode);
305 	ssize_t			error = 0;
306 	size_t			count = iov_iter_count(from);
307 	bool			drained_dio = false;
308 	loff_t			isize;
309 
310 restart:
311 	error = generic_write_checks(iocb, from);
312 	if (error <= 0)
313 		return error;
314 
315 	error = xfs_break_layouts(inode, iolock);
316 	if (error)
317 		return error;
318 
319 	/*
320 	 * For changing security info in file_remove_privs() we need i_rwsem
321 	 * exclusively.
322 	 */
323 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
324 		xfs_iunlock(ip, *iolock);
325 		*iolock = XFS_IOLOCK_EXCL;
326 		xfs_ilock(ip, *iolock);
327 		goto restart;
328 	}
329 	/*
330 	 * If the offset is beyond the size of the file, we need to zero any
331 	 * blocks that fall between the existing EOF and the start of this
332 	 * write.  If zeroing is needed and we are currently holding the
333 	 * iolock shared, we need to update it to exclusive which implies
334 	 * having to redo all checks before.
335 	 *
336 	 * We need to serialise against EOF updates that occur in IO
337 	 * completions here. We want to make sure that nobody is changing the
338 	 * size while we do this check until we have placed an IO barrier (i.e.
339 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
340 	 * The spinlock effectively forms a memory barrier once we have the
341 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
342 	 * and hence be able to correctly determine if we need to run zeroing.
343 	 */
344 	spin_lock(&ip->i_flags_lock);
345 	isize = i_size_read(inode);
346 	if (iocb->ki_pos > isize) {
347 		spin_unlock(&ip->i_flags_lock);
348 		if (!drained_dio) {
349 			if (*iolock == XFS_IOLOCK_SHARED) {
350 				xfs_iunlock(ip, *iolock);
351 				*iolock = XFS_IOLOCK_EXCL;
352 				xfs_ilock(ip, *iolock);
353 				iov_iter_reexpand(from, count);
354 			}
355 			/*
356 			 * We now have an IO submission barrier in place, but
357 			 * AIO can do EOF updates during IO completion and hence
358 			 * we now need to wait for all of them to drain. Non-AIO
359 			 * DIO will have drained before we are given the
360 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
361 			 * no-op.
362 			 */
363 			inode_dio_wait(inode);
364 			drained_dio = true;
365 			goto restart;
366 		}
367 
368 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
369 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
370 				NULL, &xfs_iomap_ops);
371 		if (error)
372 			return error;
373 	} else
374 		spin_unlock(&ip->i_flags_lock);
375 
376 	/*
377 	 * Updating the timestamps will grab the ilock again from
378 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
379 	 * lock above.  Eventually we should look into a way to avoid
380 	 * the pointless lock roundtrip.
381 	 */
382 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
383 		error = file_update_time(file);
384 		if (error)
385 			return error;
386 	}
387 
388 	/*
389 	 * If we're writing the file then make sure to clear the setuid and
390 	 * setgid bits if the process is not being run by root.  This keeps
391 	 * people from modifying setuid and setgid binaries.
392 	 */
393 	if (!IS_NOSEC(inode))
394 		return file_remove_privs(file);
395 	return 0;
396 }
397 
398 static int
399 xfs_dio_write_end_io(
400 	struct kiocb		*iocb,
401 	ssize_t			size,
402 	unsigned		flags)
403 {
404 	struct inode		*inode = file_inode(iocb->ki_filp);
405 	struct xfs_inode	*ip = XFS_I(inode);
406 	loff_t			offset = iocb->ki_pos;
407 	int			error = 0;
408 
409 	trace_xfs_end_io_direct_write(ip, offset, size);
410 
411 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
412 		return -EIO;
413 
414 	if (size <= 0)
415 		return size;
416 
417 	/*
418 	 * Capture amount written on completion as we can't reliably account
419 	 * for it on submission.
