xref: /linux/fs/xfs/xfs_file.c (revision 59024954a1e7e26b62680e1f2b5725249a6c09f7)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 
42 #include <linux/dcache.h>
43 #include <linux/falloc.h>
44 #include <linux/pagevec.h>
45 #include <linux/backing-dev.h>
46 
47 static const struct vm_operations_struct xfs_file_vm_ops;
48 
49 /*
50  * Locking primitives for read and write IO paths to ensure we consistently use
51  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52  */
53 static inline void
54 xfs_rw_ilock(
55 	struct xfs_inode	*ip,
56 	int			type)
57 {
58 	if (type & XFS_IOLOCK_EXCL)
59 		inode_lock(VFS_I(ip));
60 	xfs_ilock(ip, type);
61 }
62 
63 static inline void
64 xfs_rw_iunlock(
65 	struct xfs_inode	*ip,
66 	int			type)
67 {
68 	xfs_iunlock(ip, type);
69 	if (type & XFS_IOLOCK_EXCL)
70 		inode_unlock(VFS_I(ip));
71 }
72 
73 static inline void
74 xfs_rw_ilock_demote(
75 	struct xfs_inode	*ip,
76 	int			type)
77 {
78 	xfs_ilock_demote(ip, type);
79 	if (type & XFS_IOLOCK_EXCL)
80 		inode_unlock(VFS_I(ip));
81 }
82 
83 /*
84  * Clear the specified ranges to zero through either the pagecache or DAX.
85  * Holes and unwritten extents will be left as-is as they already are zeroed.
86  */
87 int
88 xfs_zero_range(
89 	struct xfs_inode	*ip,
90 	xfs_off_t		pos,
91 	xfs_off_t		count,
92 	bool			*did_zero)
93 {
94 	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
95 }
96 
97 int
98 xfs_update_prealloc_flags(
99 	struct xfs_inode	*ip,
100 	enum xfs_prealloc_flags	flags)
101 {
102 	struct xfs_trans	*tp;
103 	int			error;
104 
105 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
106 			0, 0, 0, &tp);
107 	if (error)
108 		return error;
109 
110 	xfs_ilock(ip, XFS_ILOCK_EXCL);
111 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
112 
113 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
114 		VFS_I(ip)->i_mode &= ~S_ISUID;
115 		if (VFS_I(ip)->i_mode & S_IXGRP)
116 			VFS_I(ip)->i_mode &= ~S_ISGID;
117 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
118 	}
119 
120 	if (flags & XFS_PREALLOC_SET)
121 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
122 	if (flags & XFS_PREALLOC_CLEAR)
123 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
124 
125 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
126 	if (flags & XFS_PREALLOC_SYNC)
127 		xfs_trans_set_sync(tp);
128 	return xfs_trans_commit(tp);
129 }
130 
131 /*
132  * Fsync operations on directories are much simpler than on regular files,
133  * as there is no file data to flush, and thus also no need for explicit
134  * cache flush operations, and there are no non-transaction metadata updates
135  * on directories either.
136  */
137 STATIC int
138 xfs_dir_fsync(
139 	struct file		*file,
140 	loff_t			start,
141 	loff_t			end,
142 	int			datasync)
143 {
144 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
145 	struct xfs_mount	*mp = ip->i_mount;
146 	xfs_lsn_t		lsn = 0;
147 
148 	trace_xfs_dir_fsync(ip);
149 
150 	xfs_ilock(ip, XFS_ILOCK_SHARED);
151 	if (xfs_ipincount(ip))
152 		lsn = ip->i_itemp->ili_last_lsn;
153 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
154 
155 	if (!lsn)
156 		return 0;
157 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
158 }
159 
160 STATIC int
161 xfs_file_fsync(
162 	struct file		*file,
163 	loff_t			start,
164 	loff_t			end,
165 	int			datasync)
166 {
167 	struct inode		*inode = file->f_mapping->host;
168 	struct xfs_inode	*ip = XFS_I(inode);
169 	struct xfs_mount	*mp = ip->i_mount;
170 	int			error = 0;
171 	int			log_flushed = 0;
172 	xfs_lsn_t		lsn = 0;
173 
174 	trace_xfs_file_fsync(ip);
175 
176 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
177 	if (error)
178 		return error;
179 
180 	if (XFS_FORCED_SHUTDOWN(mp))
181 		return -EIO;
182 
183 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
184 
185 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
186 		/*
187 		 * If we have an RT and/or log subvolume we need to make sure
188 		 * to flush the write cache the device used for file data
189 		 * first.  This is to ensure newly written file data make
190 		 * it to disk before logging the new inode size in case of
191 		 * an extending write.
192 		 */
193 		if (XFS_IS_REALTIME_INODE(ip))
194 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
195 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
196 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
197 	}
198 
199 	/*
200 	 * All metadata updates are logged, which means that we just have to
201 	 * flush the log up to the latest LSN that touched the inode. If we have
202 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
203 	 * log force before we clear the ili_fsync_fields field. This ensures
204 	 * that we don't get a racing sync operation that does not wait for the
205 	 * metadata to hit the journal before returning. If we race with
206 	 * clearing the ili_fsync_fields, then all that will happen is the log
207 	 * force will do nothing as the lsn will already be on disk. We can't
208 	 * race with setting ili_fsync_fields because that is done under
209 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
210 	 * until after the ili_fsync_fields is cleared.
211 	 */
212 	xfs_ilock(ip, XFS_ILOCK_SHARED);
213 	if (xfs_ipincount(ip)) {
214 		if (!datasync ||
215 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
216 			lsn = ip->i_itemp->ili_last_lsn;
217 	}
218 
219 	if (lsn) {
220 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
221 		ip->i_itemp->ili_fsync_fields = 0;
222 	}
223 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
224 
225 	/*
226 	 * If we only have a single device, and the log force about was
227 	 * a no-op we might have to flush the data device cache here.
228 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
229 	 * an already allocated file and thus do not have any metadata to
230 	 * commit.
