xref: /linux/fs/xfs/xfs_aops.c (revision 59024954a1e7e26b62680e1f2b5725249a6c09f7)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38 
39 /* flags for direct write completions */
40 #define XFS_DIO_FLAG_UNWRITTEN	(1 << 0)
41 #define XFS_DIO_FLAG_APPEND	(1 << 1)
42 
43 /*
44  * structure owned by writepages passed to individual writepage calls
45  */
46 struct xfs_writepage_ctx {
47 	struct xfs_bmbt_irec    imap;
48 	bool			imap_valid;
49 	unsigned int		io_type;
50 	struct xfs_ioend	*ioend;
51 	sector_t		last_block;
52 };
53 
54 void
55 xfs_count_page_state(
56 	struct page		*page,
57 	int			*delalloc,
58 	int			*unwritten)
59 {
60 	struct buffer_head	*bh, *head;
61 
62 	*delalloc = *unwritten = 0;
63 
64 	bh = head = page_buffers(page);
65 	do {
66 		if (buffer_unwritten(bh))
67 			(*unwritten) = 1;
68 		else if (buffer_delay(bh))
69 			(*delalloc) = 1;
70 	} while ((bh = bh->b_this_page) != head);
71 }
72 
73 struct block_device *
74 xfs_find_bdev_for_inode(
75 	struct inode		*inode)
76 {
77 	struct xfs_inode	*ip = XFS_I(inode);
78 	struct xfs_mount	*mp = ip->i_mount;
79 
80 	if (XFS_IS_REALTIME_INODE(ip))
81 		return mp->m_rtdev_targp->bt_bdev;
82 	else
83 		return mp->m_ddev_targp->bt_bdev;
84 }
85 
86 /*
87  * We're now finished for good with this page.  Update the page state via the
88  * associated buffer_heads, paying attention to the start and end offsets that
89  * we need to process on the page.
90  *
91  * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
92  * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
93  * the page at all, as we may be racing with memory reclaim and it can free both
94  * the bufferhead chain and the page as it will see the page as clean and
95  * unused.
96  */
97 static void
98 xfs_finish_page_writeback(
99 	struct inode		*inode,
100 	struct bio_vec		*bvec,
101 	int			error)
102 {
103 	unsigned int		end = bvec->bv_offset + bvec->bv_len - 1;
104 	struct buffer_head	*head, *bh, *next;
105 	unsigned int		off = 0;
106 	unsigned int		bsize;
107 
108 	ASSERT(bvec->bv_offset < PAGE_SIZE);
109 	ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
110 	ASSERT(end < PAGE_SIZE);
111 	ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
112 
113 	bh = head = page_buffers(bvec->bv_page);
114 
115 	bsize = bh->b_size;
116 	do {
117 		next = bh->b_this_page;
118 		if (off < bvec->bv_offset)
119 			goto next_bh;
120 		if (off > end)
121 			break;
122 		bh->b_end_io(bh, !error);
123 next_bh:
124 		off += bsize;
125 	} while ((bh = next) != head);
126 }
127 
128 /*
129  * We're now finished for good with this ioend structure.  Update the page
130  * state, release holds on bios, and finally free up memory.  Do not use the
131  * ioend after this.
132  */
133 STATIC void
134 xfs_destroy_ioend(
135 	struct xfs_ioend	*ioend,
136 	int			error)
137 {
138 	struct inode		*inode = ioend->io_inode;
139 	struct bio		*last = ioend->io_bio;
140 	struct bio		*bio, *next;
141 
142 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
143 		struct bio_vec	*bvec;
144 		int		i;
145 
146 		/*
147 		 * For the last bio, bi_private points to the ioend, so we
148 		 * need to explicitly end the iteration here.
149 		 */
150 		if (bio == last)
151 			next = NULL;
152 		else
153 			next = bio->bi_private;
154 
155 		/* walk each page on bio, ending page IO on them */
156 		bio_for_each_segment_all(bvec, bio, i)
157 			xfs_finish_page_writeback(inode, bvec, error);
158 
159 		bio_put(bio);
160 	}
161 }
162 
163 /*
164  * Fast and loose check if this write could update the on-disk inode size.
165  */
166 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
167 {
168 	return ioend->io_offset + ioend->io_size >
169 		XFS_I(ioend->io_inode)->i_d.di_size;
170 }
171 
172 STATIC int
173 xfs_setfilesize_trans_alloc(
174 	struct xfs_ioend	*ioend)
175 {
176 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
177 	struct xfs_trans	*tp;
178 	int			error;
179 
180 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
181 	if (error)
182 		return error;
183 
184 	ioend->io_append_trans = tp;
185 
186 	/*
187 	 * We may pass freeze protection with a transaction.  So tell lockdep
188 	 * we released it.
189 	 */
190 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
191 	/*
192 	 * We hand off the transaction to the completion thread now, so
193 	 * clear the flag here.
194 	 */
195 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
196 	return 0;
197 }
198 
199 /*
200  * Update on-disk file size now that data has been written to disk.
201  */
202 STATIC int
203 __xfs_setfilesize(
204 	struct xfs_inode	*ip,
205 	struct xfs_trans	*tp,
206 	xfs_off_t		offset,
207 	size_t			size)
208 {
209 	xfs_fsize_t		isize;
210 
211 	xfs_ilock(ip, XFS_ILOCK_EXCL);
212 	isize = xfs_new_eof(ip, offset + size);
213 	if (!isize) {
214 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
215 		xfs_trans_cancel(tp);
216 		return 0;
217 	}
218 
219 	trace_xfs_setfilesize(ip, offset, size);
220 
221 	ip->i_d.di_size = isize;
222 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
223 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
224 
225 	return xfs_trans_commit(tp);
226 }
227 
228 int
229 xfs_setfilesize(
230 	struct xfs_inode	*ip,
231 	xfs_off_t		offset,
232 	size_t			size)
233 {
234 	struct xfs_mount	*mp = ip->i_mount;
235 	struct xfs_trans	*tp;
236 	int			error;
237 
238 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
239 	if (error)
240 		return error;
241 
242 	return __xfs_setfilesize(ip, tp, offset, size);
243 }
244 
245 STATIC int
246 xfs_setfilesize_ioend(
247 	struct xfs_ioend	*ioend,
248 	int			error)
249 {
250 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
251 	struct xfs_trans	*tp = ioend->io_append_trans;
252 
253 	/*
254 	 * The transaction may have been allocated in the I/O submission thread,
255 	 * thus we need to mark ourselves as being in a transaction manually.
