xref: /linux/fs/smb/client/smbdirect.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #define __SMBDIRECT_SOCKET_DISCONNECT(__sc) smbd_disconnect_rdma_connection(__sc)
11 #include "../common/smbdirect/smbdirect_pdu.h"
12 #include "smbdirect.h"
13 #include "cifs_debug.h"
14 #include "cifsproto.h"
15 #include "smb2proto.h"
16 
smbd_get_parameters(struct smbd_connection * conn)17 const struct smbdirect_socket_parameters *smbd_get_parameters(struct smbd_connection *conn)
18 {
19 	struct smbdirect_socket *sc = &conn->socket;
20 
21 	return &sc->parameters;
22 }
23 
24 static struct smbdirect_recv_io *get_receive_buffer(
25 		struct smbdirect_socket *sc);
26 static void put_receive_buffer(
27 		struct smbdirect_socket *sc,
28 		struct smbdirect_recv_io *response);
29 static int allocate_receive_buffers(struct smbdirect_socket *sc, int num_buf);
30 static void destroy_receive_buffers(struct smbdirect_socket *sc);
31 
32 static void enqueue_reassembly(
33 		struct smbdirect_socket *sc,
34 		struct smbdirect_recv_io *response, int data_length);
35 static struct smbdirect_recv_io *_get_first_reassembly(
36 		struct smbdirect_socket *sc);
37 
38 static int smbd_post_recv(
39 		struct smbdirect_socket *sc,
40 		struct smbdirect_recv_io *response);
41 
42 static int smbd_post_send_empty(struct smbdirect_socket *sc);
43 
44 static void destroy_mr_list(struct smbdirect_socket *sc);
45 static int allocate_mr_list(struct smbdirect_socket *sc);
46 
47 struct smb_extract_to_rdma {
48 	struct ib_sge		*sge;
49 	unsigned int		nr_sge;
50 	unsigned int		max_sge;
51 	struct ib_device	*device;
52 	u32			local_dma_lkey;
53 	enum dma_data_direction	direction;
54 };
55 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
56 					struct smb_extract_to_rdma *rdma);
57 
58 /* Port numbers for SMBD transport */
59 #define SMB_PORT	445
60 #define SMBD_PORT	5445
61 
62 /* Address lookup and resolve timeout in ms */
63 #define RDMA_RESOLVE_TIMEOUT	5000
64 
65 /* SMBD negotiation timeout in seconds */
66 #define SMBD_NEGOTIATE_TIMEOUT	120
67 
68 /* The timeout to wait for a keepalive message from peer in seconds */
69 #define KEEPALIVE_RECV_TIMEOUT 5
70 
71 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
72 #define SMBD_MIN_RECEIVE_SIZE		128
73 #define SMBD_MIN_FRAGMENTED_SIZE	131072
74 
75 /*
76  * Default maximum number of RDMA read/write outstanding on this connection
77  * This value is possibly decreased during QP creation on hardware limit
78  */
79 #define SMBD_CM_RESPONDER_RESOURCES	32
80 
81 /* Maximum number of retries on data transfer operations */
82 #define SMBD_CM_RETRY			6
83 /* No need to retry on Receiver Not Ready since SMBD manages credits */
84 #define SMBD_CM_RNR_RETRY		0
85 
86 /*
87  * User configurable initial values per SMBD transport connection
88  * as defined in [MS-SMBD] 3.1.1.1
89  * Those may change after a SMBD negotiation
90  */
91 /* The local peer's maximum number of credits to grant to the peer */
92 int smbd_receive_credit_max = 255;
93 
94 /* The remote peer's credit request of local peer */
95 int smbd_send_credit_target = 255;
96 
97 /* The maximum single message size can be sent to remote peer */
98 int smbd_max_send_size = 1364;
99 
100 /*  The maximum fragmented upper-layer payload receive size supported */
101 int smbd_max_fragmented_recv_size = 1024 * 1024;
102 
103 /*  The maximum single-message size which can be received */
104 int smbd_max_receive_size = 1364;
105 
106 /* The timeout to initiate send of a keepalive message on idle */
107 int smbd_keep_alive_interval = 120;
108 
109 /*
110  * User configurable initial values for RDMA transport
111  * The actual values used may be lower and are limited to hardware capabilities
112  */
113 /* Default maximum number of pages in a single RDMA write/read */
114 int smbd_max_frmr_depth = 2048;
115 
116 /* If payload is less than this byte, use RDMA send/recv not read/write */
117 int rdma_readwrite_threshold = 4096;
118 
119 /* Transport logging functions
120  * Logging are defined as classes. They can be OR'ed to define the actual
121  * logging level via module parameter smbd_logging_class
122  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
123  * log_rdma_event()
124  */
125 #define LOG_OUTGOING			0x1
126 #define LOG_INCOMING			0x2
127 #define LOG_READ			0x4
128 #define LOG_WRITE			0x8
129 #define LOG_RDMA_SEND			0x10
130 #define LOG_RDMA_RECV			0x20
131 #define LOG_KEEP_ALIVE			0x40
132 #define LOG_RDMA_EVENT			0x80
133 #define LOG_RDMA_MR			0x100
134 static unsigned int smbd_logging_class;
135 module_param(smbd_logging_class, uint, 0644);
136 MODULE_PARM_DESC(smbd_logging_class,
137 	"Logging class for SMBD transport 0x0 to 0x100");
138 
139 #define ERR		0x0
140 #define INFO		0x1
141 static unsigned int smbd_logging_level = ERR;
142 module_param(smbd_logging_level, uint, 0644);
143 MODULE_PARM_DESC(smbd_logging_level,
144 	"Logging level for SMBD transport, 0 (default): error, 1: info");
145 
146 #define log_rdma(level, class, fmt, args...)				\
147 do {									\
148 	if (level <= smbd_logging_level || class & smbd_logging_class)	\
149 		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
150 } while (0)
151 
152 #define log_outgoing(level, fmt, args...) \
153 		log_rdma(level, LOG_OUTGOING, fmt, ##args)
154 #define log_incoming(level, fmt, args...) \
155 		log_rdma(level, LOG_INCOMING, fmt, ##args)
156 #define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
157 #define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
158 #define log_rdma_send(level, fmt, args...) \
159 		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
160 #define log_rdma_recv(level, fmt, args...) \
161 		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
162 #define log_keep_alive(level, fmt, args...) \
163 		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
164 #define log_rdma_event(level, fmt, args...) \
165 		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
166 #define log_rdma_mr(level, fmt, args...) \
167 		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
168 
smbd_disconnect_wake_up_all(struct smbdirect_socket * sc)169 static void smbd_disconnect_wake_up_all(struct smbdirect_socket *sc)
170 {
171 	/*
172 	 * Wake up all waiters in all wait queues
173 	 * in order to notice the broken connection.
174 	 */
175 	wake_up_all(&sc->status_wait);
176 	wake_up_all(&sc->send_io.lcredits.wait_queue);
177 	wake_up_all(&sc->send_io.credits.wait_queue);
178 	wake_up_all(&sc->send_io.pending.dec_wait_queue);
179 	wake_up_all(&sc->send_io.pending.zero_wait_queue);
180 	wake_up_all(&sc->recv_io.reassembly.wait_queue);
181 	wake_up_all(&sc->mr_io.ready.wait_queue);
182 	wake_up_all(&sc->mr_io.cleanup.wait_queue);
183 }
184 
smbd_disconnect_rdma_work(struct work_struct * work)185 static void smbd_disconnect_rdma_work(struct work_struct *work)
186 {
187 	struct smbdirect_socket *sc =
188 		container_of(work, struct smbdirect_socket, disconnect_work);
189 
190 	if (sc->first_error == 0)
191 		sc->first_error = -ECONNABORTED;
192 
193 	/*
194 	 * make sure this and other work is not queued again
195 	 * but here we don't block and avoid
196 	 * disable[_delayed]_work_sync()
197 	 */
198 	disable_work(&sc->disconnect_work);
199 	disable_work(&sc->recv_io.posted.refill_work);
200 	disable_work(&sc->mr_io.recovery_work);
201 	disable_work(&sc->idle.immediate_work);
202 	disable_delayed_work(&sc->idle.timer_work);
203 
204 	switch (sc->status) {
205 	case SMBDIRECT_SOCKET_NEGOTIATE_NEEDED:
206 	case SMBDIRECT_SOCKET_NEGOTIATE_RUNNING:
207 	case SMBDIRECT_SOCKET_NEGOTIATE_FAILED:
208 	case SMBDIRECT_SOCKET_CONNECTED:
209 	case SMBDIRECT_SOCKET_ERROR:
210 		sc->status = SMBDIRECT_SOCKET_DISCONNECTING;
211 		rdma_disconnect(sc->rdma.cm_id);
212 		break;
213 
214 	case SMBDIRECT_SOCKET_CREATED:
215 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED:
216 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING:
217 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED:
218 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED:
219 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING:
220 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED:
221 	case SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED:
222 	case SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING:
223 	case SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED:
224 		/*
225 		 * rdma_connect() never reached
226 		 * RDMA_CM_EVENT_ESTABLISHED
227 		 */
228 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
229 		break;
230 
231 	case SMBDIRECT_SOCKET_DISCONNECTING:
232 	case SMBDIRECT_SOCKET_DISCONNECTED:
233 	case SMBDIRECT_SOCKET_DESTROYED:
234 		break;
235 	}
236 
237 	/*
238 	 * Wake up all waiters in all wait queues
239 	 * in order to notice the broken connection.
240 	 */
241 	smbd_disconnect_wake_up_all(sc);
242 }
243 
smbd_disconnect_rdma_connection(struct smbdirect_socket * sc)244 static void smbd_disconnect_rdma_connection(struct smbdirect_socket *sc)
245 {
246 	if (sc->first_error == 0)
247 		sc->first_error = -ECONNABORTED;
248 
249 	/*
250 	 * make sure other work (than disconnect_work) is
251 	 * not queued again but here we don't block and avoid
252 	 * disable[_delayed]_work_sync()
253 	 */
254 	disable_work(&sc->recv_io.posted.refill_work);
255 	disable_work(&sc->mr_io.recovery_work);
256 	disable_work(&sc->idle.immediate_work);
257 	disable_delayed_work(&sc->idle.timer_work);
258 
259 	switch (sc->status) {
260 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED:
261 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED:
262 	case SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED:
263 	case SMBDIRECT_SOCKET_NEGOTIATE_FAILED:
264 	case SMBDIRECT_SOCKET_ERROR:
265 	case SMBDIRECT_SOCKET_DISCONNECTING:
266 	case SMBDIRECT_SOCKET_DISCONNECTED:
267 	case SMBDIRECT_SOCKET_DESTROYED:
268 		/*
269 		 * Keep the current error status
270 		 */
271 		break;
272 
273 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED:
274 	case SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING:
275 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED;
276 		break;
277 
278 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED:
279 	case SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING:
280 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED;
281 		break;
282 
283 	case SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED:
284 	case SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING:
285 		sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED;
286 		break;
287 
288 	case SMBDIRECT_SOCKET_NEGOTIATE_NEEDED:
289 	case SMBDIRECT_SOCKET_NEGOTIATE_RUNNING:
290 		sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
291 		break;
292 
293 	case SMBDIRECT_SOCKET_CREATED:
294 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
295 		break;
296 
297 	case SMBDIRECT_SOCKET_CONNECTED:
298 		sc->status = SMBDIRECT_SOCKET_ERROR;
299 		break;
300 	}
301 
302 	/*
303 	 * Wake up all waiters in all wait queues
304 	 * in order to notice the broken connection.
305 	 */
306 	smbd_disconnect_wake_up_all(sc);
307 
308 	queue_work(sc->workqueue, &sc->disconnect_work);
309 }
310 
311 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)312 static int smbd_conn_upcall(
313 		struct rdma_cm_id *id, struct rdma_cm_event *event)
314 {
315 	struct smbdirect_socket *sc = id->context;
316 	struct smbdirect_socket_parameters *sp = &sc->parameters;
317 	const char *event_name = rdma_event_msg(event->event);
318 	u8 peer_initiator_depth;
319 	u8 peer_responder_resources;
320 
321 	log_rdma_event(INFO, "event=%s status=%d\n",
322 		event_name, event->status);
323 
324 	switch (event->event) {
325 	case RDMA_CM_EVENT_ADDR_RESOLVED:
326 		if (SMBDIRECT_CHECK_STATUS_DISCONNECT(sc, SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING))
327 			break;
328 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED;
329 		wake_up(&sc->status_wait);
330 		break;
331 
332 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
333 		if (SMBDIRECT_CHECK_STATUS_DISCONNECT(sc, SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING))
334 			break;
335 		sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED;
336 		wake_up(&sc->status_wait);
337 		break;
338 
339 	case RDMA_CM_EVENT_ADDR_ERROR:
340 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
341 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED;
342 		smbd_disconnect_rdma_work(&sc->disconnect_work);
343 		break;
344 
345 	case RDMA_CM_EVENT_ROUTE_ERROR:
346 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
347 		sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED;
348 		smbd_disconnect_rdma_work(&sc->disconnect_work);
349 		break;
350 
351 	case RDMA_CM_EVENT_ESTABLISHED:
352 		log_rdma_event(INFO, "connected event=%s\n", event_name);
353 
354 		/*
355 		 * Here we work around an inconsistency between
356 		 * iWarp and other devices (at least rxe and irdma using RoCEv2)
357 		 */
358 		if (rdma_protocol_iwarp(id->device, id->port_num)) {
359 			/*
360 			 * iWarp devices report the peer's values
361 			 * with the perspective of the peer here.
362 			 * Tested with siw and irdma (in iwarp mode)
363 			 * We need to change to our perspective here,
364 			 * so we need to switch the values.
365 			 */
366 			peer_initiator_depth = event->param.conn.responder_resources;
367 			peer_responder_resources = event->param.conn.initiator_depth;
368 		} else {
369 			/*
370 			 * Non iWarp devices report the peer's values
371 			 * already changed to our perspective here.
372 			 * Tested with rxe and irdma (in roce mode).
373 			 */
374 			peer_initiator_depth = event->param.conn.initiator_depth;
375 			peer_responder_resources = event->param.conn.responder_resources;
376 		}
377 		if (rdma_protocol_iwarp(id->device, id->port_num) &&
378 		    event->param.conn.private_data_len == 8) {
379 			/*
380 			 * Legacy clients with only iWarp MPA v1 support
381 			 * need a private blob in order to negotiate
382 			 * the IRD/ORD values.
