xref: /linux/fs/ubifs/super.c (revision 088e88be5a380cc4e81963a9a02815da465d144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS initialization and VFS superblock operations. Some
13  * initialization stuff which is rather large and complex is placed at
14  * corresponding subsystems, but most of it is here.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28 
29 /*
30  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
31  * allocating too much.
32  */
33 #define UBIFS_KMALLOC_OK (128*1024)
34 
35 /* Slab cache for UBIFS inodes */
36 static struct kmem_cache *ubifs_inode_slab;
37 
38 /* UBIFS TNC shrinker description */
39 static struct shrinker ubifs_shrinker_info = {
40 	.scan_objects = ubifs_shrink_scan,
41 	.count_objects = ubifs_shrink_count,
42 	.seeks = DEFAULT_SEEKS,
43 };
44 
45 /**
46  * validate_inode - validate inode.
47  * @c: UBIFS file-system description object
48  * @inode: the inode to validate
49  *
50  * This is a helper function for 'ubifs_iget()' which validates various fields
51  * of a newly built inode to make sure they contain sane values and prevent
52  * possible vulnerabilities. Returns zero if the inode is all right and
53  * a non-zero error code if not.
54  */
55 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
56 {
57 	int err;
58 	const struct ubifs_inode *ui = ubifs_inode(inode);
59 
60 	if (inode->i_size > c->max_inode_sz) {
61 		ubifs_err(c, "inode is too large (%lld)",
62 			  (long long)inode->i_size);
63 		return 1;
64 	}
65 
66 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
67 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
68 		return 2;
69 	}
70 
71 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
72 		return 3;
73 
74 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
75 		return 4;
76 
77 	if (ui->xattr && !S_ISREG(inode->i_mode))
78 		return 5;
79 
80 	if (!ubifs_compr_present(c, ui->compr_type)) {
81 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
82 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
83 	}
84 
85 	err = dbg_check_dir(c, inode);
86 	return err;
87 }
88 
89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
90 {
91 	int err;
92 	union ubifs_key key;
93 	struct ubifs_ino_node *ino;
94 	struct ubifs_info *c = sb->s_fs_info;
95 	struct inode *inode;
96 	struct ubifs_inode *ui;
97 
98 	dbg_gen("inode %lu", inum);
99 
100 	inode = iget_locked(sb, inum);
101 	if (!inode)
102 		return ERR_PTR(-ENOMEM);
103 	if (!(inode->i_state & I_NEW))
104 		return inode;
105 	ui = ubifs_inode(inode);
106 
107 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
108 	if (!ino) {
109 		err = -ENOMEM;
110 		goto out;
111 	}
112 
113 	ino_key_init(c, &key, inode->i_ino);
114 
115 	err = ubifs_tnc_lookup(c, &key, ino);
116 	if (err)
117 		goto out_ino;
118 
119 	inode->i_flags |= S_NOCMTIME;
120 
121 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
122 		inode->i_flags |= S_NOATIME;
123 
124 	set_nlink(inode, le32_to_cpu(ino->nlink));
125 	i_uid_write(inode, le32_to_cpu(ino->uid));
126 	i_gid_write(inode, le32_to_cpu(ino->gid));
127 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
128 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
130 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
132 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 	inode->i_mode = le32_to_cpu(ino->mode);
134 	inode->i_size = le64_to_cpu(ino->size);
135 
136 	ui->data_len    = le32_to_cpu(ino->data_len);
137 	ui->flags       = le32_to_cpu(ino->flags);
138 	ui->compr_type  = le16_to_cpu(ino->compr_type);
139 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
141 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
142 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 	ui->synced_i_size = ui->ui_size = inode->i_size;
144 
145 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146 
147 	err = validate_inode(c, inode);
148 	if (err)
149 		goto out_invalid;
150 
151 	switch (inode->i_mode & S_IFMT) {
152 	case S_IFREG:
153 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
154 		inode->i_op = &ubifs_file_inode_operations;
155 		inode->i_fop = &ubifs_file_operations;
156 		if (ui->xattr) {
157 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
158 			if (!ui->data) {
159 				err = -ENOMEM;
160 				goto out_ino;
161 			}
162 			memcpy(ui->data, ino->data, ui->data_len);
163 			((char *)ui->data)[ui->data_len] = '\0';
164 		} else if (ui->data_len != 0) {
165 			err = 10;
166 			goto out_invalid;
167 		}
168 		break;
169 	case S_IFDIR:
170 		inode->i_op  = &ubifs_dir_inode_operations;
171 		inode->i_fop = &ubifs_dir_operations;
172 		if (ui->data_len != 0) {
173 			err = 11;
174 			goto out_invalid;
175 		}
176 		break;
177 	case S_IFLNK:
178 		inode->i_op = &ubifs_symlink_inode_operations;
179 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
180 			err = 12;
181 			goto out_invalid;
182 		}
183 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
184 		if (!ui->data) {
185 			err = -ENOMEM;
186 			goto out_ino;
187 		}
188 		memcpy(ui->data, ino->data, ui->data_len);
189 		((char *)ui->data)[ui->data_len] = '\0';
190 		break;
191 	case S_IFBLK:
192 	case S_IFCHR:
193 	{
194 		dev_t rdev;
195 		union ubifs_dev_desc *dev;
196 
197 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
198 		if (!ui->data) {
199 			err = -ENOMEM;
200 			goto out_ino;
201 		}
202 
203 		dev = (union ubifs_dev_desc *)ino->data;
204 		if (ui->data_len == sizeof(dev->new))
205 			rdev = new_decode_dev(le32_to_cpu(dev->new));
206 		else if (ui->data_len == sizeof(dev->huge))
207 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
208 		else {
209 			err = 13;
210 			goto out_invalid;
211 		}
212 		memcpy(ui->data, ino->data, ui->data_len);
213 		inode->i_op = &ubifs_file_inode_operations;
214 		init_special_inode(inode, inode->i_mode, rdev);
215 		break;
216 	}
217 	case S_IFSOCK:
218 	case S_IFIFO:
219 		inode->i_op = &ubifs_file_inode_operations;
220 		init_special_inode(inode, inode->i_mode, 0);
221 		if (ui->data_len != 0) {
222 			err = 14;
223 			goto out_invalid;
224 		}
225 		break;
226 	default:
227 		err = 15;
228 		goto out_invalid;
229 	}
230 
231 	kfree(ino);
232 	ubifs_set_inode_flags(inode);
233 	unlock_new_inode(inode);
234 	return inode;
235 
236 out_invalid:
237 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
238 	ubifs_dump_node(c, ino);
239 	ubifs_dump_inode(c, inode);
240 	err = -EINVAL;
241 out_ino:
242 	kfree(ino);
243 out:
244 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
245 	iget_failed(inode);
246 	return ERR_PTR(err);
247 }
248 
249 static struct inode *ubifs_alloc_inode(struct super_block *sb)
250 {
251 	struct ubifs_inode *ui;
252 
253 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
254 	if (!ui)
255 		return NULL;
256 
257 	memset((void *)ui + sizeof(struct inode), 0,
258 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
259 	mutex_init(&ui->ui_mutex);
260 	spin_lock_init(&ui->ui_lock);
261 	return &ui->vfs_inode;
262 };
263 
264 static void ubifs_free_inode(struct inode *inode)
265 {
266 	struct ubifs_inode *ui = ubifs_inode(inode);
267 
268 	kfree(ui->data);
269 	fscrypt_free_inode(inode);
270 
271 	kmem_cache_free(ubifs_inode_slab, ui);
272 }
273 
274 /*
275  * Note, Linux write-back code calls this without 'i_mutex'.
276  */
277 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
278 {
279 	int err = 0;
280 	struct ubifs_info *c = inode->i_sb->s_fs_info;
281 	struct ubifs_inode *ui = ubifs_inode(inode);
282 
283 	ubifs_assert(c, !ui->xattr);
284 	if (is_bad_inode(inode))
285 		return 0;
286 
287 	mutex_lock(&ui->ui_mutex);
288 	/*
289 	 * Due to races between write-back forced by budgeting
290 	 * (see 'sync_some_inodes()') and background write-back, the inode may
291 	 * have already been synchronized, do not do this again. This might
292 	 * also happen if it was synchronized in an VFS operation, e.g.
293 	 * 'ubifs_link()'.
294 	 */
295 	if (!ui->dirty) {
296 		mutex_unlock(&ui->ui_mutex);
297 		return 0;
298 	}
299 
300 	/*
301 	 * As an optimization, do not write orphan inodes to the media just
302 	 * because this is not needed.
303 	 */
304 	dbg_gen("inode %lu, mode %#x, nlink %u",
305 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
306 	if (inode->i_nlink) {
307 		err = ubifs_jnl_write_inode(c, inode);
308 		if (err)
309 			ubifs_err(c, "can't write inode %lu, error %d",
310 				  inode->i_ino, err);
311 		else
312 			err = dbg_check_inode_size(c, inode, ui->ui_size);
313 	}
314 
315 	ui->dirty = 0;
316 	mutex_unlock(&ui->ui_mutex);
317 	ubifs_release_dirty_inode_budget(c, ui);
318 	return err;
319 }
320 
321 static void ubifs_evict_inode(struct inode *inode)
322 {
323 	int err;
324 	struct ubifs_info *c = inode->i_sb->s_fs_info;
325 	struct ubifs_inode *ui = ubifs_inode(inode);
326 
327 	if (ui->xattr)
328 		/*
329 		 * Extended attribute inode deletions are fully handled in
330 		 * 'ubifs_removexattr()'. These inodes are special and have
331 		 * limited usage, so there is nothing to do here.
