xref: /linux/fs/super.c (revision 56bbd86257f899ced7ef9c58210dda4edbd40871)
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h>		/* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include <linux/user_namespace.h>
37 #include "internal.h"
38 
39 
40 static LIST_HEAD(super_blocks);
41 static DEFINE_SPINLOCK(sb_lock);
42 
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 	"sb_writers",
45 	"sb_pagefaults",
46 	"sb_internal",
47 };
48 
49 /*
50  * One thing we have to be careful of with a per-sb shrinker is that we don't
51  * drop the last active reference to the superblock from within the shrinker.
52  * If that happens we could trigger unregistering the shrinker from within the
53  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54  * take a passive reference to the superblock to avoid this from occurring.
55  */
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 				      struct shrink_control *sc)
58 {
59 	struct super_block *sb;
60 	long	fs_objects = 0;
61 	long	total_objects;
62 	long	freed = 0;
63 	long	dentries;
64 	long	inodes;
65 
66 	sb = container_of(shrink, struct super_block, s_shrink);
67 
68 	/*
69 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
70 	 * to recurse into the FS that called us in clear_inode() and friends..
71 	 */
72 	if (!(sc->gfp_mask & __GFP_FS))
73 		return SHRINK_STOP;
74 
75 	if (!trylock_super(sb))
76 		return SHRINK_STOP;
77 
78 	if (sb->s_op->nr_cached_objects)
79 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
80 
81 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
82 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
83 	total_objects = dentries + inodes + fs_objects + 1;
84 	if (!total_objects)
85 		total_objects = 1;
86 
87 	/* proportion the scan between the caches */
88 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
89 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
90 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
91 
92 	/*
93 	 * prune the dcache first as the icache is pinned by it, then
94 	 * prune the icache, followed by the filesystem specific caches
95 	 *
96 	 * Ensure that we always scan at least one object - memcg kmem
97 	 * accounting uses this to fully empty the caches.
98 	 */
99 	sc->nr_to_scan = dentries + 1;
100 	freed = prune_dcache_sb(sb, sc);
101 	sc->nr_to_scan = inodes + 1;
102 	freed += prune_icache_sb(sb, sc);
103 
104 	if (fs_objects) {
105 		sc->nr_to_scan = fs_objects + 1;
106 		freed += sb->s_op->free_cached_objects(sb, sc);
107 	}
108 
109 	up_read(&sb->s_umount);
110 	return freed;
111 }
112 
113 static unsigned long super_cache_count(struct shrinker *shrink,
114 				       struct shrink_control *sc)
115 {
116 	struct super_block *sb;
117 	long	total_objects = 0;
118 
119 	sb = container_of(shrink, struct super_block, s_shrink);
120 
121 	/*
122 	 * Don't call trylock_super as it is a potential
123 	 * scalability bottleneck. The counts could get updated
124 	 * between super_cache_count and super_cache_scan anyway.
125 	 * Call to super_cache_count with shrinker_rwsem held
126 	 * ensures the safety of call to list_lru_shrink_count() and
127 	 * s_op->nr_cached_objects().
128 	 */
129 	if (sb->s_op && sb->s_op->nr_cached_objects)
130 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
131 
132 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
133 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
134 
135 	total_objects = vfs_pressure_ratio(total_objects);
136 	return total_objects;
137 }
138 
139 static void destroy_super_work(struct work_struct *work)
140 {
141 	struct super_block *s = container_of(work, struct super_block,
142 							destroy_work);
143 	int i;
144 
145 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
146 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
147 	kfree(s);
148 }
149 
150 static void destroy_super_rcu(struct rcu_head *head)
151 {
152 	struct super_block *s = container_of(head, struct super_block, rcu);
153 	INIT_WORK(&s->destroy_work, destroy_super_work);
154 	schedule_work(&s->destroy_work);
155 }
156 
157 /**
158  *	destroy_super	-	frees a superblock
159  *	@s: superblock to free
160  *
161  *	Frees a superblock.
162  */
163 static void destroy_super(struct super_block *s)
164 {
165 	list_lru_destroy(&s->s_dentry_lru);
166 	list_lru_destroy(&s->s_inode_lru);
167 	security_sb_free(s);
168 	WARN_ON(!list_empty(&s->s_mounts));
169 	put_user_ns(s->s_user_ns);
170 	kfree(s->s_subtype);
171 	kfree(s->s_options);
172 	call_rcu(&s->rcu, destroy_super_rcu);
173 }
174 
175 /**
176  *	alloc_super	-	create new superblock
177  *	@type:	filesystem type superblock should belong to
178  *	@flags: the mount flags
179  *	@user_ns: User namespace for the super_block
180  *
181  *	Allocates and initializes a new &struct super_block.  alloc_super()
182  *	returns a pointer new superblock or %NULL if allocation had failed.
183  */
184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 				       struct user_namespace *user_ns)
186 {
187 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
188 	static const struct super_operations default_op;
189 	int i;
190 
191 	if (!s)
192 		return NULL;
193 
194 	INIT_LIST_HEAD(&s->s_mounts);
195 	s->s_user_ns = get_user_ns(user_ns);
196 
197 	if (security_sb_alloc(s))
198 		goto fail;
199 
200 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
201 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
202 					sb_writers_name[i],
203 					&type->s_writers_key[i]))
204 			goto fail;
205 	}
206 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
207 	s->s_bdi = &noop_backing_dev_info;
208 	s->s_flags = flags;
209 	if (s->s_user_ns != &init_user_ns)
210 		s->s_iflags |= SB_I_NODEV;
211 	INIT_HLIST_NODE(&s->s_instances);
212 	INIT_HLIST_BL_HEAD(&s->s_anon);
213 	mutex_init(&s->s_sync_lock);
214 	INIT_LIST_HEAD(&s->s_inodes);
215 	spin_lock_init(&s->s_inode_list_lock);
216 	INIT_LIST_HEAD(&s->s_inodes_wb);
217 	spin_lock_init(&s->s_inode_wblist_lock);
218 
219 	if (list_lru_init_memcg(&s->s_dentry_lru))
220 		goto fail;
221 	if (list_lru_init_memcg(&s->s_inode_lru))
222 		goto fail;
223 
224 	init_rwsem(&s->s_umount);
225 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
226 	/*
227 	 * sget() can have s_umount recursion.
