1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 #include "xfs_iomap.h" 41 42 #include <linux/dcache.h> 43 #include <linux/falloc.h> 44 #include <linux/pagevec.h> 45 #include <linux/backing-dev.h> 46 47 static const struct vm_operations_struct xfs_file_vm_ops; 48 49 /* 50 * Locking primitives for read and write IO paths to ensure we consistently use 51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 52 */ 53 static inline void 54 xfs_rw_ilock( 55 struct xfs_inode *ip, 56 int type) 57 { 58 if (type & XFS_IOLOCK_EXCL) 59 inode_lock(VFS_I(ip)); 60 xfs_ilock(ip, type); 61 } 62 63 static inline void 64 xfs_rw_iunlock( 65 struct xfs_inode *ip, 66 int type) 67 { 68 xfs_iunlock(ip, type); 69 if (type & XFS_IOLOCK_EXCL) 70 inode_unlock(VFS_I(ip)); 71 } 72 73 static inline void 74 xfs_rw_ilock_demote( 75 struct xfs_inode *ip, 76 int type) 77 { 78 xfs_ilock_demote(ip, type); 79 if (type & XFS_IOLOCK_EXCL) 80 inode_unlock(VFS_I(ip)); 81 } 82 83 /* 84 * Clear the specified ranges to zero through either the pagecache or DAX. 85 * Holes and unwritten extents will be left as-is as they already are zeroed. 86 */ 87 int 88 xfs_zero_range( 89 struct xfs_inode *ip, 90 xfs_off_t pos, 91 xfs_off_t count, 92 bool *did_zero) 93 { 94 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops); 95 } 96 97 int 98 xfs_update_prealloc_flags( 99 struct xfs_inode *ip, 100 enum xfs_prealloc_flags flags) 101 { 102 struct xfs_trans *tp; 103 int error; 104 105 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 106 0, 0, 0, &tp); 107 if (error) 108 return error; 109 110 xfs_ilock(ip, XFS_ILOCK_EXCL); 111 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 112 113 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 114 VFS_I(ip)->i_mode &= ~S_ISUID; 115 if (VFS_I(ip)->i_mode & S_IXGRP) 116 VFS_I(ip)->i_mode &= ~S_ISGID; 117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 118 } 119 120 if (flags & XFS_PREALLOC_SET) 121 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 122 if (flags & XFS_PREALLOC_CLEAR) 123 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 124 125 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 126 if (flags & XFS_PREALLOC_SYNC) 127 xfs_trans_set_sync(tp); 128 return xfs_trans_commit(tp); 129 } 130 131 /* 132 * Fsync operations on directories are much simpler than on regular files, 133 * as there is no file data to flush, and thus also no need for explicit 134 * cache flush operations, and there are no non-transaction metadata updates 135 * on directories either. 136 */ 137 STATIC int 138 xfs_dir_fsync( 139 struct file *file, 140 loff_t start, 141 loff_t end, 142 int datasync) 143 { 144 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 145 struct xfs_mount *mp = ip->i_mount; 146 xfs_lsn_t lsn = 0; 147 148 trace_xfs_dir_fsync(ip); 149 150 xfs_ilock(ip, XFS_ILOCK_SHARED); 151 if (xfs_ipincount(ip)) 152 lsn = ip->i_itemp->ili_last_lsn; 153 xfs_iunlock(ip, XFS_ILOCK_SHARED); 154 155 if (!lsn) 156 return 0; 157 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 158 } 159 160 STATIC int 161 xfs_file_fsync( 162 struct file *file, 163 loff_t start, 164 loff_t end, 165 int datasync) 166 { 167 struct inode *inode = file->f_mapping->host; 168 struct xfs_inode *ip = XFS_I(inode); 169 struct xfs_mount *mp = ip->i_mount; 170 int error = 0; 171 int log_flushed = 0; 172 xfs_lsn_t lsn = 0; 173 174 trace_xfs_file_fsync(ip); 175 176 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 177 if (error) 178 return error; 179 180 if (XFS_FORCED_SHUTDOWN(mp)) 181 return -EIO; 182 183 xfs_iflags_clear(ip, XFS_ITRUNCATED); 184 185 if (mp->m_flags & XFS_MOUNT_BARRIER) { 186 /* 187 * If we have an RT and/or log subvolume we need to make sure 188 * to flush the write cache the device used for file data 189 * first. This is to ensure newly written file data make 190 * it to disk before logging the new inode size in case of 191 * an extending write. 192 */ 193 if (XFS_IS_REALTIME_INODE(ip)) 194 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 195 else if (mp->m_logdev_targp != mp->m_ddev_targp) 196 xfs_blkdev_issue_flush(mp->m_ddev_targp); 197 } 198 199 /* 200 * All metadata updates are logged, which means that we just have to 201 * flush the log up to the latest LSN that touched the inode. If we have 202 * concurrent fsync/fdatasync() calls, we need them to all block on the 203 * log force before we clear the ili_fsync_fields field. This ensures 204 * that we don't get a racing sync operation that does not wait for the 205 * metadata to hit the journal before returning. If we race with 206 * clearing the ili_fsync_fields, then all that will happen is the log 207 * force will do nothing as the lsn will already be on disk. We can't 208 * race with setting ili_fsync_fields because that is done under 209 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 210 * until after the ili_fsync_fields is cleared. 211 */ 212 xfs_ilock(ip, XFS_ILOCK_SHARED); 213 if (xfs_ipincount(ip)) { 214 if (!datasync || 215 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 216 lsn = ip->i_itemp->ili_last_lsn; 217 } 218 219 if (lsn) { 220 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 221 ip->i_itemp->ili_fsync_fields = 0; 222 } 223 xfs_iunlock(ip, XFS_ILOCK_SHARED); 224 225 /* 226 * If we only have a single device, and the log force about was 227 * a no-op we might have to flush the data device cache here. 228 * This can only happen for fdatasync/O_DSYNC if we were overwriting 229 * an already allocated file and thus do not have any metadata to 230 * commit. 