1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include <linux/gfp.h> 35 #include <linux/mpage.h> 36 #include <linux/pagevec.h> 37 #include <linux/writeback.h> 38 39 void 40 xfs_count_page_state( 41 struct page *page, 42 int *delalloc, 43 int *unwritten) 44 { 45 struct buffer_head *bh, *head; 46 47 *delalloc = *unwritten = 0; 48 49 bh = head = page_buffers(page); 50 do { 51 if (buffer_unwritten(bh)) 52 (*unwritten) = 1; 53 else if (buffer_delay(bh)) 54 (*delalloc) = 1; 55 } while ((bh = bh->b_this_page) != head); 56 } 57 58 STATIC struct block_device * 59 xfs_find_bdev_for_inode( 60 struct inode *inode) 61 { 62 struct xfs_inode *ip = XFS_I(inode); 63 struct xfs_mount *mp = ip->i_mount; 64 65 if (XFS_IS_REALTIME_INODE(ip)) 66 return mp->m_rtdev_targp->bt_bdev; 67 else 68 return mp->m_ddev_targp->bt_bdev; 69 } 70 71 /* 72 * We're now finished for good with this ioend structure. 73 * Update the page state via the associated buffer_heads, 74 * release holds on the inode and bio, and finally free 75 * up memory. Do not use the ioend after this. 76 */ 77 STATIC void 78 xfs_destroy_ioend( 79 xfs_ioend_t *ioend) 80 { 81 struct buffer_head *bh, *next; 82 83 for (bh = ioend->io_buffer_head; bh; bh = next) { 84 next = bh->b_private; 85 bh->b_end_io(bh, !ioend->io_error); 86 } 87 88 mempool_free(ioend, xfs_ioend_pool); 89 } 90 91 /* 92 * Fast and loose check if this write could update the on-disk inode size. 93 */ 94 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 95 { 96 return ioend->io_offset + ioend->io_size > 97 XFS_I(ioend->io_inode)->i_d.di_size; 98 } 99 100 STATIC int 101 xfs_setfilesize_trans_alloc( 102 struct xfs_ioend *ioend) 103 { 104 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 105 struct xfs_trans *tp; 106 int error; 107 108 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 109 110 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0); 111 if (error) { 112 xfs_trans_cancel(tp, 0); 113 return error; 114 } 115 116 ioend->io_append_trans = tp; 117 118 /* 119 * We may pass freeze protection with a transaction. So tell lockdep 120 * we released it. 121 */ 122 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 123 1, _THIS_IP_); 124 /* 125 * We hand off the transaction to the completion thread now, so 126 * clear the flag here. 127 */ 128 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 129 return 0; 130 } 131 132 /* 133 * Update on-disk file size now that data has been written to disk. 134 */ 135 STATIC int 136 xfs_setfilesize( 137 struct xfs_inode *ip, 138 struct xfs_trans *tp, 139 xfs_off_t offset, 140 size_t size) 141 { 142 xfs_fsize_t isize; 143 144 xfs_ilock(ip, XFS_ILOCK_EXCL); 145 isize = xfs_new_eof(ip, offset + size); 146 if (!isize) { 147 xfs_iunlock(ip, XFS_ILOCK_EXCL); 148 xfs_trans_cancel(tp, 0); 149 return 0; 150 } 151 152 trace_xfs_setfilesize(ip, offset, size); 153 154 ip->i_d.di_size = isize; 155 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 156 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 157 158 return xfs_trans_commit(tp, 0); 159 } 160 161 STATIC int 162 xfs_setfilesize_ioend( 163 struct xfs_ioend *ioend) 164 { 165 struct xfs_inode *ip = XFS_I(ioend->io_inode); 166 struct xfs_trans *tp = ioend->io_append_trans; 167 168 /* 169 * The transaction may have been allocated in the I/O submission thread, 170 * thus we need to mark ourselves as being in a transaction manually. 171 * Similarly for freeze protection. 172 */ 173 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 174 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 175 0, 1, _THIS_IP_); 176 177 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 178 } 179 180 /* 181 * Schedule IO completion handling on the final put of an ioend. 182 * 183 * If there is no work to do we might as well call it a day and free the 184 * ioend right now. 185 */ 186 STATIC void 187 xfs_finish_ioend( 188 struct xfs_ioend *ioend) 189 { 190 if (atomic_dec_and_test(&ioend->io_remaining)) { 191 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 192 193 if (ioend->io_type == XFS_IO_UNWRITTEN) 194 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 195 else if (ioend->io_append_trans) 196 queue_work(mp->m_data_workqueue, &ioend->io_work); 197 else 198 xfs_destroy_ioend(ioend); 199 } 200 } 201 202 /* 203 * IO write completion. 204 */ 205 STATIC void 206 xfs_end_io( 207 struct work_struct *work) 208 { 209 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); 210 struct xfs_inode *ip = XFS_I(ioend->io_inode); 211 int error = 0; 212 213 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 214 ioend->io_error = -EIO; 215 goto done; 216 } 217 if (ioend->io_error) 218 goto done; 219 220 /* 221 * For unwritten extents we need to issue transactions to convert a 222 * range to normal written extens after the data I/O has finished. 223 */ 224 if (ioend->io_type == XFS_IO_UNWRITTEN) { 225 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 226 ioend->io_size); 227 } else if (ioend->io_append_trans) { 228 error = xfs_setfilesize_ioend(ioend); 229 } else { 230 ASSERT(!xfs_ioend_is_append(ioend)); 231 } 232 233 done: 234 if (error) 235 ioend->io_error = error; 236 xfs_destroy_ioend(ioend); 237 } 238 239 /* 240 * Allocate and initialise an IO completion structure. 241 * We need to track unwritten extent write completion here initially. 242 * We'll need to extend this for updating the ondisk inode size later 243 * (vs. incore size). 244 */ 245 STATIC xfs_ioend_t * 246 xfs_alloc_ioend( 247 struct inode *inode, 248 unsigned int type) 249 { 250 xfs_ioend_t *ioend; 251 252 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); 253 254 /* 255 * Set the count to 1 initially, which will prevent an I/O 256 * completion callback from happening before we have started 257 * all the I/O from calling the completion routine too early. 258 */ 259 atomic_set(&ioend->io_remaining, 1); 260 ioend->io_error = 0; 261 ioend->io_list = NULL; 262 ioend->io_type = type; 263 ioend->io_inode = inode; 264 ioend->io_buffer_head = NULL; 265 ioend->io_buffer_tail = NULL; 266 ioend->io_offset = 0; 267 ioend->io_size = 0; 268 ioend->io_append_trans = NULL; 269 270 INIT_WORK(&ioend->io_work, xfs_end_io); 271 return ioend; 272 } 273 274 STATIC int 275 xfs_map_blocks( 276 struct inode *inode, 277 loff_t offset, 278 struct xfs_bmbt_irec *imap, 279 int type, 280 int nonblocking) 281 { 282 struct xfs_inode *ip = XFS_I(inode); 283 struct xfs_mount *mp = ip->i_mount; 284 ssize_t count = 1 << inode->i_blkbits; 285 xfs_fileoff_t offset_fsb, end_fsb; 286 int error = 0; 287 int bmapi_flags = XFS_BMAPI_ENTIRE; 288 int nimaps = 1; 289 290 if (XFS_FORCED_SHUTDOWN(mp)) 291 return -EIO; 292 293 if (type == XFS_IO_UNWRITTEN) 294 bmapi_flags |= XFS_BMAPI_IGSTATE; 295 296 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 297 if (nonblocking) 298 return -EAGAIN; 299 xfs_ilock(ip, XFS_ILOCK_SHARED); 300 } 301 302 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 303 (ip->i_df.if_flags & XFS_IFEXTENTS)); 304 ASSERT(offset <= mp->m_super->s_maxbytes); 305 306 if (offset + count > mp->m_super->s_maxbytes) 307 count = mp->m_super->s_maxbytes - offset; 308 