1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017, Microsoft Corporation.
4 *
5 * Author(s): Long Li <longli@microsoft.com>
6 */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #define __SMBDIRECT_SOCKET_DISCONNECT(__sc) smbd_disconnect_rdma_connection(__sc)
11 #include "../common/smbdirect/smbdirect_pdu.h"
12 #include "smbdirect.h"
13 #include "cifs_debug.h"
14 #include "cifsproto.h"
15 #include "smb2proto.h"
16
smbd_get_parameters(struct smbd_connection * conn)17 const struct smbdirect_socket_parameters *smbd_get_parameters(struct smbd_connection *conn)
18 {
19 struct smbdirect_socket *sc = &conn->socket;
20
21 return &sc->parameters;
22 }
23
24 static struct smbdirect_recv_io *get_receive_buffer(
25 struct smbdirect_socket *sc);
26 static void put_receive_buffer(
27 struct smbdirect_socket *sc,
28 struct smbdirect_recv_io *response);
29 static int allocate_receive_buffers(struct smbdirect_socket *sc, int num_buf);
30 static void destroy_receive_buffers(struct smbdirect_socket *sc);
31
32 static void enqueue_reassembly(
33 struct smbdirect_socket *sc,
34 struct smbdirect_recv_io *response, int data_length);
35 static struct smbdirect_recv_io *_get_first_reassembly(
36 struct smbdirect_socket *sc);
37
38 static int smbd_post_recv(
39 struct smbdirect_socket *sc,
40 struct smbdirect_recv_io *response);
41
42 static int smbd_post_send_empty(struct smbdirect_socket *sc);
43
44 static void destroy_mr_list(struct smbdirect_socket *sc);
45 static int allocate_mr_list(struct smbdirect_socket *sc);
46
47 struct smb_extract_to_rdma {
48 struct ib_sge *sge;
49 unsigned int nr_sge;
50 unsigned int max_sge;
51 struct ib_device *device;
52 u32 local_dma_lkey;
53 enum dma_data_direction direction;
54 };
55 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
56 struct smb_extract_to_rdma *rdma);
57
58 /* Port numbers for SMBD transport */
59 #define SMB_PORT 445
60 #define SMBD_PORT 5445
61
62 /* Address lookup and resolve timeout in ms */
63 #define RDMA_RESOLVE_TIMEOUT 5000
64
65 /* SMBD negotiation timeout in seconds */
66 #define SMBD_NEGOTIATE_TIMEOUT 120
67
68 /* The timeout to wait for a keepalive message from peer in seconds */
69 #define KEEPALIVE_RECV_TIMEOUT 5
70
71 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
72 #define SMBD_MIN_RECEIVE_SIZE 128
73 #define SMBD_MIN_FRAGMENTED_SIZE 131072
74
75 /*
76 * Default maximum number of RDMA read/write outstanding on this connection
77 * This value is possibly decreased during QP creation on hardware limit
78 */
79 #define SMBD_CM_RESPONDER_RESOURCES 32
80
81 /* Maximum number of retries on data transfer operations */
82 #define SMBD_CM_RETRY 6
83 /* No need to retry on Receiver Not Ready since SMBD manages credits */
84 #define SMBD_CM_RNR_RETRY 0
85
86 /*
87 * User configurable initial values per SMBD transport connection
88 * as defined in [MS-SMBD] 3.1.1.1
89 * Those may change after a SMBD negotiation
90 */
91 /* The local peer's maximum number of credits to grant to the peer */
92 int smbd_receive_credit_max = 255;
93
94 /* The remote peer's credit request of local peer */
95 int smbd_send_credit_target = 255;
96
97 /* The maximum single message size can be sent to remote peer */
98 int smbd_max_send_size = 1364;
99
100 /* The maximum fragmented upper-layer payload receive size supported */
101 int smbd_max_fragmented_recv_size = 1024 * 1024;
102
103 /* The maximum single-message size which can be received */
104 int smbd_max_receive_size = 1364;
105
106 /* The timeout to initiate send of a keepalive message on idle */
107 int smbd_keep_alive_interval = 120;
108
109 /*
110 * User configurable initial values for RDMA transport
111 * The actual values used may be lower and are limited to hardware capabilities
112 */
113 /* Default maximum number of pages in a single RDMA write/read */
114 int smbd_max_frmr_depth = 2048;
115
116 /* If payload is less than this byte, use RDMA send/recv not read/write */
117 int rdma_readwrite_threshold = 4096;
118
119 /* Transport logging functions
120 * Logging are defined as classes. They can be OR'ed to define the actual
121 * logging level via module parameter smbd_logging_class
122 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
123 * log_rdma_event()
124 */
125 #define LOG_OUTGOING 0x1
126 #define LOG_INCOMING 0x2
127 #define LOG_READ 0x4
128 #define LOG_WRITE 0x8
129 #define LOG_RDMA_SEND 0x10
130 #define LOG_RDMA_RECV 0x20
131 #define LOG_KEEP_ALIVE 0x40
132 #define LOG_RDMA_EVENT 0x80
133 #define LOG_RDMA_MR 0x100
134 static unsigned int smbd_logging_class;
135 module_param(smbd_logging_class, uint, 0644);
136 MODULE_PARM_DESC(smbd_logging_class,
137 "Logging class for SMBD transport 0x0 to 0x100");
138
139 #define ERR 0x0
140 #define INFO 0x1
141 static unsigned int smbd_logging_level = ERR;
142 module_param(smbd_logging_level, uint, 0644);
143 MODULE_PARM_DESC(smbd_logging_level,
144 "Logging level for SMBD transport, 0 (default): error, 1: info");
145
146 #define log_rdma(level, class, fmt, args...) \
147 do { \
148 if (level <= smbd_logging_level || class & smbd_logging_class) \
149 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
150 } while (0)
151
152 #define log_outgoing(level, fmt, args...) \
153 log_rdma(level, LOG_OUTGOING, fmt, ##args)
154 #define log_incoming(level, fmt, args...) \
155 log_rdma(level, LOG_INCOMING, fmt, ##args)
156 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
157 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
158 #define log_rdma_send(level, fmt, args...) \
159 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
160 #define log_rdma_recv(level, fmt, args...) \
161 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
162 #define log_keep_alive(level, fmt, args...) \
163 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
164 #define log_rdma_event(level, fmt, args...) \
165 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
166 #define log_rdma_mr(level, fmt, args...) \
167 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
168
smbd_disconnect_wake_up_all(struct smbdirect_socket * sc)169 static void smbd_disconnect_wake_up_all(struct smbdirect_socket *sc)
170 {
171 /*
172 * Wake up all waiters in all wait queues
173 * in order to notice the broken connection.
174 */
175 wake_up_all(&sc->status_wait);
176 wake_up_all(&sc->send_io.lcredits.wait_queue);
177 wake_up_all(&sc->send_io.credits.wait_queue);
178 wake_up_all(&sc->send_io.pending.dec_wait_queue);
179 wake_up_all(&sc->send_io.pending.zero_wait_queue);
180 wake_up_all(&sc->recv_io.reassembly.wait_queue);
181 wake_up_all(&sc->mr_io.ready.wait_queue);
182 wake_up_all(&sc->mr_io.cleanup.wait_queue);
183 }
184
smbd_disconnect_rdma_work(struct work_struct * work)185 static void smbd_disconnect_rdma_work(struct work_struct *work)
186 {
187 struct smbdirect_socket *sc =
188 container_of(work, struct smbdirect_socket, disconnect_work);
189
190 if (sc->first_error == 0)
191 sc->first_error = -ECONNABORTED;
192
193 /*
194 * make sure this and other work is not queued again
195 * but here we don't block and avoid
196 * disable[_delayed]_work_sync()
197 */
198 disable_work(&sc->disconnect_work);
199 disable_work(&sc->recv_io.posted.refill_work);
200 disable_work(&sc->mr_io.recovery_work);
201 disable_work(&sc->idle.immediate_work);
202 disable_delayed_work(&sc->idle.timer_work);
203
204 switch (sc->status) {
205 case SMBDIRECT_SOCKET_NEGOTIATE_NEEDED:
206 case SMBDIRECT_SOCKET_NEGOTIATE_RUNNING:
207 case SMBDIRECT_SOCKET_NEGOTIATE_FAILED:
208 case SMBDIRECT_SOCKET_CONNECTED:
209 case SMBDIRECT_SOCKET_ERROR:
210 sc->status = SMBDIRECT_SOCKET_DISCONNECTING;
211 rdma_disconnect(sc->rdma.cm_id);
212 break;
213
214 case SMBDIRECT_SOCKET_CREATED:
215 case SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED:
216 case SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING:
217 case SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED:
218 case SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED:
219 case SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING:
220 case SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED:
221 case SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED:
222 case SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING:
223 case SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED:
224 /*
225 * rdma_connect() never reached
226 * RDMA_CM_EVENT_ESTABLISHED
227 */
228 sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
229 break;
230
231 case SMBDIRECT_SOCKET_DISCONNECTING:
232 case SMBDIRECT_SOCKET_DISCONNECTED:
233 case SMBDIRECT_SOCKET_DESTROYED:
234 break;
235 }
236
237 /*
238 * Wake up all waiters in all wait queues
239 * in order to notice the broken connection.
240 */
241 smbd_disconnect_wake_up_all(sc);
242 }
243
smbd_disconnect_rdma_connection(struct smbdirect_socket * sc)244 static void smbd_disconnect_rdma_connection(struct smbdirect_socket *sc)
245 {
246 if (sc->first_error == 0)
247 sc->first_error = -ECONNABORTED;
248
249 /*
250 * make sure other work (than disconnect_work) is
251 * not queued again but here we don't block and avoid
252 * disable[_delayed]_work_sync()
253 */
254 disable_work(&sc->recv_io.posted.refill_work);
255 disable_work(&sc->mr_io.recovery_work);
256 disable_work(&sc->idle.immediate_work);
257 disable_delayed_work(&sc->idle.timer_work);
258
259 switch (sc->status) {
260 case SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED:
261 case SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED:
262 case SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED:
263 case SMBDIRECT_SOCKET_NEGOTIATE_FAILED:
264 case SMBDIRECT_SOCKET_ERROR:
265 case SMBDIRECT_SOCKET_DISCONNECTING:
266 case SMBDIRECT_SOCKET_DISCONNECTED:
267 case SMBDIRECT_SOCKET_DESTROYED:
268 /*
269 * Keep the current error status
270 */
271 break;
272
273 case SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED:
274 case SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING:
275 sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED;
276 break;
277
278 case SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED:
279 case SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING:
280 sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED;
281 break;
282
283 case SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED:
284 case SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING:
285 sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED;
286 break;
287
288 case SMBDIRECT_SOCKET_NEGOTIATE_NEEDED:
289 case SMBDIRECT_SOCKET_NEGOTIATE_RUNNING:
290 sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
291 break;
292
293 case SMBDIRECT_SOCKET_CREATED:
294 sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
295 break;
296
297 case SMBDIRECT_SOCKET_CONNECTED:
298 sc->status = SMBDIRECT_SOCKET_ERROR;
299 break;
300 }
301
302 /*
303 * Wake up all waiters in all wait queues
304 * in order to notice the broken connection.
305 */
306 smbd_disconnect_wake_up_all(sc);
307
308 queue_work(sc->workqueue, &sc->disconnect_work);
309 }
310
311 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)312 static int smbd_conn_upcall(
313 struct rdma_cm_id *id, struct rdma_cm_event *event)
314 {
315 struct smbdirect_socket *sc = id->context;
316 struct smbdirect_socket_parameters *sp = &sc->parameters;
317 const char *event_name = rdma_event_msg(event->event);
318 u8 peer_initiator_depth;
319 u8 peer_responder_resources;
320
321 log_rdma_event(INFO, "event=%s status=%d\n",
322 event_name, event->status);
323
324 switch (event->event) {
325 case RDMA_CM_EVENT_ADDR_RESOLVED:
326 if (SMBDIRECT_CHECK_STATUS_DISCONNECT(sc, SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING))
327 break;
328 sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED;
329 wake_up(&sc->status_wait);
330 break;
331
332 case RDMA_CM_EVENT_ROUTE_RESOLVED:
333 if (SMBDIRECT_CHECK_STATUS_DISCONNECT(sc, SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING))
334 break;
335 sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED;
336 wake_up(&sc->status_wait);
337 break;
338
339 case RDMA_CM_EVENT_ADDR_ERROR:
340 log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
341 sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_FAILED;
342 smbd_disconnect_rdma_work(&sc->disconnect_work);
343 break;
344
345 case RDMA_CM_EVENT_ROUTE_ERROR:
346 log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
347 sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_FAILED;
348 smbd_disconnect_rdma_work(&sc->disconnect_work);
349 break;
350
351 case RDMA_CM_EVENT_ESTABLISHED:
352 log_rdma_event(INFO, "connected event=%s\n", event_name);
353
354 /*
355 * Here we work around an inconsistency between
356 * iWarp and other devices (at least rxe and irdma using RoCEv2)
357 */
358 if (rdma_protocol_iwarp(id->device, id->port_num)) {
359 /*
360 * iWarp devices report the peer's values
361 * with the perspective of the peer here.
362 * Tested with siw and irdma (in iwarp mode)
363 * We need to change to our perspective here,
364 * so we need to switch the values.
365 */
366 peer_initiator_depth = event->param.conn.responder_resources;
367 peer_responder_resources = event->param.conn.initiator_depth;
368 } else {
369 /*
370 * Non iWarp devices report the peer's values
371 * already changed to our perspective here.
372 * Tested with rxe and irdma (in roce mode).
373 */
374 peer_initiator_depth = event->param.conn.initiator_depth;
375 peer_responder_resources = event->param.conn.responder_resources;
376 }
377 if (rdma_protocol_iwarp(id->device, id->port_num) &&
378 event->param.conn.private_data_len == 8) {
379 /*
380 * Legacy clients with only iWarp MPA v1 support
381 * need a private blob in order to negotiate
382 * the IRD/ORD values.
