xref: /linux/fs/xfs/xfs_aops.c (revision 3e44c471a2dab210f7e9b1e5f7d4d54d52df59eb)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38 
39 void
40 xfs_count_page_state(
41 	struct page		*page,
42 	int			*delalloc,
43 	int			*unwritten)
44 {
45 	struct buffer_head	*bh, *head;
46 
47 	*delalloc = *unwritten = 0;
48 
49 	bh = head = page_buffers(page);
50 	do {
51 		if (buffer_unwritten(bh))
52 			(*unwritten) = 1;
53 		else if (buffer_delay(bh))
54 			(*delalloc) = 1;
55 	} while ((bh = bh->b_this_page) != head);
56 }
57 
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 	struct inode		*inode)
61 {
62 	struct xfs_inode	*ip = XFS_I(inode);
63 	struct xfs_mount	*mp = ip->i_mount;
64 
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return mp->m_rtdev_targp->bt_bdev;
67 	else
68 		return mp->m_ddev_targp->bt_bdev;
69 }
70 
71 /*
72  * We're now finished for good with this ioend structure.
73  * Update the page state via the associated buffer_heads,
74  * release holds on the inode and bio, and finally free
75  * up memory.  Do not use the ioend after this.
76  */
77 STATIC void
78 xfs_destroy_ioend(
79 	xfs_ioend_t		*ioend)
80 {
81 	struct buffer_head	*bh, *next;
82 
83 	for (bh = ioend->io_buffer_head; bh; bh = next) {
84 		next = bh->b_private;
85 		bh->b_end_io(bh, !ioend->io_error);
86 	}
87 
88 	mempool_free(ioend, xfs_ioend_pool);
89 }
90 
91 /*
92  * Fast and loose check if this write could update the on-disk inode size.
93  */
94 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95 {
96 	return ioend->io_offset + ioend->io_size >
97 		XFS_I(ioend->io_inode)->i_d.di_size;
98 }
99 
100 STATIC int
101 xfs_setfilesize_trans_alloc(
102 	struct xfs_ioend	*ioend)
103 {
104 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
105 	struct xfs_trans	*tp;
106 	int			error;
107 
108 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109 
110 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
111 	if (error) {
112 		xfs_trans_cancel(tp, 0);
113 		return error;
114 	}
115 
116 	ioend->io_append_trans = tp;
117 
118 	/*
119 	 * We may pass freeze protection with a transaction.  So tell lockdep
120 	 * we released it.
121 	 */
122 	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
123 		      1, _THIS_IP_);
124 	/*
125 	 * We hand off the transaction to the completion thread now, so
126 	 * clear the flag here.
127 	 */
128 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
129 	return 0;
130 }
131 
132 /*
133  * Update on-disk file size now that data has been written to disk.
134  */
135 STATIC int
136 xfs_setfilesize(
137 	struct xfs_inode	*ip,
138 	struct xfs_trans	*tp,
139 	xfs_off_t		offset,
140 	size_t			size)
141 {
142 	xfs_fsize_t		isize;
143 
144 	xfs_ilock(ip, XFS_ILOCK_EXCL);
145 	isize = xfs_new_eof(ip, offset + size);
146 	if (!isize) {
147 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
148 		xfs_trans_cancel(tp, 0);
149 		return 0;
150 	}
151 
152 	trace_xfs_setfilesize(ip, offset, size);
153 
154 	ip->i_d.di_size = isize;
155 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
156 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
157 
158 	return xfs_trans_commit(tp, 0);
159 }
160 
161 STATIC int
162 xfs_setfilesize_ioend(
163 	struct xfs_ioend	*ioend)
164 {
165 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
166 	struct xfs_trans	*tp = ioend->io_append_trans;
167 
168 	/*
169 	 * The transaction may have been allocated in the I/O submission thread,
170 	 * thus we need to mark ourselves as being in a transaction manually.
171 	 * Similarly for freeze protection.
172 	 */
173 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
174 	rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
175 			   0, 1, _THIS_IP_);
176 
177 	return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
178 }
179 
180 /*
181  * Schedule IO completion handling on the final put of an ioend.
182  *
183  * If there is no work to do we might as well call it a day and free the
184  * ioend right now.
185  */
186 STATIC void
187 xfs_finish_ioend(
188 	struct xfs_ioend	*ioend)
189 {
190 	if (atomic_dec_and_test(&ioend->io_remaining)) {
191 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
192 
193 		if (ioend->io_type == XFS_IO_UNWRITTEN)
194 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
195 		else if (ioend->io_append_trans)
196 			queue_work(mp->m_data_workqueue, &ioend->io_work);
197 		else
198 			xfs_destroy_ioend(ioend);
199 	}
200 }
201 
202 /*
203  * IO write completion.
204  */
205 STATIC void
206 xfs_end_io(
207 	struct work_struct *work)
208 {
209 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
210 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
211 	int		error = 0;
212 
213 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
214 		ioend->io_error = -EIO;
215 		goto done;
216 	}
217 	if (ioend->io_error)
218 		goto done;
219 
220 	/*
221 	 * For unwritten extents we need to issue transactions to convert a
222 	 * range to normal written extens after the data I/O has finished.
223 	 */
224 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
225 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226 						  ioend->io_size);
227 	} else if (ioend->io_append_trans) {
228 		error = xfs_setfilesize_ioend(ioend);
229 	} else {
230 		ASSERT(!xfs_ioend_is_append(ioend));
231 	}
232 
233 done:
234 	if (error)
235 		ioend->io_error = error;
236 	xfs_destroy_ioend(ioend);
237 }
238 
239 /*
240  * Allocate and initialise an IO completion structure.
241  * We need to track unwritten extent write completion here initially.
242  * We'll need to extend this for updating the ondisk inode size later
243  * (vs. incore size).
244  */
245 STATIC xfs_ioend_t *
246 xfs_alloc_ioend(
247 	struct inode		*inode,
248 	unsigned int		type)
249 {
250 	xfs_ioend_t		*ioend;
251 
252 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
253 
254 	/*
255 	 * Set the count to 1 initially, which will prevent an I/O
256 	 * completion callback from happening before we have started
257 	 * all the I/O from calling the completion routine too early.
258 	 */
259 	atomic_set(&ioend->io_remaining, 1);
260 	ioend->io_error = 0;
261 	ioend->io_list = NULL;
262 	ioend->io_type = type;
263 	ioend->io_inode = inode;
264 	ioend->io_buffer_head = NULL;
265 	ioend->io_buffer_tail = NULL;
266 	ioend->io_offset = 0;
267 	ioend->io_size = 0;
268 	ioend->io_append_trans = NULL;
269 
270 	INIT_WORK(&ioend->io_work, xfs_end_io);
271 	return ioend;
272 }
273 
274 STATIC int
275 xfs_map_blocks(
276 	struct inode		*inode,
277 	loff_t			offset,
278 	struct xfs_bmbt_irec	*imap,
279 	int			type,
280 	int			nonblocking)
281 {
282 	struct xfs_inode	*ip = XFS_I(inode);
283 	struct xfs_mount	*mp = ip->i_mount;
284 	ssize_t			count = 1 << inode->i_blkbits;
285 	xfs_fileoff_t		offset_fsb, end_fsb;
286 	int			error = 0;
287 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
288 	int			nimaps = 1;
289 
290 	if (XFS_FORCED_SHUTDOWN(mp))
291 		return -EIO;
292 
293 	if (type == XFS_IO_UNWRITTEN)
294 		bmapi_flags |= XFS_BMAPI_IGSTATE;
295 
296 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
297 		if (nonblocking)
298 			return -EAGAIN;
299 		xfs_ilock(ip, XFS_ILOCK_SHARED);
300 	}
301 
302 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
303 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
304 	ASSERT(offset <= mp->m_super->s_maxbytes);
305 
306 	if (offset + count > mp->m_super->s_maxbytes)
307 		count = mp->m_super->s_maxbytes - offset;
308 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
309 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
310 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
311 				imap, &nimaps, bmapi_flags);
312 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
313 
314 	if (error)
315 		return error;
316 
317 	if (type == XFS_IO_DELALLOC &&
318 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
319 		error = xfs_iomap_write_allocate(ip, offset, imap);
320 		if (!error)
321 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
322 		return error;
323 	}
324 
325 #ifdef DEBUG
326 	if (type == XFS_IO_UNWRITTEN) {
327 		ASSERT(nimaps);
328 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
329 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
330 	}
331 #endif
332 	if (nimaps)
333 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
334 	return 0;
335 }
336 
337 STATIC int
338 xfs_imap_valid(
339 	struct inode		*inode,
340 	struct xfs_bmbt_irec	*imap,
341 	xfs_off_t		offset)
342 {
343 	offset >>= inode->i_blkbits;
344 
345 	return offset >= imap->br_startoff &&
346 		offset < imap->br_startoff + imap->br_blockcount;
347 }
348 
349 /*
350  * BIO completion handler for buffered IO.
