1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_reflink.h" 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 /* flags for direct write completions */ 41 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0) 42 #define XFS_DIO_FLAG_APPEND (1 << 1) 43 #define XFS_DIO_FLAG_COW (1 << 2) 44 45 /* 46 * structure owned by writepages passed to individual writepage calls 47 */ 48 struct xfs_writepage_ctx { 49 struct xfs_bmbt_irec imap; 50 bool imap_valid; 51 unsigned int io_type; 52 struct xfs_ioend *ioend; 53 sector_t last_block; 54 }; 55 56 void 57 xfs_count_page_state( 58 struct page *page, 59 int *delalloc, 60 int *unwritten) 61 { 62 struct buffer_head *bh, *head; 63 64 *delalloc = *unwritten = 0; 65 66 bh = head = page_buffers(page); 67 do { 68 if (buffer_unwritten(bh)) 69 (*unwritten) = 1; 70 else if (buffer_delay(bh)) 71 (*delalloc) = 1; 72 } while ((bh = bh->b_this_page) != head); 73 } 74 75 struct block_device * 76 xfs_find_bdev_for_inode( 77 struct inode *inode) 78 { 79 struct xfs_inode *ip = XFS_I(inode); 80 struct xfs_mount *mp = ip->i_mount; 81 82 if (XFS_IS_REALTIME_INODE(ip)) 83 return mp->m_rtdev_targp->bt_bdev; 84 else 85 return mp->m_ddev_targp->bt_bdev; 86 } 87 88 /* 89 * We're now finished for good with this page. Update the page state via the 90 * associated buffer_heads, paying attention to the start and end offsets that 91 * we need to process on the page. 92 * 93 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last 94 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or 95 * the page at all, as we may be racing with memory reclaim and it can free both 96 * the bufferhead chain and the page as it will see the page as clean and 97 * unused. 98 */ 99 static void 100 xfs_finish_page_writeback( 101 struct inode *inode, 102 struct bio_vec *bvec, 103 int error) 104 { 105 unsigned int end = bvec->bv_offset + bvec->bv_len - 1; 106 struct buffer_head *head, *bh, *next; 107 unsigned int off = 0; 108 unsigned int bsize; 109 110 ASSERT(bvec->bv_offset < PAGE_SIZE); 111 ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0); 112 ASSERT(end < PAGE_SIZE); 113 ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0); 114 115 bh = head = page_buffers(bvec->bv_page); 116 117 bsize = bh->b_size; 118 do { 119 next = bh->b_this_page; 120 if (off < bvec->bv_offset) 121 goto next_bh; 122 if (off > end) 123 break; 124 bh->b_end_io(bh, !error); 125 next_bh: 126 off += bsize; 127 } while ((bh = next) != head); 128 } 129 130 /* 131 * We're now finished for good with this ioend structure. Update the page 132 * state, release holds on bios, and finally free up memory. Do not use the 133 * ioend after this. 134 */ 135 STATIC void 136 xfs_destroy_ioend( 137 struct xfs_ioend *ioend, 138 int error) 139 { 140 struct inode *inode = ioend->io_inode; 141 struct bio *last = ioend->io_bio; 142 struct bio *bio, *next; 143 144 for (bio = &ioend->io_inline_bio; bio; bio = next) { 145 struct bio_vec *bvec; 146 int i; 147 148 /* 149 * For the last bio, bi_private points to the ioend, so we 150 * need to explicitly end the iteration here. 151 */ 152 if (bio == last) 153 next = NULL; 154 else 155 next = bio->bi_private; 156 157 /* walk each page on bio, ending page IO on them */ 158 bio_for_each_segment_all(bvec, bio, i) 159 xfs_finish_page_writeback(inode, bvec, error); 160 161 bio_put(bio); 162 } 163 } 164 165 /* 166 * Fast and loose check if this write could update the on-disk inode size. 167 */ 168 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 169 { 170 return ioend->io_offset + ioend->io_size > 171 XFS_I(ioend->io_inode)->i_d.di_size; 172 } 173 174 STATIC int 175 xfs_setfilesize_trans_alloc( 176 struct xfs_ioend *ioend) 177 { 178 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 179 struct xfs_trans *tp; 180 int error; 181 182 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 183 if (error) 184 return error; 185 186 ioend->io_append_trans = tp; 187 188 /* 189 * We may pass freeze protection with a transaction. So tell lockdep 190 * we released it. 191 */ 192 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 193 /* 194 * We hand off the transaction to the completion thread now, so 195 * clear the flag here. 196 */ 197 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 198 return 0; 199 } 200 201 /* 202 * Update on-disk file size now that data has been written to disk. 203 */ 204 STATIC int 205 __xfs_setfilesize( 206 struct xfs_inode *ip, 207 struct xfs_trans *tp, 208 xfs_off_t offset, 209 size_t size) 210 { 211 xfs_fsize_t isize; 212 213 xfs_ilock(ip, XFS_ILOCK_EXCL); 214 isize = xfs_new_eof(ip, offset + size); 215 if (!isize) { 216 xfs_iunlock(ip, XFS_ILOCK_EXCL); 217 xfs_trans_cancel(tp); 218 return 0; 219 } 220 221 trace_xfs_setfilesize(ip, offset, size); 222 223 ip->i_d.di_size = isize; 224 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 225 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 226 227 return xfs_trans_commit(tp); 228 } 229 230 int 231 xfs_setfilesize( 232 struct xfs_inode *ip, 233 xfs_off_t offset, 234 size_t size) 235 { 236 struct xfs_mount *mp = ip->i_mount; 237 struct xfs_trans *tp; 238 int error; 239 240 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 241 if (error) 242 return error; 243 244 return __xfs_setfilesize(ip, tp, offset, size); 245 } 246 247 STATIC int 248 xfs_setfilesize_ioend( 249 struct xfs_ioend *ioend, 250 int error) 251 { 252 struct xfs_inode *ip = XFS_I(ioend->io_inode); 253 struct xfs_trans *tp = ioend->io_append_trans; 254 255 /* 256 * The transaction may have been allocated in the I/O submission thread, 257 * thus we need to mark ourselves as being in a transaction manually. 258 * Similarly for freeze protection. 259 */ 260 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 261 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 262 263 /* we abort the update if there was an IO error */ 264 if (error) { 265 xfs_trans_cancel(tp); 266 return error; 267 } 268 269 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 270 } 271 272 /* 273 * IO write completion. 