231 */ 232 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 233 mp->m_logdev_targp == mp->m_ddev_targp && 234 !XFS_IS_REALTIME_INODE(ip) && 235 !log_flushed) 236 xfs_blkdev_issue_flush(mp->m_ddev_targp); 237 238 return error; 239 } 240 241 STATIC ssize_t 242 xfs_file_dio_aio_read( 243 struct kiocb *iocb, 244 struct iov_iter *to) 245 { 246 struct address_space *mapping = iocb->ki_filp->f_mapping; 247 struct inode *inode = mapping->host; 248 struct xfs_inode *ip = XFS_I(inode); 249 loff_t isize = i_size_read(inode); 250 size_t count = iov_iter_count(to); 251 struct iov_iter data; 252 struct xfs_buftarg *target; 253 ssize_t ret = 0; 254 255 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 256 257 if (!count) 258 return 0; /* skip atime */ 259 260 if (XFS_IS_REALTIME_INODE(ip)) 261 target = ip->i_mount->m_rtdev_targp; 262 else 263 target = ip->i_mount->m_ddev_targp; 264 265 /* DIO must be aligned to device logical sector size */ 266 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) { 267 if (iocb->ki_pos == isize) 268 return 0; 269 return -EINVAL; 270 } 271 272 file_accessed(iocb->ki_filp); 273 274 /* 275 * Locking is a bit tricky here. If we take an exclusive lock for direct 276 * IO, we effectively serialise all new concurrent read IO to this file 277 * and block it behind IO that is currently in progress because IO in 278 * progress holds the IO lock shared. We only need to hold the lock 279 * exclusive to blow away the page cache, so only take lock exclusively 280 * if the page cache needs invalidation. This allows the normal direct 281 * IO case of no page cache pages to proceeed concurrently without 282 * serialisation. 283 */ 284 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 285 if (mapping->nrpages) { 286 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 287 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 288 289 /* 290 * The generic dio code only flushes the range of the particular 291 * I/O. Because we take an exclusive lock here, this whole 292 * sequence is considerably more expensive for us. This has a 293 * noticeable performance impact for any file with cached pages, 294 * even when outside of the range of the particular I/O. 295 * 296 * Hence, amortize the cost of the lock against a full file 297 * flush and reduce the chances of repeated iolock cycles going 298 * forward. 299 */ 300 if (mapping->nrpages) { 301 ret = filemap_write_and_wait(mapping); 302 if (ret) { 303 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 304 return ret; 305 } 306 307 /* 308 * Invalidate whole pages. This can return an error if 309 * we fail to invalidate a page, but this should never 310 * happen on XFS. Warn if it does fail. 311 */ 312 ret = invalidate_inode_pages2(mapping); 313 WARN_ON_ONCE(ret); 314 ret = 0; 315 } 316 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 317 } 318 319 data = *to; 320 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data, 321 xfs_get_blocks_direct, NULL, NULL, 0); 322 if (ret > 0) { 323 iocb->ki_pos += ret; 324 iov_iter_advance(to, ret); 325 } 326 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 327 328 return ret; 329 } 330 331 static noinline ssize_t 332 xfs_file_dax_read( 333 struct kiocb *iocb, 334 struct iov_iter *to) 335 { 336 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 337 size_t count = iov_iter_count(to); 338 ssize_t ret = 0; 339 340 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 341 342 if (!count) 343 return 0; /* skip atime */ 344 345 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 346 ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops); 347 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 348 349 file_accessed(iocb->ki_filp); 350 return ret; 351 } 352 353 STATIC ssize_t 354 xfs_file_buffered_aio_read( 355 struct kiocb *iocb, 356 struct iov_iter *to) 357 { 358 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 359 ssize_t ret; 360 361 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 362 363 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 364 ret = generic_file_read_iter(iocb, to); 365 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 366 367 return ret; 368 } 369 370 STATIC ssize_t 371 xfs_file_read_iter( 372 struct kiocb *iocb, 373 struct iov_iter *to) 374 { 375 struct inode *inode = file_inode(iocb->ki_filp); 376 struct xfs_mount *mp = XFS_I(inode)->i_mount; 377 ssize_t ret = 0; 378 379 XFS_STATS_INC(mp, xs_read_calls); 380 381 if (XFS_FORCED_SHUTDOWN(mp)) 382 return -EIO; 383 384 if (IS_DAX(inode)) 385 ret = xfs_file_dax_read(iocb, to); 386 else if (iocb->ki_flags & IOCB_DIRECT) 387 ret = xfs_file_dio_aio_read(iocb, to); 388 else 389 ret = xfs_file_buffered_aio_read(iocb, to); 390 391 if (ret > 0) 392 XFS_STATS_ADD(mp, xs_read_bytes, ret); 393 return ret; 394 } 395 396 STATIC ssize_t 397 xfs_file_splice_read( 398 struct file *infilp, 399 loff_t *ppos, 400 struct pipe_inode_info *pipe, 401 size_t count, 402 unsigned int flags) 403 { 404 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 405 ssize_t ret; 406 407 XFS_STATS_INC(ip->i_mount, xs_read_calls); 408 409 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 410 return -EIO; 411 412 trace_xfs_file_splice_read(ip, count, *ppos); 413 414 /* 415 * DAX inodes cannot ues the page cache for splice, so we have to push 416 * them through the VFS IO path. This means it goes through 417 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we 418 * cannot lock the splice operation at this level for DAX inodes. 419 */ 420 if (IS_DAX(VFS_I(ip))) { 421 ret = default_file_splice_read(infilp, ppos, pipe, count, 422 flags); 423 goto out; 424 } 425 426 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 427 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 428 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 429 out: 430 if (ret > 0) 431 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret); 432 return ret; 433 } 434 435 /* 436 * Zero any on disk space between the current EOF and the new, larger EOF. 437 * 438 * This handles the normal case of zeroing the remainder of the last block in 439 * the file and the unusual case of zeroing blocks out beyond the size of the 440 * file. This second case only happens with fixed size extents and when the 441 * system crashes before the inode size was updated but after blocks were 442 * allocated. 