256 	 * Similarly for freeze protection.
257 	 */
258 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
259 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
260 
261 	/* we abort the update if there was an IO error */
262 	if (error) {
263 		xfs_trans_cancel(tp);
264 		return error;
265 	}
266 
267 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
268 }
269 
270 /*
271  * IO write completion.
272  */
273 STATIC void
274 xfs_end_io(
275 	struct work_struct *work)
276 {
277 	struct xfs_ioend	*ioend =
278 		container_of(work, struct xfs_ioend, io_work);
279 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
280 	int			error = ioend->io_bio->bi_error;
281 
282 	/*
283 	 * Set an error if the mount has shut down and proceed with end I/O
284 	 * processing so it can perform whatever cleanups are necessary.
285 	 */
286 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
287 		error = -EIO;
288 
289 	/*
290 	 * For unwritten extents we need to issue transactions to convert a
291 	 * range to normal written extens after the data I/O has finished.
292 	 * Detecting and handling completion IO errors is done individually
293 	 * for each case as different cleanup operations need to be performed
294 	 * on error.
295 	 */
296 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
297 		if (error)
298 			goto done;
299 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
300 						  ioend->io_size);
301 	} else if (ioend->io_append_trans) {
302 		error = xfs_setfilesize_ioend(ioend, error);
303 	} else {
304 		ASSERT(!xfs_ioend_is_append(ioend));
305 	}
306 
307 done:
308 	xfs_destroy_ioend(ioend, error);
309 }
310 
311 STATIC void
312 xfs_end_bio(
313 	struct bio		*bio)
314 {
315 	struct xfs_ioend	*ioend = bio->bi_private;
316 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
317 
318 	if (ioend->io_type == XFS_IO_UNWRITTEN)
319 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
320 	else if (ioend->io_append_trans)
321 		queue_work(mp->m_data_workqueue, &ioend->io_work);
322 	else
323 		xfs_destroy_ioend(ioend, bio->bi_error);
324 }
325 
326 STATIC int
327 xfs_map_blocks(
328 	struct inode		*inode,
329 	loff_t			offset,
330 	struct xfs_bmbt_irec	*imap,
331 	int			type)
332 {
333 	struct xfs_inode	*ip = XFS_I(inode);
334 	struct xfs_mount	*mp = ip->i_mount;
335 	ssize_t			count = 1 << inode->i_blkbits;
336 	xfs_fileoff_t		offset_fsb, end_fsb;
337 	int			error = 0;
338 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
339 	int			nimaps = 1;
340 
341 	if (XFS_FORCED_SHUTDOWN(mp))
342 		return -EIO;
343 
344 	if (type == XFS_IO_UNWRITTEN)
345 		bmapi_flags |= XFS_BMAPI_IGSTATE;
346 
347 	xfs_ilock(ip, XFS_ILOCK_SHARED);
348 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
349 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
350 	ASSERT(offset <= mp->m_super->s_maxbytes);
351 
352 	if (offset + count > mp->m_super->s_maxbytes)
353 		count = mp->m_super->s_maxbytes - offset;
354 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
355 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
356 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
357 				imap, &nimaps, bmapi_flags);
358 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
359 
360 	if (error)
361 		return error;
362 
363 	if (type == XFS_IO_DELALLOC &&
364 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
365 		error = xfs_iomap_write_allocate(ip, offset, imap);
366 		if (!error)
367 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
368 		return error;
369 	}
370 
371 #ifdef DEBUG
372 	if (type == XFS_IO_UNWRITTEN) {
373 		ASSERT(nimaps);
374 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
375 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
376 	}
377 #endif
378 	if (nimaps)
379 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
380 	return 0;
381 }
382 
383 STATIC bool
384 xfs_imap_valid(
385 	struct inode		*inode,
386 	struct xfs_bmbt_irec	*imap,
387 	xfs_off_t		offset)
388 {
389 	offset >>= inode->i_blkbits;
390 
391 	return offset >= imap->br_startoff &&
392 		offset < imap->br_startoff + imap->br_blockcount;
393 }
394 
395 STATIC void
396 xfs_start_buffer_writeback(
397 	struct buffer_head	*bh)
398 {
399 	ASSERT(buffer_mapped(bh));
400 	ASSERT(buffer_locked(bh));
401 	ASSERT(!buffer_delay(bh));
402 	ASSERT(!buffer_unwritten(bh));
403 
404 	mark_buffer_async_write(bh);
405 	set_buffer_uptodate(bh);
406 	clear_buffer_dirty(bh);
407 }
408 
409 STATIC void
410 xfs_start_page_writeback(
411 	struct page		*page,
412 	int			clear_dirty)
413 {
414 	ASSERT(PageLocked(page));
415 	ASSERT(!PageWriteback(page));
416 
417 	/*
418 	 * if the page was not fully cleaned, we need to ensure that the higher
419 	 * layers come back to it correctly. That means we need to keep the page
420 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
421 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
422 	 * write this page in this writeback sweep will be made.
423 	 */
424 	if (clear_dirty) {
425 		clear_page_dirty_for_io(page);
426 		set_page_writeback(page);
427 	} else
428 		set_page_writeback_keepwrite(page);
429 
430 	unlock_page(page);
431 }
432 
433 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
434 {
435 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
436 }
437 
438 /*
439  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
440  * it, and we submit that bio. The ioend may be used for multiple bio
441  * submissions, so we only want to allocate an append transaction for the ioend
442  * once. In the case of multiple bio submission, each bio will take an IO
443  * reference to the ioend to ensure that the ioend completion is only done once
444  * all bios have been submitted and the ioend is really done.
445  *
446  * If @fail is non-zero, it means that we have a situation where some part of
447  * the submission process has failed after we have marked paged for writeback
448  * and unlocked them. In this situation, we need to fail the bio and ioend
449  * rather than submit it to IO. This typically only happens on a filesystem
450  * shutdown.