351  */
352 STATIC void
353 xfs_end_bio(
354 	struct bio		*bio,
355 	int			error)
356 {
357 	xfs_ioend_t		*ioend = bio->bi_private;
358 
359 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
360 
361 	/* Toss bio and pass work off to an xfsdatad thread */
362 	bio->bi_private = NULL;
363 	bio->bi_end_io = NULL;
364 	bio_put(bio);
365 
366 	xfs_finish_ioend(ioend);
367 }
368 
369 STATIC void
370 xfs_submit_ioend_bio(
371 	struct writeback_control *wbc,
372 	xfs_ioend_t		*ioend,
373 	struct bio		*bio)
374 {
375 	atomic_inc(&ioend->io_remaining);
376 	bio->bi_private = ioend;
377 	bio->bi_end_io = xfs_end_bio;
378 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
379 }
380 
381 STATIC struct bio *
382 xfs_alloc_ioend_bio(
383 	struct buffer_head	*bh)
384 {
385 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
386 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
387 
388 	ASSERT(bio->bi_private == NULL);
389 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
390 	bio->bi_bdev = bh->b_bdev;
391 	return bio;
392 }
393 
394 STATIC void
395 xfs_start_buffer_writeback(
396 	struct buffer_head	*bh)
397 {
398 	ASSERT(buffer_mapped(bh));
399 	ASSERT(buffer_locked(bh));
400 	ASSERT(!buffer_delay(bh));
401 	ASSERT(!buffer_unwritten(bh));
402 
403 	mark_buffer_async_write(bh);
404 	set_buffer_uptodate(bh);
405 	clear_buffer_dirty(bh);
406 }
407 
408 STATIC void
409 xfs_start_page_writeback(
410 	struct page		*page,
411 	int			clear_dirty,
412 	int			buffers)
413 {
414 	ASSERT(PageLocked(page));
415 	ASSERT(!PageWriteback(page));
416 
417 	/*
418 	 * if the page was not fully cleaned, we need to ensure that the higher
419 	 * layers come back to it correctly. That means we need to keep the page
420 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
421 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
422 	 * write this page in this writeback sweep will be made.
423 	 */
424 	if (clear_dirty) {
425 		clear_page_dirty_for_io(page);
426 		set_page_writeback(page);
427 	} else
428 		set_page_writeback_keepwrite(page);
429 
430 	unlock_page(page);
431 
432 	/* If no buffers on the page are to be written, finish it here */
433 	if (!buffers)
434 		end_page_writeback(page);
435 }
436 
437 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
438 {
439 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
440 }
441 
442 /*
443  * Submit all of the bios for all of the ioends we have saved up, covering the
444  * initial writepage page and also any probed pages.
445  *
446  * Because we may have multiple ioends spanning a page, we need to start
447  * writeback on all the buffers before we submit them for I/O. If we mark the
448  * buffers as we got, then we can end up with a page that only has buffers
449  * marked async write and I/O complete on can occur before we mark the other
450  * buffers async write.
451  *
452  * The end result of this is that we trip a bug in end_page_writeback() because
453  * we call it twice for the one page as the code in end_buffer_async_write()
454  * assumes that all buffers on the page are started at the same time.
455  *
456  * The fix is two passes across the ioend list - one to start writeback on the
457  * buffer_heads, and then submit them for I/O on the second pass.
458  *
459  * If @fail is non-zero, it means that we have a situation where some part of
460  * the submission process has failed after we have marked paged for writeback
461  * and unlocked them. In this situation, we need to fail the ioend chain rather
462  * than submit it to IO. This typically only happens on a filesystem shutdown.
463  */
464 STATIC void
465 xfs_submit_ioend(
466 	struct writeback_control *wbc,
467 	xfs_ioend_t		*ioend,
468 	int			fail)
469 {
470 	xfs_ioend_t		*head = ioend;
471 	xfs_ioend_t		*next;
472 	struct buffer_head	*bh;
473 	struct bio		*bio;
474 	sector_t		lastblock = 0;
475 
476 	/* Pass 1 - start writeback */
477 	do {
478 		next = ioend->io_list;
479 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
480 			xfs_start_buffer_writeback(bh);
481 	} while ((ioend = next) != NULL);
482 
483 	/* Pass 2 - submit I/O */
484 	ioend = head;
485 	do {
486 		next = ioend->io_list;
487 		bio = NULL;
488 
489 		/*
490 		 * If we are failing the IO now, just mark the ioend with an
491 		 * error and finish it. This will run IO completion immediately
492 		 * as there is only one reference to the ioend at this point in
493 		 * time.
494 		 */
495 		if (fail) {
496 			ioend->io_error = fail;
497 			xfs_finish_ioend(ioend);
498 			continue;
499 		}
500 
501 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
502 
503 			if (!bio) {
504  retry:
505 				bio = xfs_alloc_ioend_bio(bh);
506 			} else if (bh->b_blocknr != lastblock + 1) {
507 				xfs_submit_ioend_bio(wbc, ioend, bio);
508 				goto retry;
509 			}
510 
511 			if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
512 				xfs_submit_ioend_bio(wbc, ioend, bio);
513 				goto retry;
514 			}
515 
516 			lastblock = bh->b_blocknr;
517 		}
518 		if (bio)
519 			xfs_submit_ioend_bio(wbc, ioend, bio);
520 		xfs_finish_ioend(ioend);
521 	} while ((ioend = next) != NULL);
522 }
523 
524 /*
525  * Cancel submission of all buffer_heads so far in this endio.
526  * Toss the endio too.  Only ever called for the initial page
527  * in a writepage request, so only ever one page.
528  */
529 STATIC void
530 xfs_cancel_ioend(
531 	xfs_ioend_t		*ioend)
532 {
533 	xfs_ioend_t		*next;
534 	struct buffer_head	*bh, *next_bh;
535 
536 	do {
537 		next = ioend->io_list;
538 		bh = ioend->io_buffer_head;
539 		do {
540 			next_bh = bh->b_private;
541 			clear_buffer_async_write(bh);
542 			/*
543 			 * The unwritten flag is cleared when added to the
544 			 * ioend. We're not submitting for I/O so mark the
545 			 * buffer unwritten again for next time around.
546 			 */
547 			if (ioend->io_type == XFS_IO_UNWRITTEN)
548 				set_buffer_unwritten(bh);
549 			unlock_buffer(bh);
550 		} while ((bh = next_bh) != NULL);
551 
552 		mempool_free(ioend, xfs_ioend_pool);
553 	} while ((ioend = next) != NULL);
554 }
555 
556 /*
557  * Test to see if we've been building up a completion structure for
558  * earlier buffers -- if so, we try to append to this ioend if we
559  * can, otherwise we finish off any current ioend and start another.