383 			 */
384 			const __be32 *ird_ord_hdr = event->param.conn.private_data;
385 			u32 ird32 = be32_to_cpu(ird_ord_hdr[0]);
386 			u32 ord32 = be32_to_cpu(ird_ord_hdr[1]);
387 
388 			/*
389 			 * cifs.ko sends the legacy IRD/ORD negotiation
390 			 * event if iWarp MPA v2 was used.
391 			 *
392 			 * Here we check that the values match and only
393 			 * mark the client as legacy if they don't match.
394 			 */
395 			if ((u32)event->param.conn.initiator_depth != ird32 ||
396 			    (u32)event->param.conn.responder_resources != ord32) {
397 				/*
398 				 * There are broken clients (old cifs.ko)
399 				 * using little endian and also
400 				 * struct rdma_conn_param only uses u8
401 				 * for initiator_depth and responder_resources,
402 				 * so we truncate the value to U8_MAX.
403 				 *
404 				 * smb_direct_accept_client() will then
405 				 * do the real negotiation in order to
406 				 * select the minimum between client and
407 				 * server.
408 				 */
409 				ird32 = min_t(u32, ird32, U8_MAX);
410 				ord32 = min_t(u32, ord32, U8_MAX);
411 
412 				sc->rdma.legacy_iwarp = true;
413 				peer_initiator_depth = (u8)ird32;
414 				peer_responder_resources = (u8)ord32;
415 			}
416 		}
417 
418 		/*
419 		 * negotiate the value by using the minimum
420 		 * between client and server if the client provided
421 		 * non 0 values.
422 		 */
423 		if (peer_initiator_depth != 0)
424 			sp->initiator_depth =
425 					min_t(u8, sp->initiator_depth,
426 					      peer_initiator_depth);
427 		if (peer_responder_resources != 0)
428 			sp->responder_resources =
429 					min_t(u8, sp->responder_resources,
430 					      peer_responder_resources);
431 
432 		if (SMBDIRECT_CHECK_STATUS_DISCONNECT(sc, SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING))
433 			break;
434 		sc->status = SMBDIRECT_SOCKET_NEGOTIATE_NEEDED;
435 		wake_up(&sc->status_wait);
436 		break;
437 
438 	case RDMA_CM_EVENT_CONNECT_ERROR:
439 	case RDMA_CM_EVENT_UNREACHABLE:
440 	case RDMA_CM_EVENT_REJECTED:
441 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
442 		sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED;
443 		smbd_disconnect_rdma_work(&sc->disconnect_work);
444 		break;
445 
446 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
447 	case RDMA_CM_EVENT_DISCONNECTED:
448 		/* This happens when we fail the negotiation */
449 		if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) {
450 			log_rdma_event(ERR, "event=%s during negotiation\n", event_name);
451 		}
452 
453 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
454 		smbd_disconnect_rdma_work(&sc->disconnect_work);
455 		break;
456 
457 	default:
458 		log_rdma_event(ERR, "unexpected event=%s status=%d\n",
459 			       event_name, event->status);
460 		break;
461 	}
462 
463 	return 0;
464 }
465 
466 /* Upcall from RDMA QP */
467 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)468 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
469 {
470 	struct smbdirect_socket *sc = context;
471 
472 	log_rdma_event(ERR, "%s on device %s socket %p\n",
473 		ib_event_msg(event->event), event->device->name, sc);
474 
475 	switch (event->event) {
476 	case IB_EVENT_CQ_ERR:
477 	case IB_EVENT_QP_FATAL:
478 		smbd_disconnect_rdma_connection(sc);
479 		break;
480 
481 	default:
482 		break;
483 	}
484 }
485 
smbdirect_send_io_payload(struct smbdirect_send_io * request)486 static inline void *smbdirect_send_io_payload(struct smbdirect_send_io *request)
487 {
488 	return (void *)request->packet;
489 }
490 
smbdirect_recv_io_payload(struct smbdirect_recv_io * response)491 static inline void *smbdirect_recv_io_payload(struct smbdirect_recv_io *response)
492 {
493 	return (void *)response->packet;
494 }
495 
496 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)497 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
498 {
499 	int i;
500 	struct smbdirect_send_io *request =
501 		container_of(wc->wr_cqe, struct smbdirect_send_io, cqe);
502 	struct smbdirect_socket *sc = request->socket;
503 	int lcredits = 0;
504 
505 	log_rdma_send(INFO, "smbdirect_send_io 0x%p completed wc->status=%s\n",
506 		request, ib_wc_status_msg(wc->status));
507 
508 	for (i = 0; i < request->num_sge; i++)
509 		ib_dma_unmap_single(sc->ib.dev,
510 			request->sge[i].addr,
511 			request->sge[i].length,
512 			DMA_TO_DEVICE);
513 	mempool_free(request, sc->send_io.mem.pool);
514 	lcredits += 1;
515 
516 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
517 		if (wc->status != IB_WC_WR_FLUSH_ERR)
518 			log_rdma_send(ERR, "wc->status=%s wc->opcode=%d\n",
519 				ib_wc_status_msg(wc->status), wc->opcode);
520 		smbd_disconnect_rdma_connection(sc);
521 		return;
522 	}
523 
524 	atomic_add(lcredits, &sc->send_io.lcredits.count);
525 	wake_up(&sc->send_io.lcredits.wait_queue);
526 
527 	if (atomic_dec_and_test(&sc->send_io.pending.count))
528 		wake_up(&sc->send_io.pending.zero_wait_queue);
529 
530 	wake_up(&sc->send_io.pending.dec_wait_queue);
531 }
532 
dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp * resp)533 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp)
534 {
535 	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
536 		       resp->min_version, resp->max_version,
537 		       resp->negotiated_version, resp->credits_requested,
538 		       resp->credits_granted, resp->status,
539 		       resp->max_readwrite_size, resp->preferred_send_size,
540 		       resp->max_receive_size, resp->max_fragmented_size);
541 }
542 
543 /*
544  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
545  * response, packet_length: the negotiation response message
546  * return value: true if negotiation is a success, false if failed
547  */
process_negotiation_response(struct smbdirect_recv_io * response,int packet_length)548 static bool process_negotiation_response(
549 		struct smbdirect_recv_io *response, int packet_length)
550 {
551 	struct smbdirect_socket *sc = response->socket;
552 	struct smbdirect_socket_parameters *sp = &sc->parameters;
553 	struct smbdirect_negotiate_resp *packet = smbdirect_recv_io_payload(response);
554 
555 	if (packet_length < sizeof(struct smbdirect_negotiate_resp)) {
556 		log_rdma_event(ERR,
557 			"error: packet_length=%d\n", packet_length);
558 		return false;
559 	}
560 
561 	if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) {
562 		log_rdma_event(ERR, "error: negotiated_version=%x\n",
563 			le16_to_cpu(packet->negotiated_version));
564 		return false;
565 	}
566 
567 	if (packet->credits_requested == 0) {
568 		log_rdma_event(ERR, "error: credits_requested==0\n");
569 		return false;
570 	}
571 	sc->recv_io.credits.target = le16_to_cpu(packet->credits_requested);
572 	sc->recv_io.credits.target = min_t(u16, sc->recv_io.credits.target, sp->recv_credit_max);
573 
574 	if (packet->credits_granted == 0) {
575 		log_rdma_event(ERR, "error: credits_granted==0\n");
576 		return false;
577 	}
578 	atomic_set(&sc->send_io.lcredits.count, sp->send_credit_target);
579 	atomic_set(&sc->send_io.credits.count, le16_to_cpu(packet->credits_granted));
580 
581 	if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) {
582 		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
583 			le32_to_cpu(packet->preferred_send_size));
584 		return false;
585 	}
586 	sp->max_recv_size = le32_to_cpu(packet->preferred_send_size);
587 
588 	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
589 		log_rdma_event(ERR, "error: max_receive_size=%d\n",
590 			le32_to_cpu(packet->max_receive_size));
591 		return false;
592 	}
593 	sp->max_send_size = min_t(u32, sp->max_send_size,
594 				  le32_to_cpu(packet->max_receive_size));
595 
596 	if (le32_to_cpu(packet->max_fragmented_size) <
597 			SMBD_MIN_FRAGMENTED_SIZE) {
598 		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
599 			le32_to_cpu(packet->max_fragmented_size));
600 		return false;
601 	}
602 	sp->max_fragmented_send_size =
603 		le32_to_cpu(packet->max_fragmented_size);
604 
605 
606 	sp->max_read_write_size = min_t(u32,
607 			le32_to_cpu(packet->max_readwrite_size),
608 			sp->max_frmr_depth * PAGE_SIZE);
609 	sp->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE;
610 
611 	sc->recv_io.expected = SMBDIRECT_EXPECT_DATA_TRANSFER;
612 	return true;
613 }
614 
smbd_post_send_credits(struct work_struct * work)615 static void smbd_post_send_credits(struct work_struct *work)
616 {
617 	int rc;
618 	struct smbdirect_recv_io *response;
619 	struct smbdirect_socket *sc =
620 		container_of(work, struct smbdirect_socket, recv_io.posted.refill_work);
621 
622 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
623 		return;
624 	}
625 
626 	if (sc->recv_io.credits.target >
627 		atomic_read(&sc->recv_io.credits.count)) {
628 		while (true) {
629 			response = get_receive_buffer(sc);
630 			if (!response)
631 				break;
632 
633 			response->first_segment = false;
634 			rc = smbd_post_recv(sc, response);
635 			if (rc) {
636 				log_rdma_recv(ERR,
637 					"post_recv failed rc=%d\n", rc);
638 				put_receive_buffer(sc, response);
639 				break;
640 			}
641 
642 			atomic_inc(&sc->recv_io.posted.count);
643 		}
644 	}
645 
646 	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
647 	if (atomic_read(&sc->recv_io.credits.count) <
648 		sc->recv_io.credits.target - 1) {
649 		log_keep_alive(INFO, "schedule send of an empty message\n");
650 		queue_work(sc->workqueue, &sc->idle.immediate_work);
651 	}
652 }
653 
654 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)655 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
656 {
657 	struct smbdirect_data_transfer *data_transfer;
658 	struct smbdirect_recv_io *response =
659 		container_of(wc->wr_cqe, struct smbdirect_recv_io, cqe);
660 	struct smbdirect_socket *sc = response->socket;
661 	struct smbdirect_socket_parameters *sp = &sc->parameters;
662 	u16 old_recv_credit_target;
663 	u32 data_offset = 0;
664 	u32 data_length = 0;
665 	u32 remaining_data_length = 0;
666 	bool negotiate_done = false;
667 
668 	log_rdma_recv(INFO,
669 		      "response=0x%p type=%d wc status=%s wc opcode %d byte_len=%d pkey_index=%u\n",
670 		      response, sc->recv_io.expected,
671 		      ib_wc_status_msg(wc->status), wc->opcode,
672 		      wc->byte_len, wc->pkey_index);
673 
674 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
675 		if (wc->status != IB_WC_WR_FLUSH_ERR)
676 			log_rdma_recv(ERR, "wc->status=%s opcode=%d\n",
677 				ib_wc_status_msg(wc->status), wc->opcode);
678 		goto error;
679 	}
680 
681 	ib_dma_sync_single_for_cpu(
682 		wc->qp->device,
683 		response->sge.addr,
684 		response->sge.length,
685 		DMA_FROM_DEVICE);
686 
687 	/*
688 	 * Reset timer to the keepalive interval in
689 	 * order to trigger our next keepalive message.
690 	 */
691 	sc->idle.keepalive = SMBDIRECT_KEEPALIVE_NONE;
692 	mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
693 			 msecs_to_jiffies(sp->keepalive_interval_msec));
694 
695 	switch (sc->recv_io.expected) {
696 	/* SMBD negotiation response */
697 	case SMBDIRECT_EXPECT_NEGOTIATE_REP:
698 		dump_smbdirect_negotiate_resp(smbdirect_recv_io_payload(response));
699 		sc->recv_io.reassembly.full_packet_received = true;
700 		negotiate_done =
701 			process_negotiation_response(response, wc->byte_len);
702 		put_receive_buffer(sc, response);
703 		if (SMBDIRECT_CHECK_STATUS_WARN(sc, SMBDIRECT_SOCKET_NEGOTIATE_RUNNING))
704 			negotiate_done = false;
705 		if (!negotiate_done) {
706 			sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
707 			smbd_disconnect_rdma_connection(sc);
708 		} else {
709 			sc->status = SMBDIRECT_SOCKET_CONNECTED;
710 			wake_up(&sc->status_wait);
711 		}
712 
713 		return;
714 
715 	/* SMBD data transfer packet */
716 	case SMBDIRECT_EXPECT_DATA_TRANSFER:
717 		data_transfer = smbdirect_recv_io_payload(response);
718 
719 		if (wc->byte_len <
720 		    offsetof(struct smbdirect_data_transfer, padding))
721 			goto error;
722 
723 		remaining_data_length = le32_to_cpu(data_transfer->remaining_data_length);
724 		data_offset = le32_to_cpu(data_transfer->data_offset);
725 		data_length = le32_to_cpu(data_transfer->data_length);
726 		if (wc->byte_len < data_offset ||
727 		    (u64)wc->byte_len < (u64)data_offset + data_length)
728 			goto error;
729 
730 		if (remaining_data_length > sp->max_fragmented_recv_size ||
731 		    data_length > sp->max_fragmented_recv_size ||
732 		    (u64)remaining_data_length + (u64)data_length > (u64)sp->max_fragmented_recv_size)
733 			goto error;
734 
735 		if (data_length) {
736 			if (sc->recv_io.reassembly.full_packet_received)
737 				response->first_segment = true;
738 
739 			if (le32_to_cpu(data_transfer->remaining_data_length))
740 				sc->recv_io.reassembly.full_packet_received = false;
741 			else
742 				sc->recv_io.reassembly.full_packet_received = true;
743 		}
744 
745 		atomic_dec(&sc->recv_io.posted.count);
746 		atomic_dec(&sc->recv_io.credits.count);
747 		old_recv_credit_target = sc->recv_io.credits.target;
748 		sc->recv_io.credits.target =
749 			le16_to_cpu(data_transfer->credits_requested);
750 		sc->recv_io.credits.target =
751 			min_t(u16, sc->recv_io.credits.target, sp->recv_credit_max);
752 		sc->recv_io.credits.target =
753 			max_t(u16, sc->recv_io.credits.target, 1);
754 		if (le16_to_cpu(data_transfer->credits_granted)) {
755 			atomic_add(le16_to_cpu(data_transfer->credits_granted),
756 				&sc->send_io.credits.count);
757 			/*
758 			 * We have new send credits granted from remote peer
759 			 * If any sender is waiting for credits, unblock it
760 			 */
761 			wake_up(&sc->send_io.credits.wait_queue);
762 		}
763 
764 		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
765 			     le16_to_cpu(data_transfer->flags),
766 			     le32_to_cpu(data_transfer->data_offset),
767 			     le32_to_cpu(data_transfer->data_length),
768 			     le32_to_cpu(data_transfer->remaining_data_length));
769 
770 		/* Send an immediate response right away if requested */
771 		if (le16_to_cpu(data_transfer->flags) &
772 				SMBDIRECT_FLAG_RESPONSE_REQUESTED) {
773 			log_keep_alive(INFO, "schedule send of immediate response\n");
774 			queue_work(sc->workqueue, &sc->idle.immediate_work);
775 		}
776 
777 		/*
778 		 * If this is a packet with data playload place the data in
779 		 * reassembly queue and wake up the reading thread
780 		 */
781 		if (data_length) {
782 			if (sc->recv_io.credits.target > old_recv_credit_target)
783 				queue_work(sc->workqueue, &sc->recv_io.posted.refill_work);
784 
785 			enqueue_reassembly(sc, response, data_length);
786 			wake_up(&sc->recv_io.reassembly.wait_queue);
787 		} else
788 			put_receive_buffer(sc, response);
789 
790 		return;
791 
792 	case SMBDIRECT_EXPECT_NEGOTIATE_REQ:
793 		/* Only server... */
794 		break;
795 	}
796 
797 	/*
798 	 * This is an internal error!
