1 /* 2 * linux/fs/super.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * super.c contains code to handle: - mount structures 7 * - super-block tables 8 * - filesystem drivers list 9 * - mount system call 10 * - umount system call 11 * - ustat system call 12 * 13 * GK 2/5/95 - Changed to support mounting the root fs via NFS 14 * 15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall 16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 17 * Added options to /proc/mounts: 18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. 19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 21 */ 22 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/acct.h> 26 #include <linux/blkdev.h> 27 #include <linux/mount.h> 28 #include <linux/security.h> 29 #include <linux/writeback.h> /* for the emergency remount stuff */ 30 #include <linux/idr.h> 31 #include <linux/mutex.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/cleancache.h> 35 #include "internal.h" 36 37 38 LIST_HEAD(super_blocks); 39 DEFINE_SPINLOCK(sb_lock); 40 41 /* 42 * One thing we have to be careful of with a per-sb shrinker is that we don't 43 * drop the last active reference to the superblock from within the shrinker. 44 * If that happens we could trigger unregistering the shrinker from within the 45 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we 46 * take a passive reference to the superblock to avoid this from occurring. 47 */ 48 static int prune_super(struct shrinker *shrink, struct shrink_control *sc) 49 { 50 struct super_block *sb; 51 int fs_objects = 0; 52 int total_objects; 53 54 sb = container_of(shrink, struct super_block, s_shrink); 55 56 /* 57 * Deadlock avoidance. We may hold various FS locks, and we don't want 58 * to recurse into the FS that called us in clear_inode() and friends.. 59 */ 60 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS)) 61 return -1; 62 63 if (!grab_super_passive(sb)) 64 return !sc->nr_to_scan ? 0 : -1; 65 66 if (sb->s_op && sb->s_op->nr_cached_objects) 67 fs_objects = sb->s_op->nr_cached_objects(sb); 68 69 total_objects = sb->s_nr_dentry_unused + 70 sb->s_nr_inodes_unused + fs_objects + 1; 71 72 if (sc->nr_to_scan) { 73 int dentries; 74 int inodes; 75 76 /* proportion the scan between the caches */ 77 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) / 78 total_objects; 79 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) / 80 total_objects; 81 if (fs_objects) 82 fs_objects = (sc->nr_to_scan * fs_objects) / 83 total_objects; 84 /* 85 * prune the dcache first as the icache is pinned by it, then 86 * prune the icache, followed by the filesystem specific caches 87 */ 88 prune_dcache_sb(sb, dentries); 89 prune_icache_sb(sb, inodes); 90 91 if (fs_objects && sb->s_op->free_cached_objects) { 92 sb->s_op->free_cached_objects(sb, fs_objects); 93 fs_objects = sb->s_op->nr_cached_objects(sb); 94 } 95 total_objects = sb->s_nr_dentry_unused + 96 sb->s_nr_inodes_unused + fs_objects; 97 } 98 99 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure; 100 drop_super(sb); 101 return total_objects; 102 } 103 104 /** 105 * alloc_super - create new superblock 106 * @type: filesystem type superblock should belong to 107 * 108 * Allocates and initializes a new &struct super_block. alloc_super() 109 * returns a pointer new superblock or %NULL if allocation had failed. 110 */ 111 static struct super_block *alloc_super(struct file_system_type *type) 112 { 113 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER); 114 static const struct super_operations default_op; 115 116 if (s) { 117 if (security_sb_alloc(s)) { 118 kfree(s); 119 s = NULL; 120 goto out; 121 } 122 #ifdef CONFIG_SMP 123 s->s_files = alloc_percpu(struct list_head); 124 if (!s->s_files) { 125 security_sb_free(s); 126 kfree(s); 127 s = NULL; 128 goto out; 129 } else { 130 int i; 131 132 for_each_possible_cpu(i) 133 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i)); 134 } 135 #else 136 INIT_LIST_HEAD(&s->s_files); 137 #endif 138 s->s_bdi = &default_backing_dev_info; 139 INIT_HLIST_NODE(&s->s_instances); 140 INIT_HLIST_BL_HEAD(&s->s_anon); 141 INIT_LIST_HEAD(&s->s_inodes); 142 INIT_LIST_HEAD(&s->s_dentry_lru); 143 INIT_LIST_HEAD(&s->s_inode_lru); 144 spin_lock_init(&s->s_inode_lru_lock); 145 INIT_LIST_HEAD(&s->s_mounts); 146 init_rwsem(&s->s_umount); 147 mutex_init(&s->s_lock); 148 lockdep_set_class(&s->s_umount, &type->s_umount_key); 149 /* 150 * The locking rules for s_lock are up to the 151 * filesystem. For example ext3fs has different 152 * lock ordering than usbfs: 153 */ 154 lockdep_set_class(&s->s_lock, &type->s_lock_key); 155 /* 156 * sget() can have s_umount recursion. 