332 		 */
333 		goto out;
334 
335 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
336 	ubifs_assert(c, !atomic_read(&inode->i_count));
337 
338 	truncate_inode_pages_final(&inode->i_data);
339 
340 	if (inode->i_nlink)
341 		goto done;
342 
343 	if (is_bad_inode(inode))
344 		goto out;
345 
346 	ui->ui_size = inode->i_size = 0;
347 	err = ubifs_jnl_delete_inode(c, inode);
348 	if (err)
349 		/*
350 		 * Worst case we have a lost orphan inode wasting space, so a
351 		 * simple error message is OK here.
352 		 */
353 		ubifs_err(c, "can't delete inode %lu, error %d",
354 			  inode->i_ino, err);
355 
356 out:
357 	if (ui->dirty)
358 		ubifs_release_dirty_inode_budget(c, ui);
359 	else {
360 		/* We've deleted something - clean the "no space" flags */
361 		c->bi.nospace = c->bi.nospace_rp = 0;
362 		smp_wmb();
363 	}
364 done:
365 	clear_inode(inode);
366 	fscrypt_put_encryption_info(inode);
367 }
368 
369 static void ubifs_dirty_inode(struct inode *inode, int flags)
370 {
371 	struct ubifs_info *c = inode->i_sb->s_fs_info;
372 	struct ubifs_inode *ui = ubifs_inode(inode);
373 
374 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
375 	if (!ui->dirty) {
376 		ui->dirty = 1;
377 		dbg_gen("inode %lu",  inode->i_ino);
378 	}
379 }
380 
381 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
382 {
383 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
384 	unsigned long long free;
385 	__le32 *uuid = (__le32 *)c->uuid;
386 
387 	free = ubifs_get_free_space(c);
388 	dbg_gen("free space %lld bytes (%lld blocks)",
389 		free, free >> UBIFS_BLOCK_SHIFT);
390 
391 	buf->f_type = UBIFS_SUPER_MAGIC;
392 	buf->f_bsize = UBIFS_BLOCK_SIZE;
393 	buf->f_blocks = c->block_cnt;
394 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
395 	if (free > c->report_rp_size)
396 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
397 	else
398 		buf->f_bavail = 0;
399 	buf->f_files = 0;
400 	buf->f_ffree = 0;
401 	buf->f_namelen = UBIFS_MAX_NLEN;
402 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
403 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
404 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
405 	return 0;
406 }
407 
408 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
409 {
410 	struct ubifs_info *c = root->d_sb->s_fs_info;
411 
412 	if (c->mount_opts.unmount_mode == 2)
413 		seq_puts(s, ",fast_unmount");
414 	else if (c->mount_opts.unmount_mode == 1)
415 		seq_puts(s, ",norm_unmount");
416 
417 	if (c->mount_opts.bulk_read == 2)
418 		seq_puts(s, ",bulk_read");
419 	else if (c->mount_opts.bulk_read == 1)
420 		seq_puts(s, ",no_bulk_read");
421 
422 	if (c->mount_opts.chk_data_crc == 2)
423 		seq_puts(s, ",chk_data_crc");
424 	else if (c->mount_opts.chk_data_crc == 1)
425 		seq_puts(s, ",no_chk_data_crc");
426 
427 	if (c->mount_opts.override_compr) {
428 		seq_printf(s, ",compr=%s",
429 			   ubifs_compr_name(c, c->mount_opts.compr_type));
430 	}
431 
432 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
433 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
434 
435 	return 0;
436 }
437 
438 static int ubifs_sync_fs(struct super_block *sb, int wait)
439 {
440 	int i, err;
441 	struct ubifs_info *c = sb->s_fs_info;
442 
443 	/*
444 	 * Zero @wait is just an advisory thing to help the file system shove
445 	 * lots of data into the queues, and there will be the second
446 	 * '->sync_fs()' call, with non-zero @wait.
447 	 */
448 	if (!wait)
449 		return 0;
450 
451 	/*
452 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
453 	 * do this if it waits for an already running commit.
454 	 */
455 	for (i = 0; i < c->jhead_cnt; i++) {
456 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
457 		if (err)
458 			return err;
459 	}
460 
461 	/*
462 	 * Strictly speaking, it is not necessary to commit the journal here,
463 	 * synchronizing write-buffers would be enough. But committing makes
464 	 * UBIFS free space predictions much more accurate, so we want to let
465 	 * the user be able to get more accurate results of 'statfs()' after
466 	 * they synchronize the file system.
467 	 */
468 	err = ubifs_run_commit(c);
469 	if (err)
470 		return err;
471 
472 	return ubi_sync(c->vi.ubi_num);
473 }
474 
475 /**
476  * init_constants_early - initialize UBIFS constants.
477  * @c: UBIFS file-system description object
478  *
479  * This function initialize UBIFS constants which do not need the superblock to
480  * be read. It also checks that the UBI volume satisfies basic UBIFS
481  * requirements. Returns zero in case of success and a negative error code in
482  * case of failure.
483  */
484 static int init_constants_early(struct ubifs_info *c)
485 {
486 	if (c->vi.corrupted) {
487 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
488 		c->ro_media = 1;
489 	}
490 
491 	if (c->di.ro_mode) {
492 		ubifs_msg(c, "read-only UBI device");
493 		c->ro_media = 1;
494 	}
495 
496 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
497 		ubifs_msg(c, "static UBI volume - read-only mode");
498 		c->ro_media = 1;
499 	}
500 
501 	c->leb_cnt = c->vi.size;
502 	c->leb_size = c->vi.usable_leb_size;
503 	c->leb_start = c->di.leb_start;
504 	c->half_leb_size = c->leb_size / 2;
505 	c->min_io_size = c->di.min_io_size;
506 	c->min_io_shift = fls(c->min_io_size) - 1;
507 	c->max_write_size = c->di.max_write_size;
508 	c->max_write_shift = fls(c->max_write_size) - 1;
509 
510 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
511 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
512 			   c->leb_size, UBIFS_MIN_LEB_SZ);
513 		return -EINVAL;
514 	}
515 
516 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
517 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
518 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
519 		return -EINVAL;
520 	}
521 
522 	if (!is_power_of_2(c->min_io_size)) {
523 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
524 		return -EINVAL;
525 	}
526 
527 	/*
528 	 * Maximum write size has to be greater or equivalent to min. I/O
529 	 * size, and be multiple of min. I/O size.
530 	 */
531 	if (c->max_write_size < c->min_io_size ||
532 	    c->max_write_size % c->min_io_size ||
533 	    !is_power_of_2(c->max_write_size)) {
534 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
535 			   c->max_write_size, c->min_io_size);
536 		return -EINVAL;
537 	}
538 
539 	/*
540 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
541 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
542 	 * less than 8.
543 	 */
544 	if (c->min_io_size < 8) {
545 		c->min_io_size = 8;
546 		c->min_io_shift = 3;
547 		if (c->max_write_size < c->min_io_size) {
548 			c->max_write_size = c->min_io_size;
549 			c->max_write_shift = c->min_io_shift;
550 		}
551 	}
552 
553 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
554 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
555 
556 	/*
557 	 * Initialize node length ranges which are mostly needed for node
558 	 * length validation.
559 	 */
560 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
561 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
562 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
563 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
564 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
565 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
566 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
567 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
568 				UBIFS_MAX_HMAC_LEN;
569 	c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
570 	c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
571 
572 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
573 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
574 	c->ranges[UBIFS_ORPH_NODE].min_len =
575 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
576 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
577 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
578 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
579 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
580 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
581 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
582 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
583 	/*
584 	 * Minimum indexing node size is amended later when superblock is
585 	 * read and the key length is known.
586 	 */
587 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
588 	/*
589 	 * Maximum indexing node size is amended later when superblock is
590 	 * read and the fanout is known.
591 	 */
592 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
593 
594 	/*
595 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
596 	 * about these values.
597 	 */
598 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
599 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
600 
601 	/*
602 	 * Calculate how many bytes would be wasted at the end of LEB if it was
603 	 * fully filled with data nodes of maximum size. This is used in
604 	 * calculations when reporting free space.
605 	 */
606 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
607 
608 	/* Buffer size for bulk-reads */
609 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
610 	if (c->max_bu_buf_len > c->leb_size)
611 		c->max_bu_buf_len = c->leb_size;
612 	return 0;
613 }
614 
615 /**
616  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
617  * @c: UBIFS file-system description object
618  * @lnum: LEB the write-buffer was synchronized to
619  * @free: how many free bytes left in this LEB
620  * @pad: how many bytes were padded
621  *
622  * This is a callback function which is called by the I/O unit when the
623  * write-buffer is synchronized. We need this to correctly maintain space
624  * accounting in bud logical eraseblocks. This function returns zero in case of
625  * success and a negative error code in case of failure.
626  *
627  * This function actually belongs to the journal, but we keep it here because
628  * we want to keep it static.
629  */
630 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
631 {
632 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
633 }
634 
635 /*
636  * init_constants_sb - initialize UBIFS constants.
