xref: /linux/fs/xfs/xfs_aops.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39 
40 /* flags for direct write completions */
41 #define XFS_DIO_FLAG_UNWRITTEN	(1 << 0)
42 #define XFS_DIO_FLAG_APPEND	(1 << 1)
43 #define XFS_DIO_FLAG_COW	(1 << 2)
44 
45 /*
46  * structure owned by writepages passed to individual writepage calls
47  */
48 struct xfs_writepage_ctx {
49 	struct xfs_bmbt_irec    imap;
50 	bool			imap_valid;
51 	unsigned int		io_type;
52 	struct xfs_ioend	*ioend;
53 	sector_t		last_block;
54 };
55 
56 void
57 xfs_count_page_state(
58 	struct page		*page,
59 	int			*delalloc,
60 	int			*unwritten)
61 {
62 	struct buffer_head	*bh, *head;
63 
64 	*delalloc = *unwritten = 0;
65 
66 	bh = head = page_buffers(page);
67 	do {
68 		if (buffer_unwritten(bh))
69 			(*unwritten) = 1;
70 		else if (buffer_delay(bh))
71 			(*delalloc) = 1;
72 	} while ((bh = bh->b_this_page) != head);
73 }
74 
75 struct block_device *
76 xfs_find_bdev_for_inode(
77 	struct inode		*inode)
78 {
79 	struct xfs_inode	*ip = XFS_I(inode);
80 	struct xfs_mount	*mp = ip->i_mount;
81 
82 	if (XFS_IS_REALTIME_INODE(ip))
83 		return mp->m_rtdev_targp->bt_bdev;
84 	else
85 		return mp->m_ddev_targp->bt_bdev;
86 }
87 
88 /*
89  * We're now finished for good with this page.  Update the page state via the
90  * associated buffer_heads, paying attention to the start and end offsets that
91  * we need to process on the page.
92  *
93  * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
94  * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
95  * the page at all, as we may be racing with memory reclaim and it can free both
96  * the bufferhead chain and the page as it will see the page as clean and
97  * unused.
98  */
99 static void
100 xfs_finish_page_writeback(
101 	struct inode		*inode,
102 	struct bio_vec		*bvec,
103 	int			error)
104 {
105 	unsigned int		end = bvec->bv_offset + bvec->bv_len - 1;
106 	struct buffer_head	*head, *bh, *next;
107 	unsigned int		off = 0;
108 	unsigned int		bsize;
109 
110 	ASSERT(bvec->bv_offset < PAGE_SIZE);
111 	ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
112 	ASSERT(end < PAGE_SIZE);
113 	ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
114 
115 	bh = head = page_buffers(bvec->bv_page);
116 
117 	bsize = bh->b_size;
118 	do {
119 		next = bh->b_this_page;
120 		if (off < bvec->bv_offset)
121 			goto next_bh;
122 		if (off > end)
123 			break;
124 		bh->b_end_io(bh, !error);
125 next_bh:
126 		off += bsize;
127 	} while ((bh = next) != head);
128 }
129 
130 /*
131  * We're now finished for good with this ioend structure.  Update the page
132  * state, release holds on bios, and finally free up memory.  Do not use the
133  * ioend after this.
134  */
135 STATIC void
136 xfs_destroy_ioend(
137 	struct xfs_ioend	*ioend,
138 	int			error)
139 {
140 	struct inode		*inode = ioend->io_inode;
141 	struct bio		*last = ioend->io_bio;
142 	struct bio		*bio, *next;
143 
144 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
145 		struct bio_vec	*bvec;
146 		int		i;
147 
148 		/*
149 		 * For the last bio, bi_private points to the ioend, so we
150 		 * need to explicitly end the iteration here.
151 		 */
152 		if (bio == last)
153 			next = NULL;
154 		else
155 			next = bio->bi_private;
156 
157 		/* walk each page on bio, ending page IO on them */
158 		bio_for_each_segment_all(bvec, bio, i)
159 			xfs_finish_page_writeback(inode, bvec, error);
160 
161 		bio_put(bio);
162 	}
163 }
164 
165 /*
166  * Fast and loose check if this write could update the on-disk inode size.
167  */
168 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
169 {
170 	return ioend->io_offset + ioend->io_size >
171 		XFS_I(ioend->io_inode)->i_d.di_size;
172 }
173 
174 STATIC int
175 xfs_setfilesize_trans_alloc(
176 	struct xfs_ioend	*ioend)
177 {
178 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
179 	struct xfs_trans	*tp;
180 	int			error;
181 
182 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
183 	if (error)
184 		return error;
185 
186 	ioend->io_append_trans = tp;
187 
188 	/*
189 	 * We may pass freeze protection with a transaction.  So tell lockdep
190 	 * we released it.
191 	 */
192 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
193 	/*
194 	 * We hand off the transaction to the completion thread now, so
195 	 * clear the flag here.
196 	 */
197 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
198 	return 0;
199 }
200 
201 /*
202  * Update on-disk file size now that data has been written to disk.
203  */
204 STATIC int
205 __xfs_setfilesize(
206 	struct xfs_inode	*ip,
207 	struct xfs_trans	*tp,
208 	xfs_off_t		offset,
209 	size_t			size)
210 {
211 	xfs_fsize_t		isize;
212 
213 	xfs_ilock(ip, XFS_ILOCK_EXCL);
214 	isize = xfs_new_eof(ip, offset + size);
215 	if (!isize) {
216 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
217 		xfs_trans_cancel(tp);
218 		return 0;
219 	}
220 
221 	trace_xfs_setfilesize(ip, offset, size);
222 
223 	ip->i_d.di_size = isize;
224 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
225 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
226 
227 	return xfs_trans_commit(tp);
228 }
229 
230 int
231 xfs_setfilesize(
232 	struct xfs_inode	*ip,
233 	xfs_off_t		offset,
234 	size_t			size)
235 {
236 	struct xfs_mount	*mp = ip->i_mount;
237 	struct xfs_trans	*tp;
238 	int			error;
239 
240 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
241 	if (error)
242 		return error;
243 
244 	return __xfs_setfilesize(ip, tp, offset, size);
245 }
246 
247 STATIC int
248 xfs_setfilesize_ioend(
249 	struct xfs_ioend	*ioend,
250 	int			error)
251 {
252 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
253 	struct xfs_trans	*tp = ioend->io_append_trans;
254 
255 	/*
256 	 * The transaction may have been allocated in the I/O submission thread,
257 	 * thus we need to mark ourselves as being in a transaction manually.
258 	 * Similarly for freeze protection.
259 	 */
260 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
261 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
262 
263 	/* we abort the update if there was an IO error */
264 	if (error) {
265 		xfs_trans_cancel(tp);
266 		return error;
267 	}
268 
269 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
270 }
271 
272 /*
273  * IO write completion.