383 */
384 const __be32 *ird_ord_hdr = event->param.conn.private_data;
385 u32 ird32 = be32_to_cpu(ird_ord_hdr[0]);
386 u32 ord32 = be32_to_cpu(ird_ord_hdr[1]);
387
388 /*
389 * cifs.ko sends the legacy IRD/ORD negotiation
390 * event if iWarp MPA v2 was used.
391 *
392 * Here we check that the values match and only
393 * mark the client as legacy if they don't match.
394 */
395 if ((u32)event->param.conn.initiator_depth != ird32 ||
396 (u32)event->param.conn.responder_resources != ord32) {
397 /*
398 * There are broken clients (old cifs.ko)
399 * using little endian and also
400 * struct rdma_conn_param only uses u8
401 * for initiator_depth and responder_resources,
402 * so we truncate the value to U8_MAX.
403 *
404 * smb_direct_accept_client() will then
405 * do the real negotiation in order to
406 * select the minimum between client and
407 * server.
408 */
409 ird32 = min_t(u32, ird32, U8_MAX);
410 ord32 = min_t(u32, ord32, U8_MAX);
411
412 sc->rdma.legacy_iwarp = true;
413 peer_initiator_depth = (u8)ird32;
414 peer_responder_resources = (u8)ord32;
415 }
416 }
417
418 /*
419 * negotiate the value by using the minimum
420 * between client and server if the client provided
421 * non 0 values.
422 */
423 if (peer_initiator_depth != 0)
424 sp->initiator_depth =
425 min_t(u8, sp->initiator_depth,
426 peer_initiator_depth);
427 if (peer_responder_resources != 0)
428 sp->responder_resources =
429 min_t(u8, sp->responder_resources,
430 peer_responder_resources);
431
432 if (SMBDIRECT_CHECK_STATUS_DISCONNECT(sc, SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING))
433 break;
434 sc->status = SMBDIRECT_SOCKET_NEGOTIATE_NEEDED;
435 wake_up(&sc->status_wait);
436 break;
437
438 case RDMA_CM_EVENT_CONNECT_ERROR:
439 case RDMA_CM_EVENT_UNREACHABLE:
440 case RDMA_CM_EVENT_REJECTED:
441 log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
442 sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_FAILED;
443 smbd_disconnect_rdma_work(&sc->disconnect_work);
444 break;
445
446 case RDMA_CM_EVENT_DEVICE_REMOVAL:
447 case RDMA_CM_EVENT_DISCONNECTED:
448 /* This happens when we fail the negotiation */
449 if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) {
450 log_rdma_event(ERR, "event=%s during negotiation\n", event_name);
451 }
452
453 sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
454 smbd_disconnect_rdma_work(&sc->disconnect_work);
455 break;
456
457 default:
458 log_rdma_event(ERR, "unexpected event=%s status=%d\n",
459 event_name, event->status);
460 break;
461 }
462
463 return 0;
464 }
465
466 /* Upcall from RDMA QP */
467 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)468 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
469 {
470 struct smbdirect_socket *sc = context;
471
472 log_rdma_event(ERR, "%s on device %s socket %p\n",
473 ib_event_msg(event->event), event->device->name, sc);
474
475 switch (event->event) {
476 case IB_EVENT_CQ_ERR:
477 case IB_EVENT_QP_FATAL:
478 smbd_disconnect_rdma_connection(sc);
479 break;
480
481 default:
482 break;
483 }
484 }
485
smbdirect_send_io_payload(struct smbdirect_send_io * request)486 static inline void *smbdirect_send_io_payload(struct smbdirect_send_io *request)
487 {
488 return (void *)request->packet;
489 }
490
smbdirect_recv_io_payload(struct smbdirect_recv_io * response)491 static inline void *smbdirect_recv_io_payload(struct smbdirect_recv_io *response)
492 {
493 return (void *)response->packet;
494 }
495
496 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)497 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
498 {
499 int i;
500 struct smbdirect_send_io *request =
501 container_of(wc->wr_cqe, struct smbdirect_send_io, cqe);
502 struct smbdirect_socket *sc = request->socket;
503 int lcredits = 0;
504
505 log_rdma_send(INFO, "smbdirect_send_io 0x%p completed wc->status=%s\n",
506 request, ib_wc_status_msg(wc->status));
507
508 for (i = 0; i < request->num_sge; i++)
509 ib_dma_unmap_single(sc->ib.dev,
510 request->sge[i].addr,
511 request->sge[i].length,
512 DMA_TO_DEVICE);
513 mempool_free(request, sc->send_io.mem.pool);
514 lcredits += 1;
515
516 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
517 if (wc->status != IB_WC_WR_FLUSH_ERR)
518 log_rdma_send(ERR, "wc->status=%s wc->opcode=%d\n",
519 ib_wc_status_msg(wc->status), wc->opcode);
520 smbd_disconnect_rdma_connection(sc);
521 return;
522 }
523
524 atomic_add(lcredits, &sc->send_io.lcredits.count);
525 wake_up(&sc->send_io.lcredits.wait_queue);
526
527 if (atomic_dec_and_test(&sc->send_io.pending.count))
528 wake_up(&sc->send_io.pending.zero_wait_queue);
529
530 wake_up(&sc->send_io.pending.dec_wait_queue);
531 }
532
dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp * resp)533 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp)
534 {
535 log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
536 resp->min_version, resp->max_version,
537 resp->negotiated_version, resp->credits_requested,
538 resp->credits_granted, resp->status,
539 resp->max_readwrite_size, resp->preferred_send_size,
540 resp->max_receive_size, resp->max_fragmented_size);
541 }
542
543 /*
544 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
545 * response, packet_length: the negotiation response message
546 * return value: true if negotiation is a success, false if failed
547 */
process_negotiation_response(struct smbdirect_recv_io * response,int packet_length)548 static bool process_negotiation_response(
549 struct smbdirect_recv_io *response, int packet_length)
550 {
551 struct smbdirect_socket *sc = response->socket;
552 struct smbdirect_socket_parameters *sp = &sc->parameters;
553 struct smbdirect_negotiate_resp *packet = smbdirect_recv_io_payload(response);
554
555 if (packet_length < sizeof(struct smbdirect_negotiate_resp)) {
556 log_rdma_event(ERR,
557 "error: packet_length=%d\n", packet_length);
558 return false;
559 }
560
561 if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) {
562 log_rdma_event(ERR, "error: negotiated_version=%x\n",
563 le16_to_cpu(packet->negotiated_version));
564 return false;
565 }
566
567 if (packet->credits_requested == 0) {
568 log_rdma_event(ERR, "error: credits_requested==0\n");
569 return false;
570 }
571 sc->recv_io.credits.target = le16_to_cpu(packet->credits_requested);
572 sc->recv_io.credits.target = min_t(u16, sc->recv_io.credits.target, sp->recv_credit_max);
573
574 if (packet->credits_granted == 0) {
575 log_rdma_event(ERR, "error: credits_granted==0\n");
576 return false;
577 }
578 atomic_set(&sc->send_io.lcredits.count, sp->send_credit_target);
579 atomic_set(&sc->send_io.credits.count, le16_to_cpu(packet->credits_granted));
580
581 if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) {
582 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
583 le32_to_cpu(packet->preferred_send_size));
584 return false;
585 }
586 sp->max_recv_size = le32_to_cpu(packet->preferred_send_size);
587
588 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
589 log_rdma_event(ERR, "error: max_receive_size=%d\n",
590 le32_to_cpu(packet->max_receive_size));
591 return false;
592 }
593 sp->max_send_size = min_t(u32, sp->max_send_size,
594 le32_to_cpu(packet->max_receive_size));
595
596 if (le32_to_cpu(packet->max_fragmented_size) <
597 SMBD_MIN_FRAGMENTED_SIZE) {
598 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
599 le32_to_cpu(packet->max_fragmented_size));
600 return false;
601 }
602 sp->max_fragmented_send_size =
603 le32_to_cpu(packet->max_fragmented_size);
604
605
606 sp->max_read_write_size = min_t(u32,
607 le32_to_cpu(packet->max_readwrite_size),
608 sp->max_frmr_depth * PAGE_SIZE);
609 sp->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE;
610
611 sc->recv_io.expected = SMBDIRECT_EXPECT_DATA_TRANSFER;
612 return true;
613 }
614
smbd_post_send_credits(struct work_struct * work)615 static void smbd_post_send_credits(struct work_struct *work)
616 {
617 int rc;
618 struct smbdirect_recv_io *response;
619 struct smbdirect_socket *sc =
620 container_of(work, struct smbdirect_socket, recv_io.posted.refill_work);
621
622 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
623 return;
624 }
625
626 if (sc->recv_io.credits.target >
627 atomic_read(&sc->recv_io.credits.count)) {
628 while (true) {
629 response = get_receive_buffer(sc);
630 if (!response)
631 break;
632
633 response->first_segment = false;
634 rc = smbd_post_recv(sc, response);
635 if (rc) {
636 log_rdma_recv(ERR,
637 "post_recv failed rc=%d\n", rc);
638 put_receive_buffer(sc, response);
639 break;
640 }
641
642 atomic_inc(&sc->recv_io.posted.count);
643 }
644 }
645
646 /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
647 if (atomic_read(&sc->recv_io.credits.count) <
648 sc->recv_io.credits.target - 1) {
649 log_keep_alive(INFO, "schedule send of an empty message\n");
650 queue_work(sc->workqueue, &sc->idle.immediate_work);
651 }
652 }
653
654 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)655 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
656 {
657 struct smbdirect_data_transfer *data_transfer;
658 struct smbdirect_recv_io *response =
659 container_of(wc->wr_cqe, struct smbdirect_recv_io, cqe);
660 struct smbdirect_socket *sc = response->socket;
661 struct smbdirect_socket_parameters *sp = &sc->parameters;
662 u16 old_recv_credit_target;
663 u32 data_offset = 0;
664 u32 data_length = 0;
665 u32 remaining_data_length = 0;
666 bool negotiate_done = false;
667
668 log_rdma_recv(INFO,
669 "response=0x%p type=%d wc status=%s wc opcode %d byte_len=%d pkey_index=%u\n",
670 response, sc->recv_io.expected,
671 ib_wc_status_msg(wc->status), wc->opcode,
672 wc->byte_len, wc->pkey_index);
673
674 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
675 if (wc->status != IB_WC_WR_FLUSH_ERR)
676 log_rdma_recv(ERR, "wc->status=%s opcode=%d\n",
677 ib_wc_status_msg(wc->status), wc->opcode);
678 goto error;
679 }
680
681 ib_dma_sync_single_for_cpu(
682 wc->qp->device,
683 response->sge.addr,
684 response->sge.length,
685 DMA_FROM_DEVICE);
686
687 /*
688 * Reset timer to the keepalive interval in
689 * order to trigger our next keepalive message.
690 */
691 sc->idle.keepalive = SMBDIRECT_KEEPALIVE_NONE;
692 mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
693 msecs_to_jiffies(sp->keepalive_interval_msec));
694
695 switch (sc->recv_io.expected) {
696 /* SMBD negotiation response */
697 case SMBDIRECT_EXPECT_NEGOTIATE_REP:
698 dump_smbdirect_negotiate_resp(smbdirect_recv_io_payload(response));
699 sc->recv_io.reassembly.full_packet_received = true;
700 negotiate_done =
701 process_negotiation_response(response, wc->byte_len);
702 put_receive_buffer(sc, response);
703 if (SMBDIRECT_CHECK_STATUS_WARN(sc, SMBDIRECT_SOCKET_NEGOTIATE_RUNNING))
704 negotiate_done = false;
705 if (!negotiate_done) {
706 sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
707 smbd_disconnect_rdma_connection(sc);
708 } else {
709 sc->status = SMBDIRECT_SOCKET_CONNECTED;
710 wake_up(&sc->status_wait);
711 }
712
713 return;
714
715 /* SMBD data transfer packet */
716 case SMBDIRECT_EXPECT_DATA_TRANSFER:
717 data_transfer = smbdirect_recv_io_payload(response);
718
719 if (wc->byte_len <
720 offsetof(struct smbdirect_data_transfer, padding))
721 goto error;
722
723 remaining_data_length = le32_to_cpu(data_transfer->remaining_data_length);
724 data_offset = le32_to_cpu(data_transfer->data_offset);
725 data_length = le32_to_cpu(data_transfer->data_length);
726 if (wc->byte_len < data_offset ||
727 (u64)wc->byte_len < (u64)data_offset + data_length)
728 goto error;
729
730 if (remaining_data_length > sp->max_fragmented_recv_size ||
731 data_length > sp->max_fragmented_recv_size ||
732 (u64)remaining_data_length + (u64)data_length > (u64)sp->max_fragmented_recv_size)
733 goto error;
734
735 if (data_length) {
736 if (sc->recv_io.reassembly.full_packet_received)
737 response->first_segment = true;
738
739 if (le32_to_cpu(data_transfer->remaining_data_length))
740 sc->recv_io.reassembly.full_packet_received = false;
741 else
742 sc->recv_io.reassembly.full_packet_received = true;
743 }
744
745 atomic_dec(&sc->recv_io.posted.count);
746 atomic_dec(&sc->recv_io.credits.count);
747 old_recv_credit_target = sc->recv_io.credits.target;
748 sc->recv_io.credits.target =
749 le16_to_cpu(data_transfer->credits_requested);
750 sc->recv_io.credits.target =
751 min_t(u16, sc->recv_io.credits.target, sp->recv_credit_max);
752 sc->recv_io.credits.target =
753 max_t(u16, sc->recv_io.credits.target, 1);
754 if (le16_to_cpu(data_transfer->credits_granted)) {
755 atomic_add(le16_to_cpu(data_transfer->credits_granted),
756 &sc->send_io.credits.count);
757 /*
758 * We have new send credits granted from remote peer
759 * If any sender is waiting for credits, unblock it
760 */
761 wake_up(&sc->send_io.credits.wait_queue);
762 }
763
764 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
765 le16_to_cpu(data_transfer->flags),
766 le32_to_cpu(data_transfer->data_offset),
767 le32_to_cpu(data_transfer->data_length),
768 le32_to_cpu(data_transfer->remaining_data_length));
769
770 /* Send an immediate response right away if requested */
771 if (le16_to_cpu(data_transfer->flags) &
772 SMBDIRECT_FLAG_RESPONSE_REQUESTED) {
773 log_keep_alive(INFO, "schedule send of immediate response\n");
774 queue_work(sc->workqueue, &sc->idle.immediate_work);
775 }
776
777 /*
778 * If this is a packet with data playload place the data in
779 * reassembly queue and wake up the reading thread
780 */
781 if (data_length) {
782 if (sc->recv_io.credits.target > old_recv_credit_target)
783 queue_work(sc->workqueue, &sc->recv_io.posted.refill_work);
784
785 enqueue_reassembly(sc, response, data_length);
786 wake_up(&sc->recv_io.reassembly.wait_queue);
787 } else
788 put_receive_buffer(sc, response);
789
790 return;
791
792 case SMBDIRECT_EXPECT_NEGOTIATE_REQ:
793 /* Only server... */
794 break;
795 }
796
797 /*
798 * This is an internal error!
