1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/string.h> 63 #include <linux/seq_file.h> 64 #include <linux/namei.h> 65 #include <linux/mnt_namespace.h> 66 #include <linux/mm.h> 67 #include <linux/swap.h> 68 #include <linux/rcupdate.h> 69 #include <linux/kallsyms.h> 70 #include <linux/stacktrace.h> 71 #include <linux/resource.h> 72 #include <linux/module.h> 73 #include <linux/mount.h> 74 #include <linux/security.h> 75 #include <linux/ptrace.h> 76 #include <linux/tracehook.h> 77 #include <linux/printk.h> 78 #include <linux/cache.h> 79 #include <linux/cgroup.h> 80 #include <linux/cpuset.h> 81 #include <linux/audit.h> 82 #include <linux/poll.h> 83 #include <linux/nsproxy.h> 84 #include <linux/oom.h> 85 #include <linux/elf.h> 86 #include <linux/pid_namespace.h> 87 #include <linux/user_namespace.h> 88 #include <linux/fs_struct.h> 89 #include <linux/slab.h> 90 #include <linux/sched/autogroup.h> 91 #include <linux/sched/mm.h> 92 #include <linux/sched/coredump.h> 93 #include <linux/sched/debug.h> 94 #include <linux/sched/stat.h> 95 #include <linux/flex_array.h> 96 #include <linux/posix-timers.h> 97 #include <trace/events/oom.h> 98 #include "internal.h" 99 #include "fd.h" 100 101 #include "../../lib/kstrtox.h" 102 103 /* NOTE: 104 * Implementing inode permission operations in /proc is almost 105 * certainly an error. Permission checks need to happen during 106 * each system call not at open time. The reason is that most of 107 * what we wish to check for permissions in /proc varies at runtime. 108 * 109 * The classic example of a problem is opening file descriptors 110 * in /proc for a task before it execs a suid executable. 111 */ 112 113 static u8 nlink_tid __ro_after_init; 114 static u8 nlink_tgid __ro_after_init; 115 116 struct pid_entry { 117 const char *name; 118 unsigned int len; 119 umode_t mode; 120 const struct inode_operations *iop; 121 const struct file_operations *fop; 122 union proc_op op; 123 }; 124 125 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 126 .name = (NAME), \ 127 .len = sizeof(NAME) - 1, \ 128 .mode = MODE, \ 129 .iop = IOP, \ 130 .fop = FOP, \ 131 .op = OP, \ 132 } 133 134 #define DIR(NAME, MODE, iops, fops) \ 135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 136 #define LNK(NAME, get_link) \ 137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 138 &proc_pid_link_inode_operations, NULL, \ 139 { .proc_get_link = get_link } ) 140 #define REG(NAME, MODE, fops) \ 141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 142 #define ONE(NAME, MODE, show) \ 143 NOD(NAME, (S_IFREG|(MODE)), \ 144 NULL, &proc_single_file_operations, \ 145 { .proc_show = show } ) 146 147 /* 148 * Count the number of hardlinks for the pid_entry table, excluding the . 149 * and .. links. 150 */ 151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 152 unsigned int n) 153 { 154 unsigned int i; 155 unsigned int count; 156 157 count = 2; 158 for (i = 0; i < n; ++i) { 159 if (S_ISDIR(entries[i].mode)) 160 ++count; 161 } 162 163 return count; 164 } 165 166 static int get_task_root(struct task_struct *task, struct path *root) 167 { 168 int result = -ENOENT; 169 170 task_lock(task); 171 if (task->fs) { 172 get_fs_root(task->fs, root); 173 result = 0; 174 } 175 task_unlock(task); 176 return result; 177 } 178 179 static int proc_cwd_link(struct dentry *dentry, struct path *path) 180 { 181 struct task_struct *task = get_proc_task(d_inode(dentry)); 182 int result = -ENOENT; 183 184 if (task) { 185 task_lock(task); 186 if (task->fs) { 187 get_fs_pwd(task->fs, path); 188 result = 0; 189 } 190 task_unlock(task); 191 put_task_struct(task); 192 } 193 return result; 194 } 195 196 static int proc_root_link(struct dentry *dentry, struct path *path) 197 { 198 struct task_struct *task = get_proc_task(d_inode(dentry)); 199 int result = -ENOENT; 200 201 if (task) { 202 result = get_task_root(task, path); 203 put_task_struct(task); 204 } 205 return result; 206 } 207 208 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 209 size_t _count, loff_t *pos) 210 { 211 struct task_struct *tsk; 212 struct mm_struct *mm; 213 char *page; 214 unsigned long count = _count; 215 unsigned long arg_start, arg_end, env_start, env_end; 216 unsigned long len1, len2, len; 217 unsigned long p; 218 char c; 219 ssize_t rv; 220 221 BUG_ON(*pos < 0); 222 223 tsk = get_proc_task(file_inode(file)); 224 if (!tsk) 225 return -ESRCH; 226 mm = get_task_mm(tsk); 227 put_task_struct(tsk); 228 if (!mm) 229 return 0; 230 /* Check if process spawned far enough to have cmdline. */ 231 if (!mm->env_end) { 232 rv = 0; 233 goto out_mmput; 234 } 235 236 page = (char *)__get_free_page(GFP_KERNEL); 237 if (!page) { 238 rv = -ENOMEM; 239 goto out_mmput; 240 } 241 242 down_read(&mm->mmap_sem); 243 arg_start = mm->arg_start; 244 arg_end = mm->arg_end; 245 env_start = mm->env_start; 246 env_end = mm->env_end; 247 up_read(&mm->mmap_sem); 248 249 BUG_ON(arg_start > arg_end); 250 BUG_ON(env_start > env_end); 251 252 len1 = arg_end - arg_start; 253 len2 = env_end - env_start; 254 255 /* Empty ARGV. */ 256 if (len1 == 0) { 257 rv = 0; 258 goto out_free_page; 259 } 260 /* 261 * Inherently racy -- command line shares address space 262 * with code and data. 263 */ 264 rv = access_remote_vm(mm, arg_end - 1, &c, 1, FOLL_ANON); 265 if (rv <= 0) 266 goto out_free_page; 267 268 rv = 0; 269 270 if (c == '\0') { 271 /* Command line (set of strings) occupies whole ARGV. */ 272 if (len1 <= *pos) 273 goto out_free_page; 274 275 p = arg_start + *pos; 276 len = len1 - *pos; 277 while (count > 0 && len > 0) { 278 unsigned int _count; 279 int nr_read; 280 281 _count = min3(count, len, PAGE_SIZE); 282 nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON); 283 if (nr_read < 0) 284 rv = nr_read; 285 if (nr_read <= 0) 286 goto out_free_page; 287 288 if (copy_to_user(buf, page, nr_read)) { 289 rv = -EFAULT; 290 goto out_free_page; 291 } 292 293 p += nr_read; 294 len -= nr_read; 295 buf += nr_read; 296 count -= nr_read; 297 rv += nr_read; 298 } 299 } else { 300 /* 301 * Command line (1 string) occupies ARGV and 302 * extends into ENVP. 303 */ 304 struct { 305 unsigned long p; 306 unsigned long len; 307 } cmdline[2] = { 308 { .p = arg_start, .len = len1 }, 309 { .p = env_start, .len = len2 }, 310 }; 311 loff_t pos1 = *pos; 312 unsigned int i; 313 314 i = 0; 315 while (i < 2 && pos1 >= cmdline[i].len) { 316 pos1 -= cmdline[i].len; 317 i++; 318 } 319 while (i < 2) { 320 p = cmdline[i].p + pos1; 321 len = cmdline[i].len - pos1; 322 while (count > 0 && len > 0) { 323 unsigned int _count, l; 324 int nr_read; 325 bool final; 326 327 _count = min3(count, len, PAGE_SIZE); 328 nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON); 329 if (nr_read < 0) 330 rv = nr_read; 331 if (nr_read <= 0) 332 goto out_free_page; 333 334 /* 335 * Command line can be shorter than whole ARGV 336 * even if last "marker" byte says it is not. 337 */ 338 final = false; 339 l = strnlen(page, nr_read); 340 if (l < nr_read) { 341 nr_read = l; 342 final = true; 343 } 344 345 if (copy_to_user(buf, page, nr_read)) { 346 rv = -EFAULT; 347 goto out_free_page; 348 } 349 350 p += nr_read; 351 len -= nr_read; 352 buf += nr_read; 353 count -= nr_read; 354 rv += nr_read; 355 356 if (final) 357 goto out_free_page; 358 } 359 360 /* Only first chunk can be read partially. */ 361 pos1 = 0; 362 i++; 363 } 364 } 365 366 out_free_page: 367 free_page((unsigned long)page); 368 out_mmput: 369 mmput(mm); 370 if (rv > 0) 371 *pos += rv; 372 return rv; 373 } 374 375 static const struct file_operations proc_pid_cmdline_ops = { 376 .read = proc_pid_cmdline_read, 377 .llseek = generic_file_llseek, 378 }; 379 380 #ifdef CONFIG_KALLSYMS 381 /* 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 383 * Returns the resolved symbol. If that fails, simply return the address. 384 */ 385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 386 struct pid *pid, struct task_struct *task) 387 { 388 unsigned long wchan; 389 char symname[KSYM_NAME_LEN]; 390 391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 392 goto print0; 393 394 wchan = get_wchan(task); 395 if (wchan && !lookup_symbol_name(wchan, symname)) { 396 seq_puts(m, symname); 397 return 0; 398 } 399 400 print0: 401 seq_putc(m, '0'); 402 return 0; 403 } 404 #endif /* CONFIG_KALLSYMS */ 405 406 static int lock_trace(struct task_struct *task) 407 { 408 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 409 if (err) 410 return err; 411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 412 mutex_unlock(&task->signal->cred_guard_mutex); 413 return -EPERM; 414 } 415 return 0; 416 } 417 418 static void unlock_trace(struct task_struct *task) 419 { 420 mutex_unlock(&task->signal->cred_guard_mutex); 421 } 422 423 #ifdef CONFIG_STACKTRACE 424 425 #define MAX_STACK_TRACE_DEPTH 64 426 427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 428 struct pid *pid, struct task_struct *task) 429 { 430 struct stack_trace trace; 431 unsigned long *entries; 432 int err; 433 int i; 434 435 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 436 if (!entries) 437 return -ENOMEM; 438 439 trace.nr_entries = 0; 440 trace.max_entries = MAX_STACK_TRACE_DEPTH; 441 trace.entries = entries; 442 trace.skip = 0; 443 444 err = lock_trace(task); 445 if (!err) { 446 save_stack_trace_tsk(task, &trace); 447 448 for (i = 0; i < trace.nr_entries; i++) { 449 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 450 } 451 unlock_trace(task); 452 } 453 kfree(entries); 454 455 return err; 456 } 457 #endif 458 459 #ifdef CONFIG_SCHED_INFO 460 /* 461 * Provides /proc/PID/schedstat 462 */ 463 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 464 struct pid *pid, struct task_struct *task) 465 { 466 if (unlikely(!sched_info_on())) 467 seq_printf(m, "0 0 0\n"); 468 else 469 seq_printf(m, "%llu %llu %lu\n", 470 (unsigned long long)task->se.sum_exec_runtime, 471 (unsigned long long)task->sched_info.run_delay, 472 task->sched_info.pcount); 473 474 return 0; 475 } 476 #endif 477 478 #ifdef CONFIG_LATENCYTOP 479 static int lstats_show_proc(struct seq_file *m, void *v) 480 { 481 int i; 482 struct inode *inode = m->private; 483 struct task_struct *task = get_proc_task(inode); 484 485 if (!task) 486 return -ESRCH; 487 seq_puts(m, "Latency Top version : v0.1\n"); 488 for (i = 0; i < 32; i++) { 489 struct latency_record *lr = &task->latency_record[i]; 490 if (lr->backtrace[0]) { 491 int q; 492 seq_printf(m, "%i %li %li", 493 lr->count, lr->time, lr->max); 494 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 495 unsigned long bt = lr->backtrace[q]; 496 if (!bt) 497 break; 498 if (bt == ULONG_MAX) 499 break; 500 seq_printf(m, " %ps", (void *)bt); 501 } 502 seq_putc(m, '\n'); 503 } 504 505 } 506 put_task_struct(task); 507 return 0; 508 } 509 510 static int lstats_open(struct inode *inode, struct file *file) 511 { 512 return single_open(file, lstats_show_proc, inode); 513 } 514 515 static ssize_t lstats_write(struct file *file, const char __user *buf, 516 size_t count, loff_t *offs) 517 { 518 struct task_struct *task = get_proc_task(file_inode(file)); 519 520 if (!task) 521 return -ESRCH; 522 clear_all_latency_tracing(task); 523 put_task_struct(task); 524 525 return count; 526 } 527 528 static const struct file_operations proc_lstats_operations = { 529 .open = lstats_open, 530 .read = seq_read, 531 .write = lstats_write, 532 .llseek = seq_lseek, 533 .release = single_release, 534 }; 535 536 #endif 537 538 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 539 struct pid *pid, struct task_struct *task) 540 { 541 unsigned long totalpages = totalram_pages + total_swap_pages; 542 unsigned long points = 0; 543 544 points = oom_badness(task, NULL, NULL, totalpages) * 545 1000 / totalpages; 546 seq_printf(m, "%lu\n", points); 547 548 return 0; 549 } 550 551 struct limit_names { 552 const char *name; 553 const char *unit; 554 }; 555 556 static const struct limit_names