420 	 */
421 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
422 
423 	if (flags & IOMAP_DIO_COW) {
424 		error = xfs_reflink_end_cow(ip, offset, size);
425 		if (error)
426 			return error;
427 	}
428 
429 	/*
430 	 * Unwritten conversion updates the in-core isize after extent
431 	 * conversion but before updating the on-disk size. Updating isize any
432 	 * earlier allows a racing dio read to find unwritten extents before
433 	 * they are converted.
434 	 */
435 	if (flags & IOMAP_DIO_UNWRITTEN)
436 		return xfs_iomap_write_unwritten(ip, offset, size, true);
437 
438 	/*
439 	 * We need to update the in-core inode size here so that we don't end up
440 	 * with the on-disk inode size being outside the in-core inode size. We
441 	 * have no other method of updating EOF for AIO, so always do it here
442 	 * if necessary.
443 	 *
444 	 * We need to lock the test/set EOF update as we can be racing with
445 	 * other IO completions here to update the EOF. Failing to serialise
446 	 * here can result in EOF moving backwards and Bad Things Happen when
447 	 * that occurs.
448 	 */
449 	spin_lock(&ip->i_flags_lock);
450 	if (offset + size > i_size_read(inode)) {
451 		i_size_write(inode, offset + size);
452 		spin_unlock(&ip->i_flags_lock);
453 		error = xfs_setfilesize(ip, offset, size);
454 	} else {
455 		spin_unlock(&ip->i_flags_lock);
456 	}
457 
458 	return error;
459 }
460 
461 /*
462  * xfs_file_dio_aio_write - handle direct IO writes
463  *
464  * Lock the inode appropriately to prepare for and issue a direct IO write.
465  * By separating it from the buffered write path we remove all the tricky to
466  * follow locking changes and looping.
467  *
468  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
469  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
470  * pages are flushed out.
471  *
472  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
473  * allowing them to be done in parallel with reads and other direct IO writes.
474  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
475  * needs to do sub-block zeroing and that requires serialisation against other
476  * direct IOs to the same block. In this case we need to serialise the
477  * submission of the unaligned IOs so that we don't get racing block zeroing in
478  * the dio layer.  To avoid the problem with aio, we also need to wait for
479  * outstanding IOs to complete so that unwritten extent conversion is completed
480  * before we try to map the overlapping block. This is currently implemented by
481  * hitting it with a big hammer (i.e. inode_dio_wait()).
482  *
483  * Returns with locks held indicated by @iolock and errors indicated by
484  * negative return values.
485  */
486 STATIC ssize_t
487 xfs_file_dio_aio_write(
488 	struct kiocb		*iocb,
489 	struct iov_iter		*from)
490 {
491 	struct file		*file = iocb->ki_filp;
492 	struct address_space	*mapping = file->f_mapping;
493 	struct inode		*inode = mapping->host;
494 	struct xfs_inode	*ip = XFS_I(inode);
495 	struct xfs_mount	*mp = ip->i_mount;
496 	ssize_t			ret = 0;
497 	int			unaligned_io = 0;
498 	int			iolock;
499 	size_t			count = iov_iter_count(from);
500 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
501 					mp->m_rtdev_targp : mp->m_ddev_targp;
502 
503 	/* DIO must be aligned to device logical sector size */
504 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
505 		return -EINVAL;
506 
507 	/*
508 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
509 	 * the file system block size.  We don't need to consider the EOF
510 	 * extension case here because xfs_file_aio_write_checks() will relock
511 	 * the inode as necessary for EOF zeroing cases and fill out the new
512 	 * inode size as appropriate.
513 	 */
514 	if ((iocb->ki_pos & mp->m_blockmask) ||
515 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
516 		unaligned_io = 1;
517 
518 		/*
519 		 * We can't properly handle unaligned direct I/O to reflink
520 		 * files yet, as we can't unshare a partial block.