799 */
800 log_rdma_recv(ERR, "unexpected response type=%d\n", sc->recv_io.expected);
801 WARN_ON_ONCE(sc->recv_io.expected != SMBDIRECT_EXPECT_DATA_TRANSFER);
802 error:
803 put_receive_buffer(sc, response);
804 smbd_disconnect_rdma_connection(sc);
805 }
806
smbd_create_id(struct smbdirect_socket * sc,struct sockaddr * dstaddr,int port)807 static struct rdma_cm_id *smbd_create_id(
808 struct smbdirect_socket *sc,
809 struct sockaddr *dstaddr, int port)
810 {
811 struct smbdirect_socket_parameters *sp = &sc->parameters;
812 struct rdma_cm_id *id;
813 int rc;
814 __be16 *sport;
815
816 id = rdma_create_id(&init_net, smbd_conn_upcall, sc,
817 RDMA_PS_TCP, IB_QPT_RC);
818 if (IS_ERR(id)) {
819 rc = PTR_ERR(id);
820 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
821 return id;
822 }
823
824 if (dstaddr->sa_family == AF_INET6)
825 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
826 else
827 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
828
829 *sport = htons(port);
830
831 WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED);
832 sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING;
833 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
834 sp->resolve_addr_timeout_msec);
835 if (rc) {
836 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
837 goto out;
838 }
839 rc = wait_event_interruptible_timeout(
840 sc->status_wait,
841 sc->status != SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING,
842 msecs_to_jiffies(sp->resolve_addr_timeout_msec));
843 /* e.g. if interrupted returns -ERESTARTSYS */
844 if (rc < 0) {
845 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
846 goto out;
847 }
848 if (sc->status == SMBDIRECT_SOCKET_RESOLVE_ADDR_RUNNING) {
849 rc = -ETIMEDOUT;
850 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
851 goto out;
852 }
853 if (sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED) {
854 rc = -EHOSTUNREACH;
855 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
856 goto out;
857 }
858
859 WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_NEEDED);
860 sc->status = SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING;
861 rc = rdma_resolve_route(id, sp->resolve_route_timeout_msec);
862 if (rc) {
863 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
864 goto out;
865 }
866 rc = wait_event_interruptible_timeout(
867 sc->status_wait,
868 sc->status != SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING,
869 msecs_to_jiffies(sp->resolve_route_timeout_msec));
870 /* e.g. if interrupted returns -ERESTARTSYS */
871 if (rc < 0) {
872 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
873 goto out;
874 }
875 if (sc->status == SMBDIRECT_SOCKET_RESOLVE_ROUTE_RUNNING) {
876 rc = -ETIMEDOUT;
877 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
878 goto out;
879 }
880 if (sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED) {
881 rc = -ENETUNREACH;
882 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
883 goto out;
884 }
885
886 return id;
887
888 out:
889 rdma_destroy_id(id);
890 return ERR_PTR(rc);
891 }
892
893 /*
894 * Test if FRWR (Fast Registration Work Requests) is supported on the device
895 * This implementation requires FRWR on RDMA read/write
896 * return value: true if it is supported
897 */
frwr_is_supported(struct ib_device_attr * attrs)898 static bool frwr_is_supported(struct ib_device_attr *attrs)
899 {
900 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
901 return false;
902 if (attrs->max_fast_reg_page_list_len == 0)
903 return false;
904 return true;
905 }
906
smbd_ia_open(struct smbdirect_socket * sc,struct sockaddr * dstaddr,int port)907 static int smbd_ia_open(
908 struct smbdirect_socket *sc,
909 struct sockaddr *dstaddr, int port)
910 {
911 struct smbdirect_socket_parameters *sp = &sc->parameters;
912 int rc;
913
914 WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_CREATED);
915 sc->status = SMBDIRECT_SOCKET_RESOLVE_ADDR_NEEDED;
916
917 sc->rdma.cm_id = smbd_create_id(sc, dstaddr, port);
918 if (IS_ERR(sc->rdma.cm_id)) {
919 rc = PTR_ERR(sc->rdma.cm_id);
920 goto out1;
921 }
922 sc->ib.dev = sc->rdma.cm_id->device;
923
924 if (!frwr_is_supported(&sc->ib.dev->attrs)) {
925 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
926 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
927 sc->ib.dev->attrs.device_cap_flags,
928 sc->ib.dev->attrs.max_fast_reg_page_list_len);
929 rc = -EPROTONOSUPPORT;
930 goto out2;
931 }
932 sp->max_frmr_depth = min_t(u32,
933 sp->max_frmr_depth,
934 sc->ib.dev->attrs.max_fast_reg_page_list_len);
935 sc->mr_io.type = IB_MR_TYPE_MEM_REG;
936 if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
937 sc->mr_io.type = IB_MR_TYPE_SG_GAPS;
938
939 return 0;
940
941 out2:
942 rdma_destroy_id(sc->rdma.cm_id);
943 sc->rdma.cm_id = NULL;
944
945 out1:
946 return rc;
947 }
948
949 /*
950 * Send a negotiation request message to the peer
951 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
952 * After negotiation, the transport is connected and ready for
953 * carrying upper layer SMB payload
954 */
smbd_post_send_negotiate_req(struct smbdirect_socket * sc)955 static int smbd_post_send_negotiate_req(struct smbdirect_socket *sc)
956 {
957 struct smbdirect_socket_parameters *sp = &sc->parameters;
958 struct ib_send_wr send_wr;
959 int rc = -ENOMEM;
960 struct smbdirect_send_io *request;
961 struct smbdirect_negotiate_req *packet;
962
963 request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
964 if (!request)
965 return rc;
966
967 request->socket = sc;
968
969 packet = smbdirect_send_io_payload(request);
970 packet->min_version = cpu_to_le16(SMBDIRECT_V1);
971 packet->max_version = cpu_to_le16(SMBDIRECT_V1);
972 packet->reserved = 0;
973 packet->credits_requested = cpu_to_le16(sp->send_credit_target);
974 packet->preferred_send_size = cpu_to_le32(sp->max_send_size);
975 packet->max_receive_size = cpu_to_le32(sp->max_recv_size);
976 packet->max_fragmented_size =
977 cpu_to_le32(sp->max_fragmented_recv_size);
978
979 request->num_sge = 1;
980 request->sge[0].addr = ib_dma_map_single(
981 sc->ib.dev, (void *)packet,
982 sizeof(*packet), DMA_TO_DEVICE);
983 if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
984 rc = -EIO;
985 goto dma_mapping_failed;
986 }
987
988 request->sge[0].length = sizeof(*packet);
989 request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
990
991 ib_dma_sync_single_for_device(
992 sc->ib.dev, request->sge[0].addr,
993 request->sge[0].length, DMA_TO_DEVICE);
994
995 request->cqe.done = send_done;
996
997 send_wr.next = NULL;
998 send_wr.wr_cqe = &request->cqe;
999 send_wr.sg_list = request->sge;
1000 send_wr.num_sge = request->num_sge;
1001 send_wr.opcode = IB_WR_SEND;
1002 send_wr.send_flags = IB_SEND_SIGNALED;
1003
1004 log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
1005 request->sge[0].addr,
1006 request->sge[0].length, request->sge[0].lkey);
1007
1008 atomic_inc(&sc->send_io.pending.count);
1009 rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
1010 if (!rc)
1011 return 0;
1012
1013 /* if we reach here, post send failed */
1014 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1015 atomic_dec(&sc->send_io.pending.count);
1016 ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr,
1017 request->sge[0].length, DMA_TO_DEVICE);
1018
1019 smbd_disconnect_rdma_connection(sc);
1020
1021 dma_mapping_failed:
1022 mempool_free(request, sc->send_io.mem.pool);
1023 return rc;
1024 }
1025
1026 /*
1027 * Extend the credits to remote peer
1028 * This implements [MS-SMBD] 3.1.5.9
1029 * The idea is that we should extend credits to remote peer as quickly as
1030 * it's allowed, to maintain data flow. We allocate as much receive
1031 * buffer as possible, and extend the receive credits to remote peer
1032 * return value: the new credtis being granted.
1033 */
manage_credits_prior_sending(struct smbdirect_socket * sc)1034 static int manage_credits_prior_sending(struct smbdirect_socket *sc)
1035 {
1036 int new_credits;
1037
1038 if (atomic_read(&sc->recv_io.credits.count) >= sc->recv_io.credits.target)
1039 return 0;
1040
1041 new_credits = atomic_read(&sc->recv_io.posted.count);
1042 if (new_credits == 0)
1043 return 0;
1044
1045 new_credits -= atomic_read(&sc->recv_io.credits.count);
1046 if (new_credits <= 0)
1047 return 0;
1048
1049 return new_credits;
1050 }
1051
1052 /*
1053 * Check if we need to send a KEEP_ALIVE message
1054 * The idle connection timer triggers a KEEP_ALIVE message when expires
1055 * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send
1056 * back a response.