231 	 */
232 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
233 	    mp->m_logdev_targp == mp->m_ddev_targp &&
234 	    !XFS_IS_REALTIME_INODE(ip) &&
235 	    !log_flushed)
236 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
237 
238 	return error;
239 }
240 
241 STATIC ssize_t
242 xfs_file_dio_aio_read(
243 	struct kiocb		*iocb,
244 	struct iov_iter		*to)
245 {
246 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
247 	struct inode		*inode = mapping->host;
248 	struct xfs_inode	*ip = XFS_I(inode);
249 	loff_t			isize = i_size_read(inode);
250 	size_t			count = iov_iter_count(to);
251 	struct iov_iter		data;
252 	struct xfs_buftarg	*target;
253 	ssize_t			ret = 0;
254 
255 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
256 
257 	if (!count)
258 		return 0; /* skip atime */
259 
260 	if (XFS_IS_REALTIME_INODE(ip))
261 		target = ip->i_mount->m_rtdev_targp;
262 	else
263 		target = ip->i_mount->m_ddev_targp;
264 
265 	/* DIO must be aligned to device logical sector size */
266 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
267 		if (iocb->ki_pos == isize)
268 			return 0;
269 		return -EINVAL;
270 	}
271 
272 	file_accessed(iocb->ki_filp);
273 
274 	/*
275 	 * Locking is a bit tricky here. If we take an exclusive lock for direct
276 	 * IO, we effectively serialise all new concurrent read IO to this file
277 	 * and block it behind IO that is currently in progress because IO in
278 	 * progress holds the IO lock shared. We only need to hold the lock
279 	 * exclusive to blow away the page cache, so only take lock exclusively
280 	 * if the page cache needs invalidation. This allows the normal direct
281 	 * IO case of no page cache pages to proceeed concurrently without
282 	 * serialisation.
283 	 */
284 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
285 	if (mapping->nrpages) {
286 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
287 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
288 
289 		/*
290 		 * The generic dio code only flushes the range of the particular
291 		 * I/O. Because we take an exclusive lock here, this whole
292 		 * sequence is considerably more expensive for us. This has a
293 		 * noticeable performance impact for any file with cached pages,
294 		 * even when outside of the range of the particular I/O.
295 		 *
296 		 * Hence, amortize the cost of the lock against a full file
297 		 * flush and reduce the chances of repeated iolock cycles going
298 		 * forward.
299 		 */
300 		if (mapping->nrpages) {
301 			ret = filemap_write_and_wait(mapping);
302 			if (ret) {
303 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
304 				return ret;
305 			}
306 
307 			/*
308 			 * Invalidate whole pages. This can return an error if
309 			 * we fail to invalidate a page, but this should never
310 			 * happen on XFS. Warn if it does fail.
311 			 */
312 			ret = invalidate_inode_pages2(mapping);
313 			WARN_ON_ONCE(ret);
314 			ret = 0;
315 		}
316 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
317 	}
318 
319 	data = *to;
320 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
321 			xfs_get_blocks_direct, NULL, NULL, 0);
322 	if (ret > 0) {
323 		iocb->ki_pos += ret;
324 		iov_iter_advance(to, ret);
325 	}
326 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
327 
328 	return ret;
329 }
330 
331 static noinline ssize_t
332 xfs_file_dax_read(
333 	struct kiocb		*iocb,
334 	struct iov_iter		*to)
335 {
336 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
337 	size_t			count = iov_iter_count(to);
338 	ssize_t			ret = 0;
339 
340 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
341 
342 	if (!count)
343 		return 0; /* skip atime */
344 
345 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
346 	ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
347 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
348 
349 	file_accessed(iocb->ki_filp);
350 	return ret;
351 }
352 
353 STATIC ssize_t
354 xfs_file_buffered_aio_read(
355 	struct kiocb		*iocb,
356 	struct iov_iter		*to)
357 {
358 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
359 	ssize_t			ret;
360 
361 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
362 
363 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
364 	ret = generic_file_read_iter(iocb, to);
365 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
366 
367 	return ret;
368 }
369 
370 STATIC ssize_t
371 xfs_file_read_iter(
372 	struct kiocb		*iocb,
373 	struct iov_iter		*to)
374 {
375 	struct inode		*inode = file_inode(iocb->ki_filp);
376 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
377 	ssize_t			ret = 0;
378 
379 	XFS_STATS_INC(mp, xs_read_calls);
380 
381 	if (XFS_FORCED_SHUTDOWN(mp))
382 		return -EIO;
383 
384 	if (IS_DAX(inode))
385 		ret = xfs_file_dax_read(iocb, to);
386 	else if (iocb->ki_flags & IOCB_DIRECT)
387 		ret = xfs_file_dio_aio_read(iocb, to);
388 	else
389 		ret = xfs_file_buffered_aio_read(iocb, to);
390 
391 	if (ret > 0)
392 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
393 	return ret;
394 }
395 
396 STATIC ssize_t
397 xfs_file_splice_read(
398 	struct file		*infilp,
399 	loff_t			*ppos,
400 	struct pipe_inode_info	*pipe,
401 	size_t			count,
402 	unsigned int		flags)
403 {
404 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
405 	ssize_t			ret;
406 
407 	XFS_STATS_INC(ip->i_mount, xs_read_calls);
408 
409 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
410 		return -EIO;
411 
412 	trace_xfs_file_splice_read(ip, count, *ppos);
413 
414 	/*
415 	 * DAX inodes cannot ues the page cache for splice, so we have to push
416 	 * them through the VFS IO path. This means it goes through
417 	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
418 	 * cannot lock the splice operation at this level for DAX inodes.
419 	 */
420 	if (IS_DAX(VFS_I(ip))) {
421 		ret = default_file_splice_read(infilp, ppos, pipe, count,
422 					       flags);
423 		goto out;
424 	}
425 
426 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
427 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
428 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
429 out:
430 	if (ret > 0)
431 		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
432 	return ret;
433 }
434 
435 /*
436  * Zero any on disk space between the current EOF and the new, larger EOF.
437  *
438  * This handles the normal case of zeroing the remainder of the last block in
439  * the file and the unusual case of zeroing blocks out beyond the size of the
440  * file.  This second case only happens with fixed size extents and when the
441  * system crashes before the inode size was updated but after blocks were
442  * allocated.
443  *
444  * Expects the iolock to be held exclusive, and will take the ilock internally.
445  */
446 int					/* error (positive) */
447 xfs_zero_eof(
448 	struct xfs_inode	*ip,
449 	xfs_off_t		offset,		/* starting I/O offset */
450 	xfs_fsize_t		isize,		/* current inode size */
451 	bool			*did_zeroing)
452 {
453 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
454 	ASSERT(offset > isize);
455 
456 	trace_xfs_zero_eof(ip, isize, offset - isize);
457 	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
458 }
459 
460 /*
461  * Common pre-write limit and setup checks.
462  *
463  * Called with the iolocked held either shared and exclusive according to
464  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
465  * if called for a direct write beyond i_size.