560  * Return true if we've finished the given ioend.
561  */
562 STATIC void
563 xfs_add_to_ioend(
564 	struct inode		*inode,
565 	struct buffer_head	*bh,
566 	xfs_off_t		offset,
567 	unsigned int		type,
568 	xfs_ioend_t		**result,
569 	int			need_ioend)
570 {
571 	xfs_ioend_t		*ioend = *result;
572 
573 	if (!ioend || need_ioend || type != ioend->io_type) {
574 		xfs_ioend_t	*previous = *result;
575 
576 		ioend = xfs_alloc_ioend(inode, type);
577 		ioend->io_offset = offset;
578 		ioend->io_buffer_head = bh;
579 		ioend->io_buffer_tail = bh;
580 		if (previous)
581 			previous->io_list = ioend;
582 		*result = ioend;
583 	} else {
584 		ioend->io_buffer_tail->b_private = bh;
585 		ioend->io_buffer_tail = bh;
586 	}
587 
588 	bh->b_private = NULL;
589 	ioend->io_size += bh->b_size;
590 }
591 
592 STATIC void
593 xfs_map_buffer(
594 	struct inode		*inode,
595 	struct buffer_head	*bh,
596 	struct xfs_bmbt_irec	*imap,
597 	xfs_off_t		offset)
598 {
599 	sector_t		bn;
600 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
601 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
602 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
603 
604 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
605 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
606 
607 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
608 	      ((offset - iomap_offset) >> inode->i_blkbits);
609 
610 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
611 
612 	bh->b_blocknr = bn;
613 	set_buffer_mapped(bh);
614 }
615 
616 STATIC void
617 xfs_map_at_offset(
618 	struct inode		*inode,
619 	struct buffer_head	*bh,
620 	struct xfs_bmbt_irec	*imap,
621 	xfs_off_t		offset)
622 {
623 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
624 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
625 
626 	xfs_map_buffer(inode, bh, imap, offset);
627 	set_buffer_mapped(bh);
628 	clear_buffer_delay(bh);
629 	clear_buffer_unwritten(bh);
630 }
631 
632 /*
633  * Test if a given page contains at least one buffer of a given @type.
634  * If @check_all_buffers is true, then we walk all the buffers in the page to
635  * try to find one of the type passed in. If it is not set, then the caller only
636  * needs to check the first buffer on the page for a match.
637  */
638 STATIC bool
639 xfs_check_page_type(
640 	struct page		*page,
641 	unsigned int		type,
642 	bool			check_all_buffers)
643 {
644 	struct buffer_head	*bh;
645 	struct buffer_head	*head;
646 
647 	if (PageWriteback(page))
648 		return false;
649 	if (!page->mapping)
650 		return false;
651 	if (!page_has_buffers(page))
652 		return false;
653 
654 	bh = head = page_buffers(page);
655 	do {
656 		if (buffer_unwritten(bh)) {
657 			if (type == XFS_IO_UNWRITTEN)
658 				return true;
659 		} else if (buffer_delay(bh)) {
660 			if (type == XFS_IO_DELALLOC)
661 				return true;
662 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
663 			if (type == XFS_IO_OVERWRITE)
664 				return true;
665 		}
666 
667 		/* If we are only checking the first buffer, we are done now. */
668 		if (!check_all_buffers)
669 			break;
670 	} while ((bh = bh->b_this_page) != head);
671 
672 	return false;
673 }
674 
675 /*
676  * Allocate & map buffers for page given the extent map. Write it out.
677  * except for the original page of a writepage, this is called on
678  * delalloc/unwritten pages only, for the original page it is possible
679  * that the page has no mapping at all.
680  */
681 STATIC int
682 xfs_convert_page(
683 	struct inode		*inode,
684 	struct page		*page,
685 	loff_t			tindex,
686 	struct xfs_bmbt_irec	*imap,
687 	xfs_ioend_t		**ioendp,
688 	struct writeback_control *wbc)
689 {
690 	struct buffer_head	*bh, *head;
691 	xfs_off_t		end_offset;
692 	unsigned long		p_offset;
693 	unsigned int		type;
694 	int			len, page_dirty;
695 	int			count = 0, done = 0, uptodate = 1;
696  	xfs_off_t		offset = page_offset(page);
697 
698 	if (page->index != tindex)
699 		goto fail;
700 	if (!trylock_page(page))
701 		goto fail;
702 	if (PageWriteback(page))
703 		goto fail_unlock_page;
704 	if (page->mapping != inode->i_mapping)
705 		goto fail_unlock_page;
706 	if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
707 		goto fail_unlock_page;
708 
709 	/*
710 	 * page_dirty is initially a count of buffers on the page before
711 	 * EOF and is decremented as we move each into a cleanable state.
712 	 *
713 	 * Derivation:
714 	 *
715 	 * End offset is the highest offset that this page should represent.
716 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
717 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
718 	 * hence give us the correct page_dirty count. On any other page,
719 	 * it will be zero and in that case we need page_dirty to be the
720 	 * count of buffers on the page.
721 	 */
722 	end_offset = min_t(unsigned long long,
723 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
724 			i_size_read(inode));
725 
726 	/*
727 	 * If the current map does not span the entire page we are about to try
728 	 * to write, then give up. The only way we can write a page that spans
729 	 * multiple mappings in a single writeback iteration is via the
730 	 * xfs_vm_writepage() function. Data integrity writeback requires the
731 	 * entire page to be written in a single attempt, otherwise the part of
732 	 * the page we don't write here doesn't get written as part of the data
733 	 * integrity sync.
734 	 *
735 	 * For normal writeback, we also don't attempt to write partial pages
736 	 * here as it simply means that write_cache_pages() will see it under
737 	 * writeback and ignore the page until some point in the future, at
738 	 * which time this will be the only page in the file that needs
739 	 * writeback.  Hence for more optimal IO patterns, we should always
740 	 * avoid partial page writeback due to multiple mappings on a page here.
741 	 */
742 	if (!xfs_imap_valid(inode, imap, end_offset))
743 		goto fail_unlock_page;
744 
745 	len = 1 << inode->i_blkbits;
746 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
747 					PAGE_CACHE_SIZE);
748 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
749 	page_dirty = p_offset / len;
750 
751 	/*
752 	 * The moment we find a buffer that doesn't match our current type
753 	 * specification or can't be written, abort the loop and start
754 	 * writeback. As per the above xfs_imap_valid() check, only
755 	 * xfs_vm_writepage() can handle partial page writeback fully - we are
756 	 * limited here to the buffers that are contiguous with the current
757 	 * ioend, and hence a buffer we can't write breaks that contiguity and
758 	 * we have to defer the rest of the IO to xfs_vm_writepage().
759 	 */
760 	bh = head = page_buffers(page);
761 	do {
762 		if (offset >= end_offset)
763 			break;
764 		if (!buffer_uptodate(bh))
765 			uptodate = 0;
766 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
767 			done = 1;
768 			break;
769 		}
770 
771 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
772 		    buffer_mapped(bh)) {
773 			if (buffer_unwritten(bh))
774 				type = XFS_IO_UNWRITTEN;
775 			else if (buffer_delay(bh))
776 				type = XFS_IO_DELALLOC;
777 			else
778 				type = XFS_IO_OVERWRITE;
779 
780 			/*
781 			 * imap should always be valid because of the above
782 			 * partial page end_offset check on the imap.