1057 * return value:
1058 * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set
1059 * 0: otherwise
1060 */
manage_keep_alive_before_sending(struct smbdirect_socket * sc)1061 static int manage_keep_alive_before_sending(struct smbdirect_socket *sc)
1062 {
1063 struct smbdirect_socket_parameters *sp = &sc->parameters;
1064
1065 if (sc->idle.keepalive == SMBDIRECT_KEEPALIVE_PENDING) {
1066 sc->idle.keepalive = SMBDIRECT_KEEPALIVE_SENT;
1067 /*
1068 * Now use the keepalive timeout (instead of keepalive interval)
1069 * in order to wait for a response
1070 */
1071 mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1072 msecs_to_jiffies(sp->keepalive_timeout_msec));
1073 return 1;
1074 }
1075 return 0;
1076 }
1077
1078 /* Post the send request */
smbd_post_send(struct smbdirect_socket * sc,struct smbdirect_send_io * request)1079 static int smbd_post_send(struct smbdirect_socket *sc,
1080 struct smbdirect_send_io *request)
1081 {
1082 struct ib_send_wr send_wr;
1083 int rc, i;
1084
1085 for (i = 0; i < request->num_sge; i++) {
1086 log_rdma_send(INFO,
1087 "rdma_request sge[%d] addr=0x%llx length=%u\n",
1088 i, request->sge[i].addr, request->sge[i].length);
1089 ib_dma_sync_single_for_device(
1090 sc->ib.dev,
1091 request->sge[i].addr,
1092 request->sge[i].length,
1093 DMA_TO_DEVICE);
1094 }
1095
1096 request->cqe.done = send_done;
1097
1098 send_wr.next = NULL;
1099 send_wr.wr_cqe = &request->cqe;
1100 send_wr.sg_list = request->sge;
1101 send_wr.num_sge = request->num_sge;
1102 send_wr.opcode = IB_WR_SEND;
1103 send_wr.send_flags = IB_SEND_SIGNALED;
1104
1105 rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
1106 if (rc) {
1107 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1108 smbd_disconnect_rdma_connection(sc);
1109 rc = -EAGAIN;
1110 }
1111
1112 return rc;
1113 }
1114
smbd_post_send_iter(struct smbdirect_socket * sc,struct iov_iter * iter,int * _remaining_data_length)1115 static int smbd_post_send_iter(struct smbdirect_socket *sc,
1116 struct iov_iter *iter,
1117 int *_remaining_data_length)
1118 {
1119 struct smbdirect_socket_parameters *sp = &sc->parameters;
1120 int i, rc;
1121 int header_length;
1122 int data_length;
1123 struct smbdirect_send_io *request;
1124 struct smbdirect_data_transfer *packet;
1125 int new_credits = 0;
1126
1127 wait_lcredit:
1128 /* Wait for local send credits */
1129 rc = wait_event_interruptible(sc->send_io.lcredits.wait_queue,
1130 atomic_read(&sc->send_io.lcredits.count) > 0 ||
1131 sc->status != SMBDIRECT_SOCKET_CONNECTED);
1132 if (rc)
1133 goto err_wait_lcredit;
1134
1135 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1136 log_outgoing(ERR, "disconnected not sending on wait_credit\n");
1137 rc = -EAGAIN;
1138 goto err_wait_lcredit;
1139 }
1140 if (unlikely(atomic_dec_return(&sc->send_io.lcredits.count) < 0)) {
1141 atomic_inc(&sc->send_io.lcredits.count);
1142 goto wait_lcredit;
1143 }
1144
1145 wait_credit:
1146 /* Wait for send credits. A SMBD packet needs one credit */
1147 rc = wait_event_interruptible(sc->send_io.credits.wait_queue,
1148 atomic_read(&sc->send_io.credits.count) > 0 ||
1149 sc->status != SMBDIRECT_SOCKET_CONNECTED);
1150 if (rc)
1151 goto err_wait_credit;
1152
1153 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1154 log_outgoing(ERR, "disconnected not sending on wait_credit\n");
1155 rc = -EAGAIN;
1156 goto err_wait_credit;
1157 }
1158 if (unlikely(atomic_dec_return(&sc->send_io.credits.count) < 0)) {
1159 atomic_inc(&sc->send_io.credits.count);
1160 goto wait_credit;
1161 }
1162
1163 request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
1164 if (!request) {
1165 rc = -ENOMEM;
1166 goto err_alloc;
1167 }
1168
1169 request->socket = sc;
1170 memset(request->sge, 0, sizeof(request->sge));
1171
1172 /* Map the packet to DMA */
1173 header_length = sizeof(struct smbdirect_data_transfer);
1174 /* If this is a packet without payload, don't send padding */
1175 if (!iter)
1176 header_length = offsetof(struct smbdirect_data_transfer, padding);
1177
1178 packet = smbdirect_send_io_payload(request);
1179 request->sge[0].addr = ib_dma_map_single(sc->ib.dev,
1180 (void *)packet,
1181 header_length,
1182 DMA_TO_DEVICE);
1183 if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
1184 rc = -EIO;
1185 goto err_dma;
1186 }
1187
1188 request->sge[0].length = header_length;
1189 request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
1190 request->num_sge = 1;
1191
1192 /* Fill in the data payload to find out how much data we can add */
1193 if (iter) {
1194 struct smb_extract_to_rdma extract = {
1195 .nr_sge = request->num_sge,
1196 .max_sge = SMBDIRECT_SEND_IO_MAX_SGE,
1197 .sge = request->sge,
1198 .device = sc->ib.dev,
1199 .local_dma_lkey = sc->ib.pd->local_dma_lkey,
1200 .direction = DMA_TO_DEVICE,
1201 };
1202 size_t payload_len = umin(*_remaining_data_length,
1203 sp->max_send_size - sizeof(*packet));
1204
1205 rc = smb_extract_iter_to_rdma(iter, payload_len,
1206 &extract);
1207 if (rc < 0)
1208 goto err_dma;
1209 data_length = rc;
1210 request->num_sge = extract.nr_sge;
1211 *_remaining_data_length -= data_length;
1212 } else {
1213 data_length = 0;
1214 }
1215
1216 /* Fill in the packet header */
1217 packet->credits_requested = cpu_to_le16(sp->send_credit_target);
1218
1219 new_credits = manage_credits_prior_sending(sc);
1220 atomic_add(new_credits, &sc->recv_io.credits.count);
1221 packet->credits_granted = cpu_to_le16(new_credits);
1222
1223 packet->flags = 0;
1224 if (manage_keep_alive_before_sending(sc))
1225 packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED);
1226
1227 packet->reserved = 0;
1228 if (!data_length)
1229 packet->data_offset = 0;
1230 else
1231 packet->data_offset = cpu_to_le32(24);
1232 packet->data_length = cpu_to_le32(data_length);
1233 packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
1234 packet->padding = 0;
1235
1236 log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
1237 le16_to_cpu(packet->credits_requested),
1238 le16_to_cpu(packet->credits_granted),
1239 le32_to_cpu(packet->data_offset),
1240 le32_to_cpu(packet->data_length),
1241 le32_to_cpu(packet->remaining_data_length));
1242
1243 /*
1244 * Now that we got a local and a remote credit
1245 * we add us as pending
1246 */
1247 atomic_inc(&sc->send_io.pending.count);
1248
1249 rc = smbd_post_send(sc, request);
1250 if (!rc)
1251 return 0;
1252
1253 if (atomic_dec_and_test(&sc->send_io.pending.count))
1254 wake_up(&sc->send_io.pending.zero_wait_queue);
1255
1256 wake_up(&sc->send_io.pending.dec_wait_queue);
1257
1258 err_dma:
1259 for (i = 0; i < request->num_sge; i++)
1260 if (request->sge[i].addr)
1261 ib_dma_unmap_single(sc->ib.dev,
1262 request->sge[i].addr,
1263 request->sge[i].length,
1264 DMA_TO_DEVICE);
1265 mempool_free(request, sc->send_io.mem.pool);
1266
1267 /* roll back the granted receive credits */
1268 atomic_sub(new_credits, &sc->recv_io.credits.count);
1269
1270 err_alloc:
1271 atomic_inc(&sc->send_io.credits.count);
1272 wake_up(&sc->send_io.credits.wait_queue);
1273
1274 err_wait_credit:
1275 atomic_inc(&sc->send_io.lcredits.count);
1276 wake_up(&sc->send_io.lcredits.wait_queue);
1277
1278 err_wait_lcredit:
1279 return rc;
1280 }
1281
1282 /*
1283 * Send an empty message
1284 * Empty message is used to extend credits to peer to for keep live
1285 * while there is no upper layer payload to send at the time
1286 */
smbd_post_send_empty(struct smbdirect_socket * sc)1287 static int smbd_post_send_empty(struct smbdirect_socket *sc)
1288 {
1289 int remaining_data_length = 0;
1290
1291 sc->statistics.send_empty++;
1292 return smbd_post_send_iter(sc, NULL, &remaining_data_length);
1293 }
1294
smbd_post_send_full_iter(struct smbdirect_socket * sc,struct iov_iter * iter,int * _remaining_data_length)1295 static int smbd_post_send_full_iter(struct smbdirect_socket *sc,
1296 struct iov_iter *iter,
1297 int *_remaining_data_length)
1298 {
1299 int rc = 0;
1300
1301 /*
1302 * smbd_post_send_iter() respects the
1303 * negotiated max_send_size, so we need to
1304 * loop until the full iter is posted
1305 */
1306
1307 while (iov_iter_count(iter) > 0) {
1308 rc = smbd_post_send_iter(sc, iter, _remaining_data_length);
1309 if (rc < 0)
1310 break;
1311 }
1312
1313 return rc;
1314 }
1315
1316 /*
1317 * Post a receive request to the transport
1318 * The remote peer can only send data when a receive request is posted
1319 * The interaction is controlled by send/receive credit system
1320 */
smbd_post_recv(struct smbdirect_socket * sc,struct smbdirect_recv_io * response)1321 static int smbd_post_recv(
1322 struct smbdirect_socket *sc, struct smbdirect_recv_io *response)
1323 {
1324 struct smbdirect_socket_parameters *sp = &sc->parameters;
1325 struct ib_recv_wr recv_wr;
1326 int rc = -EIO;
1327
1328 response->sge.addr = ib_dma_map_single(
1329 sc->ib.dev, response->packet,
1330 sp->max_recv_size, DMA_FROM_DEVICE);
1331 if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr))
1332 return rc;
1333
1334 response->sge.length = sp->max_recv_size;
1335 response->sge.lkey = sc->ib.pd->local_dma_lkey;
1336
1337 response->cqe.done = recv_done;
1338
1339 recv_wr.wr_cqe = &response->cqe;
1340 recv_wr.next = NULL;
1341 recv_wr.sg_list = &response->sge;
1342 recv_wr.num_sge = 1;
1343
1344 rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL);
1345 if (rc) {
1346 ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1347 response->sge.length, DMA_FROM_DEVICE);
1348 response->sge.length = 0;
1349 smbd_disconnect_rdma_connection(sc);
1350 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1351 }
1352
1353 return rc;
1354 }
1355
1356 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbdirect_socket * sc)1357 static int smbd_negotiate(struct smbdirect_socket *sc)
1358 {
1359 struct smbdirect_socket_parameters *sp = &sc->parameters;
1360 int rc;
1361 struct smbdirect_recv_io *response = get_receive_buffer(sc);
1362
1363 WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_NEGOTIATE_NEEDED);
1364 sc->status = SMBDIRECT_SOCKET_NEGOTIATE_RUNNING;
1365
1366 sc->recv_io.expected = SMBDIRECT_EXPECT_NEGOTIATE_REP;
1367 rc = smbd_post_recv(sc, response);
1368 log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1369 rc, response->sge.addr,
1370 response->sge.length, response->sge.lkey);
1371 if (rc) {
1372 put_receive_buffer(sc, response);
1373 return rc;
1374 }
1375
1376 rc = smbd_post_send_negotiate_req(sc);
1377 if (rc)
1378 return rc;
1379
1380 rc = wait_event_interruptible_timeout(
1381 sc->status_wait,
1382 sc->status != SMBDIRECT_SOCKET_NEGOTIATE_RUNNING,
1383 msecs_to_jiffies(sp->negotiate_timeout_msec));
1384 log_rdma_event(INFO, "wait_event_interruptible_timeout rc=%d\n", rc);
1385
1386 if (sc->status == SMBDIRECT_SOCKET_CONNECTED)
1387 return 0;
1388
1389 if (rc == 0)
1390 rc = -ETIMEDOUT;
1391 else if (rc == -ERESTARTSYS)
1392 rc = -EINTR;
1393 else
1394 rc = -ENOTCONN;
1395
1396 return rc;
1397 }
1398
1399 /*
1400 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1401 * This is a queue for reassembling upper layer payload and present to upper
1402 * layer. All the inncoming payload go to the reassembly queue, regardless of
1403 * if reassembly is required. The uuper layer code reads from the queue for all
1404 * incoming payloads.
1405 * Put a received packet to the reassembly queue
1406 * response: the packet received
1407 * data_length: the size of payload in this packet
1408 */
enqueue_reassembly(struct smbdirect_socket * sc,struct smbdirect_recv_io * response,int data_length)1409 static void enqueue_reassembly(
1410 struct smbdirect_socket *sc,
1411 struct smbdirect_recv_io *response,
1412 int data_length)
1413 {
1414 unsigned long flags;
1415
1416 spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
1417 list_add_tail(&response->list, &sc->recv_io.reassembly.list);
1418 sc->recv_io.reassembly.queue_length++;
1419 /*
1420 * Make sure reassembly_data_length is updated after list and
1421 * reassembly_queue_length are updated. On the dequeue side
1422 * reassembly_data_length is checked without a lock to determine
1423 * if reassembly_queue_length and list is up to date
1424 */
1425 virt_wmb();
1426 sc->recv_io.reassembly.data_length += data_length;
1427 spin_unlock_irqrestore(&sc->recv_io.reassembly.lock, flags);
1428 sc->statistics.enqueue_reassembly_queue++;
1429 }
1430
1431 /*
1432 * Get the first entry at the front of reassembly queue
1433 * Caller is responsible for locking
1434 * return value: the first entry if any, NULL if queue is empty
1435 */
_get_first_reassembly(struct smbdirect_socket * sc)1436 static struct smbdirect_recv_io *_get_first_reassembly(struct smbdirect_socket *sc)
1437 {
1438 struct smbdirect_recv_io *ret = NULL;
1439
1440 if (!list_empty(&sc->recv_io.reassembly.list)) {
1441 ret = list_first_entry(
1442 &sc->recv_io.reassembly.list,
1443 struct smbdirect_recv_io, list);
1444 }
1445 return ret;
1446 }
1447
1448 /*
1449 * Get a receive buffer
1450 * For each remote send, we need to post a receive. The receive buffers are
1451 * pre-allocated in advance.
1452 * return value: the receive buffer, NULL if none is available
1453 */
get_receive_buffer(struct smbdirect_socket * sc)1454 static struct smbdirect_recv_io *get_receive_buffer(struct smbdirect_socket *sc)
1455 {
1456 struct smbdirect_recv_io *ret = NULL;
1457 unsigned long flags;
1458
1459 spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1460 if (!list_empty(&sc->recv_io.free.list)) {
1461 ret = list_first_entry(
1462 &sc->recv_io.free.list,
1463 struct smbdirect_recv_io, list);
1464 list_del(&ret->list);
1465 sc->statistics.get_receive_buffer++;
1466 }
1467 spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1468
1469 return ret;
1470 }
1471
1472 /*
1473 * Return a receive buffer
1474 * Upon returning of a receive buffer, we can post new receive and extend
1475 * more receive credits to remote peer. This is done immediately after a
1476 * receive buffer is returned.