451  */
452 STATIC int
453 xfs_submit_ioend(
454 	struct writeback_control *wbc,
455 	struct xfs_ioend	*ioend,
456 	int			status)
457 {
458 	/* Reserve log space if we might write beyond the on-disk inode size. */
459 	if (!status &&
460 	    ioend->io_type != XFS_IO_UNWRITTEN &&
461 	    xfs_ioend_is_append(ioend) &&
462 	    !ioend->io_append_trans)
463 		status = xfs_setfilesize_trans_alloc(ioend);
464 
465 	ioend->io_bio->bi_private = ioend;
466 	ioend->io_bio->bi_end_io = xfs_end_bio;
467 	bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
468 			 (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
469 	/*
470 	 * If we are failing the IO now, just mark the ioend with an
471 	 * error and finish it. This will run IO completion immediately
472 	 * as there is only one reference to the ioend at this point in
473 	 * time.
474 	 */
475 	if (status) {
476 		ioend->io_bio->bi_error = status;
477 		bio_endio(ioend->io_bio);
478 		return status;
479 	}
480 
481 	submit_bio(ioend->io_bio);
482 	return 0;
483 }
484 
485 static void
486 xfs_init_bio_from_bh(
487 	struct bio		*bio,
488 	struct buffer_head	*bh)
489 {
490 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
491 	bio->bi_bdev = bh->b_bdev;
492 }
493 
494 static struct xfs_ioend *
495 xfs_alloc_ioend(
496 	struct inode		*inode,
497 	unsigned int		type,
498 	xfs_off_t		offset,
499 	struct buffer_head	*bh)
500 {
501 	struct xfs_ioend	*ioend;
502 	struct bio		*bio;
503 
504 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
505 	xfs_init_bio_from_bh(bio, bh);
506 
507 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
508 	INIT_LIST_HEAD(&ioend->io_list);
509 	ioend->io_type = type;
510 	ioend->io_inode = inode;
511 	ioend->io_size = 0;
512 	ioend->io_offset = offset;
513 	INIT_WORK(&ioend->io_work, xfs_end_io);
514 	ioend->io_append_trans = NULL;
515 	ioend->io_bio = bio;
516 	return ioend;
517 }
518 
519 /*
520  * Allocate a new bio, and chain the old bio to the new one.
521  *
522  * Note that we have to do perform the chaining in this unintuitive order
523  * so that the bi_private linkage is set up in the right direction for the
524  * traversal in xfs_destroy_ioend().
525  */
526 static void
527 xfs_chain_bio(
528 	struct xfs_ioend	*ioend,
529 	struct writeback_control *wbc,
530 	struct buffer_head	*bh)
531 {
532 	struct bio *new;
533 
534 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
535 	xfs_init_bio_from_bh(new, bh);
536 
537 	bio_chain(ioend->io_bio, new);
538 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
539 	bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
540 			  (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
541 	submit_bio(ioend->io_bio);
542 	ioend->io_bio = new;
543 }
544 
545 /*
546  * Test to see if we've been building up a completion structure for
547  * earlier buffers -- if so, we try to append to this ioend if we
548  * can, otherwise we finish off any current ioend and start another.
549  * Return the ioend we finished off so that the caller can submit it
550  * once it has finished processing the dirty page.
551  */
552 STATIC void
553 xfs_add_to_ioend(
554 	struct inode		*inode,
555 	struct buffer_head	*bh,
556 	xfs_off_t		offset,
557 	struct xfs_writepage_ctx *wpc,
558 	struct writeback_control *wbc,
559 	struct list_head	*iolist)
560 {
561 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
562 	    bh->b_blocknr != wpc->last_block + 1 ||
563 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
564 		if (wpc->ioend)
565 			list_add(&wpc->ioend->io_list, iolist);
566 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
567 	}
568 
569 	/*
570 	 * If the buffer doesn't fit into the bio we need to allocate a new
571 	 * one.  This shouldn't happen more than once for a given buffer.
572 	 */
573 	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
574 		xfs_chain_bio(wpc->ioend, wbc, bh);
575 
576 	wpc->ioend->io_size += bh->b_size;
577 	wpc->last_block = bh->b_blocknr;
578 	xfs_start_buffer_writeback(bh);
579 }
580 
581 STATIC void
582 xfs_map_buffer(
583 	struct inode		*inode,
584 	struct buffer_head	*bh,
585 	struct xfs_bmbt_irec	*imap,
586 	xfs_off_t		offset)
587 {
588 	sector_t		bn;
589 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
590 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
591 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
592 
593 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
594 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
595 
596 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
597 	      ((offset - iomap_offset) >> inode->i_blkbits);
598 
599 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
600 
601 	bh->b_blocknr = bn;
602 	set_buffer_mapped(bh);
603 }
604 
605 STATIC void
606 xfs_map_at_offset(
607 	struct inode		*inode,
608 	struct buffer_head	*bh,
609 	struct xfs_bmbt_irec	*imap,
610 	xfs_off_t		offset)
611 {
612 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
613 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
614 
615 	xfs_map_buffer(inode, bh, imap, offset);
616 	set_buffer_mapped(bh);
617 	clear_buffer_delay(bh);
618 	clear_buffer_unwritten(bh);
619 }
620 
621 /*
622  * Test if a given page contains at least one buffer of a given @type.
623  * If @check_all_buffers is true, then we walk all the buffers in the page to
624  * try to find one of the type passed in. If it is not set, then the caller only
625  * needs to check the first buffer on the page for a match.