157 * 158 * When it cannot find a suitable sb, it allocates a new 159 * one (this one), and tries again to find a suitable old 160 * one. 161 * 162 * In case that succeeds, it will acquire the s_umount 163 * lock of the old one. Since these are clearly distrinct 164 * locks, and this object isn't exposed yet, there's no 165 * risk of deadlocks. 166 * 167 * Annotate this by putting this lock in a different 168 * subclass. 169 */ 170 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); 171 s->s_count = 1; 172 atomic_set(&s->s_active, 1); 173 mutex_init(&s->s_vfs_rename_mutex); 174 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); 175 mutex_init(&s->s_dquot.dqio_mutex); 176 mutex_init(&s->s_dquot.dqonoff_mutex); 177 init_rwsem(&s->s_dquot.dqptr_sem); 178 init_waitqueue_head(&s->s_wait_unfrozen); 179 s->s_maxbytes = MAX_NON_LFS; 180 s->s_op = &default_op; 181 s->s_time_gran = 1000000000; 182 s->cleancache_poolid = -1; 183 184 s->s_shrink.seeks = DEFAULT_SEEKS; 185 s->s_shrink.shrink = prune_super; 186 s->s_shrink.batch = 1024; 187 } 188 out: 189 return s; 190 } 191 192 /** 193 * destroy_super - frees a superblock 194 * @s: superblock to free 195 * 196 * Frees a superblock. 197 */ 198 static inline void destroy_super(struct super_block *s) 199 { 200 #ifdef CONFIG_SMP 201 free_percpu(s->s_files); 202 #endif 203 security_sb_free(s); 204 WARN_ON(!list_empty(&s->s_mounts)); 205 kfree(s->s_subtype); 206 kfree(s->s_options); 207 kfree(s); 208 } 209 210 /* Superblock refcounting */ 211 212 /* 213 * Drop a superblock's refcount. The caller must hold sb_lock. 214 */ 215 static void __put_super(struct super_block *sb) 216 { 217 if (!--sb->s_count) { 218 list_del_init(&sb->s_list); 219 destroy_super(sb); 220 } 221 } 222 223 /** 224 * put_super - drop a temporary reference to superblock 225 * @sb: superblock in question 226 * 227 * Drops a temporary reference, frees superblock if there's no 228 * references left. 229 */ 230 static void put_super(struct super_block *sb) 231 { 232 spin_lock(&sb_lock); 233 __put_super(sb); 234 spin_unlock(&sb_lock); 235 } 236 237 238 /** 239 * deactivate_locked_super - drop an active reference to superblock 240 * @s: superblock to deactivate 241 * 242 * Drops an active reference to superblock, converting it into a temprory 243 * one if there is no other active references left. In that case we 244 * tell fs driver to shut it down and drop the temporary reference we 245 * had just acquired. 246 * 247 * Caller holds exclusive lock on superblock; that lock is released. 248 */ 249 void deactivate_locked_super(struct super_block *s) 250 { 251 struct file_system_type *fs = s->s_type; 252 if (atomic_dec_and_test(&s->s_active)) { 253 cleancache_flush_fs(s); 254 fs->kill_sb(s); 255 256 /* caches are now gone, we can safely kill the shrinker now */ 257 unregister_shrinker(&s->s_shrink); 258 259 /* 260 * We need to call rcu_barrier so all the delayed rcu free 261 * inodes are flushed before we release the fs module. 262 */ 263 rcu_barrier(); 264 put_filesystem(fs); 265 put_super(s); 266 } else { 267 up_write(&s->s_umount); 268 } 269 } 270 271 EXPORT_SYMBOL(deactivate_locked_super); 272 273 /** 274 * deactivate_super - drop an active reference to superblock 275 * @s: superblock to deactivate 276 * 277 * Variant of deactivate_locked_super(), except that superblock is *not* 278 * locked by caller. If we are going to drop the final active reference, 279 * lock will be acquired prior to that. 280 */ 281 void deactivate_super(struct super_block *s) 282 { 283 if (!atomic_add_unless(&s->s_active, -1, 1)) { 284 down_write(&s->s_umount); 285 deactivate_locked_super(s); 286 } 287 } 288 289 EXPORT_SYMBOL(deactivate_super); 290 291 /** 292 * grab_super - acquire an active reference 293 * @s: reference we are trying to make active 294 * 295 * Tries to acquire an active reference. grab_super() is used when we 296 * had just found a superblock in super_blocks or fs_type->fs_supers 297 * and want to turn it into a full-blown active reference. grab_super() 298 * is called with sb_lock held and drops it. Returns 1 in case of 299 * success, 0 if we had failed (superblock contents was already dead or 300 * dying when grab_super() had been called). 