1477 */
put_receive_buffer(struct smbdirect_socket * sc,struct smbdirect_recv_io * response)1478 static void put_receive_buffer(
1479 struct smbdirect_socket *sc, struct smbdirect_recv_io *response)
1480 {
1481 unsigned long flags;
1482
1483 if (likely(response->sge.length != 0)) {
1484 ib_dma_unmap_single(sc->ib.dev,
1485 response->sge.addr,
1486 response->sge.length,
1487 DMA_FROM_DEVICE);
1488 response->sge.length = 0;
1489 }
1490
1491 spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1492 list_add_tail(&response->list, &sc->recv_io.free.list);
1493 sc->statistics.put_receive_buffer++;
1494 spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1495
1496 queue_work(sc->workqueue, &sc->recv_io.posted.refill_work);
1497 }
1498
1499 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbdirect_socket * sc,int num_buf)1500 static int allocate_receive_buffers(struct smbdirect_socket *sc, int num_buf)
1501 {
1502 struct smbdirect_recv_io *response;
1503 int i;
1504
1505 for (i = 0; i < num_buf; i++) {
1506 response = mempool_alloc(sc->recv_io.mem.pool, GFP_KERNEL);
1507 if (!response)
1508 goto allocate_failed;
1509
1510 response->socket = sc;
1511 response->sge.length = 0;
1512 list_add_tail(&response->list, &sc->recv_io.free.list);
1513 }
1514
1515 return 0;
1516
1517 allocate_failed:
1518 while (!list_empty(&sc->recv_io.free.list)) {
1519 response = list_first_entry(
1520 &sc->recv_io.free.list,
1521 struct smbdirect_recv_io, list);
1522 list_del(&response->list);
1523
1524 mempool_free(response, sc->recv_io.mem.pool);
1525 }
1526 return -ENOMEM;
1527 }
1528
destroy_receive_buffers(struct smbdirect_socket * sc)1529 static void destroy_receive_buffers(struct smbdirect_socket *sc)
1530 {
1531 struct smbdirect_recv_io *response;
1532
1533 while ((response = get_receive_buffer(sc)))
1534 mempool_free(response, sc->recv_io.mem.pool);
1535 }
1536
send_immediate_empty_message(struct work_struct * work)1537 static void send_immediate_empty_message(struct work_struct *work)
1538 {
1539 struct smbdirect_socket *sc =
1540 container_of(work, struct smbdirect_socket, idle.immediate_work);
1541
1542 if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1543 return;
1544
1545 log_keep_alive(INFO, "send an empty message\n");
1546 smbd_post_send_empty(sc);
1547 }
1548
1549 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1550 static void idle_connection_timer(struct work_struct *work)
1551 {
1552 struct smbdirect_socket *sc =
1553 container_of(work, struct smbdirect_socket, idle.timer_work.work);
1554 struct smbdirect_socket_parameters *sp = &sc->parameters;
1555
1556 if (sc->idle.keepalive != SMBDIRECT_KEEPALIVE_NONE) {
1557 log_keep_alive(ERR,
1558 "error status sc->idle.keepalive=%d\n",
1559 sc->idle.keepalive);
1560 smbd_disconnect_rdma_connection(sc);
1561 return;
1562 }
1563
1564 if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1565 return;
1566
1567 /*
1568 * Now use the keepalive timeout (instead of keepalive interval)
1569 * in order to wait for a response
1570 */
1571 sc->idle.keepalive = SMBDIRECT_KEEPALIVE_PENDING;
1572 mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1573 msecs_to_jiffies(sp->keepalive_timeout_msec));
1574 log_keep_alive(INFO, "schedule send of empty idle message\n");
1575 queue_work(sc->workqueue, &sc->idle.immediate_work);
1576 }
1577
1578 /*
1579 * Destroy the transport and related RDMA and memory resources
1580 * Need to go through all the pending counters and make sure on one is using
1581 * the transport while it is destroyed
1582 */
smbd_destroy(struct TCP_Server_Info * server)1583 void smbd_destroy(struct TCP_Server_Info *server)
1584 {
1585 struct smbd_connection *info = server->smbd_conn;
1586 struct smbdirect_socket *sc;
1587 struct smbdirect_recv_io *response;
1588 unsigned long flags;
1589
1590 if (!info) {
1591 log_rdma_event(INFO, "rdma session already destroyed\n");
1592 return;
1593 }
1594 sc = &info->socket;
1595
1596 log_rdma_event(INFO, "cancelling and disable disconnect_work\n");
1597 disable_work_sync(&sc->disconnect_work);
1598
1599 log_rdma_event(INFO, "destroying rdma session\n");
1600 if (sc->status < SMBDIRECT_SOCKET_DISCONNECTING)
1601 smbd_disconnect_rdma_work(&sc->disconnect_work);
1602 if (sc->status < SMBDIRECT_SOCKET_DISCONNECTED) {
1603 log_rdma_event(INFO, "wait for transport being disconnected\n");
1604 wait_event(sc->status_wait, sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1605 log_rdma_event(INFO, "waited for transport being disconnected\n");
1606 }
1607
1608 /*
1609 * Wake up all waiters in all wait queues
1610 * in order to notice the broken connection.
1611 *
1612 * Most likely this was already called via
1613 * smbd_disconnect_rdma_work(), but call it again...
1614 */
1615 smbd_disconnect_wake_up_all(sc);
1616
1617 log_rdma_event(INFO, "cancelling recv_io.posted.refill_work\n");
1618 disable_work_sync(&sc->recv_io.posted.refill_work);
1619
1620 log_rdma_event(INFO, "destroying qp\n");
1621 ib_drain_qp(sc->ib.qp);
1622 rdma_destroy_qp(sc->rdma.cm_id);
1623 sc->ib.qp = NULL;
1624
1625 log_rdma_event(INFO, "cancelling idle timer\n");
1626 disable_delayed_work_sync(&sc->idle.timer_work);
1627 log_rdma_event(INFO, "cancelling send immediate work\n");
1628 disable_work_sync(&sc->idle.immediate_work);
1629
1630 /* It's not possible for upper layer to get to reassembly */
1631 log_rdma_event(INFO, "drain the reassembly queue\n");
1632 do {
1633 spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
1634 response = _get_first_reassembly(sc);
1635 if (response) {
1636 list_del(&response->list);
1637 spin_unlock_irqrestore(
1638 &sc->recv_io.reassembly.lock, flags);
1639 put_receive_buffer(sc, response);
1640 } else
1641 spin_unlock_irqrestore(
1642 &sc->recv_io.reassembly.lock, flags);
1643 } while (response);
1644 sc->recv_io.reassembly.data_length = 0;
1645
1646 log_rdma_event(INFO, "free receive buffers\n");
1647 destroy_receive_buffers(sc);
1648
1649 log_rdma_event(INFO, "freeing mr list\n");
1650 destroy_mr_list(sc);
1651
1652 ib_free_cq(sc->ib.send_cq);
1653 ib_free_cq(sc->ib.recv_cq);
1654 ib_dealloc_pd(sc->ib.pd);
1655 rdma_destroy_id(sc->rdma.cm_id);
1656
1657 /* free mempools */
1658 mempool_destroy(sc->send_io.mem.pool);
1659 kmem_cache_destroy(sc->send_io.mem.cache);
1660
1661 mempool_destroy(sc->recv_io.mem.pool);
1662 kmem_cache_destroy(sc->recv_io.mem.cache);
1663
1664 sc->status = SMBDIRECT_SOCKET_DESTROYED;
1665
1666 destroy_workqueue(sc->workqueue);
1667 log_rdma_event(INFO, "rdma session destroyed\n");
1668 kfree(info);
1669 server->smbd_conn = NULL;
1670 }
1671
1672 /*
1673 * Reconnect this SMBD connection, called from upper layer
1674 * return value: 0 on success, or actual error code
1675 */
smbd_reconnect(struct TCP_Server_Info * server)1676 int smbd_reconnect(struct TCP_Server_Info *server)
1677 {
1678 log_rdma_event(INFO, "reconnecting rdma session\n");
1679
1680 if (!server->smbd_conn) {
1681 log_rdma_event(INFO, "rdma session already destroyed\n");
1682 goto create_conn;
1683 }
1684
1685 /*
1686 * This is possible if transport is disconnected and we haven't received
1687 * notification from RDMA, but upper layer has detected timeout
1688 */
1689 if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) {
1690 log_rdma_event(INFO, "disconnecting transport\n");
1691 smbd_destroy(server);
1692 }
1693
1694 create_conn:
1695 log_rdma_event(INFO, "creating rdma session\n");
1696 server->smbd_conn = smbd_get_connection(
1697 server, (struct sockaddr *) &server->dstaddr);
1698
1699 if (server->smbd_conn) {
1700 cifs_dbg(VFS, "RDMA transport re-established\n");
1701 trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1702 return 0;
1703 }
1704 trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1705 return -ENOENT;
1706 }
1707
destroy_caches(struct smbdirect_socket * sc)1708 static void destroy_caches(struct smbdirect_socket *sc)
1709 {
1710 destroy_receive_buffers(sc);
1711 mempool_destroy(sc->recv_io.mem.pool);
1712 kmem_cache_destroy(sc->recv_io.mem.cache);
1713 mempool_destroy(sc->send_io.mem.pool);
1714 kmem_cache_destroy(sc->send_io.mem.cache);
1715 }
1716
1717 #define MAX_NAME_LEN 80
allocate_caches(struct smbdirect_socket * sc)1718 static int allocate_caches(struct smbdirect_socket *sc)
1719 {
1720 struct smbdirect_socket_parameters *sp = &sc->parameters;
1721 char name[MAX_NAME_LEN];
1722 int rc;
1723
1724 if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer)))
1725 return -ENOMEM;
1726
1727 scnprintf(name, MAX_NAME_LEN, "smbdirect_send_io_%p", sc);
1728 sc->send_io.mem.cache =
1729 kmem_cache_create(
1730 name,
1731 sizeof(struct smbdirect_send_io) +
1732 sizeof(struct smbdirect_data_transfer),
1733 0, SLAB_HWCACHE_ALIGN, NULL);
1734 if (!sc->send_io.mem.cache)
1735 return -ENOMEM;
1736
1737 sc->send_io.mem.pool =
1738 mempool_create(sp->send_credit_target, mempool_alloc_slab,
1739 mempool_free_slab, sc->send_io.mem.cache);
1740 if (!sc->send_io.mem.pool)
1741 goto out1;
1742
1743 scnprintf(name, MAX_NAME_LEN, "smbdirect_recv_io_%p", sc);
1744
1745 struct kmem_cache_args response_args = {
1746 .align = __alignof__(struct smbdirect_recv_io),
1747 .useroffset = (offsetof(struct smbdirect_recv_io, packet) +
1748 sizeof(struct smbdirect_data_transfer)),
1749 .usersize = sp->max_recv_size - sizeof(struct smbdirect_data_transfer),
1750 };
1751 sc->recv_io.mem.cache =
1752 kmem_cache_create(name,
1753 sizeof(struct smbdirect_recv_io) + sp->max_recv_size,
1754 &response_args, SLAB_HWCACHE_ALIGN);
1755 if (!sc->recv_io.mem.cache)
1756 goto out2;
1757
1758 sc->recv_io.mem.pool =
1759 mempool_create(sp->recv_credit_max, mempool_alloc_slab,
1760 mempool_free_slab, sc->recv_io.mem.cache);
1761 if (!sc->recv_io.mem.pool)
1762 goto out3;
1763
1764 rc = allocate_receive_buffers(sc, sp->recv_credit_max);
1765 if (rc) {
1766 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1767 goto out4;
1768 }
1769
1770 return 0;
1771
1772 out4:
1773 mempool_destroy(sc->recv_io.mem.pool);
1774 out3:
1775 kmem_cache_destroy(sc->recv_io.mem.cache);
1776 out2:
1777 mempool_destroy(sc->send_io.mem.pool);
1778 out1:
1779 kmem_cache_destroy(sc->send_io.mem.cache);
1780 return -ENOMEM;
1781 }
1782
1783 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1784 static struct smbd_connection *_smbd_get_connection(
1785 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1786 {
1787 int rc;
1788 struct smbd_connection *info;
1789 struct smbdirect_socket *sc;
1790 struct smbdirect_socket_parameters *sp;
1791 struct rdma_conn_param conn_param;
1792 struct ib_qp_cap qp_cap;
1793 struct ib_qp_init_attr qp_attr;
1794 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1795 struct ib_port_immutable port_immutable;
1796 __be32 ird_ord_hdr[2];
1797 char wq_name[80];
1798 struct workqueue_struct *workqueue;
1799
1800 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1801 if (!info)
1802 return NULL;
1803 sc = &info->socket;
1804 scnprintf(wq_name, ARRAY_SIZE(wq_name), "smbd_%p", sc);
1805 workqueue = create_workqueue(wq_name);
1806 if (!workqueue)
1807 goto create_wq_failed;
1808 smbdirect_socket_init(sc);
1809 sc->workqueue = workqueue;
1810 sp = &sc->parameters;
1811
1812 INIT_WORK(&sc->disconnect_work, smbd_disconnect_rdma_work);
1813
1814 sp->resolve_addr_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1815 sp->resolve_route_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1816 sp->rdma_connect_timeout_msec = RDMA_RESOLVE_TIMEOUT;
1817 sp->negotiate_timeout_msec = SMBD_NEGOTIATE_TIMEOUT * 1000;
1818 sp->initiator_depth = 1;
1819 sp->responder_resources = SMBD_CM_RESPONDER_RESOURCES;
1820 sp->recv_credit_max = smbd_receive_credit_max;
1821 sp->send_credit_target = smbd_send_credit_target;
1822 sp->max_send_size = smbd_max_send_size;
1823 sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1824 sp->max_recv_size = smbd_max_receive_size;
1825 sp->max_frmr_depth = smbd_max_frmr_depth;
1826 sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000;
1827 sp->keepalive_timeout_msec = KEEPALIVE_RECV_TIMEOUT * 1000;
1828
1829 rc = smbd_ia_open(sc, dstaddr, port);
1830 if (rc) {
1831 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1832 goto create_id_failed;
1833 }
1834
1835 if (sp->send_credit_target > sc->ib.dev->attrs.max_cqe ||
1836 sp->send_credit_target > sc->ib.dev->attrs.max_qp_wr) {
1837 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1838 sp->send_credit_target,
1839 sc->ib.dev->attrs.max_cqe,
1840 sc->ib.dev->attrs.max_qp_wr);
1841 goto config_failed;
1842 }
1843
1844 if (sp->recv_credit_max > sc->ib.dev->attrs.max_cqe ||
1845 sp->recv_credit_max > sc->ib.dev->attrs.max_qp_wr) {
1846 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1847 sp->recv_credit_max,
1848 sc->ib.dev->attrs.max_cqe,
1849 sc->ib.dev->attrs.max_qp_wr);
1850 goto config_failed;
1851 }
1852
1853 if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_SEND_IO_MAX_SGE ||
1854 sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_RECV_IO_MAX_SGE) {
1855 log_rdma_event(ERR,
1856 "device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1857 IB_DEVICE_NAME_MAX,
1858 sc->ib.dev->name,
1859 sc->ib.dev->attrs.max_send_sge,
1860 sc->ib.dev->attrs.max_recv_sge);
1861 goto config_failed;
1862 }
1863
1864 sp->responder_resources =
1865 min_t(u8, sp->responder_resources,
1866 sc->ib.dev->attrs.max_qp_rd_atom);
1867 log_rdma_mr(INFO, "responder_resources=%d\n",
1868 sp->responder_resources);
1869
1870 /*
1871 * We use allocate sp->responder_resources * 2 MRs
1872 * and each MR needs WRs for REG and INV, so
1873 * we use '* 4'.