228 	 *
229 	 * When it cannot find a suitable sb, it allocates a new
230 	 * one (this one), and tries again to find a suitable old
231 	 * one.
232 	 *
233 	 * In case that succeeds, it will acquire the s_umount
234 	 * lock of the old one. Since these are clearly distrinct
235 	 * locks, and this object isn't exposed yet, there's no
236 	 * risk of deadlocks.
237 	 *
238 	 * Annotate this by putting this lock in a different
239 	 * subclass.
240 	 */
241 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
242 	s->s_count = 1;
243 	atomic_set(&s->s_active, 1);
244 	mutex_init(&s->s_vfs_rename_mutex);
245 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
246 	mutex_init(&s->s_dquot.dqio_mutex);
247 	s->s_maxbytes = MAX_NON_LFS;
248 	s->s_op = &default_op;
249 	s->s_time_gran = 1000000000;
250 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
251 
252 	s->s_shrink.seeks = DEFAULT_SEEKS;
253 	s->s_shrink.scan_objects = super_cache_scan;
254 	s->s_shrink.count_objects = super_cache_count;
255 	s->s_shrink.batch = 1024;
256 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
257 	return s;
258 
259 fail:
260 	destroy_super(s);
261 	return NULL;
262 }
263 
264 /* Superblock refcounting  */
265 
266 /*
267  * Drop a superblock's refcount.  The caller must hold sb_lock.
268  */
269 static void __put_super(struct super_block *sb)
270 {
271 	if (!--sb->s_count) {
272 		list_del_init(&sb->s_list);
273 		destroy_super(sb);
274 	}
275 }
276 
277 /**
278  *	put_super	-	drop a temporary reference to superblock
279  *	@sb: superblock in question
280  *
281  *	Drops a temporary reference, frees superblock if there's no
282  *	references left.
283  */
284 static void put_super(struct super_block *sb)
285 {
286 	spin_lock(&sb_lock);
287 	__put_super(sb);
288 	spin_unlock(&sb_lock);
289 }
290 
291 
292 /**
293  *	deactivate_locked_super	-	drop an active reference to superblock
294  *	@s: superblock to deactivate
295  *
296  *	Drops an active reference to superblock, converting it into a temporary
297  *	one if there is no other active references left.  In that case we
298  *	tell fs driver to shut it down and drop the temporary reference we
299  *	had just acquired.
300  *
301  *	Caller holds exclusive lock on superblock; that lock is released.
302  */
303 void deactivate_locked_super(struct super_block *s)
304 {
305 	struct file_system_type *fs = s->s_type;
306 	if (atomic_dec_and_test(&s->s_active)) {
307 		cleancache_invalidate_fs(s);
308 		unregister_shrinker(&s->s_shrink);
309 		fs->kill_sb(s);
310 
311 		/*
312 		 * Since list_lru_destroy() may sleep, we cannot call it from
313 		 * put_super(), where we hold the sb_lock. Therefore we destroy
314 		 * the lru lists right now.
315 		 */
316 		list_lru_destroy(&s->s_dentry_lru);
317 		list_lru_destroy(&s->s_inode_lru);
318 
319 		put_filesystem(fs);
320 		put_super(s);
321 	} else {
322 		up_write(&s->s_umount);
323 	}
324 }
325 
326 EXPORT_SYMBOL(deactivate_locked_super);
327 
328 /**
329  *	deactivate_super	-	drop an active reference to superblock
330  *	@s: superblock to deactivate
331  *
332  *	Variant of deactivate_locked_super(), except that superblock is *not*
333  *	locked by caller.  If we are going to drop the final active reference,
334  *	lock will be acquired prior to that.
335  */
336 void deactivate_super(struct super_block *s)
337 {
338         if (!atomic_add_unless(&s->s_active, -1, 1)) {
339 		down_write(&s->s_umount);
340 		deactivate_locked_super(s);
341 	}
342 }
343 
344 EXPORT_SYMBOL(deactivate_super);
345 
346 /**
347  *	grab_super - acquire an active reference
348  *	@s: reference we are trying to make active
349  *
350  *	Tries to acquire an active reference.  grab_super() is used when we
351  * 	had just found a superblock in super_blocks or fs_type->fs_supers
352  *	and want to turn it into a full-blown active reference.  grab_super()
353  *	is called with sb_lock held and drops it.  Returns 1 in case of
354  *	success, 0 if we had failed (superblock contents was already dead or
355  *	dying when grab_super() had been called).  Note that this is only
356  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
357  *	of their type), so increment of ->s_count is OK here.
358  */
359 static int grab_super(struct super_block *s) __releases(sb_lock)
360 {
361 	s->s_count++;
362 	spin_unlock(&sb_lock);
363 	down_write(&s->s_umount);
364 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
365 		put_super(s);
366 		return 1;
367 	}
368 	up_write(&s->s_umount);
369 	put_super(s);
370 	return 0;
371 }
372 
373 /*
374  *	trylock_super - try to grab ->s_umount shared
375  *	@sb: reference we are trying to grab
376  *
377  *	Try to prevent fs shutdown.  This is used in places where we
378  *	cannot take an active reference but we need to ensure that the
379  *	filesystem is not shut down while we are working on it. It returns
380  *	false if we cannot acquire s_umount or if we lose the race and
381  *	filesystem already got into shutdown, and returns true with the s_umount
382  *	lock held in read mode in case of success. On successful return,
383  *	the caller must drop the s_umount lock when done.
