xref: /linux/fs/splice.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 
32 struct partial_page {
33 	unsigned int offset;
34 	unsigned int len;
35 };
36 
37 /*
38  * Passed to splice_to_pipe
39  */
40 struct splice_pipe_desc {
41 	struct page **pages;		/* page map */
42 	struct partial_page *partial;	/* pages[] may not be contig */
43 	int nr_pages;			/* number of pages in map */
44 	unsigned int flags;		/* splice flags */
45 	const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47 
48 /*
49  * Attempt to steal a page from a pipe buffer. This should perhaps go into
50  * a vm helper function, it's already simplified quite a bit by the
51  * addition of remove_mapping(). If success is returned, the caller may
52  * attempt to reuse this page for another destination.
53  */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 				     struct pipe_buffer *buf)
56 {
57 	struct page *page = buf->page;
58 	struct address_space *mapping;
59 
60 	lock_page(page);
61 
62 	mapping = page_mapping(page);
63 	if (mapping) {
64 		WARN_ON(!PageUptodate(page));
65 
66 		/*
67 		 * At least for ext2 with nobh option, we need to wait on
68 		 * writeback completing on this page, since we'll remove it
69 		 * from the pagecache.  Otherwise truncate wont wait on the
70 		 * page, allowing the disk blocks to be reused by someone else
71 		 * before we actually wrote our data to them. fs corruption
72 		 * ensues.
73 		 */
74 		wait_on_page_writeback(page);
75 
76 		if (PagePrivate(page))
77 			try_to_release_page(page, GFP_KERNEL);
78 
79 		/*
80 		 * If we succeeded in removing the mapping, set LRU flag
81 		 * and return good.
82 		 */
83 		if (remove_mapping(mapping, page)) {
84 			buf->flags |= PIPE_BUF_FLAG_LRU;
85 			return 0;
86 		}
87 	}
88 
89 	/*
90 	 * Raced with truncate or failed to remove page from current
91 	 * address space, unlock and return failure.
92 	 */
93 	unlock_page(page);
94 	return 1;
95 }
96 
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 					struct pipe_buffer *buf)
99 {
100 	page_cache_release(buf->page);
101 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103 
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 				   struct pipe_buffer *buf)
106 {
107 	struct page *page = buf->page;
108 	int err;
109 
110 	if (!PageUptodate(page)) {
111 		lock_page(page);
112 
113 		/*
114 		 * Page got truncated/unhashed. This will cause a 0-byte
115 		 * splice, if this is the first page.
116 		 */
117 		if (!page->mapping) {
118 			err = -ENODATA;
119 			goto error;
120 		}
121 
122 		/*
123 		 * Uh oh, read-error from disk.
124 		 */
125 		if (!PageUptodate(page)) {
126 			err = -EIO;
127 			goto error;
128 		}
129 
130 		/*
131 		 * Page is ok afterall, we are done.
132 		 */
133 		unlock_page(page);
134 	}
135 
136 	return 0;
137 error:
138 	unlock_page(page);
139 	return err;
140 }
141 
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 	.can_merge = 0,
144 	.map = generic_pipe_buf_map,
145 	.unmap = generic_pipe_buf_unmap,
146 	.pin = page_cache_pipe_buf_pin,
147 	.release = page_cache_pipe_buf_release,
148 	.steal = page_cache_pipe_buf_steal,
149 	.get = generic_pipe_buf_get,
150 };
151 
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 				    struct pipe_buffer *buf)
154 {
155 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 		return 1;
157 
158 	buf->flags |= PIPE_BUF_FLAG_LRU;
159 	return generic_pipe_buf_steal(pipe, buf);
160 }
161 
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 	.can_merge = 0,
164 	.map = generic_pipe_buf_map,
165 	.unmap = generic_pipe_buf_unmap,
166 	.pin = generic_pipe_buf_pin,
167 	.release = page_cache_pipe_buf_release,
168 	.steal = user_page_pipe_buf_steal,
169 	.get = generic_pipe_buf_get,
170 };
171 
172 /*
173  * Pipe output worker. This sets up our pipe format with the page cache
174  * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175  */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 			      struct splice_pipe_desc *spd)
178 {
179 	int ret, do_wakeup, page_nr;
180 
181 	ret = 0;
182 	do_wakeup = 0;
183 	page_nr = 0;
184 
185 	if (pipe->inode)
186 		mutex_lock(&pipe->inode->i_mutex);
187 
188 	for (;;) {
189 		if (!pipe->readers) {
190 			send_sig(SIGPIPE, current, 0);
191 			if (!ret)
192 				ret = -EPIPE;
193 			break;
194 		}
195 
196 		if (pipe->nrbufs < PIPE_BUFFERS) {
197 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 			struct pipe_buffer *buf = pipe->bufs + newbuf;
199 
200 			buf->page = spd->pages[page_nr];
201 			buf->offset = spd->partial[page_nr].offset;
202 			buf->len = spd->partial[page_nr].len;
203 			buf->ops = spd->ops;
204 			if (spd->flags & SPLICE_F_GIFT)
205 				buf->flags |= PIPE_BUF_FLAG_GIFT;
206 
207 			pipe->nrbufs++;
208 			page_nr++;
209 			ret += buf->len;
210 
211 			if (pipe->inode)
212 				do_wakeup = 1;
213 
214 			if (!--spd->nr_pages)
215 				break;
216 			if (pipe->nrbufs < PIPE_BUFFERS)
217 				continue;
218 
219 			break;
220 		}
221 
222 		if (spd->flags & SPLICE_F_NONBLOCK) {
223 			if (!ret)
224 				ret = -EAGAIN;
225 			break;
226 		}
