xref: /linux/fs/proc/base.c (revision 6a61b70b43c9c4cbc7314bf6c8b5ba8b0d6e1e7b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100 
101 #include "../../lib/kstrtox.h"
102 
103 /* NOTE:
104  *	Implementing inode permission operations in /proc is almost
105  *	certainly an error.  Permission checks need to happen during
106  *	each system call not at open time.  The reason is that most of
107  *	what we wish to check for permissions in /proc varies at runtime.
108  *
109  *	The classic example of a problem is opening file descriptors
110  *	in /proc for a task before it execs a suid executable.
111  */
112 
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115 
116 struct pid_entry {
117 	const char *name;
118 	unsigned int len;
119 	umode_t mode;
120 	const struct inode_operations *iop;
121 	const struct file_operations *fop;
122 	union proc_op op;
123 };
124 
125 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
126 	.name = (NAME),					\
127 	.len  = sizeof(NAME) - 1,			\
128 	.mode = MODE,					\
129 	.iop  = IOP,					\
130 	.fop  = FOP,					\
131 	.op   = OP,					\
132 }
133 
134 #define DIR(NAME, MODE, iops, fops)	\
135 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)					\
137 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
138 		&proc_pid_link_inode_operations, NULL,		\
139 		{ .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)				\
141 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)				\
143 	NOD(NAME, (S_IFREG|(MODE)), 			\
144 		NULL, &proc_single_file_operations,	\
145 		{ .proc_show = show } )
146 
147 /*
148  * Count the number of hardlinks for the pid_entry table, excluding the .
149  * and .. links.
150  */
151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 	unsigned int n)
153 {
154 	unsigned int i;
155 	unsigned int count;
156 
157 	count = 2;
158 	for (i = 0; i < n; ++i) {
159 		if (S_ISDIR(entries[i].mode))
160 			++count;
161 	}
162 
163 	return count;
164 }
165 
166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 	int result = -ENOENT;
169 
170 	task_lock(task);
171 	if (task->fs) {
172 		get_fs_root(task->fs, root);
173 		result = 0;
174 	}
175 	task_unlock(task);
176 	return result;
177 }
178 
179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 	struct task_struct *task = get_proc_task(d_inode(dentry));
182 	int result = -ENOENT;
183 
184 	if (task) {
185 		task_lock(task);
186 		if (task->fs) {
187 			get_fs_pwd(task->fs, path);
188 			result = 0;
189 		}
190 		task_unlock(task);
191 		put_task_struct(task);
192 	}
193 	return result;
194 }
195 
196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 	struct task_struct *task = get_proc_task(d_inode(dentry));
199 	int result = -ENOENT;
200 
201 	if (task) {
202 		result = get_task_root(task, path);
203 		put_task_struct(task);
204 	}
205 	return result;
206 }
207 
208 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
209 				     size_t _count, loff_t *pos)
210 {
211 	struct task_struct *tsk;
212 	struct mm_struct *mm;
213 	char *page;
214 	unsigned long count = _count;
215 	unsigned long arg_start, arg_end, env_start, env_end;
216 	unsigned long len1, len2, len;
217 	unsigned long p;
218 	char c;
219 	ssize_t rv;
220 
221 	BUG_ON(*pos < 0);
222 
223 	tsk = get_proc_task(file_inode(file));
224 	if (!tsk)
225 		return -ESRCH;
226 	mm = get_task_mm(tsk);
227 	put_task_struct(tsk);
228 	if (!mm)
229 		return 0;
230 	/* Check if process spawned far enough to have cmdline. */
231 	if (!mm->env_end) {
232 		rv = 0;
233 		goto out_mmput;
234 	}
235 
236 	page = (char *)__get_free_page(GFP_KERNEL);
237 	if (!page) {
238 		rv = -ENOMEM;
239 		goto out_mmput;
240 	}
241 
242 	down_read(&mm->mmap_sem);
243 	arg_start = mm->arg_start;
244 	arg_end = mm->arg_end;
245 	env_start = mm->env_start;
246 	env_end = mm->env_end;
247 	up_read(&mm->mmap_sem);
248 
249 	BUG_ON(arg_start > arg_end);
250 	BUG_ON(env_start > env_end);
251 
252 	len1 = arg_end - arg_start;
253 	len2 = env_end - env_start;
254 
255 	/* Empty ARGV. */
256 	if (len1 == 0) {
257 		rv = 0;
258 		goto out_free_page;
259 	}
260 	/*
261 	 * Inherently racy -- command line shares address space
262 	 * with code and data.