384  *
385  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
386  *	The reason why it's safe is that we are OK with doing trylock instead
387  *	of down_read().  There's a couple of places that are OK with that, but
388  *	it's very much not a general-purpose interface.
389  */
390 bool trylock_super(struct super_block *sb)
391 {
392 	if (down_read_trylock(&sb->s_umount)) {
393 		if (!hlist_unhashed(&sb->s_instances) &&
394 		    sb->s_root && (sb->s_flags & MS_BORN))
395 			return true;
396 		up_read(&sb->s_umount);
397 	}
398 
399 	return false;
400 }
401 
402 /**
403  *	generic_shutdown_super	-	common helper for ->kill_sb()
404  *	@sb: superblock to kill
405  *
406  *	generic_shutdown_super() does all fs-independent work on superblock
407  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
408  *	that need destruction out of superblock, call generic_shutdown_super()
409  *	and release aforementioned objects.  Note: dentries and inodes _are_
410  *	taken care of and do not need specific handling.
411  *
412  *	Upon calling this function, the filesystem may no longer alter or
413  *	rearrange the set of dentries belonging to this super_block, nor may it
414  *	change the attachments of dentries to inodes.
415  */
416 void generic_shutdown_super(struct super_block *sb)
417 {
418 	const struct super_operations *sop = sb->s_op;
419 
420 	if (sb->s_root) {
421 		shrink_dcache_for_umount(sb);
422 		sync_filesystem(sb);
423 		sb->s_flags &= ~MS_ACTIVE;
424 
425 		fsnotify_unmount_inodes(sb);
426 		cgroup_writeback_umount();
427 
428 		evict_inodes(sb);
429 
430 		if (sb->s_dio_done_wq) {
431 			destroy_workqueue(sb->s_dio_done_wq);
432 			sb->s_dio_done_wq = NULL;
433 		}
434 
435 		if (sop->put_super)
436 			sop->put_super(sb);
437 
438 		if (!list_empty(&sb->s_inodes)) {
439 			printk("VFS: Busy inodes after unmount of %s. "
440 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
441 			   sb->s_id);
442 		}
443 	}
444 	spin_lock(&sb_lock);
445 	/* should be initialized for __put_super_and_need_restart() */
446 	hlist_del_init(&sb->s_instances);
447 	spin_unlock(&sb_lock);
448 	up_write(&sb->s_umount);
449 }
450 
451 EXPORT_SYMBOL(generic_shutdown_super);
452 
453 /**
454  *	sget_userns -	find or create a superblock
455  *	@type:	filesystem type superblock should belong to
456  *	@test:	comparison callback
457  *	@set:	setup callback
458  *	@flags:	mount flags
459  *	@user_ns: User namespace for the super_block
460  *	@data:	argument to each of them
461  */
462 struct super_block *sget_userns(struct file_system_type *type,
463 			int (*test)(struct super_block *,void *),
464 			int (*set)(struct super_block *,void *),
465 			int flags, struct user_namespace *user_ns,
466 			void *data)
467 {
468 	struct super_block *s = NULL;
469 	struct super_block *old;
470 	int err;
471 
472 	if (!(flags & MS_KERNMOUNT) &&
473 	    !(type->fs_flags & FS_USERNS_MOUNT) &&
474 	    !capable(CAP_SYS_ADMIN))
475 		return ERR_PTR(-EPERM);
476 retry:
477 	spin_lock(&sb_lock);
478 	if (test) {
479 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
480 			if (!test(old, data))
481 				continue;
482 			if (user_ns != old->s_user_ns) {
483 				spin_unlock(&sb_lock);
484 				if (s) {
485 					up_write(&s->s_umount);
486 					destroy_super(s);
487 				}
488 				return ERR_PTR(-EBUSY);
489 			}
490 			if (!grab_super(old))
491 				goto retry;
492 			if (s) {
493 				up_write(&s->s_umount);
494 				destroy_super(s);
495 				s = NULL;
496 			}
497 			return old;
498 		}
499 	}
500 	if (!s) {
501 		spin_unlock(&sb_lock);
502 		s = alloc_super(type, flags, user_ns);
503 		if (!s)
504 			return ERR_PTR(-ENOMEM);
505 		goto retry;
506 	}
507 
508 	err = set(s, data);
509 	if (err) {
510 		spin_unlock(&sb_lock);
511 		up_write(&s->s_umount);
512 		destroy_super(s);
513 		return ERR_PTR(err);
514 	}
515 	s->s_type = type;
516 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
517 	list_add_tail(&s->s_list, &super_blocks);
518 	hlist_add_head(&s->s_instances, &type->fs_supers);
519 	spin_unlock(&sb_lock);
520 	get_filesystem(type);
521 	register_shrinker(&s->s_shrink);
522 	return s;
523 }
524 
525 EXPORT_SYMBOL(sget_userns);
526 
527 /**
528  *	sget	-	find or create a superblock
529  *	@type:	  filesystem type superblock should belong to
530  *	@test:	  comparison callback
531  *	@set:	  setup callback
532  *	@flags:	  mount flags
533  *	@data:	  argument to each of them
534  */
535 struct super_block *sget(struct file_system_type *type,
536 			int (*test)(struct super_block *,void *),
537 			int (*set)(struct super_block *,void *),
538 			int flags,
539 			void *data)
540 {
541 	struct user_namespace *user_ns = current_user_ns();
542 
543 	/* Ensure the requestor has permissions over the target filesystem */
544 	if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
545 		return ERR_PTR(-EPERM);
546 
547 	return sget_userns(type, test, set, flags, user_ns, data);
548 }
549 
550 EXPORT_SYMBOL(sget);
551 
552 void drop_super(struct super_block *sb)
553 {
554 	up_read(&sb->s_umount);
555 	put_super(sb);
556 }
557 
558 EXPORT_SYMBOL(drop_super);
559 
560 void drop_super_exclusive(struct super_block *sb)
561 {
562 	up_write(&sb->s_umount);
563 	put_super(sb);
564 }
565 EXPORT_SYMBOL(drop_super_exclusive);
566 
567 /**
568  *	iterate_supers - call function for all active superblocks
569  *	@f: function to call
570  *	@arg: argument to pass to it
571  *
572  *	Scans the superblock list and calls given function, passing it
573  *	locked superblock and given argument.