lnames[RLIM_NLIMITS] = { 557 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 558 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 559 [RLIMIT_DATA] = {"Max data size", "bytes"}, 560 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 561 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 562 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 563 [RLIMIT_NPROC] = {"Max processes", "processes"}, 564 [RLIMIT_NOFILE] = {"Max open files", "files"}, 565 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 566 [RLIMIT_AS] = {"Max address space", "bytes"}, 567 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 568 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 569 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 570 [RLIMIT_NICE] = {"Max nice priority", NULL}, 571 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 572 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 573 }; 574 575 /* Display limits for a process */ 576 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 577 struct pid *pid, struct task_struct *task) 578 { 579 unsigned int i; 580 unsigned long flags; 581 582 struct rlimit rlim[RLIM_NLIMITS]; 583 584 if (!lock_task_sighand(task, &flags)) 585 return 0; 586 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 587 unlock_task_sighand(task, &flags); 588 589 /* 590 * print the file header 591 */ 592 seq_printf(m, "%-25s %-20s %-20s %-10s\n", 593 "Limit", "Soft Limit", "Hard Limit", "Units"); 594 595 for (i = 0; i < RLIM_NLIMITS; i++) { 596 if (rlim[i].rlim_cur == RLIM_INFINITY) 597 seq_printf(m, "%-25s %-20s ", 598 lnames[i].name, "unlimited"); 599 else 600 seq_printf(m, "%-25s %-20lu ", 601 lnames[i].name, rlim[i].rlim_cur); 602 603 if (rlim[i].rlim_max == RLIM_INFINITY) 604 seq_printf(m, "%-20s ", "unlimited"); 605 else 606 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 607 608 if (lnames[i].unit) 609 seq_printf(m, "%-10s\n", lnames[i].unit); 610 else 611 seq_putc(m, '\n'); 612 } 613 614 return 0; 615 } 616 617 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 618 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 619 struct pid *pid, struct task_struct *task) 620 { 621 long nr; 622 unsigned long args[6], sp, pc; 623 int res; 624 625 res = lock_trace(task); 626 if (res) 627 return res; 628 629 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 630 seq_puts(m, "running\n"); 631 else if (nr < 0) 632 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 633 else 634 seq_printf(m, 635 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 636 nr, 637 args[0], args[1], args[2], args[3], args[4], args[5], 638 sp, pc); 639 unlock_trace(task); 640 641 return 0; 642 } 643 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 644 645 /************************************************************************/ 646 /* Here the fs part begins */ 647 /************************************************************************/ 648 649 /* permission checks */ 650 static int proc_fd_access_allowed(struct inode *inode) 651 { 652 struct task_struct *task; 653 int allowed = 0; 654 /* Allow access to a task's file descriptors if it is us or we 655 * may use ptrace attach to the process and find out that 656 * information. 657 */ 658 task = get_proc_task(inode); 659 if (task) { 660 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 661 put_task_struct(task); 662 } 663 return allowed; 664 } 665 666 int proc_setattr(struct dentry *dentry, struct iattr *attr) 667 { 668 int error; 669 struct inode *inode = d_inode(dentry); 670 671 if (attr->ia_valid & ATTR_MODE) 672 return -EPERM; 673 674 error = setattr_prepare(dentry, attr); 675 if (error) 676 return error; 677 678 setattr_copy(inode, attr); 679 mark_inode_dirty(inode); 680 return 0; 681 } 682 683 /* 684 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 685 * or euid/egid (for hide_pid_min=2)? 686 */ 687 static bool has_pid_permissions(struct pid_namespace *pid, 688 struct task_struct *task, 689 int hide_pid_min) 690 { 691 if (pid->hide_pid < hide_pid_min) 692 return true; 693 if (in_group_p(pid->pid_gid)) 694 return true; 695 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 696 } 697 698 699 static int proc_pid_permission(struct inode *inode, int mask) 700 { 701 struct pid_namespace *pid = proc_pid_ns(inode); 702 struct task_struct *task; 703 bool has_perms; 704 705 task = get_proc_task(inode); 706 if (!task) 707 return -ESRCH; 708 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS); 709 put_task_struct(task); 710 711 if (!has_perms) { 712 if (pid->hide_pid == HIDEPID_INVISIBLE) { 713 /* 714 * Let's make getdents(), stat(), and open() 715 * consistent with each other. If a process 716 * may not stat() a file, it shouldn't be seen 717 * in procfs at all. 718 */ 719 return -ENOENT; 720 } 721 722 return -EPERM; 723 } 724 return generic_permission(inode, mask); 725 } 726 727 728 729 static const struct inode_operations proc_def_inode_operations = { 730 .setattr = proc_setattr, 731 }; 732 733 static int proc_single_show(struct seq_file *m, void *v) 734 { 735 struct inode *inode = m->private; 736 struct pid_namespace *ns = proc_pid_ns(inode); 737 struct pid *pid = proc_pid(inode); 738 struct task_struct *task; 739 int ret; 740 741 task = get_pid_task(pid, PIDTYPE_PID); 742 if (!task) 743 return -ESRCH; 744 745 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 746 747 put_task_struct(task); 748 return ret; 749 } 750 751 static int proc_single_open(struct inode *inode, struct file *filp) 752 { 753 return single_open(filp, proc_single_show, inode); 754 } 755 756 static const struct file_operations proc_single_file_operations = { 757 .open = proc_single_open, 758 .read = seq_read, 759 .llseek = seq_lseek, 760 .release = single_release, 761 }; 762 763 764 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 765 { 766 struct task_struct *task = get_proc_task(inode); 767 struct mm_struct *mm = ERR_PTR(-ESRCH); 768 769 if (task) { 770 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 771 put_task_struct(task); 772 773 if (!IS_ERR_OR_NULL(mm)) { 774 /* ensure this mm_struct can't be freed */ 775 mmgrab(mm); 776 /* but do not pin its memory */ 777 mmput(mm); 778 } 779 } 780 781 return mm; 782 } 783 784 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 785 { 786 struct mm_struct *mm = proc_mem_open(inode, mode); 787 788 if (IS_ERR(mm)) 789 return PTR_ERR(mm); 790 791 file->private_data = mm; 792 return 0; 793 } 794 795 static int mem_open(struct inode *inode, struct file *file) 796 { 797 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 798 799 /* OK to pass negative loff_t, we can catch out-of-range */ 800 file->f_mode |= FMODE_UNSIGNED_OFFSET; 801 802 return ret; 803 } 804 805 static ssize_t mem_rw(struct file *file, char __user *buf, 806 size_t count, loff_t *ppos, int write) 807 { 808 struct mm_struct *mm = file->private_data; 809 unsigned long addr = *ppos; 810 ssize_t copied; 811 char *page; 812 unsigned int flags; 813 814 if (!mm) 815 return 0; 816 817 page = (char *)__get_free_page(GFP_KERNEL); 818 if (!page) 819 return -ENOMEM; 820 821 copied = 0; 822 if (!mmget_not_zero(mm)) 823 goto free; 824 825 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 826 827 while (count > 0) { 828 int this_len = min_t(int, count, PAGE_SIZE); 829 830 if (write && copy_from_user(page, buf, this_len)) { 831 copied = -EFAULT; 832 break; 833 } 834 835 this_len = access_remote_vm(mm, addr, page, this_len, flags); 836 if (!this_len) { 837 if (!copied) 838 copied = -EIO; 839 break; 840 } 841 842 if (!write && copy_to_user(buf, page, this_len)) { 843 copied = -EFAULT; 844 break; 845 } 846 847 buf += this_len; 848 addr += this_len; 849 copied += this_len; 850 count -= this_len; 851 } 852 *ppos = addr; 853 854 mmput(mm); 855 free: 856 free_page((unsigned long) page); 857 return copied; 858 } 859 860 static ssize_t mem_read(struct file *file, char __user *buf, 861 size_t count, loff_t *ppos) 862 { 863 return mem_rw(file, buf, count, ppos, 0); 864 } 865 866 static ssize_t mem_write(struct file *file, const char __user *buf, 867 size_t count, loff_t *ppos) 868 { 869 return mem_rw(file, (char __user*)buf, count, ppos, 1); 870 } 871 872 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 873 { 874 switch (orig) { 875 case 0: 876 file->f_pos = offset; 877 break; 878 case 1: 879 file->f_pos += offset; 880 break; 881 default: 882 return -EINVAL; 883 } 884 force_successful_syscall_return(); 885 return file->f_pos; 886 } 887 888 static int mem_release(struct inode *inode, struct file *file) 889 { 890 struct mm_struct *mm = file->private_data; 891 if (mm) 892 mmdrop(mm); 893 return 0; 894 } 895 896 static const struct file_operations proc_mem_operations = { 897 .llseek = mem_lseek, 898 .read = mem_read, 899 .write = mem_write, 900 .open = mem_open, 901 .release = mem_release, 902 }; 903 904 static int environ_open(struct inode *inode, struct file *file) 905 { 906 return __mem_open(inode, file, PTRACE_MODE_READ); 907 } 908 909 static ssize_t environ_read(struct file *file, char __user *buf, 910 size_t count, loff_t *ppos) 911 { 912 char *page; 913 unsigned long src = *ppos; 914 int ret = 0; 915 struct mm_struct *mm = file->private_data; 916 unsigned long env_start, env_end; 917 918 /* Ensure the process spawned far enough to have an environment. */ 919 if (!mm || !mm->env_end) 920 return 0; 921 922 page = (char *)__get_free_page(GFP_KERNEL); 923 if (!page) 924 return -ENOMEM; 925 926 ret = 0; 927 if (!mmget_not_zero(mm)) 928 goto free; 929 930 down_read(&mm->mmap_sem); 931 env_start = mm->env_start; 932 env_end = mm->env_end; 933 up_read(&mm->mmap_sem); 934 935 while (count > 0) { 936 size_t this_len, max_len; 937 int retval; 938 939 if (src >= (env_end - env_start)) 940 break; 941 942 this_len = env_end - (env_start + src); 943 944 max_len = min_t(size_t, PAGE_SIZE, count); 945 this_len = min(max_len, this_len); 946 947 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 948 949 if (retval <= 0) { 950 ret = retval; 951 break; 952 } 953 954 if (copy_to_user(buf, page, retval)) { 955 ret = -EFAULT; 956 break; 957 } 958 959 ret += retval; 960 src += retval; 961 buf += retval; 962 count -= retval; 963 } 964 *ppos = src; 965 mmput(mm); 966 967 free: 968 free_page((unsigned long) page); 969 return ret; 970 } 971 972 static const struct file_operations proc_environ_operations = { 973 .open = environ_open, 974 .read = environ_read, 975 .llseek = generic_file_llseek, 976 .release = mem_release, 977 }; 978 979 static int auxv_open(struct inode *inode, struct file *file) 980 { 981 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 982 } 983 984 static ssize_t auxv_read(struct file *file, char __user *buf, 985 size_t count, loff_t *ppos) 986 { 987 struct mm_struct *mm = file->private_data; 988 unsigned int nwords = 0; 989 990 if (!mm) 991 return 0; 992 do { 993 nwords += 2; 994 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 995 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 996 nwords * sizeof(mm->saved_auxv[0])); 997 } 998 999 static const struct file_operations proc_auxv_operations = { 1000 .open = auxv_open, 1001 .read = auxv_read, 1002 .llseek = generic_file_llseek, 1003 .release = mem_release, 1004 }; 1005 1006 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1007 loff_t *ppos) 1008 { 1009 struct task_struct *task = get_proc_task(file_inode(file)); 1010 char buffer[PROC_NUMBUF]; 1011 int oom_adj = OOM_ADJUST_MIN; 1012 size_t len; 1013 1014 if (!task) 1015 return -ESRCH; 1016 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1017 oom_adj = OOM_ADJUST_MAX; 1018 else 1019 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1020 OOM_SCORE_ADJ_MAX; 1021 put_task_struct(task); 1022 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1023 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1024 } 1025 1026 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1027 { 1028 static DEFINE_MUTEX(oom_adj_mutex); 1029 struct mm_struct *mm = NULL; 1030 struct task_struct *task; 1031 int err = 0; 1032 1033 task = get_proc_task(file_inode(file)); 1034 if (!task) 1035 return -ESRCH; 1036 1037 mutex_lock(&oom_adj_mutex); 1038 if (legacy) { 1039 if (oom_adj < task->signal->oom_score_adj && 1040 !capable(CAP_SYS_RESOURCE)) { 1041 err = -EACCES; 1042 goto err_unlock; 1043 } 1044 /* 1045 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1046 * /proc/pid/oom_score_adj instead. 