227 
228 		if (signal_pending(current)) {
229 			if (!ret)
230 				ret = -ERESTARTSYS;
231 			break;
232 		}
233 
234 		if (do_wakeup) {
235 			smp_mb();
236 			if (waitqueue_active(&pipe->wait))
237 				wake_up_interruptible_sync(&pipe->wait);
238 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 			do_wakeup = 0;
240 		}
241 
242 		pipe->waiting_writers++;
243 		pipe_wait(pipe);
244 		pipe->waiting_writers--;
245 	}
246 
247 	if (pipe->inode)
248 		mutex_unlock(&pipe->inode->i_mutex);
249 
250 	if (do_wakeup) {
251 		smp_mb();
252 		if (waitqueue_active(&pipe->wait))
253 			wake_up_interruptible(&pipe->wait);
254 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 	}
256 
257 	while (page_nr < spd->nr_pages)
258 		page_cache_release(spd->pages[page_nr++]);
259 
260 	return ret;
261 }
262 
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 			   struct pipe_inode_info *pipe, size_t len,
266 			   unsigned int flags)
267 {
268 	struct address_space *mapping = in->f_mapping;
269 	unsigned int loff, nr_pages;
270 	struct page *pages[PIPE_BUFFERS];
271 	struct partial_page partial[PIPE_BUFFERS];
272 	struct page *page;
273 	pgoff_t index, end_index;
274 	loff_t isize;
275 	size_t total_len;
276 	int error, page_nr;
277 	struct splice_pipe_desc spd = {
278 		.pages = pages,
279 		.partial = partial,
280 		.flags = flags,
281 		.ops = &page_cache_pipe_buf_ops,
282 	};
283 
284 	index = *ppos >> PAGE_CACHE_SHIFT;
285 	loff = *ppos & ~PAGE_CACHE_MASK;
286 	nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
287 
288 	if (nr_pages > PIPE_BUFFERS)
289 		nr_pages = PIPE_BUFFERS;
290 
291 	/*
292 	 * Initiate read-ahead on this page range. however, don't call into
293 	 * read-ahead if this is a non-zero offset (we are likely doing small
294 	 * chunk splice and the page is already there) for a single page.
295 	 */
296 	if (!loff || nr_pages > 1)
297 		page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
298 
299 	/*
300 	 * Now fill in the holes:
301 	 */
302 	error = 0;
303 	total_len = 0;
304 
305 	/*
306 	 * Lookup the (hopefully) full range of pages we need.
307 	 */
308 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
309 
310 	/*
311 	 * If find_get_pages_contig() returned fewer pages than we needed,
312 	 * allocate the rest.
313 	 */
314 	index += spd.nr_pages;
315 	while (spd.nr_pages < nr_pages) {
316 		/*
317 		 * Page could be there, find_get_pages_contig() breaks on
318 		 * the first hole.
319 		 */
320 		page = find_get_page(mapping, index);
321 		if (!page) {
322 			/*
323 			 * Make sure the read-ahead engine is notified
324 			 * about this failure.
325 			 */
326 			handle_ra_miss(mapping, &in->f_ra, index);
327 
328 			/*
329 			 * page didn't exist, allocate one.
330 			 */
331 			page = page_cache_alloc_cold(mapping);
332 			if (!page)
333 				break;
334 
335 			error = add_to_page_cache_lru(page, mapping, index,
336 					      GFP_KERNEL);
337 			if (unlikely(error)) {
338 				page_cache_release(page);
339 				if (error == -EEXIST)
340 					continue;
341 				break;
342 			}
343 			/*
344 			 * add_to_page_cache() locks the page, unlock it
345 			 * to avoid convoluting the logic below even more.
346 			 */
347 			unlock_page(page);
348 		}
349 
350 		pages[spd.nr_pages++] = page;
351 		index++;
352 	}
353 
354 	/*
355 	 * Now loop over the map and see if we need to start IO on any
356 	 * pages, fill in the partial map, etc.
357 	 */
358 	index = *ppos >> PAGE_CACHE_SHIFT;
359 	nr_pages = spd.nr_pages;
360 	spd.nr_pages = 0;
361 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
362 		unsigned int this_len;
363 
364 		if (!len)
365 			break;
366 
367 		/*
368 		 * this_len is the max we'll use from this page
369 		 */
370 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
371 		page = pages[page_nr];
372 
373 		/*
374 		 * If the page isn't uptodate, we may need to start io on it
375 		 */
376 		if (!PageUptodate(page)) {
377 			/*
378 			 * If in nonblock mode then dont block on waiting
379 			 * for an in-flight io page
380 			 */
381 			if (flags & SPLICE_F_NONBLOCK)
382 				break;
383 
384 			lock_page(page);
385 
386 			/*
387 			 * page was truncated, stop here. if this isn't the
388 			 * first page, we'll just complete what we already
389 			 * added
390 			 */
391 			if (!page->mapping) {
392 				unlock_page(page);
393 				break;
394 			}
395 			/*
396 			 * page was already under io and is now done, great
397 			 */
398 			if (PageUptodate(page)) {
399 				unlock_page(page);
400 				goto fill_it;
401 			}
402 
403 			/*
404 			 * need to read in the page
405 			 */
406 			error = mapping->a_ops->readpage(in, page);
407 			if (unlikely(error)) {
408 				/*
409 				 * We really should re-lookup the page here,
410 				 * but it complicates things a lot. Instead
411 				 * lets just do what we already stored, and
412 				 * we'll get it the next time we are called.
413 				 */
414 				if (error == AOP_TRUNCATED_PAGE)
415 					error = 0;
416 
417 				break;
418 			}
419 
420 			/*
421 			 * i_size must be checked after ->readpage().