574  */
575 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
576 {
577 	struct super_block *sb, *p = NULL;
578 
579 	spin_lock(&sb_lock);
580 	list_for_each_entry(sb, &super_blocks, s_list) {
581 		if (hlist_unhashed(&sb->s_instances))
582 			continue;
583 		sb->s_count++;
584 		spin_unlock(&sb_lock);
585 
586 		down_read(&sb->s_umount);
587 		if (sb->s_root && (sb->s_flags & MS_BORN))
588 			f(sb, arg);
589 		up_read(&sb->s_umount);
590 
591 		spin_lock(&sb_lock);
592 		if (p)
593 			__put_super(p);
594 		p = sb;
595 	}
596 	if (p)
597 		__put_super(p);
598 	spin_unlock(&sb_lock);
599 }
600 
601 /**
602  *	iterate_supers_type - call function for superblocks of given type
603  *	@type: fs type
604  *	@f: function to call
605  *	@arg: argument to pass to it
606  *
607  *	Scans the superblock list and calls given function, passing it
608  *	locked superblock and given argument.
609  */
610 void iterate_supers_type(struct file_system_type *type,
611 	void (*f)(struct super_block *, void *), void *arg)
612 {
613 	struct super_block *sb, *p = NULL;
614 
615 	spin_lock(&sb_lock);
616 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
617 		sb->s_count++;
618 		spin_unlock(&sb_lock);
619 
620 		down_read(&sb->s_umount);
621 		if (sb->s_root && (sb->s_flags & MS_BORN))
622 			f(sb, arg);
623 		up_read(&sb->s_umount);
624 
625 		spin_lock(&sb_lock);
626 		if (p)
627 			__put_super(p);
628 		p = sb;
629 	}
630 	if (p)
631 		__put_super(p);
632 	spin_unlock(&sb_lock);
633 }
634 
635 EXPORT_SYMBOL(iterate_supers_type);
636 
637 static struct super_block *__get_super(struct block_device *bdev, bool excl)
638 {
639 	struct super_block *sb;
640 
641 	if (!bdev)
642 		return NULL;
643 
644 	spin_lock(&sb_lock);
645 rescan:
646 	list_for_each_entry(sb, &super_blocks, s_list) {
647 		if (hlist_unhashed(&sb->s_instances))
648 			continue;
649 		if (sb->s_bdev == bdev) {
650 			sb->s_count++;
651 			spin_unlock(&sb_lock);
652 			if (!excl)
653 				down_read(&sb->s_umount);
654 			else
655 				down_write(&sb->s_umount);
656 			/* still alive? */
657 			if (sb->s_root && (sb->s_flags & MS_BORN))
658 				return sb;
659 			if (!excl)
660 				up_read(&sb->s_umount);
661 			else
662 				up_write(&sb->s_umount);
663 			/* nope, got unmounted */
664 			spin_lock(&sb_lock);
665 			__put_super(sb);
666 			goto rescan;
667 		}
668 	}
669 	spin_unlock(&sb_lock);
670 	return NULL;
671 }
672 
673 /**
674  *	get_super - get the superblock of a device
675  *	@bdev: device to get the superblock for
676  *
677  *	Scans the superblock list and finds the superblock of the file system
678  *	mounted on the device given. %NULL is returned if no match is found.
679  */
680 struct super_block *get_super(struct block_device *bdev)
681 {
682 	return __get_super(bdev, false);
683 }
684 EXPORT_SYMBOL(get_super);
685 
686 static struct super_block *__get_super_thawed(struct block_device *bdev,
687 					      bool excl)
688 {
689 	while (1) {
690 		struct super_block *s = __get_super(bdev, excl);
691 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
692 			return s;
693 		if (!excl)
694 			up_read(&s->s_umount);
695 		else
696 			up_write(&s->s_umount);
697 		wait_event(s->s_writers.wait_unfrozen,
698 			   s->s_writers.frozen == SB_UNFROZEN);
699 		put_super(s);
700 	}
701 }
702 
703 /**
704  *	get_super_thawed - get thawed superblock of a device
705  *	@bdev: device to get the superblock for
706  *
707  *	Scans the superblock list and finds the superblock of the file system
708  *	mounted on the device. The superblock is returned once it is thawed
709  *	(or immediately if it was not frozen). %NULL is returned if no match
710  *	is found.
711  */
712 struct super_block *get_super_thawed(struct block_device *bdev)
713 {
714 	return __get_super_thawed(bdev, false);
715 }
716 EXPORT_SYMBOL(get_super_thawed);
717 
718 /**
719  *	get_super_exclusive_thawed - get thawed superblock of a device
720  *	@bdev: device to get the superblock for
721  *
722  *	Scans the superblock list and finds the superblock of the file system
723  *	mounted on the device. The superblock is returned once it is thawed
724  *	(or immediately if it was not frozen) and s_umount semaphore is held
725  *	in exclusive mode. %NULL is returned if no match is found.
726  */
727 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
728 {
729 	return __get_super_thawed(bdev, true);
730 }
731 EXPORT_SYMBOL(get_super_exclusive_thawed);
732 
733 /**
734  * get_active_super - get an active reference to the superblock of a device
735  * @bdev: device to get the superblock for
736  *
737  * Scans the superblock list and finds the superblock of the file system
738  * mounted on the device given.  Returns the superblock with an active
739  * reference or %NULL if none was found.