301 */ 302 static int grab_super(struct super_block *s) __releases(sb_lock) 303 { 304 if (atomic_inc_not_zero(&s->s_active)) { 305 spin_unlock(&sb_lock); 306 return 1; 307 } 308 /* it's going away */ 309 s->s_count++; 310 spin_unlock(&sb_lock); 311 /* wait for it to die */ 312 down_write(&s->s_umount); 313 up_write(&s->s_umount); 314 put_super(s); 315 return 0; 316 } 317 318 /* 319 * grab_super_passive - acquire a passive reference 320 * @s: reference we are trying to grab 321 * 322 * Tries to acquire a passive reference. This is used in places where we 323 * cannot take an active reference but we need to ensure that the 324 * superblock does not go away while we are working on it. It returns 325 * false if a reference was not gained, and returns true with the s_umount 326 * lock held in read mode if a reference is gained. On successful return, 327 * the caller must drop the s_umount lock and the passive reference when 328 * done. 329 */ 330 bool grab_super_passive(struct super_block *sb) 331 { 332 spin_lock(&sb_lock); 333 if (hlist_unhashed(&sb->s_instances)) { 334 spin_unlock(&sb_lock); 335 return false; 336 } 337 338 sb->s_count++; 339 spin_unlock(&sb_lock); 340 341 if (down_read_trylock(&sb->s_umount)) { 342 if (sb->s_root && (sb->s_flags & MS_BORN)) 343 return true; 344 up_read(&sb->s_umount); 345 } 346 347 put_super(sb); 348 return false; 349 } 350 351 /* 352 * Superblock locking. We really ought to get rid of these two. 353 */ 354 void lock_super(struct super_block * sb) 355 { 356 mutex_lock(&sb->s_lock); 357 } 358 359 void unlock_super(struct super_block * sb) 360 { 361 mutex_unlock(&sb->s_lock); 362 } 363 364 EXPORT_SYMBOL(lock_super); 365 EXPORT_SYMBOL(unlock_super); 366 367 /** 368 * generic_shutdown_super - common helper for ->kill_sb() 369 * @sb: superblock to kill 370 * 371 * generic_shutdown_super() does all fs-independent work on superblock 372 * shutdown. Typical ->kill_sb() should pick all fs-specific objects 373 * that need destruction out of superblock, call generic_shutdown_super() 374 * and release aforementioned objects. Note: dentries and inodes _are_ 375 * taken care of and do not need specific handling. 376 * 377 * Upon calling this function, the filesystem may no longer alter or 378 * rearrange the set of dentries belonging to this super_block, nor may it 379 * change the attachments of dentries to inodes. 380 */ 381 void generic_shutdown_super(struct super_block *sb) 382 { 383 const struct super_operations *sop = sb->s_op; 384 385 if (sb->s_root) { 386 shrink_dcache_for_umount(sb); 387 sync_filesystem(sb); 388 sb->s_flags &= ~MS_ACTIVE; 389 390 fsnotify_unmount_inodes(&sb->s_inodes); 391 392 evict_inodes(sb); 393 394 if (sop->put_super) 395 sop->put_super(sb); 396 397 if (!list_empty(&sb->s_inodes)) { 398 printk("VFS: Busy inodes after unmount of %s. " 399 "Self-destruct in 5 seconds. Have a nice day...\n", 400 sb->s_id); 401 } 402 } 403 spin_lock(&sb_lock); 404 /* should be initialized for __put_super_and_need_restart() */ 405 hlist_del_init(&sb->s_instances); 406 spin_unlock(&sb_lock); 407 up_write(&sb->s_umount); 408 } 409 410 EXPORT_SYMBOL(generic_shutdown_super); 411 412 /** 413 * sget - find or create a superblock 414 * @type: filesystem type superblock should belong to 415 * @test: comparison callback 416 * @set: setup callback 417 * @data: argument to each of them 418 */ 419 struct super_block *sget(struct file_system_type *type, 420 int (*test)(struct super_block *,void *), 421 int (*set)(struct super_block *,void *), 422 void *data) 423 { 424 struct super_block *s = NULL; 425 struct hlist_node *node; 426 struct super_block *old; 427 int err; 428 429 retry: 430 spin_lock(&sb_lock); 431 if (test) { 432 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) { 433 if (!test(old, data)) 434 continue; 435 if (!grab_super(old)) 436 goto retry; 437 if (s) { 438 up_write(&s->s_umount); 439 destroy_super(s); 440 s = NULL; 441 } 442 down_write(&old->s_umount); 443 if (unlikely(!