783 			 */
784 			ASSERT(xfs_imap_valid(inode, imap, offset));
785 
786 			lock_buffer(bh);
787 			if (type != XFS_IO_OVERWRITE)
788 				xfs_map_at_offset(inode, bh, imap, offset);
789 			xfs_add_to_ioend(inode, bh, offset, type,
790 					 ioendp, done);
791 
792 			page_dirty--;
793 			count++;
794 		} else {
795 			done = 1;
796 			break;
797 		}
798 	} while (offset += len, (bh = bh->b_this_page) != head);
799 
800 	if (uptodate && bh == head)
801 		SetPageUptodate(page);
802 
803 	if (count) {
804 		if (--wbc->nr_to_write <= 0 &&
805 		    wbc->sync_mode == WB_SYNC_NONE)
806 			done = 1;
807 	}
808 	xfs_start_page_writeback(page, !page_dirty, count);
809 
810 	return done;
811  fail_unlock_page:
812 	unlock_page(page);
813  fail:
814 	return 1;
815 }
816 
817 /*
818  * Convert & write out a cluster of pages in the same extent as defined
819  * by mp and following the start page.
820  */
821 STATIC void
822 xfs_cluster_write(
823 	struct inode		*inode,
824 	pgoff_t			tindex,
825 	struct xfs_bmbt_irec	*imap,
826 	xfs_ioend_t		**ioendp,
827 	struct writeback_control *wbc,
828 	pgoff_t			tlast)
829 {
830 	struct pagevec		pvec;
831 	int			done = 0, i;
832 
833 	pagevec_init(&pvec, 0);
834 	while (!done && tindex <= tlast) {
835 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
836 
837 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
838 			break;
839 
840 		for (i = 0; i < pagevec_count(&pvec); i++) {
841 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
842 					imap, ioendp, wbc);
843 			if (done)
844 				break;
845 		}
846 
847 		pagevec_release(&pvec);
848 		cond_resched();
849 	}
850 }
851 
852 STATIC void
853 xfs_vm_invalidatepage(
854 	struct page		*page,
855 	unsigned int		offset,
856 	unsigned int		length)
857 {
858 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
859 				 length);
860 	block_invalidatepage(page, offset, length);
861 }
862 
863 /*
864  * If the page has delalloc buffers on it, we need to punch them out before we
865  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
866  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
867  * is done on that same region - the delalloc extent is returned when none is
868  * supposed to be there.
869  *
870  * We prevent this by truncating away the delalloc regions on the page before
871  * invalidating it. Because they are delalloc, we can do this without needing a
872  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
873  * truncation without a transaction as there is no space left for block
874  * reservation (typically why we see a ENOSPC in writeback).
875  *
876  * This is not a performance critical path, so for now just do the punching a
877  * buffer head at a time.
878  */
879 STATIC void
880 xfs_aops_discard_page(
881 	struct page		*page)
882 {
883 	struct inode		*inode = page->mapping->host;
884 	struct xfs_inode	*ip = XFS_I(inode);
885 	struct buffer_head	*bh, *head;
886 	loff_t			offset = page_offset(page);
887 
888 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
889 		goto out_invalidate;
890 
891 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
892 		goto out_invalidate;
893 
894 	xfs_alert(ip->i_mount,
895 		"page discard on page %p, inode 0x%llx, offset %llu.",
896 			page, ip->i_ino, offset);
897 
898 	xfs_ilock(ip, XFS_ILOCK_EXCL);
899 	bh = head = page_buffers(page);
900 	do {
901 		int		error;
902 		xfs_fileoff_t	start_fsb;
903 
904 		if (!buffer_delay(bh))
905 			goto next_buffer;
906 
907 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
908 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
909 		if (error) {
910 			/* something screwed, just bail */
911 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
912 				xfs_alert(ip->i_mount,
913 			"page discard unable to remove delalloc mapping.");
914 			}
915 			break;
916 		}
917 next_buffer:
918 		offset += 1 << inode->i_blkbits;
919 
920 	} while ((bh = bh->b_this_page) != head);
921 
922 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
923 out_invalidate:
924 	xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
925 	return;
926 }
927 
928 /*
929  * Write out a dirty page.
930  *
931  * For delalloc space on the page we need to allocate space and flush it.
932  * For unwritten space on the page we need to start the conversion to
933  * regular allocated space.
934  * For any other dirty buffer heads on the page we should flush them.
935  */
936 STATIC int
937 xfs_vm_writepage(
938 	struct page		*page,
939 	struct writeback_control *wbc)
940 {
941 	struct inode		*inode = page->mapping->host;
942 	struct buffer_head	*bh, *head;
943 	struct xfs_bmbt_irec	imap;
944 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
945 	loff_t			offset;
946 	unsigned int		type;
947 	__uint64_t              end_offset;
948 	pgoff_t                 end_index, last_index;
949 	ssize_t			len;
950 	int			err, imap_valid = 0, uptodate = 1;
951 	int			count = 0;
952 	int			nonblocking = 0;
953 
954 	trace_xfs_writepage(inode, page, 0, 0);
955 
956 	ASSERT(page_has_buffers(page));
957 
958 	/*
959 	 * Refuse to write the page out if we are called from reclaim context.
960 	 *
961 	 * This avoids stack overflows when called from deeply used stacks in
962 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
963 	 * allow reclaim from kswapd as the stack usage there is relatively low.
964 	 *
965 	 * This should never happen except in the case of a VM regression so
966 	 * warn about it.
967 	 */
968 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
969 			PF_MEMALLOC))
970 		goto redirty;
971 
972 	/*
973 	 * Given that we do not allow direct reclaim to call us, we should
974 	 * never be called while in a filesystem transaction.
975 	 */
976 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
977 		goto redirty;
978 
979 	/* Is this page beyond the end of the file? */
980 	offset = i_size_read(inode);
981 	end_index = offset >> PAGE_CACHE_SHIFT;
982 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
983 
984 	/*
985 	 * The page index is less than the end_index, adjust the end_offset
986 	 * to the highest offset that this page should represent.
987 	 * -----------------------------------------------------
988 	 * |			file mapping	       | <EOF> |
989 	 * -----------------------------------------------------
990 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
991 	 * ^--------------------------------^----------|--------
992 	 * |     desired writeback range    |      see else    |
993 	 * ---------------------------------^------------------|
994 	 */
995 	if (page->index < end_index)
996 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
997 	else {
998 		/*
999 		 * Check whether the page to write out is beyond or straddles
1000 		 * i_size or not.
1001 		 * -------------------------------------------------------
1002 		 * |		file mapping		        | <EOF>  |
1003 		 * -------------------------------------------------------
1004 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1005 		 * ^--------------------------------^-----------|---------
1006 		 * |				    |      Straddles     |
1007 		 * ---------------------------------^-----------|--------|
1008 		 */
1009 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1010 
1011 		/*
1012 		 * Skip the page if it is fully outside i_size, e.g. due to a
1013 		 * truncate operation that is in progress. We must redirty the
1014 		 * page so that reclaim stops reclaiming it. Otherwise
1015 		 * xfs_vm_releasepage() is called on it and gets confused.
1016 		 *
1017 		 * Note that the end_index is unsigned long, it would overflow
1018 		 * if the given offset is greater than 16TB on 32-bit system
1019 		 * and if we do check the page is fully outside i_size or not
1020 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1021 		 * will be evaluated to 0.  Hence this page will be redirtied
1022 		 * and be written out repeatedly which would result in an
1023 		 * infinite loop, the user program that perform this operation
1024 		 * will hang.  Instead, we can verify this situation by checking
1025 		 * if the page to write is totally beyond the i_size or if it's
1026 		 * offset is just equal to the EOF.
1027 		 */
1028 		if (page->index > end_index ||
1029 		    (page->index == end_index && offset_into_page == 0))
1030 			goto redirty;
1031 
1032 		/*
1033 		 * The page straddles i_size.  It must be zeroed out on each
1034 		 * and every writepage invocation because it may be mmapped.
1035 		 * "A file is mapped in multiples of the page size.  For a file
1036 		 * that is not a multiple of the page size, the remaining
1037 		 * memory is zeroed when mapped, and writes to that region are
1038 		 * not written out to the file."