274 */ 275 STATIC void 276 xfs_end_io( 277 struct work_struct *work) 278 { 279 struct xfs_ioend *ioend = 280 container_of(work, struct xfs_ioend, io_work); 281 struct xfs_inode *ip = XFS_I(ioend->io_inode); 282 int error = ioend->io_bio->bi_error; 283 284 /* 285 * Set an error if the mount has shut down and proceed with end I/O 286 * processing so it can perform whatever cleanups are necessary. 287 */ 288 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 289 error = -EIO; 290 291 /* 292 * For a CoW extent, we need to move the mapping from the CoW fork 293 * to the data fork. If instead an error happened, just dump the 294 * new blocks. 295 */ 296 if (ioend->io_type == XFS_IO_COW) { 297 if (error) 298 goto done; 299 if (ioend->io_bio->bi_error) { 300 error = xfs_reflink_cancel_cow_range(ip, 301 ioend->io_offset, ioend->io_size); 302 goto done; 303 } 304 error = xfs_reflink_end_cow(ip, ioend->io_offset, 305 ioend->io_size); 306 if (error) 307 goto done; 308 } 309 310 /* 311 * For unwritten extents we need to issue transactions to convert a 312 * range to normal written extens after the data I/O has finished. 313 * Detecting and handling completion IO errors is done individually 314 * for each case as different cleanup operations need to be performed 315 * on error. 316 */ 317 if (ioend->io_type == XFS_IO_UNWRITTEN) { 318 if (error) 319 goto done; 320 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 321 ioend->io_size); 322 } else if (ioend->io_append_trans) { 323 error = xfs_setfilesize_ioend(ioend, error); 324 } else { 325 ASSERT(!xfs_ioend_is_append(ioend) || 326 ioend->io_type == XFS_IO_COW); 327 } 328 329 done: 330 xfs_destroy_ioend(ioend, error); 331 } 332 333 STATIC void 334 xfs_end_bio( 335 struct bio *bio) 336 { 337 struct xfs_ioend *ioend = bio->bi_private; 338 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 339 340 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) 341 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 342 else if (ioend->io_append_trans) 343 queue_work(mp->m_data_workqueue, &ioend->io_work); 344 else 345 xfs_destroy_ioend(ioend, bio->bi_error); 346 } 347 348 STATIC int 349 xfs_map_blocks( 350 struct inode *inode, 351 loff_t offset, 352 struct xfs_bmbt_irec *imap, 353 int type) 354 { 355 struct xfs_inode *ip = XFS_I(inode); 356 struct xfs_mount *mp = ip->i_mount; 357 ssize_t count = 1 << inode->i_blkbits; 358 xfs_fileoff_t offset_fsb, end_fsb; 359 int error = 0; 360 int bmapi_flags = XFS_BMAPI_ENTIRE; 361 int nimaps = 1; 362 363 if (XFS_FORCED_SHUTDOWN(mp)) 364 return -EIO; 365 366 ASSERT(type != XFS_IO_COW); 367 if (type == XFS_IO_UNWRITTEN) 368 bmapi_flags |= XFS_BMAPI_IGSTATE; 369 370 xfs_ilock(ip, XFS_ILOCK_SHARED); 371 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 372 (ip->i_df.if_flags & XFS_IFEXTENTS)); 373 ASSERT(offset <= mp->m_super->s_maxbytes); 374 375 if (offset + count > mp->m_super->s_maxbytes) 376 count = mp->m_super->s_maxbytes - offset; 377 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 378 offset_fsb = XFS_B_TO_FSBT(mp, offset); 379 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 380 imap, &nimaps, bmapi_flags); 381 /* 382 * Truncate an overwrite extent if there's a pending CoW 383 * reservation before the end of this extent. This forces us 384 * to come back to writepage to take care of the CoW. 385 */ 386 if (nimaps && type == XFS_IO_OVERWRITE) 387 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap); 388 xfs_iunlock(ip, XFS_ILOCK_SHARED); 389 390 if (error) 391 return error; 392 393 if (type == XFS_IO_DELALLOC && 394 (!nimaps || isnullstartblock(imap->br_startblock))) { 395 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset, 396 imap); 397 if (!error) 398 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 399 return error; 400 } 401 402 #ifdef DEBUG 403 if (type == XFS_IO_UNWRITTEN) { 404 ASSERT(nimaps); 405 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 406 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 407 } 408 #endif 409 if (nimaps) 410 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 411 return 0; 412 } 413 414 STATIC bool 415 xfs_imap_valid( 416 struct inode *inode, 417 struct xfs_bmbt_irec *imap, 418 xfs_off_t offset) 419 { 420 offset >>= inode->i_blkbits; 421 422 return offset >= imap->br_startoff && 423 offset < imap->br_startoff + imap->br_blockcount; 424 } 425 426 STATIC void 427 xfs_start_buffer_writeback( 428 struct buffer_head *bh) 429 { 430 ASSERT(buffer_mapped(bh)); 431 ASSERT(buffer_locked(bh)); 432 ASSERT(!buffer_delay(bh)); 433 ASSERT(!buffer_unwritten(bh)); 434 435 mark_buffer_async_write(bh); 436 set_buffer_uptodate(bh); 437 clear_buffer_dirty(bh); 438 } 439 440 STATIC void 441 xfs_start_page_writeback( 442 struct page *page, 443 int clear_dirty) 444 { 445 ASSERT(PageLocked(page)); 446 ASSERT(!PageWriteback(page)); 447 448 /* 449 * if the page was not fully cleaned, we need to ensure that the higher 450 * layers come back to it correctly. That means we need to keep the page 451 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 452 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 453 * write this page in this writeback sweep will be made. 454 */ 455 if (clear_dirty) { 456 clear_page_dirty_for_io(page); 457 set_page_writeback(page); 458 } else 459 set_page_writeback_keepwrite(page); 460 461 unlock_page(page); 462 } 463 464 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 465 { 466 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 467 } 468 469 /* 470 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 471 * it, and we submit that bio. The ioend may be used for multiple bio 472 * submissions, so we only want to allocate an append transaction for the ioend 473 * once. In the case of multiple bio submission, each bio will take an IO 474 * reference to the ioend to ensure that the ioend completion is only done once 475 * all bios have been submitted and the ioend is really done. 476 * 477 * If @fail is non-zero, it means that we have a situation where some part of 478 * the submission process has failed after we have marked paged for writeback 479 * and unlocked them. In this situation, we need to fail the bio and ioend 480 * rather than submit it to IO. This typically only happens on a filesystem 481 * shutdown. 