1874 *
1875 * +1 for ib_drain_qp()
1876 */
1877 memset(&qp_cap, 0, sizeof(qp_cap));
1878 qp_cap.max_send_wr = sp->send_credit_target + sp->responder_resources * 4 + 1;
1879 qp_cap.max_recv_wr = sp->recv_credit_max + 1;
1880 qp_cap.max_send_sge = SMBDIRECT_SEND_IO_MAX_SGE;
1881 qp_cap.max_recv_sge = SMBDIRECT_RECV_IO_MAX_SGE;
1882
1883 sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0);
1884 if (IS_ERR(sc->ib.pd)) {
1885 rc = PTR_ERR(sc->ib.pd);
1886 sc->ib.pd = NULL;
1887 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
1888 goto alloc_pd_failed;
1889 }
1890
1891 sc->ib.send_cq =
1892 ib_alloc_cq_any(sc->ib.dev, sc,
1893 qp_cap.max_send_wr, IB_POLL_SOFTIRQ);
1894 if (IS_ERR(sc->ib.send_cq)) {
1895 sc->ib.send_cq = NULL;
1896 goto alloc_cq_failed;
1897 }
1898
1899 sc->ib.recv_cq =
1900 ib_alloc_cq_any(sc->ib.dev, sc,
1901 qp_cap.max_recv_wr, IB_POLL_SOFTIRQ);
1902 if (IS_ERR(sc->ib.recv_cq)) {
1903 sc->ib.recv_cq = NULL;
1904 goto alloc_cq_failed;
1905 }
1906
1907 memset(&qp_attr, 0, sizeof(qp_attr));
1908 qp_attr.event_handler = smbd_qp_async_error_upcall;
1909 qp_attr.qp_context = sc;
1910 qp_attr.cap = qp_cap;
1911 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1912 qp_attr.qp_type = IB_QPT_RC;
1913 qp_attr.send_cq = sc->ib.send_cq;
1914 qp_attr.recv_cq = sc->ib.recv_cq;
1915 qp_attr.port_num = ~0;
1916
1917 rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr);
1918 if (rc) {
1919 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1920 goto create_qp_failed;
1921 }
1922 sc->ib.qp = sc->rdma.cm_id->qp;
1923
1924 memset(&conn_param, 0, sizeof(conn_param));
1925 conn_param.initiator_depth = sp->initiator_depth;
1926 conn_param.responder_resources = sp->responder_resources;
1927
1928 /* Need to send IRD/ORD in private data for iWARP */
1929 sc->ib.dev->ops.get_port_immutable(
1930 sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable);
1931 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1932 ird_ord_hdr[0] = cpu_to_be32(conn_param.responder_resources);
1933 ird_ord_hdr[1] = cpu_to_be32(conn_param.initiator_depth);
1934 conn_param.private_data = ird_ord_hdr;
1935 conn_param.private_data_len = sizeof(ird_ord_hdr);
1936 } else {
1937 conn_param.private_data = NULL;
1938 conn_param.private_data_len = 0;
1939 }
1940
1941 conn_param.retry_count = SMBD_CM_RETRY;
1942 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1943 conn_param.flow_control = 0;
1944
1945 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1946 &addr_in->sin_addr, port);
1947
1948 WARN_ON_ONCE(sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_NEEDED);
1949 sc->status = SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING;
1950 rc = rdma_connect(sc->rdma.cm_id, &conn_param);
1951 if (rc) {
1952 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1953 goto rdma_connect_failed;
1954 }
1955
1956 wait_event_interruptible_timeout(
1957 sc->status_wait,
1958 sc->status != SMBDIRECT_SOCKET_RDMA_CONNECT_RUNNING,
1959 msecs_to_jiffies(sp->rdma_connect_timeout_msec));
1960
1961 if (sc->status != SMBDIRECT_SOCKET_NEGOTIATE_NEEDED) {
1962 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1963 goto rdma_connect_failed;
1964 }
1965
1966 log_rdma_event(INFO, "rdma_connect connected\n");
1967
1968 rc = allocate_caches(sc);
1969 if (rc) {
1970 log_rdma_event(ERR, "cache allocation failed\n");
1971 goto allocate_cache_failed;
1972 }
1973
1974 INIT_WORK(&sc->idle.immediate_work, send_immediate_empty_message);
1975 INIT_DELAYED_WORK(&sc->idle.timer_work, idle_connection_timer);
1976 /*
1977 * start with the negotiate timeout and SMBDIRECT_KEEPALIVE_PENDING
1978 * so that the timer will cause a disconnect.
1979 */
1980 sc->idle.keepalive = SMBDIRECT_KEEPALIVE_PENDING;
1981 mod_delayed_work(sc->workqueue, &sc->idle.timer_work,
1982 msecs_to_jiffies(sp->negotiate_timeout_msec));
1983
1984 INIT_WORK(&sc->recv_io.posted.refill_work, smbd_post_send_credits);
1985
1986 rc = smbd_negotiate(sc);
1987 if (rc) {
1988 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1989 goto negotiation_failed;
1990 }
1991
1992 rc = allocate_mr_list(sc);
1993 if (rc) {
1994 log_rdma_mr(ERR, "memory registration allocation failed\n");
1995 goto allocate_mr_failed;
1996 }
1997
1998 return info;
1999
2000 allocate_mr_failed:
2001 /* At this point, need to a full transport shutdown */
2002 server->smbd_conn = info;
2003 smbd_destroy(server);
2004 return NULL;
2005
2006 negotiation_failed:
2007 disable_delayed_work_sync(&sc->idle.timer_work);
2008 destroy_caches(sc);
2009 sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
2010 rdma_disconnect(sc->rdma.cm_id);
2011 wait_event(sc->status_wait,
2012 sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
2013
2014 allocate_cache_failed:
2015 rdma_connect_failed:
2016 rdma_destroy_qp(sc->rdma.cm_id);
2017
2018 create_qp_failed:
2019 alloc_cq_failed:
2020 if (sc->ib.send_cq)
2021 ib_free_cq(sc->ib.send_cq);
2022 if (sc->ib.recv_cq)
2023 ib_free_cq(sc->ib.recv_cq);
2024
2025 ib_dealloc_pd(sc->ib.pd);
2026
2027 alloc_pd_failed:
2028 config_failed:
2029 rdma_destroy_id(sc->rdma.cm_id);
2030
2031 create_id_failed:
2032 destroy_workqueue(sc->workqueue);
2033 create_wq_failed:
2034 kfree(info);
2035 return NULL;
2036 }
2037
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)2038 struct smbd_connection *smbd_get_connection(
2039 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
2040 {
2041 struct smbd_connection *ret;
2042 const struct smbdirect_socket_parameters *sp;
2043 int port = SMBD_PORT;
2044
2045 try_again:
2046 ret = _smbd_get_connection(server, dstaddr, port);
2047
2048 /* Try SMB_PORT if SMBD_PORT doesn't work */
2049 if (!ret && port == SMBD_PORT) {
2050 port = SMB_PORT;
2051 goto try_again;
2052 }
2053 if (!ret)
2054 return NULL;
2055
2056 sp = &ret->socket.parameters;
2057
2058 server->rdma_readwrite_threshold =
2059 rdma_readwrite_threshold > sp->max_fragmented_send_size ?
2060 sp->max_fragmented_send_size :
2061 rdma_readwrite_threshold;
2062
2063 return ret;
2064 }
2065
2066 /*
2067 * Receive data from the transport's receive reassembly queue
2068 * All the incoming data packets are placed in reassembly queue
2069 * iter: the buffer to read data into
2070 * size: the length of data to read
2071 * return value: actual data read
2072 *
2073 * Note: this implementation copies the data from reassembly queue to receive
2074 * buffers used by upper layer. This is not the optimal code path. A better way
2075 * to do it is to not have upper layer allocate its receive buffers but rather
2076 * borrow the buffer from reassembly queue, and return it after data is
2077 * consumed. But this will require more changes to upper layer code, and also
2078 * need to consider packet boundaries while they still being reassembled.
2079 */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)2080 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
2081 {
2082 struct smbdirect_socket *sc = &info->socket;
2083 struct smbdirect_recv_io *response;
2084 struct smbdirect_data_transfer *data_transfer;
2085 size_t size = iov_iter_count(&msg->msg_iter);
2086 int to_copy, to_read, data_read, offset;
2087 u32 data_length, remaining_data_length, data_offset;
2088 int rc;
2089
2090 if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE))
2091 return -EINVAL; /* It's a bug in upper layer to get there */
2092
2093 again:
2094 /*
2095 * No need to hold the reassembly queue lock all the time as we are
2096 * the only one reading from the front of the queue. The transport
2097 * may add more entries to the back of the queue at the same time
2098 */
2099 log_read(INFO, "size=%zd sc->recv_io.reassembly.data_length=%d\n", size,
2100 sc->recv_io.reassembly.data_length);
2101 if (sc->recv_io.reassembly.data_length >= size) {
2102 int queue_length;
2103 int queue_removed = 0;
2104 unsigned long flags;
2105
2106 /*
2107 * Need to make sure reassembly_data_length is read before
2108 * reading reassembly_queue_length and calling
2109 * _get_first_reassembly. This call is lock free
2110 * as we never read at the end of the queue which are being
2111 * updated in SOFTIRQ as more data is received
2112 */
2113 virt_rmb();
2114 queue_length = sc->recv_io.reassembly.queue_length;
2115 data_read = 0;
2116 to_read = size;
2117 offset = sc->recv_io.reassembly.first_entry_offset;
2118 while (data_read < size) {
2119 response = _get_first_reassembly(sc);
2120 data_transfer = smbdirect_recv_io_payload(response);
2121 data_length = le32_to_cpu(data_transfer->data_length);
2122 remaining_data_length =
2123 le32_to_cpu(
2124 data_transfer->remaining_data_length);
2125 data_offset = le32_to_cpu(data_transfer->data_offset);
2126
2127 /*
2128 * The upper layer expects RFC1002 length at the
2129 * beginning of the payload. Return it to indicate
2130 * the total length of the packet. This minimize the
2131 * change to upper layer packet processing logic. This
2132 * will be eventually remove when an intermediate
2133 * transport layer is added
2134 */
2135 if (response->first_segment && size == 4) {
2136 unsigned int rfc1002_len =
2137 data_length + remaining_data_length;
2138 __be32 rfc1002_hdr = cpu_to_be32(rfc1002_len);
2139 if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr),
2140 &msg->msg_iter) != sizeof(rfc1002_hdr))
2141 return -EFAULT;
2142 data_read = 4;
2143 response->first_segment = false;
2144 log_read(INFO, "returning rfc1002 length %d\n",
2145 rfc1002_len);
2146 goto read_rfc1002_done;
2147 }
2148
2149 to_copy = min_t(int, data_length - offset, to_read);
2150 if (copy_to_iter((char *)data_transfer + data_offset + offset,
2151 to_copy, &msg->msg_iter) != to_copy)
2152 return -EFAULT;
2153
2154 /* move on to the next buffer? */
2155 if (to_copy == data_length - offset) {
2156 queue_length--;
2157 /*
2158 * No need to lock if we are not at the
2159 * end of the queue
2160 */
2161 if (queue_length)
2162 list_del(&response->list);
2163 else {
2164 spin_lock_irqsave(
2165 &sc->recv_io.reassembly.lock, flags);
2166 list_del(&response->list);
2167 spin_unlock_irqrestore(
2168 &sc->recv_io.reassembly.lock, flags);
2169 }
2170 queue_removed++;
2171 sc->statistics.dequeue_reassembly_queue++;
2172 put_receive_buffer(sc, response);
2173 offset = 0;
2174 log_read(INFO, "put_receive_buffer offset=0\n");
2175 } else
2176 offset += to_copy;
2177
2178 to_read -= to_copy;
2179 data_read += to_copy;
2180
2181 log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
2182 to_copy, data_length - offset,
2183 to_read, data_read, offset);
2184 }
2185
2186 spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
2187 sc->recv_io.reassembly.data_length -= data_read;
2188 sc->recv_io.reassembly.queue_length -= queue_removed;
2189 spin_unlock_irqrestore(&sc->recv_io.reassembly.lock, flags);
2190
2191 sc->recv_io.reassembly.first_entry_offset = offset;
2192 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
2193 data_read, sc->recv_io.reassembly.data_length,
2194 sc->recv_io.reassembly.first_entry_offset);
2195 read_rfc1002_done:
2196 return data_read;
2197 }
2198
2199 log_read(INFO, "wait_event on more data\n");
2200 rc = wait_event_interruptible(
2201 sc->recv_io.reassembly.wait_queue,
2202 sc->recv_io.reassembly.data_length >= size ||
2203 sc->status != SMBDIRECT_SOCKET_CONNECTED);
2204 /* Don't return any data if interrupted */
2205 if (rc)
2206 return rc;
2207
2208 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2209 log_read(ERR, "disconnected\n");
2210 return -ECONNABORTED;
2211 }
2212
2213 goto again;
2214 }
2215
2216 /*
2217 * Send data to transport
2218 * Each rqst is transported as a SMBDirect payload
2219 * rqst: the data to write
2220 * return value: 0 if successfully write, otherwise error code
2221 */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)2222 int smbd_send(struct TCP_Server_Info *server,
2223 int num_rqst, struct smb_rqst *rqst_array)
2224 {
2225 struct smbd_connection *info = server->smbd_conn;
2226 struct smbdirect_socket *sc = &info->socket;
2227 struct smbdirect_socket_parameters *sp = &sc->parameters;
2228 struct smb_rqst *rqst;
2229 struct iov_iter iter;
2230 unsigned int remaining_data_length, klen;
2231 int rc, i, rqst_idx;
2232
2233 if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
2234 return -EAGAIN;
2235
2236 /*
2237 * Add in the page array if there is one. The caller needs to set
2238 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2239 * ends at page boundary
2240 */
2241 remaining_data_length = 0;
2242 for (i = 0; i < num_rqst; i++)
2243 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2244
2245 if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) {
2246 /* assertion: payload never exceeds negotiated maximum */
2247 log_write(ERR, "payload size %d > max size %d\n",
2248 remaining_data_length, sp->max_fragmented_send_size);
2249 return -EINVAL;
2250 }
2251
2252 log_write(INFO, "num_rqst=%d total length=%u\n",
2253 num_rqst, remaining_data_length);
2254
2255 rqst_idx = 0;
2256 do {
2257 rqst = &rqst_array[rqst_idx];
2258
2259 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2260 rqst_idx, smb_rqst_len(server, rqst));
2261 for (i = 0; i < rqst->rq_nvec; i++)
2262 dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
2263
2264 log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
2265 rqst_idx, rqst->rq_nvec, remaining_data_length,
2266 iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
2267
2268 /* Send the metadata pages. */
2269 klen = 0;
2270 for (i = 0; i < rqst->rq_nvec; i++)
2271 klen += rqst->rq_iov[i].iov_len;
2272 iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
2273
2274 rc = smbd_post_send_full_iter(sc, &iter, &remaining_data_length);
2275 if (rc < 0)
2276 break;
2277
2278 if (iov_iter_count(&rqst->rq_iter) > 0) {
2279 /* And then the data pages if there are any */
2280 rc = smbd_post_send_full_iter(sc, &rqst->rq_iter,
2281 &remaining_data_length);
2282 if (rc < 0)
2283 break;
2284 }
2285
2286 } while (++rqst_idx < num_rqst);
2287
2288 /*
2289 * As an optimization, we don't wait for individual I/O to finish
2290 * before sending the next one.