263 	 */
264 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, FOLL_ANON);
265 	if (rv <= 0)
266 		goto out_free_page;
267 
268 	rv = 0;
269 
270 	if (c == '\0') {
271 		/* Command line (set of strings) occupies whole ARGV. */
272 		if (len1 <= *pos)
273 			goto out_free_page;
274 
275 		p = arg_start + *pos;
276 		len = len1 - *pos;
277 		while (count > 0 && len > 0) {
278 			unsigned int _count;
279 			int nr_read;
280 
281 			_count = min3(count, len, PAGE_SIZE);
282 			nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON);
283 			if (nr_read < 0)
284 				rv = nr_read;
285 			if (nr_read <= 0)
286 				goto out_free_page;
287 
288 			if (copy_to_user(buf, page, nr_read)) {
289 				rv = -EFAULT;
290 				goto out_free_page;
291 			}
292 
293 			p	+= nr_read;
294 			len	-= nr_read;
295 			buf	+= nr_read;
296 			count	-= nr_read;
297 			rv	+= nr_read;
298 		}
299 	} else {
300 		/*
301 		 * Command line (1 string) occupies ARGV and
302 		 * extends into ENVP.
303 		 */
304 		struct {
305 			unsigned long p;
306 			unsigned long len;
307 		} cmdline[2] = {
308 			{ .p = arg_start, .len = len1 },
309 			{ .p = env_start, .len = len2 },
310 		};
311 		loff_t pos1 = *pos;
312 		unsigned int i;
313 
314 		i = 0;
315 		while (i < 2 && pos1 >= cmdline[i].len) {
316 			pos1 -= cmdline[i].len;
317 			i++;
318 		}
319 		while (i < 2) {
320 			p = cmdline[i].p + pos1;
321 			len = cmdline[i].len - pos1;
322 			while (count > 0 && len > 0) {
323 				unsigned int _count, l;
324 				int nr_read;
325 				bool final;
326 
327 				_count = min3(count, len, PAGE_SIZE);
328 				nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON);
329 				if (nr_read < 0)
330 					rv = nr_read;
331 				if (nr_read <= 0)
332 					goto out_free_page;
333 
334 				/*
335 				 * Command line can be shorter than whole ARGV
336 				 * even if last "marker" byte says it is not.
337 				 */
338 				final = false;
339 				l = strnlen(page, nr_read);
340 				if (l < nr_read) {
341 					nr_read = l;
342 					final = true;
343 				}
344 
345 				if (copy_to_user(buf, page, nr_read)) {
346 					rv = -EFAULT;
347 					goto out_free_page;
348 				}
349 
350 				p	+= nr_read;
351 				len	-= nr_read;
352 				buf	+= nr_read;
353 				count	-= nr_read;
354 				rv	+= nr_read;
355 
356 				if (final)
357 					goto out_free_page;
358 			}
359 
360 			/* Only first chunk can be read partially. */
361 			pos1 = 0;
362 			i++;
363 		}
364 	}
365 
366 out_free_page:
367 	free_page((unsigned long)page);
368 out_mmput:
369 	mmput(mm);
370 	if (rv > 0)
371 		*pos += rv;
372 	return rv;
373 }
374 
375 static const struct file_operations proc_pid_cmdline_ops = {
376 	.read	= proc_pid_cmdline_read,
377 	.llseek	= generic_file_llseek,
378 };
379 
380 #ifdef CONFIG_KALLSYMS
381 /*
382  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383  * Returns the resolved symbol.  If that fails, simply return the address.
384  */
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 			  struct pid *pid, struct task_struct *task)
387 {
388 	unsigned long wchan;
389 	char symname[KSYM_NAME_LEN];
390 
391 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 		goto print0;
393 
394 	wchan = get_wchan(task);
395 	if (wchan && !lookup_symbol_name(wchan, symname)) {
396 		seq_puts(m, symname);
397 		return 0;
398 	}
399 
400 print0:
401 	seq_putc(m, '0');
402 	return 0;
403 }
404 #endif /* CONFIG_KALLSYMS */
405 
406 static int lock_trace(struct task_struct *task)
407 {
408 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
409 	if (err)
410 		return err;
411 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 		mutex_unlock(&task->signal->cred_guard_mutex);
413 		return -EPERM;
414 	}
415 	return 0;
416 }
417 
418 static void unlock_trace(struct task_struct *task)
419 {
420 	mutex_unlock(&task->signal->cred_guard_mutex);
421 }
422 
423 #ifdef CONFIG_STACKTRACE
424 
425 #define MAX_STACK_TRACE_DEPTH	64
426 
427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 			  struct pid *pid, struct task_struct *task)
429 {
430 	struct stack_trace trace;
431 	unsigned long *entries;
432 	int err;
433 	int i;
434 
435 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
436 	if (!entries)
437 		return -ENOMEM;
438 
439 	trace.nr_entries	= 0;
440 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
441 	trace.entries		= entries;
442 	trace.skip		= 0;
443 
444 	err = lock_trace(task);
445 	if (!err) {
446 		save_stack_trace_tsk(task, &trace);
447 
448 		for (i = 0; i < trace.nr_entries; i++) {
449 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
450 		}
451 		unlock_trace(task);
452 	}
453 	kfree(entries);
454 
455 	return err;
456 }
457 #endif
458 
459 #ifdef CONFIG_SCHED_INFO
460 /*
461  * Provides /proc/PID/schedstat
462  */
463 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
464 			      struct pid *pid, struct task_struct *task)
465 {
466 	if (unlikely(!sched_info_on()))
467 		seq_printf(m, "0 0 0\n");
468 	else
469 		seq_printf(m, "%llu %llu %lu\n",
470 		   (unsigned long long)task->se.sum_exec_runtime,
471 		   (unsigned long long)task->sched_info.run_delay,
472 		   task->sched_info.pcount);
473 
474 	return 0;
475 }
476 #endif
477 
478 #ifdef CONFIG_LATENCYTOP
479 static int lstats_show_proc(struct seq_file *m, void *v)
480 {
481 	int i;
482 	struct inode *inode = m->private;