482 */ 483 STATIC int 484 xfs_submit_ioend( 485 struct writeback_control *wbc, 486 struct xfs_ioend *ioend, 487 int status) 488 { 489 /* Reserve log space if we might write beyond the on-disk inode size. */ 490 if (!status && 491 ioend->io_type != XFS_IO_UNWRITTEN && 492 xfs_ioend_is_append(ioend) && 493 !ioend->io_append_trans) 494 status = xfs_setfilesize_trans_alloc(ioend); 495 496 ioend->io_bio->bi_private = ioend; 497 ioend->io_bio->bi_end_io = xfs_end_bio; 498 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 499 500 /* 501 * If we are failing the IO now, just mark the ioend with an 502 * error and finish it. This will run IO completion immediately 503 * as there is only one reference to the ioend at this point in 504 * time. 505 */ 506 if (status) { 507 ioend->io_bio->bi_error = status; 508 bio_endio(ioend->io_bio); 509 return status; 510 } 511 512 submit_bio(ioend->io_bio); 513 return 0; 514 } 515 516 static void 517 xfs_init_bio_from_bh( 518 struct bio *bio, 519 struct buffer_head *bh) 520 { 521 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 522 bio->bi_bdev = bh->b_bdev; 523 } 524 525 static struct xfs_ioend * 526 xfs_alloc_ioend( 527 struct inode *inode, 528 unsigned int type, 529 xfs_off_t offset, 530 struct buffer_head *bh) 531 { 532 struct xfs_ioend *ioend; 533 struct bio *bio; 534 535 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset); 536 xfs_init_bio_from_bh(bio, bh); 537 538 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 539 INIT_LIST_HEAD(&ioend->io_list); 540 ioend->io_type = type; 541 ioend->io_inode = inode; 542 ioend->io_size = 0; 543 ioend->io_offset = offset; 544 INIT_WORK(&ioend->io_work, xfs_end_io); 545 ioend->io_append_trans = NULL; 546 ioend->io_bio = bio; 547 return ioend; 548 } 549 550 /* 551 * Allocate a new bio, and chain the old bio to the new one. 552 * 553 * Note that we have to do perform the chaining in this unintuitive order 554 * so that the bi_private linkage is set up in the right direction for the 555 * traversal in xfs_destroy_ioend(). 556 */ 557 static void 558 xfs_chain_bio( 559 struct xfs_ioend *ioend, 560 struct writeback_control *wbc, 561 struct buffer_head *bh) 562 { 563 struct bio *new; 564 565 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 566 xfs_init_bio_from_bh(new, bh); 567 568 bio_chain(ioend->io_bio, new); 569 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 570 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 571 submit_bio(ioend->io_bio); 572 ioend->io_bio = new; 573 } 574 575 /* 576 * Test to see if we've been building up a completion structure for 577 * earlier buffers -- if so, we try to append to this ioend if we 578 * can, otherwise we finish off any current ioend and start another. 579 * Return the ioend we finished off so that the caller can submit it 580 * once it has finished processing the dirty page. 581 */ 582 STATIC void 583 xfs_add_to_ioend( 584 struct inode *inode, 585 struct buffer_head *bh, 586 xfs_off_t offset, 587 struct xfs_writepage_ctx *wpc, 588 struct writeback_control *wbc, 589 struct list_head *iolist) 590 { 591 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || 592 bh->b_blocknr != wpc->last_block + 1 || 593 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 594 if (wpc->ioend) 595 list_add(&wpc->ioend->io_list, iolist); 596 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh); 597 } 598 599 /* 600 * If the buffer doesn't fit into the bio we need to allocate a new 601 * one. This shouldn't happen more than once for a given buffer. 602 */ 603 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) 604 xfs_chain_bio(wpc->ioend, wbc, bh); 605 606 wpc->ioend->io_size += bh->b_size; 607 wpc->last_block = bh->b_blocknr; 608 xfs_start_buffer_writeback(bh); 609 } 610 611 STATIC void 612 xfs_map_buffer( 613 struct inode *inode, 614 struct buffer_head *bh, 615 struct xfs_bmbt_irec *imap, 616 xfs_off_t offset) 617 { 618 sector_t bn; 619 struct xfs_mount *m = XFS_I(inode)->i_mount; 620 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 621 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 622 623 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 624 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 625 626 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 627 ((offset - iomap_offset) >> inode->i_blkbits); 628 629 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 630 631 bh->b_blocknr = bn; 632 set_buffer_mapped(bh); 633 } 634 635 STATIC void 636 xfs_map_at_offset( 637 struct inode *inode, 638 struct buffer_head *bh, 639 struct xfs_bmbt_irec *imap, 640 xfs_off_t offset) 641 { 642 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 643 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 644 645 xfs_map_buffer(inode, bh, imap, offset); 646 set_buffer_mapped(bh); 647 clear_buffer_delay(bh); 648 clear_buffer_unwritten(bh); 649 } 650 651 /* 652 * Test if a given page contains at least one buffer of a given @type. 653 * If @check_all_buffers is true, then we walk all the buffers in the page to 654 * try to find one of the type passed in. If it is not set, then the caller only 655 * needs to check the first buffer on the page for a match. 656 */ 657 STATIC bool 658 xfs_check_page_type( 659 struct page *page, 660 unsigned int type, 661 bool check_all_buffers) 662 { 663 struct buffer_head *bh; 664 struct buffer_head *head; 665 666 if (PageWriteback(page)) 667 return false; 668 if (!page->mapping) 669 return false; 670 if (!page_has_buffers(page)) 671 return false; 672 673 bh = head = page_buffers(page); 674 do { 675 if (buffer_unwritten(bh)) { 676 if (type == XFS_IO_UNWRITTEN) 677 return true; 678 } else if (buffer_delay(bh)) { 679 if (type == XFS_IO_DELALLOC) 680 return true; 681 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 682 if (type == XFS_IO_OVERWRITE) 683 return true; 684 } 685 686 /* If we are only checking the first buffer, we are done now. */ 687 if (!check_all_buffers) 688 break; 689 } while ((bh = bh->b_this_page) != head); 690 691 return false; 692 } 693 694 STATIC void 695 xfs_vm_invalidatepage( 696 struct page *page, 697 unsigned int offset, 698 unsigned int length) 699 { 700 trace_xfs_invalidatepage(page->mapping->host, page, offset, 701 length); 702 block_invalidatepage(page, offset, length); 703 } 704 705 /* 706 * If the page has delalloc buffers on it, we need to punch them out before we 707 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 708 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 709 * is done on that same region - the delalloc extent is returned when none is 710 * supposed to be there. 