443 * 444 * Expects the iolock to be held exclusive, and will take the ilock internally. 445 */ 446 int /* error (positive) */ 447 xfs_zero_eof( 448 struct xfs_inode *ip, 449 xfs_off_t offset, /* starting I/O offset */ 450 xfs_fsize_t isize, /* current inode size */ 451 bool *did_zeroing) 452 { 453 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 454 ASSERT(offset > isize); 455 456 trace_xfs_zero_eof(ip, isize, offset - isize); 457 return xfs_zero_range(ip, isize, offset - isize, did_zeroing); 458 } 459 460 /* 461 * Common pre-write limit and setup checks. 462 * 463 * Called with the iolocked held either shared and exclusive according to 464 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 465 * if called for a direct write beyond i_size. 466 */ 467 STATIC ssize_t 468 xfs_file_aio_write_checks( 469 struct kiocb *iocb, 470 struct iov_iter *from, 471 int *iolock) 472 { 473 struct file *file = iocb->ki_filp; 474 struct inode *inode = file->f_mapping->host; 475 struct xfs_inode *ip = XFS_I(inode); 476 ssize_t error = 0; 477 size_t count = iov_iter_count(from); 478 bool drained_dio = false; 479 480 restart: 481 error = generic_write_checks(iocb, from); 482 if (error <= 0) 483 return error; 484 485 error = xfs_break_layouts(inode, iolock, true); 486 if (error) 487 return error; 488 489 /* For changing security info in file_remove_privs() we need i_mutex */ 490 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 491 xfs_rw_iunlock(ip, *iolock); 492 *iolock = XFS_IOLOCK_EXCL; 493 xfs_rw_ilock(ip, *iolock); 494 goto restart; 495 } 496 /* 497 * If the offset is beyond the size of the file, we need to zero any 498 * blocks that fall between the existing EOF and the start of this 499 * write. If zeroing is needed and we are currently holding the 500 * iolock shared, we need to update it to exclusive which implies 501 * having to redo all checks before. 502 * 503 * We need to serialise against EOF updates that occur in IO 504 * completions here. We want to make sure that nobody is changing the 505 * size while we do this check until we have placed an IO barrier (i.e. 506 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 507 * The spinlock effectively forms a memory barrier once we have the 508 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 509 * and hence be able to correctly determine if we need to run zeroing. 510 */ 511 spin_lock(&ip->i_flags_lock); 512 if (iocb->ki_pos > i_size_read(inode)) { 513 bool zero = false; 514 515 spin_unlock(&ip->i_flags_lock); 516 if (!drained_dio) { 517 if (*iolock == XFS_IOLOCK_SHARED) { 518 xfs_rw_iunlock(ip, *iolock); 519 *iolock = XFS_IOLOCK_EXCL; 520 xfs_rw_ilock(ip, *iolock); 521 iov_iter_reexpand(from, count); 522 } 523 /* 524 * We now have an IO submission barrier in place, but 525 * AIO can do EOF updates during IO completion and hence 526 * we now need to wait for all of them to drain. Non-AIO 527 * DIO will have drained before we are given the 528 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 529 * no-op. 530 */ 531 inode_dio_wait(inode); 532 drained_dio = true; 533 goto restart; 534 } 535 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 536 if (error) 537 return error; 538 } else 539 spin_unlock(&ip->i_flags_lock); 540 541 /* 542 * Updating the timestamps will grab the ilock again from 543 * xfs_fs_dirty_inode, so we have to call it after dropping the 544 * lock above. Eventually we should look into a way to avoid 545 * the pointless lock roundtrip. 546 */ 547 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 548 error = file_update_time(file); 549 if (error) 550 return error; 551 } 552 553 /* 554 * If we're writing the file then make sure to clear the setuid and 555 * setgid bits if the process is not being run by root. This keeps 556 * people from modifying setuid and setgid binaries. 557 */ 558 if (!IS_NOSEC(inode)) 559 return file_remove_privs(file); 560 return 0; 561 } 562 563 /* 564 * xfs_file_dio_aio_write - handle direct IO writes 565 * 566 * Lock the inode appropriately to prepare for and issue a direct IO write. 567 * By separating it from the buffered write path we remove all the tricky to 568 * follow locking changes and looping. 569 * 570 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 571 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 572 * pages are flushed out. 573 * 574 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 575 * allowing them to be done in parallel with reads and other direct IO writes. 576 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 577 * needs to do sub-block zeroing and that requires serialisation against other 578 * direct IOs to the same block. In this case we need to serialise the 579 * submission of the unaligned IOs so that we don't get racing block zeroing in 580 * the dio layer. To avoid the problem with aio, we also need to wait for 581 * outstanding IOs to complete so that unwritten extent conversion is completed 582 * before we try to map the overlapping block. This is currently implemented by 583 * hitting it with a big hammer (i.e. inode_dio_wait()). 584 * 585 * Returns with locks held indicated by @iolock and errors indicated by 586 * negative return values. 