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 309 offset_fsb = XFS_B_TO_FSBT(mp, offset); 310 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 311 imap, &nimaps, bmapi_flags); 312 xfs_iunlock(ip, XFS_ILOCK_SHARED); 313 314 if (error) 315 return error; 316 317 if (type == XFS_IO_DELALLOC && 318 (!nimaps || isnullstartblock(imap->br_startblock))) { 319 error = xfs_iomap_write_allocate(ip, offset, imap); 320 if (!error) 321 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 322 return error; 323 } 324 325 #ifdef DEBUG 326 if (type == XFS_IO_UNWRITTEN) { 327 ASSERT(nimaps); 328 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 329 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 330 } 331 #endif 332 if (nimaps) 333 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 334 return 0; 335 } 336 337 STATIC int 338 xfs_imap_valid( 339 struct inode *inode, 340 struct xfs_bmbt_irec *imap, 341 xfs_off_t offset) 342 { 343 offset >>= inode->i_blkbits; 344 345 return offset >= imap->br_startoff && 346 offset < imap->br_startoff + imap->br_blockcount; 347 } 348 349 /* 350 * BIO completion handler for buffered IO. 351 */ 352 STATIC void 353 xfs_end_bio( 354 struct bio *bio, 355 int error) 356 { 357 xfs_ioend_t *ioend = bio->bi_private; 358 359 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; 360 361 /* Toss bio and pass work off to an xfsdatad thread */ 362 bio->bi_private = NULL; 363 bio->bi_end_io = NULL; 364 bio_put(bio); 365 366 xfs_finish_ioend(ioend); 367 } 368 369 STATIC void 370 xfs_submit_ioend_bio( 371 struct writeback_control *wbc, 372 xfs_ioend_t *ioend, 373 struct bio *bio) 374 { 375 atomic_inc(&ioend->io_remaining); 376 bio->bi_private = ioend; 377 bio->bi_end_io = xfs_end_bio; 378 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); 379 } 380 381 STATIC struct bio * 382 xfs_alloc_ioend_bio( 383 struct buffer_head *bh) 384 { 385 int nvecs = bio_get_nr_vecs(bh->b_bdev); 386 struct bio *bio = bio_alloc(GFP_NOIO, nvecs); 387 388 ASSERT(bio->bi_private == NULL); 389 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 390 bio->bi_bdev = bh->b_bdev; 391 return bio; 392 } 393 394 STATIC void 395 xfs_start_buffer_writeback( 396 struct buffer_head *bh) 397 { 398 ASSERT(buffer_mapped(bh)); 399 ASSERT(buffer_locked(bh)); 400 ASSERT(!buffer_delay(bh)); 401 ASSERT(!buffer_unwritten(bh)); 402 403 mark_buffer_async_write(bh); 404 set_buffer_uptodate(bh); 405 clear_buffer_dirty(bh); 406 } 407 408 STATIC void 409 xfs_start_page_writeback( 410 struct page *page, 411 int clear_dirty, 412 int buffers) 413 { 414 ASSERT(PageLocked(page)); 415 ASSERT(!PageWriteback(page)); 416 417 /* 418 * if the page was not fully cleaned, we need to ensure that the higher 419 * layers come back to it correctly. That means we need to keep the page 420 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 421 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 422 * write this page in this writeback sweep will be made. 423 */ 424 if (clear_dirty) { 425 clear_page_dirty_for_io(page); 426 set_page_writeback(page); 427 } else 428 set_page_writeback_keepwrite(page); 429 430 unlock_page(page); 431 432 /* If no buffers on the page are to be written, finish it here */ 433 if (!buffers) 434 end_page_writeback(page); 435 } 436 437 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 438 { 439 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 440 } 441 442 /* 443 * Submit all of the bios for all of the ioends we have saved up, covering the 444 * initial writepage page and also any probed pages. 445 * 446 * Because we may have multiple ioends spanning a page, we need to start 447 * writeback on all the buffers before we submit them for I/O. If we mark the 448 * buffers as we got, then we can end up with a page that only has buffers 449 * marked async write and I/O complete on can occur before we mark the other 450 * buffers async write. 451 * 452 * The end result of this is that we trip a bug in end_page_writeback() because 453 * we call it twice for the one page as the code in end_buffer_async_write() 454 * assumes that all buffers on the page are started at the same time. 455 * 456 * The fix is two passes across the ioend list - one to start writeback on the 457 * buffer_heads, and then submit them for I/O on the second pass. 458 * 459 * If @fail is non-zero, it means that we have a situation where some part of 460 * the submission process has failed after we have marked paged for writeback 461 * and unlocked them. In this situation, we need to fail the ioend chain rather 462 * than submit it to IO. This typically only happens on a filesystem shutdown. 463 */ 464 STATIC void 465 xfs_submit_ioend( 466 struct writeback_control *wbc, 467 xfs_ioend_t *ioend, 468 int fail) 469 { 470 xfs_ioend_t *head = ioend; 471 xfs_ioend_t *next; 472 struct buffer_head *bh; 473 struct bio *bio; 474 sector_t lastblock = 0; 475 476 /* Pass 1 - start writeback */ 477 do { 478 next = ioend->io_list; 479 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) 480 xfs_start_buffer_writeback(bh); 481 } while ((ioend = next) != NULL); 482 483 /* Pass 2 - submit I/O */ 484 ioend = head; 485 do { 486 next = ioend->io_list; 487 bio = NULL; 488 489 /* 490 * If we are failing the IO now, just mark the ioend with an 491 * error and finish it. This will run IO completion immediately 492 * as there is only one reference to the ioend at this point in 493 * time. 494 */ 495 if (fail) { 496 ioend->io_error = fail; 497 xfs_finish_ioend(ioend); 498 continue; 499 } 500 501 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { 502 503 if (!bio) { 504 retry: 505 bio = xfs_alloc_ioend_bio(bh); 506 } else if (bh->b_blocknr != lastblock + 1) { 507 xfs_submit_ioend_bio(wbc, ioend, bio); 508 goto retry; 509 } 510 511 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) { 512 xfs_submit_ioend_bio(wbc, ioend, bio); 513 goto retry; 514 } 515 516 lastblock = bh->b_blocknr; 517 } 518 if (bio) 519 xfs_submit_ioend_bio(wbc, ioend, bio); 520 xfs_finish_ioend(ioend); 521 } while ((ioend = next) != NULL); 522 } 523 524 /* 525 * Cancel submission of all buffer_heads so far in this endio. 526 * Toss the endio too. Only ever called for the initial page 527 * in a writepage request, so only ever one page. 528 */ 529 STATIC void 530 xfs_cancel_ioend( 531 xfs_ioend_t *ioend) 532 { 533 xfs_ioend_t *next; 534 struct buffer_head *bh, *next_bh; 535 536 do { 537 next = ioend->io_list; 538 bh = ioend->io_buffer_head; 539 do { 540 next_bh = bh->b_private; 541 clear_buffer_async_write(bh); 542 /* 543 * The unwritten flag is cleared when added to the 544 * ioend. We're not submitting for I/O so mark the 545 * buffer unwritten again for next time around. 546 */ 547 if (ioend->io_type == XFS_IO_UNWRITTEN) 548 set_buffer_unwritten(bh); 549 unlock_buffer(bh); 550 } while ((bh = next_bh) != NULL); 551 552 mempool_free(ioend, xfs_ioend_pool); 553 } while ((ioend = next) != NULL); 554 } 555 556 /* 557 * Test to see if we've been building up a completion structure for 558 * earlier buffers -- if so, we try to append to this ioend if we 559 * can, otherwise we finish off any current ioend and start another. 