740  */
741 struct super_block *get_active_super(struct block_device *bdev)
742 {
743 	struct super_block *sb;
744 
745 	if (!bdev)
746 		return NULL;
747 
748 restart:
749 	spin_lock(&sb_lock);
750 	list_for_each_entry(sb, &super_blocks, s_list) {
751 		if (hlist_unhashed(&sb->s_instances))
752 			continue;
753 		if (sb->s_bdev == bdev) {
754 			if (!grab_super(sb))
755 				goto restart;
756 			up_write(&sb->s_umount);
757 			return sb;
758 		}
759 	}
760 	spin_unlock(&sb_lock);
761 	return NULL;
762 }
763 
764 struct super_block *user_get_super(dev_t dev)
765 {
766 	struct super_block *sb;
767 
768 	spin_lock(&sb_lock);
769 rescan:
770 	list_for_each_entry(sb, &super_blocks, s_list) {
771 		if (hlist_unhashed(&sb->s_instances))
772 			continue;
773 		if (sb->s_dev ==  dev) {
774 			sb->s_count++;
775 			spin_unlock(&sb_lock);
776 			down_read(&sb->s_umount);
777 			/* still alive? */
778 			if (sb->s_root && (sb->s_flags & MS_BORN))
779 				return sb;
780 			up_read(&sb->s_umount);
781 			/* nope, got unmounted */
782 			spin_lock(&sb_lock);
783 			__put_super(sb);
784 			goto rescan;
785 		}
786 	}
787 	spin_unlock(&sb_lock);
788 	return NULL;
789 }
790 
791 /**
792  *	do_remount_sb - asks filesystem to change mount options.
793  *	@sb:	superblock in question
794  *	@flags:	numeric part of options
795  *	@data:	the rest of options
796  *      @force: whether or not to force the change
797  *
798  *	Alters the mount options of a mounted file system.
799  */
800 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
801 {
802 	int retval;
803 	int remount_ro;
804 
805 	if (sb->s_writers.frozen != SB_UNFROZEN)
806 		return -EBUSY;
807 
808 #ifdef CONFIG_BLOCK
809 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
810 		return -EACCES;
811 #endif
812 
813 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
814 
815 	if (remount_ro) {
816 		if (!hlist_empty(&sb->s_pins)) {
817 			up_write(&sb->s_umount);
818 			group_pin_kill(&sb->s_pins);
819 			down_write(&sb->s_umount);
820 			if (!sb->s_root)
821 				return 0;
822 			if (sb->s_writers.frozen != SB_UNFROZEN)
823 				return -EBUSY;
824 			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
825 		}
826 	}
827 	shrink_dcache_sb(sb);
828 
829 	/* If we are remounting RDONLY and current sb is read/write,
830 	   make sure there are no rw files opened */
831 	if (remount_ro) {
832 		if (force) {
833 			sb->s_readonly_remount = 1;
834 			smp_wmb();
835 		} else {
836 			retval = sb_prepare_remount_readonly(sb);
837 			if (retval)
838 				return retval;
839 		}
840 	}
841 
842 	if (sb->s_op->remount_fs) {
843 		retval = sb->s_op->remount_fs(sb, &flags, data);
844 		if (retval) {
845 			if (!force)
846 				goto cancel_readonly;
847 			/* If forced remount, go ahead despite any errors */
848 			WARN(1, "forced remount of a %s fs returned %i\n",
849 			     sb->s_type->name, retval);
850 		}
851 	}
852 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
853 	/* Needs to be ordered wrt mnt_is_readonly() */
854 	smp_wmb();
855 	sb->s_readonly_remount = 0;
856 
857 	/*
858 	 * Some filesystems modify their metadata via some other path than the
859 	 * bdev buffer cache (eg. use a private mapping, or directories in
860 	 * pagecache, etc). Also file data modifications go via their own
861 	 * mappings. So If we try to mount readonly then copy the filesystem
862 	 * from bdev, we could get stale data, so invalidate it to give a best
863 	 * effort at coherency.
864 	 */
865 	if (remount_ro && sb->s_bdev)
866 		invalidate_bdev(sb->s_bdev);
867 	return 0;
868 
869 cancel_readonly:
870 	sb->s_readonly_remount = 0;
871 	return retval;
872 }
873 
874 static void do_emergency_remount(struct work_struct *work)
875 {
876 	struct super_block *sb, *p = NULL;
877 
878 	spin_lock(&sb_lock);
879 	list_for_each_entry(sb, &super_blocks, s_list) {
880 		if (hlist_unhashed(&sb->s_instances))
881 			continue;
882 		sb->s_count++;
883 		spin_unlock(&sb_lock);
884 		down_write(&sb->s_umount);
885 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
886 		    !(sb->s_flags & MS_RDONLY)) {
887 			/*
888 			 * What lock protects sb->s_flags??
889 			 */
890 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
891 		}
892 		up_write(&sb->s_umount);
893 		spin_lock(&sb_lock);
894 		if (p)
895 			__put_super(p);
896 		p = sb;
897 	}
898 	if (p)
899 		__put_super(p);
900 	spin_unlock(&sb_lock);
901 	kfree(work);
902 	printk("Emergency Remount complete\n");
903 }
904 
905 void emergency_remount(void)
906 {
907 	struct work_struct *work;
908 
909 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
910 	if (work) {
911 		INIT_WORK(work, do_emergency_remount);
912 		schedule_work(work);
913 	}
914 }
915 
916 /*
917  * Unnamed block devices are dummy devices used by virtual
918  * filesystems which don't use real block-devices.  -- jrs
919  */
920 
921 static DEFINE_IDA(unnamed_dev_ida);
922 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
923 /* Many userspace utilities consider an FSID of 0 invalid.