466  */
467 STATIC ssize_t
468 xfs_file_aio_write_checks(
469 	struct kiocb		*iocb,
470 	struct iov_iter		*from,
471 	int			*iolock)
472 {
473 	struct file		*file = iocb->ki_filp;
474 	struct inode		*inode = file->f_mapping->host;
475 	struct xfs_inode	*ip = XFS_I(inode);
476 	ssize_t			error = 0;
477 	size_t			count = iov_iter_count(from);
478 	bool			drained_dio = false;
479 
480 restart:
481 	error = generic_write_checks(iocb, from);
482 	if (error <= 0)
483 		return error;
484 
485 	error = xfs_break_layouts(inode, iolock, true);
486 	if (error)
487 		return error;
488 
489 	/* For changing security info in file_remove_privs() we need i_mutex */
490 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
491 		xfs_rw_iunlock(ip, *iolock);
492 		*iolock = XFS_IOLOCK_EXCL;
493 		xfs_rw_ilock(ip, *iolock);
494 		goto restart;
495 	}
496 	/*
497 	 * If the offset is beyond the size of the file, we need to zero any
498 	 * blocks that fall between the existing EOF and the start of this
499 	 * write.  If zeroing is needed and we are currently holding the
500 	 * iolock shared, we need to update it to exclusive which implies
501 	 * having to redo all checks before.
502 	 *
503 	 * We need to serialise against EOF updates that occur in IO
504 	 * completions here. We want to make sure that nobody is changing the
505 	 * size while we do this check until we have placed an IO barrier (i.e.
506 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
507 	 * The spinlock effectively forms a memory barrier once we have the
508 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
509 	 * and hence be able to correctly determine if we need to run zeroing.
510 	 */
511 	spin_lock(&ip->i_flags_lock);
512 	if (iocb->ki_pos > i_size_read(inode)) {
513 		bool	zero = false;
514 
515 		spin_unlock(&ip->i_flags_lock);
516 		if (!drained_dio) {
517 			if (*iolock == XFS_IOLOCK_SHARED) {
518 				xfs_rw_iunlock(ip, *iolock);
519 				*iolock = XFS_IOLOCK_EXCL;
520 				xfs_rw_ilock(ip, *iolock);
521 				iov_iter_reexpand(from, count);
522 			}
523 			/*
524 			 * We now have an IO submission barrier in place, but
525 			 * AIO can do EOF updates during IO completion and hence
526 			 * we now need to wait for all of them to drain. Non-AIO
527 			 * DIO will have drained before we are given the
528 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
529 			 * no-op.
530 			 */
531 			inode_dio_wait(inode);
532 			drained_dio = true;
533 			goto restart;
534 		}
535 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
536 		if (error)
537 			return error;
538 	} else
539 		spin_unlock(&ip->i_flags_lock);
540 
541 	/*
542 	 * Updating the timestamps will grab the ilock again from
543 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
544 	 * lock above.  Eventually we should look into a way to avoid
545 	 * the pointless lock roundtrip.
546 	 */
547 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
548 		error = file_update_time(file);
549 		if (error)
550 			return error;
551 	}
552 
553 	/*
554 	 * If we're writing the file then make sure to clear the setuid and
555 	 * setgid bits if the process is not being run by root.  This keeps
556 	 * people from modifying setuid and setgid binaries.
557 	 */
558 	if (!IS_NOSEC(inode))
559 		return file_remove_privs(file);
560 	return 0;
561 }
562 
563 /*
564  * xfs_file_dio_aio_write - handle direct IO writes
565  *
566  * Lock the inode appropriately to prepare for and issue a direct IO write.
567  * By separating it from the buffered write path we remove all the tricky to
568  * follow locking changes and looping.
569  *
570  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
571  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
572  * pages are flushed out.
573  *
574  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
575  * allowing them to be done in parallel with reads and other direct IO writes.
576  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
577  * needs to do sub-block zeroing and that requires serialisation against other
578  * direct IOs to the same block. In this case we need to serialise the
579  * submission of the unaligned IOs so that we don't get racing block zeroing in
580  * the dio layer.  To avoid the problem with aio, we also need to wait for
581  * outstanding IOs to complete so that unwritten extent conversion is completed
582  * before we try to map the overlapping block. This is currently implemented by
583  * hitting it with a big hammer (i.e. inode_dio_wait()).
584  *
585  * Returns with locks held indicated by @iolock and errors indicated by
586  * negative return values.
587  */
588 STATIC ssize_t
589 xfs_file_dio_aio_write(
590 	struct kiocb		*iocb,
591 	struct iov_iter		*from)
592 {
593 	struct file		*file = iocb->ki_filp;
594 	struct address_space	*mapping = file->f_mapping;
595 	struct inode		*inode = mapping->host;
596 	struct xfs_inode	*ip = XFS_I(inode);
597 	struct xfs_mount	*mp = ip->i_mount;
598 	ssize_t			ret = 0;
599 	int			unaligned_io = 0;
600 	int			iolock;
601 	size_t			count = iov_iter_count(from);
602 	loff_t			end;
603 	struct iov_iter		data;
604 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
605 					mp->m_rtdev_targp : mp->m_ddev_targp;
606 
607 	/* DIO must be aligned to device logical sector size */
608 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
609 		return -EINVAL;
610 
611 	/* "unaligned" here means not aligned to a filesystem block */
612 	if ((iocb->ki_pos & mp->m_blockmask) ||
613 	    ((iocb->ki_pos + count) & mp->m_blockmask))
614 		unaligned_io = 1;
615 
616 	/*
617 	 * We don't need to take an exclusive lock unless there page cache needs
618 	 * to be invalidated or unaligned IO is being executed. We don't need to
619 	 * consider the EOF extension case here because
620 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
621 	 * EOF zeroing cases and fill out the new inode size as appropriate.
622 	 */
623 	if (unaligned_io || mapping->nrpages)
624 		iolock = XFS_IOLOCK_EXCL;
625 	else
626 		iolock = XFS_IOLOCK_SHARED;
627 	xfs_rw_ilock(ip, iolock);
628 
629 	/*
630 	 * Recheck if there are cached pages that need invalidate after we got
631 	 * the iolock to protect against other threads adding new pages while
632 	 * we were waiting for the iolock.