799 	 */
800 	log_rdma_recv(ERR, "unexpected response type=%d\n", sc->recv_io.expected);
801 	WARN_ON_ONCE(sc->recv_io.expected != SMBDIRECT_EXPECT_DATA_TRANSFER);
802 error:
803 	put_receive_buffer(sc, response);
804 	smbd_disconnect_rdma_connection(sc);
805 }
806 
smbd_create_id(struct smbdirect_socket * sc,struct sockaddr * dstaddr,int port)807 static struct rdma_cm_id *smbd_create_id(
808 		struct smbdirect_socket *sc,
809 		struct sockaddr *dstaddr, int port)
810 {
811 	struct smbdirect_socket_parameters *sp = &sc->parameters;
812 	struct rdma_cm_id *id;
813 	int rc;
814 	__be16 *sport;
815 
816 	id = rdma_create_id(&init_net, smbd_conn_upcall, sc,
817 		RDMA_PS_TCP, IB_QPT_RC);
818 	if (IS_ERR(id)) {
819 		rc = PTR_ERR(id);
820 		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
821 		return id;
822 	}
823 
824 	if (dstaddr->sa_family == AF_INET6)
825 		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
826 	else
827 		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
828 
829 	*sport = htons(port);
830 
831 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED);
832 	sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING;
833 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
834 		sp->resolve_addr_timeout_msec);
835 	if (rc) {
836 		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
837 		goto out;
838 	}
839 	rc = wait_event_interruptible_timeout(
840 		sc->status_wait,
841 		sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING,
842 		msecs_to_jiffies(sp->resolve_addr_timeout_msec));
843 	/* e.g. if interrupted returns -ERESTARTSYS */
844 	if (rc < 0) {
845 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
846 		goto out;
847 	}
848 	if (sc->status == SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING) {
849 		rc = -ETIMEDOUT;
850 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
851 		goto out;
852 	}
853 	if (sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED) {
854 		rc = -EHOSTUNREACH;
855 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
856 		goto out;
857 	}
858 
859 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED);
860 	sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING;
861 	rc = rdma_resolve_route(id, sp->resolve_route_timeout_msec);
862 	if (rc) {
863 		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
864 		goto out;
865 	}
866 	rc = wait_event_interruptible_timeout(
867 		sc->status_wait,
868 		sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING,
869 		msecs_to_jiffies(sp->resolve_route_timeout_msec));
870 	/* e.g. if interrupted returns -ERESTARTSYS */
871 	if (rc < 0)  {
872 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
873 		goto out;
874 	}
875 	if (sc->status == SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING) {
876 		rc = -ETIMEDOUT;
877 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
878 		goto out;
879 	}
880 	if (sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED) {
881 		rc = -ENETUNREACH;
882 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
883 		goto out;
884 	}
885 
886 	return id;
887 
888 out:
889 	rdma_destroy_id(id);
890 	return ERR_PTR(rc);
891 }
892 
893 /*
894  * Test if FRWR (Fast Registration Work Requests) is supported on the device
895  * This implementation requires FRWR on RDMA read/write
896  * return value: true if it is supported
897  */
frwr_is_supported(struct ib_device_attr * attrs)898 static bool frwr_is_supported(struct ib_device_attr *attrs)
899 {
900 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
901 		return false;
902 	if (attrs->max_fast_reg_page_list_len == 0)
903 		return false;
904 	return true;
905 }
906 
smbd_ia_open(struct smbdirect_socket * sc,struct sockaddr * dstaddr,int port)907 static int smbd_ia_open(
908 		struct smbdirect_socket *sc,
909 		struct sockaddr *dstaddr, int port)
910 {
911 	struct smbdirect_socket_parameters *sp = &sc->parameters;
912 	int rc;
913 
914 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_CREATED);
915 	sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED;
916 
917 	sc->rdma.cm_id = smbd_create_id(sc, dstaddr, port);
918 	if (IS_ERR(sc->rdma.cm_id)) {
919 		rc = PTR_ERR(sc->rdma.cm_id);
920 		goto out1;
921 	}
922 	sc->ib.dev = sc->rdma.cm_id->device;
923 
924 	if (!frwr_is_supported(&sc->ib.dev->attrs)) {
925 		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
926 		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
927 			       sc->ib.dev->attrs.device_cap_flags,
928 			       sc->ib.dev->attrs.max_fast_reg_page_list_len);
929 		rc = -EPROTONOSUPPORT;
930 		goto out2;
931 	}
932 	sp->max_frmr_depth = min_t(u32,
933 		sp->max_frmr_depth,
934 		sc->ib.dev->attrs.max_fast_reg_page_list_len);
935 	sc->mr_io.type = IB_MR_TYPE_MEM_REG;
936 	if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
937 		sc->mr_io.type = IB_MR_TYPE_SG_GAPS;
938 
939 	return 0;
940 
941 out2:
942 	rdma_destroy_id(sc->rdma.cm_id);
943 	sc->rdma.cm_id = NULL;
944 
945 out1:
946 	return rc;
947 }
948 
949 /*
950  * Send a negotiation request message to the peer
951  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
952  * After negotiation, the transport is connected and ready for
953  * carrying upper layer SMB payload
954  */
smbd_post_send_negotiate_req(struct smbdirect_socket * sc)955 static int smbd_post_send_negotiate_req(struct smbdirect_socket *sc)
956 {
957 	struct smbdirect_socket_parameters *sp = &sc->parameters;
958 	struct ib_send_wr send_wr;
959 	int rc = -ENOMEM;
960 	struct smbdirect_send_io *request;
961 	struct smbdirect_negotiate_req *packet;
962 
963 	request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
964 	if (!request)
965 		return rc;
966 
967 	request->socket = sc;
968 
969 	packet = smbdirect_send_io_payload(request);
970 	packet->min_version = cpu_to_le16(SMBDIRECT_V1);
971 	packet->max_version = cpu_to_le16(SMBDIRECT_V1);
972 	packet->reserved = 0;
973 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
974 	packet->preferred_send_size = cpu_to_le32(sp->max_send_size);
975 	packet->max_receive_size = cpu_to_le32(sp->max_recv_size);
976 	packet->max_fragmented_size =
977 		cpu_to_le32(sp->max_fragmented_recv_size);
978 
979 	request->num_sge = 1;
980 	request->sge[0].addr = ib_dma_map_single(
981 				sc->ib.dev, (void *)packet,
982 				sizeof(*packet), DMA_TO_DEVICE);
983 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
984 		rc = -EIO;
985 		goto dma_mapping_failed;
986 	}
987 
988 	request->sge[0].length = sizeof(*packet);
989 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
990 
991 	ib_dma_sync_single_for_device(
992 		sc->ib.dev, request->sge[0].addr,
993 		request->sge[0].length, DMA_TO_DEVICE);
994 
995 	request->cqe.done = send_done;
996 
997 	send_wr.next = NULL;
998 	send_wr.wr_cqe = &request->cqe;
999 	send_wr.sg_list = request->sge;
1000 	send_wr.num_sge = request->num_sge;
1001 	send_wr.opcode = IB_WR_SEND;
1002 	send_wr.send_flags = IB_SEND_SIGNALED;
1003 
1004 	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
1005 		request->sge[0].addr,
1006 		request->sge[0].length, request->sge[0].lkey);
1007 
1008 	atomic_inc(&sc->send_io.pending.count);
1009 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
1010 	if (!rc)
1011 		return 0;
1012 
1013 	/* if we reach here, post send failed */
1014 	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1015 	atomic_dec(&sc->send_io.pending.count);
1016 	ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr,
1017 		request->sge[0].length, DMA_TO_DEVICE);
1018 
1019 	smbd_disconnect_rdma_connection(sc);
1020 
1021 dma_mapping_failed:
1022 	mempool_free(request, sc->send_io.mem.pool);
1023 	return rc;
1024 }
1025 
1026 /*
1027  * Extend the credits to remote peer
1028  * This implements [MS-SMBD] 3.1.5.9
1029  * The idea is that we should extend credits to remote peer as quickly as
1030  * it's allowed, to maintain data flow. We allocate as much receive
1031  * buffer as possible, and extend the receive credits to remote peer
1032  * return value: the new credtis being granted.
1033  */
manage_credits_prior_sending(struct smbdirect_socket * sc)1034 static int manage_credits_prior_sending(struct smbdirect_socket *sc)
1035 {
1036 	int new_credits;
1037 
1038 	if (atomic_read(&sc->recv_io.credits.count) >= sc->recv_io.credits.target)
1039 		return 0;
1040 
1041 	new_credits = atomic_read(&sc->recv_io.posted.count);
1042 	if (new_credits == 0)
1043 		return 0;
1044 
1045 	new_credits -= atomic_read(&sc->recv_io.credits.count);
1046 	if (new_credits <= 0)
1047 		return 0;
1048 
1049 	return new_credits;
1050 }
1051 
1052 /*
1053  * Check if we need to send a KEEP_ALIVE message
1054  * The idle connection timer triggers a KEEP_ALIVE message when expires
1055  * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send
1056  * back a response.