626  */
627 STATIC bool
628 xfs_check_page_type(
629 	struct page		*page,
630 	unsigned int		type,
631 	bool			check_all_buffers)
632 {
633 	struct buffer_head	*bh;
634 	struct buffer_head	*head;
635 
636 	if (PageWriteback(page))
637 		return false;
638 	if (!page->mapping)
639 		return false;
640 	if (!page_has_buffers(page))
641 		return false;
642 
643 	bh = head = page_buffers(page);
644 	do {
645 		if (buffer_unwritten(bh)) {
646 			if (type == XFS_IO_UNWRITTEN)
647 				return true;
648 		} else if (buffer_delay(bh)) {
649 			if (type == XFS_IO_DELALLOC)
650 				return true;
651 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
652 			if (type == XFS_IO_OVERWRITE)
653 				return true;
654 		}
655 
656 		/* If we are only checking the first buffer, we are done now. */
657 		if (!check_all_buffers)
658 			break;
659 	} while ((bh = bh->b_this_page) != head);
660 
661 	return false;
662 }
663 
664 STATIC void
665 xfs_vm_invalidatepage(
666 	struct page		*page,
667 	unsigned int		offset,
668 	unsigned int		length)
669 {
670 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
671 				 length);
672 	block_invalidatepage(page, offset, length);
673 }
674 
675 /*
676  * If the page has delalloc buffers on it, we need to punch them out before we
677  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
678  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
679  * is done on that same region - the delalloc extent is returned when none is
680  * supposed to be there.
681  *
682  * We prevent this by truncating away the delalloc regions on the page before
683  * invalidating it. Because they are delalloc, we can do this without needing a
684  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
685  * truncation without a transaction as there is no space left for block
686  * reservation (typically why we see a ENOSPC in writeback).
687  *
688  * This is not a performance critical path, so for now just do the punching a
689  * buffer head at a time.
690  */
691 STATIC void
692 xfs_aops_discard_page(
693 	struct page		*page)
694 {
695 	struct inode		*inode = page->mapping->host;
696 	struct xfs_inode	*ip = XFS_I(inode);
697 	struct buffer_head	*bh, *head;
698 	loff_t			offset = page_offset(page);
699 
700 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
701 		goto out_invalidate;
702 
703 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
704 		goto out_invalidate;
705 
706 	xfs_alert(ip->i_mount,
707 		"page discard on page %p, inode 0x%llx, offset %llu.",
708 			page, ip->i_ino, offset);
709 
710 	xfs_ilock(ip, XFS_ILOCK_EXCL);
711 	bh = head = page_buffers(page);
712 	do {
713 		int		error;
714 		xfs_fileoff_t	start_fsb;
715 
716 		if (!buffer_delay(bh))
717 			goto next_buffer;
718 
719 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
720 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
721 		if (error) {
722 			/* something screwed, just bail */
723 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
724 				xfs_alert(ip->i_mount,
725 			"page discard unable to remove delalloc mapping.");
726 			}
727 			break;
728 		}
729 next_buffer:
730 		offset += 1 << inode->i_blkbits;
731 
732 	} while ((bh = bh->b_this_page) != head);
733 
734 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
735 out_invalidate:
736 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
737 	return;
738 }
739 
740 /*
741  * We implement an immediate ioend submission policy here to avoid needing to
742  * chain multiple ioends and hence nest mempool allocations which can violate
743  * forward progress guarantees we need to provide. The current ioend we are
744  * adding buffers to is cached on the writepage context, and if the new buffer
745  * does not append to the cached ioend it will create a new ioend and cache that
746  * instead.
747  *
748  * If a new ioend is created and cached, the old ioend is returned and queued
749  * locally for submission once the entire page is processed or an error has been
750  * detected.  While ioends are submitted immediately after they are completed,
751  * batching optimisations are provided by higher level block plugging.
752  *
753  * At the end of a writeback pass, there will be a cached ioend remaining on the
754  * writepage context that the caller will need to submit.
755  */
756 static int
757 xfs_writepage_map(
758 	struct xfs_writepage_ctx *wpc,
759 	struct writeback_control *wbc,
760 	struct inode		*inode,
761 	struct page		*page,
762 	loff_t			offset,
763 	__uint64_t              end_offset)
764 {
765 	LIST_HEAD(submit_list);
766 	struct xfs_ioend	*ioend, *next;
767 	struct buffer_head	*bh, *head;
768 	ssize_t			len = 1 << inode->i_blkbits;
769 	int			error = 0;
770 	int			count = 0;
771 	int			uptodate = 1;
772 
773 	bh = head = page_buffers(page);
774 	offset = page_offset(page);
775 	do {
776 		if (offset >= end_offset)
777 			break;
778 		if (!buffer_uptodate(bh))
779 			uptodate = 0;
780 
781 		/*
782 		 * set_page_dirty dirties all buffers in a page, independent
783 		 * of their state.  The dirty state however is entirely
784 		 * meaningless for holes (!mapped && uptodate), so skip
785 		 * buffers covering holes here.
786 		 */
787 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
788 			wpc->imap_valid = false;
789 			continue;
790 		}
791 
792 		if (buffer_unwritten(bh)) {
793 			if (wpc->io_type != XFS_IO_UNWRITTEN) {
794 				wpc->io_type = XFS_IO_UNWRITTEN;
795 				wpc->imap_valid = false;
796 			}
797 		} else if (buffer_delay(bh)) {
798 			if (wpc->io_type != XFS_IO_DELALLOC) {
799 				wpc->io_type = XFS_IO_DELALLOC;
800 				wpc->imap_valid = false;
801 			}
802 		} else if (buffer_uptodate(bh)) {
803 			if (wpc->io_type != XFS_IO_OVERWRITE) {
804 				wpc->io_type = XFS_IO_OVERWRITE;
805 				wpc->imap_valid = false;
806 			}
807 		} else {
808 			if (PageUptodate(page))
809 				ASSERT(buffer_mapped(bh));
810 			/*
811 			 * This buffer is not uptodate and will not be
812 			 * written to disk.  Ensure that we will put any
813 			 * subsequent writeable buffers into a new
814 			 * ioend.
815 			 */
816 			wpc->imap_valid = false;
817 			continue;
818 		}
819 
820 		if (wpc->imap_valid)
821 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
822 							 offset);
823 		if (!wpc->imap_valid) {
824 			error = xfs_map_blocks(inode, offset, &wpc->imap,
825 					     wpc->io_type);
826 			if (error)
827 				goto out;
828 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
829 							 offset);
830 		}
831 		if (wpc->imap_valid) {
832 			lock_buffer(bh);
833 			if (wpc->io_type != XFS_IO_OVERWRITE)
834 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
835 			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
836 			count++;
837 		}
838 
839 	} while (offset += len, ((bh = bh->b_this_page) != head));
840 
841 	if (uptodate && bh == head)
842 		SetPageUptodate(page);
843 
844 	ASSERT(wpc->ioend || list_empty(&submit_list));
845 
846 out:
847 	/*
848 	 * On error, we have to fail the ioend here because we have locked
849 	 * buffers in the ioend. If we don't do this, we'll deadlock
850 	 * invalidating the page as that tries to lock the buffers on the page.