2291 * Send them all and wait for pending send count to get to 0
2292 * that means all the I/Os have been out and we are good to return
2293 */
2294
2295 wait_event(sc->send_io.pending.zero_wait_queue,
2296 atomic_read(&sc->send_io.pending.count) == 0 ||
2297 sc->status != SMBDIRECT_SOCKET_CONNECTED);
2298
2299 if (sc->status != SMBDIRECT_SOCKET_CONNECTED && rc == 0)
2300 rc = -EAGAIN;
2301
2302 return rc;
2303 }
2304
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2305 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2306 {
2307 struct smbdirect_mr_io *mr =
2308 container_of(wc->wr_cqe, struct smbdirect_mr_io, cqe);
2309 struct smbdirect_socket *sc = mr->socket;
2310
2311 if (wc->status) {
2312 log_rdma_mr(ERR, "status=%d\n", wc->status);
2313 smbd_disconnect_rdma_connection(sc);
2314 }
2315 }
2316
2317 /*
2318 * The work queue function that recovers MRs
2319 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2320 * again. Both calls are slow, so finish them in a workqueue. This will not
2321 * block I/O path.
2322 * There is one workqueue that recovers MRs, there is no need to lock as the
2323 * I/O requests calling smbd_register_mr will never update the links in the
2324 * mr_list.
2325 */
smbd_mr_recovery_work(struct work_struct * work)2326 static void smbd_mr_recovery_work(struct work_struct *work)
2327 {
2328 struct smbdirect_socket *sc =
2329 container_of(work, struct smbdirect_socket, mr_io.recovery_work);
2330 struct smbdirect_socket_parameters *sp = &sc->parameters;
2331 struct smbdirect_mr_io *smbdirect_mr;
2332 int rc;
2333
2334 list_for_each_entry(smbdirect_mr, &sc->mr_io.all.list, list) {
2335 if (smbdirect_mr->state == SMBDIRECT_MR_ERROR) {
2336
2337 /* recover this MR entry */
2338 rc = ib_dereg_mr(smbdirect_mr->mr);
2339 if (rc) {
2340 log_rdma_mr(ERR,
2341 "ib_dereg_mr failed rc=%x\n",
2342 rc);
2343 smbd_disconnect_rdma_connection(sc);
2344 continue;
2345 }
2346
2347 smbdirect_mr->mr = ib_alloc_mr(
2348 sc->ib.pd, sc->mr_io.type,
2349 sp->max_frmr_depth);
2350 if (IS_ERR(smbdirect_mr->mr)) {
2351 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2352 sc->mr_io.type,
2353 sp->max_frmr_depth);
2354 smbd_disconnect_rdma_connection(sc);
2355 continue;
2356 }
2357 } else
2358 /* This MR is being used, don't recover it */
2359 continue;
2360
2361 smbdirect_mr->state = SMBDIRECT_MR_READY;
2362
2363 /* smbdirect_mr->state is updated by this function
2364 * and is read and updated by I/O issuing CPUs trying
2365 * to get a MR, the call to atomic_inc_return
2366 * implicates a memory barrier and guarantees this
2367 * value is updated before waking up any calls to
2368 * get_mr() from the I/O issuing CPUs
2369 */
2370 if (atomic_inc_return(&sc->mr_io.ready.count) == 1)
2371 wake_up(&sc->mr_io.ready.wait_queue);
2372 }
2373 }
2374
smbd_mr_disable_locked(struct smbdirect_mr_io * mr)2375 static void smbd_mr_disable_locked(struct smbdirect_mr_io *mr)
2376 {
2377 struct smbdirect_socket *sc = mr->socket;
2378
2379 lockdep_assert_held(&mr->mutex);
2380
2381 if (mr->state == SMBDIRECT_MR_DISABLED)
2382 return;
2383
2384 if (mr->mr)
2385 ib_dereg_mr(mr->mr);
2386 if (mr->sgt.nents)
2387 ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2388 kfree(mr->sgt.sgl);
2389
2390 mr->mr = NULL;
2391 mr->sgt.sgl = NULL;
2392 mr->sgt.nents = 0;
2393
2394 mr->state = SMBDIRECT_MR_DISABLED;
2395 }
2396
smbd_mr_free_locked(struct kref * kref)2397 static void smbd_mr_free_locked(struct kref *kref)
2398 {
2399 struct smbdirect_mr_io *mr =
2400 container_of(kref, struct smbdirect_mr_io, kref);
2401
2402 lockdep_assert_held(&mr->mutex);
2403
2404 /*
2405 * smbd_mr_disable_locked() should already be called!
2406 */
2407 if (WARN_ON_ONCE(mr->state != SMBDIRECT_MR_DISABLED))
2408 smbd_mr_disable_locked(mr);
2409
2410 mutex_unlock(&mr->mutex);
2411 mutex_destroy(&mr->mutex);
2412 kfree(mr);
2413 }
2414
destroy_mr_list(struct smbdirect_socket * sc)2415 static void destroy_mr_list(struct smbdirect_socket *sc)
2416 {
2417 struct smbdirect_mr_io *mr, *tmp;
2418 LIST_HEAD(all_list);
2419 unsigned long flags;
2420
2421 disable_work_sync(&sc->mr_io.recovery_work);
2422
2423 spin_lock_irqsave(&sc->mr_io.all.lock, flags);
2424 list_splice_tail_init(&sc->mr_io.all.list, &all_list);
2425 spin_unlock_irqrestore(&sc->mr_io.all.lock, flags);
2426
2427 list_for_each_entry_safe(mr, tmp, &all_list, list) {
2428 mutex_lock(&mr->mutex);
2429
2430 smbd_mr_disable_locked(mr);
2431 list_del(&mr->list);
2432 mr->socket = NULL;
2433
2434 /*
2435 * No kref_put_mutex() as it's already locked.
2436 *
2437 * If smbd_mr_free_locked() is called
2438 * and the mutex is unlocked and mr is gone,
2439 * in that case kref_put() returned 1.
2440 *
2441 * If kref_put() returned 0 we know that
2442 * smbd_mr_free_locked() didn't
2443 * run. Not by us nor by anyone else, as we
2444 * still hold the mutex, so we need to unlock.
2445 *
2446 * If the mr is still registered it will
2447 * be dangling (detached from the connection
2448 * waiting for smbd_deregister_mr() to be
2449 * called in order to free the memory.
2450 */
2451 if (!kref_put(&mr->kref, smbd_mr_free_locked))
2452 mutex_unlock(&mr->mutex);
2453 }
2454 }
2455
2456 /*
2457 * Allocate MRs used for RDMA read/write
2458 * The number of MRs will not exceed hardware capability in responder_resources
2459 * All MRs are kept in mr_list. The MR can be recovered after it's used
2460 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2461 * as MRs are used and recovered for I/O, but the list links will not change
2462 */
allocate_mr_list(struct smbdirect_socket * sc)2463 static int allocate_mr_list(struct smbdirect_socket *sc)
2464 {
2465 struct smbdirect_socket_parameters *sp = &sc->parameters;
2466 struct smbdirect_mr_io *mr;
2467 int ret;
2468 u32 i;
2469
2470 if (sp->responder_resources == 0) {
2471 log_rdma_mr(ERR, "responder_resources negotiated as 0\n");
2472 return -EINVAL;
2473 }
2474
2475 /* Allocate more MRs (2x) than hardware responder_resources */
2476 for (i = 0; i < sp->responder_resources * 2; i++) {
2477 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2478 if (!mr) {
2479 ret = -ENOMEM;
2480 goto kzalloc_mr_failed;
2481 }
2482
2483 kref_init(&mr->kref);
2484 mutex_init(&mr->mutex);
2485
2486 mr->mr = ib_alloc_mr(sc->ib.pd,
2487 sc->mr_io.type,
2488 sp->max_frmr_depth);
2489 if (IS_ERR(mr->mr)) {
2490 ret = PTR_ERR(mr->mr);
2491 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2492 sc->mr_io.type, sp->max_frmr_depth);
2493 goto ib_alloc_mr_failed;
2494 }
2495
2496 mr->sgt.sgl = kcalloc(sp->max_frmr_depth,
2497 sizeof(struct scatterlist),
2498 GFP_KERNEL);
2499 if (!mr->sgt.sgl) {
2500 ret = -ENOMEM;
2501 log_rdma_mr(ERR, "failed to allocate sgl\n");
2502 goto kcalloc_sgl_failed;
2503 }
2504 mr->state = SMBDIRECT_MR_READY;
2505 mr->socket = sc;
2506
2507 list_add_tail(&mr->list, &sc->mr_io.all.list);
2508 atomic_inc(&sc->mr_io.ready.count);
2509 }
2510
2511 INIT_WORK(&sc->mr_io.recovery_work, smbd_mr_recovery_work);
2512
2513 return 0;
2514
2515 kcalloc_sgl_failed:
2516 ib_dereg_mr(mr->mr);
2517 ib_alloc_mr_failed:
2518 mutex_destroy(&mr->mutex);
2519 kfree(mr);
2520 kzalloc_mr_failed:
2521 destroy_mr_list(sc);
2522 return ret;
2523 }
2524
2525 /*
2526 * Get a MR from mr_list. This function waits until there is at least one
2527 * MR available in the list. It may access the list while the
2528 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2529 * as they never modify the same places. However, there may be several CPUs
2530 * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2531 * protect this situation.
2532 */
get_mr(struct smbdirect_socket * sc)2533 static struct smbdirect_mr_io *get_mr(struct smbdirect_socket *sc)
2534 {
2535 struct smbdirect_mr_io *ret;
2536 unsigned long flags;
2537 int rc;
2538 again:
2539 rc = wait_event_interruptible(sc->mr_io.ready.wait_queue,
2540 atomic_read(&sc->mr_io.ready.count) ||
2541 sc->status != SMBDIRECT_SOCKET_CONNECTED);
2542 if (rc) {
2543 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2544 return NULL;
2545 }
2546
2547 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2548 log_rdma_mr(ERR, "sc->status=%x\n", sc->status);
2549 return NULL;
2550 }
2551
2552 spin_lock_irqsave(&sc->mr_io.all.lock, flags);
2553 list_for_each_entry(ret, &sc->mr_io.all.list, list) {
2554 if (ret->state == SMBDIRECT_MR_READY) {
2555 ret->state = SMBDIRECT_MR_REGISTERED;
2556 kref_get(&ret->kref);
2557 spin_unlock_irqrestore(&sc->mr_io.all.lock, flags);
2558 atomic_dec(&sc->mr_io.ready.count);
2559 atomic_inc(&sc->mr_io.used.count);
2560 return ret;
2561 }
2562 }
2563
2564 spin_unlock_irqrestore(&sc->mr_io.all.lock, flags);
2565 /*
2566 * It is possible that we could fail to get MR because other processes may
2567 * try to acquire a MR at the same time. If this is the case, retry it.
2568 */
2569 goto again;
2570 }
2571
2572 /*
2573 * Transcribe the pages from an iterator into an MR scatterlist.
2574 */
smbd_iter_to_mr(struct iov_iter * iter,struct sg_table * sgt,unsigned int max_sg)2575 static int smbd_iter_to_mr(struct iov_iter *iter,
2576 struct sg_table *sgt,
2577 unsigned int max_sg)
2578 {
2579 int ret;
2580
2581 memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2582
2583 ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2584 WARN_ON(ret < 0);
2585 if (sgt->nents > 0)
2586 sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2587 return ret;
2588 }
2589
2590 /*
2591 * Register memory for RDMA read/write
2592 * iter: the buffer to register memory with
2593 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2594 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2595 * return value: the MR registered, NULL if failed.