1039 		 */
1040 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1041 
1042 		/* Adjust the end_offset to the end of file */
1043 		end_offset = offset;
1044 	}
1045 
1046 	len = 1 << inode->i_blkbits;
1047 
1048 	bh = head = page_buffers(page);
1049 	offset = page_offset(page);
1050 	type = XFS_IO_OVERWRITE;
1051 
1052 	if (wbc->sync_mode == WB_SYNC_NONE)
1053 		nonblocking = 1;
1054 
1055 	do {
1056 		int new_ioend = 0;
1057 
1058 		if (offset >= end_offset)
1059 			break;
1060 		if (!buffer_uptodate(bh))
1061 			uptodate = 0;
1062 
1063 		/*
1064 		 * set_page_dirty dirties all buffers in a page, independent
1065 		 * of their state.  The dirty state however is entirely
1066 		 * meaningless for holes (!mapped && uptodate), so skip
1067 		 * buffers covering holes here.
1068 		 */
1069 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1070 			imap_valid = 0;
1071 			continue;
1072 		}
1073 
1074 		if (buffer_unwritten(bh)) {
1075 			if (type != XFS_IO_UNWRITTEN) {
1076 				type = XFS_IO_UNWRITTEN;
1077 				imap_valid = 0;
1078 			}
1079 		} else if (buffer_delay(bh)) {
1080 			if (type != XFS_IO_DELALLOC) {
1081 				type = XFS_IO_DELALLOC;
1082 				imap_valid = 0;
1083 			}
1084 		} else if (buffer_uptodate(bh)) {
1085 			if (type != XFS_IO_OVERWRITE) {
1086 				type = XFS_IO_OVERWRITE;
1087 				imap_valid = 0;
1088 			}
1089 		} else {
1090 			if (PageUptodate(page))
1091 				ASSERT(buffer_mapped(bh));
1092 			/*
1093 			 * This buffer is not uptodate and will not be
1094 			 * written to disk.  Ensure that we will put any
1095 			 * subsequent writeable buffers into a new
1096 			 * ioend.
1097 			 */
1098 			imap_valid = 0;
1099 			continue;
1100 		}
1101 
1102 		if (imap_valid)
1103 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1104 		if (!imap_valid) {
1105 			/*
1106 			 * If we didn't have a valid mapping then we need to
1107 			 * put the new mapping into a separate ioend structure.
1108 			 * This ensures non-contiguous extents always have
1109 			 * separate ioends, which is particularly important
1110 			 * for unwritten extent conversion at I/O completion
1111 			 * time.
1112 			 */
1113 			new_ioend = 1;
1114 			err = xfs_map_blocks(inode, offset, &imap, type,
1115 					     nonblocking);
1116 			if (err)
1117 				goto error;
1118 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1119 		}
1120 		if (imap_valid) {
1121 			lock_buffer(bh);
1122 			if (type != XFS_IO_OVERWRITE)
1123 				xfs_map_at_offset(inode, bh, &imap, offset);
1124 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1125 					 new_ioend);
1126 			count++;
1127 		}
1128 
1129 		if (!iohead)
1130 			iohead = ioend;
1131 
1132 	} while (offset += len, ((bh = bh->b_this_page) != head));
1133 
1134 	if (uptodate && bh == head)
1135 		SetPageUptodate(page);
1136 
1137 	xfs_start_page_writeback(page, 1, count);
1138 
1139 	/* if there is no IO to be submitted for this page, we are done */
1140 	if (!ioend)
1141 		return 0;
1142 
1143 	ASSERT(iohead);
1144 
1145 	/*
1146 	 * Any errors from this point onwards need tobe reported through the IO
1147 	 * completion path as we have marked the initial page as under writeback
1148 	 * and unlocked it.
1149 	 */
1150 	if (imap_valid) {
1151 		xfs_off_t		end_index;
1152 
1153 		end_index = imap.br_startoff + imap.br_blockcount;
1154 
1155 		/* to bytes */
1156 		end_index <<= inode->i_blkbits;
1157 
1158 		/* to pages */
1159 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1160 
1161 		/* check against file size */
1162 		if (end_index > last_index)
1163 			end_index = last_index;
1164 
1165 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1166 				  wbc, end_index);
1167 	}
1168 
1169 
1170 	/*
1171 	 * Reserve log space if we might write beyond the on-disk inode size.
1172 	 */
1173 	err = 0;
1174 	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1175 		err = xfs_setfilesize_trans_alloc(ioend);
1176 
1177 	xfs_submit_ioend(wbc, iohead, err);
1178 
1179 	return 0;
1180 
1181 error:
1182 	if (iohead)
1183 		xfs_cancel_ioend(iohead);
1184 
1185 	if (err == -EAGAIN)
1186 		goto redirty;
1187 
1188 	xfs_aops_discard_page(page);
1189 	ClearPageUptodate(page);
1190 	unlock_page(page);
1191 	return err;
1192 
1193 redirty:
1194 	redirty_page_for_writepage(wbc, page);
1195 	unlock_page(page);
1196 	return 0;
1197 }
1198 
1199 STATIC int
1200 xfs_vm_writepages(
1201 	struct address_space	*mapping,
1202 	struct writeback_control *wbc)
1203 {
1204 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1205 	return generic_writepages(mapping, wbc);
1206 }
1207 
1208 /*
1209  * Called to move a page into cleanable state - and from there
1210  * to be released. The page should already be clean. We always
1211  * have buffer heads in this call.
1212  *
1213  * Returns 1 if the page is ok to release, 0 otherwise.
1214  */
1215 STATIC int
1216 xfs_vm_releasepage(
1217 	struct page		*page,
1218 	gfp_t			gfp_mask)
1219 {
1220 	int			delalloc, unwritten;
1221 
1222 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1223 
1224 	xfs_count_page_state(page, &delalloc, &unwritten);
1225 
1226 	if (WARN_ON_ONCE(delalloc))
1227 		return 0;
1228 	if (WARN_ON_ONCE(unwritten))
1229 		return 0;
1230 
1231 	return try_to_free_buffers(page);
1232 }
1233 
1234 /*
1235  * When we map a DIO buffer, we may need to attach an ioend that describes the
1236  * type of write IO we are doing. This passes to the completion function the
1237  * operations it needs to perform. If the mapping is for an overwrite wholly
1238  * within the EOF then we don't need an ioend and so we don't allocate one.
1239  * This avoids the unnecessary overhead of allocating and freeing ioends for
1240  * workloads that don't require transactions on IO completion.
1241  *
1242  * If we get multiple mappings in a single IO, we might be mapping different
1243  * types. But because the direct IO can only have a single private pointer, we
1244  * need to ensure that:
1245  *
1246  * a) i) the ioend spans the entire region of unwritten mappings; or
1247  *    ii) the ioend spans all the mappings that cross or are beyond EOF; and
1248  * b) if it contains unwritten extents, it is *permanently* marked as such
1249  *
1250  * We could do this by chaining ioends like buffered IO does, but we only
1251  * actually get one IO completion callback from the direct IO, and that spans
1252  * the entire IO regardless of how many mappings and IOs are needed to complete
1253  * the DIO. There is only going to be one reference to the ioend and its life
1254  * cycle is constrained by the DIO completion code. hence we don't need
1255  * reference counting here.