711 * 712 * We prevent this by truncating away the delalloc regions on the page before 713 * invalidating it. Because they are delalloc, we can do this without needing a 714 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 715 * truncation without a transaction as there is no space left for block 716 * reservation (typically why we see a ENOSPC in writeback). 717 * 718 * This is not a performance critical path, so for now just do the punching a 719 * buffer head at a time. 720 */ 721 STATIC void 722 xfs_aops_discard_page( 723 struct page *page) 724 { 725 struct inode *inode = page->mapping->host; 726 struct xfs_inode *ip = XFS_I(inode); 727 struct buffer_head *bh, *head; 728 loff_t offset = page_offset(page); 729 730 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 731 goto out_invalidate; 732 733 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 734 goto out_invalidate; 735 736 xfs_alert(ip->i_mount, 737 "page discard on page %p, inode 0x%llx, offset %llu.", 738 page, ip->i_ino, offset); 739 740 xfs_ilock(ip, XFS_ILOCK_EXCL); 741 bh = head = page_buffers(page); 742 do { 743 int error; 744 xfs_fileoff_t start_fsb; 745 746 if (!buffer_delay(bh)) 747 goto next_buffer; 748 749 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 750 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 751 if (error) { 752 /* something screwed, just bail */ 753 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 754 xfs_alert(ip->i_mount, 755 "page discard unable to remove delalloc mapping."); 756 } 757 break; 758 } 759 next_buffer: 760 offset += 1 << inode->i_blkbits; 761 762 } while ((bh = bh->b_this_page) != head); 763 764 xfs_iunlock(ip, XFS_ILOCK_EXCL); 765 out_invalidate: 766 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 767 return; 768 } 769 770 static int 771 xfs_map_cow( 772 struct xfs_writepage_ctx *wpc, 773 struct inode *inode, 774 loff_t offset, 775 unsigned int *new_type) 776 { 777 struct xfs_inode *ip = XFS_I(inode); 778 struct xfs_bmbt_irec imap; 779 bool is_cow = false, need_alloc = false; 780 int error; 781 782 /* 783 * If we already have a valid COW mapping keep using it. 784 */ 785 if (wpc->io_type == XFS_IO_COW) { 786 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset); 787 if (wpc->imap_valid) { 788 *new_type = XFS_IO_COW; 789 return 0; 790 } 791 } 792 793 /* 794 * Else we need to check if there is a COW mapping at this offset. 795 */ 796 xfs_ilock(ip, XFS_ILOCK_SHARED); 797 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap, &need_alloc); 798 xfs_iunlock(ip, XFS_ILOCK_SHARED); 799 800 if (!is_cow) 801 return 0; 802 803 /* 804 * And if the COW mapping has a delayed extent here we need to 805 * allocate real space for it now. 806 */ 807 if (need_alloc) { 808 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset, 809 &imap); 810 if (error) 811 return error; 812 } 813 814 wpc->io_type = *new_type = XFS_IO_COW; 815 wpc->imap_valid = true; 816 wpc->imap = imap; 817 return 0; 818 } 819 820 /* 821 * We implement an immediate ioend submission policy here to avoid needing to 822 * chain multiple ioends and hence nest mempool allocations which can violate 823 * forward progress guarantees we need to provide. The current ioend we are 824 * adding buffers to is cached on the writepage context, and if the new buffer 825 * does not append to the cached ioend it will create a new ioend and cache that 826 * instead. 827 * 828 * If a new ioend is created and cached, the old ioend is returned and queued 829 * locally for submission once the entire page is processed or an error has been 830 * detected. While ioends are submitted immediately after they are completed, 831 * batching optimisations are provided by higher level block plugging. 832 * 833 * At the end of a writeback pass, there will be a cached ioend remaining on the 834 * writepage context that the caller will need to submit. 835 */ 836 static int 837 xfs_writepage_map( 838 struct xfs_writepage_ctx *wpc, 839 struct writeback_control *wbc, 840 struct inode *inode, 841 struct page *page, 842 loff_t offset, 843 __uint64_t end_offset) 844 { 845 LIST_HEAD(submit_list); 846 struct xfs_ioend *ioend, *next; 847 struct buffer_head *bh, *head; 848 ssize_t len = 1 << inode->i_blkbits; 849 int error = 0; 850 int count = 0; 851 int uptodate = 1; 852 unsigned int new_type; 853 854 bh = head = page_buffers(page); 855 offset = page_offset(page); 856 do { 857 if (offset >= end_offset) 858 break; 859 if (!buffer_uptodate(bh)) 860 uptodate = 0; 861 862 /* 863 * set_page_dirty dirties all buffers in a page, independent 864 * of their state. The dirty state however is entirely 865 * meaningless for holes (!mapped && uptodate), so skip 866 * buffers covering holes here. 867 */ 868 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 869 wpc->imap_valid = false; 870 continue; 871 } 872 873 if (buffer_unwritten(bh)) 874 new_type = XFS_IO_UNWRITTEN; 875 else if (buffer_delay(bh)) 876 new_type = XFS_IO_DELALLOC; 877 else if (buffer_uptodate(bh)) 878 new_type = XFS_IO_OVERWRITE; 879 else { 880 if (PageUptodate(page)) 881 ASSERT(buffer_mapped(bh)); 882 /* 883 * This buffer is not uptodate and will not be 884 * written to disk. Ensure that we will put any 885 * subsequent writeable buffers into a new 886 * ioend. 