521 		 */
522 		if (xfs_is_reflink_inode(ip)) {
523 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
524 			return -EREMCHG;
525 		}
526 		iolock = XFS_IOLOCK_EXCL;
527 	} else {
528 		iolock = XFS_IOLOCK_SHARED;
529 	}
530 
531 	if (iocb->ki_flags & IOCB_NOWAIT) {
532 		if (!xfs_ilock_nowait(ip, iolock))
533 			return -EAGAIN;
534 	} else {
535 		xfs_ilock(ip, iolock);
536 	}
537 
538 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
539 	if (ret)
540 		goto out;
541 	count = iov_iter_count(from);
542 
543 	/*
544 	 * If we are doing unaligned IO, wait for all other IO to drain,
545 	 * otherwise demote the lock if we had to take the exclusive lock
546 	 * for other reasons in xfs_file_aio_write_checks.
547 	 */
548 	if (unaligned_io) {
549 		/* If we are going to wait for other DIO to finish, bail */
550 		if (iocb->ki_flags & IOCB_NOWAIT) {
551 			if (atomic_read(&inode->i_dio_count))
552 				return -EAGAIN;
553 		} else {
554 			inode_dio_wait(inode);
555 		}
556 	} else if (iolock == XFS_IOLOCK_EXCL) {
557 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
558 		iolock = XFS_IOLOCK_SHARED;
559 	}
560 
561 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
562 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
563 out:
564 	xfs_iunlock(ip, iolock);
565 
566 	/*
567 	 * No fallback to buffered IO on errors for XFS, direct IO will either
568 	 * complete fully or fail.
569 	 */
570 	ASSERT(ret < 0 || ret == count);
571 	return ret;
572 }
573 
574 static noinline ssize_t
575 xfs_file_dax_write(
576 	struct kiocb		*iocb,
577 	struct iov_iter		*from)
578 {
579 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
580 	struct xfs_inode	*ip = XFS_I(inode);
581 	int			iolock = XFS_IOLOCK_EXCL;
582 	ssize_t			ret, error = 0;
583 	size_t			count;
584 	loff_t			pos;
585 
586 	if (iocb->ki_flags & IOCB_NOWAIT) {
587 		if (!xfs_ilock_nowait(ip, iolock))
588 			return -EAGAIN;
589 	} else {
590 		xfs_ilock(ip, iolock);
591 	}
592 
593 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
594 	if (ret)
595 		goto out;
596 
597 	pos = iocb->ki_pos;
598 	count = iov_iter_count(from);
599 
600 	trace_xfs_file_dax_write(ip, count, pos);
601 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
602 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
603 		i_size_write(inode, iocb->ki_pos);
604 		error = xfs_setfilesize(ip, pos, ret);
605 	}
606 out:
607 	xfs_iunlock(ip, iolock);
608 	if (error)
609 		return error;
610 
611 	if (ret > 0) {
612 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
613 
614 		/* Handle various SYNC-type writes */
615 		ret = generic_write_sync(iocb, ret);
616 	}
617 	return ret;
618 }
619 
620 STATIC ssize_t
621 xfs_file_buffered_aio_write(
622 	struct kiocb		*iocb,
623 	struct iov_iter		*from)
624 {
625 	struct file		*file = iocb->ki_filp;
626 	struct address_space	*mapping = file->f_mapping;
627 	struct inode		*inode = mapping->host;
628 	struct xfs_inode	*ip = XFS_I(inode);
629 	ssize_t			ret;
630 	int			enospc = 0;
631 	int			iolock;
632 
633 	if (iocb->ki_flags & IOCB_NOWAIT)
634 		return -EOPNOTSUPP;
635 
636 write_retry:
637 	iolock = XFS_IOLOCK_EXCL;
638 	xfs_ilock(ip, iolock);
639 
640 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
641 	if (ret)
642 		goto out;
643 
644 	/* We can write back this queue in page reclaim */
645 	current->backing_dev_info = inode_to_bdi(inode);
646 
647 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
648 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
649 	if (likely(ret >= 0))
650 		iocb->ki_pos += ret;
651 
652 	/*
653 	 * If we hit a space limit, try to free up some lingering preallocated
654 	 * space before returning an error. In the case of ENOSPC, first try to
655 	 * write back all dirty inodes to free up some of the excess reserved
656 	 * metadata space. This reduces the chances that the eofblocks scan
657 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
658 	 * also behaves as a filter to prevent too many eofblocks scans from
659 	 * running at the same time.