483 	struct task_struct *task = get_proc_task(inode);
484 
485 	if (!task)
486 		return -ESRCH;
487 	seq_puts(m, "Latency Top version : v0.1\n");
488 	for (i = 0; i < 32; i++) {
489 		struct latency_record *lr = &task->latency_record[i];
490 		if (lr->backtrace[0]) {
491 			int q;
492 			seq_printf(m, "%i %li %li",
493 				   lr->count, lr->time, lr->max);
494 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
495 				unsigned long bt = lr->backtrace[q];
496 				if (!bt)
497 					break;
498 				if (bt == ULONG_MAX)
499 					break;
500 				seq_printf(m, " %ps", (void *)bt);
501 			}
502 			seq_putc(m, '\n');
503 		}
504 
505 	}
506 	put_task_struct(task);
507 	return 0;
508 }
509 
510 static int lstats_open(struct inode *inode, struct file *file)
511 {
512 	return single_open(file, lstats_show_proc, inode);
513 }
514 
515 static ssize_t lstats_write(struct file *file, const char __user *buf,
516 			    size_t count, loff_t *offs)
517 {
518 	struct task_struct *task = get_proc_task(file_inode(file));
519 
520 	if (!task)
521 		return -ESRCH;
522 	clear_all_latency_tracing(task);
523 	put_task_struct(task);
524 
525 	return count;
526 }
527 
528 static const struct file_operations proc_lstats_operations = {
529 	.open		= lstats_open,
530 	.read		= seq_read,
531 	.write		= lstats_write,
532 	.llseek		= seq_lseek,
533 	.release	= single_release,
534 };
535 
536 #endif
537 
538 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
539 			  struct pid *pid, struct task_struct *task)
540 {
541 	unsigned long totalpages = totalram_pages + total_swap_pages;
542 	unsigned long points = 0;
543 
544 	points = oom_badness(task, NULL, NULL, totalpages) *
545 					1000 / totalpages;
546 	seq_printf(m, "%lu\n", points);
547 
548 	return 0;
549 }
550 
551 struct limit_names {
552 	const char *name;
553 	const char *unit;
554 };
555 
556 static const struct limit_names lnames[RLIM_NLIMITS] = {
557 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
558 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
559 	[RLIMIT_DATA] = {"Max data size", "bytes"},
560 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
561 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
562 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
563 	[RLIMIT_NPROC] = {"Max processes", "processes"},
564 	[RLIMIT_NOFILE] = {"Max open files", "files"},
565 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
566 	[RLIMIT_AS] = {"Max address space", "bytes"},
567 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
568 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
569 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
570 	[RLIMIT_NICE] = {"Max nice priority", NULL},
571 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
572 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
573 };
574 
575 /* Display limits for a process */
576 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
577 			   struct pid *pid, struct task_struct *task)
578 {
579 	unsigned int i;
580 	unsigned long flags;
581 
582 	struct rlimit rlim[RLIM_NLIMITS];
583 
584 	if (!lock_task_sighand(task, &flags))
585 		return 0;
586 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
587 	unlock_task_sighand(task, &flags);
588 
589 	/*
590 	 * print the file header
591 	 */
592        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
593 		  "Limit", "Soft Limit", "Hard Limit", "Units");
594 
595 	for (i = 0; i < RLIM_NLIMITS; i++) {
596 		if (rlim[i].rlim_cur == RLIM_INFINITY)
597 			seq_printf(m, "%-25s %-20s ",
598 				   lnames[i].name, "unlimited");
599 		else
600 			seq_printf(m, "%-25s %-20lu ",
601 				   lnames[i].name, rlim[i].rlim_cur);
602 
603 		if (rlim[i].rlim_max == RLIM_INFINITY)
604 			seq_printf(m, "%-20s ", "unlimited");
605 		else
606 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
607 
608 		if (lnames[i].unit)
609 			seq_printf(m, "%-10s\n", lnames[i].unit);
610 		else
611 			seq_putc(m, '\n');
612 	}
613 
614 	return 0;
615 }
616 
617 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
618 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
619 			    struct pid *pid, struct task_struct *task)
620 {
621 	long nr;
622 	unsigned long args[6], sp, pc;
623 	int res;
624 
625 	res = lock_trace(task);
626 	if (res)
627 		return res;
628 
629 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
630 		seq_puts(m, "running\n");
631 	else if (nr < 0)
632 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
633 	else
634 		seq_printf(m,
635 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
636 		       nr,
637 		       args[0], args[1], args[2], args[3], args[4], args[5],
638 		       sp, pc);
639 	unlock_trace(task);
640 
641 	return 0;
642 }
643 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
644 
645 /************************************************************************/
646 /*                       Here the fs part begins                        */
647 /************************************************************************/
648 
649 /* permission checks */
650 static int proc_fd_access_allowed(struct inode *inode)
651 {
652 	struct task_struct *task;
653 	int allowed = 0;
654 	/* Allow access to a task's file descriptors if it is us or we
655 	 * may use ptrace attach to the process and find out that
656 	 * information.