887 */ 888 wpc->imap_valid = false; 889 continue; 890 } 891 892 if (xfs_is_reflink_inode(XFS_I(inode))) { 893 error = xfs_map_cow(wpc, inode, offset, &new_type); 894 if (error) 895 goto out; 896 } 897 898 if (wpc->io_type != new_type) { 899 wpc->io_type = new_type; 900 wpc->imap_valid = false; 901 } 902 903 if (wpc->imap_valid) 904 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 905 offset); 906 if (!wpc->imap_valid) { 907 error = xfs_map_blocks(inode, offset, &wpc->imap, 908 wpc->io_type); 909 if (error) 910 goto out; 911 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 912 offset); 913 } 914 if (wpc->imap_valid) { 915 lock_buffer(bh); 916 if (wpc->io_type != XFS_IO_OVERWRITE) 917 xfs_map_at_offset(inode, bh, &wpc->imap, offset); 918 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list); 919 count++; 920 } 921 922 } while (offset += len, ((bh = bh->b_this_page) != head)); 923 924 if (uptodate && bh == head) 925 SetPageUptodate(page); 926 927 ASSERT(wpc->ioend || list_empty(&submit_list)); 928 929 out: 930 /* 931 * On error, we have to fail the ioend here because we have locked 932 * buffers in the ioend. If we don't do this, we'll deadlock 933 * invalidating the page as that tries to lock the buffers on the page. 934 * Also, because we may have set pages under writeback, we have to make 935 * sure we run IO completion to mark the error state of the IO 936 * appropriately, so we can't cancel the ioend directly here. That means 937 * we have to mark this page as under writeback if we included any 938 * buffers from it in the ioend chain so that completion treats it 939 * correctly. 940 * 941 * If we didn't include the page in the ioend, the on error we can 942 * simply discard and unlock it as there are no other users of the page 943 * or it's buffers right now. The caller will still need to trigger 944 * submission of outstanding ioends on the writepage context so they are 945 * treated correctly on error. 946 */ 947 if (count) { 948 xfs_start_page_writeback(page, !error); 949 950 /* 951 * Preserve the original error if there was one, otherwise catch 952 * submission errors here and propagate into subsequent ioend 953 * submissions. 954 */ 955 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 956 int error2; 957 958 list_del_init(&ioend->io_list); 959 error2 = xfs_submit_ioend(wbc, ioend, error); 960 if (error2 && !error) 961 error = error2; 962 } 963 } else if (error) { 964 xfs_aops_discard_page(page); 965 ClearPageUptodate(page); 966 unlock_page(page); 967 } else { 968 /* 969 * We can end up here with no error and nothing to write if we 970 * race with a partial page truncate on a sub-page block sized 971 * filesystem. In that case we need to mark the page clean. 972 */ 973 xfs_start_page_writeback(page, 1); 974 end_page_writeback(page); 975 } 976 977 mapping_set_error(page->mapping, error); 978 return error; 979 } 980 981 /* 982 * Write out a dirty page. 983 * 984 * For delalloc space on the page we need to allocate space and flush it. 985 * For unwritten space on the page we need to start the conversion to 986 * regular allocated space. 987 * For any other dirty buffer heads on the page we should flush them. 988 */ 989 STATIC int 990 xfs_do_writepage( 991 struct page *page, 992 struct writeback_control *wbc, 993 void *data) 994 { 995 struct xfs_writepage_ctx *wpc = data; 996 struct inode *inode = page->mapping->host; 997 loff_t offset; 998 __uint64_t end_offset; 999 pgoff_t end_index; 1000 1001 trace_xfs_writepage(inode, page, 0, 0); 1002 1003 ASSERT(page_has_buffers(page)); 1004 1005 /* 1006 * Refuse to write the page out if we are called from reclaim context. 1007 * 1008 * This avoids stack overflows when called from deeply used stacks in 1009 * random callers for direct reclaim or memcg reclaim. We explicitly 1010 * allow reclaim from kswapd as the stack usage there is relatively low. 1011 * 1012 * This should never happen except in the case of a VM regression so 1013 * warn about it. 1014 */ 1015 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1016 PF_MEMALLOC)) 1017 goto redirty; 1018 1019 /* 1020 * Given that we do not allow direct reclaim to call us, we should 1021 * never be called while in a filesystem transaction. 1022 */ 1023 if (WARN_ON_ONCE(current->flags & PF_FSTRANS)) 1024 goto redirty; 1025 1026 /* 1027 * Is this page beyond the end of the file? 1028 * 1029 * The page index is less than the end_index, adjust the end_offset 1030 * to the highest offset that this page should represent. 1031 * ----------------------------------------------------- 1032 * | file mapping | <EOF> | 1033 * ----------------------------------------------------- 1034 * | Page ... | Page N-2 | Page N-1 | Page N | | 1035 * ^--------------------------------^----------|-------- 1036 * | desired writeback range | see else | 1037 * ---------------------------------^------------------| 1038 */ 1039 offset = i_size_read(inode); 1040 end_index = offset >> PAGE_SHIFT; 1041 if (page->index < end_index) 1042 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 1043 else { 1044 /* 1045 * Check whether the page to write out is beyond or straddles 1046 * i_size or not. 1047 * ------------------------------------------------------- 1048 * | file mapping | <EOF> | 1049 * ------------------------------------------------------- 1050 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1051 * ^--------------------------------^-----------|--------- 1052 * | | Straddles | 1053 * ---------------------------------^-----------|--------| 1054 */ 1055 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1056 1057 /* 1058 * Skip the page if it is fully outside i_size, e.g. due to a 1059 * truncate operation that is in progress. We must redirty the 1060 * page so that reclaim stops reclaiming it. Otherwise 1061 * xfs_vm_releasepage() is called on it and gets confused. 1062 * 1063 * Note that the end_index is unsigned long, it would overflow 1064 * if the given offset is greater than 16TB on 32-bit system 1065 * and if we do check the page is fully outside i_size or not 1066 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1067 * will be evaluated to 0. Hence this page will be redirtied 1068 * and be written out repeatedly which would result in an 1069 * infinite loop, the user program that perform this operation 1070 * will hang. Instead, we can verify this situation by checking 1071 * if the page to write is totally beyond the i_size or if it's 1072 * offset is just equal to the EOF. 1073 */ 1074 if (page->index > end_index || 1075 (page->index == end_index && offset_into_page == 0)) 1076 goto redirty; 1077 1078 /* 1079 * The page straddles i_size. It must be zeroed out on each 1080 * and every writepage invocation because it may be mmapped. 