851 	 * Also, because we may have set pages under writeback, we have to make
852 	 * sure we run IO completion to mark the error state of the IO
853 	 * appropriately, so we can't cancel the ioend directly here. That means
854 	 * we have to mark this page as under writeback if we included any
855 	 * buffers from it in the ioend chain so that completion treats it
856 	 * correctly.
857 	 *
858 	 * If we didn't include the page in the ioend, the on error we can
859 	 * simply discard and unlock it as there are no other users of the page
860 	 * or it's buffers right now. The caller will still need to trigger
861 	 * submission of outstanding ioends on the writepage context so they are
862 	 * treated correctly on error.
863 	 */
864 	if (count) {
865 		xfs_start_page_writeback(page, !error);
866 
867 		/*
868 		 * Preserve the original error if there was one, otherwise catch
869 		 * submission errors here and propagate into subsequent ioend
870 		 * submissions.
871 		 */
872 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
873 			int error2;
874 
875 			list_del_init(&ioend->io_list);
876 			error2 = xfs_submit_ioend(wbc, ioend, error);
877 			if (error2 && !error)
878 				error = error2;
879 		}
880 	} else if (error) {
881 		xfs_aops_discard_page(page);
882 		ClearPageUptodate(page);
883 		unlock_page(page);
884 	} else {
885 		/*
886 		 * We can end up here with no error and nothing to write if we
887 		 * race with a partial page truncate on a sub-page block sized
888 		 * filesystem. In that case we need to mark the page clean.
889 		 */
890 		xfs_start_page_writeback(page, 1);
891 		end_page_writeback(page);
892 	}
893 
894 	mapping_set_error(page->mapping, error);
895 	return error;
896 }
897 
898 /*
899  * Write out a dirty page.
900  *
901  * For delalloc space on the page we need to allocate space and flush it.
902  * For unwritten space on the page we need to start the conversion to
903  * regular allocated space.
904  * For any other dirty buffer heads on the page we should flush them.
905  */
906 STATIC int
907 xfs_do_writepage(
908 	struct page		*page,
909 	struct writeback_control *wbc,
910 	void			*data)
911 {
912 	struct xfs_writepage_ctx *wpc = data;
913 	struct inode		*inode = page->mapping->host;
914 	loff_t			offset;
915 	__uint64_t              end_offset;
916 	pgoff_t                 end_index;
917 
918 	trace_xfs_writepage(inode, page, 0, 0);
919 
920 	ASSERT(page_has_buffers(page));
921 
922 	/*
923 	 * Refuse to write the page out if we are called from reclaim context.
924 	 *
925 	 * This avoids stack overflows when called from deeply used stacks in
926 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
927 	 * allow reclaim from kswapd as the stack usage there is relatively low.
928 	 *
929 	 * This should never happen except in the case of a VM regression so
930 	 * warn about it.
931 	 */
932 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
933 			PF_MEMALLOC))
934 		goto redirty;
935 
936 	/*
937 	 * Given that we do not allow direct reclaim to call us, we should
938 	 * never be called while in a filesystem transaction.
939 	 */
940 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
941 		goto redirty;
942 
943 	/*
944 	 * Is this page beyond the end of the file?
945 	 *
946 	 * The page index is less than the end_index, adjust the end_offset
947 	 * to the highest offset that this page should represent.
948 	 * -----------------------------------------------------
949 	 * |			file mapping	       | <EOF> |
950 	 * -----------------------------------------------------
951 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
952 	 * ^--------------------------------^----------|--------
953 	 * |     desired writeback range    |      see else    |
954 	 * ---------------------------------^------------------|
955 	 */
956 	offset = i_size_read(inode);
957 	end_index = offset >> PAGE_SHIFT;
958 	if (page->index < end_index)
959 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
960 	else {
961 		/*
962 		 * Check whether the page to write out is beyond or straddles
963 		 * i_size or not.
964 		 * -------------------------------------------------------
965 		 * |		file mapping		        | <EOF>  |
966 		 * -------------------------------------------------------
967 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
968 		 * ^--------------------------------^-----------|---------
969 		 * |				    |      Straddles     |
970 		 * ---------------------------------^-----------|--------|
971 		 */
972 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
973 
974 		/*
975 		 * Skip the page if it is fully outside i_size, e.g. due to a
976 		 * truncate operation that is in progress. We must redirty the
977 		 * page so that reclaim stops reclaiming it. Otherwise
978 		 * xfs_vm_releasepage() is called on it and gets confused.
979 		 *
980 		 * Note that the end_index is unsigned long, it would overflow
981 		 * if the given offset is greater than 16TB on 32-bit system
982 		 * and if we do check the page is fully outside i_size or not
983 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
984 		 * will be evaluated to 0.  Hence this page will be redirtied
985 		 * and be written out repeatedly which would result in an
986 		 * infinite loop, the user program that perform this operation
987 		 * will hang.  Instead, we can verify this situation by checking
988 		 * if the page to write is totally beyond the i_size or if it's
989 		 * offset is just equal to the EOF.
990 		 */
991 		if (page->index > end_index ||
992 		    (page->index == end_index && offset_into_page == 0))
993 			goto redirty;
994 
995 		/*
996 		 * The page straddles i_size.  It must be zeroed out on each
997 		 * and every writepage invocation because it may be mmapped.
998 		 * "A file is mapped in multiples of the page size.  For a file
999 		 * that is not a multiple of the page size, the remaining
1000 		 * memory is zeroed when mapped, and writes to that region are
1001 		 * not written out to the file."