1256  */
1257 static void
1258 xfs_map_direct(
1259 	struct inode		*inode,
1260 	struct buffer_head	*bh_result,
1261 	struct xfs_bmbt_irec	*imap,
1262 	xfs_off_t		offset)
1263 {
1264 	struct xfs_ioend	*ioend;
1265 	xfs_off_t		size = bh_result->b_size;
1266 	int			type;
1267 
1268 	if (ISUNWRITTEN(imap))
1269 		type = XFS_IO_UNWRITTEN;
1270 	else
1271 		type = XFS_IO_OVERWRITE;
1272 
1273 	trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1274 
1275 	if (bh_result->b_private) {
1276 		ioend = bh_result->b_private;
1277 		ASSERT(ioend->io_size > 0);
1278 		ASSERT(offset >= ioend->io_offset);
1279 		if (offset + size > ioend->io_offset + ioend->io_size)
1280 			ioend->io_size = offset - ioend->io_offset + size;
1281 
1282 		if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1283 			ioend->io_type = XFS_IO_UNWRITTEN;
1284 
1285 		trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1286 					      ioend->io_size, ioend->io_type,
1287 					      imap);
1288 	} else if (type == XFS_IO_UNWRITTEN ||
1289 		   offset + size > i_size_read(inode)) {
1290 		ioend = xfs_alloc_ioend(inode, type);
1291 		ioend->io_offset = offset;
1292 		ioend->io_size = size;
1293 
1294 		bh_result->b_private = ioend;
1295 		set_buffer_defer_completion(bh_result);
1296 
1297 		trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1298 					   imap);
1299 	} else {
1300 		trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1301 					    imap);
1302 	}
1303 }
1304 
1305 /*
1306  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1307  * is, so that we can avoid repeated get_blocks calls.
1308  *
1309  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1310  * for blocks beyond EOF must be marked new so that sub block regions can be
1311  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1312  * was just allocated or is unwritten, otherwise the callers would overwrite
1313  * existing data with zeros. Hence we have to split the mapping into a range up
1314  * to and including EOF, and a second mapping for beyond EOF.
1315  */
1316 static void
1317 xfs_map_trim_size(
1318 	struct inode		*inode,
1319 	sector_t		iblock,
1320 	struct buffer_head	*bh_result,
1321 	struct xfs_bmbt_irec	*imap,
1322 	xfs_off_t		offset,
1323 	ssize_t			size)
1324 {
1325 	xfs_off_t		mapping_size;
1326 
1327 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1328 	mapping_size <<= inode->i_blkbits;
1329 
1330 	ASSERT(mapping_size > 0);
1331 	if (mapping_size > size)
1332 		mapping_size = size;
1333 	if (offset < i_size_read(inode) &&
1334 	    offset + mapping_size >= i_size_read(inode)) {
1335 		/* limit mapping to block that spans EOF */
1336 		mapping_size = roundup_64(i_size_read(inode) - offset,
1337 					  1 << inode->i_blkbits);
1338 	}
1339 	if (mapping_size > LONG_MAX)
1340 		mapping_size = LONG_MAX;
1341 
1342 	bh_result->b_size = mapping_size;
1343 }
1344 
1345 STATIC int
1346 __xfs_get_blocks(
1347 	struct inode		*inode,
1348 	sector_t		iblock,
1349 	struct buffer_head	*bh_result,
1350 	int			create,
1351 	int			direct)
1352 {
1353 	struct xfs_inode	*ip = XFS_I(inode);
1354 	struct xfs_mount	*mp = ip->i_mount;
1355 	xfs_fileoff_t		offset_fsb, end_fsb;
1356 	int			error = 0;
1357 	int			lockmode = 0;
1358 	struct xfs_bmbt_irec	imap;
1359 	int			nimaps = 1;
1360 	xfs_off_t		offset;
1361 	ssize_t			size;
1362 	int			new = 0;
1363 
1364 	if (XFS_FORCED_SHUTDOWN(mp))
1365 		return -EIO;
1366 
1367 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1368 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1369 	size = bh_result->b_size;
1370 
1371 	if (!create && direct && offset >= i_size_read(inode))
1372 		return 0;
1373 
1374 	/*
1375 	 * Direct I/O is usually done on preallocated files, so try getting
1376 	 * a block mapping without an exclusive lock first.  For buffered
1377 	 * writes we already have the exclusive iolock anyway, so avoiding
1378 	 * a lock roundtrip here by taking the ilock exclusive from the
1379 	 * beginning is a useful micro optimization.
1380 	 */
1381 	if (create && !direct) {
1382 		lockmode = XFS_ILOCK_EXCL;
1383 		xfs_ilock(ip, lockmode);
1384 	} else {
1385 		lockmode = xfs_ilock_data_map_shared(ip);
1386 	}
1387 
1388 	ASSERT(offset <= mp->m_super->s_maxbytes);
1389 	if (offset + size > mp->m_super->s_maxbytes)
1390 		size = mp->m_super->s_maxbytes - offset;
1391 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1392 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1393 
1394 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1395 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1396 	if (error)
1397 		goto out_unlock;
1398 
1399 	if (create &&
1400 	    (!nimaps ||
1401 	     (imap.br_startblock == HOLESTARTBLOCK ||
1402 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1403 		if (direct || xfs_get_extsz_hint(ip)) {
1404 			/*
1405 			 * Drop the ilock in preparation for starting the block
1406 			 * allocation transaction.  It will be retaken
1407 			 * exclusively inside xfs_iomap_write_direct for the
1408 			 * actual allocation.
1409 			 */
1410 			xfs_iunlock(ip, lockmode);
1411 			error = xfs_iomap_write_direct(ip, offset, size,
1412 						       &imap, nimaps);
1413 			if (error)
1414 				return error;
1415 			new = 1;
1416 		} else {
1417 			/*
1418 			 * Delalloc reservations do not require a transaction,
1419 			 * we can go on without dropping the lock here. If we
1420 			 * are allocating a new delalloc block, make sure that
1421 			 * we set the new flag so that we mark the buffer new so
1422 			 * that we know that it is newly allocated if the write
1423 			 * fails.
1424 			 */
1425 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1426 				new = 1;
1427 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1428 			if (error)
1429 				goto out_unlock;
1430 
1431 			xfs_iunlock(ip, lockmode);
1432 		}
1433 		trace_xfs_get_blocks_alloc(ip, offset, size,
1434 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1435 						   : XFS_IO_DELALLOC, &imap);
1436 	} else if (nimaps) {
1437 		trace_xfs_get_blocks_found(ip, offset, size,
1438 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1439 						   : XFS_IO_OVERWRITE, &imap);
1440 		xfs_iunlock(ip, lockmode);
1441 	} else {
1442 		trace_xfs_get_blocks_notfound(ip, offset, size);
1443 		goto out_unlock;
1444 	}
1445 
1446 	/* trim mapping down to size requested */
1447 	if (direct || size > (1 << inode->i_blkbits))
1448 		xfs_map_trim_size(inode, iblock, bh_result,
1449 				  &imap, offset, size);
1450 
1451 	/*
1452 	 * For unwritten extents do not report a disk address in the buffered
1453 	 * read case (treat as if we're reading into a hole).
1454 	 */
1455 	if (imap.br_startblock != HOLESTARTBLOCK &&
1456 	    imap.br_startblock != DELAYSTARTBLOCK &&
1457 	    (create || !ISUNWRITTEN(&imap))) {
1458 		xfs_map_buffer(inode, bh_result, &imap, offset);
1459 		if (ISUNWRITTEN(&imap))
1460 			set_buffer_unwritten(bh_result);
1461 		/* direct IO needs special help */
1462 		if (create && direct)
1463 			xfs_map_direct(inode, bh_result, &imap, offset);
1464 	}
1465 
1466 	/*
1467 	 * If this is a realtime file, data may be on a different device.
1468 	 * to that pointed to from the buffer_head b_bdev currently.
1469 	 */
1470 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1471 
1472 	/*
1473 	 * If we previously allocated a block out beyond eof and we are now
1474 	 * coming back to use it then we will need to flag it as new even if it
1475 	 * has a disk address.
1476 	 *
1477 	 * With sub-block writes into unwritten extents we also need to mark
1478 	 * the buffer as new so that the unwritten parts of the buffer gets
1479 	 * correctly zeroed.