(old->s_flags & MS_BORN))) { 444 deactivate_locked_super(old); 445 goto retry; 446 } 447 return old; 448 } 449 } 450 if (!s) { 451 spin_unlock(&sb_lock); 452 s = alloc_super(type); 453 if (!s) 454 return ERR_PTR(-ENOMEM); 455 goto retry; 456 } 457 458 err = set(s, data); 459 if (err) { 460 spin_unlock(&sb_lock); 461 up_write(&s->s_umount); 462 destroy_super(s); 463 return ERR_PTR(err); 464 } 465 s->s_type = type; 466 strlcpy(s->s_id, type->name, sizeof(s->s_id)); 467 list_add_tail(&s->s_list, &super_blocks); 468 hlist_add_head(&s->s_instances, &type->fs_supers); 469 spin_unlock(&sb_lock); 470 get_filesystem(type); 471 register_shrinker(&s->s_shrink); 472 return s; 473 } 474 475 EXPORT_SYMBOL(sget); 476 477 void drop_super(struct super_block *sb) 478 { 479 up_read(&sb->s_umount); 480 put_super(sb); 481 } 482 483 EXPORT_SYMBOL(drop_super); 484 485 /** 486 * sync_supers - helper for periodic superblock writeback 487 * 488 * Call the write_super method if present on all dirty superblocks in 489 * the system. This is for the periodic writeback used by most older 490 * filesystems. For data integrity superblock writeback use 491 * sync_filesystems() instead. 492 * 493 * Note: check the dirty flag before waiting, so we don't 494 * hold up the sync while mounting a device. (The newly 495 * mounted device won't need syncing.) 496 */ 497 void sync_supers(void) 498 { 499 struct super_block *sb, *p = NULL; 500 501 spin_lock(&sb_lock); 502 list_for_each_entry(sb, &super_blocks, s_list) { 503 if (hlist_unhashed(&sb->s_instances)) 504 continue; 505 if (sb->s_op->write_super && sb->s_dirt) { 506 sb->s_count++; 507 spin_unlock(&sb_lock); 508 509 down_read(&sb->s_umount); 510 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN)) 511 sb->s_op->write_super(sb); 512 up_read(&sb->s_umount); 513 514 spin_lock(&sb_lock); 515 if (p) 516 __put_super(p); 517 p = sb; 518 } 519 } 520 if (p) 521 __put_super(p); 522 spin_unlock(&sb_lock); 523 } 524 525 /** 526 * iterate_supers - call function for all active superblocks 527 * @f: function to call 528 * @arg: argument to pass to it 529 * 530 * Scans the superblock list and calls given function, passing it 531 * locked superblock and given argument. 532 */ 533 void iterate_supers(void (*f)(struct super_block *, void *), void *arg) 534 { 535 struct super_block *sb, *p = NULL; 536 537 spin_lock(&sb_lock); 538 list_for_each_entry(sb, &super_blocks, s_list) { 539 if (hlist_unhashed(&sb->s_instances)) 540 continue; 541 sb->s_count++; 542 spin_unlock(&sb_lock); 543 544 down_read(&sb->s_umount); 545 if (sb->s_root && (sb->s_flags & MS_BORN)) 546 f(sb, arg); 547 up_read(&sb->s_umount); 548 549 spin_lock(&sb_lock); 550 if (p) 551 __put_super(p); 552 p = sb; 553 } 554 if (p) 555 __put_super(p); 556 spin_unlock(&sb_lock); 557 } 558 559 /** 560 * iterate_supers_type - call function for superblocks of given type 561 * @type: fs type 562 * @f: function to call 563 * @arg: argument to pass to it 564 * 565 * Scans the superblock list and calls given function, passing it 566 * locked superblock and given argument. 567 */ 568 void iterate_supers_type(struct file_system_type *type, 569 void (*f)(struct super_block *, void *), void *arg) 570 { 571 struct super_block *sb, *p = NULL; 572 struct hlist_node *node; 573 574 spin_lock(&sb_lock); 575 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) { 576 sb->s_count++; 577 spin_unlock(&sb_lock); 578 579 down_read(&sb->s_umount); 580 if (sb->s_root && (sb->s_flags & MS_BORN)) 581 f(sb, arg); 582 up_read(&sb->s_umount); 583 584 spin_lock(&sb_lock); 585 if (p) 586 __put_super(p); 587 p = sb; 588 } 589 if (p) 590 __put_super(p); 591 spin_unlock(&sb_lock); 592 } 593 594 EXPORT_SYMBOL(iterate_supers_type); 595 596 /** 597 * get_super - get the superblock of a device 598 * @bdev: device to get the superblock for 599 * 600 * Scans the superblock list and finds the superblock of the file system 601 * mounted on the device given. %NULL is returned if no match is found. 