274  */
275 STATIC void
276 xfs_end_io(
277 	struct work_struct *work)
278 {
279 	struct xfs_ioend	*ioend =
280 		container_of(work, struct xfs_ioend, io_work);
281 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
282 	int			error = ioend->io_bio->bi_error;
283 
284 	/*
285 	 * Set an error if the mount has shut down and proceed with end I/O
286 	 * processing so it can perform whatever cleanups are necessary.
287 	 */
288 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
289 		error = -EIO;
290 
291 	/*
292 	 * For a CoW extent, we need to move the mapping from the CoW fork
293 	 * to the data fork.  If instead an error happened, just dump the
294 	 * new blocks.
295 	 */
296 	if (ioend->io_type == XFS_IO_COW) {
297 		if (error)
298 			goto done;
299 		if (ioend->io_bio->bi_error) {
300 			error = xfs_reflink_cancel_cow_range(ip,
301 					ioend->io_offset, ioend->io_size);
302 			goto done;
303 		}
304 		error = xfs_reflink_end_cow(ip, ioend->io_offset,
305 				ioend->io_size);
306 		if (error)
307 			goto done;
308 	}
309 
310 	/*
311 	 * For unwritten extents we need to issue transactions to convert a
312 	 * range to normal written extens after the data I/O has finished.
313 	 * Detecting and handling completion IO errors is done individually
314 	 * for each case as different cleanup operations need to be performed
315 	 * on error.
316 	 */
317 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
318 		if (error)
319 			goto done;
320 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
321 						  ioend->io_size);
322 	} else if (ioend->io_append_trans) {
323 		error = xfs_setfilesize_ioend(ioend, error);
324 	} else {
325 		ASSERT(!xfs_ioend_is_append(ioend) ||
326 		       ioend->io_type == XFS_IO_COW);
327 	}
328 
329 done:
330 	xfs_destroy_ioend(ioend, error);
331 }
332 
333 STATIC void
334 xfs_end_bio(
335 	struct bio		*bio)
336 {
337 	struct xfs_ioend	*ioend = bio->bi_private;
338 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
339 
340 	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
341 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
342 	else if (ioend->io_append_trans)
343 		queue_work(mp->m_data_workqueue, &ioend->io_work);
344 	else
345 		xfs_destroy_ioend(ioend, bio->bi_error);
346 }
347 
348 STATIC int
349 xfs_map_blocks(
350 	struct inode		*inode,
351 	loff_t			offset,
352 	struct xfs_bmbt_irec	*imap,
353 	int			type)
354 {
355 	struct xfs_inode	*ip = XFS_I(inode);
356 	struct xfs_mount	*mp = ip->i_mount;
357 	ssize_t			count = 1 << inode->i_blkbits;
358 	xfs_fileoff_t		offset_fsb, end_fsb;
359 	int			error = 0;
360 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
361 	int			nimaps = 1;
362 
363 	if (XFS_FORCED_SHUTDOWN(mp))
364 		return -EIO;
365 
366 	ASSERT(type != XFS_IO_COW);
367 	if (type == XFS_IO_UNWRITTEN)
368 		bmapi_flags |= XFS_BMAPI_IGSTATE;
369 
370 	xfs_ilock(ip, XFS_ILOCK_SHARED);
371 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
372 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
373 	ASSERT(offset <= mp->m_super->s_maxbytes);
374 
375 	if (offset + count > mp->m_super->s_maxbytes)
376 		count = mp->m_super->s_maxbytes - offset;
377 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
378 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
379 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
380 				imap, &nimaps, bmapi_flags);
381 	/*
382 	 * Truncate an overwrite extent if there's a pending CoW
383 	 * reservation before the end of this extent.  This forces us
384 	 * to come back to writepage to take care of the CoW.
385 	 */
386 	if (nimaps && type == XFS_IO_OVERWRITE)
387 		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
388 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
389 
390 	if (error)
391 		return error;
392 
393 	if (type == XFS_IO_DELALLOC &&
394 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
395 		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
396 				imap);
397 		if (!error)
398 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
399 		return error;
400 	}
401 
402 #ifdef DEBUG
403 	if (type == XFS_IO_UNWRITTEN) {
404 		ASSERT(nimaps);
405 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
406 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
407 	}
408 #endif
409 	if (nimaps)
410 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
411 	return 0;
412 }
413 
414 STATIC bool
415 xfs_imap_valid(
416 	struct inode		*inode,
417 	struct xfs_bmbt_irec	*imap,
418 	xfs_off_t		offset)
419 {
420 	offset >>= inode->i_blkbits;
421 
422 	return offset >= imap->br_startoff &&
423 		offset < imap->br_startoff + imap->br_blockcount;
424 }
425 
426 STATIC void
427 xfs_start_buffer_writeback(
428 	struct buffer_head	*bh)
429 {
430 	ASSERT(buffer_mapped(bh));
431 	ASSERT(buffer_locked(bh));
432 	ASSERT(!buffer_delay(bh));
433 	ASSERT(!buffer_unwritten(bh));
434 
435 	mark_buffer_async_write(bh);
436 	set_buffer_uptodate(bh);
437 	clear_buffer_dirty(bh);
438 }
439 
440 STATIC void
441 xfs_start_page_writeback(
442 	struct page		*page,
443 	int			clear_dirty)
444 {
445 	ASSERT(PageLocked(page));
446 	ASSERT(!PageWriteback(page));
447 
448 	/*
449 	 * if the page was not fully cleaned, we need to ensure that the higher
450 	 * layers come back to it correctly. That means we need to keep the page
451 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
452 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
453 	 * write this page in this writeback sweep will be made.
454 	 */
455 	if (clear_dirty) {
456 		clear_page_dirty_for_io(page);
457 		set_page_writeback(page);
458 	} else
459 		set_page_writeback_keepwrite(page);
460 
461 	unlock_page(page);
462 }
463 
464 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
465 {
466 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
467 }
468 
469 /*
470  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
471  * it, and we submit that bio. The ioend may be used for multiple bio
472  * submissions, so we only want to allocate an append transaction for the ioend
473  * once. In the case of multiple bio submission, each bio will take an IO
474  * reference to the ioend to ensure that the ioend completion is only done once
475  * all bios have been submitted and the ioend is really done.
476  *
477  * If @fail is non-zero, it means that we have a situation where some part of
478  * the submission process has failed after we have marked paged for writeback
479  * and unlocked them. In this situation, we need to fail the bio and ioend
480  * rather than submit it to IO. This typically only happens on a filesystem
481  * shutdown.