422 			 */
423 			isize = i_size_read(mapping->host);
424 			end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425 			if (unlikely(!isize || index > end_index))
426 				break;
427 
428 			/*
429 			 * if this is the last page, see if we need to shrink
430 			 * the length and stop
431 			 */
432 			if (end_index == index) {
433 				loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
434 				if (total_len + loff > isize)
435 					break;
436 				/*
437 				 * force quit after adding this page
438 				 */
439 				len = this_len;
440 				this_len = min(this_len, loff);
441 				loff = 0;
442 			}
443 		}
444 fill_it:
445 		partial[page_nr].offset = loff;
446 		partial[page_nr].len = this_len;
447 		len -= this_len;
448 		total_len += this_len;
449 		loff = 0;
450 		spd.nr_pages++;
451 		index++;
452 	}
453 
454 	/*
455 	 * Release any pages at the end, if we quit early. 'i' is how far
456 	 * we got, 'nr_pages' is how many pages are in the map.
457 	 */
458 	while (page_nr < nr_pages)
459 		page_cache_release(pages[page_nr++]);
460 
461 	if (spd.nr_pages)
462 		return splice_to_pipe(pipe, &spd);
463 
464 	return error;
465 }
466 
467 /**
468  * generic_file_splice_read - splice data from file to a pipe
469  * @in:		file to splice from
470  * @pipe:	pipe to splice to
471  * @len:	number of bytes to splice
472  * @flags:	splice modifier flags
473  *
474  * Will read pages from given file and fill them into a pipe.
475  */
476 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
477 				 struct pipe_inode_info *pipe, size_t len,
478 				 unsigned int flags)
479 {
480 	ssize_t spliced;
481 	int ret;
482 
483 	ret = 0;
484 	spliced = 0;
485 
486 	while (len) {
487 		ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
488 
489 		if (ret < 0)
490 			break;
491 		else if (!ret) {
492 			if (spliced)
493 				break;
494 			if (flags & SPLICE_F_NONBLOCK) {
495 				ret = -EAGAIN;
496 				break;
497 			}
498 		}
499 
500 		*ppos += ret;
501 		len -= ret;
502 		spliced += ret;
503 	}
504 
505 	if (spliced)
506 		return spliced;
507 
508 	return ret;
509 }
510 
511 EXPORT_SYMBOL(generic_file_splice_read);
512 
513 /*
514  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515  * using sendpage(). Return the number of bytes sent.
516  */
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518 			    struct pipe_buffer *buf, struct splice_desc *sd)
519 {
520 	struct file *file = sd->file;
521 	loff_t pos = sd->pos;
522 	int ret, more;
523 
524 	ret = buf->ops->pin(pipe, buf);
525 	if (!ret) {
526 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
527 
528 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
529 					   sd->len, &pos, more);
530 	}
531 
532 	return ret;
533 }
534 
535 /*
536  * This is a little more tricky than the file -> pipe splicing. There are
537  * basically three cases:
538  *
539  *	- Destination page already exists in the address space and there
540  *	  are users of it. For that case we have no other option that
541  *	  copying the data. Tough luck.
542  *	- Destination page already exists in the address space, but there
543  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
544  *	  through to last case.
545  *	- Destination page does not exist, we can add the pipe page to
546  *	  the page cache and avoid the copy.
547  *
548  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549  * sd->flags), we attempt to migrate pages from the pipe to the output
550  * file address space page cache. This is possible if no one else has
551  * the pipe page referenced outside of the pipe and page cache. If
552  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553  * a new page in the output file page cache and fill/dirty that.
554  */
555 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556 			struct splice_desc *sd)
557 {
558 	struct file *file = sd->file;
559 	struct address_space *mapping = file->f_mapping;
560 	unsigned int offset, this_len;
561 	struct page *page;
562 	pgoff_t index;
563 	int ret;
564 
565 	/*
566 	 * make sure the data in this buffer is uptodate
567 	 */
568 	ret = buf->ops->pin(pipe, buf);
569 	if (unlikely(ret))
570 		return ret;
571 
572 	index = sd->pos >> PAGE_CACHE_SHIFT;
573 	offset = sd->pos & ~PAGE_CACHE_MASK;
574 
575 	this_len = sd->len;
576 	if (this_len + offset > PAGE_CACHE_SIZE)
577 		this_len = PAGE_CACHE_SIZE - offset;
578 
579 	/*
580 	 * Reuse buf page, if SPLICE_F_MOVE is set and we are doing a full
581 	 * page.
582 	 */
583 	if ((sd->flags & SPLICE_F_MOVE) && this_len == PAGE_CACHE_SIZE) {
584 		/*
585 		 * If steal succeeds, buf->page is now pruned from the
586 		 * pagecache and we can reuse it. The page will also be
587 		 * locked on successful return.
588 		 */
589 		if (buf->ops->steal(pipe, buf))
590 			goto find_page;
591 
592 		page = buf->page;
593 		if (add_to_page_cache(page, mapping, index, GFP_KERNEL)) {
594 			unlock_page(page);
595 			goto find_page;
596 		}
597 
598 		page_cache_get(page);
599 
600 		if (!(buf->flags & PIPE_BUF_FLAG_LRU))
601 			lru_cache_add(page);
602 	} else {
603 find_page:
604 		page = find_lock_page(mapping, index);
605 		if (!page) {
606 			ret = -ENOMEM;
607 			page = page_cache_alloc_cold(mapping);
608 			if (unlikely(!page))
609 				goto out_ret;
610 
611 			/*
612 			 * This will also lock the page
613 			 */
614 			ret = add_to_page_cache_lru(page, mapping, index,
615 						    GFP_KERNEL);
616 			if (unlikely(ret))
617 				goto out;
618 		}
619 
620 		/*
621 		 * We get here with the page locked. If the page is also
622 		 * uptodate, we don't need to do more. If it isn't, we
623 		 * may need to bring it in if we are not going to overwrite
624 		 * the full page.
625 		 */
626 		if (!PageUptodate(page)) {
627 			if (this_len < PAGE_CACHE_SIZE) {
628 				ret = mapping->a_ops->readpage(file, page);
629 				if (unlikely(ret))
630 					goto out;
631 
632 				lock_page(page);
633 
634 				if (!PageUptodate(page)) {
635 					/*
636 					 * Page got invalidated, repeat.