1057  * return value:
1058  * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set
1059  * 0: otherwise
1060  */
manage_keep_alive_before_sending(struct smbdirect_socket * sc)1061 static int manage_keep_alive_before_sending(struct smbdirect_socket *sc)
1062 {
1063 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1064 
1065 	if (sc->idle.keepalive == SMBDIRECT_KEEPALIVE_PENDING) {
1066 		sc->idle.keepalive = SMBDIRECT_KEEPALIVE_SENT;
1067 		/*
1068 		 * Now use the keepalive timeout (instead of keepalive interval)
1069 		 * in order to wait for a response
1070 		 */
1071 		mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1072 				 msecs_to_jiffies(sp->keepalive_timeout_msec));
1073 		return 1;
1074 	}
1075 	return 0;
1076 }
1077 
1078 /* Post the send request */
smbd_post_send(struct smbdirect_socket * sc,struct smbdirect_send_io * request)1079 static int smbd_post_send(struct smbdirect_socket *sc,
1080 		struct smbdirect_send_io *request)
1081 {
1082 	struct ib_send_wr send_wr;
1083 	int rc, i;
1084 
1085 	for (i = 0; i < request->num_sge; i++) {
1086 		log_rdma_send(INFO,
1087 			"rdma_request sge[%d] addr=0x%llx length=%u\n",
1088 			i, request->sge[i].addr, request->sge[i].length);
1089 		ib_dma_sync_single_for_device(
1090 			sc->ib.dev,
1091 			request->sge[i].addr,
1092 			request->sge[i].length,
1093 			DMA_TO_DEVICE);
1094 	}
1095 
1096 	request->cqe.done = send_done;
1097 
1098 	send_wr.next = NULL;
1099 	send_wr.wr_cqe = &request->cqe;
1100 	send_wr.sg_list = request->sge;
1101 	send_wr.num_sge = request->num_sge;
1102 	send_wr.opcode = IB_WR_SEND;
1103 	send_wr.send_flags = IB_SEND_SIGNALED;
1104 
1105 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
1106 	if (rc) {
1107 		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1108 		smbd_disconnect_rdma_connection(sc);
1109 		rc = -EAGAIN;
1110 	}
1111 
1112 	return rc;
1113 }
1114 
smbd_post_send_iter(struct smbdirect_socket * sc,struct iov_iter * iter,int * _remaining_data_length)1115 static int smbd_post_send_iter(struct smbdirect_socket *sc,
1116 			       struct iov_iter *iter,
1117 			       int *_remaining_data_length)
1118 {
1119 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1120 	int i, rc;
1121 	int header_length;
1122 	int data_length;
1123 	struct smbdirect_send_io *request;
1124 	struct smbdirect_data_transfer *packet;
1125 	int new_credits = 0;
1126 
1127 wait_lcredit:
1128 	/* Wait for local send credits */
1129 	rc = wait_event_interruptible(sc->send_io.lcredits.wait_queue,
1130 		atomic_read(&sc->send_io.lcredits.count) > 0 ||
1131 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
1132 	if (rc)
1133 		goto err_wait_lcredit;
1134 
1135 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1136 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
1137 		rc = -EAGAIN;
1138 		goto err_wait_lcredit;
1139 	}
1140 	if (unlikely(atomic_dec_return(&sc->send_io.lcredits.count) < 0)) {
1141 		atomic_inc(&sc->send_io.lcredits.count);
1142 		goto wait_lcredit;
1143 	}
1144 
1145 wait_credit:
1146 	/* Wait for send credits. A SMBD packet needs one credit */
1147 	rc = wait_event_interruptible(sc->send_io.credits.wait_queue,
1148 		atomic_read(&sc->send_io.credits.count) > 0 ||
1149 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
1150 	if (rc)
1151 		goto err_wait_credit;
1152 
1153 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1154 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
1155 		rc = -EAGAIN;
1156 		goto err_wait_credit;
1157 	}
1158 	if (unlikely(atomic_dec_return(&sc->send_io.credits.count) < 0)) {
1159 		atomic_inc(&sc->send_io.credits.count);
1160 		goto wait_credit;
1161 	}
1162 
1163 	request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
1164 	if (!request) {
1165 		rc = -ENOMEM;
1166 		goto err_alloc;
1167 	}
1168 
1169 	request->socket = sc;
1170 	memset(request->sge, 0, sizeof(request->sge));
1171 
1172 	/* Map the packet to DMA */
1173 	header_length = sizeof(struct smbdirect_data_transfer);
1174 	/* If this is a packet without payload, don't send padding */
1175 	if (!iter)
1176 		header_length = offsetof(struct smbdirect_data_transfer, padding);
1177 
1178 	packet = smbdirect_send_io_payload(request);
1179 	request->sge[0].addr = ib_dma_map_single(sc->ib.dev,
1180 						 (void *)packet,
1181 						 header_length,
1182 						 DMA_TO_DEVICE);
1183 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
1184 		rc = -EIO;
1185 		goto err_dma;
1186 	}
1187 
1188 	request->sge[0].length = header_length;
1189 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
1190 	request->num_sge = 1;
1191 
1192 	/* Fill in the data payload to find out how much data we can add */
1193 	if (iter) {
1194 		struct smb_extract_to_rdma extract = {
1195 			.nr_sge		= request->num_sge,
1196 			.max_sge	= SMBDIRECT_SEND_IO_MAX_SGE,
1197 			.sge		= request->sge,
1198 			.device		= sc->ib.dev,
1199 			.local_dma_lkey	= sc->ib.pd->local_dma_lkey,
1200 			.direction	= DMA_TO_DEVICE,
1201 		};
1202 		size_t payload_len = umin(*_remaining_data_length,
1203 					  sp->max_send_size - sizeof(*packet));
1204 
1205 		rc = smb_extract_iter_to_rdma(iter, payload_len,
1206 					      &extract);
1207 		if (rc < 0)
1208 			goto err_dma;
1209 		data_length = rc;
1210 		request->num_sge = extract.nr_sge;
1211 		*_remaining_data_length -= data_length;
1212 	} else {
1213 		data_length = 0;
1214 	}
1215 
1216 	/* Fill in the packet header */
1217 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
1218 
1219 	new_credits = manage_credits_prior_sending(sc);
1220 	atomic_add(new_credits, &sc->recv_io.credits.count);
1221 	packet->credits_granted = cpu_to_le16(new_credits);
1222 
1223 	packet->flags = 0;
1224 	if (manage_keep_alive_before_sending(sc))
1225 		packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED);
1226 
1227 	packet->reserved = 0;
1228 	if (!data_length)
1229 		packet->data_offset = 0;
1230 	else
1231 		packet->data_offset = cpu_to_le32(24);
1232 	packet->data_length = cpu_to_le32(data_length);
1233 	packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
1234 	packet->padding = 0;
1235 
1236 	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
1237 		     le16_to_cpu(packet->credits_requested),
1238 		     le16_to_cpu(packet->credits_granted),
1239 		     le32_to_cpu(packet->data_offset),
1240 		     le32_to_cpu(packet->data_length),
1241 		     le32_to_cpu(packet->remaining_data_length));
1242 
1243 	/*
1244 	 * Now that we got a local and a remote credit
1245 	 * we add us as pending
1246 	 */
1247 	atomic_inc(&sc->send_io.pending.count);
1248 
1249 	rc = smbd_post_send(sc, request);
1250 	if (!rc)
1251 		return 0;
1252 
1253 	if (atomic_dec_and_test(&sc->send_io.pending.count))
1254 		wake_up(&sc->send_io.pending.zero_wait_queue);
1255 
1256 	wake_up(&sc->send_io.pending.dec_wait_queue);
1257 
1258 err_dma:
1259 	for (i = 0; i < request->num_sge; i++)
1260 		if (request->sge[i].addr)
1261 			ib_dma_unmap_single(sc->ib.dev,
1262 					    request->sge[i].addr,
1263 					    request->sge[i].length,
1264 					    DMA_TO_DEVICE);
1265 	mempool_free(request, sc->send_io.mem.pool);
1266 
1267 	/* roll back the granted receive credits */
1268 	atomic_sub(new_credits, &sc->recv_io.credits.count);
1269 
1270 err_alloc:
1271 	atomic_inc(&sc->send_io.credits.count);
1272 	wake_up(&sc->send_io.credits.wait_queue);
1273 
1274 err_wait_credit:
1275 	atomic_inc(&sc->send_io.lcredits.count);
1276 	wake_up(&sc->send_io.lcredits.wait_queue);
1277 
1278 err_wait_lcredit:
1279 	return rc;
1280 }
1281 
1282 /*
1283  * Send an empty message
1284  * Empty message is used to extend credits to peer to for keep live
1285  * while there is no upper layer payload to send at the time
1286  */
smbd_post_send_empty(struct smbdirect_socket * sc)1287 static int smbd_post_send_empty(struct smbdirect_socket *sc)
1288 {
1289 	int remaining_data_length = 0;
1290 
1291 	sc->statistics.send_empty++;
1292 	return smbd_post_send_iter(sc, NULL, &remaining_data_length);
1293 }
1294 
smbd_post_send_full_iter(struct smbdirect_socket * sc,struct iov_iter * iter,int * _remaining_data_length)1295 static int smbd_post_send_full_iter(struct smbdirect_socket *sc,
1296 				    struct iov_iter *iter,
1297 				    int *_remaining_data_length)
1298 {
1299 	int rc = 0;
1300 
1301 	/*
1302 	 * smbd_post_send_iter() respects the
1303 	 * negotiated max_send_size, so we need to
1304 	 * loop until the full iter is posted
1305 	 */
1306 
1307 	while (iov_iter_count(iter) > 0) {
1308 		rc = smbd_post_send_iter(sc, iter, _remaining_data_length);
1309 		if (rc < 0)
1310 			break;
1311 	}
1312 
1313 	return rc;
1314 }
1315 
1316 /*
1317  * Post a receive request to the transport
1318  * The remote peer can only send data when a receive request is posted
1319  * The interaction is controlled by send/receive credit system
1320  */
smbd_post_recv(struct smbdirect_socket * sc,struct smbdirect_recv_io * response)1321 static int smbd_post_recv(
1322 		struct smbdirect_socket *sc, struct smbdirect_recv_io *response)
1323 {
1324 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1325 	struct ib_recv_wr recv_wr;
1326 	int rc = -EIO;
1327 
1328 	response->sge.addr = ib_dma_map_single(
1329 				sc->ib.dev, response->packet,
1330 				sp->max_recv_size, DMA_FROM_DEVICE);
1331 	if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr))
1332 		return rc;
1333 
1334 	response->sge.length = sp->max_recv_size;
1335 	response->sge.lkey = sc->ib.pd->local_dma_lkey;
1336 
1337 	response->cqe.done = recv_done;
1338 
1339 	recv_wr.wr_cqe = &response->cqe;
1340 	recv_wr.next = NULL;
1341 	recv_wr.sg_list = &response->sge;
1342 	recv_wr.num_sge = 1;
1343 
1344 	rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL);
1345 	if (rc) {
1346 		ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1347 				    response->sge.length, DMA_FROM_DEVICE);
1348 		response->sge.length = 0;
1349 		smbd_disconnect_rdma_connection(sc);
1350 		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1351 	}
1352 
1353 	return rc;
1354 }
1355 
1356 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbdirect_socket * sc)1357 static int smbd_negotiate(struct smbdirect_socket *sc)
1358 {
1359 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1360 	int rc;
1361 	struct smbdirect_recv_io *response = get_receive_buffer(sc);
1362 
1363 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_NEGOTIATE_NEEDED);
1364 	sc->status = SMBDIRECT_SOCKET_NEGOTIATE_RUNNING;
1365 
1366 	sc->recv_io.expected = SMBDIRECT_EXPECT_NEGOTIATE_REP;
1367 	rc = smbd_post_recv(sc, response);
1368 	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1369 		       rc, response->sge.addr,
1370 		       response->sge.length, response->sge.lkey);
1371 	if (rc) {
1372 		put_receive_buffer(sc, response);
1373 		return rc;
1374 	}
1375 
1376 	rc = smbd_post_send_negotiate_req(sc);
1377 	if (rc)
1378 		return rc;
1379 
1380 	rc = wait_event_interruptible_timeout(
1381 		sc->status_wait,
1382 		sc->status != SMBDIRECT_SOCKET_NEGOTIATE_RUNNING,
1383 		msecs_to_jiffies(sp->negotiate_timeout_msec));
1384 	log_rdma_event(INFO, "wait_event_interruptible_timeout rc=%d\n", rc);
1385 
1386 	if (sc->status == SMBDIRECT_SOCKET_CONNECTED)
1387 		return 0;
1388 
1389 	if (rc == 0)
1390 		rc = -ETIMEDOUT;
1391 	else if (rc == -ERESTARTSYS)
1392 		rc = -EINTR;
1393 	else
1394 		rc = -ENOTCONN;
1395 
1396 	return rc;
1397 }
1398 
1399 /*
1400  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1401  * This is a queue for reassembling upper layer payload and present to upper
1402  * layer. All the inncoming payload go to the reassembly queue, regardless of
1403  * if reassembly is required. The uuper layer code reads from the queue for all
1404  * incoming payloads.
1405  * Put a received packet to the reassembly queue
1406  * response: the packet received
1407  * data_length: the size of payload in this packet
1408  */
enqueue_reassembly(struct smbdirect_socket * sc,struct smbdirect_recv_io * response,int data_length)1409 static void enqueue_reassembly(
1410 	struct smbdirect_socket *sc,
1411 	struct smbdirect_recv_io *response,
1412 	int data_length)
1413 {
1414 	unsigned long flags;
1415 
1416 	spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
1417 	list_add_tail(&response->list, &sc->recv_io.reassembly.list);
1418 	sc->recv_io.reassembly.queue_length++;
1419 	/*
1420 	 * Make sure reassembly_data_length is updated after list and
1421 	 * reassembly_queue_length are updated. On the dequeue side
1422 	 * reassembly_data_length is checked without a lock to determine
1423 	 * if reassembly_queue_length and list is up to date
1424 	 */
1425 	virt_wmb();
1426 	sc->recv_io.reassembly.data_length += data_length;
1427 	spin_unlock_irqrestore(&sc->recv_io.reassembly.lock, flags);
1428 	sc->statistics.enqueue_reassembly_queue++;
1429 }
1430 
1431 /*
1432  * Get the first entry at the front of reassembly queue
1433  * Caller is responsible for locking
1434  * return value: the first entry if any, NULL if queue is empty
1435  */
_get_first_reassembly(struct smbdirect_socket * sc)1436 static struct smbdirect_recv_io *_get_first_reassembly(struct smbdirect_socket *sc)
1437 {
1438 	struct smbdirect_recv_io *ret = NULL;
1439 
1440 	if (!list_empty(&sc->recv_io.reassembly.list)) {
1441 		ret = list_first_entry(
1442 			&sc->recv_io.reassembly.list,
1443 			struct smbdirect_recv_io, list);
1444 	}
1445 	return ret;
1446 }
1447 
1448 /*
1449  * Get a receive buffer
1450  * For each remote send, we need to post a receive. The receive buffers are
1451  * pre-allocated in advance.
1452  * return value: the receive buffer, NULL if none is available
1453  */
get_receive_buffer(struct smbdirect_socket * sc)1454 static struct smbdirect_recv_io *get_receive_buffer(struct smbdirect_socket *sc)
1455 {
1456 	struct smbdirect_recv_io *ret = NULL;
1457 	unsigned long flags;
1458 
1459 	spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1460 	if (!list_empty(&sc->recv_io.free.list)) {
1461 		ret = list_first_entry(
1462 			&sc->recv_io.free.list,
1463 			struct smbdirect_recv_io, list);
1464 		list_del(&ret->list);
1465 		sc->statistics.get_receive_buffer++;
1466 	}
1467 	spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1468 
1469 	return ret;
1470 }
1471 
1472 /*
1473  * Return a receive buffer
1474  * Upon returning of a receive buffer, we can post new receive and extend
1475  * more receive credits to remote peer. This is done immediately after a
1476  * receive buffer is returned.