1047 */ 1048 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1049 current->comm, task_pid_nr(current), task_pid_nr(task), 1050 task_pid_nr(task)); 1051 } else { 1052 if ((short)oom_adj < task->signal->oom_score_adj_min && 1053 !capable(CAP_SYS_RESOURCE)) { 1054 err = -EACCES; 1055 goto err_unlock; 1056 } 1057 } 1058 1059 /* 1060 * Make sure we will check other processes sharing the mm if this is 1061 * not vfrok which wants its own oom_score_adj. 1062 * pin the mm so it doesn't go away and get reused after task_unlock 1063 */ 1064 if (!task->vfork_done) { 1065 struct task_struct *p = find_lock_task_mm(task); 1066 1067 if (p) { 1068 if (atomic_read(&p->mm->mm_users) > 1) { 1069 mm = p->mm; 1070 mmgrab(mm); 1071 } 1072 task_unlock(p); 1073 } 1074 } 1075 1076 task->signal->oom_score_adj = oom_adj; 1077 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1078 task->signal->oom_score_adj_min = (short)oom_adj; 1079 trace_oom_score_adj_update(task); 1080 1081 if (mm) { 1082 struct task_struct *p; 1083 1084 rcu_read_lock(); 1085 for_each_process(p) { 1086 if (same_thread_group(task, p)) 1087 continue; 1088 1089 /* do not touch kernel threads or the global init */ 1090 if (p->flags & PF_KTHREAD || is_global_init(p)) 1091 continue; 1092 1093 task_lock(p); 1094 if (!p->vfork_done && process_shares_mm(p, mm)) { 1095 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n", 1096 task_pid_nr(p), p->comm, 1097 p->signal->oom_score_adj, oom_adj, 1098 task_pid_nr(task), task->comm); 1099 p->signal->oom_score_adj = oom_adj; 1100 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1101 p->signal->oom_score_adj_min = (short)oom_adj; 1102 } 1103 task_unlock(p); 1104 } 1105 rcu_read_unlock(); 1106 mmdrop(mm); 1107 } 1108 err_unlock: 1109 mutex_unlock(&oom_adj_mutex); 1110 put_task_struct(task); 1111 return err; 1112 } 1113 1114 /* 1115 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1116 * kernels. The effective policy is defined by oom_score_adj, which has a 1117 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1118 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1119 * Processes that become oom disabled via oom_adj will still be oom disabled 1120 * with this implementation. 1121 * 1122 * oom_adj cannot be removed since existing userspace binaries use it. 1123 */ 1124 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1125 size_t count, loff_t *ppos) 1126 { 1127 char buffer[PROC_NUMBUF]; 1128 int oom_adj; 1129 int err; 1130 1131 memset(buffer, 0, sizeof(buffer)); 1132 if (count > sizeof(buffer) - 1) 1133 count = sizeof(buffer) - 1; 1134 if (copy_from_user(buffer, buf, count)) { 1135 err = -EFAULT; 1136 goto out; 1137 } 1138 1139 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1140 if (err) 1141 goto out; 1142 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1143 oom_adj != OOM_DISABLE) { 1144 err = -EINVAL; 1145 goto out; 1146 } 1147 1148 /* 1149 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1150 * value is always attainable. 1151 */ 1152 if (oom_adj == OOM_ADJUST_MAX) 1153 oom_adj = OOM_SCORE_ADJ_MAX; 1154 else 1155 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1156 1157 err = __set_oom_adj(file, oom_adj, true); 1158 out: 1159 return err < 0 ? err : count; 1160 } 1161 1162 static const struct file_operations proc_oom_adj_operations = { 1163 .read = oom_adj_read, 1164 .write = oom_adj_write, 1165 .llseek = generic_file_llseek, 1166 }; 1167 1168 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1169 size_t count, loff_t *ppos) 1170 { 1171 struct task_struct *task = get_proc_task(file_inode(file)); 1172 char buffer[PROC_NUMBUF]; 1173 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1174 size_t len; 1175 1176 if (!task) 1177 return -ESRCH; 1178 oom_score_adj = task->signal->oom_score_adj; 1179 put_task_struct(task); 1180 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1181 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1182 } 1183 1184 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1185 size_t count, loff_t *ppos) 1186 { 1187 char buffer[PROC_NUMBUF]; 1188 int oom_score_adj; 1189 int err; 1190 1191 memset(buffer, 0, sizeof(buffer)); 1192 if (count > sizeof(buffer) - 1) 1193 count = sizeof(buffer) - 1; 1194 if (copy_from_user(buffer, buf, count)) { 1195 err = -EFAULT; 1196 goto out; 1197 } 1198 1199 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1200 if (err) 1201 goto out; 1202 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1203 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1204 err = -EINVAL; 1205 goto out; 1206 } 1207 1208 err = __set_oom_adj(file, oom_score_adj, false); 1209 out: 1210 return err < 0 ? err : count; 1211 } 1212 1213 static const struct file_operations proc_oom_score_adj_operations = { 1214 .read = oom_score_adj_read, 1215 .write = oom_score_adj_write, 1216 .llseek = default_llseek, 1217 }; 1218 1219 #ifdef CONFIG_AUDITSYSCALL 1220 #define TMPBUFLEN 11 1221 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1222 size_t count, loff_t *ppos) 1223 { 1224 struct inode * inode = file_inode(file); 1225 struct task_struct *task = get_proc_task(inode); 1226 ssize_t length; 1227 char tmpbuf[TMPBUFLEN]; 1228 1229 if (!task) 1230 return -ESRCH; 1231 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1232 from_kuid(file->f_cred->user_ns, 1233 audit_get_loginuid(task))); 1234 put_task_struct(task); 1235 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1236 } 1237 1238 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1239 size_t count, loff_t *ppos) 1240 { 1241 struct inode * inode = file_inode(file); 1242 uid_t loginuid; 1243 kuid_t kloginuid; 1244 int rv; 1245 1246 rcu_read_lock(); 1247 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1248 rcu_read_unlock(); 1249 return -EPERM; 1250 } 1251 rcu_read_unlock(); 1252 1253 if (*ppos != 0) { 1254 /* No partial writes. */ 1255 return -EINVAL; 1256 } 1257 1258 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1259 if (rv < 0) 1260 return rv; 1261 1262 /* is userspace tring to explicitly UNSET the loginuid? */ 1263 if (loginuid == AUDIT_UID_UNSET) { 1264 kloginuid = INVALID_UID; 1265 } else { 1266 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1267 if (!uid_valid(kloginuid)) 1268 return -EINVAL; 1269 } 1270 1271 rv = audit_set_loginuid(kloginuid); 1272 if (rv < 0) 1273 return rv; 1274 return count; 1275 } 1276 1277 static const struct file_operations proc_loginuid_operations = { 1278 .read = proc_loginuid_read, 1279 .write = proc_loginuid_write, 1280 .llseek = generic_file_llseek, 1281 }; 1282 1283 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1284 size_t count, loff_t *ppos) 1285 { 1286 struct inode * inode = file_inode(file); 1287 struct task_struct *task = get_proc_task(inode); 1288 ssize_t length; 1289 char tmpbuf[TMPBUFLEN]; 1290 1291 if (!task) 1292 return -ESRCH; 1293 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1294 audit_get_sessionid(task)); 1295 put_task_struct(task); 1296 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1297 } 1298 1299 static const struct file_operations proc_sessionid_operations = { 1300 .read = proc_sessionid_read, 1301 .llseek = generic_file_llseek, 1302 }; 1303 #endif 1304 1305 #ifdef CONFIG_FAULT_INJECTION 1306 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1307 size_t count, loff_t *ppos) 1308 { 1309 struct task_struct *task = get_proc_task(file_inode(file)); 1310 char buffer[PROC_NUMBUF]; 1311 size_t len; 1312 int make_it_fail; 1313 1314 if (!task) 1315 return -ESRCH; 1316 make_it_fail = task->make_it_fail; 1317 put_task_struct(task); 1318 1319 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1320 1321 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1322 } 1323 1324 static ssize_t proc_fault_inject_write(struct file * file, 1325 const char __user * buf, size_t count, loff_t *ppos) 1326 { 1327 struct task_struct *task; 1328 char buffer[PROC_NUMBUF]; 1329 int make_it_fail; 1330 int rv; 1331 1332 if (!capable(CAP_SYS_RESOURCE)) 1333 return -EPERM; 1334 memset(buffer, 0, sizeof(buffer)); 1335 if (count > sizeof(buffer) - 1) 1336 count = sizeof(buffer) - 1; 1337 if (copy_from_user(buffer, buf, count)) 1338 return -EFAULT; 1339 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1340 if (rv < 0) 1341 return rv; 1342 if (make_it_fail < 0 || make_it_fail > 1) 1343 return -EINVAL; 1344 1345 task = get_proc_task(file_inode(file)); 1346 if (!task) 1347 return -ESRCH; 1348 task->make_it_fail = make_it_fail; 1349 put_task_struct(task); 1350 1351 return count; 1352 } 1353 1354 static const struct file_operations proc_fault_inject_operations = { 1355 .read = proc_fault_inject_read, 1356 .write = proc_fault_inject_write, 1357 .llseek = generic_file_llseek, 1358 }; 1359 1360 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1361 size_t count, loff_t *ppos) 1362 { 1363 struct task_struct *task; 1364 int err; 1365 unsigned int n; 1366 1367 err = kstrtouint_from_user(buf, count, 0, &n); 1368 if (err) 1369 return err; 1370 1371 task = get_proc_task(file_inode(file)); 1372 if (!task) 1373 return -ESRCH; 1374 task->fail_nth = n; 1375 put_task_struct(task); 1376 1377 return count; 1378 } 1379 1380 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1381 size_t count, loff_t *ppos) 1382 { 1383 struct task_struct *task; 1384 char numbuf[PROC_NUMBUF]; 1385 ssize_t len; 1386 1387 task = get_proc_task(file_inode(file)); 1388 if (!task) 1389 return -ESRCH; 1390 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1391 len = simple_read_from_buffer(buf, count, ppos, numbuf, len); 1392 put_task_struct(task); 1393 1394 return len; 1395 } 1396 1397 static const struct file_operations proc_fail_nth_operations = { 1398 .read = proc_fail_nth_read, 1399 .write = proc_fail_nth_write, 1400 }; 1401 #endif 1402 1403 1404 #ifdef CONFIG_SCHED_DEBUG 1405 /* 1406 * Print out various scheduling related per-task fields: 1407 */ 1408 static int sched_show(struct seq_file *m, void *v) 1409 { 1410 struct inode *inode = m->private; 1411 struct pid_namespace *ns = proc_pid_ns(inode); 1412 struct task_struct *p; 1413 1414 p = get_proc_task(inode); 1415 if (!p) 1416 return -ESRCH; 1417 proc_sched_show_task(p, ns, m); 1418 1419 put_task_struct(p); 1420 1421 return 0; 1422 } 1423 1424 static ssize_t 1425 sched_write(struct file *file, const char __user *buf, 1426 size_t count, loff_t *offset) 1427 { 1428 struct inode *inode = file_inode(file); 1429 struct task_struct *p; 1430 1431 p = get_proc_task(inode); 1432 if (!p) 1433 return -ESRCH; 1434 proc_sched_set_task(p); 1435 1436 put_task_struct(p); 1437 1438 return count; 1439 } 1440 1441 static int sched_open(struct inode *inode, struct file *filp) 1442 { 1443 return single_open(filp, sched_show, inode); 1444 } 1445 1446 static const struct file_operations proc_pid_sched_operations = { 1447 .open = sched_open, 1448 .read = seq_read, 1449 .write = sched_write, 1450 .llseek = seq_lseek, 1451 .release = single_release, 1452 }; 1453 1454 #endif 1455 1456 #ifdef CONFIG_SCHED_AUTOGROUP 1457 /* 1458 * Print out autogroup related information: 1459 */ 1460 static int sched_autogroup_show(struct seq_file *m, void *v) 1461 { 1462 struct inode *inode = m->private; 1463 struct task_struct *p; 1464 1465 p = get_proc_task(inode); 1466 if (!p) 1467 return -ESRCH; 1468 proc_sched_autogroup_show_task(p, m); 1469 1470 put_task_struct(p); 1471 1472 return 0; 1473 } 