660 	 */
661 	if (ret == -EDQUOT && !enospc) {
662 		xfs_iunlock(ip, iolock);
663 		enospc = xfs_inode_free_quota_eofblocks(ip);
664 		if (enospc)
665 			goto write_retry;
666 		enospc = xfs_inode_free_quota_cowblocks(ip);
667 		if (enospc)
668 			goto write_retry;
669 		iolock = 0;
670 	} else if (ret == -ENOSPC && !enospc) {
671 		struct xfs_eofblocks eofb = {0};
672 
673 		enospc = 1;
674 		xfs_flush_inodes(ip->i_mount);
675 
676 		xfs_iunlock(ip, iolock);
677 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
678 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
679 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
680 		goto write_retry;
681 	}
682 
683 	current->backing_dev_info = NULL;
684 out:
685 	if (iolock)
686 		xfs_iunlock(ip, iolock);
687 
688 	if (ret > 0) {
689 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
690 		/* Handle various SYNC-type writes */
691 		ret = generic_write_sync(iocb, ret);
692 	}
693 	return ret;
694 }
695 
696 STATIC ssize_t
697 xfs_file_write_iter(
698 	struct kiocb		*iocb,
699 	struct iov_iter		*from)
700 {
701 	struct file		*file = iocb->ki_filp;
702 	struct address_space	*mapping = file->f_mapping;
703 	struct inode		*inode = mapping->host;
704 	struct xfs_inode	*ip = XFS_I(inode);
705 	ssize_t			ret;
706 	size_t			ocount = iov_iter_count(from);
707 
708 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
709 
710 	if (ocount == 0)
711 		return 0;
712 
713 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
714 		return -EIO;
715 
716 	if (IS_DAX(inode))
717 		return xfs_file_dax_write(iocb, from);
718 
719 	if (iocb->ki_flags & IOCB_DIRECT) {
720 		/*
721 		 * Allow a directio write to fall back to a buffered
722 		 * write *only* in the case that we're doing a reflink
723 		 * CoW.  In all other directio scenarios we do not
724 		 * allow an operation to fall back to buffered mode.
725 		 */
726 		ret = xfs_file_dio_aio_write(iocb, from);
727 		if (ret != -EREMCHG)
728 			return ret;
729 	}
730 
731 	return xfs_file_buffered_aio_write(iocb, from);
732 }
733 
734 #define	XFS_FALLOC_FL_SUPPORTED						\
735 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
736 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
737 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
738 
739 STATIC long
740 xfs_file_fallocate(
741 	struct file		*file,
742 	int			mode,
743 	loff_t			offset,
744 	loff_t			len)
745 {
746 	struct inode		*inode = file_inode(file);
747 	struct xfs_inode	*ip = XFS_I(inode);
748 	long			error;
749 	enum xfs_prealloc_flags	flags = 0;
750 	uint			iolock = XFS_IOLOCK_EXCL;
751 	loff_t			new_size = 0;
752 	bool			do_file_insert = false;
753 
754 	if (!S_ISREG(inode->i_mode))
755 		return -EINVAL;
756 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
757 		return -EOPNOTSUPP;
758 
759 	xfs_ilock(ip, iolock);
760 	error = xfs_break_layouts(inode, &iolock);
761 	if (error)
762 		goto out_unlock;
763 
764 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
765 	iolock |= XFS_MMAPLOCK_EXCL;
766 
767 	if (mode & FALLOC_FL_PUNCH_HOLE) {
768 		error = xfs_free_file_space(ip, offset, len);
769 		if (error)
770 			goto out_unlock;
771 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
772 		unsigned int blksize_mask = i_blocksize(inode) - 1;
773 
774 		if (offset & blksize_mask || len & blksize_mask) {
775 			error = -EINVAL;
776 			goto out_unlock;
777 		}
778 
779 		/*
780 		 * There is no need to overlap collapse range with EOF,
781 		 * in which case it is effectively a truncate operation
782 		 */
783 		if (offset + len >= i_size_read(inode)) {
784 			error = -EINVAL;
785 			goto out_unlock;
786 		}
787 
788 		new_size = i_size_read(inode) - len;
789 
790 		error = xfs_collapse_file_space(ip, offset, len);
791 		if (error)
792 			goto out_unlock;
793 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
794 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
795 		loff_t		isize = i_size_read(inode);
796 
797 		if (offset & blksize_mask || len & blksize_mask) {
798 			error = -EINVAL;
799 			goto out_unlock;
800 		}
801 
802 		/*
803 		 * New inode size must not exceed ->s_maxbytes, accounting for
804 		 * possible signed overflow.