560 * Return true if we've finished the given ioend. 561 */ 562 STATIC void 563 xfs_add_to_ioend( 564 struct inode *inode, 565 struct buffer_head *bh, 566 xfs_off_t offset, 567 unsigned int type, 568 xfs_ioend_t **result, 569 int need_ioend) 570 { 571 xfs_ioend_t *ioend = *result; 572 573 if (!ioend || need_ioend || type != ioend->io_type) { 574 xfs_ioend_t *previous = *result; 575 576 ioend = xfs_alloc_ioend(inode, type); 577 ioend->io_offset = offset; 578 ioend->io_buffer_head = bh; 579 ioend->io_buffer_tail = bh; 580 if (previous) 581 previous->io_list = ioend; 582 *result = ioend; 583 } else { 584 ioend->io_buffer_tail->b_private = bh; 585 ioend->io_buffer_tail = bh; 586 } 587 588 bh->b_private = NULL; 589 ioend->io_size += bh->b_size; 590 } 591 592 STATIC void 593 xfs_map_buffer( 594 struct inode *inode, 595 struct buffer_head *bh, 596 struct xfs_bmbt_irec *imap, 597 xfs_off_t offset) 598 { 599 sector_t bn; 600 struct xfs_mount *m = XFS_I(inode)->i_mount; 601 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 602 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 603 604 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 605 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 606 607 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 608 ((offset - iomap_offset) >> inode->i_blkbits); 609 610 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 611 612 bh->b_blocknr = bn; 613 set_buffer_mapped(bh); 614 } 615 616 STATIC void 617 xfs_map_at_offset( 618 struct inode *inode, 619 struct buffer_head *bh, 620 struct xfs_bmbt_irec *imap, 621 xfs_off_t offset) 622 { 623 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 624 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 625 626 xfs_map_buffer(inode, bh, imap, offset); 627 set_buffer_mapped(bh); 628 clear_buffer_delay(bh); 629 clear_buffer_unwritten(bh); 630 } 631 632 /* 633 * Test if a given page contains at least one buffer of a given @type. 634 * If @check_all_buffers is true, then we walk all the buffers in the page to 635 * try to find one of the type passed in. If it is not set, then the caller only 636 * needs to check the first buffer on the page for a match. 637 */ 638 STATIC bool 639 xfs_check_page_type( 640 struct page *page, 641 unsigned int type, 642 bool check_all_buffers) 643 { 644 struct buffer_head *bh; 645 struct buffer_head *head; 646 647 if (PageWriteback(page)) 648 return false; 649 if (!page->mapping) 650 return false; 651 if (!page_has_buffers(page)) 652 return false; 653 654 bh = head = page_buffers(page); 655 do { 656 if (buffer_unwritten(bh)) { 657 if (type == XFS_IO_UNWRITTEN) 658 return true; 659 } else if (buffer_delay(bh)) { 660 if (type == XFS_IO_DELALLOC) 661 return true; 662 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 663 if (type == XFS_IO_OVERWRITE) 664 return true; 665 } 666 667 /* If we are only checking the first buffer, we are done now. */ 668 if (!check_all_buffers) 669 break; 670 } while ((bh = bh->b_this_page) != head); 671 672 return false; 673 } 674 675 /* 676 * Allocate & map buffers for page given the extent map. Write it out. 677 * except for the original page of a writepage, this is called on 678 * delalloc/unwritten pages only, for the original page it is possible 679 * that the page has no mapping at all. 680 */ 681 STATIC int 682 xfs_convert_page( 683 struct inode *inode, 684 struct page *page, 685 loff_t tindex, 686 struct xfs_bmbt_irec *imap, 687 xfs_ioend_t **ioendp, 688 struct writeback_control *wbc) 689 { 690 struct buffer_head *bh, *head; 691 xfs_off_t end_offset; 692 unsigned long p_offset; 693 unsigned int type; 694 int len, page_dirty; 695 int count = 0, done = 0, uptodate = 1; 696 xfs_off_t offset = page_offset(page); 697 698 if (page->index != tindex) 699 goto fail; 700 if (!trylock_page(page)) 701 goto fail; 702 if (PageWriteback(page)) 703 goto fail_unlock_page; 704 if (page->mapping != inode->i_mapping) 705 goto fail_unlock_page; 706 if (!xfs_check_page_type(page, (*ioendp)->io_type, false)) 707 goto fail_unlock_page; 708 709 /* 710 * page_dirty is initially a count of buffers on the page before 711 * EOF and is decremented as we move each into a cleanable state. 712 * 713 * Derivation: 714 * 715 * End offset is the highest offset that this page should represent. 716 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) 717 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and 718 * hence give us the correct page_dirty count. On any other page, 719 * it will be zero and in that case we need page_dirty to be the 720 * count of buffers on the page. 721 */ 722 end_offset = min_t(unsigned long long, 723 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 724 i_size_read(inode)); 725 726 /* 727 * If the current map does not span the entire page we are about to try 728 * to write, then give up. The only way we can write a page that spans 729 * multiple mappings in a single writeback iteration is via the 730 * xfs_vm_writepage() function. Data integrity writeback requires the 731 * entire page to be written in a single attempt, otherwise the part of 732 * the page we don't write here doesn't get written as part of the data 733 * integrity sync. 734 * 735 * For normal writeback, we also don't attempt to write partial pages 736 * here as it simply means that write_cache_pages() will see it under 737 * writeback and ignore the page until some point in the future, at 738 * which time this will be the only page in the file that needs 739 * writeback. Hence for more optimal IO patterns, we should always 740 * avoid partial page writeback due to multiple mappings on a page here. 741 */ 742 if (!xfs_imap_valid(inode, imap, end_offset)) 743 goto fail_unlock_page; 744 745 len = 1 << inode->i_blkbits; 746 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), 747 PAGE_CACHE_SIZE); 748 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; 749 page_dirty = p_offset / len; 750 751 /* 752 * The moment we find a buffer that doesn't match our current type 753 * specification or can't be written, abort the loop and start 754 * writeback. As per the above xfs_imap_valid() check, only 755 * xfs_vm_writepage() can handle partial page writeback fully - we are 756 * limited here to the buffers that are contiguous with the current 757 * ioend, and hence a buffer we can't write breaks that contiguity and 758 * we have to defer the rest of the IO to xfs_vm_writepage(). 759 */ 760 bh = head = page_buffers(page); 761 do { 762 if (offset >= end_offset) 763 break; 764 if (!buffer_uptodate(bh)) 765 uptodate = 0; 766 if (!