924  * Always return at least 1 from get_anon_bdev.
925  */
926 static int unnamed_dev_start = 1;
927 
928 int get_anon_bdev(dev_t *p)
929 {
930 	int dev;
931 	int error;
932 
933  retry:
934 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
935 		return -ENOMEM;
936 	spin_lock(&unnamed_dev_lock);
937 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
938 	if (!error)
939 		unnamed_dev_start = dev + 1;
940 	spin_unlock(&unnamed_dev_lock);
941 	if (error == -EAGAIN)
942 		/* We raced and lost with another CPU. */
943 		goto retry;
944 	else if (error)
945 		return -EAGAIN;
946 
947 	if (dev >= (1 << MINORBITS)) {
948 		spin_lock(&unnamed_dev_lock);
949 		ida_remove(&unnamed_dev_ida, dev);
950 		if (unnamed_dev_start > dev)
951 			unnamed_dev_start = dev;
952 		spin_unlock(&unnamed_dev_lock);
953 		return -EMFILE;
954 	}
955 	*p = MKDEV(0, dev & MINORMASK);
956 	return 0;
957 }
958 EXPORT_SYMBOL(get_anon_bdev);
959 
960 void free_anon_bdev(dev_t dev)
961 {
962 	int slot = MINOR(dev);
963 	spin_lock(&unnamed_dev_lock);
964 	ida_remove(&unnamed_dev_ida, slot);
965 	if (slot < unnamed_dev_start)
966 		unnamed_dev_start = slot;
967 	spin_unlock(&unnamed_dev_lock);
968 }
969 EXPORT_SYMBOL(free_anon_bdev);
970 
971 int set_anon_super(struct super_block *s, void *data)
972 {
973 	return get_anon_bdev(&s->s_dev);
974 }
975 
976 EXPORT_SYMBOL(set_anon_super);
977 
978 void kill_anon_super(struct super_block *sb)
979 {
980 	dev_t dev = sb->s_dev;
981 	generic_shutdown_super(sb);
982 	free_anon_bdev(dev);
983 }
984 
985 EXPORT_SYMBOL(kill_anon_super);
986 
987 void kill_litter_super(struct super_block *sb)
988 {
989 	if (sb->s_root)
990 		d_genocide(sb->s_root);
991 	kill_anon_super(sb);
992 }
993 
994 EXPORT_SYMBOL(kill_litter_super);
995 
996 static int ns_test_super(struct super_block *sb, void *data)
997 {
998 	return sb->s_fs_info == data;
999 }
1000 
1001 static int ns_set_super(struct super_block *sb, void *data)
1002 {
1003 	sb->s_fs_info = data;
1004 	return set_anon_super(sb, NULL);
1005 }
1006 
1007 struct dentry *mount_ns(struct file_system_type *fs_type,
1008 	int flags, void *data, void *ns, struct user_namespace *user_ns,
1009 	int (*fill_super)(struct super_block *, void *, int))
1010 {
1011 	struct super_block *sb;
1012 
1013 	/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1014 	 * over the namespace.
1015 	 */
1016 	if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1017 		return ERR_PTR(-EPERM);
1018 
1019 	sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1020 			 user_ns, ns);
1021 	if (IS_ERR(sb))
1022 		return ERR_CAST(sb);
1023 
1024 	if (!sb->s_root) {
1025 		int err;
1026 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1027 		if (err) {
1028 			deactivate_locked_super(sb);
1029 			return ERR_PTR(err);
1030 		}
1031 
1032 		sb->s_flags |= MS_ACTIVE;
1033 	}
1034 
1035 	return dget(sb->s_root);
1036 }
1037 
1038 EXPORT_SYMBOL(mount_ns);
1039 
1040 #ifdef CONFIG_BLOCK
1041 static int set_bdev_super(struct super_block *s, void *data)
1042 {
1043 	s->s_bdev = data;
1044 	s->s_dev = s->s_bdev->bd_dev;
1045 
1046 	/*
1047 	 * We set the bdi here to the queue backing, file systems can
1048 	 * overwrite this in ->fill_super()
1049 	 */
1050 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
1051 	return 0;
1052 }
1053 
1054 static int test_bdev_super(struct super_block *s, void *data)
1055 {
1056 	return (void *)s->s_bdev == data;
1057 }
1058 
1059 struct dentry *mount_bdev(struct file_system_type *fs_type,
1060 	int flags, const char *dev_name, void *data,
1061 	int (*fill_super)(struct super_block *, void *, int))
1062 {
1063 	struct block_device *bdev;
1064 	struct super_block *s;
1065 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1066 	int error = 0;
1067 
1068 	if (!(flags & MS_RDONLY))
1069 		mode |= FMODE_WRITE;
1070 
1071 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1072 	if (IS_ERR(bdev))
1073 		return ERR_CAST(bdev);
1074 
1075 	/*
1076 	 * once the super is inserted into the list by sget, s_umount
1077 	 * will protect the lockfs code from trying to start a snapshot
1078 	 * while we are mounting
1079 	 */
1080 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1081 	if (bdev->bd_fsfreeze_count > 0) {
1082 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1083 		error = -EBUSY;
1084 		goto error_bdev;
1085 	}
1086 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1087 		 bdev);
1088 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1089 	if (IS_ERR(s))
1090 		goto error_s;
1091 
1092 	if (s->s_root) {
1093 		if ((flags ^ s->s_flags) & MS_RDONLY) {
1094 			deactivate_locked_super(s);
1095 			error = -EBUSY;
1096 			goto error_bdev;
1097 		}
1098 
1099 		/*
1100 		 * s_umount nests inside bd_mutex during
1101 		 * __invalidate_device().  blkdev_put() acquires
1102 		 * bd_mutex and can't be called under s_umount.  Drop
1103 		 * s_umount temporarily.  This is safe as we're
1104 		 * holding an active reference.