1081 * "A file is mapped in multiples of the page size. For a file 1082 * that is not a multiple of the page size, the remaining 1083 * memory is zeroed when mapped, and writes to that region are 1084 * not written out to the file." 1085 */ 1086 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1087 1088 /* Adjust the end_offset to the end of file */ 1089 end_offset = offset; 1090 } 1091 1092 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset); 1093 1094 redirty: 1095 redirty_page_for_writepage(wbc, page); 1096 unlock_page(page); 1097 return 0; 1098 } 1099 1100 STATIC int 1101 xfs_vm_writepage( 1102 struct page *page, 1103 struct writeback_control *wbc) 1104 { 1105 struct xfs_writepage_ctx wpc = { 1106 .io_type = XFS_IO_INVALID, 1107 }; 1108 int ret; 1109 1110 ret = xfs_do_writepage(page, wbc, &wpc); 1111 if (wpc.ioend) 1112 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1113 return ret; 1114 } 1115 1116 STATIC int 1117 xfs_vm_writepages( 1118 struct address_space *mapping, 1119 struct writeback_control *wbc) 1120 { 1121 struct xfs_writepage_ctx wpc = { 1122 .io_type = XFS_IO_INVALID, 1123 }; 1124 int ret; 1125 1126 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1127 if (dax_mapping(mapping)) 1128 return dax_writeback_mapping_range(mapping, 1129 xfs_find_bdev_for_inode(mapping->host), wbc); 1130 1131 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1132 if (wpc.ioend) 1133 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1134 return ret; 1135 } 1136 1137 /* 1138 * Called to move a page into cleanable state - and from there 1139 * to be released. The page should already be clean. We always 1140 * have buffer heads in this call. 1141 * 1142 * Returns 1 if the page is ok to release, 0 otherwise. 1143 */ 1144 STATIC int 1145 xfs_vm_releasepage( 1146 struct page *page, 1147 gfp_t gfp_mask) 1148 { 1149 int delalloc, unwritten; 1150 1151 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1152 1153 /* 1154 * mm accommodates an old ext3 case where clean pages might not have had 1155 * the dirty bit cleared. Thus, it can send actual dirty pages to 1156 * ->releasepage() via shrink_active_list(). Conversely, 1157 * block_invalidatepage() can send pages that are still marked dirty 1158 * but otherwise have invalidated buffers. 1159 * 1160 * We've historically freed buffers on the latter. Instead, quietly 1161 * filter out all dirty pages to avoid spurious buffer state warnings. 1162 * This can likely be removed once shrink_active_list() is fixed. 1163 */ 1164 if (PageDirty(page)) 1165 return 0; 1166 1167 xfs_count_page_state(page, &delalloc, &unwritten); 1168 1169 if (WARN_ON_ONCE(delalloc)) 1170 return 0; 1171 if (WARN_ON_ONCE(unwritten)) 1172 return 0; 1173 1174 return try_to_free_buffers(page); 1175 } 1176 1177 /* 1178 * When we map a DIO buffer, we may need to pass flags to 1179 * xfs_end_io_direct_write to tell it what kind of write IO we are doing. 1180 * 1181 * Note that for DIO, an IO to the highest supported file block offset (i.e. 1182 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64 1183 * bit variable. Hence if we see this overflow, we have to assume that the IO is 1184 * extending the file size. We won't know for sure until IO completion is run 1185 * and the actual max write offset is communicated to the IO completion 1186 * routine. 1187 */ 1188 static void 1189 xfs_map_direct( 1190 struct inode *inode, 1191 struct buffer_head *bh_result, 1192 struct xfs_bmbt_irec *imap, 1193 xfs_off_t offset, 1194 bool is_cow) 1195 { 1196 uintptr_t *flags = (uintptr_t *)&bh_result->b_private; 1197 xfs_off_t size = bh_result->b_size; 1198 1199 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size, 1200 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : is_cow ? XFS_IO_COW : 1201 XFS_IO_OVERWRITE, imap); 1202 1203 if (ISUNWRITTEN(imap)) { 1204 *flags |= XFS_DIO_FLAG_UNWRITTEN; 1205 set_buffer_defer_completion(bh_result); 1206 } else if (is_cow) { 1207 *flags |= XFS_DIO_FLAG_COW; 1208 set_buffer_defer_completion(bh_result); 1209 } 1210 if (offset + size > i_size_read(inode) || offset + size < 0) { 1211 *flags |= XFS_DIO_FLAG_APPEND; 1212 set_buffer_defer_completion(bh_result); 1213 } 1214 } 1215 1216 /* 1217 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1218 * is, so that we can avoid repeated get_blocks calls. 1219 * 1220 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1221 * for blocks beyond EOF must be marked new so that sub block regions can be 1222 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1223 * was just allocated or is unwritten, otherwise the callers would overwrite 1224 * existing data with zeros. Hence we have to split the mapping into a range up 1225 * to and including EOF, and a second mapping for beyond EOF. 1226 */ 1227 static void 1228 xfs_map_trim_size( 1229 struct inode *inode, 1230 sector_t iblock, 1231 struct buffer_head *bh_result, 1232 struct xfs_bmbt_irec *imap, 1233 xfs_off_t offset, 1234 ssize_t size) 1235 { 1236 xfs_off_t mapping_size; 1237 1238 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1239 mapping_size <<= inode->i_blkbits; 1240 1241 ASSERT(mapping_size > 0); 1242 if (mapping_size > size) 1243 mapping_size = size; 1244 if (offset < i_size_read(inode) && 1245 offset + mapping_size >= i_size_read(inode)) { 1246 /* limit mapping to block that spans EOF */ 1247 mapping_size = roundup_64(i_size_read(inode) - offset, 1248 1 << inode->i_blkbits); 1249 } 1250 if (mapping_size > LONG_MAX) 1251 mapping_size = LONG_MAX; 1252 1253 bh_result->b_size = mapping_size; 1254 } 1255 1256 /* Bounce unaligned directio writes to the page cache. */ 1257 static int 1258 xfs_bounce_unaligned_dio_write( 1259 struct xfs_inode *ip, 1260 xfs_fileoff_t offset_fsb, 1261 struct xfs_bmbt_irec *imap) 1262 { 1263 struct xfs_bmbt_irec irec; 1264 xfs_fileoff_t delta; 1265 bool shared; 1266 bool x; 1267 int error; 1268 1269 irec = *imap; 1270 if (offset_fsb > irec.br_startoff) { 1271 delta = offset_fsb - irec.br_startoff; 1272 irec.br_blockcount -= delta; 1273 irec.br_startblock += delta; 1274 irec.br_startoff = offset_fsb; 1275 } 1276 error = xfs_reflink_trim_around_shared(ip, &irec, &shared, &x); 1277 if (error) 1278 return error; 1279 1280 /* 1281 * We're here because we're trying to do a directio write to a 1282 * region that isn't aligned to a filesystem block. If any part 1283 * of the extent is shared, fall back to buffered mode to handle 1284 * the RMW. This is done by returning -EREMCHG ("remote addr 1285 * changed"), which is caught further up the call stack. 