657 	 */
658 	task = get_proc_task(inode);
659 	if (task) {
660 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
661 		put_task_struct(task);
662 	}
663 	return allowed;
664 }
665 
666 int proc_setattr(struct dentry *dentry, struct iattr *attr)
667 {
668 	int error;
669 	struct inode *inode = d_inode(dentry);
670 
671 	if (attr->ia_valid & ATTR_MODE)
672 		return -EPERM;
673 
674 	error = setattr_prepare(dentry, attr);
675 	if (error)
676 		return error;
677 
678 	setattr_copy(inode, attr);
679 	mark_inode_dirty(inode);
680 	return 0;
681 }
682 
683 /*
684  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
685  * or euid/egid (for hide_pid_min=2)?
686  */
687 static bool has_pid_permissions(struct pid_namespace *pid,
688 				 struct task_struct *task,
689 				 int hide_pid_min)
690 {
691 	if (pid->hide_pid < hide_pid_min)
692 		return true;
693 	if (in_group_p(pid->pid_gid))
694 		return true;
695 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
696 }
697 
698 
699 static int proc_pid_permission(struct inode *inode, int mask)
700 {
701 	struct pid_namespace *pid = proc_pid_ns(inode);
702 	struct task_struct *task;
703 	bool has_perms;
704 
705 	task = get_proc_task(inode);
706 	if (!task)
707 		return -ESRCH;
708 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
709 	put_task_struct(task);
710 
711 	if (!has_perms) {
712 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
713 			/*
714 			 * Let's make getdents(), stat(), and open()
715 			 * consistent with each other.  If a process
716 			 * may not stat() a file, it shouldn't be seen
717 			 * in procfs at all.
718 			 */
719 			return -ENOENT;
720 		}
721 
722 		return -EPERM;
723 	}
724 	return generic_permission(inode, mask);
725 }
726 
727 
728 
729 static const struct inode_operations proc_def_inode_operations = {
730 	.setattr	= proc_setattr,
731 };
732 
733 static int proc_single_show(struct seq_file *m, void *v)
734 {
735 	struct inode *inode = m->private;
736 	struct pid_namespace *ns = proc_pid_ns(inode);
737 	struct pid *pid = proc_pid(inode);
738 	struct task_struct *task;
739 	int ret;
740 
741 	task = get_pid_task(pid, PIDTYPE_PID);
742 	if (!task)
743 		return -ESRCH;
744 
745 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
746 
747 	put_task_struct(task);
748 	return ret;
749 }
750 
751 static int proc_single_open(struct inode *inode, struct file *filp)
752 {
753 	return single_open(filp, proc_single_show, inode);
754 }
755 
756 static const struct file_operations proc_single_file_operations = {
757 	.open		= proc_single_open,
758 	.read		= seq_read,
759 	.llseek		= seq_lseek,
760 	.release	= single_release,
761 };
762 
763 
764 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
765 {
766 	struct task_struct *task = get_proc_task(inode);
767 	struct mm_struct *mm = ERR_PTR(-ESRCH);
768 
769 	if (task) {
770 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
771 		put_task_struct(task);
772 
773 		if (!IS_ERR_OR_NULL(mm)) {
774 			/* ensure this mm_struct can't be freed */
775 			mmgrab(mm);
776 			/* but do not pin its memory */
777 			mmput(mm);
778 		}
779 	}
780 
781 	return mm;
782 }
783 
784 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
785 {
786 	struct mm_struct *mm = proc_mem_open(inode, mode);
787 
788 	if (IS_ERR(mm))
789 		return PTR_ERR(mm);
790 
791 	file->private_data = mm;
792 	return 0;
793 }
794 
795 static int mem_open(struct inode *inode, struct file *file)
796 {
797 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
798 
799 	/* OK to pass negative loff_t, we can catch out-of-range */
800 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
801 
802 	return ret;
803 }
804 
805 static ssize_t mem_rw(struct file *file, char __user *buf,
806 			size_t count, loff_t *ppos, int write)
807 {
808 	struct mm_struct *mm = file->private_data;
809 	unsigned long addr = *ppos;
810 	ssize_t copied;
811 	char *page;
812 	unsigned int flags;
813 
814 	if (!mm)
815 		return 0;
816 
817 	page = (char *)__get_free_page(GFP_KERNEL);