637 					 */
638 					if (!page->mapping) {
639 						unlock_page(page);
640 						page_cache_release(page);
641 						goto find_page;
642 					}
643 					ret = -EIO;
644 					goto out;
645 				}
646 			} else
647 				SetPageUptodate(page);
648 		}
649 	}
650 
651 	ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
652 	if (unlikely(ret)) {
653 		loff_t isize = i_size_read(mapping->host);
654 
655 		if (ret != AOP_TRUNCATED_PAGE)
656 			unlock_page(page);
657 		page_cache_release(page);
658 		if (ret == AOP_TRUNCATED_PAGE)
659 			goto find_page;
660 
661 		/*
662 		 * prepare_write() may have instantiated a few blocks
663 		 * outside i_size.  Trim these off again.
664 		 */
665 		if (sd->pos + this_len > isize)
666 			vmtruncate(mapping->host, isize);
667 
668 		goto out_ret;
669 	}
670 
671 	if (buf->page != page) {
672 		/*
673 		 * Careful, ->map() uses KM_USER0!
674 		 */
675 		char *src = buf->ops->map(pipe, buf, 1);
676 		char *dst = kmap_atomic(page, KM_USER1);
677 
678 		memcpy(dst + offset, src + buf->offset, this_len);
679 		flush_dcache_page(page);
680 		kunmap_atomic(dst, KM_USER1);
681 		buf->ops->unmap(pipe, buf, src);
682 	}
683 
684 	ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
685 	if (!ret) {
686 		/*
687 		 * Return the number of bytes written and mark page as
688 		 * accessed, we are now done!
689 		 */
690 		ret = this_len;
691 		mark_page_accessed(page);
692 		balance_dirty_pages_ratelimited(mapping);
693 	} else if (ret == AOP_TRUNCATED_PAGE) {
694 		page_cache_release(page);
695 		goto find_page;
696 	}
697 out:
698 	page_cache_release(page);
699 	unlock_page(page);
700 out_ret:
701 	return ret;
702 }
703 
704 /*
705  * Pipe input worker. Most of this logic works like a regular pipe, the
706  * key here is the 'actor' worker passed in that actually moves the data
707  * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
708  */
709 static ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
710 				  struct file *out, loff_t *ppos, size_t len,
711 				  unsigned int flags, splice_actor *actor)
712 {
713 	int ret, do_wakeup, err;
714 	struct splice_desc sd;
715 
716 	ret = 0;
717 	do_wakeup = 0;
718 
719 	sd.total_len = len;
720 	sd.flags = flags;
721 	sd.file = out;
722 	sd.pos = *ppos;
723 
724 	for (;;) {
725 		if (pipe->nrbufs) {
726 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
727 			const struct pipe_buf_operations *ops = buf->ops;
728 
729 			sd.len = buf->len;
730 			if (sd.len > sd.total_len)
731 				sd.len = sd.total_len;
732 
733 			err = actor(pipe, buf, &sd);
734 			if (err <= 0) {
735 				if (!ret && err != -ENODATA)
736 					ret = err;
737 
738 				break;
739 			}
740 
741 			ret += err;
742 			buf->offset += err;
743 			buf->len -= err;
744 
745 			sd.len -= err;
746 			sd.pos += err;
747 			sd.total_len -= err;
748 			if (sd.len)
749 				continue;
750 
751 			if (!buf->len) {
752 				buf->ops = NULL;
753 				ops->release(pipe, buf);
754 				pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
755 				pipe->nrbufs--;
756 				if (pipe->inode)
757 					do_wakeup = 1;
758 			}
759 
760 			if (!sd.total_len)
761 				break;
762 		}
763 
764 		if (pipe->nrbufs)
765 			continue;
766 		if (!pipe->writers)
767 			break;
768 		if (!pipe->waiting_writers) {
769 			if (ret)
770 				break;
771 		}
772 
773 		if (flags & SPLICE_F_NONBLOCK) {
774 			if (!ret)
775 				ret = -EAGAIN;
776 			break;
777 		}
778 
779 		if (signal_pending(current)) {
780 			if (!ret)
781 				ret = -ERESTARTSYS;
782 			break;
783 		}
784 
785 		if (do_wakeup) {
786 			smp_mb();
787 			if (waitqueue_active(&pipe->wait))
788 				wake_up_interruptible_sync(&pipe->wait);
789 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
790 			do_wakeup = 0;
791 		}
792 
793 		pipe_wait(pipe);
794 	}
795 
796 	if (do_wakeup) {
797 		smp_mb();
798 		if (waitqueue_active(&pipe->wait))
799 			wake_up_interruptible(&pipe->wait);
800 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
801 	}
802 
803 	return ret;
804 }
805 
806 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
807 			 loff_t *ppos, size_t len, unsigned int flags,
808 			 splice_actor *actor)
809 {
810 	ssize_t ret;
811 	struct inode *inode = out->f_mapping->host;
812 
813 	/*
814 	 * The actor worker might be calling ->prepare_write and
815 	 * ->commit_write. Most of the time, these expect i_mutex to
816 	 * be held. Since this may result in an ABBA deadlock with
817 	 * pipe->inode, we have to order lock acquiry here.
818 	 */
819 	inode_double_lock(inode, pipe->inode);
820 	ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
821 	inode_double_unlock(inode, pipe->inode);
822 
823 	return ret;
824 }
825 
826 /**
827  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
828  * @pipe:	pipe info
829  * @out:	file to write to
830  * @len:	number of bytes to splice
831  * @flags:	splice modifier flags
832  *
833  * Will either move or copy pages (determined by @flags options) from
834  * the given pipe inode to the given file. The caller is responsible
835  * for acquiring i_mutex on both inodes.