633 	 */
634 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
635 		xfs_rw_iunlock(ip, iolock);
636 		iolock = XFS_IOLOCK_EXCL;
637 		xfs_rw_ilock(ip, iolock);
638 	}
639 
640 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
641 	if (ret)
642 		goto out;
643 	count = iov_iter_count(from);
644 	end = iocb->ki_pos + count - 1;
645 
646 	/*
647 	 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
648 	 */
649 	if (mapping->nrpages) {
650 		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
651 		if (ret)
652 			goto out;
653 		/*
654 		 * Invalidate whole pages. This can return an error if we fail
655 		 * to invalidate a page, but this should never happen on XFS.
656 		 * Warn if it does fail.
657 		 */
658 		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
659 		WARN_ON_ONCE(ret);
660 		ret = 0;
661 	}
662 
663 	/*
664 	 * If we are doing unaligned IO, wait for all other IO to drain,
665 	 * otherwise demote the lock if we had to flush cached pages
666 	 */
667 	if (unaligned_io)
668 		inode_dio_wait(inode);
669 	else if (iolock == XFS_IOLOCK_EXCL) {
670 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
671 		iolock = XFS_IOLOCK_SHARED;
672 	}
673 
674 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
675 
676 	data = *from;
677 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
678 			xfs_get_blocks_direct, xfs_end_io_direct_write,
679 			NULL, DIO_ASYNC_EXTEND);
680 
681 	/* see generic_file_direct_write() for why this is necessary */
682 	if (mapping->nrpages) {
683 		invalidate_inode_pages2_range(mapping,
684 					      iocb->ki_pos >> PAGE_SHIFT,
685 					      end >> PAGE_SHIFT);
686 	}
687 
688 	if (ret > 0) {
689 		iocb->ki_pos += ret;
690 		iov_iter_advance(from, ret);
691 	}
692 out:
693 	xfs_rw_iunlock(ip, iolock);
694 
695 	/*
696 	 * No fallback to buffered IO on errors for XFS, direct IO will either
697 	 * complete fully or fail.
698 	 */
699 	ASSERT(ret < 0 || ret == count);
700 	return ret;
701 }
702 
703 static noinline ssize_t
704 xfs_file_dax_write(
705 	struct kiocb		*iocb,
706 	struct iov_iter		*from)
707 {
708 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
709 	struct xfs_inode	*ip = XFS_I(inode);
710 	int			iolock = XFS_IOLOCK_EXCL;
711 	ssize_t			ret, error = 0;
712 	size_t			count;
713 	loff_t			pos;
714 
715 	xfs_rw_ilock(ip, iolock);
716 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
717 	if (ret)
718 		goto out;
719 
720 	pos = iocb->ki_pos;
721 	count = iov_iter_count(from);
722 
723 	trace_xfs_file_dax_write(ip, count, pos);
724 
725 	ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
726 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
727 		i_size_write(inode, iocb->ki_pos);
728 		error = xfs_setfilesize(ip, pos, ret);
729 	}
730 
731 out:
732 	xfs_rw_iunlock(ip, iolock);
733 	return error ? error : ret;
734 }
735 
736 STATIC ssize_t
737 xfs_file_buffered_aio_write(
738 	struct kiocb		*iocb,
739 	struct iov_iter		*from)
740 {
741 	struct file		*file = iocb->ki_filp;
742 	struct address_space	*mapping = file->f_mapping;
743 	struct inode		*inode = mapping->host;
744 	struct xfs_inode	*ip = XFS_I(inode);
745 	ssize_t			ret;
746 	int			enospc = 0;
747 	int			iolock = XFS_IOLOCK_EXCL;
748 
749 	xfs_rw_ilock(ip, iolock);
750 
751 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
752 	if (ret)
753 		goto out;
754 
755 	/* We can write back this queue in page reclaim */
756 	current->backing_dev_info = inode_to_bdi(inode);
757 
758 write_retry:
759 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
760 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
761 	if (likely(ret >= 0))
762 		iocb->ki_pos += ret;
763 
764 	/*
765 	 * If we hit a space limit, try to free up some lingering preallocated
766 	 * space before returning an error. In the case of ENOSPC, first try to
767 	 * write back all dirty inodes to free up some of the excess reserved
768 	 * metadata space. This reduces the chances that the eofblocks scan
769 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
770 	 * also behaves as a filter to prevent too many eofblocks scans from
771 	 * running at the same time.
772 	 */
773 	if (ret == -EDQUOT && !enospc) {
774 		enospc = xfs_inode_free_quota_eofblocks(ip);
775 		if (enospc)
776 			goto write_retry;
777 	} else if (ret == -ENOSPC && !enospc) {
778 		struct xfs_eofblocks eofb = {0};
779 
780 		enospc = 1;
781 		xfs_flush_inodes(ip->i_mount);
782 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
783 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
784 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
785 		goto write_retry;
786 	}
787 
788 	current->backing_dev_info = NULL;
789 out:
790 	xfs_rw_iunlock(ip, iolock);
791 	return ret;
792 }
793 
794 STATIC ssize_t
795 xfs_file_write_iter(
796 	struct kiocb		*iocb,
797 	struct iov_iter		*from)
798 {
799 	struct file		*file = iocb->ki_filp;
800 	struct address_space	*mapping = file->f_mapping;
801 	struct inode		*inode = mapping->host;
802 	struct xfs_inode	*ip = XFS_I(inode);
803 	ssize_t			ret;
804 	size_t			ocount = iov_iter_count(from);
805 
806 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
807 
808 	if (ocount == 0)
809 		return 0;
810 
811 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
812 		return -EIO;
813 
814 	if (IS_DAX(inode))
815 		ret = xfs_file_dax_write(iocb, from);
816 	else if (iocb->ki_flags & IOCB_DIRECT)
817 		ret = xfs_file_dio_aio_write(iocb, from);
818 	else
819 		ret = xfs_file_buffered_aio_write(iocb, from);
820 
821 	if (ret > 0) {
822 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
823 
824 		/* Handle various SYNC-type writes */
825 		ret = generic_write_sync(iocb, ret);
826 	}
827 	return ret;
828 }
829 
830 #define	XFS_FALLOC_FL_SUPPORTED						\
831 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
832 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
833 		 FALLOC_FL_INSERT_RANGE)
834 
835 STATIC long