637  * @c: UBIFS file-system description object
638  *
639  * This is a helper function which initializes various UBIFS constants after
640  * the superblock has been read. It also checks various UBIFS parameters and
641  * makes sure they are all right. Returns zero in case of success and a
642  * negative error code in case of failure.
643  */
644 static int init_constants_sb(struct ubifs_info *c)
645 {
646 	int tmp, err;
647 	long long tmp64;
648 
649 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
650 	c->max_znode_sz = sizeof(struct ubifs_znode) +
651 				c->fanout * sizeof(struct ubifs_zbranch);
652 
653 	tmp = ubifs_idx_node_sz(c, 1);
654 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
655 	c->min_idx_node_sz = ALIGN(tmp, 8);
656 
657 	tmp = ubifs_idx_node_sz(c, c->fanout);
658 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
659 	c->max_idx_node_sz = ALIGN(tmp, 8);
660 
661 	/* Make sure LEB size is large enough to fit full commit */
662 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
663 	tmp = ALIGN(tmp, c->min_io_size);
664 	if (tmp > c->leb_size) {
665 		ubifs_err(c, "too small LEB size %d, at least %d needed",
666 			  c->leb_size, tmp);
667 		return -EINVAL;
668 	}
669 
670 	/*
671 	 * Make sure that the log is large enough to fit reference nodes for
672 	 * all buds plus one reserved LEB.
673 	 */
674 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
675 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
676 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
677 	tmp /= c->leb_size;
678 	tmp += 1;
679 	if (c->log_lebs < tmp) {
680 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
681 			  c->log_lebs, tmp);
682 		return -EINVAL;
683 	}
684 
685 	/*
686 	 * When budgeting we assume worst-case scenarios when the pages are not
687 	 * be compressed and direntries are of the maximum size.
688 	 *
689 	 * Note, data, which may be stored in inodes is budgeted separately, so
690 	 * it is not included into 'c->bi.inode_budget'.
691 	 */
692 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
693 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
694 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
695 
696 	/*
697 	 * When the amount of flash space used by buds becomes
698 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
699 	 * The writers are unblocked when the commit is finished. To avoid
700 	 * writers to be blocked UBIFS initiates background commit in advance,
701 	 * when number of bud bytes becomes above the limit defined below.
702 	 */
703 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
704 
705 	/*
706 	 * Ensure minimum journal size. All the bytes in the journal heads are
707 	 * considered to be used, when calculating the current journal usage.
708 	 * Consequently, if the journal is too small, UBIFS will treat it as
709 	 * always full.
710 	 */
711 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
712 	if (c->bg_bud_bytes < tmp64)
713 		c->bg_bud_bytes = tmp64;
714 	if (c->max_bud_bytes < tmp64 + c->leb_size)
715 		c->max_bud_bytes = tmp64 + c->leb_size;
716 
717 	err = ubifs_calc_lpt_geom(c);
718 	if (err)
719 		return err;
720 
721 	/* Initialize effective LEB size used in budgeting calculations */
722 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
723 	return 0;
724 }
725 
726 /*
727  * init_constants_master - initialize UBIFS constants.
728  * @c: UBIFS file-system description object
729  *
730  * This is a helper function which initializes various UBIFS constants after
731  * the master node has been read. It also checks various UBIFS parameters and
732  * makes sure they are all right.
733  */
734 static void init_constants_master(struct ubifs_info *c)
735 {
736 	long long tmp64;
737 
738 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
739 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
740 
741 	/*
742 	 * Calculate total amount of FS blocks. This number is not used
743 	 * internally because it does not make much sense for UBIFS, but it is
744 	 * necessary to report something for the 'statfs()' call.
745 	 *
746 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
747 	 * deletions, minimum LEBs for the index, and assume only one journal
748 	 * head is available.
749 	 */
750 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
751 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
752 	tmp64 = ubifs_reported_space(c, tmp64);
753 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
754 }
755 
756 /**
757  * take_gc_lnum - reserve GC LEB.
758  * @c: UBIFS file-system description object
759  *
760  * This function ensures that the LEB reserved for garbage collection is marked
761  * as "taken" in lprops. We also have to set free space to LEB size and dirty
762  * space to zero, because lprops may contain out-of-date information if the
763  * file-system was un-mounted before it has been committed. This function
764  * returns zero in case of success and a negative error code in case of
765  * failure.
766  */
767 static int take_gc_lnum(struct ubifs_info *c)
768 {
769 	int err;
770 
771 	if (c->gc_lnum == -1) {
772 		ubifs_err(c, "no LEB for GC");
773 		return -EINVAL;
774 	}
775 
776 	/* And we have to tell lprops that this LEB is taken */
777 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
778 				  LPROPS_TAKEN, 0, 0);
779 	return err;
780 }
781 
782 /**
783  * alloc_wbufs - allocate write-buffers.
784  * @c: UBIFS file-system description object
785  *
786  * This helper function allocates and initializes UBIFS write-buffers. Returns
787  * zero in case of success and %-ENOMEM in case of failure.
788  */
789 static int alloc_wbufs(struct ubifs_info *c)
790 {
791 	int i, err;
792 
793 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
794 			    GFP_KERNEL);
795 	if (!c->jheads)
796 		return -ENOMEM;
797 
798 	/* Initialize journal heads */
799 	for (i = 0; i < c->jhead_cnt; i++) {
800 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
801 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
802 		if (err)
803 			return err;
804 
805 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
806 		c->jheads[i].wbuf.jhead = i;
807 		c->jheads[i].grouped = 1;
808 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
809 		if (IS_ERR(c->jheads[i].log_hash))
810 			goto out;
811 	}
812 
813 	/*
814 	 * Garbage Collector head does not need to be synchronized by timer.
815 	 * Also GC head nodes are not grouped.
816 	 */
817 	c->jheads[GCHD].wbuf.no_timer = 1;
818 	c->jheads[GCHD].grouped = 0;
819 
820 	return 0;
821 
822 out:
823 	while (i--)
824 		kfree(c->jheads[i].log_hash);
825 
826 	return err;
827 }
828 
829 /**
830  * free_wbufs - free write-buffers.
831  * @c: UBIFS file-system description object
832  */
833 static void free_wbufs(struct ubifs_info *c)
834 {
835 	int i;
836 
837 	if (c->jheads) {
838 		for (i = 0; i < c->jhead_cnt; i++) {
839 			kfree(c->jheads[i].wbuf.buf);
840 			kfree(c->jheads[i].wbuf.inodes);
841 			kfree(c->jheads[i].log_hash);
842 		}
843 		kfree(c->jheads);
844 		c->jheads = NULL;
845 	}
846 }
847 
848 /**
849  * free_orphans - free orphans.
850  * @c: UBIFS file-system description object
851  */
852 static void free_orphans(struct ubifs_info *c)
853 {
854 	struct ubifs_orphan *orph;
855 
856 	while (c->orph_dnext) {
857 		orph = c->orph_dnext;
858 		c->orph_dnext = orph->dnext;
859 		list_del(&orph->list);
860 		kfree(orph);
861 	}
862 
863 	while (!list_empty(&c->orph_list)) {
864 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
865 		list_del(&orph->list);
866 		kfree(orph);
867 		ubifs_err(c, "orphan list not empty at unmount");
868 	}
869 
870 	vfree(c->orph_buf);
871 	c->orph_buf = NULL;
872 }
873 
874 /**
875  * free_buds - free per-bud objects.
876  * @c: UBIFS file-system description object
877  */
878 static void free_buds(struct ubifs_info *c)
879 {
880 	struct ubifs_bud *bud, *n;
881 
882 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
883 		kfree(bud);
884 }
885 
886 /**
887  * check_volume_empty - check if the UBI volume is empty.
888  * @c: UBIFS file-system description object
889  *
890  * This function checks if the UBIFS volume is empty by looking if its LEBs are
891  * mapped or not. The result of checking is stored in the @c->empty variable.
892  * Returns zero in case of success and a negative error code in case of
893  * failure.
894  */
895 static int check_volume_empty(struct ubifs_info *c)
896 {
897 	int lnum, err;
898 
899 	c->empty = 1;
900 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
901 		err = ubifs_is_mapped(c, lnum);
902 		if (unlikely(err < 0))
903 			return err;
904 		if (err == 1) {
905 			c->empty = 0;
906 			break;
907 		}
908 
909 		cond_resched();
910 	}
911 
912 	return 0;
913 }
914 
915 /*
916  * UBIFS mount options.
917  *
918  * Opt_fast_unmount: do not run a journal commit before un-mounting
919  * Opt_norm_unmount: run a journal commit before un-mounting
920  * Opt_bulk_read: enable bulk-reads
921  * Opt_no_bulk_read: disable bulk-reads
922  * Opt_chk_data_crc: check CRCs when reading data nodes
923  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
924  * Opt_override_compr: override default compressor
925  * Opt_assert: set ubifs_assert() action
926  * Opt_auth_key: The key name used for authentication
927  * Opt_auth_hash_name: The hash type used for authentication
928  * Opt_err: just end of array marker
929  */
930 enum {
931 	Opt_fast_unmount,
932 	Opt_norm_unmount,
933 	Opt_bulk_read,
934 	Opt_no_bulk_read,
935 	Opt_chk_data_crc,
936 	Opt_no_chk_data_crc,
937 	Opt_override_compr,
938 	Opt_assert,
939 	Opt_auth_key,
940 	Opt_auth_hash_name,
941 	Opt_ignore,
942 	Opt_err,
943 };
944 
945 static const match_table_t tokens = {
946 	{Opt_fast_unmount, "fast_unmount"},
947 	{Opt_norm_unmount, "norm_unmount"},
948 	{Opt_bulk_read, "bulk_read"},
949 	{Opt_no_bulk_read, "no_bulk_read"},
950 	{Opt_chk_data_crc, "chk_data_crc"},
951 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
952 	{Opt_override_compr, "compr=%s"},
953 	{Opt_auth_key, "auth_key=%s"},
954 	{Opt_auth_hash_name, "auth_hash_name=%s"},
955 	{Opt_ignore, "ubi=%s"},
956 	{Opt_ignore, "vol=%s"},
957 	{Opt_assert, "assert=%s"},
958 	{Opt_err, NULL},
959 };
960 
961 /**
962  * parse_standard_option - parse a standard mount option.