2596 */
smbd_register_mr(struct smbd_connection * info,struct iov_iter * iter,bool writing,bool need_invalidate)2597 struct smbdirect_mr_io *smbd_register_mr(struct smbd_connection *info,
2598 struct iov_iter *iter,
2599 bool writing, bool need_invalidate)
2600 {
2601 struct smbdirect_socket *sc = &info->socket;
2602 struct smbdirect_socket_parameters *sp = &sc->parameters;
2603 struct smbdirect_mr_io *mr;
2604 int rc, num_pages;
2605 struct ib_reg_wr *reg_wr;
2606
2607 num_pages = iov_iter_npages(iter, sp->max_frmr_depth + 1);
2608 if (num_pages > sp->max_frmr_depth) {
2609 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2610 num_pages, sp->max_frmr_depth);
2611 WARN_ON_ONCE(1);
2612 return NULL;
2613 }
2614
2615 mr = get_mr(sc);
2616 if (!mr) {
2617 log_rdma_mr(ERR, "get_mr returning NULL\n");
2618 return NULL;
2619 }
2620
2621 mutex_lock(&mr->mutex);
2622
2623 mr->dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2624 mr->need_invalidate = need_invalidate;
2625 mr->sgt.nents = 0;
2626 mr->sgt.orig_nents = 0;
2627
2628 log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2629 num_pages, iov_iter_count(iter), sp->max_frmr_depth);
2630 smbd_iter_to_mr(iter, &mr->sgt, sp->max_frmr_depth);
2631
2632 rc = ib_dma_map_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2633 if (!rc) {
2634 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2635 num_pages, mr->dir, rc);
2636 goto dma_map_error;
2637 }
2638
2639 rc = ib_map_mr_sg(mr->mr, mr->sgt.sgl, mr->sgt.nents, NULL, PAGE_SIZE);
2640 if (rc != mr->sgt.nents) {
2641 log_rdma_mr(ERR,
2642 "ib_map_mr_sg failed rc = %d nents = %x\n",
2643 rc, mr->sgt.nents);
2644 goto map_mr_error;
2645 }
2646
2647 ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
2648 reg_wr = &mr->wr;
2649 reg_wr->wr.opcode = IB_WR_REG_MR;
2650 mr->cqe.done = register_mr_done;
2651 reg_wr->wr.wr_cqe = &mr->cqe;
2652 reg_wr->wr.num_sge = 0;
2653 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2654 reg_wr->mr = mr->mr;
2655 reg_wr->key = mr->mr->rkey;
2656 reg_wr->access = writing ?
2657 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2658 IB_ACCESS_REMOTE_READ;
2659
2660 /*
2661 * There is no need for waiting for complemtion on ib_post_send
2662 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2663 * on the next ib_post_send when we actually send I/O to remote peer
2664 */
2665 rc = ib_post_send(sc->ib.qp, ®_wr->wr, NULL);
2666 if (!rc) {
2667 /*
2668 * get_mr() gave us a reference
2669 * via kref_get(&mr->kref), we keep that and let
2670 * the caller use smbd_deregister_mr()
2671 * to remove it again.
2672 */
2673 mutex_unlock(&mr->mutex);
2674 return mr;
2675 }
2676
2677 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2678 rc, reg_wr->key);
2679
2680 /* If all failed, attempt to recover this MR by setting it SMBDIRECT_MR_ERROR*/
2681 map_mr_error:
2682 ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2683
2684 dma_map_error:
2685 mr->sgt.nents = 0;
2686 mr->state = SMBDIRECT_MR_ERROR;
2687 if (atomic_dec_and_test(&sc->mr_io.used.count))
2688 wake_up(&sc->mr_io.cleanup.wait_queue);
2689
2690 smbd_disconnect_rdma_connection(sc);
2691
2692 /*
2693 * get_mr() gave us a reference
2694 * via kref_get(&mr->kref), we need to remove it again
2695 * on error.
2696 *
2697 * No kref_put_mutex() as it's already locked.
2698 *
2699 * If smbd_mr_free_locked() is called
2700 * and the mutex is unlocked and mr is gone,
2701 * in that case kref_put() returned 1.
2702 *
2703 * If kref_put() returned 0 we know that
2704 * smbd_mr_free_locked() didn't
2705 * run. Not by us nor by anyone else, as we
2706 * still hold the mutex, so we need to unlock.
2707 */
2708 if (!kref_put(&mr->kref, smbd_mr_free_locked))
2709 mutex_unlock(&mr->mutex);
2710
2711 return NULL;
2712 }
2713
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2714 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2715 {
2716 struct smbdirect_mr_io *smbdirect_mr;
2717 struct ib_cqe *cqe;
2718
2719 cqe = wc->wr_cqe;
2720 smbdirect_mr = container_of(cqe, struct smbdirect_mr_io, cqe);
2721 smbdirect_mr->state = SMBDIRECT_MR_INVALIDATED;
2722 if (wc->status != IB_WC_SUCCESS) {
2723 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2724 smbdirect_mr->state = SMBDIRECT_MR_ERROR;
2725 }
2726 complete(&smbdirect_mr->invalidate_done);
2727 }
2728
2729 /*
2730 * Deregister a MR after I/O is done
2731 * This function may wait if remote invalidation is not used
2732 * and we have to locally invalidate the buffer to prevent data is being
2733 * modified by remote peer after upper layer consumes it
2734 */
smbd_deregister_mr(struct smbdirect_mr_io * mr)2735 void smbd_deregister_mr(struct smbdirect_mr_io *mr)
2736 {
2737 struct smbdirect_socket *sc = mr->socket;
2738
2739 mutex_lock(&mr->mutex);
2740 if (mr->state == SMBDIRECT_MR_DISABLED)
2741 goto put_kref;
2742
2743 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2744 smbd_mr_disable_locked(mr);
2745 goto put_kref;
2746 }
2747
2748 if (mr->need_invalidate) {
2749 struct ib_send_wr *wr = &mr->inv_wr;
2750 int rc;
2751
2752 /* Need to finish local invalidation before returning */
2753 wr->opcode = IB_WR_LOCAL_INV;
2754 mr->cqe.done = local_inv_done;
2755 wr->wr_cqe = &mr->cqe;
2756 wr->num_sge = 0;
2757 wr->ex.invalidate_rkey = mr->mr->rkey;
2758 wr->send_flags = IB_SEND_SIGNALED;
2759
2760 init_completion(&mr->invalidate_done);
2761 rc = ib_post_send(sc->ib.qp, wr, NULL);
2762 if (rc) {
2763 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2764 smbd_mr_disable_locked(mr);
2765 smbd_disconnect_rdma_connection(sc);
2766 goto done;
2767 }
2768 wait_for_completion(&mr->invalidate_done);
2769 mr->need_invalidate = false;
2770 } else
2771 /*
2772 * For remote invalidation, just set it to SMBDIRECT_MR_INVALIDATED
2773 * and defer to mr_recovery_work to recover the MR for next use
2774 */
2775 mr->state = SMBDIRECT_MR_INVALIDATED;
2776
2777 if (mr->sgt.nents) {
2778 ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl, mr->sgt.nents, mr->dir);
2779 mr->sgt.nents = 0;
2780 }
2781
2782 if (mr->state == SMBDIRECT_MR_INVALIDATED) {
2783 mr->state = SMBDIRECT_MR_READY;
2784 if (atomic_inc_return(&sc->mr_io.ready.count) == 1)
2785 wake_up(&sc->mr_io.ready.wait_queue);
2786 } else
2787 /*
2788 * Schedule the work to do MR recovery for future I/Os MR
2789 * recovery is slow and don't want it to block current I/O
2790 */
2791 queue_work(sc->workqueue, &sc->mr_io.recovery_work);
2792
2793 done:
2794 if (atomic_dec_and_test(&sc->mr_io.used.count))
2795 wake_up(&sc->mr_io.cleanup.wait_queue);
2796
2797 put_kref:
2798 /*
2799 * No kref_put_mutex() as it's already locked.
2800 *
2801 * If smbd_mr_free_locked() is called
2802 * and the mutex is unlocked and mr is gone,
2803 * in that case kref_put() returned 1.
2804 *
2805 * If kref_put() returned 0 we know that
2806 * smbd_mr_free_locked() didn't
2807 * run. Not by us nor by anyone else, as we
2808 * still hold the mutex, so we need to unlock
2809 * and keep the mr in SMBDIRECT_MR_READY or
2810 * SMBDIRECT_MR_ERROR state.
2811 */
2812 if (!kref_put(&mr->kref, smbd_mr_free_locked))
2813 mutex_unlock(&mr->mutex);
2814 }
2815
smb_set_sge(struct smb_extract_to_rdma * rdma,struct page * lowest_page,size_t off,size_t len)2816 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2817 struct page *lowest_page, size_t off, size_t len)
2818 {
2819 struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2820 u64 addr;
2821
2822 addr = ib_dma_map_page(rdma->device, lowest_page,
2823 off, len, rdma->direction);
2824 if (ib_dma_mapping_error(rdma->device, addr))
2825 return false;
2826
2827 sge->addr = addr;
2828 sge->length = len;
2829 sge->lkey = rdma->local_dma_lkey;
2830 rdma->nr_sge++;
2831 return true;
2832 }
2833
2834 /*
2835 * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2836 * element list. The pages are not pinned.
2837 */
smb_extract_bvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2838 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2839 struct smb_extract_to_rdma *rdma,
2840 ssize_t maxsize)
2841 {
2842 const struct bio_vec *bv = iter->bvec;
2843 unsigned long start = iter->iov_offset;
2844 unsigned int i;
2845 ssize_t ret = 0;
2846
2847 for (i = 0; i < iter->nr_segs; i++) {
2848 size_t off, len;
2849
2850 len = bv[i].bv_len;
2851 if (start >= len) {
2852 start -= len;
2853 continue;
2854 }
2855
2856 len = min_t(size_t, maxsize, len - start);
2857 off = bv[i].bv_offset + start;
2858
2859 if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2860 return -EIO;
2861
2862 ret += len;
2863 maxsize -= len;
2864 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2865 break;
2866 start = 0;
2867 }
2868
2869 if (ret > 0)
2870 iov_iter_advance(iter, ret);
2871 return ret;
2872 }
2873
2874 /*
2875 * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2876 * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2877 * The pages are not pinned.
2878 */
smb_extract_kvec_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2879 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2880 struct smb_extract_to_rdma *rdma,
2881 ssize_t maxsize)
2882 {
2883 const struct kvec *kv = iter->kvec;
2884 unsigned long start = iter->iov_offset;
2885 unsigned int i;
2886 ssize_t ret = 0;
2887
2888 for (i = 0; i < iter->nr_segs; i++) {
2889 struct page *page;
2890 unsigned long kaddr;
2891 size_t off, len, seg;
2892
2893 len = kv[i].iov_len;
2894 if (start >= len) {
2895 start -= len;
2896 continue;
2897 }
2898
2899 kaddr = (unsigned long)kv[i].iov_base + start;
2900 off = kaddr & ~PAGE_MASK;
2901 len = min_t(size_t, maxsize, len - start);
2902 kaddr &= PAGE_MASK;
2903
2904 maxsize -= len;
2905 do {
2906 seg = min_t(size_t, len, PAGE_SIZE - off);
2907
2908 if (is_vmalloc_or_module_addr((void *)kaddr))
2909 page = vmalloc_to_page((void *)kaddr);
2910 else
2911 page = virt_to_page((void *)kaddr);
2912
2913 if (!smb_set_sge(rdma, page, off, seg))
2914 return -EIO;
2915
2916 ret += seg;
2917 len -= seg;
2918 kaddr += PAGE_SIZE;
2919 off = 0;
2920 } while (len > 0 && rdma->nr_sge < rdma->max_sge);
2921
2922 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2923 break;
2924 start = 0;
2925 }
2926
2927 if (ret > 0)
2928 iov_iter_advance(iter, ret);
2929 return ret;
2930 }
2931
2932 /*
2933 * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2934 * list. The folios are not pinned.
2935 */
smb_extract_folioq_to_rdma(struct iov_iter * iter,struct smb_extract_to_rdma * rdma,ssize_t maxsize)2936 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2937 struct smb_extract_to_rdma *rdma,
2938 ssize_t maxsize)
2939 {
2940 const struct folio_queue *folioq = iter->folioq;
2941 unsigned int slot = iter->folioq_slot;
2942 ssize_t ret = 0;
2943 size_t offset = iter->iov_offset;
2944
2945 BUG_ON(!folioq);
2946
2947 if (slot >= folioq_nr_slots(folioq)) {
2948 folioq = folioq->next;
2949 if (WARN_ON_ONCE(!folioq))
2950 return -EIO;
2951 slot = 0;
2952 }
2953
2954 do {
2955 struct folio *folio = folioq_folio(folioq, slot);
2956 size_t fsize = folioq_folio_size(folioq, slot);
2957
2958 if (offset < fsize) {
2959 size_t part = umin(maxsize, fsize - offset);
2960
2961 if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2962 return -EIO;
2963
2964 offset += part;
2965 ret += part;
2966 maxsize -= part;
2967 }
2968
2969 if (offset >= fsize) {
2970 offset = 0;
2971 slot++;
2972 if (slot >= folioq_nr_slots(folioq)) {
2973 if (!folioq->next) {
2974 WARN_ON_ONCE(ret < iter->count);
2975 break;
2976 }
2977 folioq = folioq->next;
2978 slot = 0;
2979 }
2980 }
2981 } while (rdma->nr_sge < rdma->max_sge && maxsize > 0);
2982
2983 iter->folioq = folioq;
2984 iter->folioq_slot = slot;
2985 iter->iov_offset = offset;
2986 iter->count -= ret;
2987 return ret;
2988 }
2989
2990 /*
2991 * Extract page fragments from up to the given amount of the source iterator
2992 * and build up an RDMA list that refers to all of those bits. The RDMA list
2993 * is appended to, up to the maximum number of elements set in the parameter
2994 * block.
2995 *
2996 * The extracted page fragments are not pinned or ref'd in any way; if an
2997 * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2998 * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2999 * way.
3000 */
smb_extract_iter_to_rdma(struct iov_iter * iter,size_t len,struct smb_extract_to_rdma * rdma)3001 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
3002 struct smb_extract_to_rdma *rdma)
3003 {
3004 ssize_t ret;
3005 int before = rdma->nr_sge;
3006
3007 switch (iov_iter_type(iter)) {
3008 case ITER_BVEC:
3009 ret = smb_extract_bvec_to_rdma(iter, rdma, len);
3010 break;
3011 case ITER_KVEC:
3012 ret = smb_extract_kvec_to_rdma(iter, rdma, len);
3013 break;
3014 case ITER_FOLIOQ:
3015 ret = smb_extract_folioq_to_rdma(iter, rdma, len);
3016 break;
3017 default:
3018 WARN_ON_ONCE(1);
3019 return -EIO;
3020 }
3021
3022 if (ret < 0) {
3023 while (rdma->nr_sge > before) {
3024 struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
3025
3026 ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
3027 rdma->direction);
3028 sge->addr = 0;
3029 }
3030 }
3031
3032 return ret;
3033 }
3034