1474 1475 static ssize_t 1476 sched_autogroup_write(struct file *file, const char __user *buf, 1477 size_t count, loff_t *offset) 1478 { 1479 struct inode *inode = file_inode(file); 1480 struct task_struct *p; 1481 char buffer[PROC_NUMBUF]; 1482 int nice; 1483 int err; 1484 1485 memset(buffer, 0, sizeof(buffer)); 1486 if (count > sizeof(buffer) - 1) 1487 count = sizeof(buffer) - 1; 1488 if (copy_from_user(buffer, buf, count)) 1489 return -EFAULT; 1490 1491 err = kstrtoint(strstrip(buffer), 0, &nice); 1492 if (err < 0) 1493 return err; 1494 1495 p = get_proc_task(inode); 1496 if (!p) 1497 return -ESRCH; 1498 1499 err = proc_sched_autogroup_set_nice(p, nice); 1500 if (err) 1501 count = err; 1502 1503 put_task_struct(p); 1504 1505 return count; 1506 } 1507 1508 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1509 { 1510 int ret; 1511 1512 ret = single_open(filp, sched_autogroup_show, NULL); 1513 if (!ret) { 1514 struct seq_file *m = filp->private_data; 1515 1516 m->private = inode; 1517 } 1518 return ret; 1519 } 1520 1521 static const struct file_operations proc_pid_sched_autogroup_operations = { 1522 .open = sched_autogroup_open, 1523 .read = seq_read, 1524 .write = sched_autogroup_write, 1525 .llseek = seq_lseek, 1526 .release = single_release, 1527 }; 1528 1529 #endif /* CONFIG_SCHED_AUTOGROUP */ 1530 1531 static ssize_t comm_write(struct file *file, const char __user *buf, 1532 size_t count, loff_t *offset) 1533 { 1534 struct inode *inode = file_inode(file); 1535 struct task_struct *p; 1536 char buffer[TASK_COMM_LEN]; 1537 const size_t maxlen = sizeof(buffer) - 1; 1538 1539 memset(buffer, 0, sizeof(buffer)); 1540 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1541 return -EFAULT; 1542 1543 p = get_proc_task(inode); 1544 if (!p) 1545 return -ESRCH; 1546 1547 if (same_thread_group(current, p)) 1548 set_task_comm(p, buffer); 1549 else 1550 count = -EINVAL; 1551 1552 put_task_struct(p); 1553 1554 return count; 1555 } 1556 1557 static int comm_show(struct seq_file *m, void *v) 1558 { 1559 struct inode *inode = m->private; 1560 struct task_struct *p; 1561 1562 p = get_proc_task(inode); 1563 if (!p) 1564 return -ESRCH; 1565 1566 proc_task_name(m, p, false); 1567 seq_putc(m, '\n'); 1568 1569 put_task_struct(p); 1570 1571 return 0; 1572 } 1573 1574 static int comm_open(struct inode *inode, struct file *filp) 1575 { 1576 return single_open(filp, comm_show, inode); 1577 } 1578 1579 static const struct file_operations proc_pid_set_comm_operations = { 1580 .open = comm_open, 1581 .read = seq_read, 1582 .write = comm_write, 1583 .llseek = seq_lseek, 1584 .release = single_release, 1585 }; 1586 1587 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1588 { 1589 struct task_struct *task; 1590 struct file *exe_file; 1591 1592 task = get_proc_task(d_inode(dentry)); 1593 if (!task) 1594 return -ENOENT; 1595 exe_file = get_task_exe_file(task); 1596 put_task_struct(task); 1597 if (exe_file) { 1598 *exe_path = exe_file->f_path; 1599 path_get(&exe_file->f_path); 1600 fput(exe_file); 1601 return 0; 1602 } else 1603 return -ENOENT; 1604 } 1605 1606 static const char *proc_pid_get_link(struct dentry *dentry, 1607 struct inode *inode, 1608 struct delayed_call *done) 1609 { 1610 struct path path; 1611 int error = -EACCES; 1612 1613 if (!dentry) 1614 return ERR_PTR(-ECHILD); 1615 1616 /* Are we allowed to snoop on the tasks file descriptors? */ 1617 if (!proc_fd_access_allowed(inode)) 1618 goto out; 1619 1620 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1621 if (error) 1622 goto out; 1623 1624 nd_jump_link(&path); 1625 return NULL; 1626 out: 1627 return ERR_PTR(error); 1628 } 1629 1630 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1631 { 1632 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1633 char *pathname; 1634 int len; 1635 1636 if (!tmp) 1637 return -ENOMEM; 1638 1639 pathname = d_path(path, tmp, PAGE_SIZE); 1640 len = PTR_ERR(pathname); 1641 if (IS_ERR(pathname)) 1642 goto out; 1643 len = tmp + PAGE_SIZE - 1 - pathname; 1644 1645 if (len > buflen) 1646 len = buflen; 1647 if (copy_to_user(buffer, pathname, len)) 1648 len = -EFAULT; 1649 out: 1650 free_page((unsigned long)tmp); 1651 return len; 1652 } 1653 1654 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1655 { 1656 int error = -EACCES; 1657 struct inode *inode = d_inode(dentry); 1658 struct path path; 1659 1660 /* Are we allowed to snoop on the tasks file descriptors? */ 1661 if (!proc_fd_access_allowed(inode)) 1662 goto out; 1663 1664 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1665 if (error) 1666 goto out; 1667 1668 error = do_proc_readlink(&path, buffer, buflen); 1669 path_put(&path); 1670 out: 1671 return error; 1672 } 1673 1674 const struct inode_operations proc_pid_link_inode_operations = { 1675 .readlink = proc_pid_readlink, 1676 .get_link = proc_pid_get_link, 1677 .setattr = proc_setattr, 1678 }; 1679 1680 1681 /* building an inode */ 1682 1683 void task_dump_owner(struct task_struct *task, umode_t mode, 1684 kuid_t *ruid, kgid_t *rgid) 1685 { 1686 /* Depending on the state of dumpable compute who should own a 1687 * proc file for a task. 1688 */ 1689 const struct cred *cred; 1690 kuid_t uid; 1691 kgid_t gid; 1692 1693 if (unlikely(task->flags & PF_KTHREAD)) { 1694 *ruid = GLOBAL_ROOT_UID; 1695 *rgid = GLOBAL_ROOT_GID; 1696 return; 1697 } 1698 1699 /* Default to the tasks effective ownership */ 1700 rcu_read_lock(); 1701 cred = __task_cred(task); 1702 uid = cred->euid; 1703 gid = cred->egid; 1704 rcu_read_unlock(); 1705 1706 /* 1707 * Before the /proc/pid/status file was created the only way to read 1708 * the effective uid of a /process was to stat /proc/pid. Reading 1709 * /proc/pid/status is slow enough that procps and other packages 1710 * kept stating /proc/pid. To keep the rules in /proc simple I have 1711 * made this apply to all per process world readable and executable 1712 * directories. 1713 */ 1714 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1715 struct mm_struct *mm; 1716 task_lock(task); 1717 mm = task->mm; 1718 /* Make non-dumpable tasks owned by some root */ 1719 if (mm) { 1720 if (get_dumpable(mm) != SUID_DUMP_USER) { 1721 struct user_namespace *user_ns = mm->user_ns; 1722 1723 uid = make_kuid(user_ns, 0); 1724 if (!uid_valid(uid)) 1725 uid = GLOBAL_ROOT_UID; 1726 1727 gid = make_kgid(user_ns, 0); 1728 if (!gid_valid(gid)) 1729 gid = GLOBAL_ROOT_GID; 1730 } 1731 } else { 1732 uid = GLOBAL_ROOT_UID; 1733 gid = GLOBAL_ROOT_GID; 1734 } 1735 task_unlock(task); 1736 } 1737 *ruid = uid; 1738 *rgid = gid; 1739 } 1740 1741 struct inode *proc_pid_make_inode(struct super_block * sb, 1742 struct task_struct *task, umode_t mode) 1743 { 1744 struct inode * inode; 1745 struct proc_inode *ei; 1746 1747 /* We need a new inode */ 1748 1749 inode = new_inode(sb); 1750 if (!inode) 1751 goto out; 1752 1753 /* Common stuff */ 1754 ei = PROC_I(inode); 1755 inode->i_mode = mode; 1756 inode->i_ino = get_next_ino(); 1757 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1758 inode->i_op = &proc_def_inode_operations; 1759 1760 /* 1761 * grab the reference to task. 1762 */ 1763 ei->pid = get_task_pid(task, PIDTYPE_PID); 1764 if (!ei->pid) 1765 goto out_unlock; 1766 1767 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1768 security_task_to_inode(task, inode); 1769 1770 out: 1771 return inode; 1772 1773 out_unlock: 1774 iput(inode); 1775 return NULL; 1776 } 1777 1778 int pid_getattr(const struct path *path, struct kstat *stat, 1779 u32 request_mask, unsigned int query_flags) 1780 { 1781 struct inode *inode = d_inode(path->dentry); 1782 struct pid_namespace *pid = proc_pid_ns(inode); 1783 struct task_struct *task; 1784 1785 generic_fillattr(inode, stat); 1786 1787 rcu_read_lock(); 1788 stat->uid = GLOBAL_ROOT_UID; 1789 stat->gid = GLOBAL_ROOT_GID; 1790 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1791 if (task) { 1792 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) { 1793 rcu_read_unlock(); 1794 /* 1795 * This doesn't prevent learning whether PID exists, 1796 * it only makes getattr() consistent with readdir(). 1797 */ 1798 return -ENOENT; 1799 } 1800 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1801 } 1802 rcu_read_unlock(); 1803 return 0; 1804 } 1805 1806 /* dentry stuff */ 1807 1808 /* 1809 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1810 */ 1811 void pid_update_inode(struct task_struct *task, struct inode *inode) 1812 { 1813 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1814 1815 inode->i_mode &= ~(S_ISUID | S_ISGID); 1816 security_task_to_inode(task, inode); 1817 } 1818 1819 /* 1820 * Rewrite the inode's ownerships here because the owning task may have 1821 * performed a setuid(), etc. 1822 * 1823 */ 1824 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1825 { 1826 struct inode *inode; 1827 struct task_struct *task; 1828 1829 if (flags & LOOKUP_RCU) 1830 return -ECHILD; 1831 1832 inode = d_inode(dentry); 1833 task = get_proc_task(inode); 1834 1835 if (task) { 1836 pid_update_inode(task, inode); 1837 put_task_struct(task); 1838 return 1; 1839 } 1840 return 0; 1841 } 1842 1843 static inline bool proc_inode_is_dead(struct inode *inode) 1844 { 1845 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1846 } 1847 1848 int pid_delete_dentry(const struct dentry *dentry) 1849 { 1850 /* Is the task we represent dead? 1851 * If so, then don't put the dentry on the lru list, 1852 * kill it immediately. 1853 */ 1854 return proc_inode_is_dead(d_inode(dentry)); 1855 } 1856 1857 const struct dentry_operations pid_dentry_operations = 1858 { 1859 .d_revalidate = pid_revalidate, 1860 .d_delete = pid_delete_dentry, 1861 }; 1862 1863 /* Lookups */ 1864 1865 /* 1866 * Fill a directory entry. 1867 * 1868 * If possible create the dcache entry and derive our inode number and 1869 * file type from dcache entry. 1870 * 1871 * Since all of the proc inode numbers are dynamically generated, the inode 1872 * numbers do not exist until the inode is cache. This means creating the 1873 * the dcache entry in readdir is necessary to keep the inode numbers 1874 * reported by readdir in sync with the inode numbers reported 1875 * by stat. 1876 */ 1877 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 1878 const char *name, int len, 1879 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1880 { 1881 struct dentry *child, *dir = file->f_path.dentry; 1882 struct qstr qname = QSTR_INIT(name, len); 1883 struct inode *inode; 1884 unsigned type = DT_UNKNOWN; 1885 ino_t ino = 1; 1886 1887 child = d_hash_and_lookup(dir, &qname); 1888 if (!child) { 1889 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1890 child = d_alloc_parallel(dir, &qname, &wq); 1891 if (IS_ERR(child)) 1892 goto end_instantiate; 1893 if (d_in_lookup(child)) { 1894 struct dentry *res; 1895 res = instantiate(child, task, ptr); 1896 d_lookup_done(child); 1897 if (IS_ERR(res)) 1898 goto end_instantiate; 1899 if (unlikely(res)) { 1900 dput(child); 1901 child = res; 1902 } 1903 } 1904 } 1905 inode = d_inode(child); 1906 ino = inode->i_ino; 1907 type = inode->i_mode >> 12; 1908 end_instantiate: 1909 dput(child); 1910 return dir_emit(ctx, name, len, ino, type); 1911 } 1912 1913 /* 1914 * dname_to_vma_addr - maps a dentry name into two unsigned longs 1915 * which represent vma start and end addresses. 