(PageUptodate(page) || buffer_uptodate(bh))) { 767 done = 1; 768 break; 769 } 770 771 if (buffer_unwritten(bh) || buffer_delay(bh) || 772 buffer_mapped(bh)) { 773 if (buffer_unwritten(bh)) 774 type = XFS_IO_UNWRITTEN; 775 else if (buffer_delay(bh)) 776 type = XFS_IO_DELALLOC; 777 else 778 type = XFS_IO_OVERWRITE; 779 780 /* 781 * imap should always be valid because of the above 782 * partial page end_offset check on the imap. 783 */ 784 ASSERT(xfs_imap_valid(inode, imap, offset)); 785 786 lock_buffer(bh); 787 if (type != XFS_IO_OVERWRITE) 788 xfs_map_at_offset(inode, bh, imap, offset); 789 xfs_add_to_ioend(inode, bh, offset, type, 790 ioendp, done); 791 792 page_dirty--; 793 count++; 794 } else { 795 done = 1; 796 break; 797 } 798 } while (offset += len, (bh = bh->b_this_page) != head); 799 800 if (uptodate && bh == head) 801 SetPageUptodate(page); 802 803 if (count) { 804 if (--wbc->nr_to_write <= 0 && 805 wbc->sync_mode == WB_SYNC_NONE) 806 done = 1; 807 } 808 xfs_start_page_writeback(page, !page_dirty, count); 809 810 return done; 811 fail_unlock_page: 812 unlock_page(page); 813 fail: 814 return 1; 815 } 816 817 /* 818 * Convert & write out a cluster of pages in the same extent as defined 819 * by mp and following the start page. 820 */ 821 STATIC void 822 xfs_cluster_write( 823 struct inode *inode, 824 pgoff_t tindex, 825 struct xfs_bmbt_irec *imap, 826 xfs_ioend_t **ioendp, 827 struct writeback_control *wbc, 828 pgoff_t tlast) 829 { 830 struct pagevec pvec; 831 int done = 0, i; 832 833 pagevec_init(&pvec, 0); 834 while (!done && tindex <= tlast) { 835 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); 836 837 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) 838 break; 839 840 for (i = 0; i < pagevec_count(&pvec); i++) { 841 done = xfs_convert_page(inode, pvec.pages[i], tindex++, 842 imap, ioendp, wbc); 843 if (done) 844 break; 845 } 846 847 pagevec_release(&pvec); 848 cond_resched(); 849 } 850 } 851 852 STATIC void 853 xfs_vm_invalidatepage( 854 struct page *page, 855 unsigned int offset, 856 unsigned int length) 857 { 858 trace_xfs_invalidatepage(page->mapping->host, page, offset, 859 length); 860 block_invalidatepage(page, offset, length); 861 } 862 863 /* 864 * If the page has delalloc buffers on it, we need to punch them out before we 865 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 866 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 867 * is done on that same region - the delalloc extent is returned when none is 868 * supposed to be there. 869 * 870 * We prevent this by truncating away the delalloc regions on the page before 871 * invalidating it. Because they are delalloc, we can do this without needing a 872 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 873 * truncation without a transaction as there is no space left for block 874 * reservation (typically why we see a ENOSPC in writeback). 875 * 876 * This is not a performance critical path, so for now just do the punching a 877 * buffer head at a time. 878 */ 879 STATIC void 880 xfs_aops_discard_page( 881 struct page *page) 882 { 883 struct inode *inode = page->mapping->host; 884 struct xfs_inode *ip = XFS_I(inode); 885 struct buffer_head *bh, *head; 886 loff_t offset = page_offset(page); 887 888 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 889 goto out_invalidate; 890 891 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 892 goto out_invalidate; 893 894 xfs_alert(ip->i_mount, 895 "page discard on page %p, inode 0x%llx, offset %llu.", 896 page, ip->i_ino, offset); 897 898 xfs_ilock(ip, XFS_ILOCK_EXCL); 899 bh = head = page_buffers(page); 900 do { 901 int error; 902 xfs_fileoff_t start_fsb; 903 904 if (!buffer_delay(bh)) 905 goto next_buffer; 906 907 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 908 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 909 if (error) { 910 /* something screwed, just bail */ 911 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 912 xfs_alert(ip->i_mount, 913 "page discard unable to remove delalloc mapping."); 914 } 915 break; 916 } 917 next_buffer: 918 offset += 1 << inode->i_blkbits; 919 920 } while ((bh = bh->b_this_page) != head); 921 922 xfs_iunlock(ip, XFS_ILOCK_EXCL); 923 out_invalidate: 924 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE); 925 return; 926 } 927 928 /* 929 * Write out a dirty page. 930 * 931 * For delalloc space on the page we need to allocate space and flush it. 932 * For unwritten space on the page we need to start the conversion to 933 * regular allocated space. 934 * For any other dirty buffer heads on the page we should flush them. 935 */ 936 STATIC int 937 xfs_vm_writepage( 938 struct page *page, 939 struct writeback_control *wbc) 940 { 941 struct inode *inode = page->mapping->host; 942 struct buffer_head *bh, *head; 943 struct xfs_bmbt_irec imap; 944 xfs_ioend_t *ioend = NULL, *iohead = NULL; 945 loff_t offset; 946 unsigned int type; 947 __uint64_t end_offset; 948 pgoff_t end_index, last_index; 949 ssize_t len; 950 int err, imap_valid = 0, uptodate = 1; 951 int count = 0; 952 int nonblocking = 0; 953 954 trace_xfs_writepage(inode, page, 0, 0); 955 956 ASSERT(page_has_buffers(page)); 957 958 /* 959 * Refuse to write the page out if we are called from reclaim context. 960 * 961 * This avoids stack overflows when called from deeply used stacks in 962 * random callers for direct reclaim or memcg reclaim. We explicitly 963 * allow reclaim from kswapd as the stack usage there is relatively low. 964 * 965 * This should never happen except in the case of a VM regression so 966 * warn about it. 967 */ 968 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 969 PF_MEMALLOC)) 970 goto redirty; 971 972 /* 973 * Given that we do not allow direct reclaim to call us, we should 974 * never be called while in a filesystem transaction. 975 */ 976 if (WARN_ON_ONCE(current->flags & PF_FSTRANS)) 977 goto redirty; 978 979 /* Is this page beyond the end of the file? */ 980 offset = i_size_read(inode); 981 end_index = offset >> PAGE_CACHE_SHIFT; 982 last_index = (offset - 1) >> PAGE_CACHE_SHIFT; 983 984 /* 985 * The page index is less than the end_index, adjust the end_offset 986 * to the highest offset that this page should represent. 987 * ----------------------------------------------------- 988 * | file mapping | <EOF> | 989 * ----------------------------------------------------- 990 * | Page ... | Page N-2 | Page N-1 | Page N | | 991 * ^--------------------------------^----------|-------- 992 * | desired writeback range | see else | 993 * ---------------------------------^------------------| 994 */ 995 if (page->index < end_index) 996 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT; 997 else { 998 /* 999 * Check whether the page to write out is beyond or straddles 1000 * i_size or not. 1001 * ------------------------------------------------------- 1002 * | file mapping | <EOF> | 1003 * ------------------------------------------------------- 1004 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1005 * ^--------------------------------^-----------|--------- 1006 * | | Straddles | 1007 * ---------------------------------^-----------|--------| 1008 */ 1009 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); 1010 1011 /* 1012 * Skip the page if it is fully outside i_size, e.g. due to a 1013 * truncate operation that is in progress. We must redirty the 1014 * page so that reclaim stops reclaiming it. Otherwise 1015 * xfs_vm_releasepage() is called on it and gets confused. 