1477  */
put_receive_buffer(struct smbdirect_socket * sc,struct smbdirect_recv_io * response)1478 static void put_receive_buffer(
1479 	struct smbdirect_socket *sc, struct smbdirect_recv_io *response)
1480 {
1481 	unsigned long flags;
1482 
1483 	if (likely(response->sge.length != 0)) {
1484 		ib_dma_unmap_single(sc->ib.dev,
1485 				    response->sge.addr,
1486 				    response->sge.length,
1487 				    DMA_FROM_DEVICE);
1488 		response->sge.length = 0;
1489 	}
1490 
1491 	spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1492 	list_add_tail(&response->list, &sc->recv_io.free.list);
1493 	sc->statistics.put_receive_buffer++;
1494 	spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1495 
1496 	queue_work(sc->workqueue, &sc->recv_io.posted.refill_work);
1497 }
1498 
1499 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbdirect_socket * sc,int num_buf)1500 static int allocate_receive_buffers(struct smbdirect_socket *sc, int num_buf)
1501 {
1502 	struct smbdirect_recv_io *response;
1503 	int i;
1504 
1505 	for (i = 0; i < num_buf; i++) {
1506 		response = mempool_alloc(sc->recv_io.mem.pool, GFP_KERNEL);
1507 		if (!response)
1508 			goto allocate_failed;
1509 
1510 		response->socket = sc;
1511 		response->sge.length = 0;
1512 		list_add_tail(&response->list, &sc->recv_io.free.list);
1513 	}
1514 
1515 	return 0;
1516 
1517 allocate_failed:
1518 	while (!list_empty(&sc->recv_io.free.list)) {
1519 		response = list_first_entry(
1520 				&sc->recv_io.free.list,
1521 				struct smbdirect_recv_io, list);
1522 		list_del(&response->list);
1523 
1524 		mempool_free(response, sc->recv_io.mem.pool);
1525 	}
1526 	return -ENOMEM;
1527 }
1528 
destroy_receive_buffers(struct smbdirect_socket * sc)1529 static void destroy_receive_buffers(struct smbdirect_socket *sc)
1530 {
1531 	struct smbdirect_recv_io *response;
1532 
1533 	while ((response = get_receive_buffer(sc)))
1534 		mempool_free(response, sc->recv_io.mem.pool);
1535 }
1536 
send_immediate_empty_message(struct work_struct * work)1537 static void send_immediate_empty_message(struct work_struct *work)
1538 {
1539 	struct smbdirect_socket *sc =
1540 		container_of(work, struct smbdirect_socket, idle.immediate_work);
1541 
1542 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1543 		return;
1544 
1545 	log_keep_alive(INFO, "send an empty message\n");
1546 	smbd_post_send_empty(sc);
1547 }
1548 
1549 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1550 static void idle_connection_timer(struct work_struct *work)
1551 {
1552 	struct smbdirect_socket *sc =
1553 		container_of(work, struct smbdirect_socket, idle.timer_work.work);
1554 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1555 
1556 	if (sc->idle.keepalive != SMBDIRECT_KEEPALIVE_NONE) {
1557 		log_keep_alive(ERR,
1558 			"error status sc->idle.keepalive=%d\n",
1559 			sc->idle.keepalive);
1560 		smbd_disconnect_rdma_connection(sc);
1561 		return;
1562 	}
1563 
1564 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1565 		return;
1566 
1567 	/*
1568 	 * Now use the keepalive timeout (instead of keepalive interval)
1569 	 * in order to wait for a response
1570 	 */
1571 	sc->idle.keepalive = SMBDIRECT_KEEPALIVE_PENDING;
1572 	mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1573 			 msecs_to_jiffies(sp->keepalive_timeout_msec));
1574 	log_keep_alive(INFO, "schedule send of empty idle message\n");
1575 	queue_work(sc->workqueue, &sc->idle.immediate_work);
1576 }
1577 
1578 /*
1579  * Destroy the transport and related RDMA and memory resources
1580  * Need to go through all the pending counters and make sure on one is using
1581  * the transport while it is destroyed
1582  */
smbd_destroy(struct TCP_Server_Info * server)1583 void smbd_destroy(struct TCP_Server_Info *server)
1584 {
1585 	struct smbd_connection *info = server->smbd_conn;
1586 	struct smbdirect_socket *sc;
1587 	struct smbdirect_recv_io *response;
1588 	unsigned long flags;
1589 
1590 	if (!info) {
1591 		log_rdma_event(INFO, "rdma session already destroyed\n");
1592 		return;
1593 	}
1594 	sc = &info->socket;
1595 
1596 	log_rdma_event(INFO, "cancelling and disable disconnect_work\n");
1597 	disable_work_sync(&sc->disconnect_work);
1598 
1599 	log_rdma_event(INFO, "destroying rdma session\n");
1600 	if (sc->status < SMBDIRECT_SOCKET_DISCONNECTING)
1601 		smbd_disconnect_rdma_work(&sc->disconnect_work);
1602 	if (sc->status < SMBDIRECT_SOCKET_DISCONNECTED) {
1603 		log_rdma_event(INFO, "wait for transport being disconnected\n");
1604 		wait_event(sc->status_wait, sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1605 		log_rdma_event(INFO, "waited for transport being disconnected\n");
1606 	}
1607 
1608 	/*
1609 	 * Wake up all waiters in all wait queues
1610 	 * in order to notice the broken connection.
1611 	 *
1612 	 * Most likely this was already called via
1613 	 * smbd_disconnect_rdma_work(), but call it again...
1614 	 */
1615 	smbd_disconnect_wake_up_all(sc);
1616 
1617 	log_rdma_event(INFO, "cancelling recv_io.posted.refill_work\n");
1618 	disable_work_sync(&sc->recv_io.posted.refill_work);
1619 
1620 	log_rdma_event(INFO, "destroying qp\n");
1621 	ib_drain_qp(sc->ib.qp);
1622 	rdma_destroy_qp(sc->rdma.cm_id);
1623 	sc->ib.qp = NULL;
1624 
1625 	log_rdma_event(INFO, "cancelling idle timer\n");
1626 	disable_delayed_work_sync(&sc->idle.timer_work);
1627 	log_rdma_event(INFO, "cancelling send immediate work\n");
1628 	disable_work_sync(&sc->idle.immediate_work);
1629 
1630 	/* It's not possible for upper layer to get to reassembly */
1631 	log_rdma_event(INFO, "drain the reassembly queue\n");
1632 	do {
1633 		spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
1634 		response = _get_first_reassembly(sc);
1635 		if (response) {
1636 			list_del(&response->list);
1637 			spin_unlock_irqrestore(
1638 				&sc->recv_io.reassembly.lock, flags);
1639 			put_receive_buffer(sc, response);
1640 		} else
1641 			spin_unlock_irqrestore(
1642 				&sc->recv_io.reassembly.lock, flags);
1643 	} while (response);
1644 	sc->recv_io.reassembly.data_length = 0;
1645 
1646 	log_rdma_event(INFO, "free receive buffers\n");
1647 	destroy_receive_buffers(sc);
1648 
1649 	log_rdma_event(INFO, "freeing mr list\n");
1650 	destroy_mr_list(sc);
1651 
1652 	ib_free_cq(sc->ib.send_cq);
1653 	ib_free_cq(sc->ib.recv_cq);
1654 	ib_dealloc_pd(sc->ib.pd);
1655 	rdma_destroy_id(sc->rdma.cm_id);
1656 
1657 	/* free mempools */
1658 	mempool_destroy(sc->send_io.mem.pool);
1659 	kmem_cache_destroy(sc->send_io.mem.cache);
1660 
1661 	mempool_destroy(sc->recv_io.mem.pool);
1662 	kmem_cache_destroy(sc->recv_io.mem.cache);
1663 
1664 	sc->status = SMBDIRECT_SOCKET_DESTROYED;
1665 
1666 	destroy_workqueue(sc->workqueue);
1667 	log_rdma_event(INFO,  "rdma session destroyed\n");
1668 	kfree(info);
1669 	server->smbd_conn = NULL;
1670 }
1671 
1672 /*
1673  * Reconnect this SMBD connection, called from upper layer
1674  * return value: 0 on success, or actual error code
1675  */
smbd_reconnect(struct TCP_Server_Info * server)1676 int smbd_reconnect(struct TCP_Server_Info *server)
1677 {
1678 	log_rdma_event(INFO, "reconnecting rdma session\n");
1679 
1680 	if (!server->smbd_conn) {
1681 		log_rdma_event(INFO, "rdma session already destroyed\n");
1682 		goto create_conn;
1683 	}
1684 
1685 	/*
1686 	 * This is possible if transport is disconnected and we haven't received
1687 	 * notification from RDMA, but upper layer has detected timeout
1688 	 */
1689 	if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) {
1690 		log_rdma_event(INFO, "disconnecting transport\n");
1691 		smbd_destroy(server);
1692 	}
1693 
1694 create_conn:
1695 	log_rdma_event(INFO, "creating rdma session\n");
1696 	server->smbd_conn = smbd_get_connection(
1697 		server, (struct sockaddr *) &server->dstaddr);
1698 
1699 	if (server->smbd_conn) {
1700 		cifs_dbg(VFS, "RDMA transport re-established\n");
1701 		trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1702 		return 0;
1703 	}
1704 	trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1705 	return -ENOENT;
1706 }
1707 
destroy_caches(struct smbdirect_socket * sc)1708 static void destroy_caches(struct smbdirect_socket *sc)
1709 {
1710 	destroy_receive_buffers(sc);
1711 	mempool_destroy(sc->recv_io.mem.pool);
1712 	kmem_cache_destroy(sc->recv_io.mem.cache);
1713 	mempool_destroy(sc->send_io.mem.pool);
1714 	kmem_cache_destroy(sc->send_io.mem.cache);
1715 }
1716 
1717 #define MAX_NAME_LEN	80
allocate_caches(struct smbdirect_socket * sc)1718 static int allocate_caches(struct smbdirect_socket *sc)
1719 {
1720 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1721 	char name[MAX_NAME_LEN];
1722 	int rc;
1723 
1724 	if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer)))
1725 		return -ENOMEM;
1726 
1727 	scnprintf(name, MAX_NAME_LEN, "smbdirect_send_io_%p", sc);
1728 	sc->send_io.mem.cache =
1729 		kmem_cache_create(
1730 			name,
1731 			sizeof(struct smbdirect_send_io) +
1732 				sizeof(struct smbdirect_data_transfer),
1733 			0, SLAB_HWCACHE_ALIGN, NULL);
1734 	if (!sc->send_io.mem.cache)
1735 		return -ENOMEM;
1736 
1737 	sc->send_io.mem.pool =
1738 		mempool_create(sp->send_credit_target, mempool_alloc_slab,
1739 			mempool_free_slab, sc->send_io.mem.cache);
1740 	if (!sc->send_io.mem.pool)
1741 		goto out1;
1742 
1743 	scnprintf(name, MAX_NAME_LEN, "smbdirect_recv_io_%p", sc);
1744 
1745 	struct kmem_cache_args response_args = {
1746 		.align		= __alignof__(struct smbdirect_recv_io),
1747 		.useroffset	= (offsetof(struct smbdirect_recv_io, packet) +
1748 				   sizeof(struct smbdirect_data_transfer)),
1749 		.usersize	= sp->max_recv_size - sizeof(struct smbdirect_data_transfer),
1750 	};
1751 	sc->recv_io.mem.cache =
1752 		kmem_cache_create(name,
1753 				  sizeof(struct smbdirect_recv_io) + sp->max_recv_size,
1754 				  &response_args, SLAB_HWCACHE_ALIGN);
1755 	if (!sc->recv_io.mem.cache)
1756 		goto out2;
1757 
1758 	sc->recv_io.mem.pool =
1759 		mempool_create(sp->recv_credit_max, mempool_alloc_slab,
1760 		       mempool_free_slab, sc->recv_io.mem.cache);
1761 	if (!sc->recv_io.mem.pool)
1762 		goto out3;
1763 
1764 	rc = allocate_receive_buffers(sc, sp->recv_credit_max);
1765 	if (rc) {
1766 		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1767 		goto out4;
1768 	}
1769 
1770 	return 0;
1771 
1772 out4:
1773 	mempool_destroy(sc->recv_io.mem.pool);
1774 out3:
1775 	kmem_cache_destroy(sc->recv_io.mem.cache);
1776 out2:
1777 	mempool_destroy(sc->send_io.mem.pool);
1778 out1:
1779 	kmem_cache_destroy(sc->send_io.mem.cache);
1780 	return -ENOMEM;
1781 }
1782 
1783 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1784 static struct smbd_connection *_smbd_get_connection(
1785 	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1786 {
1787 	int rc;
1788 	struct smbd_connection *info;
1789 	struct smbdirect_socket *sc;
1790 	struct smbdirect_socket_parameters *sp;
1791 	struct rdma_conn_param conn_param;
1792 	struct ib_qp_cap qp_cap;
1793 	struct ib_qp_init_attr qp_attr;
1794 	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1795 	struct ib_port_immutable port_immutable;
1796 	__be32 ird_ord_hdr[2];
1797 	char wq_name[80];
1798 	struct workqueue_struct *workqueue;
1799 
1800 	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1801 	if (!info)
1802 		return NULL;
1803 	sc = &info->socket;
1804 	scnprintf(wq_name, ARRAY_SIZE(wq_name), "smbd_%p", sc);
1805 	workqueue = create_workqueue(wq_name);
1806 	if (!workqueue)
1807 		goto create_wq_failed;
1808 	smbdirect_socket_init(sc);
1809 	sc->workqueue = workqueue;
1810 	sp = &sc->parameters;
1811 
1812 	INIT_WORK(&sc->disconnect_work, smbd_disconnect_rdma_work);
1813 
1814 	sp->resolve_addr_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1815 	sp->resolve_route_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1816 	sp->rdma_connect_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1817 	sp->negotiate_timeout_msec = SMBD_NEGOTIATE_TIMEOUT * 1000;
1818 	sp->initiator_depth = 1;
1819 	sp->responder_resources = SMBD_CM_RESPONDER_RESOURCES;
1820 	sp->recv_credit_max = smbd_receive_credit_max;
1821 	sp->send_credit_target = smbd_send_credit_target;
1822 	sp->max_send_size = smbd_max_send_size;
1823 	sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1824 	sp->max_recv_size = smbd_max_receive_size;
1825 	sp->max_frmr_depth = smbd_max_frmr_depth;
1826 	sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000;
1827 	sp->keepalive_timeout_msec = KEEPALIVE_RECV_TIMEOUT * 1000;
1828 
1829 	rc = smbd_ia_open(sc, dstaddr, port);
1830 	if (rc) {
1831 		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1832 		goto create_id_failed;
1833 	}
1834 
1835 	if (sp->send_credit_target > sc->ib.dev->attrs.max_cqe ||
1836 	    sp->send_credit_target > sc->ib.dev->attrs.max_qp_wr) {
1837 		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1838 			       sp->send_credit_target,
1839 			       sc->ib.dev->attrs.max_cqe,
1840 			       sc->ib.dev->attrs.max_qp_wr);
1841 		goto config_failed;
1842 	}
1843 
1844 	if (sp->recv_credit_max > sc->ib.dev->attrs.max_cqe ||
1845 	    sp->recv_credit_max > sc->ib.dev->attrs.max_qp_wr) {
1846 		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1847 			       sp->recv_credit_max,
1848 			       sc->ib.dev->attrs.max_cqe,
1849 			       sc->ib.dev->attrs.max_qp_wr);
1850 		goto config_failed;
1851 	}
1852 
1853 	if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_SEND_IO_MAX_SGE ||
1854 	    sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_RECV_IO_MAX_SGE) {
1855 		log_rdma_event(ERR,
1856 			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1857 			IB_DEVICE_NAME_MAX,
1858 			sc->ib.dev->name,
1859 			sc->ib.dev->attrs.max_send_sge,
1860 			sc->ib.dev->attrs.max_recv_sge);
1861 		goto config_failed;
1862 	}
1863 
1864 	sp->responder_resources =
1865 		min_t(u8, sp->responder_resources,
1866 		      sc->ib.dev->attrs.max_qp_rd_atom);
1867 	log_rdma_mr(INFO, "responder_resources=%d\n",
1868 		sp->responder_resources);
1869 
1870 	/*
1871 	 * We use allocate sp->responder_resources * 2 MRs
1872 	 * and each MR needs WRs for REG and INV, so
1873 	 * we use '* 4'.