836 xfs_file_fallocate(
837 	struct file		*file,
838 	int			mode,
839 	loff_t			offset,
840 	loff_t			len)
841 {
842 	struct inode		*inode = file_inode(file);
843 	struct xfs_inode	*ip = XFS_I(inode);
844 	long			error;
845 	enum xfs_prealloc_flags	flags = 0;
846 	uint			iolock = XFS_IOLOCK_EXCL;
847 	loff_t			new_size = 0;
848 	bool			do_file_insert = 0;
849 
850 	if (!S_ISREG(inode->i_mode))
851 		return -EINVAL;
852 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
853 		return -EOPNOTSUPP;
854 
855 	xfs_ilock(ip, iolock);
856 	error = xfs_break_layouts(inode, &iolock, false);
857 	if (error)
858 		goto out_unlock;
859 
860 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
861 	iolock |= XFS_MMAPLOCK_EXCL;
862 
863 	if (mode & FALLOC_FL_PUNCH_HOLE) {
864 		error = xfs_free_file_space(ip, offset, len);
865 		if (error)
866 			goto out_unlock;
867 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
868 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
869 
870 		if (offset & blksize_mask || len & blksize_mask) {
871 			error = -EINVAL;
872 			goto out_unlock;
873 		}
874 
875 		/*
876 		 * There is no need to overlap collapse range with EOF,
877 		 * in which case it is effectively a truncate operation
878 		 */
879 		if (offset + len >= i_size_read(inode)) {
880 			error = -EINVAL;
881 			goto out_unlock;
882 		}
883 
884 		new_size = i_size_read(inode) - len;
885 
886 		error = xfs_collapse_file_space(ip, offset, len);
887 		if (error)
888 			goto out_unlock;
889 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
890 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
891 
892 		new_size = i_size_read(inode) + len;
893 		if (offset & blksize_mask || len & blksize_mask) {
894 			error = -EINVAL;
895 			goto out_unlock;
896 		}
897 
898 		/* check the new inode size does not wrap through zero */
899 		if (new_size > inode->i_sb->s_maxbytes) {
900 			error = -EFBIG;
901 			goto out_unlock;
902 		}
903 
904 		/* Offset should be less than i_size */
905 		if (offset >= i_size_read(inode)) {
906 			error = -EINVAL;
907 			goto out_unlock;
908 		}
909 		do_file_insert = 1;
910 	} else {
911 		flags |= XFS_PREALLOC_SET;
912 
913 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
914 		    offset + len > i_size_read(inode)) {
915 			new_size = offset + len;
916 			error = inode_newsize_ok(inode, new_size);
917 			if (error)
918 				goto out_unlock;
919 		}
920 
921 		if (mode & FALLOC_FL_ZERO_RANGE)
922 			error = xfs_zero_file_space(ip, offset, len);
923 		else
924 			error = xfs_alloc_file_space(ip, offset, len,
925 						     XFS_BMAPI_PREALLOC);
926 		if (error)
927 			goto out_unlock;
928 	}
929 
930 	if (file->f_flags & O_DSYNC)
931 		flags |= XFS_PREALLOC_SYNC;
932 
933 	error = xfs_update_prealloc_flags(ip, flags);
934 	if (error)
935 		goto out_unlock;
936 
937 	/* Change file size if needed */
938 	if (new_size) {
939 		struct iattr iattr;
940 
941 		iattr.ia_valid = ATTR_SIZE;
942 		iattr.ia_size = new_size;
943 		error = xfs_setattr_size(ip, &iattr);
944 		if (error)
945 			goto out_unlock;
946 	}
947 
948 	/*
949 	 * Perform hole insertion now that the file size has been
950 	 * updated so that if we crash during the operation we don't
951 	 * leave shifted extents past EOF and hence losing access to
952 	 * the data that is contained within them.
953 	 */
954 	if (do_file_insert)
955 		error = xfs_insert_file_space(ip, offset, len);
956 
957 out_unlock:
958 	xfs_iunlock(ip, iolock);
959 	return error;
960 }
961 
962 
963 STATIC int
964 xfs_file_open(
965 	struct inode	*inode,
966 	struct file	*file)
967 {
968 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
969 		return -EFBIG;
970 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
971 		return -EIO;
972 	return 0;
973 }
974 
975 STATIC int
976 xfs_dir_open(
977 	struct inode	*inode,
978 	struct file	*file)
979 {
980 	struct xfs_inode *ip = XFS_I(inode);
981 	int		mode;
982 	int		error;
983 
984 	error = xfs_file_open(inode, file);
985 	if (error)
986 		return error;
987 
988 	/*
989 	 * If there are any blocks, read-ahead block 0 as we're almost
990 	 * certain to have the next operation be a read there.
991 	 */
992 	mode = xfs_ilock_data_map_shared(ip);
993 	if (ip->i_d.di_nextents > 0)
994 		xfs_dir3_data_readahead(ip, 0, -1);
995 	xfs_iunlock(ip, mode);
996 	return 0;
997 }
998 
999 STATIC int
1000 xfs_file_release(
1001 	struct inode	*inode,
1002 	struct file	*filp)
1003 {
1004 	return xfs_release(XFS_I(inode));
1005 }
1006 
1007 STATIC int
1008 xfs_file_readdir(
1009 	struct file	*file,
1010 	struct dir_context *ctx)
1011 {
1012 	struct inode	*inode = file_inode(file);
1013 	xfs_inode_t	*ip = XFS_I(inode);
1014 	size_t		bufsize;
1015 
1016 	/*
1017 	 * The Linux API doesn't pass down the total size of the buffer
1018 	 * we read into down to the filesystem.  With the filldir concept
1019 	 * it's not needed for correct information, but the XFS dir2 leaf
1020 	 * code wants an estimate of the buffer size to calculate it's
1021 	 * readahead window and size the buffers used for mapping to
1022 	 * physical blocks.
1023 	 *
1024 	 * Try to give it an estimate that's good enough, maybe at some
1025 	 * point we can change the ->readdir prototype to include the
1026 	 * buffer size.  For now we use the current glibc buffer size.
1027 	 */
1028 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1029 
1030 	return xfs_readdir(ip, ctx, bufsize);
1031 }
1032 
1033 /*
1034  * This type is designed to indicate the type of offset we would like
1035  * to search from page cache for xfs_seek_hole_data().
1036  */
1037 enum {
1038 	HOLE_OFF = 0,
1039 	DATA_OFF,
1040 };
1041 
1042 /*
1043  * Lookup the desired type of offset from the given page.
1044  *
1045  * On success, return true and the offset argument will point to the
1046  * start of the region that was found.  Otherwise this function will
1047  * return false and keep the offset argument unchanged.