805 		 */
806 		if (inode->i_sb->s_maxbytes - isize < len) {
807 			error = -EFBIG;
808 			goto out_unlock;
809 		}
810 		new_size = isize + len;
811 
812 		/* Offset should be less than i_size */
813 		if (offset >= isize) {
814 			error = -EINVAL;
815 			goto out_unlock;
816 		}
817 		do_file_insert = true;
818 	} else {
819 		flags |= XFS_PREALLOC_SET;
820 
821 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
822 		    offset + len > i_size_read(inode)) {
823 			new_size = offset + len;
824 			error = inode_newsize_ok(inode, new_size);
825 			if (error)
826 				goto out_unlock;
827 		}
828 
829 		if (mode & FALLOC_FL_ZERO_RANGE)
830 			error = xfs_zero_file_space(ip, offset, len);
831 		else {
832 			if (mode & FALLOC_FL_UNSHARE_RANGE) {
833 				error = xfs_reflink_unshare(ip, offset, len);
834 				if (error)
835 					goto out_unlock;
836 			}
837 			error = xfs_alloc_file_space(ip, offset, len,
838 						     XFS_BMAPI_PREALLOC);
839 		}
840 		if (error)
841 			goto out_unlock;
842 	}
843 
844 	if (file->f_flags & O_DSYNC)
845 		flags |= XFS_PREALLOC_SYNC;
846 
847 	error = xfs_update_prealloc_flags(ip, flags);
848 	if (error)
849 		goto out_unlock;
850 
851 	/* Change file size if needed */
852 	if (new_size) {
853 		struct iattr iattr;
854 
855 		iattr.ia_valid = ATTR_SIZE;
856 		iattr.ia_size = new_size;
857 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
858 		if (error)
859 			goto out_unlock;
860 	}
861 
862 	/*
863 	 * Perform hole insertion now that the file size has been
864 	 * updated so that if we crash during the operation we don't
865 	 * leave shifted extents past EOF and hence losing access to
866 	 * the data that is contained within them.
867 	 */
868 	if (do_file_insert)
869 		error = xfs_insert_file_space(ip, offset, len);
870 
871 out_unlock:
872 	xfs_iunlock(ip, iolock);
873 	return error;
874 }
875 
876 STATIC int
877 xfs_file_clone_range(
878 	struct file	*file_in,
879 	loff_t		pos_in,
880 	struct file	*file_out,
881 	loff_t		pos_out,
882 	u64		len)
883 {
884 	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
885 				     len, false);
886 }
887 
888 STATIC ssize_t
889 xfs_file_dedupe_range(
890 	struct file	*src_file,
891 	u64		loff,
892 	u64		len,
893 	struct file	*dst_file,
894 	u64		dst_loff)
895 {
896 	struct inode	*srci = file_inode(src_file);
897 	u64		max_dedupe;
898 	int		error;
899 
900 	/*
901 	 * Since we have to read all these pages in to compare them, cut
902 	 * it off at MAX_RW_COUNT/2 rounded down to the nearest block.
903 	 * That means we won't do more than MAX_RW_COUNT IO per request.