1016 * 1017 * Note that the end_index is unsigned long, it would overflow 1018 * if the given offset is greater than 16TB on 32-bit system 1019 * and if we do check the page is fully outside i_size or not 1020 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1021 * will be evaluated to 0. Hence this page will be redirtied 1022 * and be written out repeatedly which would result in an 1023 * infinite loop, the user program that perform this operation 1024 * will hang. Instead, we can verify this situation by checking 1025 * if the page to write is totally beyond the i_size or if it's 1026 * offset is just equal to the EOF. 1027 */ 1028 if (page->index > end_index || 1029 (page->index == end_index && offset_into_page == 0)) 1030 goto redirty; 1031 1032 /* 1033 * The page straddles i_size. It must be zeroed out on each 1034 * and every writepage invocation because it may be mmapped. 1035 * "A file is mapped in multiples of the page size. For a file 1036 * that is not a multiple of the page size, the remaining 1037 * memory is zeroed when mapped, and writes to that region are 1038 * not written out to the file." 1039 */ 1040 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE); 1041 1042 /* Adjust the end_offset to the end of file */ 1043 end_offset = offset; 1044 } 1045 1046 len = 1 << inode->i_blkbits; 1047 1048 bh = head = page_buffers(page); 1049 offset = page_offset(page); 1050 type = XFS_IO_OVERWRITE; 1051 1052 if (wbc->sync_mode == WB_SYNC_NONE) 1053 nonblocking = 1; 1054 1055 do { 1056 int new_ioend = 0; 1057 1058 if (offset >= end_offset) 1059 break; 1060 if (!buffer_uptodate(bh)) 1061 uptodate = 0; 1062 1063 /* 1064 * set_page_dirty dirties all buffers in a page, independent 1065 * of their state. The dirty state however is entirely 1066 * meaningless for holes (!mapped && uptodate), so skip 1067 * buffers covering holes here. 1068 */ 1069 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 1070 imap_valid = 0; 1071 continue; 1072 } 1073 1074 if (buffer_unwritten(bh)) { 1075 if (type != XFS_IO_UNWRITTEN) { 1076 type = XFS_IO_UNWRITTEN; 1077 imap_valid = 0; 1078 } 1079 } else if (buffer_delay(bh)) { 1080 if (type != XFS_IO_DELALLOC) { 1081 type = XFS_IO_DELALLOC; 1082 imap_valid = 0; 1083 } 1084 } else if (buffer_uptodate(bh)) { 1085 if (type != XFS_IO_OVERWRITE) { 1086 type = XFS_IO_OVERWRITE; 1087 imap_valid = 0; 1088 } 1089 } else { 1090 if (PageUptodate(page)) 1091 ASSERT(buffer_mapped(bh)); 1092 /* 1093 * This buffer is not uptodate and will not be 1094 * written to disk. Ensure that we will put any 1095 * subsequent writeable buffers into a new 1096 * ioend. 1097 */ 1098 imap_valid = 0; 1099 continue; 1100 } 1101 1102 if (imap_valid) 1103 imap_valid = xfs_imap_valid(inode, &imap, offset); 1104 if (!imap_valid) { 1105 /* 1106 * If we didn't have a valid mapping then we need to 1107 * put the new mapping into a separate ioend structure. 1108 * This ensures non-contiguous extents always have 1109 * separate ioends, which is particularly important 1110 * for unwritten extent conversion at I/O completion 1111 * time. 1112 */ 1113 new_ioend = 1; 1114 err = xfs_map_blocks(inode, offset, &imap, type, 1115 nonblocking); 1116 if (err) 1117 goto error; 1118 imap_valid = xfs_imap_valid(inode, &imap, offset); 1119 } 1120 if (imap_valid) { 1121 lock_buffer(bh); 1122 if (type != XFS_IO_OVERWRITE) 1123 xfs_map_at_offset(inode, bh, &imap, offset); 1124 xfs_add_to_ioend(inode, bh, offset, type, &ioend, 1125 new_ioend); 1126 count++; 1127 } 1128 1129 if (!iohead) 1130 iohead = ioend; 1131 1132 } while (offset += len, ((bh = bh->b_this_page) != head)); 1133 1134 if (uptodate && bh == head) 1135 SetPageUptodate(page); 1136 1137 xfs_start_page_writeback(page, 1, count); 1138 1139 /* if there is no IO to be submitted for this page, we are done */ 1140 if (!ioend) 1141 return 0; 1142 1143 ASSERT(iohead); 1144 1145 /* 1146 * Any errors from this point onwards need tobe reported through the IO 1147 * completion path as we have marked the initial page as under writeback 1148 * and unlocked it. 1149 */ 1150 if (imap_valid) { 1151 xfs_off_t end_index; 1152 1153 end_index = imap.br_startoff + imap.br_blockcount; 1154 1155 /* to bytes */ 1156 end_index <<= inode->i_blkbits; 1157 1158 /* to pages */ 1159 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; 1160 1161 /* check against file size */ 1162 if (end_index > last_index) 1163 end_index = last_index; 1164 1165 xfs_cluster_write(inode, page->index + 1, &imap, &ioend, 1166 wbc, end_index); 1167 } 1168 1169 1170 /* 1171 * Reserve log space if we might write beyond the on-disk inode size. 1172 */ 1173 err = 0; 1174 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend)) 1175 err = xfs_setfilesize_trans_alloc(ioend); 1176 1177 xfs_submit_ioend(wbc, iohead, err); 1178 1179 return 0; 1180 1181 error: 1182 if (iohead) 1183 xfs_cancel_ioend(iohead); 1184 1185 if (err == -EAGAIN) 1186 goto redirty; 1187 1188 xfs_aops_discard_page(page); 1189 ClearPageUptodate(page); 1190 unlock_page(page); 1191 return err; 1192 1193 redirty: 1194 redirty_page_for_writepage(wbc, page); 1195 unlock_page(page); 1196 return 0; 1197 } 1198 1199 STATIC int 1200 xfs_vm_writepages( 1201 struct address_space *mapping, 1202 struct writeback_control *wbc) 1203 { 1204 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1205 return generic_writepages(mapping, wbc); 1206 } 1207 1208 /* 1209 * Called to move a page into cleanable state - and from there 1210 * to be released. The page should already be clean. We always 1211 * have buffer heads in this call. 1212 * 1213 * Returns 1 if the page is ok to release, 0 otherwise. 1214 */ 1215 STATIC int 1216 xfs_vm_releasepage( 1217 struct page *page, 1218 gfp_t gfp_mask) 1219 { 1220 int delalloc, unwritten; 1221 1222 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1223 1224 xfs_count_page_state(page, &delalloc, &unwritten); 1225 1226 if (WARN_ON_ONCE(delalloc)) 1227 return 0; 1228 if (WARN_ON_ONCE(unwritten)) 1229 return 0; 1230 1231 return try_to_free_buffers(page); 1232 } 1233 1234 /* 1235 * When we map a DIO buffer, we may need to attach an ioend that describes the 1236 * type of write IO we are doing. This passes to the completion function the 1237 * operations it needs to perform. If the mapping is for an overwrite wholly 1238 * within the EOF then we don't need an ioend and so we don't allocate one. 1239 * This avoids the unnecessary overhead of allocating and freeing ioends for 1240 * workloads that don't require transactions on IO completion. 