602 */ 603 604 struct super_block *get_super(struct block_device *bdev) 605 { 606 struct super_block *sb; 607 608 if (!bdev) 609 return NULL; 610 611 spin_lock(&sb_lock); 612 rescan: 613 list_for_each_entry(sb, &super_blocks, s_list) { 614 if (hlist_unhashed(&sb->s_instances)) 615 continue; 616 if (sb->s_bdev == bdev) { 617 sb->s_count++; 618 spin_unlock(&sb_lock); 619 down_read(&sb->s_umount); 620 /* still alive? */ 621 if (sb->s_root && (sb->s_flags & MS_BORN)) 622 return sb; 623 up_read(&sb->s_umount); 624 /* nope, got unmounted */ 625 spin_lock(&sb_lock); 626 __put_super(sb); 627 goto rescan; 628 } 629 } 630 spin_unlock(&sb_lock); 631 return NULL; 632 } 633 634 EXPORT_SYMBOL(get_super); 635 636 /** 637 * get_super_thawed - get thawed superblock of a device 638 * @bdev: device to get the superblock for 639 * 640 * Scans the superblock list and finds the superblock of the file system 641 * mounted on the device. The superblock is returned once it is thawed 642 * (or immediately if it was not frozen). %NULL is returned if no match 643 * is found. 644 */ 645 struct super_block *get_super_thawed(struct block_device *bdev) 646 { 647 while (1) { 648 struct super_block *s = get_super(bdev); 649 if (!s || s->s_frozen == SB_UNFROZEN) 650 return s; 651 up_read(&s->s_umount); 652 vfs_check_frozen(s, SB_FREEZE_WRITE); 653 put_super(s); 654 } 655 } 656 EXPORT_SYMBOL(get_super_thawed); 657 658 /** 659 * get_active_super - get an active reference to the superblock of a device 660 * @bdev: device to get the superblock for 661 * 662 * Scans the superblock list and finds the superblock of the file system 663 * mounted on the device given. Returns the superblock with an active 664 * reference or %NULL if none was found. 665 */ 666 struct super_block *get_active_super(struct block_device *bdev) 667 { 668 struct super_block *sb; 669 670 if (!bdev) 671 return NULL; 672 673 restart: 674 spin_lock(&sb_lock); 675 list_for_each_entry(sb, &super_blocks, s_list) { 676 if (hlist_unhashed(&sb->s_instances)) 677 continue; 678 if (sb->s_bdev == bdev) { 679 if (grab_super(sb)) /* drops sb_lock */ 680 return sb; 681 else 682 goto restart; 683 } 684 } 685 spin_unlock(&sb_lock); 686 return NULL; 687 } 688 689 struct super_block *user_get_super(dev_t dev) 690 { 691 struct super_block *sb; 692 693 spin_lock(&sb_lock); 694 rescan: 695 list_for_each_entry(sb, &super_blocks, s_list) { 696 if (hlist_unhashed(&sb->s_instances)) 697 continue; 698 if (sb->s_dev == dev) { 699 sb->s_count++; 700 spin_unlock(&sb_lock); 701 down_read(&sb->s_umount); 702 /* still alive? */ 703 if (sb->s_root && (sb->s_flags & MS_BORN)) 704 return sb; 705 up_read(&sb->s_umount); 706 /* nope, got unmounted */ 707 spin_lock(&sb_lock); 708 __put_super(sb); 709 goto rescan; 710 } 711 } 712 spin_unlock(&sb_lock); 713 return NULL; 714 } 715 716 /** 717 * do_remount_sb - asks filesystem to change mount options. 718 * @sb: superblock in question 719 * @flags: numeric part of options 720 * @data: the rest of options 721 * @force: whether or not to force the change 722 * 723 * Alters the mount options of a mounted file system. 724 */ 725 int do_remount_sb(struct super_block *sb, int flags, void *data, int force) 726 { 727 int retval; 728 int remount_ro; 729 730 if (sb->s_frozen != SB_UNFROZEN) 731 return -EBUSY; 732 733 #ifdef CONFIG_BLOCK 734 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev)) 735 return -EACCES; 736 #endif 737 738 if (flags & MS_RDONLY) 739 acct_auto_close(sb); 740 shrink_dcache_sb(sb); 741 sync_filesystem(sb); 742 743 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY); 744 745 /* If we are remounting RDONLY and current sb is read/write, 746 make sure there are no rw files opened */ 747 if (remount_ro) { 748 if (force) { 749 mark_files_ro(sb); 750 } else { 751 retval = sb_prepare_remount_readonly(sb); 752 if (retval) 753 return retval; 754 } 755 } 756 757 if (sb->s_op->remount_fs) { 758 retval = sb->s_op->remount_fs(sb, &flags, data); 759 if (retval) { 760 if (!force) 761 goto cancel_readonly; 762 /* If forced remount, go ahead despite any errors */ 763 WARN(1, "forced remount of a %s fs returned %i\n", 764 sb->s_type->name, retval); 765 } 766 } 767 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK); 768 /* Needs to be ordered wrt mnt_is_readonly() */ 769 smp_wmb(); 770 sb->s_readonly_remount = 0; 771 772 /* 773 * Some filesystems modify their metadata via some other path than the 774 * bdev buffer cache (eg. use a private mapping, or directories in 775 * pagecache, etc). Also file data modifications go via their own 776 * mappings. So If we try to mount readonly then copy the filesystem 777 * from bdev, we could get stale data, so invalidate it to give a best 778 * effort at coherency. 