836  *
837  */
838 ssize_t
839 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
840 				 loff_t *ppos, size_t len, unsigned int flags)
841 {
842 	struct address_space *mapping = out->f_mapping;
843 	struct inode *inode = mapping->host;
844 	ssize_t ret;
845 	int err;
846 
847 	err = remove_suid(out->f_path.dentry);
848 	if (unlikely(err))
849 		return err;
850 
851 	ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
852 	if (ret > 0) {
853 		*ppos += ret;
854 
855 		/*
856 		 * If file or inode is SYNC and we actually wrote some data,
857 		 * sync it.
858 		 */
859 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
860 			err = generic_osync_inode(inode, mapping,
861 						  OSYNC_METADATA|OSYNC_DATA);
862 
863 			if (err)
864 				ret = err;
865 		}
866 	}
867 
868 	return ret;
869 }
870 
871 EXPORT_SYMBOL(generic_file_splice_write_nolock);
872 
873 /**
874  * generic_file_splice_write - splice data from a pipe to a file
875  * @pipe:	pipe info
876  * @out:	file to write to
877  * @len:	number of bytes to splice
878  * @flags:	splice modifier flags
879  *
880  * Will either move or copy pages (determined by @flags options) from
881  * the given pipe inode to the given file.
882  *
883  */
884 ssize_t
885 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
886 			  loff_t *ppos, size_t len, unsigned int flags)
887 {
888 	struct address_space *mapping = out->f_mapping;
889 	struct inode *inode = mapping->host;
890 	ssize_t ret;
891 	int err;
892 
893 	err = should_remove_suid(out->f_path.dentry);
894 	if (unlikely(err)) {
895 		mutex_lock(&inode->i_mutex);
896 		err = __remove_suid(out->f_path.dentry, err);
897 		mutex_unlock(&inode->i_mutex);
898 		if (err)
899 			return err;
900 	}
901 
902 	ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
903 	if (ret > 0) {
904 		*ppos += ret;
905 
906 		/*
907 		 * If file or inode is SYNC and we actually wrote some data,
908 		 * sync it.
909 		 */
910 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
911 			mutex_lock(&inode->i_mutex);
912 			err = generic_osync_inode(inode, mapping,
913 						  OSYNC_METADATA|OSYNC_DATA);
914 			mutex_unlock(&inode->i_mutex);
915 
916 			if (err)
917 				ret = err;
918 		}
919 	}
920 
921 	return ret;
922 }
923 
924 EXPORT_SYMBOL(generic_file_splice_write);
925 
926 /**
927  * generic_splice_sendpage - splice data from a pipe to a socket
928  * @inode:	pipe inode
929  * @out:	socket to write to
930  * @len:	number of bytes to splice
931  * @flags:	splice modifier flags
932  *
933  * Will send @len bytes from the pipe to a network socket. No data copying
934  * is involved.
935  *
936  */
937 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
938 				loff_t *ppos, size_t len, unsigned int flags)
939 {
940 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
941 }
942 
943 EXPORT_SYMBOL(generic_splice_sendpage);
944 
945 /*
946  * Attempt to initiate a splice from pipe to file.
947  */
948 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
949 			   loff_t *ppos, size_t len, unsigned int flags)
950 {
951 	int ret;
952 
953 	if (unlikely(!out->f_op || !out->f_op->splice_write))
954 		return -EINVAL;
955 
956 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
957 		return -EBADF;
958 
959 	ret = rw_verify_area(WRITE, out, ppos, len);
960 	if (unlikely(ret < 0))
961 		return ret;
962 
963 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
964 }
965 
966 /*
967  * Attempt to initiate a splice from a file to a pipe.
968  */
969 static long do_splice_to(struct file *in, loff_t *ppos,
970 			 struct pipe_inode_info *pipe, size_t len,
971 			 unsigned int flags)
972 {
973 	loff_t isize, left;
974 	int ret;
975 
976 	if (unlikely(!in->f_op || !in->f_op->splice_read))
977 		return -EINVAL;
978 
979 	if (unlikely(!(in->f_mode & FMODE_READ)))
980 		return -EBADF;
981 
982 	ret = rw_verify_area(READ, in, ppos, len);
983 	if (unlikely(ret < 0))
984 		return ret;
985 
986 	isize = i_size_read(in->f_mapping->host);
987 	if (unlikely(*ppos >= isize))
988 		return 0;
989 
990 	left = isize - *ppos;
991 	if (unlikely(left < len))
992 		len = left;
993 
994 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
995 }
996 
997 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
998 		      size_t len, unsigned int flags)
999 {
1000 	struct pipe_inode_info *pipe;
1001 	long ret, bytes;
1002 	loff_t out_off;
1003 	umode_t i_mode;
1004 	int i;
1005 
1006 	/*
1007 	 * We require the input being a regular file, as we don't want to
1008 	 * randomly drop data for eg socket -> socket splicing. Use the
1009 	 * piped splicing for that!
1010 	 */
1011 	i_mode = in->f_path.dentry->d_inode->i_mode;
1012 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1013 		return -EINVAL;
1014 
1015 	/*
1016 	 * neither in nor out is a pipe, setup an internal pipe attached to
1017 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1018 	 */
1019 	pipe = current->splice_pipe;
1020 	if (unlikely(!pipe)) {
1021 		pipe = alloc_pipe_info(NULL);
1022 		if (!pipe)
1023 			return -ENOMEM;
1024 
1025 		/*
1026 		 * We don't have an immediate reader, but we'll read the stuff
1027 		 * out of the pipe right after the splice_to_pipe(). So set
1028 		 * PIPE_READERS appropriately.
1029 		 */
1030 		pipe->readers = 1;
1031 
1032 		current->splice_pipe = pipe;
1033 	}
1034 
1035 	/*
1036 	 * Do the splice.