587 */ 588 STATIC ssize_t 589 xfs_file_dio_aio_write( 590 struct kiocb *iocb, 591 struct iov_iter *from) 592 { 593 struct file *file = iocb->ki_filp; 594 struct address_space *mapping = file->f_mapping; 595 struct inode *inode = mapping->host; 596 struct xfs_inode *ip = XFS_I(inode); 597 struct xfs_mount *mp = ip->i_mount; 598 ssize_t ret = 0; 599 int unaligned_io = 0; 600 int iolock; 601 size_t count = iov_iter_count(from); 602 loff_t end; 603 struct iov_iter data; 604 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 605 mp->m_rtdev_targp : mp->m_ddev_targp; 606 607 /* DIO must be aligned to device logical sector size */ 608 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 609 return -EINVAL; 610 611 /* "unaligned" here means not aligned to a filesystem block */ 612 if ((iocb->ki_pos & mp->m_blockmask) || 613 ((iocb->ki_pos + count) & mp->m_blockmask)) 614 unaligned_io = 1; 615 616 /* 617 * We don't need to take an exclusive lock unless there page cache needs 618 * to be invalidated or unaligned IO is being executed. We don't need to 619 * consider the EOF extension case here because 620 * xfs_file_aio_write_checks() will relock the inode as necessary for 621 * EOF zeroing cases and fill out the new inode size as appropriate. 622 */ 623 if (unaligned_io || mapping->nrpages) 624 iolock = XFS_IOLOCK_EXCL; 625 else 626 iolock = XFS_IOLOCK_SHARED; 627 xfs_rw_ilock(ip, iolock); 628 629 /* 630 * Recheck if there are cached pages that need invalidate after we got 631 * the iolock to protect against other threads adding new pages while 632 * we were waiting for the iolock. 633 */ 634 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 635 xfs_rw_iunlock(ip, iolock); 636 iolock = XFS_IOLOCK_EXCL; 637 xfs_rw_ilock(ip, iolock); 638 } 639 640 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 641 if (ret) 642 goto out; 643 count = iov_iter_count(from); 644 end = iocb->ki_pos + count - 1; 645 646 /* 647 * See xfs_file_dio_aio_read() for why we do a full-file flush here. 648 */ 649 if (mapping->nrpages) { 650 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping); 651 if (ret) 652 goto out; 653 /* 654 * Invalidate whole pages. This can return an error if we fail 655 * to invalidate a page, but this should never happen on XFS. 656 * Warn if it does fail. 657 */ 658 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping); 659 WARN_ON_ONCE(ret); 660 ret = 0; 661 } 662 663 /* 664 * If we are doing unaligned IO, wait for all other IO to drain, 665 * otherwise demote the lock if we had to flush cached pages 666 */ 667 if (unaligned_io) 668 inode_dio_wait(inode); 669 else if (iolock == XFS_IOLOCK_EXCL) { 670 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 671 iolock = XFS_IOLOCK_SHARED; 672 } 673 674 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 675 676 data = *from; 677 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data, 678 xfs_get_blocks_direct, xfs_end_io_direct_write, 679 NULL, DIO_ASYNC_EXTEND); 680 681 /* see generic_file_direct_write() for why this is necessary */ 682 if (mapping->nrpages) { 683 invalidate_inode_pages2_range(mapping, 684 iocb->ki_pos >> PAGE_SHIFT, 685 end >> PAGE_SHIFT); 686 } 687 688 if (ret > 0) { 689 iocb->ki_pos += ret; 690 iov_iter_advance(from, ret); 691 } 692 out: 693 xfs_rw_iunlock(ip, iolock); 694 695 /* 696 * No fallback to buffered IO on errors for XFS, direct IO will either 697 * complete fully or fail. 698 */ 699 ASSERT(ret < 0 || ret == count); 700 return ret; 701 } 702 703 static noinline ssize_t 704 xfs_file_dax_write( 705 struct kiocb *iocb, 706 struct iov_iter *from) 707 { 708 struct inode *inode = iocb->ki_filp->f_mapping->host; 709 struct xfs_inode *ip = XFS_I(inode); 710 int iolock = XFS_IOLOCK_EXCL; 711 ssize_t ret, error = 0; 712 size_t count; 713 loff_t pos; 714 715 xfs_rw_ilock(ip, iolock); 716 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 717 if (ret) 718 goto out; 719 720 pos = iocb->ki_pos; 721 count = iov_iter_count(from); 722 723 trace_xfs_file_dax_write(ip, count, pos); 724 725 ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops); 726 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 727 i_size_write(inode, iocb->ki_pos); 728 error = xfs_setfilesize(ip, pos, ret); 729 } 730 731 out: 732 xfs_rw_iunlock(ip, iolock); 733 return error ? error : ret; 734 } 735 736 STATIC ssize_t 737 xfs_file_buffered_aio_write( 738 struct kiocb *iocb, 739 struct iov_iter *from) 740 { 741 struct file *file = iocb->ki_filp; 742 struct address_space *mapping = file->f_mapping; 743 struct inode *inode = mapping->host; 744 struct xfs_inode *ip = XFS_I(inode); 745 ssize_t ret; 746 int enospc = 0; 747 int iolock = XFS_IOLOCK_EXCL; 748 749 xfs_rw_ilock(ip, iolock); 750 751 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 752 if (ret) 753 goto out; 754 755 /* We can write back this queue in page reclaim */ 756 current->backing_dev_info = inode_to_bdi(inode); 757 758 write_retry: 759 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 760 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 761 if (likely(ret >= 0)) 762 iocb->ki_pos += ret; 763 764 /* 765 * If we hit a space limit, try to free up some lingering preallocated 766 * space before returning an error. In the case of ENOSPC, first try to 767 * write back all dirty inodes to free up some of the excess reserved 768 * metadata space. This reduces the chances that the eofblocks scan 769 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 770 * also behaves as a filter to prevent too many eofblocks scans from 771 * running at the same time. 772 */ 773 if (ret == -EDQUOT && !enospc) { 774 enospc = xfs_inode_free_quota_eofblocks(ip); 775 if (enospc) 776 goto write_retry; 777 } else if (ret == -ENOSPC && !enospc) { 778 struct xfs_eofblocks eofb = {0}; 779 780 enospc = 1; 781 xfs_flush_inodes(ip->i_mount); 782 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 783 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 784 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 785 goto write_retry; 786 } 787 788 current->backing_dev_info = NULL; 789 out: 790 xfs_rw_iunlock(ip, iolock); 