1002 		 */
1003 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1004 
1005 		/* Adjust the end_offset to the end of file */
1006 		end_offset = offset;
1007 	}
1008 
1009 	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1010 
1011 redirty:
1012 	redirty_page_for_writepage(wbc, page);
1013 	unlock_page(page);
1014 	return 0;
1015 }
1016 
1017 STATIC int
1018 xfs_vm_writepage(
1019 	struct page		*page,
1020 	struct writeback_control *wbc)
1021 {
1022 	struct xfs_writepage_ctx wpc = {
1023 		.io_type = XFS_IO_INVALID,
1024 	};
1025 	int			ret;
1026 
1027 	ret = xfs_do_writepage(page, wbc, &wpc);
1028 	if (wpc.ioend)
1029 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1030 	return ret;
1031 }
1032 
1033 STATIC int
1034 xfs_vm_writepages(
1035 	struct address_space	*mapping,
1036 	struct writeback_control *wbc)
1037 {
1038 	struct xfs_writepage_ctx wpc = {
1039 		.io_type = XFS_IO_INVALID,
1040 	};
1041 	int			ret;
1042 
1043 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1044 	if (dax_mapping(mapping))
1045 		return dax_writeback_mapping_range(mapping,
1046 				xfs_find_bdev_for_inode(mapping->host), wbc);
1047 
1048 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1049 	if (wpc.ioend)
1050 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1051 	return ret;
1052 }
1053 
1054 /*
1055  * Called to move a page into cleanable state - and from there
1056  * to be released. The page should already be clean. We always
1057  * have buffer heads in this call.
1058  *
1059  * Returns 1 if the page is ok to release, 0 otherwise.
1060  */
1061 STATIC int
1062 xfs_vm_releasepage(
1063 	struct page		*page,
1064 	gfp_t			gfp_mask)
1065 {
1066 	int			delalloc, unwritten;
1067 
1068 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1069 
1070 	/*
1071 	 * mm accommodates an old ext3 case where clean pages might not have had
1072 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1073 	 * ->releasepage() via shrink_active_list(). Conversely,
1074 	 * block_invalidatepage() can send pages that are still marked dirty
1075 	 * but otherwise have invalidated buffers.
1076 	 *
1077 	 * We've historically freed buffers on the latter. Instead, quietly
1078 	 * filter out all dirty pages to avoid spurious buffer state warnings.
1079 	 * This can likely be removed once shrink_active_list() is fixed.
1080 	 */
1081 	if (PageDirty(page))
1082 		return 0;
1083 
1084 	xfs_count_page_state(page, &delalloc, &unwritten);
1085 
1086 	if (WARN_ON_ONCE(delalloc))
1087 		return 0;
1088 	if (WARN_ON_ONCE(unwritten))
1089 		return 0;
1090 
1091 	return try_to_free_buffers(page);
1092 }
1093 
1094 /*
1095  * When we map a DIO buffer, we may need to pass flags to
1096  * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1097  *
1098  * Note that for DIO, an IO to the highest supported file block offset (i.e.
1099  * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1100  * bit variable. Hence if we see this overflow, we have to assume that the IO is
1101  * extending the file size. We won't know for sure until IO completion is run
1102  * and the actual max write offset is communicated to the IO completion
1103  * routine.
1104  */
1105 static void
1106 xfs_map_direct(
1107 	struct inode		*inode,
1108 	struct buffer_head	*bh_result,
1109 	struct xfs_bmbt_irec	*imap,
1110 	xfs_off_t		offset)
1111 {
1112 	uintptr_t		*flags = (uintptr_t *)&bh_result->b_private;
1113 	xfs_off_t		size = bh_result->b_size;
1114 
1115 	trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1116 		ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
1117 
1118 	if (ISUNWRITTEN(imap)) {
1119 		*flags |= XFS_DIO_FLAG_UNWRITTEN;
1120 		set_buffer_defer_completion(bh_result);
1121 	} else if (offset + size > i_size_read(inode) || offset + size < 0) {
1122 		*flags |= XFS_DIO_FLAG_APPEND;
1123 		set_buffer_defer_completion(bh_result);
1124 	}
1125 }
1126 
1127 /*
1128  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1129  * is, so that we can avoid repeated get_blocks calls.
1130  *
1131  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1132  * for blocks beyond EOF must be marked new so that sub block regions can be
1133  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1134  * was just allocated or is unwritten, otherwise the callers would overwrite
1135  * existing data with zeros. Hence we have to split the mapping into a range up
1136  * to and including EOF, and a second mapping for beyond EOF.
1137  */
1138 static void
1139 xfs_map_trim_size(
1140 	struct inode		*inode,
1141 	sector_t		iblock,
1142 	struct buffer_head	*bh_result,
1143 	struct xfs_bmbt_irec	*imap,
1144 	xfs_off_t		offset,
1145 	ssize_t			size)
1146 {
1147 	xfs_off_t		mapping_size;
1148 
1149 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1150 	mapping_size <<= inode->i_blkbits;
1151 
1152 	ASSERT(mapping_size > 0);
1153 	if (mapping_size > size)
1154 		mapping_size = size;
1155 	if (offset < i_size_read(inode) &&
1156 	    offset + mapping_size >= i_size_read(inode)) {
1157 		/* limit mapping to block that spans EOF */
1158 		mapping_size = roundup_64(i_size_read(inode) - offset,
1159 					  1 << inode->i_blkbits);
1160 	}
1161 	if (mapping_size > LONG_MAX)
1162 		mapping_size = LONG_MAX;
1163 
1164 	bh_result->b_size = mapping_size;
1165 }
1166 
1167 STATIC int
1168 __xfs_get_blocks(
1169 	struct inode		*inode,
1170 	sector_t		iblock,
1171 	struct buffer_head	*bh_result,
1172 	int			create,
1173 	bool			direct,
1174 	bool			dax_fault)
1175 {
1176 	struct xfs_inode	*ip = XFS_I(inode);
1177 	struct xfs_mount	*mp = ip->i_mount;
1178 	xfs_fileoff_t		offset_fsb, end_fsb;
1179 	int			error = 0;
1180 	int			lockmode = 0;
1181 	struct xfs_bmbt_irec	imap;
1182 	int			nimaps = 1;
1183 	xfs_off_t		offset;
1184 	ssize_t			size;
1185 	int			new = 0;
1186 
1187 	BUG_ON(create && !direct);
1188 
1189 	if (XFS_FORCED_SHUTDOWN(mp))
1190 		return -EIO;
1191 
1192 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1193 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1194 	size = bh_result->b_size;
1195 
1196 	if (!create && offset >= i_size_read(inode))
1197 		return 0;
1198 
1199 	/*
1200 	 * Direct I/O is usually done on preallocated files, so try getting
1201 	 * a block mapping without an exclusive lock first.