1916 */ 1917 static int dname_to_vma_addr(struct dentry *dentry, 1918 unsigned long *start, unsigned long *end) 1919 { 1920 const char *str = dentry->d_name.name; 1921 unsigned long long sval, eval; 1922 unsigned int len; 1923 1924 if (str[0] == '0' && str[1] != '-') 1925 return -EINVAL; 1926 len = _parse_integer(str, 16, &sval); 1927 if (len & KSTRTOX_OVERFLOW) 1928 return -EINVAL; 1929 if (sval != (unsigned long)sval) 1930 return -EINVAL; 1931 str += len; 1932 1933 if (*str != '-') 1934 return -EINVAL; 1935 str++; 1936 1937 if (str[0] == '0' && str[1]) 1938 return -EINVAL; 1939 len = _parse_integer(str, 16, &eval); 1940 if (len & KSTRTOX_OVERFLOW) 1941 return -EINVAL; 1942 if (eval != (unsigned long)eval) 1943 return -EINVAL; 1944 str += len; 1945 1946 if (*str != '\0') 1947 return -EINVAL; 1948 1949 *start = sval; 1950 *end = eval; 1951 1952 return 0; 1953 } 1954 1955 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 1956 { 1957 unsigned long vm_start, vm_end; 1958 bool exact_vma_exists = false; 1959 struct mm_struct *mm = NULL; 1960 struct task_struct *task; 1961 struct inode *inode; 1962 int status = 0; 1963 1964 if (flags & LOOKUP_RCU) 1965 return -ECHILD; 1966 1967 inode = d_inode(dentry); 1968 task = get_proc_task(inode); 1969 if (!task) 1970 goto out_notask; 1971 1972 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1973 if (IS_ERR_OR_NULL(mm)) 1974 goto out; 1975 1976 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 1977 down_read(&mm->mmap_sem); 1978 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 1979 up_read(&mm->mmap_sem); 1980 } 1981 1982 mmput(mm); 1983 1984 if (exact_vma_exists) { 1985 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1986 1987 security_task_to_inode(task, inode); 1988 status = 1; 1989 } 1990 1991 out: 1992 put_task_struct(task); 1993 1994 out_notask: 1995 return status; 1996 } 1997 1998 static const struct dentry_operations tid_map_files_dentry_operations = { 1999 .d_revalidate = map_files_d_revalidate, 2000 .d_delete = pid_delete_dentry, 2001 }; 2002 2003 static int map_files_get_link(struct dentry *dentry, struct path *path) 2004 { 2005 unsigned long vm_start, vm_end; 2006 struct vm_area_struct *vma; 2007 struct task_struct *task; 2008 struct mm_struct *mm; 2009 int rc; 2010 2011 rc = -ENOENT; 2012 task = get_proc_task(d_inode(dentry)); 2013 if (!task) 2014 goto out; 2015 2016 mm = get_task_mm(task); 2017 put_task_struct(task); 2018 if (!mm) 2019 goto out; 2020 2021 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2022 if (rc) 2023 goto out_mmput; 2024 2025 rc = -ENOENT; 2026 down_read(&mm->mmap_sem); 2027 vma = find_exact_vma(mm, vm_start, vm_end); 2028 if (vma && vma->vm_file) { 2029 *path = vma->vm_file->f_path; 2030 path_get(path); 2031 rc = 0; 2032 } 2033 up_read(&mm->mmap_sem); 2034 2035 out_mmput: 2036 mmput(mm); 2037 out: 2038 return rc; 2039 } 2040 2041 struct map_files_info { 2042 unsigned long start; 2043 unsigned long end; 2044 fmode_t mode; 2045 }; 2046 2047 /* 2048 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the 2049 * symlinks may be used to bypass permissions on ancestor directories in the 2050 * path to the file in question. 2051 */ 2052 static const char * 2053 proc_map_files_get_link(struct dentry *dentry, 2054 struct inode *inode, 2055 struct delayed_call *done) 2056 { 2057 if (!capable(CAP_SYS_ADMIN)) 2058 return ERR_PTR(-EPERM); 2059 2060 return proc_pid_get_link(dentry, inode, done); 2061 } 2062 2063 /* 2064 * Identical to proc_pid_link_inode_operations except for get_link() 2065 */ 2066 static const struct inode_operations proc_map_files_link_inode_operations = { 2067 .readlink = proc_pid_readlink, 2068 .get_link = proc_map_files_get_link, 2069 .setattr = proc_setattr, 2070 }; 2071 2072 static struct dentry * 2073 proc_map_files_instantiate(struct dentry *dentry, 2074 struct task_struct *task, const void *ptr) 2075 { 2076 fmode_t mode = (fmode_t)(unsigned long)ptr; 2077 struct proc_inode *ei; 2078 struct inode *inode; 2079 2080 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2081 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2082 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2083 if (!inode) 2084 return ERR_PTR(-ENOENT); 2085 2086 ei = PROC_I(inode); 2087 ei->op.proc_get_link = map_files_get_link; 2088 2089 inode->i_op = &proc_map_files_link_inode_operations; 2090 inode->i_size = 64; 2091 2092 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2093 return d_splice_alias(inode, dentry); 2094 } 2095 2096 static struct dentry *proc_map_files_lookup(struct inode *dir, 2097 struct dentry *dentry, unsigned int flags) 2098 { 2099 unsigned long vm_start, vm_end; 2100 struct vm_area_struct *vma; 2101 struct task_struct *task; 2102 struct dentry *result; 2103 struct mm_struct *mm; 2104 2105 result = ERR_PTR(-ENOENT); 2106 task = get_proc_task(dir); 2107 if (!task) 2108 goto out; 2109 2110 result = ERR_PTR(-EACCES); 2111 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2112 goto out_put_task; 2113 2114 result = ERR_PTR(-ENOENT); 2115 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2116 goto out_put_task; 2117 2118 mm = get_task_mm(task); 2119 if (!mm) 2120 goto out_put_task; 2121 2122 down_read(&mm->mmap_sem); 2123 vma = find_exact_vma(mm, vm_start, vm_end); 2124 if (!vma) 2125 goto out_no_vma; 2126 2127 if (vma->vm_file) 2128 result = proc_map_files_instantiate(dentry, task, 2129 (void *)(unsigned long)vma->vm_file->f_mode); 2130 2131 out_no_vma: 2132 up_read(&mm->mmap_sem); 2133 mmput(mm); 2134 out_put_task: 2135 put_task_struct(task); 2136 out: 2137 return result; 2138 } 2139 2140 static const struct inode_operations proc_map_files_inode_operations = { 2141 .lookup = proc_map_files_lookup, 2142 .permission = proc_fd_permission, 2143 .setattr = proc_setattr, 2144 }; 2145 2146 static int 2147 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2148 { 2149 struct vm_area_struct *vma; 2150 struct task_struct *task; 2151 struct mm_struct *mm; 2152 unsigned long nr_files, pos, i; 2153 struct flex_array *fa = NULL; 2154 struct map_files_info info; 2155 struct map_files_info *p; 2156 int ret; 2157 2158 ret = -ENOENT; 2159 task = get_proc_task(file_inode(file)); 2160 if (!task) 2161 goto out; 2162 2163 ret = -EACCES; 2164 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2165 goto out_put_task; 2166 2167 ret = 0; 2168 if (!dir_emit_dots(file, ctx)) 2169 goto out_put_task; 2170 2171 mm = get_task_mm(task); 2172 if (!mm) 2173 goto out_put_task; 2174 down_read(&mm->mmap_sem); 2175 2176 nr_files = 0; 2177 2178 /* 2179 * We need two passes here: 2180 * 2181 * 1) Collect vmas of mapped files with mmap_sem taken 2182 * 2) Release mmap_sem and instantiate entries 2183 * 2184 * otherwise we get lockdep complained, since filldir() 2185 * routine might require mmap_sem taken in might_fault(). 2186 */ 2187 2188 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2189 if (vma->vm_file && ++pos > ctx->pos) 2190 nr_files++; 2191 } 2192 2193 if (nr_files) { 2194 fa = flex_array_alloc(sizeof(info), nr_files, 2195 GFP_KERNEL); 2196 if (!fa || flex_array_prealloc(fa, 0, nr_files, 2197 GFP_KERNEL)) { 2198 ret = -ENOMEM; 2199 if (fa) 2200 flex_array_free(fa); 2201 up_read(&mm->mmap_sem); 2202 mmput(mm); 2203 goto out_put_task; 2204 } 2205 for (i = 0, vma = mm->mmap, pos = 2; vma; 2206 vma = vma->vm_next) { 2207 if (!vma->vm_file) 2208 continue; 2209 if (++pos <= ctx->pos) 2210 continue; 2211 2212 info.start = vma->vm_start; 2213 info.end = vma->vm_end; 2214 info.mode = vma->vm_file->f_mode; 2215 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 2216 BUG(); 2217 } 2218 } 2219 up_read(&mm->mmap_sem); 2220 mmput(mm); 2221 2222 for (i = 0; i < nr_files; i++) { 2223 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2224 unsigned int len; 2225 2226 p = flex_array_get(fa, i); 2227 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2228 if (!proc_fill_cache(file, ctx, 2229 buf, len, 2230 proc_map_files_instantiate, 2231 task, 2232 (void *)(unsigned long)p->mode)) 2233 break; 2234 ctx->pos++; 2235 } 2236 if (fa) 2237 flex_array_free(fa); 2238 2239 out_put_task: 2240 put_task_struct(task); 2241 out: 2242 return ret; 2243 } 2244 2245 static const struct file_operations proc_map_files_operations = { 2246 .read = generic_read_dir, 2247 .iterate_shared = proc_map_files_readdir, 2248 .llseek = generic_file_llseek, 2249 }; 2250 2251 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2252 struct timers_private { 2253 struct pid *pid; 2254 struct task_struct *task; 2255 struct sighand_struct *sighand; 2256 struct pid_namespace *ns; 2257 unsigned long flags; 2258 }; 2259 2260 static void *timers_start(struct seq_file *m, loff_t *pos) 2261 { 2262 struct timers_private *tp = m->private; 2263 2264 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2265 if (!tp->task) 2266 return ERR_PTR(-ESRCH); 2267 2268 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2269 if (!tp->sighand) 2270 return ERR_PTR(-ESRCH); 2271 2272 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2273 } 2274 2275 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2276 { 2277 struct timers_private *tp = m->private; 2278 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2279 } 2280 2281 static void timers_stop(struct seq_file *m, void *v) 2282 { 2283 struct timers_private *tp = m->private; 2284 2285 if (tp->sighand) { 2286 unlock_task_sighand(tp->task, &tp->flags); 2287 tp->sighand = NULL; 2288 } 2289 2290 if (tp->task) { 2291 put_task_struct(tp->task); 2292 tp->task = NULL; 2293 } 2294 } 2295 2296 static int show_timer(struct seq_file *m, void *v) 2297 { 2298 struct k_itimer *timer; 2299 struct timers_private *tp = m->private; 2300 int notify; 2301 static const char * const nstr[] = { 2302 [SIGEV_SIGNAL] = "signal", 2303 [SIGEV_NONE] = "none", 2304 [SIGEV_THREAD] = "thread", 2305 }; 2306 2307 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2308 notify = timer->it_sigev_notify; 2309 2310 seq_printf(m, "ID: %d\n", timer->it_id); 2311 seq_printf(m, "signal: %d/%px\n", 2312 timer->sigq->info.si_signo, 2313 timer->sigq->info.si_value.sival_ptr); 2314 seq_printf(m, "notify: %s/%s.%d\n", 2315 nstr[notify & ~SIGEV_THREAD_ID], 2316 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2317 pid_nr_ns(timer->it_pid, tp->ns)); 2318 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2319 2320 return 0; 2321 } 2322 2323 static const struct seq_operations proc_timers_seq_ops = { 2324 .start = timers_start, 2325 .next = timers_next, 2326 .stop = timers_stop, 2327 .show = show_timer, 2328 }; 2329 2330 static int proc_timers_open(struct inode *inode, struct file *file) 2331 { 2332 struct timers_private *tp; 2333 2334 tp = __seq_open_private(file, &proc_timers_seq_ops, 2335 sizeof(struct timers_private)); 2336 if (!tp) 2337 return -ENOMEM; 2338 2339 tp->pid = proc_pid(inode); 2340 tp->ns = proc_pid_ns(inode); 2341 return 0; 2342 } 2343 2344 static const struct file_operations proc_timers_operations = { 2345 .open = proc_timers_open, 2346 .read = seq_read, 2347 .llseek = seq_lseek, 2348 .release = seq_release_private, 2349 }; 2350 #endif 2351 2352 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2353 size_t count, loff_t *offset) 2354 { 2355 struct inode *inode = file_inode(file); 2356 struct task_struct *p; 2357 u64 slack_ns; 2358 int err; 2359 2360 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2361 if (err < 0) 2362 return err; 2363 2364 p = get_proc_task(inode); 2365 if (!p) 2366 return -ESRCH; 2367 2368 if (p != current) { 2369 if (!capable(CAP_SYS_NICE)) { 2370 count = -EPERM; 2371 goto out; 2372 } 2373 2374 err = security_task_setscheduler(p); 2375 if (err) { 2376 count = err; 2377 goto out; 2378 } 2379 } 2380 2381 task_lock(p); 2382 if (slack_ns == 0) 2383 p->timer_slack_ns = p->default_timer_slack_ns; 2384 else 2385 p->timer_slack_ns = slack_ns; 2386 task_unlock(p); 2387 2388 out: 2389 put_task_struct(p); 2390 2391 return count; 2392 } 2393 2394 static int timerslack_ns_show(struct seq_file *m, void *v) 2395 { 2396 struct inode *inode = m->private; 2397 struct task_struct *p; 2398 int err = 0; 2399 2400 p = get_proc_task(inode); 2401 if (!p) 2402 return -ESRCH; 2403 2404 if (p != current) { 2405 2406 if (!capable(CAP_SYS_NICE)) { 2407 err = -EPERM; 2408 goto out; 2409 } 2410 err = security_task_getscheduler(p); 2411 if (err) 2412 goto out; 2413 } 2414 2415 task_lock(p); 2416 seq_printf(m, "%llu\n", p->timer_slack_ns); 2417 task_unlock(p); 2418 2419 out: 2420 put_task_struct(p); 2421 2422 return err; 2423 } 2424 2425 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2426 { 2427 return single_open(filp, timerslack_ns_show, inode); 2428 } 2429 2430 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2431 .open = timerslack_ns_open, 2432 .read = seq_read, 2433 .write = timerslack_ns_write, 2434 .llseek = seq_lseek, 2435 .release = single_release, 2436 }; 2437 2438 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2439 struct task_struct *task, const void *ptr) 2440 { 2441 const struct pid_entry *p = ptr; 2442 struct inode *inode; 2443 struct proc_inode *ei; 2444 2445 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2446 if (!inode) 2447 return ERR_PTR(-ENOENT); 2448 2449 ei = PROC_I(inode); 2450 if (S_ISDIR(inode->i_mode)) 2451 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2452 if (p->iop) 2453 inode->i_op = p->iop; 2454 if (p->fop) 2455 inode->i_fop = p->fop; 2456 ei->op = p->op; 2457 pid_update_inode(task, inode); 2458 d_set_d_op(dentry, &pid_dentry_operations); 2459 return d_splice_alias(inode, dentry); 2460 } 2461 2462 static struct dentry *proc_pident_lookup(struct inode *dir, 2463 struct dentry *dentry, 2464 const struct pid_entry *ents, 2465 unsigned int nents) 2466 { 2467 struct task_struct *task = get_proc_task(dir); 2468 const struct pid_entry *p, *last; 2469 struct dentry *res = ERR_PTR(-ENOENT); 2470 2471 if (!task) 2472 goto out_no_task; 2473 2474 /* 2475 * Yes, it does not scale. And it should not. Don't add 2476 * new entries into /proc/<tgid>/ without very good reasons. 