963  * @option: the option to parse
964  *
965  * Normally, standard mount options like "sync" are passed to file-systems as
966  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
967  * be present in the options string. This function tries to deal with this
968  * situation and parse standard options. Returns 0 if the option was not
969  * recognized, and the corresponding integer flag if it was.
970  *
971  * UBIFS is only interested in the "sync" option, so do not check for anything
972  * else.
973  */
974 static int parse_standard_option(const char *option)
975 {
976 
977 	pr_notice("UBIFS: parse %s\n", option);
978 	if (!strcmp(option, "sync"))
979 		return SB_SYNCHRONOUS;
980 	return 0;
981 }
982 
983 /**
984  * ubifs_parse_options - parse mount parameters.
985  * @c: UBIFS file-system description object
986  * @options: parameters to parse
987  * @is_remount: non-zero if this is FS re-mount
988  *
989  * This function parses UBIFS mount options and returns zero in case success
990  * and a negative error code in case of failure.
991  */
992 static int ubifs_parse_options(struct ubifs_info *c, char *options,
993 			       int is_remount)
994 {
995 	char *p;
996 	substring_t args[MAX_OPT_ARGS];
997 
998 	if (!options)
999 		return 0;
1000 
1001 	while ((p = strsep(&options, ","))) {
1002 		int token;
1003 
1004 		if (!*p)
1005 			continue;
1006 
1007 		token = match_token(p, tokens, args);
1008 		switch (token) {
1009 		/*
1010 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1011 		 * We accept them in order to be backward-compatible. But this
1012 		 * should be removed at some point.
1013 		 */
1014 		case Opt_fast_unmount:
1015 			c->mount_opts.unmount_mode = 2;
1016 			break;
1017 		case Opt_norm_unmount:
1018 			c->mount_opts.unmount_mode = 1;
1019 			break;
1020 		case Opt_bulk_read:
1021 			c->mount_opts.bulk_read = 2;
1022 			c->bulk_read = 1;
1023 			break;
1024 		case Opt_no_bulk_read:
1025 			c->mount_opts.bulk_read = 1;
1026 			c->bulk_read = 0;
1027 			break;
1028 		case Opt_chk_data_crc:
1029 			c->mount_opts.chk_data_crc = 2;
1030 			c->no_chk_data_crc = 0;
1031 			break;
1032 		case Opt_no_chk_data_crc:
1033 			c->mount_opts.chk_data_crc = 1;
1034 			c->no_chk_data_crc = 1;
1035 			break;
1036 		case Opt_override_compr:
1037 		{
1038 			char *name = match_strdup(&args[0]);
1039 
1040 			if (!name)
1041 				return -ENOMEM;
1042 			if (!strcmp(name, "none"))
1043 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1044 			else if (!strcmp(name, "lzo"))
1045 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1046 			else if (!strcmp(name, "zlib"))
1047 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1048 			else if (!strcmp(name, "zstd"))
1049 				c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1050 			else {
1051 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1052 				kfree(name);
1053 				return -EINVAL;
1054 			}
1055 			kfree(name);
1056 			c->mount_opts.override_compr = 1;
1057 			c->default_compr = c->mount_opts.compr_type;
1058 			break;
1059 		}
1060 		case Opt_assert:
1061 		{
1062 			char *act = match_strdup(&args[0]);
1063 
1064 			if (!act)
1065 				return -ENOMEM;
1066 			if (!strcmp(act, "report"))
1067 				c->assert_action = ASSACT_REPORT;
1068 			else if (!strcmp(act, "read-only"))
1069 				c->assert_action = ASSACT_RO;
1070 			else if (!strcmp(act, "panic"))
1071 				c->assert_action = ASSACT_PANIC;
1072 			else {
1073 				ubifs_err(c, "unknown assert action \"%s\"", act);
1074 				kfree(act);
1075 				return -EINVAL;
1076 			}
1077 			kfree(act);
1078 			break;
1079 		}
1080 		case Opt_auth_key:
1081 			c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1082 			if (!c->auth_key_name)
1083 				return -ENOMEM;
1084 			break;
1085 		case Opt_auth_hash_name:
1086 			c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1087 			if (!c->auth_hash_name)
1088 				return -ENOMEM;
1089 			break;
1090 		case Opt_ignore:
1091 			break;
1092 		default:
1093 		{
1094 			unsigned long flag;
1095 			struct super_block *sb = c->vfs_sb;
1096 
1097 			flag = parse_standard_option(p);
1098 			if (!flag) {
1099 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1100 					  p);
1101 				return -EINVAL;
1102 			}
1103 			sb->s_flags |= flag;
1104 			break;
1105 		}
1106 		}
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 /**
1113  * destroy_journal - destroy journal data structures.
1114  * @c: UBIFS file-system description object
1115  *
1116  * This function destroys journal data structures including those that may have
1117  * been created by recovery functions.
1118  */
1119 static void destroy_journal(struct ubifs_info *c)
1120 {
1121 	while (!list_empty(&c->unclean_leb_list)) {
1122 		struct ubifs_unclean_leb *ucleb;
1123 
1124 		ucleb = list_entry(c->unclean_leb_list.next,
1125 				   struct ubifs_unclean_leb, list);
1126 		list_del(&ucleb->list);
1127 		kfree(ucleb);
1128 	}
1129 	while (!list_empty(&c->old_buds)) {
1130 		struct ubifs_bud *bud;
1131 
1132 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1133 		list_del(&bud->list);
1134 		kfree(bud);
1135 	}
1136 	ubifs_destroy_idx_gc(c);
1137 	ubifs_destroy_size_tree(c);
1138 	ubifs_tnc_close(c);
1139 	free_buds(c);
1140 }
1141 
1142 /**
1143  * bu_init - initialize bulk-read information.
1144  * @c: UBIFS file-system description object
1145  */
1146 static void bu_init(struct ubifs_info *c)
1147 {
1148 	ubifs_assert(c, c->bulk_read == 1);
1149 
1150 	if (c->bu.buf)
1151 		return; /* Already initialized */
1152 
1153 again:
1154 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1155 	if (!c->bu.buf) {
1156 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1157 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1158 			goto again;
1159 		}
1160 
1161 		/* Just disable bulk-read */
1162 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1163 			   c->max_bu_buf_len);
1164 		c->mount_opts.bulk_read = 1;
1165 		c->bulk_read = 0;
1166 		return;
1167 	}
1168 }
1169 
1170 /**
1171  * check_free_space - check if there is enough free space to mount.
1172  * @c: UBIFS file-system description object
1173  *
1174  * This function makes sure UBIFS has enough free space to be mounted in
1175  * read/write mode. UBIFS must always have some free space to allow deletions.
1176  */
1177 static int check_free_space(struct ubifs_info *c)
1178 {
1179 	ubifs_assert(c, c->dark_wm > 0);
1180 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1181 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1182 		ubifs_dump_budg(c, &c->bi);
1183 		ubifs_dump_lprops(c);
1184 		return -ENOSPC;
1185 	}
1186 	return 0;
1187 }
1188 
1189 /**
1190  * mount_ubifs - mount UBIFS file-system.
1191  * @c: UBIFS file-system description object
1192  *
1193  * This function mounts UBIFS file system. Returns zero in case of success and
1194  * a negative error code in case of failure.
1195  */
1196 static int mount_ubifs(struct ubifs_info *c)
1197 {
1198 	int err;
1199 	long long x, y;
1200 	size_t sz;
1201 
1202 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1203 	/* Suppress error messages while probing if SB_SILENT is set */
1204 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1205 
1206 	err = init_constants_early(c);
1207 	if (err)
1208 		return err;
1209 
1210 	err = ubifs_debugging_init(c);
1211 	if (err)
1212 		return err;
1213 
1214 	err = check_volume_empty(c);
1215 	if (err)
1216 		goto out_free;
1217 
1218 	if (c->empty && (c->ro_mount || c->ro_media)) {
1219 		/*
1220 		 * This UBI volume is empty, and read-only, or the file system
1221 		 * is mounted read-only - we cannot format it.
1222 		 */
1223 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1224 			  c->ro_media ? "UBI volume" : "mount");
1225 		err = -EROFS;
1226 		goto out_free;
1227 	}
1228 
1229 	if (c->ro_media && !c->ro_mount) {
1230 		ubifs_err(c, "cannot mount read-write - read-only media");
1231 		err = -EROFS;
1232 		goto out_free;
1233 	}
1234 
1235 	/*
1236 	 * The requirement for the buffer is that it should fit indexing B-tree
1237 	 * height amount of integers. We assume the height if the TNC tree will
1238 	 * never exceed 64.