1480 	 */
1481 	if (create &&
1482 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1483 	     (offset >= i_size_read(inode)) ||
1484 	     (new || ISUNWRITTEN(&imap))))
1485 		set_buffer_new(bh_result);
1486 
1487 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1488 		BUG_ON(direct);
1489 		if (create) {
1490 			set_buffer_uptodate(bh_result);
1491 			set_buffer_mapped(bh_result);
1492 			set_buffer_delay(bh_result);
1493 		}
1494 	}
1495 
1496 	return 0;
1497 
1498 out_unlock:
1499 	xfs_iunlock(ip, lockmode);
1500 	return error;
1501 }
1502 
1503 int
1504 xfs_get_blocks(
1505 	struct inode		*inode,
1506 	sector_t		iblock,
1507 	struct buffer_head	*bh_result,
1508 	int			create)
1509 {
1510 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1511 }
1512 
1513 STATIC int
1514 xfs_get_blocks_direct(
1515 	struct inode		*inode,
1516 	sector_t		iblock,
1517 	struct buffer_head	*bh_result,
1518 	int			create)
1519 {
1520 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1521 }
1522 
1523 /*
1524  * Complete a direct I/O write request.
1525  *
1526  * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1527  * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1528  * wholly within the EOF and so there is nothing for us to do. Note that in this
1529  * case the completion can be called in interrupt context, whereas if we have an
1530  * ioend we will always be called in task context (i.e. from a workqueue).
1531  */
1532 STATIC void
1533 xfs_end_io_direct_write(
1534 	struct kiocb		*iocb,
1535 	loff_t			offset,
1536 	ssize_t			size,
1537 	void			*private)
1538 {
1539 	struct inode		*inode = file_inode(iocb->ki_filp);
1540 	struct xfs_inode	*ip = XFS_I(inode);
1541 	struct xfs_mount	*mp = ip->i_mount;
1542 	struct xfs_ioend	*ioend = private;
1543 
1544 	trace_xfs_gbmap_direct_endio(ip, offset, size,
1545 				     ioend ? ioend->io_type : 0, NULL);
1546 
1547 	if (!ioend) {
1548 		ASSERT(offset + size <= i_size_read(inode));
1549 		return;
1550 	}
1551 
1552 	if (XFS_FORCED_SHUTDOWN(mp))
1553 		goto out_end_io;
1554 
1555 	/*
1556 	 * dio completion end_io functions are only called on writes if more
1557 	 * than 0 bytes was written.
1558 	 */
1559 	ASSERT(size > 0);
1560 
1561 	/*
1562 	 * The ioend only maps whole blocks, while the IO may be sector aligned.
1563 	 * Hence the ioend offset/size may not match the IO offset/size exactly.
1564 	 * Because we don't map overwrites within EOF into the ioend, the offset
1565 	 * may not match, but only if the endio spans EOF.  Either way, write
1566 	 * the IO sizes into the ioend so that completion processing does the
1567 	 * right thing.
1568 	 */
1569 	ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1570 	ioend->io_size = size;
1571 	ioend->io_offset = offset;
1572 
1573 	/*
1574 	 * The ioend tells us whether we are doing unwritten extent conversion
1575 	 * or an append transaction that updates the on-disk file size. These
1576 	 * cases are the only cases where we should *potentially* be needing
1577 	 * to update the VFS inode size.
1578 	 *
1579 	 * We need to update the in-core inode size here so that we don't end up
1580 	 * with the on-disk inode size being outside the in-core inode size. We
1581 	 * have no other method of updating EOF for AIO, so always do it here
1582 	 * if necessary.
1583 	 *
1584 	 * We need to lock the test/set EOF update as we can be racing with
1585 	 * other IO completions here to update the EOF. Failing to serialise
1586 	 * here can result in EOF moving backwards and Bad Things Happen when
1587 	 * that occurs.
1588 	 */
1589 	spin_lock(&ip->i_flags_lock);
1590 	if (offset + size > i_size_read(inode))
1591 		i_size_write(inode, offset + size);
1592 	spin_unlock(&ip->i_flags_lock);
1593 
1594 	/*
1595 	 * If we are doing an append IO that needs to update the EOF on disk,
1596 	 * do the transaction reserve now so we can use common end io
1597 	 * processing. Stashing the error (if there is one) in the ioend will
1598 	 * result in the ioend processing passing on the error if it is
1599 	 * possible as we can't return it from here.
1600 	 */
1601 	if (ioend->io_type == XFS_IO_OVERWRITE)
1602 		ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
1603 
1604 out_end_io:
1605 	xfs_end_io(&ioend->io_work);
1606 	return;
1607 }
1608 
1609 STATIC ssize_t
1610 xfs_vm_direct_IO(
1611 	struct kiocb		*iocb,
1612 	struct iov_iter		*iter,
1613 	loff_t			offset)
1614 {
1615 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1616 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1617 
1618 	if (iov_iter_rw(iter) == WRITE) {
1619 		return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1620 					    xfs_get_blocks_direct,
1621 					    xfs_end_io_direct_write, NULL,
1622 					    DIO_ASYNC_EXTEND);
1623 	}
1624 	return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1625 				    xfs_get_blocks_direct, NULL, NULL, 0);
1626 }
1627 
1628 /*
1629  * Punch out the delalloc blocks we have already allocated.
1630  *
1631  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1632  * as the page is still locked at this point.
1633  */
1634 STATIC void
1635 xfs_vm_kill_delalloc_range(
1636 	struct inode		*inode,
1637 	loff_t			start,
1638 	loff_t			end)
1639 {
1640 	struct xfs_inode	*ip = XFS_I(inode);
1641 	xfs_fileoff_t		start_fsb;
1642 	xfs_fileoff_t		end_fsb;
1643 	int			error;
1644 
1645 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1646 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1647 	if (end_fsb <= start_fsb)
1648 		return;
1649 
1650 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1651 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1652 						end_fsb - start_fsb);
1653 	if (error) {
1654 		/* something screwed, just bail */
1655 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1656 			xfs_alert(ip->i_mount,
1657 		"xfs_vm_write_failed: unable to clean up ino %lld",
1658 					ip->i_ino);
1659 		}
1660 	}
1661 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1662 }
1663 
1664 STATIC void
1665 xfs_vm_write_failed(
1666 	struct inode		*inode,
1667 	struct page		*page,
1668 	loff_t			pos,
1669 	unsigned		len)
1670 {
1671 	loff_t			block_offset;
1672 	loff_t			block_start;
1673 	loff_t			block_end;
1674 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1675 	loff_t			to = from + len;
1676 	struct buffer_head	*bh, *head;
1677 
1678 	/*
1679 	 * The request pos offset might be 32 or 64 bit, this is all fine
1680 	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1681 	 * platform, the high 32-bit will be masked off if we evaluate the
1682 	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1683 	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1684 	 * which could cause the following ASSERT failed in most cases.
1685 	 * In order to avoid this, we can evaluate the block_offset of the
1686 	 * start of the page by using shifts rather than masks the mismatch
1687 	 * problem.
1688 	 */
1689 	block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1690 
1691 	ASSERT(block_offset + from == pos);
1692 
1693 	head = page_buffers(page);
1694 	block_start = 0;
1695 	for (bh = head; bh != head || !block_start;
1696 	     bh = bh->b_this_page, block_start = block_end,
1697 				   block_offset += bh->b_size) {
1698 		block_end = block_start + bh->b_size;
1699 
1700 		/* skip buffers before the write */
1701 		if (block_end <= from)
1702 			continue;
1703 
1704 		/* if the buffer is after the write, we're done */
1705 		if (block_start >= to)
1706 			break;
1707 
1708 		if (!buffer_delay(bh))
1709 			continue;
1710 
1711 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1712 			continue;
1713 
1714 		xfs_vm_kill_delalloc_range(inode, block_offset,
1715 					   block_offset + bh->b_size);
1716 
1717 		/*
1718 		 * This buffer does not contain data anymore. make sure anyone
1719 		 * who finds it knows that for certain.