779 */ 780 if (remount_ro && sb->s_bdev) 781 invalidate_bdev(sb->s_bdev); 782 return 0; 783 784 cancel_readonly: 785 sb->s_readonly_remount = 0; 786 return retval; 787 } 788 789 static void do_emergency_remount(struct work_struct *work) 790 { 791 struct super_block *sb, *p = NULL; 792 793 spin_lock(&sb_lock); 794 list_for_each_entry(sb, &super_blocks, s_list) { 795 if (hlist_unhashed(&sb->s_instances)) 796 continue; 797 sb->s_count++; 798 spin_unlock(&sb_lock); 799 down_write(&sb->s_umount); 800 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) && 801 !(sb->s_flags & MS_RDONLY)) { 802 /* 803 * What lock protects sb->s_flags?? 804 */ 805 do_remount_sb(sb, MS_RDONLY, NULL, 1); 806 } 807 up_write(&sb->s_umount); 808 spin_lock(&sb_lock); 809 if (p) 810 __put_super(p); 811 p = sb; 812 } 813 if (p) 814 __put_super(p); 815 spin_unlock(&sb_lock); 816 kfree(work); 817 printk("Emergency Remount complete\n"); 818 } 819 820 void emergency_remount(void) 821 { 822 struct work_struct *work; 823 824 work = kmalloc(sizeof(*work), GFP_ATOMIC); 825 if (work) { 826 INIT_WORK(work, do_emergency_remount); 827 schedule_work(work); 828 } 829 } 830 831 /* 832 * Unnamed block devices are dummy devices used by virtual 833 * filesystems which don't use real block-devices. -- jrs 834 */ 835 836 static DEFINE_IDA(unnamed_dev_ida); 837 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */ 838 static int unnamed_dev_start = 0; /* don't bother trying below it */ 839 840 int get_anon_bdev(dev_t *p) 841 { 842 int dev; 843 int error; 844 845 retry: 846 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0) 847 return -ENOMEM; 848 spin_lock(&unnamed_dev_lock); 849 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev); 850 if (!error) 851 unnamed_dev_start = dev + 1; 852 spin_unlock(&unnamed_dev_lock); 853 if (error == -EAGAIN) 854 /* We raced and lost with another CPU. */ 855 goto retry; 856 else if (error) 857 return -EAGAIN; 858 859 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) { 860 spin_lock(&unnamed_dev_lock); 861 ida_remove(&unnamed_dev_ida, dev); 862 if (unnamed_dev_start > dev) 863 unnamed_dev_start = dev; 864 spin_unlock(&unnamed_dev_lock); 865 return -EMFILE; 866 } 867 *p = MKDEV(0, dev & MINORMASK); 868 return 0; 869 } 870 EXPORT_SYMBOL(get_anon_bdev); 871 872 void free_anon_bdev(dev_t dev) 873 { 874 int slot = MINOR(dev); 875 spin_lock(&unnamed_dev_lock); 876 ida_remove(&unnamed_dev_ida, slot); 877 if (slot < unnamed_dev_start) 878 unnamed_dev_start = slot; 879 spin_unlock(&unnamed_dev_lock); 880 } 881 EXPORT_SYMBOL(free_anon_bdev); 882 883 int set_anon_super(struct super_block *s, void *data) 884 { 885 int error = get_anon_bdev(&s->s_dev); 886 if (!error) 887 s->s_bdi = &noop_backing_dev_info; 888 return error; 889 } 890 891 EXPORT_SYMBOL(set_anon_super); 892 893 void kill_anon_super(struct super_block *sb) 894 { 895 dev_t dev = sb->s_dev; 896 generic_shutdown_super(sb); 897 free_anon_bdev(dev); 898 } 899 900 EXPORT_SYMBOL(kill_anon_super); 901 902 void kill_litter_super(struct super_block *sb) 903 { 904 if (sb->s_root) 905 d_genocide(sb->s_root); 906 kill_anon_super(sb); 907 } 908 909 EXPORT_SYMBOL(kill_litter_super); 910 911 static int ns_test_super(struct super_block *sb, void *data) 912 { 913 return sb->s_fs_info == data; 914 } 915 916 static int ns_set_super(struct super_block *sb, void *data) 917 { 918 sb->s_fs_info = data; 919 return set_anon_super(sb, NULL); 920 } 921 922 struct dentry *mount_ns(struct file_system_type *fs_type, int flags, 923 void *data, int (*fill_super)(struct super_block *, void *, int)) 924 { 925 struct super_block *sb; 926 927 sb = sget(fs_type, ns_test_super, ns_set_super, data); 