482  */
483 STATIC int
484 xfs_submit_ioend(
485 	struct writeback_control *wbc,
486 	struct xfs_ioend	*ioend,
487 	int			status)
488 {
489 	/* Reserve log space if we might write beyond the on-disk inode size. */
490 	if (!status &&
491 	    ioend->io_type != XFS_IO_UNWRITTEN &&
492 	    xfs_ioend_is_append(ioend) &&
493 	    !ioend->io_append_trans)
494 		status = xfs_setfilesize_trans_alloc(ioend);
495 
496 	ioend->io_bio->bi_private = ioend;
497 	ioend->io_bio->bi_end_io = xfs_end_bio;
498 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
499 
500 	/*
501 	 * If we are failing the IO now, just mark the ioend with an
502 	 * error and finish it. This will run IO completion immediately
503 	 * as there is only one reference to the ioend at this point in
504 	 * time.
505 	 */
506 	if (status) {
507 		ioend->io_bio->bi_error = status;
508 		bio_endio(ioend->io_bio);
509 		return status;
510 	}
511 
512 	submit_bio(ioend->io_bio);
513 	return 0;
514 }
515 
516 static void
517 xfs_init_bio_from_bh(
518 	struct bio		*bio,
519 	struct buffer_head	*bh)
520 {
521 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
522 	bio->bi_bdev = bh->b_bdev;
523 }
524 
525 static struct xfs_ioend *
526 xfs_alloc_ioend(
527 	struct inode		*inode,
528 	unsigned int		type,
529 	xfs_off_t		offset,
530 	struct buffer_head	*bh)
531 {
532 	struct xfs_ioend	*ioend;
533 	struct bio		*bio;
534 
535 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
536 	xfs_init_bio_from_bh(bio, bh);
537 
538 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
539 	INIT_LIST_HEAD(&ioend->io_list);
540 	ioend->io_type = type;
541 	ioend->io_inode = inode;
542 	ioend->io_size = 0;
543 	ioend->io_offset = offset;
544 	INIT_WORK(&ioend->io_work, xfs_end_io);
545 	ioend->io_append_trans = NULL;
546 	ioend->io_bio = bio;
547 	return ioend;
548 }
549 
550 /*
551  * Allocate a new bio, and chain the old bio to the new one.
552  *
553  * Note that we have to do perform the chaining in this unintuitive order
554  * so that the bi_private linkage is set up in the right direction for the
555  * traversal in xfs_destroy_ioend().
556  */
557 static void
558 xfs_chain_bio(
559 	struct xfs_ioend	*ioend,
560 	struct writeback_control *wbc,
561 	struct buffer_head	*bh)
562 {
563 	struct bio *new;
564 
565 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
566 	xfs_init_bio_from_bh(new, bh);
567 
568 	bio_chain(ioend->io_bio, new);
569 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
570 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
571 	submit_bio(ioend->io_bio);
572 	ioend->io_bio = new;
573 }
574 
575 /*
576  * Test to see if we've been building up a completion structure for
577  * earlier buffers -- if so, we try to append to this ioend if we
578  * can, otherwise we finish off any current ioend and start another.
579  * Return the ioend we finished off so that the caller can submit it
580  * once it has finished processing the dirty page.
581  */
582 STATIC void
583 xfs_add_to_ioend(
584 	struct inode		*inode,
585 	struct buffer_head	*bh,
586 	xfs_off_t		offset,
587 	struct xfs_writepage_ctx *wpc,
588 	struct writeback_control *wbc,
589 	struct list_head	*iolist)
590 {
591 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
592 	    bh->b_blocknr != wpc->last_block + 1 ||
593 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
594 		if (wpc->ioend)
595 			list_add(&wpc->ioend->io_list, iolist);
596 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
597 	}
598 
599 	/*
600 	 * If the buffer doesn't fit into the bio we need to allocate a new
601 	 * one.  This shouldn't happen more than once for a given buffer.
602 	 */
603 	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
604 		xfs_chain_bio(wpc->ioend, wbc, bh);
605 
606 	wpc->ioend->io_size += bh->b_size;
607 	wpc->last_block = bh->b_blocknr;
608 	xfs_start_buffer_writeback(bh);
609 }
610 
611 STATIC void
612 xfs_map_buffer(
613 	struct inode		*inode,
614 	struct buffer_head	*bh,
615 	struct xfs_bmbt_irec	*imap,
616 	xfs_off_t		offset)
617 {
618 	sector_t		bn;
619 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
620 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
621 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
622 
623 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
624 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
625 
626 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
627 	      ((offset - iomap_offset) >> inode->i_blkbits);
628 
629 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
630 
631 	bh->b_blocknr = bn;
632 	set_buffer_mapped(bh);
633 }
634 
635 STATIC void
636 xfs_map_at_offset(
637 	struct inode		*inode,
638 	struct buffer_head	*bh,
639 	struct xfs_bmbt_irec	*imap,
640 	xfs_off_t		offset)
641 {
642 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
643 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
644 
645 	xfs_map_buffer(inode, bh, imap, offset);
646 	set_buffer_mapped(bh);
647 	clear_buffer_delay(bh);
648 	clear_buffer_unwritten(bh);
649 }
650 
651 /*
652  * Test if a given page contains at least one buffer of a given @type.
653  * If @check_all_buffers is true, then we walk all the buffers in the page to
654  * try to find one of the type passed in. If it is not set, then the caller only
655  * needs to check the first buffer on the page for a match.
656  */
657 STATIC bool
658 xfs_check_page_type(
659 	struct page		*page,
660 	unsigned int		type,
661 	bool			check_all_buffers)
662 {
663 	struct buffer_head	*bh;
664 	struct buffer_head	*head;
665 
666 	if (PageWriteback(page))
667 		return false;
668 	if (!page->mapping)
669 		return false;
670 	if (!page_has_buffers(page))
671 		return false;
672 
673 	bh = head = page_buffers(page);
674 	do {
675 		if (buffer_unwritten(bh)) {
676 			if (type == XFS_IO_UNWRITTEN)
677 				return true;
678 		} else if (buffer_delay(bh)) {
679 			if (type == XFS_IO_DELALLOC)
680 				return true;
681 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
682 			if (type == XFS_IO_OVERWRITE)
683 				return true;
684 		}
685 
686 		/* If we are only checking the first buffer, we are done now. */
687 		if (!check_all_buffers)
688 			break;
689 	} while ((bh = bh->b_this_page) != head);
690 
691 	return false;
692 }
693 
694 STATIC void
695 xfs_vm_invalidatepage(
696 	struct page		*page,
697 	unsigned int		offset,
698 	unsigned int		length)
699 {
700 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
701 				 length);
702 	block_invalidatepage(page, offset, length);
703 }
704 
705 /*
706  * If the page has delalloc buffers on it, we need to punch them out before we
707  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
708  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
709  * is done on that same region - the delalloc extent is returned when none is
710  * supposed to be there.
711  *
712  * We prevent this by truncating away the delalloc regions on the page before
713  * invalidating it. Because they are delalloc, we can do this without needing a
714  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
715  * truncation without a transaction as there is no space left for block
716  * reservation (typically why we see a ENOSPC in writeback).
717  *
718  * This is not a performance critical path, so for now just do the punching a
719  * buffer head at a time.