1720 		 */
1721 		clear_buffer_delay(bh);
1722 		clear_buffer_uptodate(bh);
1723 		clear_buffer_mapped(bh);
1724 		clear_buffer_new(bh);
1725 		clear_buffer_dirty(bh);
1726 	}
1727 
1728 }
1729 
1730 /*
1731  * This used to call block_write_begin(), but it unlocks and releases the page
1732  * on error, and we need that page to be able to punch stale delalloc blocks out
1733  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1734  * the appropriate point.
1735  */
1736 STATIC int
1737 xfs_vm_write_begin(
1738 	struct file		*file,
1739 	struct address_space	*mapping,
1740 	loff_t			pos,
1741 	unsigned		len,
1742 	unsigned		flags,
1743 	struct page		**pagep,
1744 	void			**fsdata)
1745 {
1746 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1747 	struct page		*page;
1748 	int			status;
1749 
1750 	ASSERT(len <= PAGE_CACHE_SIZE);
1751 
1752 	page = grab_cache_page_write_begin(mapping, index, flags);
1753 	if (!page)
1754 		return -ENOMEM;
1755 
1756 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1757 	if (unlikely(status)) {
1758 		struct inode	*inode = mapping->host;
1759 		size_t		isize = i_size_read(inode);
1760 
1761 		xfs_vm_write_failed(inode, page, pos, len);
1762 		unlock_page(page);
1763 
1764 		/*
1765 		 * If the write is beyond EOF, we only want to kill blocks
1766 		 * allocated in this write, not blocks that were previously
1767 		 * written successfully.
1768 		 */
1769 		if (pos + len > isize) {
1770 			ssize_t start = max_t(ssize_t, pos, isize);
1771 
1772 			truncate_pagecache_range(inode, start, pos + len);
1773 		}
1774 
1775 		page_cache_release(page);
1776 		page = NULL;
1777 	}
1778 
1779 	*pagep = page;
1780 	return status;
1781 }
1782 
1783 /*
1784  * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1785  * this specific write because they will never be written. Previous writes
1786  * beyond EOF where block allocation succeeded do not need to be trashed, so
1787  * only new blocks from this write should be trashed. For blocks within
1788  * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1789  * written with all the other valid data.
1790  */
1791 STATIC int
1792 xfs_vm_write_end(
1793 	struct file		*file,
1794 	struct address_space	*mapping,
1795 	loff_t			pos,
1796 	unsigned		len,
1797 	unsigned		copied,
1798 	struct page		*page,
1799 	void			*fsdata)
1800 {
1801 	int			ret;
1802 
1803 	ASSERT(len <= PAGE_CACHE_SIZE);
1804 
1805 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1806 	if (unlikely(ret < len)) {
1807 		struct inode	*inode = mapping->host;
1808 		size_t		isize = i_size_read(inode);
1809 		loff_t		to = pos + len;
1810 
1811 		if (to > isize) {
1812 			/* only kill blocks in this write beyond EOF */
1813 			if (pos > isize)
1814 				isize = pos;
1815 			xfs_vm_kill_delalloc_range(inode, isize, to);
1816 			truncate_pagecache_range(inode, isize, to);
1817 		}
1818 	}
1819 	return ret;
1820 }
1821 
1822 STATIC sector_t
1823 xfs_vm_bmap(
1824 	struct address_space	*mapping,
1825 	sector_t		block)
1826 {
1827 	struct inode		*inode = (struct inode *)mapping->host;
1828 	struct xfs_inode	*ip = XFS_I(inode);
1829 
1830 	trace_xfs_vm_bmap(XFS_I(inode));
1831 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1832 	filemap_write_and_wait(mapping);
1833 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1834 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1835 }
1836 
1837 STATIC int
1838 xfs_vm_readpage(
1839 	struct file		*unused,
1840 	struct page		*page)
1841 {
1842 	return mpage_readpage(page, xfs_get_blocks);
1843 }
1844 
1845 STATIC int
1846 xfs_vm_readpages(
1847 	struct file		*unused,
1848 	struct address_space	*mapping,
1849 	struct list_head	*pages,
1850 	unsigned		nr_pages)
1851 {
1852 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1853 }
1854 
1855 /*
1856  * This is basically a copy of __set_page_dirty_buffers() with one
1857  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1858  * dirty, we'll never be able to clean them because we don't write buffers
1859  * beyond EOF, and that means we can't invalidate pages that span EOF
1860  * that have been marked dirty. Further, the dirty state can leak into
1861  * the file interior if the file is extended, resulting in all sorts of
1862  * bad things happening as the state does not match the underlying data.
1863  *
1864  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1865  * this only exist because of bufferheads and how the generic code manages them.
1866  */
1867 STATIC int
1868 xfs_vm_set_page_dirty(
1869 	struct page		*page)
1870 {
1871 	struct address_space	*mapping = page->mapping;
1872 	struct inode		*inode = mapping->host;
1873 	loff_t			end_offset;
1874 	loff_t			offset;
1875 	int			newly_dirty;
1876 	struct mem_cgroup	*memcg;
1877 
1878 	if (unlikely(!mapping))
1879 		return !TestSetPageDirty(page);
1880 
1881 	end_offset = i_size_read(inode);
1882 	offset = page_offset(page);
1883 
1884 	spin_lock(&mapping->private_lock);
1885 	if (page_has_buffers(page)) {
1886 		struct buffer_head *head = page_buffers(page);
1887 		struct buffer_head *bh = head;
1888 
1889 		do {
1890 			if (offset < end_offset)
1891 				set_buffer_dirty(bh);
1892 			bh = bh->b_this_page;
1893 			offset += 1 << inode->i_blkbits;
1894 		} while (bh != head);
1895 	}
1896 	/*
1897 	 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1898 	 * per-memcg dirty page counters.
1899 	 */
1900 	memcg = mem_cgroup_begin_page_stat(page);
1901 	newly_dirty = !TestSetPageDirty(page);
1902 	spin_unlock(&mapping->private_lock);
1903 
1904 	if (newly_dirty) {
1905 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1906 		unsigned long flags;
1907 
1908 		spin_lock_irqsave(&mapping->tree_lock, flags);
1909 		if (page->mapping) {	/* Race with truncate? */
1910 			WARN_ON_ONCE(!PageUptodate(page));
1911 			account_page_dirtied(page, mapping, memcg);
1912 			radix_tree_tag_set(&mapping->page_tree,
1913 					page_index(page), PAGECACHE_TAG_DIRTY);
1914 		}
1915 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1916 	}
1917 	mem_cgroup_end_page_stat(memcg);
1918 	if (newly_dirty)
1919 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1920 	return newly_dirty;
1921 }
1922 
1923 const struct address_space_operations xfs_address_space_operations = {
1924 	.readpage		= xfs_vm_readpage,
1925 	.readpages		= xfs_vm_readpages,
1926 	.writepage		= xfs_vm_writepage,
1927 	.writepages		= xfs_vm_writepages,
1928 	.set_page_dirty		= xfs_vm_set_page_dirty,
1929 	.releasepage		= xfs_vm_releasepage,
1930 	.invalidatepage		= xfs_vm_invalidatepage,
1931 	.write_begin		= xfs_vm_write_begin,
1932 	.write_end		= xfs_vm_write_end,
1933 	.bmap			= xfs_vm_bmap,
1934 	.direct_IO		= xfs_vm_direct_IO,
1935 	.migratepage		= buffer_migrate_page,
1936 	.is_partially_uptodate  = block_is_partially_uptodate,
1937 	.error_remove_page	= generic_error_remove_page,
1938 };
1939