1202 	 */
1203 	lockmode = xfs_ilock_data_map_shared(ip);
1204 
1205 	ASSERT(offset <= mp->m_super->s_maxbytes);
1206 	if (offset + size > mp->m_super->s_maxbytes)
1207 		size = mp->m_super->s_maxbytes - offset;
1208 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1209 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1210 
1211 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1212 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1213 	if (error)
1214 		goto out_unlock;
1215 
1216 	/* for DAX, we convert unwritten extents directly */
1217 	if (create &&
1218 	    (!nimaps ||
1219 	     (imap.br_startblock == HOLESTARTBLOCK ||
1220 	      imap.br_startblock == DELAYSTARTBLOCK) ||
1221 	     (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1222 		/*
1223 		 * xfs_iomap_write_direct() expects the shared lock. It
1224 		 * is unlocked on return.
1225 		 */
1226 		if (lockmode == XFS_ILOCK_EXCL)
1227 			xfs_ilock_demote(ip, lockmode);
1228 
1229 		error = xfs_iomap_write_direct(ip, offset, size,
1230 					       &imap, nimaps);
1231 		if (error)
1232 			return error;
1233 		new = 1;
1234 
1235 		trace_xfs_get_blocks_alloc(ip, offset, size,
1236 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1237 						   : XFS_IO_DELALLOC, &imap);
1238 	} else if (nimaps) {
1239 		trace_xfs_get_blocks_found(ip, offset, size,
1240 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1241 						   : XFS_IO_OVERWRITE, &imap);
1242 		xfs_iunlock(ip, lockmode);
1243 	} else {
1244 		trace_xfs_get_blocks_notfound(ip, offset, size);
1245 		goto out_unlock;
1246 	}
1247 
1248 	if (IS_DAX(inode) && create) {
1249 		ASSERT(!ISUNWRITTEN(&imap));
1250 		/* zeroing is not needed at a higher layer */
1251 		new = 0;
1252 	}
1253 
1254 	/* trim mapping down to size requested */
1255 	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1256 
1257 	/*
1258 	 * For unwritten extents do not report a disk address in the buffered
1259 	 * read case (treat as if we're reading into a hole).
1260 	 */
1261 	if (imap.br_startblock != HOLESTARTBLOCK &&
1262 	    imap.br_startblock != DELAYSTARTBLOCK &&
1263 	    (create || !ISUNWRITTEN(&imap))) {
1264 		xfs_map_buffer(inode, bh_result, &imap, offset);
1265 		if (ISUNWRITTEN(&imap))
1266 			set_buffer_unwritten(bh_result);
1267 		/* direct IO needs special help */
1268 		if (create) {
1269 			if (dax_fault)
1270 				ASSERT(!ISUNWRITTEN(&imap));
1271 			else
1272 				xfs_map_direct(inode, bh_result, &imap, offset);
1273 		}
1274 	}
1275 
1276 	/*
1277 	 * If this is a realtime file, data may be on a different device.
1278 	 * to that pointed to from the buffer_head b_bdev currently.
1279 	 */
1280 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1281 
1282 	/*
1283 	 * If we previously allocated a block out beyond eof and we are now
1284 	 * coming back to use it then we will need to flag it as new even if it
1285 	 * has a disk address.
1286 	 *
1287 	 * With sub-block writes into unwritten extents we also need to mark
1288 	 * the buffer as new so that the unwritten parts of the buffer gets
1289 	 * correctly zeroed.
1290 	 */
1291 	if (create &&
1292 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1293 	     (offset >= i_size_read(inode)) ||
1294 	     (new || ISUNWRITTEN(&imap))))
1295 		set_buffer_new(bh_result);
1296 
1297 	BUG_ON(direct && imap.br_startblock == DELAYSTARTBLOCK);
1298 
1299 	return 0;
1300 
1301 out_unlock:
1302 	xfs_iunlock(ip, lockmode);
1303 	return error;
1304 }
1305 
1306 int
1307 xfs_get_blocks(
1308 	struct inode		*inode,
1309 	sector_t		iblock,
1310 	struct buffer_head	*bh_result,
1311 	int			create)
1312 {
1313 	return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1314 }
1315 
1316 int
1317 xfs_get_blocks_direct(
1318 	struct inode		*inode,
1319 	sector_t		iblock,
1320 	struct buffer_head	*bh_result,
1321 	int			create)
1322 {
1323 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1324 }
1325 
1326 int
1327 xfs_get_blocks_dax_fault(
1328 	struct inode		*inode,
1329 	sector_t		iblock,
1330 	struct buffer_head	*bh_result,
1331 	int			create)
1332 {
1333 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1334 }
1335 
1336 /*
1337  * Complete a direct I/O write request.
1338  *
1339  * xfs_map_direct passes us some flags in the private data to tell us what to
1340  * do.  If no flags are set, then the write IO is an overwrite wholly within
1341  * the existing allocated file size and so there is nothing for us to do.
1342  *
1343  * Note that in this case the completion can be called in interrupt context,
1344  * whereas if we have flags set we will always be called in task context
1345  * (i.e. from a workqueue).
1346  */
1347 int
1348 xfs_end_io_direct_write(
1349 	struct kiocb		*iocb,
1350 	loff_t			offset,
1351 	ssize_t			size,
1352 	void			*private)
1353 {
1354 	struct inode		*inode = file_inode(iocb->ki_filp);
1355 	struct xfs_inode	*ip = XFS_I(inode);
1356 	uintptr_t		flags = (uintptr_t)private;
1357 	int			error = 0;
1358 
1359 	trace_xfs_end_io_direct_write(ip, offset, size);
1360 
1361 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
1362 		return -EIO;
1363 
1364 	if (size <= 0)
1365 		return size;
1366 
1367 	/*
1368 	 * The flags tell us whether we are doing unwritten extent conversions
1369 	 * or an append transaction that updates the on-disk file size. These
1370 	 * cases are the only cases where we should *potentially* be needing
1371 	 * to update the VFS inode size.