720  */
721 STATIC void
722 xfs_aops_discard_page(
723 	struct page		*page)
724 {
725 	struct inode		*inode = page->mapping->host;
726 	struct xfs_inode	*ip = XFS_I(inode);
727 	struct buffer_head	*bh, *head;
728 	loff_t			offset = page_offset(page);
729 
730 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
731 		goto out_invalidate;
732 
733 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
734 		goto out_invalidate;
735 
736 	xfs_alert(ip->i_mount,
737 		"page discard on page %p, inode 0x%llx, offset %llu.",
738 			page, ip->i_ino, offset);
739 
740 	xfs_ilock(ip, XFS_ILOCK_EXCL);
741 	bh = head = page_buffers(page);
742 	do {
743 		int		error;
744 		xfs_fileoff_t	start_fsb;
745 
746 		if (!buffer_delay(bh))
747 			goto next_buffer;
748 
749 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
750 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
751 		if (error) {
752 			/* something screwed, just bail */
753 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
754 				xfs_alert(ip->i_mount,
755 			"page discard unable to remove delalloc mapping.");
756 			}
757 			break;
758 		}
759 next_buffer:
760 		offset += 1 << inode->i_blkbits;
761 
762 	} while ((bh = bh->b_this_page) != head);
763 
764 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
765 out_invalidate:
766 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
767 	return;
768 }
769 
770 static int
771 xfs_map_cow(
772 	struct xfs_writepage_ctx *wpc,
773 	struct inode		*inode,
774 	loff_t			offset,
775 	unsigned int		*new_type)
776 {
777 	struct xfs_inode	*ip = XFS_I(inode);
778 	struct xfs_bmbt_irec	imap;
779 	bool			is_cow = false, need_alloc = false;
780 	int			error;
781 
782 	/*
783 	 * If we already have a valid COW mapping keep using it.
784 	 */
785 	if (wpc->io_type == XFS_IO_COW) {
786 		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
787 		if (wpc->imap_valid) {
788 			*new_type = XFS_IO_COW;
789 			return 0;
790 		}
791 	}
792 
793 	/*
794 	 * Else we need to check if there is a COW mapping at this offset.
795 	 */
796 	xfs_ilock(ip, XFS_ILOCK_SHARED);
797 	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap, &need_alloc);
798 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
799 
800 	if (!is_cow)
801 		return 0;
802 
803 	/*
804 	 * And if the COW mapping has a delayed extent here we need to
805 	 * allocate real space for it now.
806 	 */
807 	if (need_alloc) {
808 		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
809 				&imap);
810 		if (error)
811 			return error;
812 	}
813 
814 	wpc->io_type = *new_type = XFS_IO_COW;
815 	wpc->imap_valid = true;
816 	wpc->imap = imap;
817 	return 0;
818 }
819 
820 /*
821  * We implement an immediate ioend submission policy here to avoid needing to
822  * chain multiple ioends and hence nest mempool allocations which can violate
823  * forward progress guarantees we need to provide. The current ioend we are
824  * adding buffers to is cached on the writepage context, and if the new buffer
825  * does not append to the cached ioend it will create a new ioend and cache that
826  * instead.
827  *
828  * If a new ioend is created and cached, the old ioend is returned and queued
829  * locally for submission once the entire page is processed or an error has been
830  * detected.  While ioends are submitted immediately after they are completed,
831  * batching optimisations are provided by higher level block plugging.
832  *
833  * At the end of a writeback pass, there will be a cached ioend remaining on the
834  * writepage context that the caller will need to submit.
835  */
836 static int
837 xfs_writepage_map(
838 	struct xfs_writepage_ctx *wpc,
839 	struct writeback_control *wbc,
840 	struct inode		*inode,
841 	struct page		*page,
842 	loff_t			offset,
843 	__uint64_t              end_offset)
844 {
845 	LIST_HEAD(submit_list);
846 	struct xfs_ioend	*ioend, *next;
847 	struct buffer_head	*bh, *head;
848 	ssize_t			len = 1 << inode->i_blkbits;
849 	int			error = 0;
850 	int			count = 0;
851 	int			uptodate = 1;
852 	unsigned int		new_type;
853 
854 	bh = head = page_buffers(page);
855 	offset = page_offset(page);
856 	do {
857 		if (offset >= end_offset)
858 			break;
859 		if (!buffer_uptodate(bh))
860 			uptodate = 0;
861 
862 		/*
863 		 * set_page_dirty dirties all buffers in a page, independent
864 		 * of their state.  The dirty state however is entirely
865 		 * meaningless for holes (!mapped && uptodate), so skip
866 		 * buffers covering holes here.
867 		 */
868 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
869 			wpc->imap_valid = false;
870 			continue;
871 		}
872 
873 		if (buffer_unwritten(bh))
874 			new_type = XFS_IO_UNWRITTEN;
875 		else if (buffer_delay(bh))
876 			new_type = XFS_IO_DELALLOC;
877 		else if (buffer_uptodate(bh))
878 			new_type = XFS_IO_OVERWRITE;
879 		else {
880 			if (PageUptodate(page))
881 				ASSERT(buffer_mapped(bh));
882 			/*
883 			 * This buffer is not uptodate and will not be
884 			 * written to disk.  Ensure that we will put any
885 			 * subsequent writeable buffers into a new
886 			 * ioend.
887 			 */
888 			wpc->imap_valid = false;
889 			continue;
890 		}
891 
892 		if (xfs_is_reflink_inode(XFS_I(inode))) {
893 			error = xfs_map_cow(wpc, inode, offset, &new_type);
894 			if (error)
895 				goto out;
896 		}
897 
898 		if (wpc->io_type != new_type) {
899 			wpc->io_type = new_type;
900 			wpc->imap_valid = false;
901 		}
902 
903 		if (wpc->imap_valid)
904 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
905 							 offset);
906 		if (!wpc->imap_valid) {
907 			error = xfs_map_blocks(inode, offset, &wpc->imap,
908 					     wpc->io_type);
909 			if (error)
910 				goto out;
911 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
912 							 offset);
913 		}
914 		if (wpc->imap_valid) {
915 			lock_buffer(bh);
916 			if (wpc->io_type != XFS_IO_OVERWRITE)
917 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
918 			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
919 			count++;
920 		}
921 
922 	} while (offset += len, ((bh = bh->b_this_page) != head));
923 
924 	if (uptodate && bh == head)
925 		SetPageUptodate(page);
926 
927 	ASSERT(wpc->ioend || list_empty(&submit_list));
928 
929 out:
930 	/*
931 	 * On error, we have to fail the ioend here because we have locked
932 	 * buffers in the ioend. If we don't do this, we'll deadlock
933 	 * invalidating the page as that tries to lock the buffers on the page.