1105 		 */
1106 		up_write(&s->s_umount);
1107 		blkdev_put(bdev, mode);
1108 		down_write(&s->s_umount);
1109 	} else {
1110 		s->s_mode = mode;
1111 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1112 		sb_set_blocksize(s, block_size(bdev));
1113 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1114 		if (error) {
1115 			deactivate_locked_super(s);
1116 			goto error;
1117 		}
1118 
1119 		s->s_flags |= MS_ACTIVE;
1120 		bdev->bd_super = s;
1121 	}
1122 
1123 	return dget(s->s_root);
1124 
1125 error_s:
1126 	error = PTR_ERR(s);
1127 error_bdev:
1128 	blkdev_put(bdev, mode);
1129 error:
1130 	return ERR_PTR(error);
1131 }
1132 EXPORT_SYMBOL(mount_bdev);
1133 
1134 void kill_block_super(struct super_block *sb)
1135 {
1136 	struct block_device *bdev = sb->s_bdev;
1137 	fmode_t mode = sb->s_mode;
1138 
1139 	bdev->bd_super = NULL;
1140 	generic_shutdown_super(sb);
1141 	sync_blockdev(bdev);
1142 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1143 	blkdev_put(bdev, mode | FMODE_EXCL);
1144 }
1145 
1146 EXPORT_SYMBOL(kill_block_super);
1147 #endif
1148 
1149 struct dentry *mount_nodev(struct file_system_type *fs_type,
1150 	int flags, void *data,
1151 	int (*fill_super)(struct super_block *, void *, int))
1152 {
1153 	int error;
1154 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1155 
1156 	if (IS_ERR(s))
1157 		return ERR_CAST(s);
1158 
1159 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1160 	if (error) {
1161 		deactivate_locked_super(s);
1162 		return ERR_PTR(error);
1163 	}
1164 	s->s_flags |= MS_ACTIVE;
1165 	return dget(s->s_root);
1166 }
1167 EXPORT_SYMBOL(mount_nodev);
1168 
1169 static int compare_single(struct super_block *s, void *p)
1170 {
1171 	return 1;
1172 }
1173 
1174 struct dentry *mount_single(struct file_system_type *fs_type,
1175 	int flags, void *data,
1176 	int (*fill_super)(struct super_block *, void *, int))
1177 {
1178 	struct super_block *s;
1179 	int error;
1180 
1181 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1182 	if (IS_ERR(s))
1183 		return ERR_CAST(s);
1184 	if (!s->s_root) {
1185 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1186 		if (error) {
1187 			deactivate_locked_super(s);
1188 			return ERR_PTR(error);
1189 		}
1190 		s->s_flags |= MS_ACTIVE;
1191 	} else {
1192 		do_remount_sb(s, flags, data, 0);
1193 	}
1194 	return dget(s->s_root);
1195 }
1196 EXPORT_SYMBOL(mount_single);
1197 
1198 struct dentry *
1199 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1200 {
1201 	struct dentry *root;
1202 	struct super_block *sb;
1203 	char *secdata = NULL;
1204 	int error = -ENOMEM;
1205 
1206 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1207 		secdata = alloc_secdata();
1208 		if (!secdata)
1209 			goto out;
1210 
1211 		error = security_sb_copy_data(data, secdata);
1212 		if (error)
1213 			goto out_free_secdata;
1214 	}
1215 
1216 	root = type->mount(type, flags, name, data);
1217 	if (IS_ERR(root)) {
1218 		error = PTR_ERR(root);
1219 		goto out_free_secdata;
1220 	}
1221 	sb = root->d_sb;
1222 	BUG_ON(!sb);
1223 	WARN_ON(!sb->s_bdi);
1224 	sb->s_flags |= MS_BORN;
1225 
1226 	error = security_sb_kern_mount(sb, flags, secdata);
1227 	if (error)
1228 		goto out_sb;
1229 
1230 	/*
1231 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1232 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1233 	 * this warning for a little while to try and catch filesystems that
1234 	 * violate this rule.
1235 	 */
1236 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1237 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1238 
1239 	up_write(&sb->s_umount);
1240 	free_secdata(secdata);
1241 	return root;
1242 out_sb:
1243 	dput(root);
1244 	deactivate_locked_super(sb);
1245 out_free_secdata:
1246 	free_secdata(secdata);
1247 out:
1248 	return ERR_PTR(error);
1249 }
1250 
1251 /*
1252  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1253  * instead.
1254  */
1255 void __sb_end_write(struct super_block *sb, int level)
1256 {
1257 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1258 }
1259 EXPORT_SYMBOL(__sb_end_write);
1260 
1261 /*
1262  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1263  * instead.
1264  */
1265 int __sb_start_write(struct super_block *sb, int level, bool wait)
1266 {
1267 	bool force_trylock = false;
1268 	int ret = 1;
1269 
1270 #ifdef CONFIG_LOCKDEP
1271 	/*
1272 	 * We want lockdep to tell us about possible deadlocks with freezing
1273 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1274 	 * protection works as getting a read lock but there are subtle
1275 	 * problems. XFS for example gets freeze protection on internal level
1276 	 * twice in some cases, which is OK only because we already hold a
1277 	 * freeze protection also on higher level. Due to these cases we have
1278 	 * to use wait == F (trylock mode) which must not fail.
1279 	 */
1280 	if (wait) {
1281 		int i;
1282 
1283 		for (i = 0; i < level - 1; i++)
1284 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1285 				force_trylock = true;
1286 				break;
1287 			}
1288 	}
1289 #endif
1290 	if (wait && !force_trylock)
1291 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1292 	else
1293 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1294 
1295 	WARN_ON(force_trylock && !ret);
1296 	return ret;
1297 }
1298 EXPORT_SYMBOL(__sb_start_write);
1299 
1300 /**
1301  * sb_wait_write - wait until all writers to given file system finish
1302  * @sb: the super for which we wait
1303  * @level: type of writers we wait for (normal vs page fault)
1304  *
1305  * This function waits until there are no writers of given type to given file
1306  * system.