1874 	 *
1875 	 * +1 for ib_drain_qp()
1876 	 */
1877 	memset(&qp_cap, 0, sizeof(qp_cap));
1878 	qp_cap.max_send_wr = sp->send_credit_target + sp->responder_resources * 4 + 1;
1879 	qp_cap.max_recv_wr = sp->recv_credit_max + 1;
1880 	qp_cap.max_send_sge = SMBDIRECT_SEND_IO_MAX_SGE;
1881 	qp_cap.max_recv_sge = SMBDIRECT_RECV_IO_MAX_SGE;
1882 
1883 	sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0);
1884 	if (IS_ERR(sc->ib.pd)) {
1885 		rc = PTR_ERR(sc->ib.pd);
1886 		sc->ib.pd = NULL;
1887 		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
1888 		goto alloc_pd_failed;
1889 	}
1890 
1891 	sc->ib.send_cq =
1892 		ib_alloc_cq_any(sc->ib.dev, sc,
1893 				qp_cap.max_send_wr, IB_POLL_SOFTIRQ);
1894 	if (IS_ERR(sc->ib.send_cq)) {
1895 		sc->ib.send_cq = NULL;
1896 		goto alloc_cq_failed;
1897 	}
1898 
1899 	sc->ib.recv_cq =
1900 		ib_alloc_cq_any(sc->ib.dev, sc,
1901 				qp_cap.max_recv_wr, IB_POLL_SOFTIRQ);
1902 	if (IS_ERR(sc->ib.recv_cq)) {
1903 		sc->ib.recv_cq = NULL;
1904 		goto alloc_cq_failed;
1905 	}
1906 
1907 	memset(&qp_attr, 0, sizeof(qp_attr));
1908 	qp_attr.event_handler = smbd_qp_async_error_upcall;
1909 	qp_attr.qp_context = sc;
1910 	qp_attr.cap = qp_cap;
1911 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1912 	qp_attr.qp_type = IB_QPT_RC;
1913 	qp_attr.send_cq = sc->ib.send_cq;
1914 	qp_attr.recv_cq = sc->ib.recv_cq;
1915 	qp_attr.port_num = ~0;
1916 
1917 	rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr);
1918 	if (rc) {
1919 		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1920 		goto create_qp_failed;
1921 	}
1922 	sc->ib.qp = sc->rdma.cm_id->qp;
1923 
1924 	memset(&conn_param, 0, sizeof(conn_param));
1925 	conn_param.initiator_depth = sp->initiator_depth;
1926 	conn_param.responder_resources = sp->responder_resources;
1927 
1928 	/* Need to send IRD/ORD in private data for iWARP */
1929 	sc->ib.dev->ops.get_port_immutable(
1930 		sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable);
1931 	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1932 		ird_ord_hdr[0] = cpu_to_be32(conn_param.responder_resources);
1933 		ird_ord_hdr[1] = cpu_to_be32(conn_param.initiator_depth);
1934 		conn_param.private_data = ird_ord_hdr;
1935 		conn_param.private_data_len = sizeof(ird_ord_hdr);
1936 	} else {
1937 		conn_param.private_data = NULL;
1938 		conn_param.private_data_len = 0;
1939 	}
1940 
1941 	conn_param.retry_count = SMBD_CM_RETRY;
1942 	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1943 	conn_param.flow_control = 0;
1944 
1945 	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1946 		&addr_in->sin_addr, port);
1947 
1948 	WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED);
1949 	sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING;
1950 	rc = rdma_connect(sc->rdma.cm_id, &conn_param);
1951 	if (rc) {
1952 		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1953 		goto rdma_connect_failed;
1954 	}
1955 
1956 	wait_event_interruptible_timeout(
1957 		sc->status_wait,
1958 		sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING,
1959 		msecs_to_jiffies(sp->rdma_connect_timeout_msec));
1960 
1961 	if (sc->status != SMBDIRECT_SOCKET_NEGOTIATE_NEEDED) {
1962 		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1963 		goto rdma_connect_failed;
1964 	}
1965 
1966 	log_rdma_event(INFO, "rdma_connect connected\n");
1967 
1968 	rc = allocate_caches(sc);
1969 	if (rc) {
1970 		log_rdma_event(ERR, "cache allocation failed\n");
1971 		goto allocate_cache_failed;
1972 	}
1973 
1974 	INIT_WORK(&sc->idle.immediate_work, send_immediate_empty_message);
1975 	INIT_DELAYED_WORK(&sc->idle.timer_work, idle_connection_timer);
1976 	/*
1977 	 * start with the negotiate timeout and SMBDIRECT_KEEPALIVE_PENDING
1978 	 * so that the timer will cause a disconnect.
1979 	 */
1980 	sc->idle.keepalive = SMBDIRECT_KEEPALIVE_PENDING;
1981 	mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1982 			 msecs_to_jiffies(sp->negotiate_timeout_msec));
1983 
1984 	INIT_WORK(&sc->recv_io.posted.refill_work, smbd_post_send_credits);
1985 
1986 	rc = smbd_negotiate(sc);
1987 	if (rc) {
1988 		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1989 		goto negotiation_failed;
1990 	}
1991 
1992 	rc = allocate_mr_list(sc);
1993 	if (rc) {
1994 		log_rdma_mr(ERR, "memory registration allocation failed\n");
1995 		goto allocate_mr_failed;
1996 	}
1997 
1998 	return info;
1999 
2000 allocate_mr_failed:
2001 	/* At this point, need to a full transport shutdown */
2002 	server->smbd_conn = info;
2003 	smbd_destroy(server);
2004 	return NULL;
2005 
2006 negotiation_failed:
2007 	disable_delayed_work_sync(&sc->idle.timer_work);
2008 	destroy_caches(sc);
2009 	sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
2010 	rdma_disconnect(sc->rdma.cm_id);
2011 	wait_event(sc->status_wait,
2012 		sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
2013 
2014 allocate_cache_failed:
2015 rdma_connect_failed:
2016 	rdma_destroy_qp(sc->rdma.cm_id);
2017 
2018 create_qp_failed:
2019 alloc_cq_failed:
2020 	if (sc->ib.send_cq)
2021 		ib_free_cq(sc->ib.send_cq);
2022 	if (sc->ib.recv_cq)
2023 		ib_free_cq(sc->ib.recv_cq);
2024 
2025 	ib_dealloc_pd(sc->ib.pd);
2026 
2027 alloc_pd_failed:
2028 config_failed:
2029 	rdma_destroy_id(sc->rdma.cm_id);
2030 
2031 create_id_failed:
2032 	destroy_workqueue(sc->workqueue);
2033 create_wq_failed:
2034 	kfree(info);
2035 	return NULL;
2036 }
2037 
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)2038 struct smbd_connection *smbd_get_connection(
2039 	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
2040 {
2041 	struct smbd_connection *ret;
2042 	const struct smbdirect_socket_parameters *sp;
2043 	int port = SMBD_PORT;
2044 
2045 try_again:
2046 	ret = _smbd_get_connection(server, dstaddr, port);
2047 
2048 	/* Try SMB_PORT if SMBD_PORT doesn't work */
2049 	if (!ret && port == SMBD_PORT) {
2050 		port = SMB_PORT;
2051 		goto try_again;
2052 	}
2053 	if (!ret)
2054 		return NULL;
2055 
2056 	sp = &ret->socket.parameters;
2057 
2058 	server->rdma_readwrite_threshold =
2059 		rdma_readwrite_threshold > sp->max_fragmented_send_size ?
2060 		sp->max_fragmented_send_size :
2061 		rdma_readwrite_threshold;
2062 
2063 	return ret;
2064 }
2065 
2066 /*
2067  * Receive data from the transport's receive reassembly queue
2068  * All the incoming data packets are placed in reassembly queue
2069  * iter: the buffer to read data into
2070  * size: the length of data to read
2071  * return value: actual data read
2072  *
2073  * Note: this implementation copies the data from reassembly queue to receive
2074  * buffers used by upper layer. This is not the optimal code path. A better way
2075  * to do it is to not have upper layer allocate its receive buffers but rather
2076  * borrow the buffer from reassembly queue, and return it after data is
2077  * consumed. But this will require more changes to upper layer code, and also
2078  * need to consider packet boundaries while they still being reassembled.
2079  */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)2080 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
2081 {
2082 	struct smbdirect_socket *sc = &info->socket;
2083 	struct smbdirect_recv_io *response;
2084 	struct smbdirect_data_transfer *data_transfer;
2085 	size_t size = iov_iter_count(&msg->msg_iter);
2086 	int to_copy, to_read, data_read, offset;
2087 	u32 data_length, remaining_data_length, data_offset;
2088 	int rc;
2089 
2090 	if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE))
2091 		return -EINVAL; /* It's a bug in upper layer to get there */
2092 
2093 again:
2094 	/*
2095 	 * No need to hold the reassembly queue lock all the time as we are
2096 	 * the only one reading from the front of the queue. The transport
2097 	 * may add more entries to the back of the queue at the same time
2098 	 */
2099 	log_read(INFO, "size=%zd sc->recv_io.reassembly.data_length=%d\n", size,
2100 		sc->recv_io.reassembly.data_length);
2101 	if (sc->recv_io.reassembly.data_length >= size) {
2102 		int queue_length;
2103 		int queue_removed = 0;
2104 		unsigned long flags;
2105 
2106 		/*
2107 		 * Need to make sure reassembly_data_length is read before
2108 		 * reading reassembly_queue_length and calling
2109 		 * _get_first_reassembly. This call is lock free
2110 		 * as we never read at the end of the queue which are being
2111 		 * updated in SOFTIRQ as more data is received
2112 		 */
2113 		virt_rmb();
2114 		queue_length = sc->recv_io.reassembly.queue_length;
2115 		data_read = 0;
2116 		to_read = size;
2117 		offset = sc->recv_io.reassembly.first_entry_offset;
2118 		while (data_read < size) {
2119 			response = _get_first_reassembly(sc);
2120 			data_transfer = smbdirect_recv_io_payload(response);
2121 			data_length = le32_to_cpu(data_transfer->data_length);
2122 			remaining_data_length =
2123 				le32_to_cpu(
2124 					data_transfer->remaining_data_length);
2125 			data_offset = le32_to_cpu(data_transfer->data_offset);
2126 
2127 			/*
2128 			 * The upper layer expects RFC1002 length at the
2129 			 * beginning of the payload. Return it to indicate
2130 			 * the total length of the packet. This minimize the
2131 			 * change to upper layer packet processing logic. This
2132 			 * will be eventually remove when an intermediate
2133 			 * transport layer is added
2134 			 */
2135 			if (response->first_segment && size == 4) {
2136 				unsigned int rfc1002_len =
2137 					data_length + remaining_data_length;
2138 				__be32 rfc1002_hdr = cpu_to_be32(rfc1002_len);
2139 				if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr),
2140 						 &msg->msg_iter) != sizeof(rfc1002_hdr))
2141 					return -EFAULT;
2142 				data_read = 4;
2143 				response->first_segment = false;
2144 				log_read(INFO, "returning rfc1002 length %d\n",
2145 					rfc1002_len);
2146 				goto read_rfc1002_done;
2147 			}
2148 
2149 			to_copy = min_t(int, data_length - offset, to_read);
2150 			if (copy_to_iter((char *)data_transfer + data_offset + offset,
2151 					 to_copy, &msg->msg_iter) != to_copy)
2152 				return -EFAULT;
2153 
2154 			/* move on to the next buffer? */
2155 			if (to_copy == data_length - offset) {
2156 				queue_length--;
2157 				/*
2158 				 * No need to lock if we are not at the
2159 				 * end of the queue
2160 				 */
2161 				if (queue_length)
2162 					list_del(&response->list);
2163 				else {
2164 					spin_lock_irqsave(
2165 						&sc->recv_io.reassembly.lock, flags);
2166 					list_del(&response->list);
2167 					spin_unlock_irqrestore(
2168 						&sc->recv_io.reassembly.lock, flags);
2169 				}
2170 				queue_removed++;
2171 				sc->statistics.dequeue_reassembly_queue++;
2172 				put_receive_buffer(sc, response);
2173 				offset = 0;
2174 				log_read(INFO, "put_receive_buffer offset=0\n");
2175 			} else
2176 				offset += to_copy;
2177 
2178 			to_read -= to_copy;
2179 			data_read += to_copy;
2180 
2181 			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
2182 				 to_copy, data_length - offset,
2183 				 to_read, data_read, offset);
2184 		}
2185 
2186 		spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
2187 		sc->recv_io.reassembly.data_length -= data_read;
2188 		sc->recv_io.reassembly.queue_length -= queue_removed;
2189 		spin_unlock_irqrestore(&sc->recv_io.reassembly.lock, flags);
2190 
2191 		sc->recv_io.reassembly.first_entry_offset = offset;
2192 		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
2193 			 data_read, sc->recv_io.reassembly.data_length,
2194 			 sc->recv_io.reassembly.first_entry_offset);
2195 read_rfc1002_done:
2196 		return data_read;
2197 	}
2198 
2199 	log_read(INFO, "wait_event on more data\n");
2200 	rc = wait_event_interruptible(
2201 		sc->recv_io.reassembly.wait_queue,
2202 		sc->recv_io.reassembly.data_length >= size ||
2203 			sc->status != SMBDIRECT_SOCKET_CONNECTED);
2204 	/* Don't return any data if interrupted */
2205 	if (rc)
2206 		return rc;
2207 
2208 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2209 		log_read(ERR, "disconnected\n");
2210 		return -ECONNABORTED;
2211 	}
2212 
2213 	goto again;
2214 }
2215 
2216 /*
2217  * Send data to transport
2218  * Each rqst is transported as a SMBDirect payload
2219  * rqst: the data to write
2220  * return value: 0 if successfully write, otherwise error code
2221  */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)2222 int smbd_send(struct TCP_Server_Info *server,
2223 	int num_rqst, struct smb_rqst *rqst_array)
2224 {
2225 	struct smbd_connection *info = server->smbd_conn;
2226 	struct smbdirect_socket *sc = &info->socket;
2227 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2228 	struct smb_rqst *rqst;
2229 	struct iov_iter iter;
2230 	unsigned int remaining_data_length, klen;
2231 	int rc, i, rqst_idx;
2232 
2233 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
2234 		return -EAGAIN;
2235 
2236 	/*
2237 	 * Add in the page array if there is one. The caller needs to set
2238 	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2239 	 * ends at page boundary
2240 	 */
2241 	remaining_data_length = 0;
2242 	for (i = 0; i < num_rqst; i++)
2243 		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2244 
2245 	if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) {
2246 		/* assertion: payload never exceeds negotiated maximum */
2247 		log_write(ERR, "payload size %d > max size %d\n",
2248 			remaining_data_length, sp->max_fragmented_send_size);
2249 		return -EINVAL;
2250 	}
2251 
2252 	log_write(INFO, "num_rqst=%d total length=%u\n",
2253 			num_rqst, remaining_data_length);
2254 
2255 	rqst_idx = 0;
2256 	do {
2257 		rqst = &rqst_array[rqst_idx];
2258 
2259 		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2260 			 rqst_idx, smb_rqst_len(server, rqst));
2261 		for (i = 0; i < rqst->rq_nvec; i++)
2262 			dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
2263 
2264 		log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
2265 			  rqst_idx, rqst->rq_nvec, remaining_data_length,
2266 			  iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
2267 
2268 		/* Send the metadata pages. */
2269 		klen = 0;
2270 		for (i = 0; i < rqst->rq_nvec; i++)
2271 			klen += rqst->rq_iov[i].iov_len;
2272 		iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
2273 
2274 		rc = smbd_post_send_full_iter(sc, &iter, &remaining_data_length);
2275 		if (rc < 0)
2276 			break;
2277 
2278 		if (iov_iter_count(&rqst->rq_iter) > 0) {
2279 			/* And then the data pages if there are any */
2280 			rc = smbd_post_send_full_iter(sc, &rqst->rq_iter,
2281 						      &remaining_data_length);
2282 			if (rc < 0)
2283 				break;
2284 		}
2285 
2286 	} while (++rqst_idx < num_rqst);
2287 
2288 	/*
2289 	 * As an optimization, we don't wait for individual I/O to finish
2290 	 * before sending the next one.