928 if (IS_ERR(sb)) 929 return ERR_CAST(sb); 930 931 if (!sb->s_root) { 932 int err; 933 sb->s_flags = flags; 934 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0); 935 if (err) { 936 deactivate_locked_super(sb); 937 return ERR_PTR(err); 938 } 939 940 sb->s_flags |= MS_ACTIVE; 941 } 942 943 return dget(sb->s_root); 944 } 945 946 EXPORT_SYMBOL(mount_ns); 947 948 #ifdef CONFIG_BLOCK 949 static int set_bdev_super(struct super_block *s, void *data) 950 { 951 s->s_bdev = data; 952 s->s_dev = s->s_bdev->bd_dev; 953 954 /* 955 * We set the bdi here to the queue backing, file systems can 956 * overwrite this in ->fill_super() 957 */ 958 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info; 959 return 0; 960 } 961 962 static int test_bdev_super(struct super_block *s, void *data) 963 { 964 return (void *)s->s_bdev == data; 965 } 966 967 struct dentry *mount_bdev(struct file_system_type *fs_type, 968 int flags, const char *dev_name, void *data, 969 int (*fill_super)(struct super_block *, void *, int)) 970 { 971 struct block_device *bdev; 972 struct super_block *s; 973 fmode_t mode = FMODE_READ | FMODE_EXCL; 974 int error = 0; 975 976 if (!(flags & MS_RDONLY)) 977 mode |= FMODE_WRITE; 978 979 bdev = blkdev_get_by_path(dev_name, mode, fs_type); 980 if (IS_ERR(bdev)) 981 return ERR_CAST(bdev); 982 983 /* 984 * once the super is inserted into the list by sget, s_umount 985 * will protect the lockfs code from trying to start a snapshot 986 * while we are mounting 987 */ 988 mutex_lock(&bdev->bd_fsfreeze_mutex); 989 if (bdev->bd_fsfreeze_count > 0) { 990 mutex_unlock(&bdev->bd_fsfreeze_mutex); 991 error = -EBUSY; 992 goto error_bdev; 993 } 994 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev); 995 mutex_unlock(&bdev->bd_fsfreeze_mutex); 996 if (IS_ERR(s)) 997 goto error_s; 998 999 if (s->s_root) { 1000 if ((flags ^ s->s_flags) & MS_RDONLY) { 1001 deactivate_locked_super(s); 1002 error = -EBUSY; 1003 goto error_bdev; 1004 } 1005 1006 /* 1007 * s_umount nests inside bd_mutex during 1008 * __invalidate_device(). blkdev_put() acquires 1009 * bd_mutex and can't be called under s_umount. Drop 1010 * s_umount temporarily. This is safe as we're 1011 * holding an active reference. 1012 */ 1013 up_write(&s->s_umount); 1014 blkdev_put(bdev, mode); 1015 down_write(&s->s_umount); 1016 } else { 1017 char b[BDEVNAME_SIZE]; 1018 1019 s->s_flags = flags | MS_NOSEC; 1020 s->s_mode = mode; 1021 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 1022 sb_set_blocksize(s, block_size(bdev)); 1023 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1024 if (error) { 1025 deactivate_locked_super(s); 1026 goto error; 1027 } 1028 1029 s->s_flags |= MS_ACTIVE; 1030 bdev->bd_super = s; 1031 } 1032 1033 return dget(s->s_root); 1034 1035 error_s: 1036 error = PTR_ERR(s); 1037 error_bdev: 1038 blkdev_put(bdev, mode); 1039 error: 1040 return ERR_PTR(error); 1041 } 1042 EXPORT_SYMBOL(mount_bdev); 1043 1044 void kill_block_super(struct super_block *sb) 1045 { 1046 struct block_device *bdev = sb->s_bdev; 1047 fmode_t mode = sb->s_mode; 1048 1049 bdev->bd_super = NULL; 1050 generic_shutdown_super(sb); 1051 sync_blockdev(bdev); 1052 WARN_ON_ONCE(!(mode & FMODE_EXCL)); 1053 blkdev_put(bdev, mode | FMODE_EXCL); 1054 } 1055 1056 EXPORT_SYMBOL(kill_block_super); 1057 #endif 1058 1059 struct dentry *mount_nodev(struct file_system_type *fs_type, 1060 int flags, void *data, 1061 int (*fill_super)(struct super_block *, void *, int)) 1062 { 1063 int error; 1064 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 1065 1066 if (IS_ERR(s)) 1067 return ERR_CAST(s); 1068 1069 s->s_flags = flags; 1070 1071 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1072 if (error) { 1073 deactivate_locked_super(s); 1074 return ERR_PTR(error); 1075 } 1076 s->s_flags |= MS_ACTIVE; 1077 return dget(s->s_root); 1078 } 1079 EXPORT_SYMBOL(mount_nodev); 1080 1081 static int compare_single(struct super_block *s, void *p) 1082 { 1083 return 1; 1084 } 1085 1086 struct dentry *mount_single(struct file_system_type *fs_type, 1087 int flags, void *data, 1088 int (*fill_super)(struct super_block *, void *, int)) 1089 { 1090 struct super_block *s; 1091 int error; 1092 