791 return ret; 792 } 793 794 STATIC ssize_t 795 xfs_file_write_iter( 796 struct kiocb *iocb, 797 struct iov_iter *from) 798 { 799 struct file *file = iocb->ki_filp; 800 struct address_space *mapping = file->f_mapping; 801 struct inode *inode = mapping->host; 802 struct xfs_inode *ip = XFS_I(inode); 803 ssize_t ret; 804 size_t ocount = iov_iter_count(from); 805 806 XFS_STATS_INC(ip->i_mount, xs_write_calls); 807 808 if (ocount == 0) 809 return 0; 810 811 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 812 return -EIO; 813 814 if (IS_DAX(inode)) 815 ret = xfs_file_dax_write(iocb, from); 816 else if (iocb->ki_flags & IOCB_DIRECT) 817 ret = xfs_file_dio_aio_write(iocb, from); 818 else 819 ret = xfs_file_buffered_aio_write(iocb, from); 820 821 if (ret > 0) { 822 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 823 824 /* Handle various SYNC-type writes */ 825 ret = generic_write_sync(iocb, ret); 826 } 827 return ret; 828 } 829 830 #define XFS_FALLOC_FL_SUPPORTED \ 831 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 832 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 833 FALLOC_FL_INSERT_RANGE) 834 835 STATIC long 836 xfs_file_fallocate( 837 struct file *file, 838 int mode, 839 loff_t offset, 840 loff_t len) 841 { 842 struct inode *inode = file_inode(file); 843 struct xfs_inode *ip = XFS_I(inode); 844 long error; 845 enum xfs_prealloc_flags flags = 0; 846 uint iolock = XFS_IOLOCK_EXCL; 847 loff_t new_size = 0; 848 bool do_file_insert = 0; 849 850 if (!S_ISREG(inode->i_mode)) 851 return -EINVAL; 852 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 853 return -EOPNOTSUPP; 854 855 xfs_ilock(ip, iolock); 856 error = xfs_break_layouts(inode, &iolock, false); 857 if (error) 858 goto out_unlock; 859 860 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 861 iolock |= XFS_MMAPLOCK_EXCL; 862 863 if (mode & FALLOC_FL_PUNCH_HOLE) { 864 error = xfs_free_file_space(ip, offset, len); 865 if (error) 866 goto out_unlock; 867 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 868 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 869 870 if (offset & blksize_mask || len & blksize_mask) { 871 error = -EINVAL; 872 goto out_unlock; 873 } 874 875 /* 876 * There is no need to overlap collapse range with EOF, 877 * in which case it is effectively a truncate operation 878 */ 879 if (offset + len >= i_size_read(inode)) { 880 error = -EINVAL; 881 goto out_unlock; 882 } 883 884 new_size = i_size_read(inode) - len; 885 886 error = xfs_collapse_file_space(ip, offset, len); 887 if (error) 888 goto out_unlock; 889 } else if (mode & FALLOC_FL_INSERT_RANGE) { 890 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 891 892 new_size = i_size_read(inode) + len; 893 if (offset & blksize_mask || len & blksize_mask) { 894 error = -EINVAL; 895 goto out_unlock; 896 } 897 898 /* check the new inode size does not wrap through zero */ 899 if (new_size > inode->i_sb->s_maxbytes) { 900 error = -EFBIG; 901 goto out_unlock; 902 } 903 904 /* Offset should be less than i_size */ 905 if (offset >= i_size_read(inode)) { 906 error = -EINVAL; 907 goto out_unlock; 908 } 909 do_file_insert = 1; 910 } else { 911 flags |= XFS_PREALLOC_SET; 912 913 if (!(mode & FALLOC_FL_KEEP_SIZE) && 914 offset + len > i_size_read(inode)) { 915 new_size = offset + len; 916 error = inode_newsize_ok(inode, new_size); 917 if (error) 918 goto out_unlock; 919 } 920 921 if (mode & FALLOC_FL_ZERO_RANGE) 922 error = xfs_zero_file_space(ip, offset, len); 923 else 924 error = xfs_alloc_file_space(ip, offset, len, 925 XFS_BMAPI_PREALLOC); 926 if (error) 927 goto out_unlock; 928 } 929 930 if (file->f_flags & O_DSYNC) 931 flags |= XFS_PREALLOC_SYNC; 932 933 error = xfs_update_prealloc_flags(ip, flags); 934 if (error) 935 goto out_unlock; 936 937 /* Change file size if needed */ 938 if (new_size) { 939 struct iattr iattr; 940 941 iattr.ia_valid = ATTR_SIZE; 942 iattr.ia_size = new_size; 943 error = xfs_setattr_size(ip, &iattr); 944 if (error) 945 goto out_unlock; 946 } 947 948 /* 949 * Perform hole insertion now that the file size has been 950 * updated so that if we crash during the operation we don't 951 * leave shifted extents past EOF and hence losing access to 952 * the data that is contained within them. 953 */ 954 if (do_file_insert) 955 error = xfs_insert_file_space(ip, offset, len); 956 957 out_unlock: 958 xfs_iunlock(ip, iolock); 959 return error; 960 } 961 962 963 STATIC int 964 xfs_file_open( 965 struct inode *inode, 966 struct file *file) 967 { 968 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 969 return -EFBIG; 970 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 971 return -EIO; 972 return 0; 973 } 974 975 STATIC int 976 xfs_dir_open( 977 struct inode *inode, 978 struct file *file) 979 { 980 struct xfs_inode *ip = XFS_I(inode); 981 int mode; 982 int error; 983 984 error = xfs_file_open(inode, file); 985 if (error) 986 return error; 987 988 /* 989 * If there are any blocks, read-ahead block 0 as we're almost 990 * certain to have the next operation be a read there. 991 */ 992 mode = xfs_ilock_data_map_shared(ip); 993 if (ip->i_d.di_nextents > 0) 994 xfs_dir3_data_readahead(ip, 0, -1); 995 xfs_iunlock(ip, mode); 996 return 0; 997 } 998 999 STATIC int 1000 xfs_file_release( 1001 struct inode *inode, 1002 struct file *filp) 1003 { 1004 return xfs_release(XFS_I(inode)); 1005 } 1006 1007 STATIC int 1008 xfs_file_readdir( 1009 struct file *file, 1010 struct dir_context *ctx) 1011 { 1012 struct inode *inode = file_inode(file); 1013 xfs_inode_t *ip = XFS_I(inode); 1014 size_t bufsize; 1015 1016 /* 1017 * The Linux API doesn't pass down the total size of the buffer 1018 * we read into down to the filesystem. With the filldir concept 1019 * it's not needed for correct information, but the XFS dir2 leaf 1020 * code wants an estimate of the buffer size to calculate it's 1021 * readahead window and size the buffers used for mapping to 1022 * physical blocks. 