2477 */ 2478 last = &ents[nents]; 2479 for (p = ents; p < last; p++) { 2480 if (p->len != dentry->d_name.len) 2481 continue; 2482 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2483 break; 2484 } 2485 if (p >= last) 2486 goto out; 2487 2488 res = proc_pident_instantiate(dentry, task, p); 2489 out: 2490 put_task_struct(task); 2491 out_no_task: 2492 return res; 2493 } 2494 2495 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2496 const struct pid_entry *ents, unsigned int nents) 2497 { 2498 struct task_struct *task = get_proc_task(file_inode(file)); 2499 const struct pid_entry *p; 2500 2501 if (!task) 2502 return -ENOENT; 2503 2504 if (!dir_emit_dots(file, ctx)) 2505 goto out; 2506 2507 if (ctx->pos >= nents + 2) 2508 goto out; 2509 2510 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2511 if (!proc_fill_cache(file, ctx, p->name, p->len, 2512 proc_pident_instantiate, task, p)) 2513 break; 2514 ctx->pos++; 2515 } 2516 out: 2517 put_task_struct(task); 2518 return 0; 2519 } 2520 2521 #ifdef CONFIG_SECURITY 2522 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2523 size_t count, loff_t *ppos) 2524 { 2525 struct inode * inode = file_inode(file); 2526 char *p = NULL; 2527 ssize_t length; 2528 struct task_struct *task = get_proc_task(inode); 2529 2530 if (!task) 2531 return -ESRCH; 2532 2533 length = security_getprocattr(task, 2534 (char*)file->f_path.dentry->d_name.name, 2535 &p); 2536 put_task_struct(task); 2537 if (length > 0) 2538 length = simple_read_from_buffer(buf, count, ppos, p, length); 2539 kfree(p); 2540 return length; 2541 } 2542 2543 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2544 size_t count, loff_t *ppos) 2545 { 2546 struct inode * inode = file_inode(file); 2547 void *page; 2548 ssize_t length; 2549 struct task_struct *task = get_proc_task(inode); 2550 2551 length = -ESRCH; 2552 if (!task) 2553 goto out_no_task; 2554 2555 /* A task may only write its own attributes. */ 2556 length = -EACCES; 2557 if (current != task) 2558 goto out; 2559 2560 if (count > PAGE_SIZE) 2561 count = PAGE_SIZE; 2562 2563 /* No partial writes. */ 2564 length = -EINVAL; 2565 if (*ppos != 0) 2566 goto out; 2567 2568 page = memdup_user(buf, count); 2569 if (IS_ERR(page)) { 2570 length = PTR_ERR(page); 2571 goto out; 2572 } 2573 2574 /* Guard against adverse ptrace interaction */ 2575 length = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2576 if (length < 0) 2577 goto out_free; 2578 2579 length = security_setprocattr(file->f_path.dentry->d_name.name, 2580 page, count); 2581 mutex_unlock(¤t->signal->cred_guard_mutex); 2582 out_free: 2583 kfree(page); 2584 out: 2585 put_task_struct(task); 2586 out_no_task: 2587 return length; 2588 } 2589 2590 static const struct file_operations proc_pid_attr_operations = { 2591 .read = proc_pid_attr_read, 2592 .write = proc_pid_attr_write, 2593 .llseek = generic_file_llseek, 2594 }; 2595 2596 static const struct pid_entry attr_dir_stuff[] = { 2597 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2598 REG("prev", S_IRUGO, proc_pid_attr_operations), 2599 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2600 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2601 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2602 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2603 }; 2604 2605 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2606 { 2607 return proc_pident_readdir(file, ctx, 2608 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2609 } 2610 2611 static const struct file_operations proc_attr_dir_operations = { 2612 .read = generic_read_dir, 2613 .iterate_shared = proc_attr_dir_readdir, 2614 .llseek = generic_file_llseek, 2615 }; 2616 2617 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2618 struct dentry *dentry, unsigned int flags) 2619 { 2620 return proc_pident_lookup(dir, dentry, 2621 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2622 } 2623 2624 static const struct inode_operations proc_attr_dir_inode_operations = { 2625 .lookup = proc_attr_dir_lookup, 2626 .getattr = pid_getattr, 2627 .setattr = proc_setattr, 2628 }; 2629 2630 #endif 2631 2632 #ifdef CONFIG_ELF_CORE 2633 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2634 size_t count, loff_t *ppos) 2635 { 2636 struct task_struct *task = get_proc_task(file_inode(file)); 2637 struct mm_struct *mm; 2638 char buffer[PROC_NUMBUF]; 2639 size_t len; 2640 int ret; 2641 2642 if (!task) 2643 return -ESRCH; 2644 2645 ret = 0; 2646 mm = get_task_mm(task); 2647 if (mm) { 2648 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2649 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2650 MMF_DUMP_FILTER_SHIFT)); 2651 mmput(mm); 2652 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2653 } 2654 2655 put_task_struct(task); 2656 2657 return ret; 2658 } 2659 2660 static ssize_t proc_coredump_filter_write(struct file *file, 2661 const char __user *buf, 2662 size_t count, 2663 loff_t *ppos) 2664 { 2665 struct task_struct *task; 2666 struct mm_struct *mm; 2667 unsigned int val; 2668 int ret; 2669 int i; 2670 unsigned long mask; 2671 2672 ret = kstrtouint_from_user(buf, count, 0, &val); 2673 if (ret < 0) 2674 return ret; 2675 2676 ret = -ESRCH; 2677 task = get_proc_task(file_inode(file)); 2678 if (!task) 2679 goto out_no_task; 2680 2681 mm = get_task_mm(task); 2682 if (!mm) 2683 goto out_no_mm; 2684 ret = 0; 2685 2686 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2687 if (val & mask) 2688 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2689 else 2690 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2691 } 2692 2693 mmput(mm); 2694 out_no_mm: 2695 put_task_struct(task); 2696 out_no_task: 2697 if (ret < 0) 2698 return ret; 2699 return count; 2700 } 2701 2702 static const struct file_operations proc_coredump_filter_operations = { 2703 .read = proc_coredump_filter_read, 2704 .write = proc_coredump_filter_write, 2705 .llseek = generic_file_llseek, 2706 }; 2707 #endif 2708 2709 #ifdef CONFIG_TASK_IO_ACCOUNTING 2710 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2711 { 2712 struct task_io_accounting acct = task->ioac; 2713 unsigned long flags; 2714 int result; 2715 2716 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2717 if (result) 2718 return result; 2719 2720 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2721 result = -EACCES; 2722 goto out_unlock; 2723 } 2724 2725 if (whole && lock_task_sighand(task, &flags)) { 2726 struct task_struct *t = task; 2727 2728 task_io_accounting_add(&acct, &task->signal->ioac); 2729 while_each_thread(task, t) 2730 task_io_accounting_add(&acct, &t->ioac); 2731 2732 unlock_task_sighand(task, &flags); 2733 } 2734 seq_printf(m, 2735 "rchar: %llu\n" 2736 "wchar: %llu\n" 2737 "syscr: %llu\n" 2738 "syscw: %llu\n" 2739 "read_bytes: %llu\n" 2740 "write_bytes: %llu\n" 2741 "cancelled_write_bytes: %llu\n", 2742 (unsigned long long)acct.rchar, 2743 (unsigned long long)acct.wchar, 2744 (unsigned long long)acct.syscr, 2745 (unsigned long long)acct.syscw, 2746 (unsigned long long)acct.read_bytes, 2747 (unsigned long long)acct.write_bytes, 2748 (unsigned long long)acct.cancelled_write_bytes); 2749 result = 0; 2750 2751 out_unlock: 2752 mutex_unlock(&task->signal->cred_guard_mutex); 2753 return result; 2754 } 2755 2756 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2757 struct pid *pid, struct task_struct *task) 2758 { 2759 return do_io_accounting(task, m, 0); 2760 } 2761 2762 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2763 struct pid *pid, struct task_struct *task) 2764 { 2765 return do_io_accounting(task, m, 1); 2766 } 2767 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2768 2769 #ifdef CONFIG_USER_NS 2770 static int proc_id_map_open(struct inode *inode, struct file *file, 2771 const struct seq_operations *seq_ops) 2772 { 2773 struct user_namespace *ns = NULL; 2774 struct task_struct *task; 2775 struct seq_file *seq; 2776 int ret = -EINVAL; 2777 2778 task = get_proc_task(inode); 2779 if (task) { 2780 rcu_read_lock(); 2781 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2782 rcu_read_unlock(); 2783 put_task_struct(task); 2784 } 2785 if (!ns) 2786 goto err; 2787 2788 ret = seq_open(file, seq_ops); 2789 if (ret) 2790 goto err_put_ns; 2791 2792 seq = file->private_data; 2793 seq->private = ns; 2794 2795 return 0; 2796 err_put_ns: 2797 put_user_ns(ns); 2798 err: 2799 return ret; 2800 } 2801 2802 static int proc_id_map_release(struct inode *inode, struct file *file) 2803 { 2804 struct seq_file *seq = file->private_data; 2805 struct user_namespace *ns = seq->private; 2806 put_user_ns(ns); 2807 return seq_release(inode, file); 2808 } 2809 2810 static int proc_uid_map_open(struct inode *inode, struct file *file) 2811 { 2812 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 2813 } 2814 2815 static int proc_gid_map_open(struct inode *inode, struct file *file) 2816 { 2817 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 2818 } 2819 2820 static int proc_projid_map_open(struct inode *inode, struct file *file) 2821 { 2822 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 2823 } 2824 2825 static const struct file_operations proc_uid_map_operations = { 2826 .open = proc_uid_map_open, 2827 .write = proc_uid_map_write, 2828 .read = seq_read, 2829 .llseek = seq_lseek, 2830 .release = proc_id_map_release, 2831 }; 2832 2833 static const struct file_operations proc_gid_map_operations = { 2834 .open = proc_gid_map_open, 2835 .write = proc_gid_map_write, 2836 .read = seq_read, 2837 .llseek = seq_lseek, 2838 .release = proc_id_map_release, 2839 }; 2840 2841 static const struct file_operations proc_projid_map_operations = { 2842 .open = proc_projid_map_open, 2843 .write = proc_projid_map_write, 2844 .read = seq_read, 2845 .llseek = seq_lseek, 2846 .release = proc_id_map_release, 2847 }; 2848 2849 static int proc_setgroups_open(struct inode *inode, struct file *file) 2850 { 2851 struct user_namespace *ns = NULL; 2852 struct task_struct *task; 2853 int ret; 2854 2855 ret = -ESRCH; 2856 task = get_proc_task(inode); 2857 if (task) { 2858 rcu_read_lock(); 2859 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2860 rcu_read_unlock(); 2861 put_task_struct(task); 2862 } 2863 if (!ns) 2864 goto err; 2865 2866 if (file->f_mode & FMODE_WRITE) { 2867 ret = -EACCES; 2868 if (!ns_capable(ns, CAP_SYS_ADMIN)) 2869 goto err_put_ns; 2870 } 