2291 	 * Send them all and wait for pending send count to get to 0
2292 	 * that means all the I/Os have been out and we are good to return
2293 	 */
2294 
2295 	wait_event(sc->send_io.pending.zero_wait_queue,
2296 		atomic_read(&sc->send_io.pending.count) == 0 ||
2297 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2298 
2299 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED && rc == 0)
2300 		rc = -EAGAIN;
2301 
2302 	return rc;
2303 }
2304 
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2305 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2306 {
2307 	struct smbdirect_mr_io *mr =
2308 		container_of(wc->wr_cqe, struct smbdirect_mr_io, cqe);
2309 	struct smbdirect_socket *sc = mr->socket;
2310 
2311 	if (wc->status) {
2312 		log_rdma_mr(ERR, "status=%d\n", wc->status);
2313 		smbd_disconnect_rdma_connection(sc);
2314 	}
2315 }
2316 
2317 /*
2318  * The work queue function that recovers MRs
2319  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2320  * again. Both calls are slow, so finish them in a workqueue. This will not
2321  * block I/O path.
2322  * There is one workqueue that recovers MRs, there is no need to lock as the
2323  * I/O requests calling smbd_register_mr will never update the links in the
2324  * mr_list.
2325  */
smbd_mr_recovery_work(struct work_struct * work)2326 static void smbd_mr_recovery_work(struct work_struct *work)
2327 {
2328 	struct smbdirect_socket *sc =
2329 		container_of(work, struct smbdirect_socket, mr_io.recovery_work);
2330 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2331 	struct smbdirect_mr_io *smbdirect_mr;
2332 	int rc;
2333 
2334 	list_for_each_entry(smbdirect_mr, &sc->mr_io.all.list, list) {
2335 		if (smbdirect_mr->state == SMBDIRECT_MR_ERROR) {
2336 
2337 			/* recover this MR entry */
2338 			rc = ib_dereg_mr(smbdirect_mr->mr);
2339 			if (rc) {
2340 				log_rdma_mr(ERR,
2341 					"ib_dereg_mr failed rc=%x\n",
2342 					rc);
2343 				smbd_disconnect_rdma_connection(sc);
2344 				continue;
2345 			}
2346 
2347 			smbdirect_mr->mr = ib_alloc_mr(
2348 				sc->ib.pd, sc->mr_io.type,
2349 				sp->max_frmr_depth);
2350 			if (IS_ERR(smbdirect_mr->mr)) {
2351 				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2352 					    sc->mr_io.type,
2353 					    sp->max_frmr_depth);
2354 				smbd_disconnect_rdma_connection(sc);
2355 				continue;
2356 			}
2357 		} else
2358 			/* This MR is being used, don't recover it */
2359 			continue;
2360 
2361 		smbdirect_mr->state = SMBDIRECT_MR_READY;
2362 
2363 		/* smbdirect_mr->state is updated by this function
2364 		 * and is read and updated by I/O issuing CPUs trying
2365 		 * to get a MR, the call to atomic_inc_return
2366 		 * implicates a memory barrier and guarantees this
2367 		 * value is updated before waking up any calls to
2368 		 * get_mr() from the I/O issuing CPUs
2369 		 */
2370 		if (atomic_inc_return(&sc->mr_io.ready.count) == 1)
2371 			wake_up(&sc->mr_io.ready.wait_queue);
2372 	}
2373 }
2374 
smbd_mr_disable_locked(struct smbdirect_mr_io * mr)2375 static void smbd_mr_disable_locked(struct smbdirect_mr_io *mr)
2376 {
2377 	struct smbdirect_socket *sc = mr->socket;
2378 
2379 	lockdep_assert_held(&mr->mutex);
2380 
2381 	if (mr->state == SMBDIRECT_MR_DISABLED)
2382 		return;
2383 
2384 	if (mr->mr)
2385 		ib_dereg_mr(mr->mr);
2386 	if (mr->sgt.nents)
2387 		ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2388 	kfree(mr->sgt.sgl);
2389 
2390 	mr->mr = NULL;
2391 	mr->sgt.sgl = NULL;
2392 	mr->sgt.nents = 0;
2393 
2394 	mr->state = SMBDIRECT_MR_DISABLED;
2395 }
2396 
smbd_mr_free_locked(struct kref * kref)2397 static void smbd_mr_free_locked(struct kref *kref)
2398 {
2399 	struct smbdirect_mr_io *mr =
2400 		container_of(kref, struct smbdirect_mr_io, kref);
2401 
2402 	lockdep_assert_held(&mr->mutex);
2403 
2404 	/*
2405 	 * smbd_mr_disable_locked() should already be called!
2406 	 */
2407 	if (WARN_ON_ONCE(mr->state != SMBDIRECT_MR_DISABLED))
2408 		smbd_mr_disable_locked(mr);
2409 
2410 	mutex_unlock(&mr->mutex);
2411 	mutex_destroy(&mr->mutex);
2412 	kfree(mr);
2413 }
2414 
destroy_mr_list(struct smbdirect_socket * sc)2415 static void destroy_mr_list(struct smbdirect_socket *sc)
2416 {
2417 	struct smbdirect_mr_io *mr, *tmp;
2418 	LIST_HEAD(all_list);
2419 	unsigned long flags;
2420 
2421 	disable_work_sync(&sc->mr_io.recovery_work);
2422 
2423 	spin_lock_irqsave(&sc->mr_io.all.lock, flags);
2424 	list_splice_tail_init(&sc->mr_io.all.list, &all_list);
2425 	spin_unlock_irqrestore(&sc->mr_io.all.lock, flags);
2426 
2427 	list_for_each_entry_safe(mr, tmp, &all_list, list) {
2428 		mutex_lock(&mr->mutex);
2429 
2430 		smbd_mr_disable_locked(mr);
2431 		list_del(&mr->list);
2432 		mr->socket = NULL;
2433 
2434 		/*
2435 		 * No kref_put_mutex() as it's already locked.
2436 		 *
2437 		 * If smbd_mr_free_locked() is called
2438 		 * and the mutex is unlocked and mr is gone,
2439 		 * in that case kref_put() returned 1.
2440 		 *
2441 		 * If kref_put() returned 0 we know that
2442 		 * smbd_mr_free_locked() didn't
2443 		 * run. Not by us nor by anyone else, as we
2444 		 * still hold the mutex, so we need to unlock.
2445 		 *
2446 		 * If the mr is still registered it will
2447 		 * be dangling (detached from the connection
2448 		 * waiting for smbd_deregister_mr() to be
2449 		 * called in order to free the memory.
2450 		 */
2451 		if (!kref_put(&mr->kref, smbd_mr_free_locked))
2452 			mutex_unlock(&mr->mutex);
2453 	}
2454 }
2455 
2456 /*
2457  * Allocate MRs used for RDMA read/write
2458  * The number of MRs will not exceed hardware capability in responder_resources
2459  * All MRs are kept in mr_list. The MR can be recovered after it's used
2460  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2461  * as MRs are used and recovered for I/O, but the list links will not change
2462  */
allocate_mr_list(struct smbdirect_socket * sc)2463 static int allocate_mr_list(struct smbdirect_socket *sc)
2464 {
2465 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2466 	struct smbdirect_mr_io *mr;
2467 	int ret;
2468 	u32 i;
2469 
2470 	if (sp->responder_resources == 0) {
2471 		log_rdma_mr(ERR, "responder_resources negotiated as 0\n");
2472 		return -EINVAL;
2473 	}
2474 
2475 	/* Allocate more MRs (2x) than hardware responder_resources */
2476 	for (i = 0; i < sp->responder_resources * 2; i++) {
2477 		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2478 		if (!mr) {
2479 			ret = -ENOMEM;
2480 			goto kzalloc_mr_failed;
2481 		}
2482 
2483 		kref_init(&mr->kref);
2484 		mutex_init(&mr->mutex);
2485 
2486 		mr->mr = ib_alloc_mr(sc->ib.pd,
2487 				     sc->mr_io.type,
2488 				     sp->max_frmr_depth);
2489 		if (IS_ERR(mr->mr)) {
2490 			ret = PTR_ERR(mr->mr);
2491 			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2492 				    sc->mr_io.type, sp->max_frmr_depth);
2493 			goto ib_alloc_mr_failed;
2494 		}
2495 
2496 		mr->sgt.sgl = kcalloc(sp->max_frmr_depth,
2497 				      sizeof(struct scatterlist),
2498 				      GFP_KERNEL);
2499 		if (!mr->sgt.sgl) {
2500 			ret = -ENOMEM;
2501 			log_rdma_mr(ERR, "failed to allocate sgl\n");
2502 			goto kcalloc_sgl_failed;
2503 		}
2504 		mr->state = SMBDIRECT_MR_READY;
2505 		mr->socket = sc;
2506 
2507 		list_add_tail(&mr->list, &sc->mr_io.all.list);
2508 		atomic_inc(&sc->mr_io.ready.count);
2509 	}
2510 
2511 	INIT_WORK(&sc->mr_io.recovery_work, smbd_mr_recovery_work);
2512 
2513 	return 0;
2514 
2515 kcalloc_sgl_failed:
2516 	ib_dereg_mr(mr->mr);
2517 ib_alloc_mr_failed:
2518 	mutex_destroy(&mr->mutex);
2519 	kfree(mr);
2520 kzalloc_mr_failed:
2521 	destroy_mr_list(sc);
2522 	return ret;
2523 }
2524 
2525 /*
2526  * Get a MR from mr_list. This function waits until there is at least one
2527  * MR available in the list. It may access the list while the
2528  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2529  * as they never modify the same places. However, there may be several CPUs
2530  * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2531  * protect this situation.
2532  */
get_mr(struct smbdirect_socket * sc)2533 static struct smbdirect_mr_io *get_mr(struct smbdirect_socket *sc)
2534 {
2535 	struct smbdirect_mr_io *ret;
2536 	unsigned long flags;
2537 	int rc;
2538 again:
2539 	rc = wait_event_interruptible(sc->mr_io.ready.wait_queue,
2540 		atomic_read(&sc->mr_io.ready.count) ||
2541 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2542 	if (rc) {
2543 		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2544 		return NULL;
2545 	}
2546 
2547 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2548 		log_rdma_mr(ERR, "sc->status=%x\n", sc->status);
2549 		return NULL;
2550 	}
2551 
2552 	spin_lock_irqsave(&sc->mr_io.all.lock, flags);
2553 	list_for_each_entry(ret, &sc->mr_io.all.list, list) {
2554 		if (ret->state == SMBDIRECT_MR_READY) {
2555 			ret->state = SMBDIRECT_MR_REGISTERED;
2556 			kref_get(&ret->kref);
2557 			spin_unlock_irqrestore(&sc->mr_io.all.lock, flags);
2558 			atomic_dec(&sc->mr_io.ready.count);
2559 			atomic_inc(&sc->mr_io.used.count);
2560 			return ret;
2561 		}
2562 	}
2563 
2564 	spin_unlock_irqrestore(&sc->mr_io.all.lock, flags);
2565 	/*
2566 	 * It is possible that we could fail to get MR because other processes may
2567 	 * try to acquire a MR at the same time. If this is the case, retry it.
2568 	 */
2569 	goto again;
2570 }
2571 
2572 /*
2573  * Transcribe the pages from an iterator into an MR scatterlist.
2574  */
smbd_iter_to_mr(struct iov_iter * iter,struct sg_table * sgt,unsigned int max_sg)2575 static int smbd_iter_to_mr(struct iov_iter *iter,
2576 			   struct sg_table *sgt,
2577 			   unsigned int max_sg)
2578 {
2579 	int ret;
2580 
2581 	memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2582 
2583 	ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2584 	WARN_ON(ret < 0);
2585 	if (sgt->nents > 0)
2586 		sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2587 	return ret;
2588 }
2589 
2590 /*
2591  * Register memory for RDMA read/write
2592  * iter: the buffer to register memory with
2593  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2594  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2595  * return value: the MR registered, NULL if failed.
2596  */
smbd_register_mr(struct smbd_connection * info,struct iov_iter * iter,bool writing,bool need_invalidate)2597 struct smbdirect_mr_io *smbd_register_mr(struct smbd_connection *info,
2598 				 struct iov_iter *iter,
2599 				 bool writing, bool need_invalidate)
2600 {
2601 	struct smbdirect_socket *sc = &info->socket;
2602 	struct smbdirect_socket_parameters *sp = &sc->parameters;
2603 	struct smbdirect_mr_io *mr;
2604 	int rc, num_pages;
2605 	struct ib_reg_wr *reg_wr;
2606 
2607 	num_pages = iov_iter_npages(iter, sp->max_frmr_depth + 1);
2608 	if (num_pages > sp->max_frmr_depth) {
2609 		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2610 			num_pages, sp->max_frmr_depth);
2611 		WARN_ON_ONCE(1);
2612 		return NULL;
2613 	}
2614 
2615 	mr = get_mr(sc);
2616 	if (!mr) {
2617 		log_rdma_mr(ERR, "get_mr returning NULL\n");
2618 		return NULL;
2619 	}
2620 
2621 	mutex_lock(&mr->mutex);
2622 
2623 	mr->dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2624 	mr->need_invalidate = need_invalidate;
2625 	mr->sgt.nents = 0;
2626 	mr->sgt.orig_nents = 0;
2627 
2628 	log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2629 		    num_pages, iov_iter_count(iter), sp->max_frmr_depth);
2630 	smbd_iter_to_mr(iter, &mr->sgt, sp->max_frmr_depth);
2631 
2632 	rc = ib_dma_map_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2633 	if (!rc) {
2634 		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2635 			    num_pages, mr->dir, rc);
2636 		goto dma_map_error;
2637 	}
2638 
2639 	rc = ib_map_mr_sg(mr->mr, mr->sgt.sgl, mr->sgt.nents, NULL, PAGE_SIZE);
2640 	if (rc != mr->sgt.nents) {
2641 		log_rdma_mr(ERR,
2642 			    "ib_map_mr_sg failed rc = %d nents = %x\n",
2643 			    rc, mr->sgt.nents);
2644 		goto map_mr_error;
2645 	}
2646 
2647 	ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
2648 	reg_wr = &mr->wr;
2649 	reg_wr->wr.opcode = IB_WR_REG_MR;
2650 	mr->cqe.done = register_mr_done;
2651 	reg_wr->wr.wr_cqe = &mr->cqe;
2652 	reg_wr->wr.num_sge = 0;
2653 	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2654 	reg_wr->mr = mr->mr;
2655 	reg_wr->key = mr->mr->rkey;
2656 	reg_wr->access = writing ?