1048  */
1049 STATIC bool
1050 xfs_lookup_buffer_offset(
1051 	struct page		*page,
1052 	loff_t			*offset,
1053 	unsigned int		type)
1054 {
1055 	loff_t			lastoff = page_offset(page);
1056 	bool			found = false;
1057 	struct buffer_head	*bh, *head;
1058 
1059 	bh = head = page_buffers(page);
1060 	do {
1061 		/*
1062 		 * Unwritten extents that have data in the page
1063 		 * cache covering them can be identified by the
1064 		 * BH_Unwritten state flag.  Pages with multiple
1065 		 * buffers might have a mix of holes, data and
1066 		 * unwritten extents - any buffer with valid
1067 		 * data in it should have BH_Uptodate flag set
1068 		 * on it.
1069 		 */
1070 		if (buffer_unwritten(bh) ||
1071 		    buffer_uptodate(bh)) {
1072 			if (type == DATA_OFF)
1073 				found = true;
1074 		} else {
1075 			if (type == HOLE_OFF)
1076 				found = true;
1077 		}
1078 
1079 		if (found) {
1080 			*offset = lastoff;
1081 			break;
1082 		}
1083 		lastoff += bh->b_size;
1084 	} while ((bh = bh->b_this_page) != head);
1085 
1086 	return found;
1087 }
1088 
1089 /*
1090  * This routine is called to find out and return a data or hole offset
1091  * from the page cache for unwritten extents according to the desired
1092  * type for xfs_seek_hole_data().
1093  *
1094  * The argument offset is used to tell where we start to search from the
1095  * page cache.  Map is used to figure out the end points of the range to
1096  * lookup pages.
1097  *
1098  * Return true if the desired type of offset was found, and the argument
1099  * offset is filled with that address.  Otherwise, return false and keep
1100  * offset unchanged.
1101  */
1102 STATIC bool
1103 xfs_find_get_desired_pgoff(
1104 	struct inode		*inode,
1105 	struct xfs_bmbt_irec	*map,
1106 	unsigned int		type,
1107 	loff_t			*offset)
1108 {
1109 	struct xfs_inode	*ip = XFS_I(inode);
1110 	struct xfs_mount	*mp = ip->i_mount;
1111 	struct pagevec		pvec;
1112 	pgoff_t			index;
1113 	pgoff_t			end;
1114 	loff_t			endoff;
1115 	loff_t			startoff = *offset;
1116 	loff_t			lastoff = startoff;
1117 	bool			found = false;
1118 
1119 	pagevec_init(&pvec, 0);
1120 
1121 	index = startoff >> PAGE_SHIFT;
1122 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1123 	end = endoff >> PAGE_SHIFT;
1124 	do {
1125 		int		want;
1126 		unsigned	nr_pages;
1127 		unsigned int	i;
1128 
1129 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1130 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1131 					  want);
1132 		/*
1133 		 * No page mapped into given range.  If we are searching holes
1134 		 * and if this is the first time we got into the loop, it means
1135 		 * that the given offset is landed in a hole, return it.
1136 		 *
1137 		 * If we have already stepped through some block buffers to find
1138 		 * holes but they all contains data.  In this case, the last
1139 		 * offset is already updated and pointed to the end of the last
1140 		 * mapped page, if it does not reach the endpoint to search,
1141 		 * that means there should be a hole between them.
1142 		 */
1143 		if (nr_pages == 0) {
1144 			/* Data search found nothing */
1145 			if (type == DATA_OFF)
1146 				break;
1147 
1148 			ASSERT(type == HOLE_OFF);
1149 			if (lastoff == startoff || lastoff < endoff) {
1150 				found = true;
1151 				*offset = lastoff;
1152 			}
1153 			break;
1154 		}
1155 
1156 		/*
1157 		 * At lease we found one page.  If this is the first time we
1158 		 * step into the loop, and if the first page index offset is
1159 		 * greater than the given search offset, a hole was found.
1160 		 */
1161 		if (type == HOLE_OFF && lastoff == startoff &&
1162 		    lastoff < page_offset(pvec.pages[0])) {
1163 			found = true;
1164 			break;
1165 		}
1166 
1167 		for (i = 0; i < nr_pages; i++) {
1168 			struct page	*page = pvec.pages[i];
1169 			loff_t		b_offset;
1170 
1171 			/*
1172 			 * At this point, the page may be truncated or
1173 			 * invalidated (changing page->mapping to NULL),
1174 			 * or even swizzled back from swapper_space to tmpfs
1175 			 * file mapping. However, page->index will not change
1176 			 * because we have a reference on the page.
1177 			 *
1178 			 * Searching done if the page index is out of range.
1179 			 * If the current offset is not reaches the end of
1180 			 * the specified search range, there should be a hole
1181 			 * between them.
1182 			 */
1183 			if (page->index > end) {
1184 				if (type == HOLE_OFF && lastoff < endoff) {
1185 					*offset = lastoff;
1186 					found = true;
1187 				}
1188 				goto out;
1189 			}
1190 
1191 			lock_page(page);
1192 			/*
1193 			 * Page truncated or invalidated(page->mapping == NULL).
1194 			 * We can freely skip it and proceed to check the next
1195 			 * page.
1196 			 */
1197 			if (unlikely(page->mapping != inode->i_mapping)) {
1198 				unlock_page(page);
1199 				continue;
1200 			}
1201 
1202 			if (!page_has_buffers(page)) {
1203 				unlock_page(page);
1204 				continue;
1205 			}
1206 
1207 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1208 			if (found) {
1209 				/*
1210 				 * The found offset may be less than the start
1211 				 * point to search if this is the first time to
1212 				 * come here.
1213 				 */
1214 				*offset = max_t(loff_t, startoff, b_offset);
1215 				unlock_page(page);
1216 				goto out;
1217 			}
1218 
1219 			/*
1220 			 * We either searching data but nothing was found, or
1221 			 * searching hole but found a data buffer.  In either
1222 			 * case, probably the next page contains the desired
1223 			 * things, update the last offset to it so.
1224 			 */
1225 			lastoff = page_offset(page) + PAGE_SIZE;
1226 			unlock_page(page);
1227 		}
1228 
1229 		/*
1230 		 * The number of returned pages less than our desired, search
1231 		 * done.  In this case, nothing was found for searching data,
1232 		 * but we found a hole behind the last offset.