818 	if (!page)
819 		return -ENOMEM;
820 
821 	copied = 0;
822 	if (!mmget_not_zero(mm))
823 		goto free;
824 
825 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
826 
827 	while (count > 0) {
828 		int this_len = min_t(int, count, PAGE_SIZE);
829 
830 		if (write && copy_from_user(page, buf, this_len)) {
831 			copied = -EFAULT;
832 			break;
833 		}
834 
835 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
836 		if (!this_len) {
837 			if (!copied)
838 				copied = -EIO;
839 			break;
840 		}
841 
842 		if (!write && copy_to_user(buf, page, this_len)) {
843 			copied = -EFAULT;
844 			break;
845 		}
846 
847 		buf += this_len;
848 		addr += this_len;
849 		copied += this_len;
850 		count -= this_len;
851 	}
852 	*ppos = addr;
853 
854 	mmput(mm);
855 free:
856 	free_page((unsigned long) page);
857 	return copied;
858 }
859 
860 static ssize_t mem_read(struct file *file, char __user *buf,
861 			size_t count, loff_t *ppos)
862 {
863 	return mem_rw(file, buf, count, ppos, 0);
864 }
865 
866 static ssize_t mem_write(struct file *file, const char __user *buf,
867 			 size_t count, loff_t *ppos)
868 {
869 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
870 }
871 
872 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
873 {
874 	switch (orig) {
875 	case 0:
876 		file->f_pos = offset;
877 		break;
878 	case 1:
879 		file->f_pos += offset;
880 		break;
881 	default:
882 		return -EINVAL;
883 	}
884 	force_successful_syscall_return();
885 	return file->f_pos;
886 }
887 
888 static int mem_release(struct inode *inode, struct file *file)
889 {
890 	struct mm_struct *mm = file->private_data;
891 	if (mm)
892 		mmdrop(mm);
893 	return 0;
894 }
895 
896 static const struct file_operations proc_mem_operations = {
897 	.llseek		= mem_lseek,
898 	.read		= mem_read,
899 	.write		= mem_write,
900 	.open		= mem_open,
901 	.release	= mem_release,
902 };
903 
904 static int environ_open(struct inode *inode, struct file *file)
905 {
906 	return __mem_open(inode, file, PTRACE_MODE_READ);
907 }
908 
909 static ssize_t environ_read(struct file *file, char __user *buf,
910 			size_t count, loff_t *ppos)
911 {
912 	char *page;
913 	unsigned long src = *ppos;
914 	int ret = 0;
915 	struct mm_struct *mm = file->private_data;
916 	unsigned long env_start, env_end;
917 
918 	/* Ensure the process spawned far enough to have an environment. */
919 	if (!mm || !mm->env_end)
920 		return 0;
921 
922 	page = (char *)__get_free_page(GFP_KERNEL);
923 	if (!page)
924 		return -ENOMEM;
925 
926 	ret = 0;
927 	if (!mmget_not_zero(mm))
928 		goto free;
929 
930 	down_read(&mm->mmap_sem);
931 	env_start = mm->env_start;
932 	env_end = mm->env_end;
933 	up_read(&mm->mmap_sem);
934 
935 	while (count > 0) {
936 		size_t this_len, max_len;
937 		int retval;
938 
939 		if (src >= (env_end - env_start))
940 			break;
941 
942 		this_len = env_end - (env_start + src);
943 
944 		max_len = min_t(size_t, PAGE_SIZE, count);
945 		this_len = min(max_len, this_len);
946 
947 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
948 
949 		if (retval <= 0) {
950 			ret = retval;
951 			break;
952 		}
953 
954 		if (copy_to_user(buf, page, retval)) {
955 			ret = -EFAULT;
956 			break;
957 		}
958 
959 		ret += retval;
960 		src += retval;
961 		buf += retval;
962 		count -= retval;
963 	}
964 	*ppos = src;
965 	mmput(mm);
966 
967 free:
968 	free_page((unsigned long) page);
969 	return ret;
970 }
971 
972 static const struct file_operations proc_environ_operations = {
973 	.open		= environ_open,
974 	.read		= environ_read,
975 	.llseek		= generic_file_llseek,
976 	.release	= mem_release,
977 };
978 
979 static int auxv_open(struct inode *inode, struct file *file)
980 {
981 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
982 }
983 
984 static ssize_t auxv_read(struct file *file, char __user *buf,
985 			size_t count, loff_t *ppos)
986 {
987 	struct mm_struct *mm = file->private_data;
988 	unsigned int nwords = 0;
989 
990 	if (!mm)
991 		return 0;