2657 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2658 			IB_ACCESS_REMOTE_READ;
2659 
2660 	/*
2661 	 * There is no need for waiting for complemtion on ib_post_send
2662 	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2663 	 * on the next ib_post_send when we actually send I/O to remote peer
2664 	 */
2665 	rc = ib_post_send(sc->ib.qp, &reg_wr->wr, NULL);
2666 	if (!rc) {
2667 		/*
2668 		 * get_mr() gave us a reference
2669 		 * via kref_get(&mr->kref), we keep that and let
2670 		 * the caller use smbd_deregister_mr()
2671 		 * to remove it again.
2672 		 */
2673 		mutex_unlock(&mr->mutex);
2674 		return mr;
2675 	}
2676 
2677 	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2678 		rc, reg_wr->key);
2679 
2680 	/* If all failed, attempt to recover this MR by setting it SMBDIRECT_MR_ERROR*/
2681 map_mr_error:
2682 	ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2683 
2684 dma_map_error:
2685 	mr->sgt.nents = 0;
2686 	mr->state = SMBDIRECT_MR_ERROR;
2687 	if (atomic_dec_and_test(&sc->mr_io.used.count))
2688 		wake_up(&sc->mr_io.cleanup.wait_queue);
2689 
2690 	smbd_disconnect_rdma_connection(sc);
2691 
2692 	/*
2693 	 * get_mr() gave us a reference
2694 	 * via kref_get(&mr->kref), we need to remove it again
2695 	 * on error.
2696 	 *
2697 	 * No kref_put_mutex() as it's already locked.
2698 	 *
2699 	 * If smbd_mr_free_locked() is called
2700 	 * and the mutex is unlocked and mr is gone,
2701 	 * in that case kref_put() returned 1.
2702 	 *
2703 	 * If kref_put() returned 0 we know that
2704 	 * smbd_mr_free_locked() didn't
2705 	 * run. Not by us nor by anyone else, as we
2706 	 * still hold the mutex, so we need to unlock.
2707 	 */
2708 	if (!kref_put(&mr->kref, smbd_mr_free_locked))
2709 		mutex_unlock(&mr->mutex);
2710 
2711 	return NULL;
2712 }
2713 
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2714 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2715 {
2716 	struct smbdirect_mr_io *smbdirect_mr;
2717 	struct ib_cqe *cqe;
2718 
2719 	cqe = wc->wr_cqe;
2720 	smbdirect_mr = container_of(cqe, struct smbdirect_mr_io, cqe);
2721 	smbdirect_mr->state = SMBDIRECT_MR_INVALIDATED;
2722 	if (wc->status != IB_WC_SUCCESS) {
2723 		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2724 		smbdirect_mr->state = SMBDIRECT_MR_ERROR;
2725 	}
2726 	complete(&smbdirect_mr->invalidate_done);
2727 }
2728 
2729 /*
2730  * Deregister a MR after I/O is done
2731  * This function may wait if remote invalidation is not used
2732  * and we have to locally invalidate the buffer to prevent data is being
2733  * modified by remote peer after upper layer consumes it
2734  */
smbd_deregister_mr(struct smbdirect_mr_io * mr)2735 void smbd_deregister_mr(struct smbdirect_mr_io *mr)
2736 {
2737 	struct smbdirect_socket *sc = mr->socket;
2738 
2739 	mutex_lock(&mr->mutex);
2740 	if (mr->state == SMBDIRECT_MR_DISABLED)
2741 		goto put_kref;
2742 
2743 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2744 		smbd_mr_disable_locked(mr);
2745 		goto put_kref;
2746 	}
2747 
2748 	if (mr->need_invalidate) {
2749 		struct ib_send_wr *wr = &mr->inv_wr;
2750 		int rc;
2751 
2752 		/* Need to finish local invalidation before returning */
2753 		wr->opcode = IB_WR_LOCAL_INV;
2754 		mr->cqe.done = local_inv_done;
2755 		wr->wr_cqe = &mr->cqe;
2756 		wr->num_sge = 0;
2757 		wr->ex.invalidate_rkey = mr->mr->rkey;
2758 		wr->send_flags = IB_SEND_SIGNALED;
2759 
2760 		init_completion(&mr->invalidate_done);
2761 		rc = ib_post_send(sc->ib.qp, wr, NULL);
2762 		if (rc) {
2763 			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2764 			smbd_mr_disable_locked(mr);
2765 			smbd_disconnect_rdma_connection(sc);
2766 			goto done;
2767 		}
2768 		wait_for_completion(&mr->invalidate_done);
2769 		mr->need_invalidate = false;
2770 	} else
2771 		/*
2772 		 * For remote invalidation, just set it to SMBDIRECT_MR_INVALIDATED
2773 		 * and defer to mr_recovery_work to recover the MR for next use
2774 		 */
2775 		mr->state = SMBDIRECT_MR_INVALIDATED;
2776 
2777 	if (mr->sgt.nents) {
2778 		ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2779 		mr->sgt.nents = 0;
2780 	}
2781 
2782 	if (mr->state == SMBDIRECT_MR_INVALIDATED) {
2783 		mr->state = SMBDIRECT_MR_READY;
2784 		if (atomic_inc_return(&sc->mr_io.ready.count) == 1)
2785 			wake_up(&sc->mr_io.ready.wait_queue);
2786 	} else
2787 		/*
2788 		 * Schedule the work to do MR recovery for future I/Os MR
2789 		 * recovery is slow and don't want it to block current I/O
2790 		 */
2791 		queue_work(sc->workqueue, &sc->mr_io.recovery_work);
2792 
2793 done:
2794 	if (atomic_dec_and_test(&sc->mr_io.used.count))
2795 		wake_up(&sc->mr_io.cleanup.wait_queue);
2796 
2797 put_kref:
2798 	/*
2799 	 * No kref_put_mutex() as it's already locked.
2800 	 *
2801 	 * If smbd_mr_free_locked() is called
2802 	 * and the mutex is unlocked and mr is gone,
2803 	 * in that case kref_put() returned 1.
2804 	 *
2805 	 * If kref_put() returned 0 we know that
2806 	 * smbd_mr_free_locked() didn't
2807 	 * run. Not by us nor by anyone else, as we
2808 	 * still hold the mutex, so we need to unlock
2809 	 * and keep the mr in SMBDIRECT_MR_READY or
2810 	 * SMBDIRECT_MR_ERROR state.
2811 	 */
2812 	if (!kref_put(&mr->kref, smbd_mr_free_locked))
2813 		mutex_unlock(&mr->mutex);
2814 }
2815 
smb_set_sge(struct smb_extract_to_rdma * rdma,struct page * lowest_page,size_t off,size_t len)2816 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2817 			struct page *lowest_page, size_t off, size_t len)
2818 {
2819 	struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2820 	u64 addr;
2821 
2822 	addr = ib_dma_map_page(rdma->device, lowest_page,
2823 			       off, len, rdma->direction);
2824 	if (ib_dma_mapping_error(rdma->device, addr))
2825 		return false;
2826 
2827 	sge->addr   = addr;
2828 	sge->length = len;
2829 	sge->lkey   = rdma->local_dma_lkey;
2830 	rdma->nr_sge++;
2831 	return true;
2832 }
2833 
2834 /*
2835  * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2836  * element list.  The pages are not pinned.
2837  */
smb_extract_bvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2838 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2839 					struct smb_extract_to_rdma *rdma,
2840 					ssize_t maxsize)
2841 {
2842 	const struct bio_vec *bv = iter->bvec;
2843 	unsigned long start = iter->iov_offset;
2844 	unsigned int i;
2845 	ssize_t ret = 0;
2846 
2847 	for (i = 0; i < iter->nr_segs; i++) {
2848 		size_t off, len;
2849 
2850 		len = bv[i].bv_len;
2851 		if (start >= len) {
2852 			start -= len;
2853 			continue;
2854 		}
2855 
2856 		len = min_t(size_t, maxsize, len - start);
2857 		off = bv[i].bv_offset + start;
2858 
2859 		if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2860 			return -EIO;
2861 
2862 		ret += len;
2863 		maxsize -= len;
2864 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2865 			break;
2866 		start = 0;
2867 	}
2868 
2869 	if (ret > 0)
2870 		iov_iter_advance(iter, ret);
2871 	return ret;
2872 }
2873 
2874 /*
2875  * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2876  * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2877  * The pages are not pinned.
2878  */
smb_extract_kvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2879 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2880 					struct smb_extract_to_rdma *rdma,
2881 					ssize_t maxsize)
2882 {
2883 	const struct kvec *kv = iter->kvec;
2884 	unsigned long start = iter->iov_offset;
2885 	unsigned int i;
2886 	ssize_t ret = 0;
2887 
2888 	for (i = 0; i < iter->nr_segs; i++) {
2889 		struct page *page;
2890 		unsigned long kaddr;
2891 		size_t off, len, seg;
2892 
2893 		len = kv[i].iov_len;
2894 		if (start >= len) {
2895 			start -= len;
2896 			continue;
2897 		}
2898 
2899 		kaddr = (unsigned long)kv[i].iov_base + start;
2900 		off = kaddr & ~PAGE_MASK;
2901 		len = min_t(size_t, maxsize, len - start);
2902 		kaddr &= PAGE_MASK;
2903 
2904 		maxsize -= len;
2905 		do {
2906 			seg = min_t(size_t, len, PAGE_SIZE - off);
2907 
2908 			if (is_vmalloc_or_module_addr((void *)kaddr))
2909 				page = vmalloc_to_page((void *)kaddr);
2910 			else
2911 				page = virt_to_page((void *)kaddr);
2912 
2913 			if (!smb_set_sge(rdma, page, off, seg))
2914 				return -EIO;
2915 
2916 			ret += seg;
2917 			len -= seg;
2918 			kaddr += PAGE_SIZE;
2919 			off = 0;
2920 		} while (len > 0 && rdma->nr_sge < rdma->max_sge);
2921 
2922 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2923 			break;
2924 		start = 0;
2925 	}
2926 
2927 	if (ret > 0)
2928 		iov_iter_advance(iter, ret);
2929 	return ret;
2930 }
2931 
2932 /*
2933  * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2934  * list.  The folios are not pinned.
2935  */
smb_extract_folioq_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2936 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2937 					  struct smb_extract_to_rdma *rdma,
2938 					  ssize_t maxsize)
2939 {
2940 	const struct folio_queue *folioq = iter->folioq;
2941 	unsigned int slot = iter->folioq_slot;
2942 	ssize_t ret = 0;
2943 	size_t offset = iter->iov_offset;
2944 
2945 	BUG_ON(!folioq);
2946 
2947 	if (slot >= folioq_nr_slots(folioq)) {
2948 		folioq = folioq->next;
2949 		if (WARN_ON_ONCE(!folioq))
2950 			return -EIO;
2951 		slot = 0;
2952 	}
2953 
2954 	do {
2955 		struct folio *folio = folioq_folio(folioq, slot);
2956 		size_t fsize = folioq_folio_size(folioq, slot);
2957 
2958 		if (offset < fsize) {
2959 			size_t part = umin(maxsize, fsize - offset);
2960 
2961 			if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2962 				return -EIO;
2963 
2964 			offset += part;
2965 			ret += part;
2966 			maxsize -= part;
2967 		}
2968 
2969 		if (offset >= fsize) {
2970 			offset = 0;
2971 			slot++;
2972 			if (slot >= folioq_nr_slots(folioq)) {
2973 				if (!folioq->next) {
2974 					WARN_ON_ONCE(ret < iter->count);
2975 					break;
2976 				}
2977 				folioq = folioq->next;
2978 				slot = 0;
2979 			}
2980 		}
2981 	} while (rdma->nr_sge < rdma->max_sge && maxsize > 0);
2982 
2983 	iter->folioq = folioq;
2984 	iter->folioq_slot = slot;
2985 	iter->iov_offset = offset;
2986 	iter->count -= ret;
2987 	return ret;
2988 }
2989 
2990 /*
2991  * Extract page fragments from up to the given amount of the source iterator
2992  * and build up an RDMA list that refers to all of those bits.  The RDMA list
2993  * is appended to, up to the maximum number of elements set in the parameter
2994  * block.
2995  *
2996  * The extracted page fragments are not pinned or ref'd in any way; if an
2997  * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2998  * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2999  * way.
3000  */
smb_extract_iter_to_rdma(struct iov_iter * iter,size_t len,struct smb_extract_to_rdma * rdma)3001 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
3002 					struct smb_extract_to_rdma *rdma)
3003 {
3004 	ssize_t ret;
3005 	int before = rdma->nr_sge;
3006 
3007 	switch (iov_iter_type(iter)) {
3008 	case ITER_BVEC:
3009 		ret = smb_extract_bvec_to_rdma(iter, rdma, len);
3010 		break;
3011 	case ITER_KVEC:
3012 		ret = smb_extract_kvec_to_rdma(iter, rdma, len);
3013 		break;
3014 	case ITER_FOLIOQ:
3015 		ret = smb_extract_folioq_to_rdma(iter, rdma, len);
3016 		break;
3017 	default:
3018 		WARN_ON_ONCE(1);
3019 		return -EIO;
3020 	}
3021 
3022 	if (ret < 0) {
3023 		while (rdma->nr_sge > before) {
3024 			struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
3025 
3026 			ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
3027 					    rdma->direction);
3028 			sge->addr = 0;
3029 		}
3030 	}
3031 
3032 	return ret;
3033 }
3034