934 	 * Also, because we may have set pages under writeback, we have to make
935 	 * sure we run IO completion to mark the error state of the IO
936 	 * appropriately, so we can't cancel the ioend directly here. That means
937 	 * we have to mark this page as under writeback if we included any
938 	 * buffers from it in the ioend chain so that completion treats it
939 	 * correctly.
940 	 *
941 	 * If we didn't include the page in the ioend, the on error we can
942 	 * simply discard and unlock it as there are no other users of the page
943 	 * or it's buffers right now. The caller will still need to trigger
944 	 * submission of outstanding ioends on the writepage context so they are
945 	 * treated correctly on error.
946 	 */
947 	if (count) {
948 		xfs_start_page_writeback(page, !error);
949 
950 		/*
951 		 * Preserve the original error if there was one, otherwise catch
952 		 * submission errors here and propagate into subsequent ioend
953 		 * submissions.
954 		 */
955 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
956 			int error2;
957 
958 			list_del_init(&ioend->io_list);
959 			error2 = xfs_submit_ioend(wbc, ioend, error);
960 			if (error2 && !error)
961 				error = error2;
962 		}
963 	} else if (error) {
964 		xfs_aops_discard_page(page);
965 		ClearPageUptodate(page);
966 		unlock_page(page);
967 	} else {
968 		/*
969 		 * We can end up here with no error and nothing to write if we
970 		 * race with a partial page truncate on a sub-page block sized
971 		 * filesystem. In that case we need to mark the page clean.
972 		 */
973 		xfs_start_page_writeback(page, 1);
974 		end_page_writeback(page);
975 	}
976 
977 	mapping_set_error(page->mapping, error);
978 	return error;
979 }
980 
981 /*
982  * Write out a dirty page.
983  *
984  * For delalloc space on the page we need to allocate space and flush it.
985  * For unwritten space on the page we need to start the conversion to
986  * regular allocated space.
987  * For any other dirty buffer heads on the page we should flush them.
988  */
989 STATIC int
990 xfs_do_writepage(
991 	struct page		*page,
992 	struct writeback_control *wbc,
993 	void			*data)
994 {
995 	struct xfs_writepage_ctx *wpc = data;
996 	struct inode		*inode = page->mapping->host;
997 	loff_t			offset;
998 	__uint64_t              end_offset;
999 	pgoff_t                 end_index;
1000 
1001 	trace_xfs_writepage(inode, page, 0, 0);
1002 
1003 	ASSERT(page_has_buffers(page));
1004 
1005 	/*
1006 	 * Refuse to write the page out if we are called from reclaim context.
1007 	 *
1008 	 * This avoids stack overflows when called from deeply used stacks in
1009 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1010 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1011 	 *
1012 	 * This should never happen except in the case of a VM regression so
1013 	 * warn about it.
1014 	 */
1015 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1016 			PF_MEMALLOC))
1017 		goto redirty;
1018 
1019 	/*
1020 	 * Given that we do not allow direct reclaim to call us, we should
1021 	 * never be called while in a filesystem transaction.
1022 	 */
1023 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
1024 		goto redirty;
1025 
1026 	/*
1027 	 * Is this page beyond the end of the file?
1028 	 *
1029 	 * The page index is less than the end_index, adjust the end_offset
1030 	 * to the highest offset that this page should represent.
1031 	 * -----------------------------------------------------
1032 	 * |			file mapping	       | <EOF> |
1033 	 * -----------------------------------------------------
1034 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1035 	 * ^--------------------------------^----------|--------
1036 	 * |     desired writeback range    |      see else    |
1037 	 * ---------------------------------^------------------|
1038 	 */
1039 	offset = i_size_read(inode);
1040 	end_index = offset >> PAGE_SHIFT;
1041 	if (page->index < end_index)
1042 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1043 	else {
1044 		/*
1045 		 * Check whether the page to write out is beyond or straddles
1046 		 * i_size or not.
1047 		 * -------------------------------------------------------
1048 		 * |		file mapping		        | <EOF>  |
1049 		 * -------------------------------------------------------
1050 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1051 		 * ^--------------------------------^-----------|---------
1052 		 * |				    |      Straddles     |
1053 		 * ---------------------------------^-----------|--------|
1054 		 */
1055 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1056 
1057 		/*
1058 		 * Skip the page if it is fully outside i_size, e.g. due to a
1059 		 * truncate operation that is in progress. We must redirty the
1060 		 * page so that reclaim stops reclaiming it. Otherwise
1061 		 * xfs_vm_releasepage() is called on it and gets confused.
1062 		 *
1063 		 * Note that the end_index is unsigned long, it would overflow
1064 		 * if the given offset is greater than 16TB on 32-bit system
1065 		 * and if we do check the page is fully outside i_size or not
1066 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1067 		 * will be evaluated to 0.  Hence this page will be redirtied
1068 		 * and be written out repeatedly which would result in an
1069 		 * infinite loop, the user program that perform this operation
1070 		 * will hang.  Instead, we can verify this situation by checking
1071 		 * if the page to write is totally beyond the i_size or if it's
1072 		 * offset is just equal to the EOF.
1073 		 */
1074 		if (page->index > end_index ||
1075 		    (page->index == end_index && offset_into_page == 0))
1076 			goto redirty;
1077 
1078 		/*
1079 		 * The page straddles i_size.  It must be zeroed out on each
1080 		 * and every writepage invocation because it may be mmapped.
1081 		 * "A file is mapped in multiples of the page size.  For a file
1082 		 * that is not a multiple of the page size, the remaining
1083 		 * memory is zeroed when mapped, and writes to that region are
1084 		 * not written out to the file."
1085 		 */
1086 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1087 
1088 		/* Adjust the end_offset to the end of file */
1089 		end_offset = offset;
1090 	}
1091 
1092 	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1093 
1094 redirty:
1095 	redirty_page_for_writepage(wbc, page);
1096 	unlock_page(page);
1097 	return 0;
1098 }
1099 
1100 STATIC int
1101 xfs_vm_writepage(
1102 	struct page		*page,
1103 	struct writeback_control *wbc)
1104 {
1105 	struct xfs_writepage_ctx wpc = {
1106 		.io_type = XFS_IO_INVALID,
1107 	};
1108 	int			ret;
1109 
1110 	ret = xfs_do_writepage(page, wbc, &wpc);
1111 	if (wpc.ioend)
1112 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1113 	return ret;
1114 }
1115 
1116 STATIC int
1117 xfs_vm_writepages(
1118 	struct address_space	*mapping,
1119 	struct writeback_control *wbc)
1120 {
1121 	struct xfs_writepage_ctx wpc = {
1122 		.io_type = XFS_IO_INVALID,
1123 	};
1124 	int			ret;
1125 
1126 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1127 	if (dax_mapping(mapping))
1128 		return dax_writeback_mapping_range(mapping,
1129 				xfs_find_bdev_for_inode(mapping->host), wbc);
1130 
1131 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1132 	if (wpc.ioend)
1133 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1134 	return ret;
1135 }
1136 
1137 /*
1138  * Called to move a page into cleanable state - and from there
1139  * to be released. The page should already be clean. We always
1140  * have buffer heads in this call.