1239 	 */
1240 	err = -ENOMEM;
1241 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1242 					 GFP_KERNEL);
1243 	if (!c->bottom_up_buf)
1244 		goto out_free;
1245 
1246 	c->sbuf = vmalloc(c->leb_size);
1247 	if (!c->sbuf)
1248 		goto out_free;
1249 
1250 	if (!c->ro_mount) {
1251 		c->ileb_buf = vmalloc(c->leb_size);
1252 		if (!c->ileb_buf)
1253 			goto out_free;
1254 	}
1255 
1256 	if (c->bulk_read == 1)
1257 		bu_init(c);
1258 
1259 	if (!c->ro_mount) {
1260 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1261 					       UBIFS_CIPHER_BLOCK_SIZE,
1262 					       GFP_KERNEL);
1263 		if (!c->write_reserve_buf)
1264 			goto out_free;
1265 	}
1266 
1267 	c->mounting = 1;
1268 
1269 	if (c->auth_key_name) {
1270 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1271 			err = ubifs_init_authentication(c);
1272 			if (err)
1273 				goto out_free;
1274 		} else {
1275 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1276 				  " authentication support");
1277 			err = -EINVAL;
1278 			goto out_free;
1279 		}
1280 	}
1281 
1282 	err = ubifs_read_superblock(c);
1283 	if (err)
1284 		goto out_free;
1285 
1286 	c->probing = 0;
1287 
1288 	/*
1289 	 * Make sure the compressor which is set as default in the superblock
1290 	 * or overridden by mount options is actually compiled in.
1291 	 */
1292 	if (!ubifs_compr_present(c, c->default_compr)) {
1293 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1294 			  ubifs_compr_name(c, c->default_compr));
1295 		err = -ENOTSUPP;
1296 		goto out_free;
1297 	}
1298 
1299 	err = init_constants_sb(c);
1300 	if (err)
1301 		goto out_free;
1302 
1303 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1304 	c->cbuf = kmalloc(sz, GFP_NOFS);
1305 	if (!c->cbuf) {
1306 		err = -ENOMEM;
1307 		goto out_free;
1308 	}
1309 
1310 	err = alloc_wbufs(c);
1311 	if (err)
1312 		goto out_cbuf;
1313 
1314 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1315 	if (!c->ro_mount) {
1316 		/* Create background thread */
1317 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1318 		if (IS_ERR(c->bgt)) {
1319 			err = PTR_ERR(c->bgt);
1320 			c->bgt = NULL;
1321 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1322 				  c->bgt_name, err);
1323 			goto out_wbufs;
1324 		}
1325 		wake_up_process(c->bgt);
1326 	}
1327 
1328 	err = ubifs_read_master(c);
1329 	if (err)
1330 		goto out_master;
1331 
1332 	init_constants_master(c);
1333 
1334 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1335 		ubifs_msg(c, "recovery needed");
1336 		c->need_recovery = 1;
1337 	}
1338 
1339 	if (c->need_recovery && !c->ro_mount) {
1340 		err = ubifs_recover_inl_heads(c, c->sbuf);
1341 		if (err)
1342 			goto out_master;
1343 	}
1344 
1345 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1346 	if (err)
1347 		goto out_master;
1348 
1349 	if (!c->ro_mount && c->space_fixup) {
1350 		err = ubifs_fixup_free_space(c);
1351 		if (err)
1352 			goto out_lpt;
1353 	}
1354 
1355 	if (!c->ro_mount && !c->need_recovery) {
1356 		/*
1357 		 * Set the "dirty" flag so that if we reboot uncleanly we
1358 		 * will notice this immediately on the next mount.
1359 		 */
1360 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1361 		err = ubifs_write_master(c);
1362 		if (err)
1363 			goto out_lpt;
1364 	}
1365 
1366 	/*
1367 	 * Handle offline signed images: Now that the master node is
1368 	 * written and its validation no longer depends on the hash
1369 	 * in the superblock, we can update the offline signed
1370 	 * superblock with a HMAC version,
1371 	 */
1372 	if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1373 		err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1374 		if (err)
1375 			goto out_lpt;
1376 		c->superblock_need_write = 1;
1377 	}
1378 
1379 	if (!c->ro_mount && c->superblock_need_write) {
1380 		err = ubifs_write_sb_node(c, c->sup_node);
1381 		if (err)
1382 			goto out_lpt;
1383 		c->superblock_need_write = 0;
1384 	}
1385 
1386 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1387 	if (err)
1388 		goto out_lpt;
1389 
1390 	err = ubifs_replay_journal(c);
1391 	if (err)
1392 		goto out_journal;
1393 
1394 	/* Calculate 'min_idx_lebs' after journal replay */
1395 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1396 
1397 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1398 	if (err)
1399 		goto out_orphans;
1400 
1401 	if (!c->ro_mount) {
1402 		int lnum;
1403 
1404 		err = check_free_space(c);
1405 		if (err)
1406 			goto out_orphans;
1407 
1408 		/* Check for enough log space */
1409 		lnum = c->lhead_lnum + 1;
1410 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1411 			lnum = UBIFS_LOG_LNUM;
1412 		if (lnum == c->ltail_lnum) {
1413 			err = ubifs_consolidate_log(c);
1414 			if (err)
1415 				goto out_orphans;
1416 		}
1417 
1418 		if (c->need_recovery) {
1419 			if (!ubifs_authenticated(c)) {
1420 				err = ubifs_recover_size(c, true);
1421 				if (err)
1422 					goto out_orphans;
1423 			}
1424 
1425 			err = ubifs_rcvry_gc_commit(c);
1426 			if (err)
1427 				goto out_orphans;
1428 
1429 			if (ubifs_authenticated(c)) {
1430 				err = ubifs_recover_size(c, false);
1431 				if (err)
1432 					goto out_orphans;
1433 			}
1434 		} else {
1435 			err = take_gc_lnum(c);
1436 			if (err)
1437 				goto out_orphans;
1438 
1439 			/*
1440 			 * GC LEB may contain garbage if there was an unclean
1441 			 * reboot, and it should be un-mapped.
1442 			 */
1443 			err = ubifs_leb_unmap(c, c->gc_lnum);
1444 			if (err)
1445 				goto out_orphans;
1446 		}
1447 
1448 		err = dbg_check_lprops(c);
1449 		if (err)
1450 			goto out_orphans;
1451 	} else if (c->need_recovery) {
1452 		err = ubifs_recover_size(c, false);
1453 		if (err)
1454 			goto out_orphans;
1455 	} else {
1456 		/*
1457 		 * Even if we mount read-only, we have to set space in GC LEB
1458 		 * to proper value because this affects UBIFS free space
1459 		 * reporting. We do not want to have a situation when
1460 		 * re-mounting from R/O to R/W changes amount of free space.
1461 		 */
1462 		err = take_gc_lnum(c);
1463 		if (err)
1464 			goto out_orphans;
1465 	}
1466 
1467 	spin_lock(&ubifs_infos_lock);
1468 	list_add_tail(&c->infos_list, &ubifs_infos);
1469 	spin_unlock(&ubifs_infos_lock);
1470 
1471 	if (c->need_recovery) {
1472 		if (c->ro_mount)
1473 			ubifs_msg(c, "recovery deferred");
1474 		else {
1475 			c->need_recovery = 0;
1476 			ubifs_msg(c, "recovery completed");
1477 			/*
1478 			 * GC LEB has to be empty and taken at this point. But
1479 			 * the journal head LEBs may also be accounted as
1480 			 * "empty taken" if they are empty.
1481 			 */
1482 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1483 		}
1484 	} else
1485 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1486 
1487 	err = dbg_check_filesystem(c);
1488 	if (err)
1489 		goto out_infos;
1490 
1491 	dbg_debugfs_init_fs(c);
1492 
1493 	c->mounting = 0;
1494 
1495 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1496 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1497 		  c->ro_mount ? ", R/O mode" : "");
1498 	x = (long long)c->main_lebs * c->leb_size;
1499 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1500 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1501 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1502 		  c->max_write_size);
1503 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1504 		  x, x >> 20, c->main_lebs,
1505 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1506 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1507 		  c->report_rp_size, c->report_rp_size >> 10);
1508 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1509 		  c->fmt_version, c->ro_compat_version,
1510 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1511 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1512 
1513 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1514 	dbg_gen("data journal heads:  %d",
1515 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1516 	dbg_gen("log LEBs:            %d (%d - %d)",
1517 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1518 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1519 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1520 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1521 		c->orph_lebs, c->orph_first, c->orph_last);
1522 	dbg_gen("main area LEBs:      %d (%d - %d)",
1523 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1524 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1525 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1526 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1527 		c->bi.old_idx_sz >> 20);
1528 	dbg_gen("key hash type:       %d", c->key_hash_type);
1529 	dbg_gen("tree fanout:         %d", c->fanout);
1530 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1531 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1532 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1533 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1534 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1535 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1536 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1537 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1538 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1539 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1540 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1541 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1542 	dbg_gen("dead watermark:      %d", c->dead_wm);
1543 	dbg_gen("dark watermark:      %d", c->dark_wm);
1544 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1545 	x = (long long)c->main_lebs * c->dark_wm;
1546 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1547 		x, x >> 10, x >> 20);
1548 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1549 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1550 		c->max_bud_bytes >> 20);
1551 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1552 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1553 		c->bg_bud_bytes >> 20);
1554 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1555 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1556 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1557 	dbg_gen("commit number:       %llu", c->cmt_no);
1558 	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1559 	dbg_gen("max orphans:           %d", c->max_orphans);
1560 
1561 	return 0;
1562 
1563 out_infos:
1564 	spin_lock(&ubifs_infos_lock);
1565 	list_del(&c->infos_list);
1566 	spin_unlock(&ubifs_infos_lock);
1567 out_orphans:
1568 	free_orphans(c);
1569 out_journal:
1570 	destroy_journal(c);
1571 out_lpt:
1572 	ubifs_lpt_free(c, 0);
1573 out_master:
1574 	kfree(c->mst_node);
1575 	kfree(c->rcvrd_mst_node);
1576 	if (c->bgt)
1577 		kthread_stop(c->bgt);
1578 out_wbufs:
1579 	free_wbufs(c);
1580 out_cbuf:
1581 	kfree(c->cbuf);
1582 out_free:
1583 	kfree(c->write_reserve_buf);
1584 	kfree(c->bu.buf);
1585 	vfree(c->ileb_buf);
1586 	vfree(c->sbuf);
1587 	kfree(c->bottom_up_buf);
1588 	ubifs_debugging_exit(c);
1589 	return err;
1590 }
1591 
1592 /**
1593  * ubifs_umount - un-mount UBIFS file-system.