1241 * 1242 * If we get multiple mappings in a single IO, we might be mapping different 1243 * types. But because the direct IO can only have a single private pointer, we 1244 * need to ensure that: 1245 * 1246 * a) i) the ioend spans the entire region of unwritten mappings; or 1247 * ii) the ioend spans all the mappings that cross or are beyond EOF; and 1248 * b) if it contains unwritten extents, it is *permanently* marked as such 1249 * 1250 * We could do this by chaining ioends like buffered IO does, but we only 1251 * actually get one IO completion callback from the direct IO, and that spans 1252 * the entire IO regardless of how many mappings and IOs are needed to complete 1253 * the DIO. There is only going to be one reference to the ioend and its life 1254 * cycle is constrained by the DIO completion code. hence we don't need 1255 * reference counting here. 1256 */ 1257 static void 1258 xfs_map_direct( 1259 struct inode *inode, 1260 struct buffer_head *bh_result, 1261 struct xfs_bmbt_irec *imap, 1262 xfs_off_t offset) 1263 { 1264 struct xfs_ioend *ioend; 1265 xfs_off_t size = bh_result->b_size; 1266 int type; 1267 1268 if (ISUNWRITTEN(imap)) 1269 type = XFS_IO_UNWRITTEN; 1270 else 1271 type = XFS_IO_OVERWRITE; 1272 1273 trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap); 1274 1275 if (bh_result->b_private) { 1276 ioend = bh_result->b_private; 1277 ASSERT(ioend->io_size > 0); 1278 ASSERT(offset >= ioend->io_offset); 1279 if (offset + size > ioend->io_offset + ioend->io_size) 1280 ioend->io_size = offset - ioend->io_offset + size; 1281 1282 if (type == XFS_IO_UNWRITTEN && type != ioend->io_type) 1283 ioend->io_type = XFS_IO_UNWRITTEN; 1284 1285 trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset, 1286 ioend->io_size, ioend->io_type, 1287 imap); 1288 } else if (type == XFS_IO_UNWRITTEN || 1289 offset + size > i_size_read(inode)) { 1290 ioend = xfs_alloc_ioend(inode, type); 1291 ioend->io_offset = offset; 1292 ioend->io_size = size; 1293 1294 bh_result->b_private = ioend; 1295 set_buffer_defer_completion(bh_result); 1296 1297 trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type, 1298 imap); 1299 } else { 1300 trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type, 1301 imap); 1302 } 1303 } 1304 1305 /* 1306 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1307 * is, so that we can avoid repeated get_blocks calls. 1308 * 1309 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1310 * for blocks beyond EOF must be marked new so that sub block regions can be 1311 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1312 * was just allocated or is unwritten, otherwise the callers would overwrite 1313 * existing data with zeros. Hence we have to split the mapping into a range up 1314 * to and including EOF, and a second mapping for beyond EOF. 1315 */ 1316 static void 1317 xfs_map_trim_size( 1318 struct inode *inode, 1319 sector_t iblock, 1320 struct buffer_head *bh_result, 1321 struct xfs_bmbt_irec *imap, 1322 xfs_off_t offset, 1323 ssize_t size) 1324 { 1325 xfs_off_t mapping_size; 1326 1327 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1328 mapping_size <<= inode->i_blkbits; 1329 1330 ASSERT(mapping_size > 0); 1331 if (mapping_size > size) 1332 mapping_size = size; 1333 if (offset < i_size_read(inode) && 1334 offset + mapping_size >= i_size_read(inode)) { 1335 /* limit mapping to block that spans EOF */ 1336 mapping_size = roundup_64(i_size_read(inode) - offset, 1337 1 << inode->i_blkbits); 1338 } 1339 if (mapping_size > LONG_MAX) 1340 mapping_size = LONG_MAX; 1341 1342 bh_result->b_size = mapping_size; 1343 } 1344 1345 STATIC int 1346 __xfs_get_blocks( 1347 struct inode *inode, 1348 sector_t iblock, 1349 struct buffer_head *bh_result, 1350 int create, 1351 int direct) 1352 { 1353 struct xfs_inode *ip = XFS_I(inode); 1354 struct xfs_mount *mp = ip->i_mount; 1355 xfs_fileoff_t offset_fsb, end_fsb; 1356 int error = 0; 1357 int lockmode = 0; 1358 struct xfs_bmbt_irec imap; 1359 int nimaps = 1; 1360 xfs_off_t offset; 1361 ssize_t size; 1362 int new = 0; 1363 1364 if (XFS_FORCED_SHUTDOWN(mp)) 1365 return -EIO; 1366 1367 offset = (xfs_off_t)iblock << inode->i_blkbits; 1368 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1369 size = bh_result->b_size; 1370 1371 if (!create && direct && offset >= i_size_read(inode)) 1372 return 0; 1373 1374 /* 1375 * Direct I/O is usually done on preallocated files, so try getting 1376 * a block mapping without an exclusive lock first. For buffered 1377 * writes we already have the exclusive iolock anyway, so avoiding 1378 * a lock roundtrip here by taking the ilock exclusive from the 1379 * beginning is a useful micro optimization. 1380 */ 1381 if (create && !direct) { 1382 lockmode = XFS_ILOCK_EXCL; 1383 xfs_ilock(ip, lockmode); 1384 } else { 1385 lockmode = xfs_ilock_data_map_shared(ip); 1386 } 1387 1388 ASSERT(offset <= mp->m_super->s_maxbytes); 1389 if (offset + size > mp->m_super->s_maxbytes) 1390 size = mp->m_super->s_maxbytes - offset; 1391 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1392 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1393 1394 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1395 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1396 if (error) 1397 goto out_unlock; 1398 1399 if (create && 1400 (!nimaps || 1401 (imap.br_startblock == HOLESTARTBLOCK || 1402 imap.br_startblock == DELAYSTARTBLOCK))) { 1403 if (direct || xfs_get_extsz_hint(ip)) { 1404 /* 1405 * Drop the ilock in preparation for starting the block 1406 * allocation transaction. It will be retaken 1407 * exclusively inside xfs_iomap_write_direct for the 1408 * actual allocation. 1409 */ 1410 xfs_iunlock(ip, lockmode); 1411 error = xfs_iomap_write_direct(ip, offset, size, 1412 &imap, nimaps); 1413 if (error) 1414 return error; 1415 new = 1; 1416 } else { 1417 /* 1418 * Delalloc reservations do not require a transaction, 1419 * we can go on without dropping the lock here. If we 1420 * are allocating a new delalloc block, make sure that 1421 * we set the new flag so that we mark the buffer new so 1422 * that we know that it is newly allocated if the write 1423 * fails. 1424 */ 1425 if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 1426 new = 1; 1427 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1428 if (error) 1429 goto out_unlock; 1430 1431 xfs_iunlock(ip, lockmode); 1432 } 1433 trace_xfs_get_blocks_alloc(ip, offset, size, 1434 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN 1435 : XFS_IO_DELALLOC, &imap); 1436 } else if (nimaps) { 1437 trace_xfs_get_blocks_found(ip, offset, size, 1438 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN 1439 : XFS_IO_OVERWRITE, &imap); 1440 xfs_iunlock(ip, lockmode); 1441 } else { 1442 trace_xfs_get_blocks_notfound(ip, offset, size); 1443 goto out_unlock; 1444 } 1445 1446 /* trim mapping down to size requested */ 1447 if (direct || size > (1 << inode->i_blkbits)) 1448 xfs_map_trim_size(inode, iblock, bh_result, 1449 &imap, offset, size); 1450 1451 /* 1452 * For unwritten extents do not report a disk address in the buffered 1453 * read case (treat as if we're reading into a hole). 1454 */ 1455 if (imap.br_startblock != HOLESTARTBLOCK && 1456 imap.br_startblock != DELAYSTARTBLOCK && 1457 (create || !ISUNWRITTEN(&imap))) { 1458 xfs_map_buffer(inode, bh_result, &imap, offset); 1459 if (ISUNWRITTEN(&imap)) 1460 set_buffer_unwritten(bh_result); 1461 /* direct IO needs special help */ 1462 if (create && direct) 1463 xfs_map_direct(inode, bh_result, &imap, offset); 1464 } 1465 1466 /* 1467 * If this is a realtime file, data may be on a different device. 1468 * to that pointed to from the buffer_head b_bdev currently. 1469 */ 1470 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1471 1472 /* 1473 * If we previously allocated a block out beyond eof and we are now 1474 * coming back to use it then we will need to flag it as new even if it 1475 * has a disk address. 