1037 	 */
1038 	ret = 0;
1039 	bytes = 0;
1040 	out_off = 0;
1041 
1042 	while (len) {
1043 		size_t read_len, max_read_len;
1044 
1045 		/*
1046 		 * Do at most PIPE_BUFFERS pages worth of transfer:
1047 		 */
1048 		max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1049 
1050 		ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1051 		if (unlikely(ret < 0))
1052 			goto out_release;
1053 
1054 		read_len = ret;
1055 
1056 		/*
1057 		 * NOTE: nonblocking mode only applies to the input. We
1058 		 * must not do the output in nonblocking mode as then we
1059 		 * could get stuck data in the internal pipe:
1060 		 */
1061 		ret = do_splice_from(pipe, out, &out_off, read_len,
1062 				     flags & ~SPLICE_F_NONBLOCK);
1063 		if (unlikely(ret < 0))
1064 			goto out_release;
1065 
1066 		bytes += ret;
1067 		len -= ret;
1068 
1069 		/*
1070 		 * In nonblocking mode, if we got back a short read then
1071 		 * that was due to either an IO error or due to the
1072 		 * pagecache entry not being there. In the IO error case
1073 		 * the _next_ splice attempt will produce a clean IO error
1074 		 * return value (not a short read), so in both cases it's
1075 		 * correct to break out of the loop here:
1076 		 */
1077 		if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1078 			break;
1079 	}
1080 
1081 	pipe->nrbufs = pipe->curbuf = 0;
1082 
1083 	return bytes;
1084 
1085 out_release:
1086 	/*
1087 	 * If we did an incomplete transfer we must release
1088 	 * the pipe buffers in question:
1089 	 */
1090 	for (i = 0; i < PIPE_BUFFERS; i++) {
1091 		struct pipe_buffer *buf = pipe->bufs + i;
1092 
1093 		if (buf->ops) {
1094 			buf->ops->release(pipe, buf);
1095 			buf->ops = NULL;
1096 		}
1097 	}
1098 	pipe->nrbufs = pipe->curbuf = 0;
1099 
1100 	/*
1101 	 * If we transferred some data, return the number of bytes:
1102 	 */
1103 	if (bytes > 0)
1104 		return bytes;
1105 
1106 	return ret;
1107 }
1108 
1109 EXPORT_SYMBOL(do_splice_direct);
1110 
1111 /*
1112  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1113  * location, so checking ->i_pipe is not enough to verify that this is a
1114  * pipe.
1115  */
1116 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1117 {
1118 	if (S_ISFIFO(inode->i_mode))
1119 		return inode->i_pipe;
1120 
1121 	return NULL;
1122 }
1123 
1124 /*
1125  * Determine where to splice to/from.
1126  */
1127 static long do_splice(struct file *in, loff_t __user *off_in,
1128 		      struct file *out, loff_t __user *off_out,
1129 		      size_t len, unsigned int flags)
1130 {
1131 	struct pipe_inode_info *pipe;
1132 	loff_t offset, *off;
1133 	long ret;
1134 
1135 	pipe = pipe_info(in->f_path.dentry->d_inode);
1136 	if (pipe) {
1137 		if (off_in)
1138 			return -ESPIPE;
1139 		if (off_out) {
1140 			if (out->f_op->llseek == no_llseek)
1141 				return -EINVAL;
1142 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1143 				return -EFAULT;
1144 			off = &offset;
1145 		} else
1146 			off = &out->f_pos;
1147 
1148 		ret = do_splice_from(pipe, out, off, len, flags);
1149 
1150 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1151 			ret = -EFAULT;
1152 
1153 		return ret;
1154 	}
1155 
1156 	pipe = pipe_info(out->f_path.dentry->d_inode);
1157 	if (pipe) {
1158 		if (off_out)
1159 			return -ESPIPE;
1160 		if (off_in) {
1161 			if (in->f_op->llseek == no_llseek)
1162 				return -EINVAL;
1163 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1164 				return -EFAULT;
1165 			off = &offset;
1166 		} else
1167 			off = &in->f_pos;
1168 
1169 		ret = do_splice_to(in, off, pipe, len, flags);
1170 
1171 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1172 			ret = -EFAULT;
1173 
1174 		return ret;
1175 	}
1176 
1177 	return -EINVAL;
1178 }
1179 
1180 /*
1181  * Map an iov into an array of pages and offset/length tupples. With the
1182  * partial_page structure, we can map several non-contiguous ranges into
1183  * our ones pages[] map instead of splitting that operation into pieces.
1184  * Could easily be exported as a generic helper for other users, in which
1185  * case one would probably want to add a 'max_nr_pages' parameter as well.
1186  */
1187 static int get_iovec_page_array(const struct iovec __user *iov,
1188 				unsigned int nr_vecs, struct page **pages,
1189 				struct partial_page *partial, int aligned)
1190 {
1191 	int buffers = 0, error = 0;
1192 
1193 	/*
1194 	 * It's ok to take the mmap_sem for reading, even
1195 	 * across a "get_user()".
1196 	 */
1197 	down_read(&current->mm->mmap_sem);
1198 
1199 	while (nr_vecs) {
1200 		unsigned long off, npages;
1201 		void __user *base;
1202 		size_t len;
1203 		int i;
1204 
1205 		/*
1206 		 * Get user address base and length for this iovec.
1207 		 */
1208 		error = get_user(base, &iov->iov_base);
1209 		if (unlikely(error))
1210 			break;
1211 		error = get_user(len, &iov->iov_len);
1212 		if (unlikely(error))
1213 			break;
1214 
1215 		/*
1216 		 * Sanity check this iovec. 0 read succeeds.
1217 		 */
1218 		if (unlikely(!len))
1219 			break;
1220 		error = -EFAULT;
1221 		if (unlikely(!base))
1222 			break;
1223 
1224 		/*
1225 		 * Get this base offset and number of pages, then map
1226 		 * in the user pages.
1227 		 */
1228 		off = (unsigned long) base & ~PAGE_MASK;
1229 
1230 		/*
1231 		 * If asked for alignment, the offset must be zero and the
1232 		 * length a multiple of the PAGE_SIZE.