2871 2872 ret = single_open(file, &proc_setgroups_show, ns); 2873 if (ret) 2874 goto err_put_ns; 2875 2876 return 0; 2877 err_put_ns: 2878 put_user_ns(ns); 2879 err: 2880 return ret; 2881 } 2882 2883 static int proc_setgroups_release(struct inode *inode, struct file *file) 2884 { 2885 struct seq_file *seq = file->private_data; 2886 struct user_namespace *ns = seq->private; 2887 int ret = single_release(inode, file); 2888 put_user_ns(ns); 2889 return ret; 2890 } 2891 2892 static const struct file_operations proc_setgroups_operations = { 2893 .open = proc_setgroups_open, 2894 .write = proc_setgroups_write, 2895 .read = seq_read, 2896 .llseek = seq_lseek, 2897 .release = proc_setgroups_release, 2898 }; 2899 #endif /* CONFIG_USER_NS */ 2900 2901 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2902 struct pid *pid, struct task_struct *task) 2903 { 2904 int err = lock_trace(task); 2905 if (!err) { 2906 seq_printf(m, "%08x\n", task->personality); 2907 unlock_trace(task); 2908 } 2909 return err; 2910 } 2911 2912 #ifdef CONFIG_LIVEPATCH 2913 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 2914 struct pid *pid, struct task_struct *task) 2915 { 2916 seq_printf(m, "%d\n", task->patch_state); 2917 return 0; 2918 } 2919 #endif /* CONFIG_LIVEPATCH */ 2920 2921 /* 2922 * Thread groups 2923 */ 2924 static const struct file_operations proc_task_operations; 2925 static const struct inode_operations proc_task_inode_operations; 2926 2927 static const struct pid_entry tgid_base_stuff[] = { 2928 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2929 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2930 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 2931 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2932 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2933 #ifdef CONFIG_NET 2934 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2935 #endif 2936 REG("environ", S_IRUSR, proc_environ_operations), 2937 REG("auxv", S_IRUSR, proc_auxv_operations), 2938 ONE("status", S_IRUGO, proc_pid_status), 2939 ONE("personality", S_IRUSR, proc_pid_personality), 2940 ONE("limits", S_IRUGO, proc_pid_limits), 2941 #ifdef CONFIG_SCHED_DEBUG 2942 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2943 #endif 2944 #ifdef CONFIG_SCHED_AUTOGROUP 2945 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 2946 #endif 2947 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2948 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2949 ONE("syscall", S_IRUSR, proc_pid_syscall), 2950 #endif 2951 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 2952 ONE("stat", S_IRUGO, proc_tgid_stat), 2953 ONE("statm", S_IRUGO, proc_pid_statm), 2954 REG("maps", S_IRUGO, proc_pid_maps_operations), 2955 #ifdef CONFIG_NUMA 2956 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 2957 #endif 2958 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2959 LNK("cwd", proc_cwd_link), 2960 LNK("root", proc_root_link), 2961 LNK("exe", proc_exe_link), 2962 REG("mounts", S_IRUGO, proc_mounts_operations), 2963 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2964 REG("mountstats", S_IRUSR, proc_mountstats_operations), 2965 #ifdef CONFIG_PROC_PAGE_MONITOR 2966 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2967 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 2968 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 2969 REG("pagemap", S_IRUSR, proc_pagemap_operations), 2970 #endif 2971 #ifdef CONFIG_SECURITY 2972 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2973 #endif 2974 #ifdef CONFIG_KALLSYMS 2975 ONE("wchan", S_IRUGO, proc_pid_wchan), 2976 #endif 2977 #ifdef CONFIG_STACKTRACE 2978 ONE("stack", S_IRUSR, proc_pid_stack), 2979 #endif 2980 #ifdef CONFIG_SCHED_INFO 2981 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 2982 #endif 2983 #ifdef CONFIG_LATENCYTOP 2984 REG("latency", S_IRUGO, proc_lstats_operations), 2985 #endif 2986 #ifdef CONFIG_PROC_PID_CPUSET 2987 ONE("cpuset", S_IRUGO, proc_cpuset_show), 2988 #endif 2989 #ifdef CONFIG_CGROUPS 2990 ONE("cgroup", S_IRUGO, proc_cgroup_show), 2991 #endif 2992 ONE("oom_score", S_IRUGO, proc_oom_score), 2993 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 2994 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 2995 #ifdef CONFIG_AUDITSYSCALL 2996 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2997 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2998 #endif 2999 #ifdef CONFIG_FAULT_INJECTION 3000 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3001 REG("fail-nth", 0644, proc_fail_nth_operations), 3002 #endif 3003 #ifdef CONFIG_ELF_CORE 3004 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3005 #endif 3006 #ifdef CONFIG_TASK_IO_ACCOUNTING 3007 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3008 #endif 3009 #ifdef CONFIG_USER_NS 3010 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3011 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3012 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3013 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3014 #endif 3015 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3016 REG("timers", S_IRUGO, proc_timers_operations), 3017 #endif 3018 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3019 #ifdef CONFIG_LIVEPATCH 3020 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3021 #endif 3022 }; 3023 3024 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3025 { 3026 return proc_pident_readdir(file, ctx, 3027 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3028 } 3029 3030 static const struct file_operations proc_tgid_base_operations = { 3031 .read = generic_read_dir, 3032 .iterate_shared = proc_tgid_base_readdir, 3033 .llseek = generic_file_llseek, 3034 }; 3035 3036 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3037 { 3038 return proc_pident_lookup(dir, dentry, 3039 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3040 } 3041 3042 static const struct inode_operations proc_tgid_base_inode_operations = { 3043 .lookup = proc_tgid_base_lookup, 3044 .getattr = pid_getattr, 3045 .setattr = proc_setattr, 3046 .permission = proc_pid_permission, 3047 }; 3048 3049 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 3050 { 3051 struct dentry *dentry, *leader, *dir; 3052 char buf[10 + 1]; 3053 struct qstr name; 3054 3055 name.name = buf; 3056 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3057 /* no ->d_hash() rejects on procfs */ 3058 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 3059 if (dentry) { 3060 d_invalidate(dentry); 3061 dput(dentry); 3062 } 3063 3064 if (pid == tgid) 3065 return; 3066 3067 name.name = buf; 3068 name.len = snprintf(buf, sizeof(buf), "%u", tgid); 3069 leader = d_hash_and_lookup(mnt->mnt_root, &name); 3070 if (!leader) 3071 goto out; 3072 3073 name.name = "task"; 3074 name.len = strlen(name.name); 3075 dir = d_hash_and_lookup(leader, &name); 3076 if (!dir) 3077 goto out_put_leader; 3078 3079 name.name = buf; 3080 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3081 dentry = d_hash_and_lookup(dir, &name); 3082 if (dentry) { 3083 d_invalidate(dentry); 3084 dput(dentry); 3085 } 3086 3087 dput(dir); 3088 out_put_leader: 3089 dput(leader); 3090 out: 3091 return; 3092 } 3093 3094 /** 3095 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 3096 * @task: task that should be flushed. 3097 * 3098 * When flushing dentries from proc, one needs to flush them from global 3099 * proc (proc_mnt) and from all the namespaces' procs this task was seen 3100 * in. This call is supposed to do all of this job. 3101 * 3102 * Looks in the dcache for 3103 * /proc/@pid 3104 * /proc/@tgid/task/@pid 3105 * if either directory is present flushes it and all of it'ts children 3106 * from the dcache. 3107 * 3108 * It is safe and reasonable to cache /proc entries for a task until 3109 * that task exits. After that they just clog up the dcache with 3110 * useless entries, possibly causing useful dcache entries to be 3111 * flushed instead. This routine is proved to flush those useless 3112 * dcache entries at process exit time. 3113 * 3114 * NOTE: This routine is just an optimization so it does not guarantee 3115 * that no dcache entries will exist at process exit time it 3116 * just makes it very unlikely that any will persist. 3117 */ 3118 3119 void proc_flush_task(struct task_struct *task) 3120 { 3121 int i; 3122 struct pid *pid, *tgid; 3123 struct upid *upid; 3124 3125 pid = task_pid(task); 3126 tgid = task_tgid(task); 3127 3128 for (i = 0; i <= pid->level; i++) { 3129 upid = &pid->numbers[i]; 3130 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3131 tgid->numbers[i].nr); 3132 } 3133 } 3134 3135 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3136 struct task_struct *task, const void *ptr) 3137 { 3138 struct inode *inode; 3139 3140 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3141 if (!inode) 3142 return ERR_PTR(-ENOENT); 3143 3144 inode->i_op = &proc_tgid_base_inode_operations; 3145 inode->i_fop = &proc_tgid_base_operations; 3146 inode->i_flags|=S_IMMUTABLE; 3147 3148 set_nlink(inode, nlink_tgid); 3149 pid_update_inode(task, inode); 3150 3151 d_set_d_op(dentry, &pid_dentry_operations); 3152 return d_splice_alias(inode, dentry); 3153 } 3154 3155 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3156 { 3157 struct task_struct *task; 3158 unsigned tgid; 3159 struct pid_namespace *ns; 3160 struct dentry *result = ERR_PTR(-ENOENT); 3161 3162 tgid = name_to_int(&dentry->d_name); 3163 if (tgid == ~0U) 3164 goto out; 3165 3166 ns = dentry->d_sb->s_fs_info; 3167 rcu_read_lock(); 3168 task = find_task_by_pid_ns(tgid, ns); 3169 if (task) 3170 get_task_struct(task); 3171 rcu_read_unlock(); 3172 if (!task) 3173 goto out; 3174 3175 result = proc_pid_instantiate(dentry, task, NULL); 3176 put_task_struct(task); 3177 out: 3178 return result; 3179 } 3180 3181 /* 3182 * Find the first task with tgid >= tgid 3183 * 3184 */ 3185 struct tgid_iter { 3186 unsigned int tgid; 3187 struct task_struct *task; 3188 }; 3189 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3190 { 3191 struct pid *pid; 3192 3193 if (iter.task) 3194 put_task_struct(iter.task); 3195 rcu_read_lock(); 3196 retry: 3197 iter.task = NULL; 3198 pid = find_ge_pid(iter.tgid, ns); 3199 if (pid) { 3200 iter.tgid = pid_nr_ns(pid, ns); 3201 iter.task = pid_task(pid, PIDTYPE_PID); 3202 /* What we to know is if the pid we have find is the 3203 * pid of a thread_group_leader. Testing for task 3204 * being a thread_group_leader is the obvious thing 3205 * todo but there is a window when it fails, due to 3206 * the pid transfer logic in de_thread. 3207 * 3208 * So we perform the straight forward test of seeing 3209 * if the pid we have found is the pid of a thread 3210 * group leader, and don't worry if the task we have 3211 * found doesn't happen to be a thread group leader. 3212 * As we don't care in the case of readdir. 