1476 * 1477 * With sub-block writes into unwritten extents we also need to mark 1478 * the buffer as new so that the unwritten parts of the buffer gets 1479 * correctly zeroed. 1480 */ 1481 if (create && 1482 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1483 (offset >= i_size_read(inode)) || 1484 (new || ISUNWRITTEN(&imap)))) 1485 set_buffer_new(bh_result); 1486 1487 if (imap.br_startblock == DELAYSTARTBLOCK) { 1488 BUG_ON(direct); 1489 if (create) { 1490 set_buffer_uptodate(bh_result); 1491 set_buffer_mapped(bh_result); 1492 set_buffer_delay(bh_result); 1493 } 1494 } 1495 1496 return 0; 1497 1498 out_unlock: 1499 xfs_iunlock(ip, lockmode); 1500 return error; 1501 } 1502 1503 int 1504 xfs_get_blocks( 1505 struct inode *inode, 1506 sector_t iblock, 1507 struct buffer_head *bh_result, 1508 int create) 1509 { 1510 return __xfs_get_blocks(inode, iblock, bh_result, create, 0); 1511 } 1512 1513 STATIC int 1514 xfs_get_blocks_direct( 1515 struct inode *inode, 1516 sector_t iblock, 1517 struct buffer_head *bh_result, 1518 int create) 1519 { 1520 return __xfs_get_blocks(inode, iblock, bh_result, create, 1); 1521 } 1522 1523 /* 1524 * Complete a direct I/O write request. 1525 * 1526 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do. 1527 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite 1528 * wholly within the EOF and so there is nothing for us to do. Note that in this 1529 * case the completion can be called in interrupt context, whereas if we have an 1530 * ioend we will always be called in task context (i.e. from a workqueue). 1531 */ 1532 STATIC void 1533 xfs_end_io_direct_write( 1534 struct kiocb *iocb, 1535 loff_t offset, 1536 ssize_t size, 1537 void *private) 1538 { 1539 struct inode *inode = file_inode(iocb->ki_filp); 1540 struct xfs_inode *ip = XFS_I(inode); 1541 struct xfs_mount *mp = ip->i_mount; 1542 struct xfs_ioend *ioend = private; 1543 1544 trace_xfs_gbmap_direct_endio(ip, offset, size, 1545 ioend ? ioend->io_type : 0, NULL); 1546 1547 if (!ioend) { 1548 ASSERT(offset + size <= i_size_read(inode)); 1549 return; 1550 } 1551 1552 if (XFS_FORCED_SHUTDOWN(mp)) 1553 goto out_end_io; 1554 1555 /* 1556 * dio completion end_io functions are only called on writes if more 1557 * than 0 bytes was written. 1558 */ 1559 ASSERT(size > 0); 1560 1561 /* 1562 * The ioend only maps whole blocks, while the IO may be sector aligned. 1563 * Hence the ioend offset/size may not match the IO offset/size exactly. 1564 * Because we don't map overwrites within EOF into the ioend, the offset 1565 * may not match, but only if the endio spans EOF. Either way, write 1566 * the IO sizes into the ioend so that completion processing does the 1567 * right thing. 1568 */ 1569 ASSERT(offset + size <= ioend->io_offset + ioend->io_size); 1570 ioend->io_size = size; 1571 ioend->io_offset = offset; 1572 1573 /* 1574 * The ioend tells us whether we are doing unwritten extent conversion 1575 * or an append transaction that updates the on-disk file size. These 1576 * cases are the only cases where we should *potentially* be needing 1577 * to update the VFS inode size. 1578 * 1579 * We need to update the in-core inode size here so that we don't end up 1580 * with the on-disk inode size being outside the in-core inode size. We 1581 * have no other method of updating EOF for AIO, so always do it here 1582 * if necessary. 1583 * 1584 * We need to lock the test/set EOF update as we can be racing with 1585 * other IO completions here to update the EOF. Failing to serialise 1586 * here can result in EOF moving backwards and Bad Things Happen when 1587 * that occurs. 1588 */ 1589 spin_lock(&ip->i_flags_lock); 1590 if (offset + size > i_size_read(inode)) 1591 i_size_write(inode, offset + size); 1592 spin_unlock(&ip->i_flags_lock); 1593 1594 /* 1595 * If we are doing an append IO that needs to update the EOF on disk, 1596 * do the transaction reserve now so we can use common end io 1597 * processing. Stashing the error (if there is one) in the ioend will 1598 * result in the ioend processing passing on the error if it is 1599 * possible as we can't return it from here. 1600 */ 1601 if (ioend->io_type == XFS_IO_OVERWRITE) 1602 ioend->io_error = xfs_setfilesize_trans_alloc(ioend); 1603 1604 out_end_io: 1605 xfs_end_io(&ioend->io_work); 1606 return; 1607 } 1608 1609 STATIC ssize_t 1610 xfs_vm_direct_IO( 1611 struct kiocb *iocb, 1612 struct iov_iter *iter, 1613 loff_t offset) 1614 { 1615 struct inode *inode = iocb->ki_filp->f_mapping->host; 1616 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 1617 1618 if (iov_iter_rw(iter) == WRITE) { 1619 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset, 1620 xfs_get_blocks_direct, 1621 xfs_end_io_direct_write, NULL, 1622 DIO_ASYNC_EXTEND); 1623 } 1624 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset, 1625 xfs_get_blocks_direct, NULL, NULL, 0); 1626 } 1627 1628 /* 1629 * Punch out the delalloc blocks we have already allocated. 1630 * 1631 * Don't bother with xfs_setattr given that nothing can have made it to disk yet 1632 * as the page is still locked at this point. 1633 */ 1634 STATIC void 1635 xfs_vm_kill_delalloc_range( 1636 struct inode *inode, 1637 loff_t start, 1638 loff_t end) 1639 { 1640 struct xfs_inode *ip = XFS_I(inode); 1641 xfs_fileoff_t start_fsb; 1642 xfs_fileoff_t end_fsb; 1643 int error; 1644 1645 start_fsb = XFS_B_TO_FSB(ip->i_mount, start); 1646 end_fsb = XFS_B_TO_FSB(ip->i_mount, end); 1647 if (end_fsb <= start_fsb) 1648 return; 1649 1650 xfs_ilock(ip, XFS_ILOCK_EXCL); 1651 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1652 end_fsb - start_fsb); 1653 if (error) { 1654 /* something screwed, just bail */ 1655 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1656 xfs_alert(ip->i_mount, 1657 "xfs_vm_write_failed: unable to clean up ino %lld", 1658 ip->i_ino); 1659 } 1660 } 1661 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1662 } 1663 1664 STATIC void 1665 xfs_vm_write_failed( 1666 struct inode *inode, 1667 struct page *page, 1668 loff_t pos, 1669 unsigned len) 1670 { 1671 loff_t block_offset; 1672 loff_t block_start; 1673 loff_t block_end; 1674 loff_t from = pos & (PAGE_CACHE_SIZE - 1); 1675 loff_t to = from + len; 1676 struct buffer_head *bh, *head; 1677 1678 /* 1679 * The request pos offset might be 32 or 64 bit, this is all fine 1680 * on 64-bit platform. However, for 64-bit pos request on 32-bit 1681 * platform, the high 32-bit will be masked off if we evaluate the 1682 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is 1683 * 0xfffff000 as an unsigned long, hence the result is incorrect 1684 * which could cause the following ASSERT failed in most cases. 1685 * In order to avoid this, we can evaluate the block_offset of the 1686 * start of the page by using shifts rather than masks the mismatch 1687 * problem. 