1141  *
1142  * Returns 1 if the page is ok to release, 0 otherwise.
1143  */
1144 STATIC int
1145 xfs_vm_releasepage(
1146 	struct page		*page,
1147 	gfp_t			gfp_mask)
1148 {
1149 	int			delalloc, unwritten;
1150 
1151 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1152 
1153 	/*
1154 	 * mm accommodates an old ext3 case where clean pages might not have had
1155 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1156 	 * ->releasepage() via shrink_active_list(). Conversely,
1157 	 * block_invalidatepage() can send pages that are still marked dirty
1158 	 * but otherwise have invalidated buffers.
1159 	 *
1160 	 * We've historically freed buffers on the latter. Instead, quietly
1161 	 * filter out all dirty pages to avoid spurious buffer state warnings.
1162 	 * This can likely be removed once shrink_active_list() is fixed.
1163 	 */
1164 	if (PageDirty(page))
1165 		return 0;
1166 
1167 	xfs_count_page_state(page, &delalloc, &unwritten);
1168 
1169 	if (WARN_ON_ONCE(delalloc))
1170 		return 0;
1171 	if (WARN_ON_ONCE(unwritten))
1172 		return 0;
1173 
1174 	return try_to_free_buffers(page);
1175 }
1176 
1177 /*
1178  * When we map a DIO buffer, we may need to pass flags to
1179  * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1180  *
1181  * Note that for DIO, an IO to the highest supported file block offset (i.e.
1182  * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1183  * bit variable. Hence if we see this overflow, we have to assume that the IO is
1184  * extending the file size. We won't know for sure until IO completion is run
1185  * and the actual max write offset is communicated to the IO completion
1186  * routine.
1187  */
1188 static void
1189 xfs_map_direct(
1190 	struct inode		*inode,
1191 	struct buffer_head	*bh_result,
1192 	struct xfs_bmbt_irec	*imap,
1193 	xfs_off_t		offset,
1194 	bool			is_cow)
1195 {
1196 	uintptr_t		*flags = (uintptr_t *)&bh_result->b_private;
1197 	xfs_off_t		size = bh_result->b_size;
1198 
1199 	trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1200 		ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : is_cow ? XFS_IO_COW :
1201 		XFS_IO_OVERWRITE, imap);
1202 
1203 	if (ISUNWRITTEN(imap)) {
1204 		*flags |= XFS_DIO_FLAG_UNWRITTEN;
1205 		set_buffer_defer_completion(bh_result);
1206 	} else if (is_cow) {
1207 		*flags |= XFS_DIO_FLAG_COW;
1208 		set_buffer_defer_completion(bh_result);
1209 	}
1210 	if (offset + size > i_size_read(inode) || offset + size < 0) {
1211 		*flags |= XFS_DIO_FLAG_APPEND;
1212 		set_buffer_defer_completion(bh_result);
1213 	}
1214 }
1215 
1216 /*
1217  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1218  * is, so that we can avoid repeated get_blocks calls.
1219  *
1220  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1221  * for blocks beyond EOF must be marked new so that sub block regions can be
1222  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1223  * was just allocated or is unwritten, otherwise the callers would overwrite
1224  * existing data with zeros. Hence we have to split the mapping into a range up
1225  * to and including EOF, and a second mapping for beyond EOF.
1226  */
1227 static void
1228 xfs_map_trim_size(
1229 	struct inode		*inode,
1230 	sector_t		iblock,
1231 	struct buffer_head	*bh_result,
1232 	struct xfs_bmbt_irec	*imap,
1233 	xfs_off_t		offset,
1234 	ssize_t			size)
1235 {
1236 	xfs_off_t		mapping_size;
1237 
1238 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1239 	mapping_size <<= inode->i_blkbits;
1240 
1241 	ASSERT(mapping_size > 0);
1242 	if (mapping_size > size)
1243 		mapping_size = size;
1244 	if (offset < i_size_read(inode) &&
1245 	    offset + mapping_size >= i_size_read(inode)) {
1246 		/* limit mapping to block that spans EOF */
1247 		mapping_size = roundup_64(i_size_read(inode) - offset,
1248 					  1 << inode->i_blkbits);
1249 	}
1250 	if (mapping_size > LONG_MAX)
1251 		mapping_size = LONG_MAX;
1252 
1253 	bh_result->b_size = mapping_size;
1254 }
1255 
1256 /* Bounce unaligned directio writes to the page cache. */
1257 static int
1258 xfs_bounce_unaligned_dio_write(
1259 	struct xfs_inode	*ip,
1260 	xfs_fileoff_t		offset_fsb,
1261 	struct xfs_bmbt_irec	*imap)
1262 {
1263 	struct xfs_bmbt_irec	irec;
1264 	xfs_fileoff_t		delta;
1265 	bool			shared;
1266 	bool			x;
1267 	int			error;
1268 
1269 	irec = *imap;
1270 	if (offset_fsb > irec.br_startoff) {
1271 		delta = offset_fsb - irec.br_startoff;
1272 		irec.br_blockcount -= delta;
1273 		irec.br_startblock += delta;
1274 		irec.br_startoff = offset_fsb;
1275 	}
1276 	error = xfs_reflink_trim_around_shared(ip, &irec, &shared, &x);
1277 	if (error)
1278 		return error;
1279 
1280 	/*
1281 	 * We're here because we're trying to do a directio write to a
1282 	 * region that isn't aligned to a filesystem block.  If any part
1283 	 * of the extent is shared, fall back to buffered mode to handle
1284 	 * the RMW.  This is done by returning -EREMCHG ("remote addr
1285 	 * changed"), which is caught further up the call stack.
1286 	 */
1287 	if (shared) {
1288 		trace_xfs_reflink_bounce_dio_write(ip, imap);
1289 		return -EREMCHG;
1290 	}
1291 	return 0;
1292 }
1293 
1294 STATIC int
1295 __xfs_get_blocks(
1296 	struct inode		*inode,
1297 	sector_t		iblock,
1298 	struct buffer_head	*bh_result,
1299 	int			create,
1300 	bool			direct)
1301 {
1302 	struct xfs_inode	*ip = XFS_I(inode);
1303 	struct xfs_mount	*mp = ip->i_mount;
1304 	xfs_fileoff_t		offset_fsb, end_fsb;
1305 	int			error = 0;
1306 	int			lockmode = 0;
1307 	struct xfs_bmbt_irec	imap;
1308 	int			nimaps = 1;
1309 	xfs_off_t		offset;
1310 	ssize_t			size;
1311 	int			new = 0;
1312 	bool			is_cow = false;
1313 	bool			need_alloc = false;
1314 
1315 	BUG_ON(create && !direct);
1316 
1317 	if (XFS_FORCED_SHUTDOWN(mp))
1318 		return -EIO;
1319 
1320 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1321 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1322 	size = bh_result->b_size;
1323 
1324 	if (!create && offset >= i_size_read(inode))
1325 		return 0;
1326 
1327 	/*
1328 	 * Direct I/O is usually done on preallocated files, so try getting
1329 	 * a block mapping without an exclusive lock first.