1286 */ 1287 if (shared) { 1288 trace_xfs_reflink_bounce_dio_write(ip, imap); 1289 return -EREMCHG; 1290 } 1291 return 0; 1292 } 1293 1294 STATIC int 1295 __xfs_get_blocks( 1296 struct inode *inode, 1297 sector_t iblock, 1298 struct buffer_head *bh_result, 1299 int create, 1300 bool direct) 1301 { 1302 struct xfs_inode *ip = XFS_I(inode); 1303 struct xfs_mount *mp = ip->i_mount; 1304 xfs_fileoff_t offset_fsb, end_fsb; 1305 int error = 0; 1306 int lockmode = 0; 1307 struct xfs_bmbt_irec imap; 1308 int nimaps = 1; 1309 xfs_off_t offset; 1310 ssize_t size; 1311 int new = 0; 1312 bool is_cow = false; 1313 bool need_alloc = false; 1314 1315 BUG_ON(create && !direct); 1316 1317 if (XFS_FORCED_SHUTDOWN(mp)) 1318 return -EIO; 1319 1320 offset = (xfs_off_t)iblock << inode->i_blkbits; 1321 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1322 size = bh_result->b_size; 1323 1324 if (!create && offset >= i_size_read(inode)) 1325 return 0; 1326 1327 /* 1328 * Direct I/O is usually done on preallocated files, so try getting 1329 * a block mapping without an exclusive lock first. 1330 */ 1331 lockmode = xfs_ilock_data_map_shared(ip); 1332 1333 ASSERT(offset <= mp->m_super->s_maxbytes); 1334 if (offset + size > mp->m_super->s_maxbytes) 1335 size = mp->m_super->s_maxbytes - offset; 1336 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1337 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1338 1339 if (create && direct && xfs_is_reflink_inode(ip)) 1340 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap, 1341 &need_alloc); 1342 if (!is_cow) { 1343 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1344 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1345 /* 1346 * Truncate an overwrite extent if there's a pending CoW 1347 * reservation before the end of this extent. This 1348 * forces us to come back to get_blocks to take care of 1349 * the CoW. 1350 */ 1351 if (create && direct && nimaps && 1352 imap.br_startblock != HOLESTARTBLOCK && 1353 imap.br_startblock != DELAYSTARTBLOCK && 1354 !ISUNWRITTEN(&imap)) 1355 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, 1356 &imap); 1357 } 1358 ASSERT(!need_alloc); 1359 if (error) 1360 goto out_unlock; 1361 1362 /* for DAX, we convert unwritten extents directly */ 1363 if (create && 1364 (!nimaps || 1365 (imap.br_startblock == HOLESTARTBLOCK || 1366 imap.br_startblock == DELAYSTARTBLOCK) || 1367 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) { 1368 /* 1369 * xfs_iomap_write_direct() expects the shared lock. It 1370 * is unlocked on return. 1371 */ 1372 if (lockmode == XFS_ILOCK_EXCL) 1373 xfs_ilock_demote(ip, lockmode); 1374 1375 error = xfs_iomap_write_direct(ip, offset, size, 1376 &imap, nimaps); 1377 if (error) 1378 return error; 1379 new = 1; 1380 1381 trace_xfs_get_blocks_alloc(ip, offset, size, 1382 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN 1383 : XFS_IO_DELALLOC, &imap); 1384 } else if (nimaps) { 1385 trace_xfs_get_blocks_found(ip, offset, size, 1386 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN 1387 : XFS_IO_OVERWRITE, &imap); 1388 xfs_iunlock(ip, lockmode); 1389 } else { 1390 trace_xfs_get_blocks_notfound(ip, offset, size); 1391 goto out_unlock; 1392 } 1393 1394 if (IS_DAX(inode) && create) { 1395 ASSERT(!ISUNWRITTEN(&imap)); 1396 /* zeroing is not needed at a higher layer */ 1397 new = 0; 1398 } 1399 1400 /* trim mapping down to size requested */ 1401 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size); 1402 1403 /* 1404 * For unwritten extents do not report a disk address in the buffered 1405 * read case (treat as if we're reading into a hole). 1406 */ 1407 if (imap.br_startblock != HOLESTARTBLOCK && 1408 imap.br_startblock != DELAYSTARTBLOCK && 1409 (create || !ISUNWRITTEN(&imap))) { 1410 if (create && direct && !is_cow) { 1411 error = xfs_bounce_unaligned_dio_write(ip, offset_fsb, 1412 &imap); 1413 if (error) 1414 return error; 1415 } 1416 1417 xfs_map_buffer(inode, bh_result, &imap, offset); 1418 if (ISUNWRITTEN(&imap)) 1419 set_buffer_unwritten(bh_result); 1420 /* direct IO needs special help */ 1421 if (create) 1422 xfs_map_direct(inode, bh_result, &imap, offset, is_cow); 1423 } 1424 1425 /* 1426 * If this is a realtime file, data may be on a different device. 1427 * to that pointed to from the buffer_head b_bdev currently. 1428 */ 1429 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1430 1431 /* 1432 * If we previously allocated a block out beyond eof and we are now 1433 * coming back to use it then we will need to flag it as new even if it 1434 * has a disk address. 1435 * 1436 * With sub-block writes into unwritten extents we also need to mark 1437 * the buffer as new so that the unwritten parts of the buffer gets 1438 * correctly zeroed. 1439 */ 1440 if (create && 1441 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1442 (offset >= i_size_read(inode)) || 1443 (new || ISUNWRITTEN(&imap)))) 1444 set_buffer_new(bh_result); 1445 1446 BUG_ON(direct && imap.br_startblock == DELAYSTARTBLOCK); 1447 1448 return 0; 1449 1450 out_unlock: 1451 xfs_iunlock(ip, lockmode); 1452 return error; 1453 } 1454 1455 int 1456 xfs_get_blocks( 1457 struct inode *inode, 1458 sector_t iblock, 1459 struct buffer_head *bh_result, 1460 int create) 1461 { 1462 return __xfs_get_blocks(inode, iblock, bh_result, create, false); 1463 } 1464 1465 int 1466 xfs_get_blocks_direct( 1467 struct inode *inode, 1468 sector_t iblock, 1469 struct buffer_head *bh_result, 1470 int create) 1471 { 1472 return __xfs_get_blocks(inode, iblock, bh_result, create, true); 1473 } 1474 1475 /* 1476 * Complete a direct I/O write request. 1477 * 1478 * xfs_map_direct passes us some flags in the private data to tell us what to 1479 * do. If no flags are set, then the write IO is an overwrite wholly within 1480 * the existing allocated file size and so there is nothing for us to do. 1481 * 1482 * Note that in this case the completion can be called in interrupt context, 1483 * whereas if we have flags set we will always be called in task context 1484 * (i.e. from a workqueue). 