1023 * 1024 * Try to give it an estimate that's good enough, maybe at some 1025 * point we can change the ->readdir prototype to include the 1026 * buffer size. For now we use the current glibc buffer size. 1027 */ 1028 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 1029 1030 return xfs_readdir(ip, ctx, bufsize); 1031 } 1032 1033 /* 1034 * This type is designed to indicate the type of offset we would like 1035 * to search from page cache for xfs_seek_hole_data(). 1036 */ 1037 enum { 1038 HOLE_OFF = 0, 1039 DATA_OFF, 1040 }; 1041 1042 /* 1043 * Lookup the desired type of offset from the given page. 1044 * 1045 * On success, return true and the offset argument will point to the 1046 * start of the region that was found. Otherwise this function will 1047 * return false and keep the offset argument unchanged. 1048 */ 1049 STATIC bool 1050 xfs_lookup_buffer_offset( 1051 struct page *page, 1052 loff_t *offset, 1053 unsigned int type) 1054 { 1055 loff_t lastoff = page_offset(page); 1056 bool found = false; 1057 struct buffer_head *bh, *head; 1058 1059 bh = head = page_buffers(page); 1060 do { 1061 /* 1062 * Unwritten extents that have data in the page 1063 * cache covering them can be identified by the 1064 * BH_Unwritten state flag. Pages with multiple 1065 * buffers might have a mix of holes, data and 1066 * unwritten extents - any buffer with valid 1067 * data in it should have BH_Uptodate flag set 1068 * on it. 1069 */ 1070 if (buffer_unwritten(bh) || 1071 buffer_uptodate(bh)) { 1072 if (type == DATA_OFF) 1073 found = true; 1074 } else { 1075 if (type == HOLE_OFF) 1076 found = true; 1077 } 1078 1079 if (found) { 1080 *offset = lastoff; 1081 break; 1082 } 1083 lastoff += bh->b_size; 1084 } while ((bh = bh->b_this_page) != head); 1085 1086 return found; 1087 } 1088 1089 /* 1090 * This routine is called to find out and return a data or hole offset 1091 * from the page cache for unwritten extents according to the desired 1092 * type for xfs_seek_hole_data(). 1093 * 1094 * The argument offset is used to tell where we start to search from the 1095 * page cache. Map is used to figure out the end points of the range to 1096 * lookup pages. 1097 * 1098 * Return true if the desired type of offset was found, and the argument 1099 * offset is filled with that address. Otherwise, return false and keep 1100 * offset unchanged. 1101 */ 1102 STATIC bool 1103 xfs_find_get_desired_pgoff( 1104 struct inode *inode, 1105 struct xfs_bmbt_irec *map, 1106 unsigned int type, 1107 loff_t *offset) 1108 { 1109 struct xfs_inode *ip = XFS_I(inode); 1110 struct xfs_mount *mp = ip->i_mount; 1111 struct pagevec pvec; 1112 pgoff_t index; 1113 pgoff_t end; 1114 loff_t endoff; 1115 loff_t startoff = *offset; 1116 loff_t lastoff = startoff; 1117 bool found = false; 1118 1119 pagevec_init(&pvec, 0); 1120 1121 index = startoff >> PAGE_SHIFT; 1122 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1123 end = endoff >> PAGE_SHIFT; 1124 do { 1125 int want; 1126 unsigned nr_pages; 1127 unsigned int i; 1128 1129 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1130 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1131 want); 1132 /* 1133 * No page mapped into given range. If we are searching holes 1134 * and if this is the first time we got into the loop, it means 1135 * that the given offset is landed in a hole, return it. 1136 * 1137 * If we have already stepped through some block buffers to find 1138 * holes but they all contains data. In this case, the last 1139 * offset is already updated and pointed to the end of the last 1140 * mapped page, if it does not reach the endpoint to search, 1141 * that means there should be a hole between them. 1142 */ 1143 if (nr_pages == 0) { 1144 /* Data search found nothing */ 1145 if (type == DATA_OFF) 1146 break; 1147 1148 ASSERT(type == HOLE_OFF); 1149 if (lastoff == startoff || lastoff < endoff) { 1150 found = true; 1151 *offset = lastoff; 1152 } 1153 break; 1154 } 1155 1156 /* 1157 * At lease we found one page. If this is the first time we 1158 * step into the loop, and if the first page index offset is 1159 * greater than the given search offset, a hole was found. 1160 */ 1161 if (type == HOLE_OFF && lastoff == startoff && 1162 lastoff < page_offset(pvec.pages[0])) { 1163 found = true; 1164 break; 1165 } 1166 1167 for (i = 0; i < nr_pages; i++) { 1168 struct page *page = pvec.pages[i]; 1169 loff_t b_offset; 1170 1171 /* 1172 * At this point, the page may be truncated or 1173 * invalidated (changing page->mapping to NULL), 1174 * or even swizzled back from swapper_space to tmpfs 1175 * file mapping. However, page->index will not change 1176 * because we have a reference on the page. 1177 * 1178 * Searching done if the page index is out of range. 1179 * If the current offset is not reaches the end of 1180 * the specified search range, there should be a hole 1181 * between them. 1182 */ 1183 if (page->index > end) { 1184 if (type == HOLE_OFF && lastoff < endoff) { 1185 *offset = lastoff; 1186 found = true; 1187 } 1188 goto out; 1189 } 1190 1191 lock_page(page); 1192 /* 1193 * Page truncated or invalidated(page->mapping == NULL). 