1688 */ 1689 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT; 1690 1691 ASSERT(block_offset + from == pos); 1692 1693 head = page_buffers(page); 1694 block_start = 0; 1695 for (bh = head; bh != head || !block_start; 1696 bh = bh->b_this_page, block_start = block_end, 1697 block_offset += bh->b_size) { 1698 block_end = block_start + bh->b_size; 1699 1700 /* skip buffers before the write */ 1701 if (block_end <= from) 1702 continue; 1703 1704 /* if the buffer is after the write, we're done */ 1705 if (block_start >= to) 1706 break; 1707 1708 if (!buffer_delay(bh)) 1709 continue; 1710 1711 if (!buffer_new(bh) && block_offset < i_size_read(inode)) 1712 continue; 1713 1714 xfs_vm_kill_delalloc_range(inode, block_offset, 1715 block_offset + bh->b_size); 1716 1717 /* 1718 * This buffer does not contain data anymore. make sure anyone 1719 * who finds it knows that for certain. 1720 */ 1721 clear_buffer_delay(bh); 1722 clear_buffer_uptodate(bh); 1723 clear_buffer_mapped(bh); 1724 clear_buffer_new(bh); 1725 clear_buffer_dirty(bh); 1726 } 1727 1728 } 1729 1730 /* 1731 * This used to call block_write_begin(), but it unlocks and releases the page 1732 * on error, and we need that page to be able to punch stale delalloc blocks out 1733 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at 1734 * the appropriate point. 1735 */ 1736 STATIC int 1737 xfs_vm_write_begin( 1738 struct file *file, 1739 struct address_space *mapping, 1740 loff_t pos, 1741 unsigned len, 1742 unsigned flags, 1743 struct page **pagep, 1744 void **fsdata) 1745 { 1746 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1747 struct page *page; 1748 int status; 1749 1750 ASSERT(len <= PAGE_CACHE_SIZE); 1751 1752 page = grab_cache_page_write_begin(mapping, index, flags); 1753 if (!page) 1754 return -ENOMEM; 1755 1756 status = __block_write_begin(page, pos, len, xfs_get_blocks); 1757 if (unlikely(status)) { 1758 struct inode *inode = mapping->host; 1759 size_t isize = i_size_read(inode); 1760 1761 xfs_vm_write_failed(inode, page, pos, len); 1762 unlock_page(page); 1763 1764 /* 1765 * If the write is beyond EOF, we only want to kill blocks 1766 * allocated in this write, not blocks that were previously 1767 * written successfully. 1768 */ 1769 if (pos + len > isize) { 1770 ssize_t start = max_t(ssize_t, pos, isize); 1771 1772 truncate_pagecache_range(inode, start, pos + len); 1773 } 1774 1775 page_cache_release(page); 1776 page = NULL; 1777 } 1778 1779 *pagep = page; 1780 return status; 1781 } 1782 1783 /* 1784 * On failure, we only need to kill delalloc blocks beyond EOF in the range of 1785 * this specific write because they will never be written. Previous writes 1786 * beyond EOF where block allocation succeeded do not need to be trashed, so 1787 * only new blocks from this write should be trashed. For blocks within 1788 * EOF, generic_write_end() zeros them so they are safe to leave alone and be 1789 * written with all the other valid data. 1790 */ 1791 STATIC int 1792 xfs_vm_write_end( 1793 struct file *file, 1794 struct address_space *mapping, 1795 loff_t pos, 1796 unsigned len, 1797 unsigned copied, 1798 struct page *page, 1799 void *fsdata) 1800 { 1801 int ret; 1802 1803 ASSERT(len <= PAGE_CACHE_SIZE); 1804 1805 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1806 if (unlikely(ret < len)) { 1807 struct inode *inode = mapping->host; 1808 size_t isize = i_size_read(inode); 1809 loff_t to = pos + len; 1810 1811 if (to > isize) { 1812 /* only kill blocks in this write beyond EOF */ 1813 if (pos > isize) 1814 isize = pos; 1815 xfs_vm_kill_delalloc_range(inode, isize, to); 1816 truncate_pagecache_range(inode, isize, to); 1817 } 1818 } 1819 return ret; 1820 } 1821 1822 STATIC sector_t 1823 xfs_vm_bmap( 1824 struct address_space *mapping, 1825 sector_t block) 1826 { 1827 struct inode *inode = (struct inode *)mapping->host; 1828 struct xfs_inode *ip = XFS_I(inode); 1829 1830 trace_xfs_vm_bmap(XFS_I(inode)); 1831 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1832 filemap_write_and_wait(mapping); 1833 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1834 return generic_block_bmap(mapping, block, xfs_get_blocks); 1835 } 1836 1837 STATIC int 1838 xfs_vm_readpage( 1839 struct file *unused, 1840 struct page *page) 1841 { 1842 return mpage_readpage(page, xfs_get_blocks); 1843 } 1844 1845 STATIC int 1846 xfs_vm_readpages( 1847 struct file *unused, 1848 struct address_space *mapping, 1849 struct list_head *pages, 1850 unsigned nr_pages) 1851 { 1852 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1853 } 1854 1855 /* 1856 * This is basically a copy of __set_page_dirty_buffers() with one 1857 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1858 * dirty, we'll never be able to clean them because we don't write buffers 1859 * beyond EOF, and that means we can't invalidate pages that span EOF 1860 * that have been marked dirty. Further, the dirty state can leak into 1861 * the file interior if the file is extended, resulting in all sorts of 1862 * bad things happening as the state does not match the underlying data. 1863 * 1864 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1865 * this only exist because of bufferheads and how the generic code manages them. 1866 */ 1867 STATIC int 1868 xfs_vm_set_page_dirty( 1869 struct page *page) 1870 { 1871 struct address_space *mapping = page->mapping; 1872 struct inode *inode = mapping->host; 1873 loff_t end_offset; 1874 loff_t offset; 1875 int newly_dirty; 1876 struct mem_cgroup *memcg; 1877 1878 if (unlikely(!mapping)) 1879 return !TestSetPageDirty(page); 1880 1881 end_offset = i_size_read(inode); 1882 offset = page_offset(page); 1883 1884 spin_lock(&mapping->private_lock); 1885 if (page_has_buffers(page)) { 1886 struct buffer_head *head = page_buffers(page); 1887 struct buffer_head *bh = head; 1888 1889 do { 1890 if (offset < end_offset) 1891 set_buffer_dirty(bh); 1892 bh = bh->b_this_page; 1893 offset += 1 << inode->i_blkbits; 1894 } while (bh != head); 1895 } 1896 /* 1897 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with 1898 * per-memcg dirty page counters. 1899 */ 1900 memcg = mem_cgroup_begin_page_stat(page); 1901 newly_dirty = !TestSetPageDirty(page); 1902 spin_unlock(&mapping->private_lock); 1903 1904 if (newly_dirty) { 1905 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1906 unsigned long flags; 1907 1908 spin_lock_irqsave(&mapping->tree_lock, flags); 1909 if (page->mapping) { /* Race with truncate? */ 1910 WARN_ON_ONCE(!PageUptodate(page)); 1911 account_page_dirtied(page, mapping, memcg); 1912 radix_tree_tag_set(&mapping->page_tree, 1913 page_index(page), PAGECACHE_TAG_DIRTY); 1914 } 1915 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1916 } 1917 mem_cgroup_end_page_stat(memcg); 1918 if (newly_dirty) 1919 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1920 return newly_dirty; 1921 } 1922 1923 const struct address_space_operations xfs_address_space_operations = { 1924 .readpage = xfs_vm_readpage, 1925 .readpages = xfs_vm_readpages, 1926 .writepage = xfs_vm_writepage, 1927 .writepages = xfs_vm_writepages, 1928 .set_page_dirty = xfs_vm_set_page_dirty, 1929 .releasepage = xfs_vm_releasepage, 1930 .invalidatepage = xfs_vm_invalidatepage, 1931 .write_begin = xfs_vm_write_begin, 1932 .write_end = xfs_vm_write_end, 1933 .bmap = xfs_vm_bmap, 1934 .direct_IO = xfs_vm_direct_IO, 1935 .migratepage = buffer_migrate_page, 1936 .is_partially_uptodate = block_is_partially_uptodate, 1937 .error_remove_page = generic_error_remove_page, 1938 }; 1939