1372 	 */
1373 	if (flags == 0) {
1374 		ASSERT(offset + size <= i_size_read(inode));
1375 		return 0;
1376 	}
1377 
1378 	/*
1379 	 * We need to update the in-core inode size here so that we don't end up
1380 	 * with the on-disk inode size being outside the in-core inode size. We
1381 	 * have no other method of updating EOF for AIO, so always do it here
1382 	 * if necessary.
1383 	 *
1384 	 * We need to lock the test/set EOF update as we can be racing with
1385 	 * other IO completions here to update the EOF. Failing to serialise
1386 	 * here can result in EOF moving backwards and Bad Things Happen when
1387 	 * that occurs.
1388 	 */
1389 	spin_lock(&ip->i_flags_lock);
1390 	if (offset + size > i_size_read(inode))
1391 		i_size_write(inode, offset + size);
1392 	spin_unlock(&ip->i_flags_lock);
1393 
1394 	if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1395 		trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1396 
1397 		error = xfs_iomap_write_unwritten(ip, offset, size);
1398 	} else if (flags & XFS_DIO_FLAG_APPEND) {
1399 		trace_xfs_end_io_direct_write_append(ip, offset, size);
1400 
1401 		error = xfs_setfilesize(ip, offset, size);
1402 	}
1403 
1404 	return error;
1405 }
1406 
1407 STATIC ssize_t
1408 xfs_vm_direct_IO(
1409 	struct kiocb		*iocb,
1410 	struct iov_iter		*iter)
1411 {
1412 	/*
1413 	 * We just need the method present so that open/fcntl allow direct I/O.
1414 	 */
1415 	return -EINVAL;
1416 }
1417 
1418 STATIC sector_t
1419 xfs_vm_bmap(
1420 	struct address_space	*mapping,
1421 	sector_t		block)
1422 {
1423 	struct inode		*inode = (struct inode *)mapping->host;
1424 	struct xfs_inode	*ip = XFS_I(inode);
1425 
1426 	trace_xfs_vm_bmap(XFS_I(inode));
1427 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1428 	filemap_write_and_wait(mapping);
1429 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1430 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1431 }
1432 
1433 STATIC int
1434 xfs_vm_readpage(
1435 	struct file		*unused,
1436 	struct page		*page)
1437 {
1438 	trace_xfs_vm_readpage(page->mapping->host, 1);
1439 	return mpage_readpage(page, xfs_get_blocks);
1440 }
1441 
1442 STATIC int
1443 xfs_vm_readpages(
1444 	struct file		*unused,
1445 	struct address_space	*mapping,
1446 	struct list_head	*pages,
1447 	unsigned		nr_pages)
1448 {
1449 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1450 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1451 }
1452 
1453 /*
1454  * This is basically a copy of __set_page_dirty_buffers() with one
1455  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1456  * dirty, we'll never be able to clean them because we don't write buffers
1457  * beyond EOF, and that means we can't invalidate pages that span EOF
1458  * that have been marked dirty. Further, the dirty state can leak into
1459  * the file interior if the file is extended, resulting in all sorts of
1460  * bad things happening as the state does not match the underlying data.
1461  *
1462  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1463  * this only exist because of bufferheads and how the generic code manages them.
1464  */
1465 STATIC int
1466 xfs_vm_set_page_dirty(
1467 	struct page		*page)
1468 {
1469 	struct address_space	*mapping = page->mapping;
1470 	struct inode		*inode = mapping->host;
1471 	loff_t			end_offset;
1472 	loff_t			offset;
1473 	int			newly_dirty;
1474 
1475 	if (unlikely(!mapping))
1476 		return !TestSetPageDirty(page);
1477 
1478 	end_offset = i_size_read(inode);
1479 	offset = page_offset(page);
1480 
1481 	spin_lock(&mapping->private_lock);
1482 	if (page_has_buffers(page)) {
1483 		struct buffer_head *head = page_buffers(page);
1484 		struct buffer_head *bh = head;
1485 
1486 		do {
1487 			if (offset < end_offset)
1488 				set_buffer_dirty(bh);
1489 			bh = bh->b_this_page;
1490 			offset += 1 << inode->i_blkbits;
1491 		} while (bh != head);
1492 	}
1493 	/*
1494 	 * Lock out page->mem_cgroup migration to keep PageDirty
1495 	 * synchronized with per-memcg dirty page counters.
1496 	 */
1497 	lock_page_memcg(page);
1498 	newly_dirty = !TestSetPageDirty(page);
1499 	spin_unlock(&mapping->private_lock);
1500 
1501 	if (newly_dirty) {
1502 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1503 		unsigned long flags;
1504 
1505 		spin_lock_irqsave(&mapping->tree_lock, flags);
1506 		if (page->mapping) {	/* Race with truncate? */
1507 			WARN_ON_ONCE(!PageUptodate(page));
1508 			account_page_dirtied(page, mapping);
1509 			radix_tree_tag_set(&mapping->page_tree,
1510 					page_index(page), PAGECACHE_TAG_DIRTY);
1511 		}
1512 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1513 	}
1514 	unlock_page_memcg(page);
1515 	if (newly_dirty)
1516 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1517 	return newly_dirty;
1518 }
1519 
1520 const struct address_space_operations xfs_address_space_operations = {
1521 	.readpage		= xfs_vm_readpage,
1522 	.readpages		= xfs_vm_readpages,
1523 	.writepage		= xfs_vm_writepage,
1524 	.writepages		= xfs_vm_writepages,
1525 	.set_page_dirty		= xfs_vm_set_page_dirty,
1526 	.releasepage		= xfs_vm_releasepage,
1527 	.invalidatepage		= xfs_vm_invalidatepage,
1528 	.bmap			= xfs_vm_bmap,
1529 	.direct_IO		= xfs_vm_direct_IO,
1530 	.migratepage		= buffer_migrate_page,
1531 	.is_partially_uptodate  = block_is_partially_uptodate,
1532 	.error_remove_page	= generic_error_remove_page,
1533 };
1534