1307  */
1308 static void sb_wait_write(struct super_block *sb, int level)
1309 {
1310 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1311 }
1312 
1313 /*
1314  * We are going to return to userspace and forget about these locks, the
1315  * ownership goes to the caller of thaw_super() which does unlock().
1316  */
1317 static void lockdep_sb_freeze_release(struct super_block *sb)
1318 {
1319 	int level;
1320 
1321 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1322 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1323 }
1324 
1325 /*
1326  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1327  */
1328 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1329 {
1330 	int level;
1331 
1332 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1333 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1334 }
1335 
1336 static void sb_freeze_unlock(struct super_block *sb)
1337 {
1338 	int level;
1339 
1340 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1341 		percpu_up_write(sb->s_writers.rw_sem + level);
1342 }
1343 
1344 /**
1345  * freeze_super - lock the filesystem and force it into a consistent state
1346  * @sb: the super to lock
1347  *
1348  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1349  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1350  * -EBUSY.
1351  *
1352  * During this function, sb->s_writers.frozen goes through these values:
1353  *
1354  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1355  *
1356  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1357  * writes should be blocked, though page faults are still allowed. We wait for
1358  * all writes to complete and then proceed to the next stage.
1359  *
1360  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1361  * but internal fs threads can still modify the filesystem (although they
1362  * should not dirty new pages or inodes), writeback can run etc. After waiting
1363  * for all running page faults we sync the filesystem which will clean all
1364  * dirty pages and inodes (no new dirty pages or inodes can be created when
1365  * sync is running).
1366  *
1367  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1368  * modification are blocked (e.g. XFS preallocation truncation on inode
1369  * reclaim). This is usually implemented by blocking new transactions for
1370  * filesystems that have them and need this additional guard. After all
1371  * internal writers are finished we call ->freeze_fs() to finish filesystem
1372  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1373  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1374  *
1375  * sb->s_writers.frozen is protected by sb->s_umount.
1376  */
1377 int freeze_super(struct super_block *sb)
1378 {
1379 	int ret;
1380 
1381 	atomic_inc(&sb->s_active);
1382 	down_write(&sb->s_umount);
1383 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1384 		deactivate_locked_super(sb);
1385 		return -EBUSY;
1386 	}
1387 
1388 	if (!(sb->s_flags & MS_BORN)) {
1389 		up_write(&sb->s_umount);
1390 		return 0;	/* sic - it's "nothing to do" */
1391 	}
1392 
1393 	if (sb->s_flags & MS_RDONLY) {
1394 		/* Nothing to do really... */
1395 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1396 		up_write(&sb->s_umount);
1397 		return 0;
1398 	}
1399 
1400 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1401 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1402 	up_write(&sb->s_umount);
1403 	sb_wait_write(sb, SB_FREEZE_WRITE);
1404 	down_write(&sb->s_umount);
1405 
1406 	/* Now we go and block page faults... */
1407 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1408 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1409 
1410 	/* All writers are done so after syncing there won't be dirty data */
1411 	sync_filesystem(sb);
1412 
1413 	/* Now wait for internal filesystem counter */
1414 	sb->s_writers.frozen = SB_FREEZE_FS;
1415 	sb_wait_write(sb, SB_FREEZE_FS);
1416 
1417 	if (sb->s_op->freeze_fs) {
1418 		ret = sb->s_op->freeze_fs(sb);
1419 		if (ret) {
1420 			printk(KERN_ERR
1421 				"VFS:Filesystem freeze failed\n");
1422 			sb->s_writers.frozen = SB_UNFROZEN;
1423 			sb_freeze_unlock(sb);
1424 			wake_up(&sb->s_writers.wait_unfrozen);
1425 			deactivate_locked_super(sb);
1426 			return ret;
1427 		}
1428 	}
1429 	/*
1430 	 * For debugging purposes so that fs can warn if it sees write activity
1431 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1432 	 */
1433 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1434 	lockdep_sb_freeze_release(sb);
1435 	up_write(&sb->s_umount);
1436 	return 0;
1437 }
1438 EXPORT_SYMBOL(freeze_super);
1439 
1440 /**
1441  * thaw_super -- unlock filesystem
1442  * @sb: the super to thaw
1443  *
1444  * Unlocks the filesystem and marks it writeable again after freeze_super().
1445  */
1446 int thaw_super(struct super_block *sb)
1447 {
1448 	int error;
1449 
1450 	down_write(&sb->s_umount);
1451 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1452 		up_write(&sb->s_umount);
1453 		return -EINVAL;
1454 	}
1455 
1456 	if (sb->s_flags & MS_RDONLY) {
1457 		sb->s_writers.frozen = SB_UNFROZEN;
1458 		goto out;
1459 	}
1460 
1461 	lockdep_sb_freeze_acquire(sb);
1462 
1463 	if (sb->s_op->unfreeze_fs) {
1464 		error = sb->s_op->unfreeze_fs(sb);
1465 		if (error) {
1466 			printk(KERN_ERR
1467 				"VFS:Filesystem thaw failed\n");
1468 			lockdep_sb_freeze_release(sb);
1469 			up_write(&sb->s_umount);
1470 			return error;
1471 		}
1472 	}
1473 
1474 	sb->s_writers.frozen = SB_UNFROZEN;
1475 	sb_freeze_unlock(sb);
1476 out:
1477 	wake_up(&sb->s_writers.wait_unfrozen);
1478 	deactivate_locked_super(sb);
1479 	return 0;
1480 }
1481 EXPORT_SYMBOL(thaw_super);
1482