1594  * @c: UBIFS file-system description object
1595  *
1596  * Note, this function is called to free allocated resourced when un-mounting,
1597  * as well as free resources when an error occurred while we were half way
1598  * through mounting (error path cleanup function). So it has to make sure the
1599  * resource was actually allocated before freeing it.
1600  */
1601 static void ubifs_umount(struct ubifs_info *c)
1602 {
1603 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1604 		c->vi.vol_id);
1605 
1606 	dbg_debugfs_exit_fs(c);
1607 	spin_lock(&ubifs_infos_lock);
1608 	list_del(&c->infos_list);
1609 	spin_unlock(&ubifs_infos_lock);
1610 
1611 	if (c->bgt)
1612 		kthread_stop(c->bgt);
1613 
1614 	destroy_journal(c);
1615 	free_wbufs(c);
1616 	free_orphans(c);
1617 	ubifs_lpt_free(c, 0);
1618 	ubifs_exit_authentication(c);
1619 
1620 	kfree(c->auth_key_name);
1621 	kfree(c->auth_hash_name);
1622 	kfree(c->cbuf);
1623 	kfree(c->rcvrd_mst_node);
1624 	kfree(c->mst_node);
1625 	kfree(c->write_reserve_buf);
1626 	kfree(c->bu.buf);
1627 	vfree(c->ileb_buf);
1628 	vfree(c->sbuf);
1629 	kfree(c->bottom_up_buf);
1630 	ubifs_debugging_exit(c);
1631 }
1632 
1633 /**
1634  * ubifs_remount_rw - re-mount in read-write mode.
1635  * @c: UBIFS file-system description object
1636  *
1637  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1638  * mode. This function allocates the needed resources and re-mounts UBIFS in
1639  * read-write mode.
1640  */
1641 static int ubifs_remount_rw(struct ubifs_info *c)
1642 {
1643 	int err, lnum;
1644 
1645 	if (c->rw_incompat) {
1646 		ubifs_err(c, "the file-system is not R/W-compatible");
1647 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1648 			  c->fmt_version, c->ro_compat_version,
1649 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1650 		return -EROFS;
1651 	}
1652 
1653 	mutex_lock(&c->umount_mutex);
1654 	dbg_save_space_info(c);
1655 	c->remounting_rw = 1;
1656 	c->ro_mount = 0;
1657 
1658 	if (c->space_fixup) {
1659 		err = ubifs_fixup_free_space(c);
1660 		if (err)
1661 			goto out;
1662 	}
1663 
1664 	err = check_free_space(c);
1665 	if (err)
1666 		goto out;
1667 
1668 	if (c->need_recovery) {
1669 		ubifs_msg(c, "completing deferred recovery");
1670 		err = ubifs_write_rcvrd_mst_node(c);
1671 		if (err)
1672 			goto out;
1673 		if (!ubifs_authenticated(c)) {
1674 			err = ubifs_recover_size(c, true);
1675 			if (err)
1676 				goto out;
1677 		}
1678 		err = ubifs_clean_lebs(c, c->sbuf);
1679 		if (err)
1680 			goto out;
1681 		err = ubifs_recover_inl_heads(c, c->sbuf);
1682 		if (err)
1683 			goto out;
1684 	} else {
1685 		/* A readonly mount is not allowed to have orphans */
1686 		ubifs_assert(c, c->tot_orphans == 0);
1687 		err = ubifs_clear_orphans(c);
1688 		if (err)
1689 			goto out;
1690 	}
1691 
1692 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1693 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1694 		err = ubifs_write_master(c);
1695 		if (err)
1696 			goto out;
1697 	}
1698 
1699 	if (c->superblock_need_write) {
1700 		struct ubifs_sb_node *sup = c->sup_node;
1701 
1702 		err = ubifs_write_sb_node(c, sup);
1703 		if (err)
1704 			goto out;
1705 
1706 		c->superblock_need_write = 0;
1707 	}
1708 
1709 	c->ileb_buf = vmalloc(c->leb_size);
1710 	if (!c->ileb_buf) {
1711 		err = -ENOMEM;
1712 		goto out;
1713 	}
1714 
1715 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1716 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1717 	if (!c->write_reserve_buf) {
1718 		err = -ENOMEM;
1719 		goto out;
1720 	}
1721 
1722 	err = ubifs_lpt_init(c, 0, 1);
1723 	if (err)
1724 		goto out;
1725 
1726 	/* Create background thread */
1727 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1728 	if (IS_ERR(c->bgt)) {
1729 		err = PTR_ERR(c->bgt);
1730 		c->bgt = NULL;
1731 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1732 			  c->bgt_name, err);
1733 		goto out;
1734 	}
1735 	wake_up_process(c->bgt);
1736 
1737 	c->orph_buf = vmalloc(c->leb_size);
1738 	if (!c->orph_buf) {
1739 		err = -ENOMEM;
1740 		goto out;
1741 	}
1742 
1743 	/* Check for enough log space */
1744 	lnum = c->lhead_lnum + 1;
1745 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1746 		lnum = UBIFS_LOG_LNUM;
1747 	if (lnum == c->ltail_lnum) {
1748 		err = ubifs_consolidate_log(c);
1749 		if (err)
1750 			goto out;
1751 	}
1752 
1753 	if (c->need_recovery) {
1754 		err = ubifs_rcvry_gc_commit(c);
1755 		if (err)
1756 			goto out;
1757 
1758 		if (ubifs_authenticated(c)) {
1759 			err = ubifs_recover_size(c, false);
1760 			if (err)
1761 				goto out;
1762 		}
1763 	} else {
1764 		err = ubifs_leb_unmap(c, c->gc_lnum);
1765 	}
1766 	if (err)
1767 		goto out;
1768 
1769 	dbg_gen("re-mounted read-write");
1770 	c->remounting_rw = 0;
1771 
1772 	if (c->need_recovery) {
1773 		c->need_recovery = 0;
1774 		ubifs_msg(c, "deferred recovery completed");
1775 	} else {
1776 		/*
1777 		 * Do not run the debugging space check if the were doing
1778 		 * recovery, because when we saved the information we had the
1779 		 * file-system in a state where the TNC and lprops has been
1780 		 * modified in memory, but all the I/O operations (including a
1781 		 * commit) were deferred. So the file-system was in
1782 		 * "non-committed" state. Now the file-system is in committed
1783 		 * state, and of course the amount of free space will change
1784 		 * because, for example, the old index size was imprecise.
1785 		 */
1786 		err = dbg_check_space_info(c);
1787 	}
1788 
1789 	mutex_unlock(&c->umount_mutex);
1790 	return err;
1791 
1792 out:
1793 	c->ro_mount = 1;
1794 	vfree(c->orph_buf);
1795 	c->orph_buf = NULL;
1796 	if (c->bgt) {
1797 		kthread_stop(c->bgt);
1798 		c->bgt = NULL;
1799 	}
1800 	free_wbufs(c);
1801 	kfree(c->write_reserve_buf);
1802 	c->write_reserve_buf = NULL;
1803 	vfree(c->ileb_buf);
1804 	c->ileb_buf = NULL;
1805 	ubifs_lpt_free(c, 1);
1806 	c->remounting_rw = 0;
1807 	mutex_unlock(&c->umount_mutex);
1808 	return err;
1809 }
1810 
1811 /**
1812  * ubifs_remount_ro - re-mount in read-only mode.
1813  * @c: UBIFS file-system description object
1814  *
1815  * We assume VFS has stopped writing. Possibly the background thread could be
1816  * running a commit, however kthread_stop will wait in that case.