1233 		 */
1234 		error = -EINVAL;
1235 		if (aligned && (off || len & ~PAGE_MASK))
1236 			break;
1237 
1238 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1239 		if (npages > PIPE_BUFFERS - buffers)
1240 			npages = PIPE_BUFFERS - buffers;
1241 
1242 		error = get_user_pages(current, current->mm,
1243 				       (unsigned long) base, npages, 0, 0,
1244 				       &pages[buffers], NULL);
1245 
1246 		if (unlikely(error <= 0))
1247 			break;
1248 
1249 		/*
1250 		 * Fill this contiguous range into the partial page map.
1251 		 */
1252 		for (i = 0; i < error; i++) {
1253 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1254 
1255 			partial[buffers].offset = off;
1256 			partial[buffers].len = plen;
1257 
1258 			off = 0;
1259 			len -= plen;
1260 			buffers++;
1261 		}
1262 
1263 		/*
1264 		 * We didn't complete this iov, stop here since it probably
1265 		 * means we have to move some of this into a pipe to
1266 		 * be able to continue.
1267 		 */
1268 		if (len)
1269 			break;
1270 
1271 		/*
1272 		 * Don't continue if we mapped fewer pages than we asked for,
1273 		 * or if we mapped the max number of pages that we have
1274 		 * room for.
1275 		 */
1276 		if (error < npages || buffers == PIPE_BUFFERS)
1277 			break;
1278 
1279 		nr_vecs--;
1280 		iov++;
1281 	}
1282 
1283 	up_read(&current->mm->mmap_sem);
1284 
1285 	if (buffers)
1286 		return buffers;
1287 
1288 	return error;
1289 }
1290 
1291 /*
1292  * vmsplice splices a user address range into a pipe. It can be thought of
1293  * as splice-from-memory, where the regular splice is splice-from-file (or
1294  * to file). In both cases the output is a pipe, naturally.
1295  *
1296  * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1297  * not the other way around. Splicing from user memory is a simple operation
1298  * that can be supported without any funky alignment restrictions or nasty
1299  * vm tricks. We simply map in the user memory and fill them into a pipe.
1300  * The reverse isn't quite as easy, though. There are two possible solutions
1301  * for that:
1302  *
1303  *	- memcpy() the data internally, at which point we might as well just
1304  *	  do a regular read() on the buffer anyway.
1305  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1306  *	  has restriction limitations on both ends of the pipe).
1307  *
1308  * Alas, it isn't here.
1309  *
1310  */
1311 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1312 			unsigned long nr_segs, unsigned int flags)
1313 {
1314 	struct pipe_inode_info *pipe;
1315 	struct page *pages[PIPE_BUFFERS];
1316 	struct partial_page partial[PIPE_BUFFERS];
1317 	struct splice_pipe_desc spd = {
1318 		.pages = pages,
1319 		.partial = partial,
1320 		.flags = flags,
1321 		.ops = &user_page_pipe_buf_ops,
1322 	};
1323 
1324 	pipe = pipe_info(file->f_path.dentry->d_inode);
1325 	if (!pipe)
1326 		return -EBADF;
1327 	if (unlikely(nr_segs > UIO_MAXIOV))
1328 		return -EINVAL;
1329 	else if (unlikely(!nr_segs))
1330 		return 0;
1331 
1332 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1333 					    flags & SPLICE_F_GIFT);
1334 	if (spd.nr_pages <= 0)
1335 		return spd.nr_pages;
1336 
1337 	return splice_to_pipe(pipe, &spd);
1338 }
1339 
1340 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1341 			     unsigned long nr_segs, unsigned int flags)
1342 {
1343 	struct file *file;
1344 	long error;
1345 	int fput;
1346 
1347 	error = -EBADF;
1348 	file = fget_light(fd, &fput);
1349 	if (file) {
1350 		if (file->f_mode & FMODE_WRITE)
1351 			error = do_vmsplice(file, iov, nr_segs, flags);
1352 
1353 		fput_light(file, fput);
1354 	}
1355 
1356 	return error;
1357 }
1358 
1359 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1360 			   int fd_out, loff_t __user *off_out,
1361 			   size_t len, unsigned int flags)
1362 {
1363 	long error;
1364 	struct file *in, *out;
1365 	int fput_in, fput_out;
1366 
1367 	if (unlikely(!len))
1368 		return 0;
1369 
1370 	error = -EBADF;
1371 	in = fget_light(fd_in, &fput_in);
1372 	if (in) {
1373 		if (in->f_mode & FMODE_READ) {
1374 			out = fget_light(fd_out, &fput_out);
1375 			if (out) {
1376 				if (out->f_mode & FMODE_WRITE)
1377 					error = do_splice(in, off_in,
1378 							  out, off_out,
1379 							  len, flags);
1380 				fput_light(out, fput_out);
1381 			}
1382 		}
1383 
1384 		fput_light(in, fput_in);
1385 	}
1386 
1387 	return error;
1388 }
1389 
1390 /*
1391  * Make sure there's data to read. Wait for input if we can, otherwise
1392  * return an appropriate error.
1393  */
1394 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1395 {
1396 	int ret;
1397 
1398 	/*
1399 	 * Check ->nrbufs without the inode lock first. This function
1400 	 * is speculative anyways, so missing one is ok.
1401 	 */
1402 	if (pipe->nrbufs)
1403 		return 0;
1404 
1405 	ret = 0;
1406 	mutex_lock(&pipe->inode->i_mutex);
1407 
1408 	while (!pipe->nrbufs) {
1409 		if (signal_pending(current)) {
1410 			ret = -ERESTARTSYS;
1411 			break;
1412 		}
1413 		if (!pipe->writers)
1414 			break;
1415 		if (!pipe->waiting_writers) {
1416 			if (flags & SPLICE_F_NONBLOCK) {
1417 				ret = -EAGAIN;
1418 				break;
1419 			}
1420 		}
1421 		pipe_wait(pipe);
1422 	}
1423 
1424 	mutex_unlock(&pipe->inode->i_mutex);
1425 	return ret;
1426 }
1427 
1428 /*
1429  * Make sure there's writeable room. Wait for room if we can, otherwise
1430  * return an appropriate error.