992 	do {
993 		nwords += 2;
994 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
995 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
996 				       nwords * sizeof(mm->saved_auxv[0]));
997 }
998 
999 static const struct file_operations proc_auxv_operations = {
1000 	.open		= auxv_open,
1001 	.read		= auxv_read,
1002 	.llseek		= generic_file_llseek,
1003 	.release	= mem_release,
1004 };
1005 
1006 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1007 			    loff_t *ppos)
1008 {
1009 	struct task_struct *task = get_proc_task(file_inode(file));
1010 	char buffer[PROC_NUMBUF];
1011 	int oom_adj = OOM_ADJUST_MIN;
1012 	size_t len;
1013 
1014 	if (!task)
1015 		return -ESRCH;
1016 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1017 		oom_adj = OOM_ADJUST_MAX;
1018 	else
1019 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1020 			  OOM_SCORE_ADJ_MAX;
1021 	put_task_struct(task);
1022 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1023 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1024 }
1025 
1026 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1027 {
1028 	static DEFINE_MUTEX(oom_adj_mutex);
1029 	struct mm_struct *mm = NULL;
1030 	struct task_struct *task;
1031 	int err = 0;
1032 
1033 	task = get_proc_task(file_inode(file));
1034 	if (!task)
1035 		return -ESRCH;
1036 
1037 	mutex_lock(&oom_adj_mutex);
1038 	if (legacy) {
1039 		if (oom_adj < task->signal->oom_score_adj &&
1040 				!capable(CAP_SYS_RESOURCE)) {
1041 			err = -EACCES;
1042 			goto err_unlock;
1043 		}
1044 		/*
1045 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1046 		 * /proc/pid/oom_score_adj instead.
1047 		 */
1048 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1049 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1050 			  task_pid_nr(task));
1051 	} else {
1052 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1053 				!capable(CAP_SYS_RESOURCE)) {
1054 			err = -EACCES;
1055 			goto err_unlock;
1056 		}
1057 	}
1058 
1059 	/*
1060 	 * Make sure we will check other processes sharing the mm if this is
1061 	 * not vfrok which wants its own oom_score_adj.
1062 	 * pin the mm so it doesn't go away and get reused after task_unlock
1063 	 */
1064 	if (!task->vfork_done) {
1065 		struct task_struct *p = find_lock_task_mm(task);
1066 
1067 		if (p) {
1068 			if (atomic_read(&p->mm->mm_users) > 1) {
1069 				mm = p->mm;
1070 				mmgrab(mm);
1071 			}
1072 			task_unlock(p);
1073 		}
1074 	}
1075 
1076 	task->signal->oom_score_adj = oom_adj;
1077 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1078 		task->signal->oom_score_adj_min = (short)oom_adj;
1079 	trace_oom_score_adj_update(task);
1080 
1081 	if (mm) {
1082 		struct task_struct *p;
1083 
1084 		rcu_read_lock();
1085 		for_each_process(p) {
1086 			if (same_thread_group(task, p))
1087 				continue;
1088 
1089 			/* do not touch kernel threads or the global init */
1090 			if (p->flags & PF_KTHREAD || is_global_init(p))
1091 				continue;
1092 
1093 			task_lock(p);
1094 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1095 				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1096 						task_pid_nr(p), p->comm,
1097 						p->signal->oom_score_adj, oom_adj,
1098 						task_pid_nr(task), task->comm);
1099 				p->signal->oom_score_adj = oom_adj;
1100 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1101 					p->signal->oom_score_adj_min = (short)oom_adj;
1102 			}
1103 			task_unlock(p);
1104 		}
1105 		rcu_read_unlock();
1106 		mmdrop(mm);
1107 	}
1108 err_unlock:
1109 	mutex_unlock(&oom_adj_mutex);
1110 	put_task_struct(task);
1111 	return err;
1112 }
1113 
1114 /*
1115  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1116  * kernels.  The effective policy is defined by oom_score_adj, which has a
1117  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1118  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1119  * Processes that become oom disabled via oom_adj will still be oom disabled
1120  * with this implementation.