1817  */
1818 static void ubifs_remount_ro(struct ubifs_info *c)
1819 {
1820 	int i, err;
1821 
1822 	ubifs_assert(c, !c->need_recovery);
1823 	ubifs_assert(c, !c->ro_mount);
1824 
1825 	mutex_lock(&c->umount_mutex);
1826 	if (c->bgt) {
1827 		kthread_stop(c->bgt);
1828 		c->bgt = NULL;
1829 	}
1830 
1831 	dbg_save_space_info(c);
1832 
1833 	for (i = 0; i < c->jhead_cnt; i++) {
1834 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1835 		if (err)
1836 			ubifs_ro_mode(c, err);
1837 	}
1838 
1839 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1840 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1841 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1842 	err = ubifs_write_master(c);
1843 	if (err)
1844 		ubifs_ro_mode(c, err);
1845 
1846 	vfree(c->orph_buf);
1847 	c->orph_buf = NULL;
1848 	kfree(c->write_reserve_buf);
1849 	c->write_reserve_buf = NULL;
1850 	vfree(c->ileb_buf);
1851 	c->ileb_buf = NULL;
1852 	ubifs_lpt_free(c, 1);
1853 	c->ro_mount = 1;
1854 	err = dbg_check_space_info(c);
1855 	if (err)
1856 		ubifs_ro_mode(c, err);
1857 	mutex_unlock(&c->umount_mutex);
1858 }
1859 
1860 static void ubifs_put_super(struct super_block *sb)
1861 {
1862 	int i;
1863 	struct ubifs_info *c = sb->s_fs_info;
1864 
1865 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1866 
1867 	/*
1868 	 * The following asserts are only valid if there has not been a failure
1869 	 * of the media. For example, there will be dirty inodes if we failed
1870 	 * to write them back because of I/O errors.
1871 	 */
1872 	if (!c->ro_error) {
1873 		ubifs_assert(c, c->bi.idx_growth == 0);
1874 		ubifs_assert(c, c->bi.dd_growth == 0);
1875 		ubifs_assert(c, c->bi.data_growth == 0);
1876 	}
1877 
1878 	/*
1879 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1880 	 * and file system un-mount. Namely, it prevents the shrinker from
1881 	 * picking this superblock for shrinking - it will be just skipped if
1882 	 * the mutex is locked.
1883 	 */
1884 	mutex_lock(&c->umount_mutex);
1885 	if (!c->ro_mount) {
1886 		/*
1887 		 * First of all kill the background thread to make sure it does
1888 		 * not interfere with un-mounting and freeing resources.
1889 		 */
1890 		if (c->bgt) {
1891 			kthread_stop(c->bgt);
1892 			c->bgt = NULL;
1893 		}
1894 
1895 		/*
1896 		 * On fatal errors c->ro_error is set to 1, in which case we do
1897 		 * not write the master node.
1898 		 */
1899 		if (!c->ro_error) {
1900 			int err;
1901 
1902 			/* Synchronize write-buffers */
1903 			for (i = 0; i < c->jhead_cnt; i++) {
1904 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1905 				if (err)
1906 					ubifs_ro_mode(c, err);
1907 			}
1908 
1909 			/*
1910 			 * We are being cleanly unmounted which means the
1911 			 * orphans were killed - indicate this in the master
1912 			 * node. Also save the reserved GC LEB number.
1913 			 */
1914 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1915 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1916 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1917 			err = ubifs_write_master(c);
1918 			if (err)
1919 				/*
1920 				 * Recovery will attempt to fix the master area
1921 				 * next mount, so we just print a message and
1922 				 * continue to unmount normally.
1923 				 */
1924 				ubifs_err(c, "failed to write master node, error %d",
1925 					  err);
1926 		} else {
1927 			for (i = 0; i < c->jhead_cnt; i++)
1928 				/* Make sure write-buffer timers are canceled */
1929 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1930 		}
1931 	}
1932 
1933 	ubifs_umount(c);
1934 	ubi_close_volume(c->ubi);
1935 	mutex_unlock(&c->umount_mutex);
1936 }
1937 
1938 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1939 {
1940 	int err;
1941 	struct ubifs_info *c = sb->s_fs_info;
1942 
1943 	sync_filesystem(sb);
1944 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1945 
1946 	err = ubifs_parse_options(c, data, 1);
1947 	if (err) {
1948 		ubifs_err(c, "invalid or unknown remount parameter");
1949 		return err;
1950 	}
1951 
1952 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
1953 		if (c->ro_error) {
1954 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1955 			return -EROFS;
1956 		}
1957 		if (c->ro_media) {
1958 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1959 			return -EROFS;
1960 		}
1961 		err = ubifs_remount_rw(c);
1962 		if (err)
1963 			return err;
1964 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1965 		if (c->ro_error) {
1966 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1967 			return -EROFS;
1968 		}
1969 		ubifs_remount_ro(c);
1970 	}
1971 
1972 	if (c->bulk_read == 1)
1973 		bu_init(c);
1974 	else {
1975 		dbg_gen("disable bulk-read");
1976 		mutex_lock(&c->bu_mutex);
1977 		kfree(c->bu.buf);
1978 		c->bu.buf = NULL;
1979 		mutex_unlock(&c->bu_mutex);
1980 	}
1981 
1982 	if (!c->need_recovery)
1983 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1984 
1985 	return 0;
1986 }
1987 
1988 const struct super_operations ubifs_super_operations = {
1989 	.alloc_inode   = ubifs_alloc_inode,
1990 	.free_inode    = ubifs_free_inode,
1991 	.put_super     = ubifs_put_super,
1992 	.write_inode   = ubifs_write_inode,
1993 	.evict_inode   = ubifs_evict_inode,
1994 	.statfs        = ubifs_statfs,
1995 	.dirty_inode   = ubifs_dirty_inode,
1996 	.remount_fs    = ubifs_remount_fs,
1997 	.show_options  = ubifs_show_options,
1998 	.sync_fs       = ubifs_sync_fs,
1999 };
2000 
2001 /**
2002  * open_ubi - parse UBI device name string and open the UBI device.
2003  * @name: UBI volume name
2004  * @mode: UBI volume open mode
2005  *
2006  * The primary method of mounting UBIFS is by specifying the UBI volume
2007  * character device node path. However, UBIFS may also be mounted withoug any
2008  * character device node using one of the following methods:
2009  *
2010  * o ubiX_Y    - mount UBI device number X, volume Y;
2011  * o ubiY      - mount UBI device number 0, volume Y;
2012  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2013  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2014  *
2015  * Alternative '!' separator may be used instead of ':' (because some shells
2016  * like busybox may interpret ':' as an NFS host name separator). This function
2017  * returns UBI volume description object in case of success and a negative
2018  * error code in case of failure.
2019  */
2020 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2021 {
2022 	struct ubi_volume_desc *ubi;
2023 	int dev, vol;
2024 	char *endptr;
2025 
2026 	if (!name || !*name)
2027 		return ERR_PTR(-EINVAL);
2028 
2029 	/* First, try to open using the device node path method */
2030 	ubi = ubi_open_volume_path(name, mode);
2031 	if (!IS_ERR(ubi))
2032 		return ubi;
2033 
2034 	/* Try the "nodev" method */
2035 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2036 		return ERR_PTR(-EINVAL);
2037 
2038 	/* ubi:NAME method */
2039 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2040 		return ubi_open_volume_nm(0, name + 4, mode);
2041 
2042 	if (!isdigit(name[3]))
2043 		return ERR_PTR(-EINVAL);
2044 
2045 	dev = simple_strtoul(name + 3, &endptr, 0);
2046 
2047 	/* ubiY method */
2048 	if (*endptr == '\0')
2049 		return ubi_open_volume(0, dev, mode);
2050 
2051 	/* ubiX_Y method */
2052 	if (*endptr == '_' && isdigit(endptr[1])) {
2053 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2054 		if (*endptr != '\0')
2055 			return ERR_PTR(-EINVAL);
2056 		return ubi_open_volume(dev, vol, mode);
2057 	}
2058 
2059 	/* ubiX:NAME method */
2060 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2061 		return ubi_open_volume_nm(dev, ++endptr, mode);
2062 
2063 	return ERR_PTR(-EINVAL);
2064 }
2065 
2066 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2067 {
2068 	struct ubifs_info *c;
2069 
2070 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2071 	if (c) {
2072 		spin_lock_init(&c->cnt_lock);
2073 		spin_lock_init(&c->cs_lock);
2074 		spin_lock_init(&c->buds_lock);
2075 		spin_lock_init(&c->space_lock);
2076 		spin_lock_init(&c->orphan_lock);
2077 		init_rwsem(&c->commit_sem);
2078 		mutex_init(&c->lp_mutex);
2079 		mutex_init(&c->tnc_mutex);
2080 		mutex_init(&c->log_mutex);
2081 		mutex_init(&c->umount_mutex);
2082 		mutex_init(&c->bu_mutex);
2083 		mutex_init(&c->write_reserve_mutex);
2084 		init_waitqueue_head(&c->cmt_wq);
2085 		c->buds = RB_ROOT;
2086 		c->old_idx = RB_ROOT;
2087 		c->size_tree = RB_ROOT;
2088 		c->orph_tree = RB_ROOT;
2089 		INIT_LIST_HEAD(&c->infos_list);
2090 		INIT_LIST_HEAD(&c->idx_gc);
2091 		INIT_LIST_HEAD(&c->replay_list);
2092 		INIT_LIST_HEAD(&c->replay_buds);
2093 		INIT_LIST_HEAD(&c->uncat_list);
2094 		INIT_LIST_HEAD(&c->empty_list);
2095 		INIT_LIST_HEAD(&c->freeable_list);
2096 		INIT_LIST_HEAD(&c->frdi_idx_list);
2097 		INIT_LIST_HEAD(&c->unclean_leb_list);
2098 		INIT_LIST_HEAD(&c->old_buds);
2099 		INIT_LIST_HEAD(&c->orph_list);
2100 		INIT_LIST_HEAD(&c->orph_new);
2101 		c->no_chk_data_crc = 1;
2102 		c->assert_action = ASSACT_RO;
2103 
2104 		c->highest_inum = UBIFS_FIRST_INO;
2105 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2106 
2107 		ubi_get_volume_info(ubi, &c->vi);
2108 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2109 	}
2110 	return c;
2111 }
2112 
2113 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2114 {
2115 	struct ubifs_info *c = sb->s_fs_info;
2116 	struct inode *root;
2117 	int err;
2118 
2119 	c->vfs_sb = sb;
2120 	/* Re-open the UBI device in read-write mode */
2121 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2122 	if (IS_ERR(c->ubi)) {
2123 		err = PTR_ERR(c->ubi);
2124 		goto out;
2125 	}
2126 
2127 	err = ubifs_parse_options(c, data, 0);
2128 	if (err)
2129 		goto out_close;
2130 
2131 	/*
2132 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2133 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2134 	 * which means the user would have to wait not just for their own I/O
2135 	 * but the read-ahead I/O as well i.e. completely pointless.