1330 	 */
1331 	lockmode = xfs_ilock_data_map_shared(ip);
1332 
1333 	ASSERT(offset <= mp->m_super->s_maxbytes);
1334 	if (offset + size > mp->m_super->s_maxbytes)
1335 		size = mp->m_super->s_maxbytes - offset;
1336 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1337 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1338 
1339 	if (create && direct && xfs_is_reflink_inode(ip))
1340 		is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap,
1341 					&need_alloc);
1342 	if (!is_cow) {
1343 		error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1344 					&imap, &nimaps, XFS_BMAPI_ENTIRE);
1345 		/*
1346 		 * Truncate an overwrite extent if there's a pending CoW
1347 		 * reservation before the end of this extent.  This
1348 		 * forces us to come back to get_blocks to take care of
1349 		 * the CoW.
1350 		 */
1351 		if (create && direct && nimaps &&
1352 		    imap.br_startblock != HOLESTARTBLOCK &&
1353 		    imap.br_startblock != DELAYSTARTBLOCK &&
1354 		    !ISUNWRITTEN(&imap))
1355 			xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb,
1356 					&imap);
1357 	}
1358 	ASSERT(!need_alloc);
1359 	if (error)
1360 		goto out_unlock;
1361 
1362 	/* for DAX, we convert unwritten extents directly */
1363 	if (create &&
1364 	    (!nimaps ||
1365 	     (imap.br_startblock == HOLESTARTBLOCK ||
1366 	      imap.br_startblock == DELAYSTARTBLOCK) ||
1367 	     (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1368 		/*
1369 		 * xfs_iomap_write_direct() expects the shared lock. It
1370 		 * is unlocked on return.
1371 		 */
1372 		if (lockmode == XFS_ILOCK_EXCL)
1373 			xfs_ilock_demote(ip, lockmode);
1374 
1375 		error = xfs_iomap_write_direct(ip, offset, size,
1376 					       &imap, nimaps);
1377 		if (error)
1378 			return error;
1379 		new = 1;
1380 
1381 		trace_xfs_get_blocks_alloc(ip, offset, size,
1382 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1383 						   : XFS_IO_DELALLOC, &imap);
1384 	} else if (nimaps) {
1385 		trace_xfs_get_blocks_found(ip, offset, size,
1386 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1387 						   : XFS_IO_OVERWRITE, &imap);
1388 		xfs_iunlock(ip, lockmode);
1389 	} else {
1390 		trace_xfs_get_blocks_notfound(ip, offset, size);
1391 		goto out_unlock;
1392 	}
1393 
1394 	if (IS_DAX(inode) && create) {
1395 		ASSERT(!ISUNWRITTEN(&imap));
1396 		/* zeroing is not needed at a higher layer */
1397 		new = 0;
1398 	}
1399 
1400 	/* trim mapping down to size requested */
1401 	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1402 
1403 	/*
1404 	 * For unwritten extents do not report a disk address in the buffered
1405 	 * read case (treat as if we're reading into a hole).
1406 	 */
1407 	if (imap.br_startblock != HOLESTARTBLOCK &&
1408 	    imap.br_startblock != DELAYSTARTBLOCK &&
1409 	    (create || !ISUNWRITTEN(&imap))) {
1410 		if (create && direct && !is_cow) {
1411 			error = xfs_bounce_unaligned_dio_write(ip, offset_fsb,
1412 					&imap);
1413 			if (error)
1414 				return error;
1415 		}
1416 
1417 		xfs_map_buffer(inode, bh_result, &imap, offset);
1418 		if (ISUNWRITTEN(&imap))
1419 			set_buffer_unwritten(bh_result);
1420 		/* direct IO needs special help */
1421 		if (create)
1422 			xfs_map_direct(inode, bh_result, &imap, offset, is_cow);
1423 	}
1424 
1425 	/*
1426 	 * If this is a realtime file, data may be on a different device.
1427 	 * to that pointed to from the buffer_head b_bdev currently.
1428 	 */
1429 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1430 
1431 	/*
1432 	 * If we previously allocated a block out beyond eof and we are now
1433 	 * coming back to use it then we will need to flag it as new even if it
1434 	 * has a disk address.
1435 	 *
1436 	 * With sub-block writes into unwritten extents we also need to mark
1437 	 * the buffer as new so that the unwritten parts of the buffer gets
1438 	 * correctly zeroed.
1439 	 */
1440 	if (create &&
1441 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1442 	     (offset >= i_size_read(inode)) ||
1443 	     (new || ISUNWRITTEN(&imap))))
1444 		set_buffer_new(bh_result);
1445 
1446 	BUG_ON(direct && imap.br_startblock == DELAYSTARTBLOCK);
1447 
1448 	return 0;
1449 
1450 out_unlock:
1451 	xfs_iunlock(ip, lockmode);
1452 	return error;
1453 }
1454 
1455 int
1456 xfs_get_blocks(
1457 	struct inode		*inode,
1458 	sector_t		iblock,
1459 	struct buffer_head	*bh_result,
1460 	int			create)
1461 {
1462 	return __xfs_get_blocks(inode, iblock, bh_result, create, false);
1463 }
1464 
1465 int
1466 xfs_get_blocks_direct(
1467 	struct inode		*inode,
1468 	sector_t		iblock,
1469 	struct buffer_head	*bh_result,
1470 	int			create)
1471 {
1472 	return __xfs_get_blocks(inode, iblock, bh_result, create, true);
1473 }
1474 
1475 /*
1476  * Complete a direct I/O write request.
1477  *
1478  * xfs_map_direct passes us some flags in the private data to tell us what to
1479  * do.  If no flags are set, then the write IO is an overwrite wholly within
1480  * the existing allocated file size and so there is nothing for us to do.
1481  *
1482  * Note that in this case the completion can be called in interrupt context,
1483  * whereas if we have flags set we will always be called in task context
1484  * (i.e. from a workqueue).
1485  */
1486 int
1487 xfs_end_io_direct_write(
1488 	struct kiocb		*iocb,
1489 	loff_t			offset,
1490 	ssize_t			size,
1491 	void			*private)
1492 {
1493 	struct inode		*inode = file_inode(iocb->ki_filp);
1494 	struct xfs_inode	*ip = XFS_I(inode);
1495 	uintptr_t		flags = (uintptr_t)private;
1496 	int			error = 0;
1497 
1498 	trace_xfs_end_io_direct_write(ip, offset, size);
1499 
1500 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
1501 		return -EIO;
1502 
1503 	if (size <= 0)
1504 		return size;
1505 
1506 	/*
1507 	 * The flags tell us whether we are doing unwritten extent conversions
1508 	 * or an append transaction that updates the on-disk file size. These
1509 	 * cases are the only cases where we should *potentially* be needing
1510 	 * to update the VFS inode size.