1194 * We can freely skip it and proceed to check the next 1195 * page. 1196 */ 1197 if (unlikely(page->mapping != inode->i_mapping)) { 1198 unlock_page(page); 1199 continue; 1200 } 1201 1202 if (!page_has_buffers(page)) { 1203 unlock_page(page); 1204 continue; 1205 } 1206 1207 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1208 if (found) { 1209 /* 1210 * The found offset may be less than the start 1211 * point to search if this is the first time to 1212 * come here. 1213 */ 1214 *offset = max_t(loff_t, startoff, b_offset); 1215 unlock_page(page); 1216 goto out; 1217 } 1218 1219 /* 1220 * We either searching data but nothing was found, or 1221 * searching hole but found a data buffer. In either 1222 * case, probably the next page contains the desired 1223 * things, update the last offset to it so. 1224 */ 1225 lastoff = page_offset(page) + PAGE_SIZE; 1226 unlock_page(page); 1227 } 1228 1229 /* 1230 * The number of returned pages less than our desired, search 1231 * done. In this case, nothing was found for searching data, 1232 * but we found a hole behind the last offset. 1233 */ 1234 if (nr_pages < want) { 1235 if (type == HOLE_OFF) { 1236 *offset = lastoff; 1237 found = true; 1238 } 1239 break; 1240 } 1241 1242 index = pvec.pages[i - 1]->index + 1; 1243 pagevec_release(&pvec); 1244 } while (index <= end); 1245 1246 out: 1247 pagevec_release(&pvec); 1248 return found; 1249 } 1250 1251 /* 1252 * caller must lock inode with xfs_ilock_data_map_shared, 1253 * can we craft an appropriate ASSERT? 1254 * 1255 * end is because the VFS-level lseek interface is defined such that any 1256 * offset past i_size shall return -ENXIO, but we use this for quota code 1257 * which does not maintain i_size, and we want to SEEK_DATA past i_size. 1258 */ 1259 loff_t 1260 __xfs_seek_hole_data( 1261 struct inode *inode, 1262 loff_t start, 1263 loff_t end, 1264 int whence) 1265 { 1266 struct xfs_inode *ip = XFS_I(inode); 1267 struct xfs_mount *mp = ip->i_mount; 1268 loff_t uninitialized_var(offset); 1269 xfs_fileoff_t fsbno; 1270 xfs_filblks_t lastbno; 1271 int error; 1272 1273 if (start >= end) { 1274 error = -ENXIO; 1275 goto out_error; 1276 } 1277 1278 /* 1279 * Try to read extents from the first block indicated 1280 * by fsbno to the end block of the file. 1281 */ 1282 fsbno = XFS_B_TO_FSBT(mp, start); 1283 lastbno = XFS_B_TO_FSB(mp, end); 1284 1285 for (;;) { 1286 struct xfs_bmbt_irec map[2]; 1287 int nmap = 2; 1288 unsigned int i; 1289 1290 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap, 1291 XFS_BMAPI_ENTIRE); 1292 if (error) 1293 goto out_error; 1294 1295 /* No extents at given offset, must be beyond EOF */ 1296 if (nmap == 0) { 1297 error = -ENXIO; 1298 goto out_error; 1299 } 1300 1301 for (i = 0; i < nmap; i++) { 1302 offset = max_t(loff_t, start, 1303 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1304 1305 /* Landed in the hole we wanted? */ 1306 if (whence == SEEK_HOLE && 1307 map[i].br_startblock == HOLESTARTBLOCK) 1308 goto out; 1309 1310 /* Landed in the data extent we wanted? */ 1311 if (whence == SEEK_DATA && 1312 (map[i].br_startblock == DELAYSTARTBLOCK || 1313 (map[i].br_state == XFS_EXT_NORM && 1314 !isnullstartblock(map[i].br_startblock)))) 1315 goto out; 1316 1317 /* 1318 * Landed in an unwritten extent, try to search 1319 * for hole or data from page cache. 1320 */ 1321 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1322 if (xfs_find_get_desired_pgoff(inode, &map[i], 1323 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1324 &offset)) 1325 goto out; 1326 } 1327 } 1328 1329 /* 1330 * We only received one extent out of the two requested. This 1331 * means we've hit EOF and didn't find what we are looking for. 1332 */ 1333 if (nmap == 1) { 1334 /* 1335 * If we were looking for a hole, set offset to 1336 * the end of the file (i.e., there is an implicit 1337 * hole at the end of any file). 1338 */ 1339 if (whence == SEEK_HOLE) { 1340 offset = end; 1341 break; 1342 } 1343 /* 1344 * If we were looking for data, it's nowhere to be found 1345 */ 1346 ASSERT(whence == SEEK_DATA); 1347 error = -ENXIO; 1348 goto out_error; 1349 } 1350 1351 ASSERT(i > 1); 1352 1353 /* 1354 * Nothing was found, proceed to the next round of search 1355 * if the next reading offset is not at or beyond EOF. 1356 */ 1357 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1358 start = XFS_FSB_TO_B(mp, fsbno); 1359 if (start >= end) { 1360 if (whence == SEEK_HOLE) { 1361 offset = end; 1362 break; 1363 } 1364 ASSERT(whence == SEEK_DATA); 1365 error = -ENXIO; 1366 goto out_error; 1367 } 1368 } 1369 1370 out: 1371 /* 1372 * If at this point we have found the hole we wanted, the returned 1373 * offset may be bigger than the file size as it may be aligned to 1374 * page boundary for unwritten extents. We need to deal with this 1375 * situation in particular. 1376 */ 1377 if (whence == SEEK_HOLE) 1378 offset = min_t(loff_t, offset, end); 1379 1380 return offset; 1381 1382 out_error: 1383 return error; 1384 } 1385 1386 STATIC loff_t 1387 xfs_seek_hole_data( 1388 struct file *file, 1389 loff_t start, 1390 int whence) 1391 { 1392 struct inode *inode = file->f_mapping->host; 1393 struct xfs_inode *ip = XFS_I(inode); 1394 struct xfs_mount *mp = ip->i_mount; 1395 uint lock; 1396 loff_t offset, end; 1397 int error = 0; 1398 1399 if (XFS_FORCED_SHUTDOWN(mp)) 1400 return -EIO; 1401 1402 lock = xfs_ilock_data_map_shared(ip); 1403 1404 end = i_size_read(inode); 1405 offset = __xfs_seek_hole_data(inode, start, end, whence); 1406 if (offset < 0) { 1407 error = offset; 1408 goto out_unlock; 1409 } 1410 1411 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1412 1413 out_unlock: 1414 xfs_iunlock(ip, lock); 1415 1416 if (error) 1417 return error; 1418 return offset; 1419 } 1420 1421 STATIC loff_t 1422 xfs_file_llseek( 1423 struct file *file, 1424 loff_t offset, 1425 int whence) 1426 { 1427 switch (whence) { 1428 case SEEK_END: 1429 case SEEK_CUR: 1430 case SEEK_SET: 1431 return generic_file_llseek(file, offset, whence); 1432 case SEEK_HOLE: 1433 case SEEK_DATA: 1434 return xfs_seek_hole_data(file, offset, whence); 1435 default: 1436 return -EINVAL; 1437 } 1438 } 1439 1440 /* 1441 * Locking for serialisation of IO during page faults. This results in a lock 1442 * ordering of: 1443 * 1444 * mmap_sem (MM) 1445 * sb_start_pagefault(vfs, freeze) 1446 * i_mmaplock (XFS - truncate serialisation) 1447 * page_lock (MM) 1448 * i_lock (XFS - extent map serialisation) 1449 */ 1450 1451 /* 1452 * mmap()d file has taken write protection fault and is being made writable. We 1453 * can set the page state up correctly for a writable page, which means we can 1454 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1455 * mapping. 