1121  *
1122  * oom_adj cannot be removed since existing userspace binaries use it.
1123  */
1124 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1125 			     size_t count, loff_t *ppos)
1126 {
1127 	char buffer[PROC_NUMBUF];
1128 	int oom_adj;
1129 	int err;
1130 
1131 	memset(buffer, 0, sizeof(buffer));
1132 	if (count > sizeof(buffer) - 1)
1133 		count = sizeof(buffer) - 1;
1134 	if (copy_from_user(buffer, buf, count)) {
1135 		err = -EFAULT;
1136 		goto out;
1137 	}
1138 
1139 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1140 	if (err)
1141 		goto out;
1142 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1143 	     oom_adj != OOM_DISABLE) {
1144 		err = -EINVAL;
1145 		goto out;
1146 	}
1147 
1148 	/*
1149 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1150 	 * value is always attainable.
1151 	 */
1152 	if (oom_adj == OOM_ADJUST_MAX)
1153 		oom_adj = OOM_SCORE_ADJ_MAX;
1154 	else
1155 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1156 
1157 	err = __set_oom_adj(file, oom_adj, true);
1158 out:
1159 	return err < 0 ? err : count;
1160 }
1161 
1162 static const struct file_operations proc_oom_adj_operations = {
1163 	.read		= oom_adj_read,
1164 	.write		= oom_adj_write,
1165 	.llseek		= generic_file_llseek,
1166 };
1167 
1168 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1169 					size_t count, loff_t *ppos)
1170 {
1171 	struct task_struct *task = get_proc_task(file_inode(file));
1172 	char buffer[PROC_NUMBUF];
1173 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1174 	size_t len;
1175 
1176 	if (!task)
1177 		return -ESRCH;
1178 	oom_score_adj = task->signal->oom_score_adj;
1179 	put_task_struct(task);
1180 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1181 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1182 }
1183 
1184 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1185 					size_t count, loff_t *ppos)
1186 {
1187 	char buffer[PROC_NUMBUF];
1188 	int oom_score_adj;
1189 	int err;
1190 
1191 	memset(buffer, 0, sizeof(buffer));
1192 	if (count > sizeof(buffer) - 1)
1193 		count = sizeof(buffer) - 1;
1194 	if (copy_from_user(buffer, buf, count)) {
1195 		err = -EFAULT;
1196 		goto out;
1197 	}
1198 
1199 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1200 	if (err)
1201 		goto out;
1202 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1203 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1204 		err = -EINVAL;
1205 		goto out;
1206 	}
1207 
1208 	err = __set_oom_adj(file, oom_score_adj, false);
1209 out:
1210 	return err < 0 ? err : count;
1211 }
1212 
1213 static const struct file_operations proc_oom_score_adj_operations = {
1214 	.read		= oom_score_adj_read,
1215 	.write		= oom_score_adj_write,
1216 	.llseek		= default_llseek,
1217 };
1218 
1219 #ifdef CONFIG_AUDITSYSCALL
1220 #define TMPBUFLEN 11
1221 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1222 				  size_t count, loff_t *ppos)
1223 {
1224 	struct inode * inode = file_inode(file);
1225 	struct task_struct *task = get_proc_task(inode);
1226 	ssize_t length;
1227 	char tmpbuf[TMPBUFLEN];
1228 
1229 	if (!task)
1230 		return -ESRCH;
1231 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1232 			   from_kuid(file->f_cred->user_ns,
1233 				     audit_get_loginuid(task)));
1234 	put_task_struct(task);
1235 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1236 }
1237 
1238 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1239 				   size_t count, loff_t *ppos)
1240 {
1241 	struct inode * inode = file_inode(file);
1242 	uid_t loginuid;
1243 	kuid_t kloginuid;
1244 	int rv;
1245 
1246 	rcu_read_lock();
1247 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1248 		rcu_read_unlock();
1249 		return -EPERM;
1250 	}
1251 	rcu_read_unlock();
1252 
1253 	if (*ppos != 0) {
1254 		/* No partial writes. */
1255 		return -EINVAL;
1256 	}
1257 
1258 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1259 	if (rv < 0)
1260 		return rv;
1261 
1262 	/* is userspace tring to explicitly UNSET the loginuid? */
1263 	if (loginuid == AUDIT_UID_UNSET) {
1264 		kloginuid = INVALID_UID;
1265 	} else {
1266 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1267 		if (!uid_valid(kloginuid))
1268 			return -EINVAL;
1269 	}
1270 
1271 	rv = audit_set_loginuid(kloginuid);
1272 	if (rv < 0)