904 	 */
905 	max_dedupe = (MAX_RW_COUNT >> 1) & ~(i_blocksize(srci) - 1);
906 	if (len > max_dedupe)
907 		len = max_dedupe;
908 	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
909 				     len, true);
910 	if (error)
911 		return error;
912 	return len;
913 }
914 
915 STATIC int
916 xfs_file_open(
917 	struct inode	*inode,
918 	struct file	*file)
919 {
920 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
921 		return -EFBIG;
922 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
923 		return -EIO;
924 	file->f_mode |= FMODE_NOWAIT;
925 	return 0;
926 }
927 
928 STATIC int
929 xfs_dir_open(
930 	struct inode	*inode,
931 	struct file	*file)
932 {
933 	struct xfs_inode *ip = XFS_I(inode);
934 	int		mode;
935 	int		error;
936 
937 	error = xfs_file_open(inode, file);
938 	if (error)
939 		return error;
940 
941 	/*
942 	 * If there are any blocks, read-ahead block 0 as we're almost
943 	 * certain to have the next operation be a read there.
944 	 */
945 	mode = xfs_ilock_data_map_shared(ip);
946 	if (ip->i_d.di_nextents > 0)
947 		error = xfs_dir3_data_readahead(ip, 0, -1);
948 	xfs_iunlock(ip, mode);
949 	return error;
950 }
951 
952 STATIC int
953 xfs_file_release(
954 	struct inode	*inode,
955 	struct file	*filp)
956 {
957 	return xfs_release(XFS_I(inode));
958 }
959 
960 STATIC int
961 xfs_file_readdir(
962 	struct file	*file,
963 	struct dir_context *ctx)
964 {
965 	struct inode	*inode = file_inode(file);
966 	xfs_inode_t	*ip = XFS_I(inode);
967 	size_t		bufsize;
968 
969 	/*
970 	 * The Linux API doesn't pass down the total size of the buffer
971 	 * we read into down to the filesystem.  With the filldir concept
972 	 * it's not needed for correct information, but the XFS dir2 leaf
973 	 * code wants an estimate of the buffer size to calculate it's
974 	 * readahead window and size the buffers used for mapping to
975 	 * physical blocks.
976 	 *
977 	 * Try to give it an estimate that's good enough, maybe at some
978 	 * point we can change the ->readdir prototype to include the
979 	 * buffer size.  For now we use the current glibc buffer size.
980 	 */
981 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
982 
983 	return xfs_readdir(NULL, ip, ctx, bufsize);
984 }
985 
986 STATIC loff_t
987 xfs_file_llseek(
988 	struct file	*file,
989 	loff_t		offset,
990 	int		whence)
991 {
992 	struct inode		*inode = file->f_mapping->host;
993 
994 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
995 		return -EIO;
996 
997 	switch (whence) {
998 	default:
999 		return generic_file_llseek(file, offset, whence);
1000 	case SEEK_HOLE:
1001 		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1002 		break;
1003 	case SEEK_DATA:
1004 		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1005 		break;
1006 	}
1007 
1008 	if (offset < 0)
1009 		return offset;
1010 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1011 }
1012 
1013 /*
1014  * Locking for serialisation of IO during page faults. This results in a lock
1015  * ordering of:
1016  *
1017  * mmap_sem (MM)
1018  *   sb_start_pagefault(vfs, freeze)
1019  *     i_mmaplock (XFS - truncate serialisation)
1020  *       page_lock (MM)
1021  *         i_lock (XFS - extent map serialisation)
1022  */
1023 static vm_fault_t
1024 __xfs_filemap_fault(
1025 	struct vm_fault		*vmf,
1026 	enum page_entry_size	pe_size,
1027 	bool			write_fault)
1028 {
1029 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1030 	struct xfs_inode	*ip = XFS_I(inode);
1031 	vm_fault_t		ret;
1032 
1033 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1034 
1035 	if (write_fault) {
1036 		sb_start_pagefault(inode->i_sb);
1037 		file_update_time(vmf->vma->vm_file);
1038 	}
1039 
1040 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1041 	if (IS_DAX(inode)) {