1511 	 */
1512 	if (flags == 0) {
1513 		ASSERT(offset + size <= i_size_read(inode));
1514 		return 0;
1515 	}
1516 
1517 	/*
1518 	 * We need to update the in-core inode size here so that we don't end up
1519 	 * with the on-disk inode size being outside the in-core inode size. We
1520 	 * have no other method of updating EOF for AIO, so always do it here
1521 	 * if necessary.
1522 	 *
1523 	 * We need to lock the test/set EOF update as we can be racing with
1524 	 * other IO completions here to update the EOF. Failing to serialise
1525 	 * here can result in EOF moving backwards and Bad Things Happen when
1526 	 * that occurs.
1527 	 */
1528 	spin_lock(&ip->i_flags_lock);
1529 	if (offset + size > i_size_read(inode))
1530 		i_size_write(inode, offset + size);
1531 	spin_unlock(&ip->i_flags_lock);
1532 
1533 	if (flags & XFS_DIO_FLAG_COW)
1534 		error = xfs_reflink_end_cow(ip, offset, size);
1535 	if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1536 		trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1537 
1538 		error = xfs_iomap_write_unwritten(ip, offset, size);
1539 	}
1540 	if (flags & XFS_DIO_FLAG_APPEND) {
1541 		trace_xfs_end_io_direct_write_append(ip, offset, size);
1542 
1543 		error = xfs_setfilesize(ip, offset, size);
1544 	}
1545 
1546 	return error;
1547 }
1548 
1549 STATIC ssize_t
1550 xfs_vm_direct_IO(
1551 	struct kiocb		*iocb,
1552 	struct iov_iter		*iter)
1553 {
1554 	/*
1555 	 * We just need the method present so that open/fcntl allow direct I/O.
1556 	 */
1557 	return -EINVAL;
1558 }
1559 
1560 STATIC sector_t
1561 xfs_vm_bmap(
1562 	struct address_space	*mapping,
1563 	sector_t		block)
1564 {
1565 	struct inode		*inode = (struct inode *)mapping->host;
1566 	struct xfs_inode	*ip = XFS_I(inode);
1567 
1568 	trace_xfs_vm_bmap(XFS_I(inode));
1569 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1570 
1571 	/*
1572 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1573 	 * bypasseѕ the file system for actual I/O.  We really can't allow
1574 	 * that on reflinks inodes, so we have to skip out here.  And yes,
1575 	 * 0 is the magic code for a bmap error..
1576 	 */
1577 	if (xfs_is_reflink_inode(ip)) {
1578 		xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1579 		return 0;
1580 	}
1581 	filemap_write_and_wait(mapping);
1582 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1583 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1584 }
1585 
1586 STATIC int
1587 xfs_vm_readpage(
1588 	struct file		*unused,
1589 	struct page		*page)
1590 {
1591 	trace_xfs_vm_readpage(page->mapping->host, 1);
1592 	return mpage_readpage(page, xfs_get_blocks);
1593 }
1594 
1595 STATIC int
1596 xfs_vm_readpages(
1597 	struct file		*unused,
1598 	struct address_space	*mapping,
1599 	struct list_head	*pages,
1600 	unsigned		nr_pages)
1601 {
1602 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1603 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1604 }
1605 
1606 /*
1607  * This is basically a copy of __set_page_dirty_buffers() with one
1608  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1609  * dirty, we'll never be able to clean them because we don't write buffers
1610  * beyond EOF, and that means we can't invalidate pages that span EOF
1611  * that have been marked dirty. Further, the dirty state can leak into
1612  * the file interior if the file is extended, resulting in all sorts of
1613  * bad things happening as the state does not match the underlying data.
1614  *
1615  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1616  * this only exist because of bufferheads and how the generic code manages them.
1617  */
1618 STATIC int
1619 xfs_vm_set_page_dirty(
1620 	struct page		*page)
1621 {
1622 	struct address_space	*mapping = page->mapping;
1623 	struct inode		*inode = mapping->host;
1624 	loff_t			end_offset;
1625 	loff_t			offset;
1626 	int			newly_dirty;
1627 
1628 	if (unlikely(!mapping))
1629 		return !TestSetPageDirty(page);
1630 
1631 	end_offset = i_size_read(inode);
1632 	offset = page_offset(page);
1633 
1634 	spin_lock(&mapping->private_lock);
1635 	if (page_has_buffers(page)) {
1636 		struct buffer_head *head = page_buffers(page);
1637 		struct buffer_head *bh = head;
1638 
1639 		do {
1640 			if (offset < end_offset)
1641 				set_buffer_dirty(bh);
1642 			bh = bh->b_this_page;
1643 			offset += 1 << inode->i_blkbits;
1644 		} while (bh != head);
1645 	}
1646 	/*
1647 	 * Lock out page->mem_cgroup migration to keep PageDirty
1648 	 * synchronized with per-memcg dirty page counters.
1649 	 */
1650 	lock_page_memcg(page);
1651 	newly_dirty = !TestSetPageDirty(page);
1652 	spin_unlock(&mapping->private_lock);
1653 
1654 	if (newly_dirty) {
1655 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1656 		unsigned long flags;
1657 
1658 		spin_lock_irqsave(&mapping->tree_lock, flags);
1659 		if (page->mapping) {	/* Race with truncate? */
1660 			WARN_ON_ONCE(!PageUptodate(page));
1661 			account_page_dirtied(page, mapping);
1662 			radix_tree_tag_set(&mapping->page_tree,
1663 					page_index(page), PAGECACHE_TAG_DIRTY);
1664 		}
1665 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1666 	}
1667 	unlock_page_memcg(page);
1668 	if (newly_dirty)
1669 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1670 	return newly_dirty;
1671 }
1672 
1673 const struct address_space_operations xfs_address_space_operations = {
1674 	.readpage		= xfs_vm_readpage,
1675 	.readpages		= xfs_vm_readpages,
1676 	.writepage		= xfs_vm_writepage,
1677 	.writepages		= xfs_vm_writepages,
1678 	.set_page_dirty		= xfs_vm_set_page_dirty,
1679 	.releasepage		= xfs_vm_releasepage,
1680 	.invalidatepage		= xfs_vm_invalidatepage,
1681 	.bmap			= xfs_vm_bmap,
1682 	.direct_IO		= xfs_vm_direct_IO,
1683 	.migratepage		= buffer_migrate_page,
1684 	.is_partially_uptodate  = block_is_partially_uptodate,
1685 	.error_remove_page	= generic_error_remove_page,
1686 };
1687