1456 */ 1457 STATIC int 1458 xfs_filemap_page_mkwrite( 1459 struct vm_area_struct *vma, 1460 struct vm_fault *vmf) 1461 { 1462 struct inode *inode = file_inode(vma->vm_file); 1463 int ret; 1464 1465 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1466 1467 sb_start_pagefault(inode->i_sb); 1468 file_update_time(vma->vm_file); 1469 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1470 1471 if (IS_DAX(inode)) { 1472 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops); 1473 } else { 1474 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops); 1475 ret = block_page_mkwrite_return(ret); 1476 } 1477 1478 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1479 sb_end_pagefault(inode->i_sb); 1480 1481 return ret; 1482 } 1483 1484 STATIC int 1485 xfs_filemap_fault( 1486 struct vm_area_struct *vma, 1487 struct vm_fault *vmf) 1488 { 1489 struct inode *inode = file_inode(vma->vm_file); 1490 int ret; 1491 1492 trace_xfs_filemap_fault(XFS_I(inode)); 1493 1494 /* DAX can shortcut the normal fault path on write faults! */ 1495 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1496 return xfs_filemap_page_mkwrite(vma, vmf); 1497 1498 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1499 if (IS_DAX(inode)) { 1500 /* 1501 * we do not want to trigger unwritten extent conversion on read 1502 * faults - that is unnecessary overhead and would also require 1503 * changes to xfs_get_blocks_direct() to map unwritten extent 1504 * ioend for conversion on read-only mappings. 1505 */ 1506 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops); 1507 } else 1508 ret = filemap_fault(vma, vmf); 1509 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1510 1511 return ret; 1512 } 1513 1514 /* 1515 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on 1516 * both read and write faults. Hence we need to handle both cases. There is no 1517 * ->pmd_mkwrite callout for huge pages, so we have a single function here to 1518 * handle both cases here. @flags carries the information on the type of fault 1519 * occuring. 1520 */ 1521 STATIC int 1522 xfs_filemap_pmd_fault( 1523 struct vm_area_struct *vma, 1524 unsigned long addr, 1525 pmd_t *pmd, 1526 unsigned int flags) 1527 { 1528 struct inode *inode = file_inode(vma->vm_file); 1529 struct xfs_inode *ip = XFS_I(inode); 1530 int ret; 1531 1532 if (!IS_DAX(inode)) 1533 return VM_FAULT_FALLBACK; 1534 1535 trace_xfs_filemap_pmd_fault(ip); 1536 1537 if (flags & FAULT_FLAG_WRITE) { 1538 sb_start_pagefault(inode->i_sb); 1539 file_update_time(vma->vm_file); 1540 } 1541 1542 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1543 ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault); 1544 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1545 1546 if (flags & FAULT_FLAG_WRITE) 1547 sb_end_pagefault(inode->i_sb); 1548 1549 return ret; 1550 } 1551 1552 /* 1553 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1554 * updates on write faults. In reality, it's need to serialise against 1555 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED 1556 * to ensure we serialise the fault barrier in place. 1557 */ 1558 static int 1559 xfs_filemap_pfn_mkwrite( 1560 struct vm_area_struct *vma, 1561 struct vm_fault *vmf) 1562 { 1563 1564 struct inode *inode = file_inode(vma->vm_file); 1565 struct xfs_inode *ip = XFS_I(inode); 1566 int ret = VM_FAULT_NOPAGE; 1567 loff_t size; 1568 1569 trace_xfs_filemap_pfn_mkwrite(ip); 1570 1571 sb_start_pagefault(inode->i_sb); 1572 file_update_time(vma->vm_file); 1573 1574 /* check if the faulting page hasn't raced with truncate */ 1575 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1576 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1577 if (vmf->pgoff >= size) 1578 ret = VM_FAULT_SIGBUS; 1579 else if (IS_DAX(inode)) 1580 ret = dax_pfn_mkwrite(vma, vmf); 1581 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1582 sb_end_pagefault(inode->i_sb); 1583 return ret; 1584 1585 } 1586 1587 static const struct vm_operations_struct xfs_file_vm_ops = { 1588 .fault = xfs_filemap_fault, 1589 .pmd_fault = xfs_filemap_pmd_fault, 1590 .map_pages = filemap_map_pages, 1591 .page_mkwrite = xfs_filemap_page_mkwrite, 1592 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1593 }; 1594 1595 STATIC int 1596 xfs_file_mmap( 1597 struct file *filp, 1598 struct vm_area_struct *vma) 1599 { 1600 file_accessed(filp); 1601 vma->vm_ops = &xfs_file_vm_ops; 1602 if (IS_DAX(file_inode(filp))) 1603 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1604 return 0; 1605 } 1606 1607 const struct file_operations xfs_file_operations = { 1608 .llseek = xfs_file_llseek, 1609 .read_iter = xfs_file_read_iter, 1610 .write_iter = xfs_file_write_iter, 1611 .splice_read = xfs_file_splice_read, 1612 .splice_write = iter_file_splice_write, 1613 .unlocked_ioctl = xfs_file_ioctl, 1614 #ifdef CONFIG_COMPAT 1615 .compat_ioctl = xfs_file_compat_ioctl, 1616 #endif 1617 .mmap = xfs_file_mmap, 1618 .open = xfs_file_open, 1619 .release = xfs_file_release, 1620 .fsync = xfs_file_fsync, 1621 .fallocate = xfs_file_fallocate, 1622 }; 1623 1624 const struct file_operations xfs_dir_file_operations = { 1625 .open = xfs_dir_open, 1626 .read = generic_read_dir, 1627 .iterate_shared = xfs_file_readdir, 1628 .llseek = generic_file_llseek, 1629 .unlocked_ioctl = xfs_file_ioctl, 1630 #ifdef CONFIG_COMPAT 1631 .compat_ioctl = xfs_file_compat_ioctl, 1632 #endif 1633 .fsync = xfs_dir_fsync, 1634 }; 1635