1233 		 */
1234 		if (nr_pages < want) {
1235 			if (type == HOLE_OFF) {
1236 				*offset = lastoff;
1237 				found = true;
1238 			}
1239 			break;
1240 		}
1241 
1242 		index = pvec.pages[i - 1]->index + 1;
1243 		pagevec_release(&pvec);
1244 	} while (index <= end);
1245 
1246 out:
1247 	pagevec_release(&pvec);
1248 	return found;
1249 }
1250 
1251 /*
1252  * caller must lock inode with xfs_ilock_data_map_shared,
1253  * can we craft an appropriate ASSERT?
1254  *
1255  * end is because the VFS-level lseek interface is defined such that any
1256  * offset past i_size shall return -ENXIO, but we use this for quota code
1257  * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1258  */
1259 loff_t
1260 __xfs_seek_hole_data(
1261 	struct inode		*inode,
1262 	loff_t			start,
1263 	loff_t			end,
1264 	int			whence)
1265 {
1266 	struct xfs_inode	*ip = XFS_I(inode);
1267 	struct xfs_mount	*mp = ip->i_mount;
1268 	loff_t			uninitialized_var(offset);
1269 	xfs_fileoff_t		fsbno;
1270 	xfs_filblks_t		lastbno;
1271 	int			error;
1272 
1273 	if (start >= end) {
1274 		error = -ENXIO;
1275 		goto out_error;
1276 	}
1277 
1278 	/*
1279 	 * Try to read extents from the first block indicated
1280 	 * by fsbno to the end block of the file.
1281 	 */
1282 	fsbno = XFS_B_TO_FSBT(mp, start);
1283 	lastbno = XFS_B_TO_FSB(mp, end);
1284 
1285 	for (;;) {
1286 		struct xfs_bmbt_irec	map[2];
1287 		int			nmap = 2;
1288 		unsigned int		i;
1289 
1290 		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1291 				       XFS_BMAPI_ENTIRE);
1292 		if (error)
1293 			goto out_error;
1294 
1295 		/* No extents at given offset, must be beyond EOF */
1296 		if (nmap == 0) {
1297 			error = -ENXIO;
1298 			goto out_error;
1299 		}
1300 
1301 		for (i = 0; i < nmap; i++) {
1302 			offset = max_t(loff_t, start,
1303 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1304 
1305 			/* Landed in the hole we wanted? */
1306 			if (whence == SEEK_HOLE &&
1307 			    map[i].br_startblock == HOLESTARTBLOCK)
1308 				goto out;
1309 
1310 			/* Landed in the data extent we wanted? */
1311 			if (whence == SEEK_DATA &&
1312 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1313 			     (map[i].br_state == XFS_EXT_NORM &&
1314 			      !isnullstartblock(map[i].br_startblock))))
1315 				goto out;
1316 
1317 			/*
1318 			 * Landed in an unwritten extent, try to search
1319 			 * for hole or data from page cache.
1320 			 */
1321 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1322 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1323 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1324 							&offset))
1325 					goto out;
1326 			}
1327 		}
1328 
1329 		/*
1330 		 * We only received one extent out of the two requested. This
1331 		 * means we've hit EOF and didn't find what we are looking for.
1332 		 */
1333 		if (nmap == 1) {
1334 			/*
1335 			 * If we were looking for a hole, set offset to
1336 			 * the end of the file (i.e., there is an implicit
1337 			 * hole at the end of any file).
1338 		 	 */
1339 			if (whence == SEEK_HOLE) {
1340 				offset = end;
1341 				break;
1342 			}
1343 			/*
1344 			 * If we were looking for data, it's nowhere to be found
1345 			 */
1346 			ASSERT(whence == SEEK_DATA);
1347 			error = -ENXIO;
1348 			goto out_error;
1349 		}
1350 
1351 		ASSERT(i > 1);
1352 
1353 		/*
1354 		 * Nothing was found, proceed to the next round of search
1355 		 * if the next reading offset is not at or beyond EOF.
1356 		 */
1357 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1358 		start = XFS_FSB_TO_B(mp, fsbno);
1359 		if (start >= end) {
1360 			if (whence == SEEK_HOLE) {
1361 				offset = end;
1362 				break;
1363 			}
1364 			ASSERT(whence == SEEK_DATA);
1365 			error = -ENXIO;
1366 			goto out_error;
1367 		}
1368 	}
1369 
1370 out:
1371 	/*
1372 	 * If at this point we have found the hole we wanted, the returned
1373 	 * offset may be bigger than the file size as it may be aligned to
1374 	 * page boundary for unwritten extents.  We need to deal with this
1375 	 * situation in particular.
1376 	 */
1377 	if (whence == SEEK_HOLE)
1378 		offset = min_t(loff_t, offset, end);
1379 
1380 	return offset;
1381 
1382 out_error:
1383 	return error;
1384 }
1385 
1386 STATIC loff_t
1387 xfs_seek_hole_data(
1388 	struct file		*file,
1389 	loff_t			start,
1390 	int			whence)
1391 {
1392 	struct inode		*inode = file->f_mapping->host;
1393 	struct xfs_inode	*ip = XFS_I(inode);
1394 	struct xfs_mount	*mp = ip->i_mount;
1395 	uint			lock;
1396 	loff_t			offset, end;
1397 	int			error = 0;
1398 
1399 	if (XFS_FORCED_SHUTDOWN(mp))
1400 		return -EIO;
1401 
1402 	lock = xfs_ilock_data_map_shared(ip);
1403 
1404 	end = i_size_read(inode);
1405 	offset = __xfs_seek_hole_data(inode, start, end, whence);
1406 	if (offset < 0) {
1407 		error = offset;
1408 		goto out_unlock;
1409 	}
1410 
1411 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1412 
1413 out_unlock:
1414 	xfs_iunlock(ip, lock);
1415 
1416 	if (error)
1417 		return error;
1418 	return offset;
1419 }
1420 
1421 STATIC loff_t
1422 xfs_file_llseek(
1423 	struct file	*file,
1424 	loff_t		offset,
1425 	int		whence)
1426 {
1427 	switch (whence) {
1428 	case SEEK_END:
1429 	case SEEK_CUR:
1430 	case SEEK_SET:
1431 		return generic_file_llseek(file, offset, whence);
1432 	case SEEK_HOLE:
1433 	case SEEK_DATA:
1434 		return xfs_seek_hole_data(file, offset, whence);
1435 	default:
1436 		return -EINVAL;
1437 	}
1438 }
1439 
1440 /*
1441  * Locking for serialisation of IO during page faults. This results in a lock
1442  * ordering of:
1443  *
1444  * mmap_sem (MM)
1445  *   sb_start_pagefault(vfs, freeze)
1446  *     i_mmaplock (XFS - truncate serialisation)
1447  *       page_lock (MM)
1448  *         i_lock (XFS - extent map serialisation)
1449  */
1450 
1451 /*
1452  * mmap()d file has taken write protection fault and is being made writable. We
1453  * can set the page state up correctly for a writable page, which means we can
1454  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1455  * mapping.