1431  */
1432 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1433 {
1434 	int ret;
1435 
1436 	/*
1437 	 * Check ->nrbufs without the inode lock first. This function
1438 	 * is speculative anyways, so missing one is ok.
1439 	 */
1440 	if (pipe->nrbufs < PIPE_BUFFERS)
1441 		return 0;
1442 
1443 	ret = 0;
1444 	mutex_lock(&pipe->inode->i_mutex);
1445 
1446 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1447 		if (!pipe->readers) {
1448 			send_sig(SIGPIPE, current, 0);
1449 			ret = -EPIPE;
1450 			break;
1451 		}
1452 		if (flags & SPLICE_F_NONBLOCK) {
1453 			ret = -EAGAIN;
1454 			break;
1455 		}
1456 		if (signal_pending(current)) {
1457 			ret = -ERESTARTSYS;
1458 			break;
1459 		}
1460 		pipe->waiting_writers++;
1461 		pipe_wait(pipe);
1462 		pipe->waiting_writers--;
1463 	}
1464 
1465 	mutex_unlock(&pipe->inode->i_mutex);
1466 	return ret;
1467 }
1468 
1469 /*
1470  * Link contents of ipipe to opipe.
1471  */
1472 static int link_pipe(struct pipe_inode_info *ipipe,
1473 		     struct pipe_inode_info *opipe,
1474 		     size_t len, unsigned int flags)
1475 {
1476 	struct pipe_buffer *ibuf, *obuf;
1477 	int ret = 0, i = 0, nbuf;
1478 
1479 	/*
1480 	 * Potential ABBA deadlock, work around it by ordering lock
1481 	 * grabbing by inode address. Otherwise two different processes
1482 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1483 	 */
1484 	inode_double_lock(ipipe->inode, opipe->inode);
1485 
1486 	do {
1487 		if (!opipe->readers) {
1488 			send_sig(SIGPIPE, current, 0);
1489 			if (!ret)
1490 				ret = -EPIPE;
1491 			break;
1492 		}
1493 
1494 		/*
1495 		 * If we have iterated all input buffers or ran out of
1496 		 * output room, break.
1497 		 */
1498 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1499 			break;
1500 
1501 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1502 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1503 
1504 		/*
1505 		 * Get a reference to this pipe buffer,
1506 		 * so we can copy the contents over.
1507 		 */
1508 		ibuf->ops->get(ipipe, ibuf);
1509 
1510 		obuf = opipe->bufs + nbuf;
1511 		*obuf = *ibuf;
1512 
1513 		/*
1514 		 * Don't inherit the gift flag, we need to
1515 		 * prevent multiple steals of this page.
1516 		 */
1517 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1518 
1519 		if (obuf->len > len)
1520 			obuf->len = len;
1521 
1522 		opipe->nrbufs++;
1523 		ret += obuf->len;
1524 		len -= obuf->len;
1525 		i++;
1526 	} while (len);
1527 
1528 	inode_double_unlock(ipipe->inode, opipe->inode);
1529 
1530 	/*
1531 	 * If we put data in the output pipe, wakeup any potential readers.
1532 	 */
1533 	if (ret > 0) {
1534 		smp_mb();
1535 		if (waitqueue_active(&opipe->wait))
1536 			wake_up_interruptible(&opipe->wait);
1537 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1538 	}
1539 
1540 	return ret;
1541 }
1542 
1543 /*
1544  * This is a tee(1) implementation that works on pipes. It doesn't copy
1545  * any data, it simply references the 'in' pages on the 'out' pipe.
1546  * The 'flags' used are the SPLICE_F_* variants, currently the only
1547  * applicable one is SPLICE_F_NONBLOCK.
1548  */
1549 static long do_tee(struct file *in, struct file *out, size_t len,
1550 		   unsigned int flags)
1551 {
1552 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1553 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1554 	int ret = -EINVAL;
1555 
1556 	/*
1557 	 * Duplicate the contents of ipipe to opipe without actually
1558 	 * copying the data.
1559 	 */
1560 	if (ipipe && opipe && ipipe != opipe) {
1561 		/*
1562 		 * Keep going, unless we encounter an error. The ipipe/opipe
1563 		 * ordering doesn't really matter.
1564 		 */
1565 		ret = link_ipipe_prep(ipipe, flags);
1566 		if (!ret) {
1567 			ret = link_opipe_prep(opipe, flags);
1568 			if (!ret) {
1569 				ret = link_pipe(ipipe, opipe, len, flags);
1570 				if (!ret && (flags & SPLICE_F_NONBLOCK))
1571 					ret = -EAGAIN;
1572 			}
1573 		}
1574 	}
1575 
1576 	return ret;
1577 }
1578 
1579 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1580 {
1581 	struct file *in;
1582 	int error, fput_in;
1583 
1584 	if (unlikely(!len))
1585 		return 0;
1586 
1587 	error = -EBADF;
1588 	in = fget_light(fdin, &fput_in);
1589 	if (in) {
1590 		if (in->f_mode & FMODE_READ) {
1591 			int fput_out;
1592 			struct file *out = fget_light(fdout, &fput_out);
1593 
1594 			if (out) {
1595 				if (out->f_mode & FMODE_WRITE)
1596 					error = do_tee(in, out, len, flags);
1597 				fput_light(out, fput_out);
1598 			}
1599 		}
1600  		fput_light(in, fput_in);
1601  	}
1602 
1603 	return error;
1604 }
1605