2136 	 *
2137 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2138 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2139 	 * writeback happening.
2140 	 */
2141 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2142 				   c->vi.vol_id);
2143 	if (err)
2144 		goto out_close;
2145 
2146 	sb->s_fs_info = c;
2147 	sb->s_magic = UBIFS_SUPER_MAGIC;
2148 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2149 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2150 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2151 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2152 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2153 	sb->s_op = &ubifs_super_operations;
2154 #ifdef CONFIG_UBIFS_FS_XATTR
2155 	sb->s_xattr = ubifs_xattr_handlers;
2156 #endif
2157 	fscrypt_set_ops(sb, &ubifs_crypt_operations);
2158 
2159 	mutex_lock(&c->umount_mutex);
2160 	err = mount_ubifs(c);
2161 	if (err) {
2162 		ubifs_assert(c, err < 0);
2163 		goto out_unlock;
2164 	}
2165 
2166 	/* Read the root inode */
2167 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2168 	if (IS_ERR(root)) {
2169 		err = PTR_ERR(root);
2170 		goto out_umount;
2171 	}
2172 
2173 	sb->s_root = d_make_root(root);
2174 	if (!sb->s_root) {
2175 		err = -ENOMEM;
2176 		goto out_umount;
2177 	}
2178 
2179 	mutex_unlock(&c->umount_mutex);
2180 	return 0;
2181 
2182 out_umount:
2183 	ubifs_umount(c);
2184 out_unlock:
2185 	mutex_unlock(&c->umount_mutex);
2186 out_close:
2187 	ubi_close_volume(c->ubi);
2188 out:
2189 	return err;
2190 }
2191 
2192 static int sb_test(struct super_block *sb, void *data)
2193 {
2194 	struct ubifs_info *c1 = data;
2195 	struct ubifs_info *c = sb->s_fs_info;
2196 
2197 	return c->vi.cdev == c1->vi.cdev;
2198 }
2199 
2200 static int sb_set(struct super_block *sb, void *data)
2201 {
2202 	sb->s_fs_info = data;
2203 	return set_anon_super(sb, NULL);
2204 }
2205 
2206 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2207 			const char *name, void *data)
2208 {
2209 	struct ubi_volume_desc *ubi;
2210 	struct ubifs_info *c;
2211 	struct super_block *sb;
2212 	int err;
2213 
2214 	dbg_gen("name %s, flags %#x", name, flags);
2215 
2216 	/*
2217 	 * Get UBI device number and volume ID. Mount it read-only so far
2218 	 * because this might be a new mount point, and UBI allows only one
2219 	 * read-write user at a time.
2220 	 */
2221 	ubi = open_ubi(name, UBI_READONLY);
2222 	if (IS_ERR(ubi)) {
2223 		if (!(flags & SB_SILENT))
2224 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2225 			       current->pid, name, (int)PTR_ERR(ubi));
2226 		return ERR_CAST(ubi);
2227 	}
2228 
2229 	c = alloc_ubifs_info(ubi);
2230 	if (!c) {
2231 		err = -ENOMEM;
2232 		goto out_close;
2233 	}
2234 
2235 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2236 
2237 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2238 	if (IS_ERR(sb)) {
2239 		err = PTR_ERR(sb);
2240 		kfree(c);
2241 		goto out_close;
2242 	}
2243 
2244 	if (sb->s_root) {
2245 		struct ubifs_info *c1 = sb->s_fs_info;
2246 		kfree(c);
2247 		/* A new mount point for already mounted UBIFS */
2248 		dbg_gen("this ubi volume is already mounted");
2249 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2250 			err = -EBUSY;
2251 			goto out_deact;
2252 		}
2253 	} else {
2254 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2255 		if (err)
2256 			goto out_deact;
2257 		/* We do not support atime */
2258 		sb->s_flags |= SB_ACTIVE;
2259 		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2260 			ubifs_msg(c, "full atime support is enabled.");
2261 		else
2262 			sb->s_flags |= SB_NOATIME;
2263 	}
2264 
2265 	/* 'fill_super()' opens ubi again so we must close it here */
2266 	ubi_close_volume(ubi);
2267 
2268 	return dget(sb->s_root);
2269 
2270 out_deact:
2271 	deactivate_locked_super(sb);
2272 out_close:
2273 	ubi_close_volume(ubi);
2274 	return ERR_PTR(err);
2275 }
2276 
2277 static void kill_ubifs_super(struct super_block *s)
2278 {
2279 	struct ubifs_info *c = s->s_fs_info;
2280 	kill_anon_super(s);
2281 	kfree(c);
2282 }
2283 
2284 static struct file_system_type ubifs_fs_type = {
2285 	.name    = "ubifs",
2286 	.owner   = THIS_MODULE,
2287 	.mount   = ubifs_mount,
2288 	.kill_sb = kill_ubifs_super,
2289 };
2290 MODULE_ALIAS_FS("ubifs");
2291 
2292 /*
2293  * Inode slab cache constructor.
2294  */
2295 static void inode_slab_ctor(void *obj)
2296 {
2297 	struct ubifs_inode *ui = obj;
2298 	inode_init_once(&ui->vfs_inode);
2299 }
2300 
2301 static int __init ubifs_init(void)
2302 {
2303 	int err;
2304 
2305 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2306 
2307 	/* Make sure node sizes are 8-byte aligned */
2308 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2309 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2310 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2311 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2312 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2313 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2314 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2315 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2316 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2317 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2318 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2319 
2320 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2321 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2322 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2323 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2324 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2325 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2326 
2327 	/* Check min. node size */
2328 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2329 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2330 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2331 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2332 
2333 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2334 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2335 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2336 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2337 
2338 	/* Defined node sizes */
2339 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2340 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2341 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2342 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2343 
2344 	/*
2345 	 * We use 2 bit wide bit-fields to store compression type, which should
2346 	 * be amended if more compressors are added. The bit-fields are:
2347 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2348 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2349 	 */
2350 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2351 
2352 	/*
2353 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2354 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2355 	 */
2356 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2357 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2358 		       current->pid, (unsigned int)PAGE_SIZE);
2359 		return -EINVAL;
2360 	}
2361 
2362 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2363 				sizeof(struct ubifs_inode), 0,
2364 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2365 				SLAB_ACCOUNT, &inode_slab_ctor);
2366 	if (!ubifs_inode_slab)
2367 		return -ENOMEM;
2368 
2369 	err = register_shrinker(&ubifs_shrinker_info);
2370 	if (err)
2371 		goto out_slab;
2372 
2373 	err = ubifs_compressors_init();
2374 	if (err)
2375 		goto out_shrinker;
2376 
2377 	dbg_debugfs_init();
2378 
2379 	err = register_filesystem(&ubifs_fs_type);
2380 	if (err) {
2381 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2382 		       current->pid, err);
2383 		goto out_dbg;
2384 	}
2385 	return 0;
2386 
2387 out_dbg:
2388 	dbg_debugfs_exit();
2389 	ubifs_compressors_exit();
2390 out_shrinker:
2391 	unregister_shrinker(&ubifs_shrinker_info);
2392 out_slab:
2393 	kmem_cache_destroy(ubifs_inode_slab);
2394 	return err;
2395 }
2396 /* late_initcall to let compressors initialize first */
2397 late_initcall(ubifs_init);
2398 
2399 static void __exit ubifs_exit(void)
2400 {
2401 	WARN_ON(!list_empty(&ubifs_infos));
2402 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2403 
2404 	dbg_debugfs_exit();
2405 	ubifs_compressors_exit();
2406 	unregister_shrinker(&ubifs_shrinker_info);
2407 
2408 	/*
2409 	 * Make sure all delayed rcu free inodes are flushed before we
2410 	 * destroy cache.
2411 	 */
2412 	rcu_barrier();
2413 	kmem_cache_destroy(ubifs_inode_slab);
2414 	unregister_filesystem(&ubifs_fs_type);
2415 }
2416 module_exit(ubifs_exit);
2417 
2418 MODULE_LICENSE("GPL");
2419 MODULE_VERSION(__stringify(UBIFS_VERSION));
2420 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2421 MODULE_DESCRIPTION("UBIFS - UBI File System");
2422