1093 s = sget(fs_type, compare_single, set_anon_super, NULL); 1094 if (IS_ERR(s)) 1095 return ERR_CAST(s); 1096 if (!s->s_root) { 1097 s->s_flags = flags; 1098 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1099 if (error) { 1100 deactivate_locked_super(s); 1101 return ERR_PTR(error); 1102 } 1103 s->s_flags |= MS_ACTIVE; 1104 } else { 1105 do_remount_sb(s, flags, data, 0); 1106 } 1107 return dget(s->s_root); 1108 } 1109 EXPORT_SYMBOL(mount_single); 1110 1111 struct dentry * 1112 mount_fs(struct file_system_type *type, int flags, const char *name, void *data) 1113 { 1114 struct dentry *root; 1115 struct super_block *sb; 1116 char *secdata = NULL; 1117 int error = -ENOMEM; 1118 1119 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) { 1120 secdata = alloc_secdata(); 1121 if (!secdata) 1122 goto out; 1123 1124 error = security_sb_copy_data(data, secdata); 1125 if (error) 1126 goto out_free_secdata; 1127 } 1128 1129 root = type->mount(type, flags, name, data); 1130 if (IS_ERR(root)) { 1131 error = PTR_ERR(root); 1132 goto out_free_secdata; 1133 } 1134 sb = root->d_sb; 1135 BUG_ON(!sb); 1136 WARN_ON(!sb->s_bdi); 1137 WARN_ON(sb->s_bdi == &default_backing_dev_info); 1138 sb->s_flags |= MS_BORN; 1139 1140 error = security_sb_kern_mount(sb, flags, secdata); 1141 if (error) 1142 goto out_sb; 1143 1144 /* 1145 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE 1146 * but s_maxbytes was an unsigned long long for many releases. Throw 1147 * this warning for a little while to try and catch filesystems that 1148 * violate this rule. 1149 */ 1150 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " 1151 "negative value (%lld)\n", type->name, sb->s_maxbytes); 1152 1153 up_write(&sb->s_umount); 1154 free_secdata(secdata); 1155 return root; 1156 out_sb: 1157 dput(root); 1158 deactivate_locked_super(sb); 1159 out_free_secdata: 1160 free_secdata(secdata); 1161 out: 1162 return ERR_PTR(error); 1163 } 1164 1165 /** 1166 * freeze_super - lock the filesystem and force it into a consistent state 1167 * @sb: the super to lock 1168 * 1169 * Syncs the super to make sure the filesystem is consistent and calls the fs's 1170 * freeze_fs. Subsequent calls to this without first thawing the fs will return 1171 * -EBUSY. 1172 */ 1173 int freeze_super(struct super_block *sb) 1174 { 1175 int ret; 1176 1177 atomic_inc(&sb->s_active); 1178 down_write(&sb->s_umount); 1179 if (sb->s_frozen) { 1180 deactivate_locked_super(sb); 1181 return -EBUSY; 1182 } 1183 1184 if (!(sb->s_flags & MS_BORN)) { 1185 up_write(&sb->s_umount); 1186 return 0; /* sic - it's "nothing to do" */ 1187 } 1188 1189 if (sb->s_flags & MS_RDONLY) { 1190 sb->s_frozen = SB_FREEZE_TRANS; 1191 smp_wmb(); 1192 up_write(&sb->s_umount); 1193 return 0; 1194 } 1195 1196 sb->s_frozen = SB_FREEZE_WRITE; 1197 smp_wmb(); 1198 1199 sync_filesystem(sb); 1200 1201 sb->s_frozen = SB_FREEZE_TRANS; 1202 smp_wmb(); 1203 1204 sync_blockdev(sb->s_bdev); 1205 if (sb->s_op->freeze_fs) { 1206 ret = sb->s_op->freeze_fs(sb); 1207 if (ret) { 1208 printk(KERN_ERR 1209 "VFS:Filesystem freeze failed\n"); 1210 sb->s_frozen = SB_UNFROZEN; 1211 smp_wmb(); 1212 wake_up(&sb->s_wait_unfrozen); 1213 deactivate_locked_super(sb); 1214 return ret; 1215 } 1216 } 1217 up_write(&sb->s_umount); 1218 return 0; 1219 } 1220 EXPORT_SYMBOL(freeze_super); 1221 1222 /** 1223 * thaw_super -- unlock filesystem 1224 * @sb: the super to thaw 1225 * 1226 * Unlocks the filesystem and marks it writeable again after freeze_super(). 1227 */ 1228 int thaw_super(struct super_block *sb) 1229 { 1230 int error; 1231 1232 down_write(&sb->s_umount); 1233 if (sb->s_frozen == SB_UNFROZEN) { 1234 up_write(&sb->s_umount); 1235 return -EINVAL; 1236 } 1237 1238 if (sb->s_flags & MS_RDONLY) 1239 goto out; 1240 1241 if (sb->s_op->unfreeze_fs) { 1242 error = sb->s_op->unfreeze_fs(sb); 1243 if (error) { 1244 printk(KERN_ERR 1245 "VFS:Filesystem thaw failed\n"); 1246 sb->s_frozen = SB_FREEZE_TRANS; 1247 up_write(&sb->s_umount); 1248 return error; 1249 } 1250 } 1251 1252 out: 1253 sb->s_frozen = SB_UNFROZEN; 1254 smp_wmb(); 1255 wake_up(&sb->s_wait_unfrozen); 1256 deactivate_locked_super(sb); 1257 1258 return 0; 1259 } 1260 EXPORT_SYMBOL(thaw_super); 1261