1485 */ 1486 int 1487 xfs_end_io_direct_write( 1488 struct kiocb *iocb, 1489 loff_t offset, 1490 ssize_t size, 1491 void *private) 1492 { 1493 struct inode *inode = file_inode(iocb->ki_filp); 1494 struct xfs_inode *ip = XFS_I(inode); 1495 uintptr_t flags = (uintptr_t)private; 1496 int error = 0; 1497 1498 trace_xfs_end_io_direct_write(ip, offset, size); 1499 1500 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 1501 return -EIO; 1502 1503 if (size <= 0) 1504 return size; 1505 1506 /* 1507 * The flags tell us whether we are doing unwritten extent conversions 1508 * or an append transaction that updates the on-disk file size. These 1509 * cases are the only cases where we should *potentially* be needing 1510 * to update the VFS inode size. 1511 */ 1512 if (flags == 0) { 1513 ASSERT(offset + size <= i_size_read(inode)); 1514 return 0; 1515 } 1516 1517 /* 1518 * We need to update the in-core inode size here so that we don't end up 1519 * with the on-disk inode size being outside the in-core inode size. We 1520 * have no other method of updating EOF for AIO, so always do it here 1521 * if necessary. 1522 * 1523 * We need to lock the test/set EOF update as we can be racing with 1524 * other IO completions here to update the EOF. Failing to serialise 1525 * here can result in EOF moving backwards and Bad Things Happen when 1526 * that occurs. 1527 */ 1528 spin_lock(&ip->i_flags_lock); 1529 if (offset + size > i_size_read(inode)) 1530 i_size_write(inode, offset + size); 1531 spin_unlock(&ip->i_flags_lock); 1532 1533 if (flags & XFS_DIO_FLAG_COW) 1534 error = xfs_reflink_end_cow(ip, offset, size); 1535 if (flags & XFS_DIO_FLAG_UNWRITTEN) { 1536 trace_xfs_end_io_direct_write_unwritten(ip, offset, size); 1537 1538 error = xfs_iomap_write_unwritten(ip, offset, size); 1539 } 1540 if (flags & XFS_DIO_FLAG_APPEND) { 1541 trace_xfs_end_io_direct_write_append(ip, offset, size); 1542 1543 error = xfs_setfilesize(ip, offset, size); 1544 } 1545 1546 return error; 1547 } 1548 1549 STATIC ssize_t 1550 xfs_vm_direct_IO( 1551 struct kiocb *iocb, 1552 struct iov_iter *iter) 1553 { 1554 /* 1555 * We just need the method present so that open/fcntl allow direct I/O. 1556 */ 1557 return -EINVAL; 1558 } 1559 1560 STATIC sector_t 1561 xfs_vm_bmap( 1562 struct address_space *mapping, 1563 sector_t block) 1564 { 1565 struct inode *inode = (struct inode *)mapping->host; 1566 struct xfs_inode *ip = XFS_I(inode); 1567 1568 trace_xfs_vm_bmap(XFS_I(inode)); 1569 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1570 1571 /* 1572 * The swap code (ab-)uses ->bmap to get a block mapping and then 1573 * bypasseѕ the file system for actual I/O. We really can't allow 1574 * that on reflinks inodes, so we have to skip out here. And yes, 1575 * 0 is the magic code for a bmap error.. 1576 */ 1577 if (xfs_is_reflink_inode(ip)) { 1578 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1579 return 0; 1580 } 1581 filemap_write_and_wait(mapping); 1582 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1583 return generic_block_bmap(mapping, block, xfs_get_blocks); 1584 } 1585 1586 STATIC int 1587 xfs_vm_readpage( 1588 struct file *unused, 1589 struct page *page) 1590 { 1591 trace_xfs_vm_readpage(page->mapping->host, 1); 1592 return mpage_readpage(page, xfs_get_blocks); 1593 } 1594 1595 STATIC int 1596 xfs_vm_readpages( 1597 struct file *unused, 1598 struct address_space *mapping, 1599 struct list_head *pages, 1600 unsigned nr_pages) 1601 { 1602 trace_xfs_vm_readpages(mapping->host, nr_pages); 1603 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1604 } 1605 1606 /* 1607 * This is basically a copy of __set_page_dirty_buffers() with one 1608 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1609 * dirty, we'll never be able to clean them because we don't write buffers 1610 * beyond EOF, and that means we can't invalidate pages that span EOF 1611 * that have been marked dirty. Further, the dirty state can leak into 1612 * the file interior if the file is extended, resulting in all sorts of 1613 * bad things happening as the state does not match the underlying data. 1614 * 1615 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1616 * this only exist because of bufferheads and how the generic code manages them. 1617 */ 1618 STATIC int 1619 xfs_vm_set_page_dirty( 1620 struct page *page) 1621 { 1622 struct address_space *mapping = page->mapping; 1623 struct inode *inode = mapping->host; 1624 loff_t end_offset; 1625 loff_t offset; 1626 int newly_dirty; 1627 1628 if (unlikely(!mapping)) 1629 return !TestSetPageDirty(page); 1630 1631 end_offset = i_size_read(inode); 1632 offset = page_offset(page); 1633 1634 spin_lock(&mapping->private_lock); 1635 if (page_has_buffers(page)) { 1636 struct buffer_head *head = page_buffers(page); 1637 struct buffer_head *bh = head; 1638 1639 do { 1640 if (offset < end_offset) 1641 set_buffer_dirty(bh); 1642 bh = bh->b_this_page; 1643 offset += 1 << inode->i_blkbits; 1644 } while (bh != head); 1645 } 1646 /* 1647 * Lock out page->mem_cgroup migration to keep PageDirty 1648 * synchronized with per-memcg dirty page counters. 1649 */ 1650 lock_page_memcg(page); 1651 newly_dirty = !TestSetPageDirty(page); 1652 spin_unlock(&mapping->private_lock); 1653 1654 if (newly_dirty) { 1655 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1656 unsigned long flags; 1657 1658 spin_lock_irqsave(&mapping->tree_lock, flags); 1659 if (page->mapping) { /* Race with truncate? */ 1660 WARN_ON_ONCE(!PageUptodate(page)); 1661 account_page_dirtied(page, mapping); 1662 radix_tree_tag_set(&mapping->page_tree, 1663 page_index(page), PAGECACHE_TAG_DIRTY); 1664 } 1665 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1666 } 1667 unlock_page_memcg(page); 1668 if (newly_dirty) 1669 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1670 return newly_dirty; 1671 } 1672 1673 const struct address_space_operations xfs_address_space_operations = { 1674 .readpage = xfs_vm_readpage, 1675 .readpages = xfs_vm_readpages, 1676 .writepage = xfs_vm_writepage, 1677 .writepages = xfs_vm_writepages, 1678 .set_page_dirty = xfs_vm_set_page_dirty, 1679 .releasepage = xfs_vm_releasepage, 1680 .invalidatepage = xfs_vm_invalidatepage, 1681 .bmap = xfs_vm_bmap, 1682 .direct_IO = xfs_vm_direct_IO, 1683 .migratepage = buffer_migrate_page, 1684 .is_partially_uptodate = block_is_partially_uptodate, 1685 .error_remove_page = generic_error_remove_page, 1686 }; 1687