3213 */ 3214 if (!iter.task || !has_group_leader_pid(iter.task)) { 3215 iter.tgid += 1; 3216 goto retry; 3217 } 3218 get_task_struct(iter.task); 3219 } 3220 rcu_read_unlock(); 3221 return iter; 3222 } 3223 3224 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3225 3226 /* for the /proc/ directory itself, after non-process stuff has been done */ 3227 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3228 { 3229 struct tgid_iter iter; 3230 struct pid_namespace *ns = proc_pid_ns(file_inode(file)); 3231 loff_t pos = ctx->pos; 3232 3233 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3234 return 0; 3235 3236 if (pos == TGID_OFFSET - 2) { 3237 struct inode *inode = d_inode(ns->proc_self); 3238 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3239 return 0; 3240 ctx->pos = pos = pos + 1; 3241 } 3242 if (pos == TGID_OFFSET - 1) { 3243 struct inode *inode = d_inode(ns->proc_thread_self); 3244 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3245 return 0; 3246 ctx->pos = pos = pos + 1; 3247 } 3248 iter.tgid = pos - TGID_OFFSET; 3249 iter.task = NULL; 3250 for (iter = next_tgid(ns, iter); 3251 iter.task; 3252 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3253 char name[10 + 1]; 3254 int len; 3255 3256 cond_resched(); 3257 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE)) 3258 continue; 3259 3260 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3261 ctx->pos = iter.tgid + TGID_OFFSET; 3262 if (!proc_fill_cache(file, ctx, name, len, 3263 proc_pid_instantiate, iter.task, NULL)) { 3264 put_task_struct(iter.task); 3265 return 0; 3266 } 3267 } 3268 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3269 return 0; 3270 } 3271 3272 /* 3273 * proc_tid_comm_permission is a special permission function exclusively 3274 * used for the node /proc/<pid>/task/<tid>/comm. 3275 * It bypasses generic permission checks in the case where a task of the same 3276 * task group attempts to access the node. 3277 * The rationale behind this is that glibc and bionic access this node for 3278 * cross thread naming (pthread_set/getname_np(!self)). However, if 3279 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3280 * which locks out the cross thread naming implementation. 3281 * This function makes sure that the node is always accessible for members of 3282 * same thread group. 3283 */ 3284 static int proc_tid_comm_permission(struct inode *inode, int mask) 3285 { 3286 bool is_same_tgroup; 3287 struct task_struct *task; 3288 3289 task = get_proc_task(inode); 3290 if (!task) 3291 return -ESRCH; 3292 is_same_tgroup = same_thread_group(current, task); 3293 put_task_struct(task); 3294 3295 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3296 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3297 * read or written by the members of the corresponding 3298 * thread group. 3299 */ 3300 return 0; 3301 } 3302 3303 return generic_permission(inode, mask); 3304 } 3305 3306 static const struct inode_operations proc_tid_comm_inode_operations = { 3307 .permission = proc_tid_comm_permission, 3308 }; 3309 3310 /* 3311 * Tasks 3312 */ 3313 static const struct pid_entry tid_base_stuff[] = { 3314 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3315 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3316 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3317 #ifdef CONFIG_NET 3318 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3319 #endif 3320 REG("environ", S_IRUSR, proc_environ_operations), 3321 REG("auxv", S_IRUSR, proc_auxv_operations), 3322 ONE("status", S_IRUGO, proc_pid_status), 3323 ONE("personality", S_IRUSR, proc_pid_personality), 3324 ONE("limits", S_IRUGO, proc_pid_limits), 3325 #ifdef CONFIG_SCHED_DEBUG 3326 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3327 #endif 3328 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3329 &proc_tid_comm_inode_operations, 3330 &proc_pid_set_comm_operations, {}), 3331 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3332 ONE("syscall", S_IRUSR, proc_pid_syscall), 3333 #endif 3334 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3335 ONE("stat", S_IRUGO, proc_tid_stat), 3336 ONE("statm", S_IRUGO, proc_pid_statm), 3337 REG("maps", S_IRUGO, proc_tid_maps_operations), 3338 #ifdef CONFIG_PROC_CHILDREN 3339 REG("children", S_IRUGO, proc_tid_children_operations), 3340 #endif 3341 #ifdef CONFIG_NUMA 3342 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations), 3343 #endif 3344 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3345 LNK("cwd", proc_cwd_link), 3346 LNK("root", proc_root_link), 3347 LNK("exe", proc_exe_link), 3348 REG("mounts", S_IRUGO, proc_mounts_operations), 3349 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3350 #ifdef CONFIG_PROC_PAGE_MONITOR 3351 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3352 REG("smaps", S_IRUGO, proc_tid_smaps_operations), 3353 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3354 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3355 #endif 3356 #ifdef CONFIG_SECURITY 3357 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3358 #endif 3359 #ifdef CONFIG_KALLSYMS 3360 ONE("wchan", S_IRUGO, proc_pid_wchan), 3361 #endif 3362 #ifdef CONFIG_STACKTRACE 3363 ONE("stack", S_IRUSR, proc_pid_stack), 3364 #endif 3365 #ifdef CONFIG_SCHED_INFO 3366 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3367 #endif 3368 #ifdef CONFIG_LATENCYTOP 3369 REG("latency", S_IRUGO, proc_lstats_operations), 3370 #endif 3371 #ifdef CONFIG_PROC_PID_CPUSET 3372 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3373 #endif 3374 #ifdef CONFIG_CGROUPS 3375 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3376 #endif 3377 ONE("oom_score", S_IRUGO, proc_oom_score), 3378 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3379 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3380 #ifdef CONFIG_AUDITSYSCALL 3381 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3382 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3383 #endif 3384 #ifdef CONFIG_FAULT_INJECTION 3385 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3386 REG("fail-nth", 0644, proc_fail_nth_operations), 3387 #endif 3388 #ifdef CONFIG_TASK_IO_ACCOUNTING 3389 ONE("io", S_IRUSR, proc_tid_io_accounting), 3390 #endif 3391 #ifdef CONFIG_USER_NS 3392 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3393 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3394 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3395 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3396 #endif 3397 #ifdef CONFIG_LIVEPATCH 3398 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3399 #endif 3400 }; 3401 3402 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3403 { 3404 return proc_pident_readdir(file, ctx, 3405 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3406 } 3407 3408 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3409 { 3410 return proc_pident_lookup(dir, dentry, 3411 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3412 } 3413 3414 static const struct file_operations proc_tid_base_operations = { 3415 .read = generic_read_dir, 3416 .iterate_shared = proc_tid_base_readdir, 3417 .llseek = generic_file_llseek, 3418 }; 3419 3420 static const struct inode_operations proc_tid_base_inode_operations = { 3421 .lookup = proc_tid_base_lookup, 3422 .getattr = pid_getattr, 3423 .setattr = proc_setattr, 3424 }; 3425 3426 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3427 struct task_struct *task, const void *ptr) 3428 { 3429 struct inode *inode; 3430 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3431 if (!inode) 3432 return ERR_PTR(-ENOENT); 3433 3434 inode->i_op = &proc_tid_base_inode_operations; 3435 inode->i_fop = &proc_tid_base_operations; 3436 inode->i_flags |= S_IMMUTABLE; 3437 3438 set_nlink(inode, nlink_tid); 3439 pid_update_inode(task, inode); 3440 3441 d_set_d_op(dentry, &pid_dentry_operations); 3442 return d_splice_alias(inode, dentry); 3443 } 3444 3445 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3446 { 3447 struct task_struct *task; 3448 struct task_struct *leader = get_proc_task(dir); 3449 unsigned tid; 3450 struct pid_namespace *ns; 3451 struct dentry *result = ERR_PTR(-ENOENT); 3452 3453 if (!leader) 3454 goto out_no_task; 3455 3456 tid = name_to_int(&dentry->d_name); 3457 if (tid == ~0U) 3458 goto out; 3459 3460 ns = dentry->d_sb->s_fs_info; 3461 rcu_read_lock(); 3462 task = find_task_by_pid_ns(tid, ns); 3463 if (task) 3464 get_task_struct(task); 3465 rcu_read_unlock(); 3466 if (!task) 3467 goto out; 3468 if (!same_thread_group(leader, task)) 3469 goto out_drop_task; 3470 3471 result = proc_task_instantiate(dentry, task, NULL); 3472 out_drop_task: 3473 put_task_struct(task); 3474 out: 3475 put_task_struct(leader); 3476 out_no_task: 3477 return result; 3478 } 3479 3480 /* 3481 * Find the first tid of a thread group to return to user space. 3482 * 3483 * Usually this is just the thread group leader, but if the users 3484 * buffer was too small or there was a seek into the middle of the 3485 * directory we have more work todo. 3486 * 3487 * In the case of a short read we start with find_task_by_pid. 3488 * 3489 * In the case of a seek we start with the leader and walk nr 3490 * threads past it. 3491 */ 3492 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3493 struct pid_namespace *ns) 3494 { 3495 struct task_struct *pos, *task; 3496 unsigned long nr = f_pos; 3497 3498 if (nr != f_pos) /* 32bit overflow? */ 3499 return NULL; 3500 3501 rcu_read_lock(); 3502 task = pid_task(pid, PIDTYPE_PID); 3503 if (!task) 3504 goto fail; 3505 3506 /* Attempt to start with the tid of a thread */ 3507 if (tid && nr) { 3508 pos = find_task_by_pid_ns(tid, ns); 3509 if (pos && same_thread_group(pos, task)) 3510 goto found; 3511 } 3512 3513 /* If nr exceeds the number of threads there is nothing todo */ 3514 if (nr >= get_nr_threads(task)) 3515 goto fail; 3516 3517 /* If we haven't found our starting place yet start 3518 * with the leader and walk nr threads forward. 3519 */ 3520 pos = task = task->group_leader; 3521 do { 3522 if (!nr--) 3523 goto found; 3524 } while_each_thread(task, pos); 3525 fail: 3526 pos = NULL; 3527 goto out; 3528 found: 3529 get_task_struct(pos); 3530 out: 3531 rcu_read_unlock(); 3532 return pos; 3533 } 3534 3535 /* 3536 * Find the next thread in the thread list. 3537 * Return NULL if there is an error or no next thread. 3538 * 3539 * The reference to the input task_struct is released. 3540 */ 3541 static struct task_struct *next_tid(struct task_struct *start) 3542 { 3543 struct task_struct *pos = NULL; 3544 rcu_read_lock(); 3545 if (pid_alive(start)) { 3546 pos = next_thread(start); 3547 if (thread_group_leader(pos)) 3548 pos = NULL; 3549 else 3550 get_task_struct(pos); 3551 } 3552 rcu_read_unlock(); 3553 put_task_struct(start); 3554 return pos; 3555 } 3556 3557 /* for the /proc/TGID/task/ directories */ 3558 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3559 { 3560 struct inode *inode = file_inode(file); 3561 struct task_struct *task; 3562 struct pid_namespace *ns; 3563 int tid; 3564 3565 if (proc_inode_is_dead(inode)) 3566 return -ENOENT; 3567 3568 if (!dir_emit_dots(file, ctx)) 3569 return 0; 3570 3571 /* f_version caches the tgid value that the last readdir call couldn't 3572 * return. lseek aka telldir automagically resets f_version to 0. 3573 */ 3574 ns = proc_pid_ns(inode); 3575 tid = (int)file->f_version; 3576 file->f_version = 0; 3577 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3578 task; 3579 task = next_tid(task), ctx->pos++) { 3580 char name[10 + 1]; 3581 int len; 3582 tid = task_pid_nr_ns(task, ns); 3583 len = snprintf(name, sizeof(name), "%u", tid); 3584 if (!proc_fill_cache(file, ctx, name, len, 3585 proc_task_instantiate, task, NULL)) { 3586 /* returning this tgid failed, save it as the first 3587 * pid for the next readir call */ 3588 file->f_version = (u64)tid; 3589 put_task_struct(task); 3590 break; 3591 } 3592 } 3593 3594 return 0; 3595 } 3596 3597 static int proc_task_getattr(const struct path *path, struct kstat *stat, 3598 u32 request_mask, unsigned int query_flags) 3599 { 3600 struct inode *inode = d_inode(path->dentry); 3601 struct task_struct *p = get_proc_task(inode); 3602 generic_fillattr(inode, stat); 3603 3604 if (p) { 3605 stat->nlink += get_nr_threads(p); 3606 put_task_struct(p); 3607 } 3608 3609 return 0; 3610 } 3611 3612 static const struct inode_operations proc_task_inode_operations = { 3613 .lookup = proc_task_lookup, 3614 .getattr = proc_task_getattr, 3615 .setattr = proc_setattr, 3616 .permission = proc_pid_permission, 3617 }; 3618 3619 static const struct file_operations proc_task_operations = { 3620 .read = generic_read_dir, 3621 .iterate_shared = proc_task_readdir, 3622 .llseek = generic_file_llseek, 3623 }; 3624 3625 void __init set_proc_pid_nlink(void) 3626 { 3627 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3628 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3629 } 3630