1042 		pfn_t pfn;
1043 
1044 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1045 		if (ret & VM_FAULT_NEEDDSYNC)
1046 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1047 	} else {
1048 		if (write_fault)
1049 			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1050 		else
1051 			ret = filemap_fault(vmf);
1052 	}
1053 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1054 
1055 	if (write_fault)
1056 		sb_end_pagefault(inode->i_sb);
1057 	return ret;
1058 }
1059 
1060 static vm_fault_t
1061 xfs_filemap_fault(
1062 	struct vm_fault		*vmf)
1063 {
1064 	/* DAX can shortcut the normal fault path on write faults! */
1065 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1066 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1067 			(vmf->flags & FAULT_FLAG_WRITE));
1068 }
1069 
1070 static vm_fault_t
1071 xfs_filemap_huge_fault(
1072 	struct vm_fault		*vmf,
1073 	enum page_entry_size	pe_size)
1074 {
1075 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1076 		return VM_FAULT_FALLBACK;
1077 
1078 	/* DAX can shortcut the normal fault path on write faults! */
1079 	return __xfs_filemap_fault(vmf, pe_size,
1080 			(vmf->flags & FAULT_FLAG_WRITE));
1081 }
1082 
1083 static vm_fault_t
1084 xfs_filemap_page_mkwrite(
1085 	struct vm_fault		*vmf)
1086 {
1087 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1088 }
1089 
1090 /*
1091  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1092  * on write faults. In reality, it needs to serialise against truncate and
1093  * prepare memory for writing so handle is as standard write fault.
1094  */
1095 static vm_fault_t
1096 xfs_filemap_pfn_mkwrite(
1097 	struct vm_fault		*vmf)
1098 {
1099 
1100 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1101 }
1102 
1103 static const struct vm_operations_struct xfs_file_vm_ops = {
1104 	.fault		= xfs_filemap_fault,
1105 	.huge_fault	= xfs_filemap_huge_fault,
1106 	.map_pages	= filemap_map_pages,
1107 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1108 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1109 };
1110 
1111 STATIC int
1112 xfs_file_mmap(
1113 	struct file	*filp,
1114 	struct vm_area_struct *vma)
1115 {
1116 	/*
1117 	 * We don't support synchronous mappings for non-DAX files. At least
1118 	 * until someone comes with a sensible use case.
1119 	 */
1120 	if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1121 		return -EOPNOTSUPP;
1122 
1123 	file_accessed(filp);
1124 	vma->vm_ops = &xfs_file_vm_ops;
1125 	if (IS_DAX(file_inode(filp)))
1126 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1127 	return 0;
1128 }
1129 
1130 const struct file_operations xfs_file_operations = {
1131 	.llseek		= xfs_file_llseek,
1132 	.read_iter	= xfs_file_read_iter,
1133 	.write_iter	= xfs_file_write_iter,
1134 	.splice_read	= generic_file_splice_read,
1135 	.splice_write	= iter_file_splice_write,
1136 	.unlocked_ioctl	= xfs_file_ioctl,
1137 #ifdef CONFIG_COMPAT
1138 	.compat_ioctl	= xfs_file_compat_ioctl,
1139 #endif
1140 	.mmap		= xfs_file_mmap,
1141 	.mmap_supported_flags = MAP_SYNC,
1142 	.open		= xfs_file_open,
1143 	.release	= xfs_file_release,
1144 	.fsync		= xfs_file_fsync,
1145 	.get_unmapped_area = thp_get_unmapped_area,
1146 	.fallocate	= xfs_file_fallocate,
1147 	.clone_file_range = xfs_file_clone_range,
1148 	.dedupe_file_range = xfs_file_dedupe_range,
1149 };
1150 
1151 const struct file_operations xfs_dir_file_operations = {
1152 	.open		= xfs_dir_open,
1153 	.read		= generic_read_dir,
1154 	.iterate_shared	= xfs_file_readdir,
1155 	.llseek		= generic_file_llseek,
1156 	.unlocked_ioctl	= xfs_file_ioctl,
1157 #ifdef CONFIG_COMPAT
1158 	.compat_ioctl	= xfs_file_compat_ioctl,
1159 #endif
1160 	.fsync		= xfs_dir_fsync,
1161 };
1162