1456  */
1457 STATIC int
1458 xfs_filemap_page_mkwrite(
1459 	struct vm_area_struct	*vma,
1460 	struct vm_fault		*vmf)
1461 {
1462 	struct inode		*inode = file_inode(vma->vm_file);
1463 	int			ret;
1464 
1465 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1466 
1467 	sb_start_pagefault(inode->i_sb);
1468 	file_update_time(vma->vm_file);
1469 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1470 
1471 	if (IS_DAX(inode)) {
1472 		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1473 	} else {
1474 		ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1475 		ret = block_page_mkwrite_return(ret);
1476 	}
1477 
1478 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1479 	sb_end_pagefault(inode->i_sb);
1480 
1481 	return ret;
1482 }
1483 
1484 STATIC int
1485 xfs_filemap_fault(
1486 	struct vm_area_struct	*vma,
1487 	struct vm_fault		*vmf)
1488 {
1489 	struct inode		*inode = file_inode(vma->vm_file);
1490 	int			ret;
1491 
1492 	trace_xfs_filemap_fault(XFS_I(inode));
1493 
1494 	/* DAX can shortcut the normal fault path on write faults! */
1495 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1496 		return xfs_filemap_page_mkwrite(vma, vmf);
1497 
1498 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1499 	if (IS_DAX(inode)) {
1500 		/*
1501 		 * we do not want to trigger unwritten extent conversion on read
1502 		 * faults - that is unnecessary overhead and would also require
1503 		 * changes to xfs_get_blocks_direct() to map unwritten extent
1504 		 * ioend for conversion on read-only mappings.
1505 		 */
1506 		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1507 	} else
1508 		ret = filemap_fault(vma, vmf);
1509 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1510 
1511 	return ret;
1512 }
1513 
1514 /*
1515  * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1516  * both read and write faults. Hence we need to handle both cases. There is no
1517  * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1518  * handle both cases here. @flags carries the information on the type of fault
1519  * occuring.
1520  */
1521 STATIC int
1522 xfs_filemap_pmd_fault(
1523 	struct vm_area_struct	*vma,
1524 	unsigned long		addr,
1525 	pmd_t			*pmd,
1526 	unsigned int		flags)
1527 {
1528 	struct inode		*inode = file_inode(vma->vm_file);
1529 	struct xfs_inode	*ip = XFS_I(inode);
1530 	int			ret;
1531 
1532 	if (!IS_DAX(inode))
1533 		return VM_FAULT_FALLBACK;
1534 
1535 	trace_xfs_filemap_pmd_fault(ip);
1536 
1537 	if (flags & FAULT_FLAG_WRITE) {
1538 		sb_start_pagefault(inode->i_sb);
1539 		file_update_time(vma->vm_file);
1540 	}
1541 
1542 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1543 	ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1544 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1545 
1546 	if (flags & FAULT_FLAG_WRITE)
1547 		sb_end_pagefault(inode->i_sb);
1548 
1549 	return ret;
1550 }
1551 
1552 /*
1553  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1554  * updates on write faults. In reality, it's need to serialise against
1555  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1556  * to ensure we serialise the fault barrier in place.
1557  */
1558 static int
1559 xfs_filemap_pfn_mkwrite(
1560 	struct vm_area_struct	*vma,
1561 	struct vm_fault		*vmf)
1562 {
1563 
1564 	struct inode		*inode = file_inode(vma->vm_file);
1565 	struct xfs_inode	*ip = XFS_I(inode);
1566 	int			ret = VM_FAULT_NOPAGE;
1567 	loff_t			size;
1568 
1569 	trace_xfs_filemap_pfn_mkwrite(ip);
1570 
1571 	sb_start_pagefault(inode->i_sb);
1572 	file_update_time(vma->vm_file);
1573 
1574 	/* check if the faulting page hasn't raced with truncate */
1575 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1576 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1577 	if (vmf->pgoff >= size)
1578 		ret = VM_FAULT_SIGBUS;
1579 	else if (IS_DAX(inode))
1580 		ret = dax_pfn_mkwrite(vma, vmf);
1581 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1582 	sb_end_pagefault(inode->i_sb);
1583 	return ret;
1584 
1585 }
1586 
1587 static const struct vm_operations_struct xfs_file_vm_ops = {
1588 	.fault		= xfs_filemap_fault,
1589 	.pmd_fault	= xfs_filemap_pmd_fault,
1590 	.map_pages	= filemap_map_pages,
1591 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1592 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1593 };
1594 
1595 STATIC int
1596 xfs_file_mmap(
1597 	struct file	*filp,
1598 	struct vm_area_struct *vma)
1599 {
1600 	file_accessed(filp);
1601 	vma->vm_ops = &xfs_file_vm_ops;
1602 	if (IS_DAX(file_inode(filp)))
1603 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1604 	return 0;
1605 }
1606 
1607 const struct file_operations xfs_file_operations = {
1608 	.llseek		= xfs_file_llseek,
1609 	.read_iter	= xfs_file_read_iter,
1610 	.write_iter	= xfs_file_write_iter,
1611 	.splice_read	= xfs_file_splice_read,
1612 	.splice_write	= iter_file_splice_write,
1613 	.unlocked_ioctl	= xfs_file_ioctl,
1614 #ifdef CONFIG_COMPAT
1615 	.compat_ioctl	= xfs_file_compat_ioctl,
1616 #endif
1617 	.mmap		= xfs_file_mmap,
1618 	.open		= xfs_file_open,
1619 	.release	= xfs_file_release,
1620 	.fsync		= xfs_file_fsync,
1621 	.fallocate	= xfs_file_fallocate,
1622 };
1623 
1624 const struct file_operations xfs_dir_file_operations = {
1625 	.open		= xfs_dir_open,
1626 	.read		= generic_read_dir,
1627 	.iterate_shared	= xfs_file_readdir,
1628 	.llseek		= generic_file_llseek,
1629 	.unlocked_ioctl	= xfs_file_ioctl,
1630 #ifdef CONFIG_COMPAT
1631 	.compat_ioctl	= xfs_file_compat_ioctl,
1632 #endif
1633 	.fsync		= xfs_dir_fsync,
1634 };
1635