1273 		return rv;
1274 	return count;
1275 }
1276 
1277 static const struct file_operations proc_loginuid_operations = {
1278 	.read		= proc_loginuid_read,
1279 	.write		= proc_loginuid_write,
1280 	.llseek		= generic_file_llseek,
1281 };
1282 
1283 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1284 				  size_t count, loff_t *ppos)
1285 {
1286 	struct inode * inode = file_inode(file);
1287 	struct task_struct *task = get_proc_task(inode);
1288 	ssize_t length;
1289 	char tmpbuf[TMPBUFLEN];
1290 
1291 	if (!task)
1292 		return -ESRCH;
1293 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1294 				audit_get_sessionid(task));
1295 	put_task_struct(task);
1296 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1297 }
1298 
1299 static const struct file_operations proc_sessionid_operations = {
1300 	.read		= proc_sessionid_read,
1301 	.llseek		= generic_file_llseek,
1302 };
1303 #endif
1304 
1305 #ifdef CONFIG_FAULT_INJECTION
1306 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1307 				      size_t count, loff_t *ppos)
1308 {
1309 	struct task_struct *task = get_proc_task(file_inode(file));
1310 	char buffer[PROC_NUMBUF];
1311 	size_t len;
1312 	int make_it_fail;
1313 
1314 	if (!task)
1315 		return -ESRCH;
1316 	make_it_fail = task->make_it_fail;
1317 	put_task_struct(task);
1318 
1319 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1320 
1321 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1322 }
1323 
1324 static ssize_t proc_fault_inject_write(struct file * file,
1325 			const char __user * buf, size_t count, loff_t *ppos)
1326 {
1327 	struct task_struct *task;
1328 	char buffer[PROC_NUMBUF];
1329 	int make_it_fail;
1330 	int rv;
1331 
1332 	if (!capable(CAP_SYS_RESOURCE))
1333 		return -EPERM;
1334 	memset(buffer, 0, sizeof(buffer));
1335 	if (count > sizeof(buffer) - 1)
1336 		count = sizeof(buffer) - 1;
1337 	if (copy_from_user(buffer, buf, count))
1338 		return -EFAULT;
1339 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1340 	if (rv < 0)
1341 		return rv;
1342 	if (make_it_fail < 0 || make_it_fail > 1)
1343 		return -EINVAL;
1344 
1345 	task = get_proc_task(file_inode(file));
1346 	if (!task)
1347 		return -ESRCH;
1348 	task->make_it_fail = make_it_fail;
1349 	put_task_struct(task);
1350 
1351 	return count;
1352 }
1353 
1354 static const struct file_operations proc_fault_inject_operations = {
1355 	.read		= proc_fault_inject_read,
1356 	.write		= proc_fault_inject_write,
1357 	.llseek		= generic_file_llseek,
1358 };
1359 
1360 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1361 				   size_t count, loff_t *ppos)
1362 {
1363 	struct task_struct *task;
1364 	int err;
1365 	unsigned int n;
1366 
1367 	err = kstrtouint_from_user(buf, count, 0, &n);
1368 	if (err)
1369 		return err;
1370 
1371 	task = get_proc_task(file_inode(file));
1372 	if (!task)
1373 		return -ESRCH;
1374 	task->fail_nth = n;
1375 	put_task_struct(task);
1376 
1377 	return count;
1378 }
1379 
1380 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1381 				  size_t count, loff_t *ppos)
1382 {
1383 	struct task_struct *task;
1384 	char numbuf[PROC_NUMBUF];
1385 	ssize_t len;
1386 
1387 	task = get_proc_task(file_inode(file));
1388 	if (!task)
1389 		return -ESRCH;
1390 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1391 	len = simple_read_from_buffer(buf, count, ppos, numbuf, len);
1392 	put_task_struct(task);
1393 
1394 	return len;
1395 }
1396 
1397 static const struct file_operations proc_fail_nth_operations = {
1398 	.read		= proc_fail_nth_read,
1399 	.write		= proc_fail_nth_write,
1400 };
1401 #endif
1402 
1403 
1404 #ifdef CONFIG_SCHED_DEBUG
1405 /*
1406  * Print out various scheduling related per-task fields:
1407  */
1408 static int sched_show(struct seq_file *m, void *v)
1409 {
1410 	struct inode *inode = m->private;
1411 	struct pid_namespace *ns = proc_pid_ns(inode);
1412 	struct task_struct *p;
1413 
1414 	p = get_proc_task(inode);
1415 	if (!p)
1416 		return -ESRCH;
1417 	proc_sched_show_task(p, ns, m);
1418 
1419 	put_task_struct(p);
1420 
1421 	return 0;
1422 }
1423 
1424 static ssize_t
1425 sched_write(struct file *file, const char __user *buf,
1426 	    size_t count, loff_t *offset)
1427 {
1428 	struct inode *inode = file_inode(file);
1429 	struct task_struct *p;
1430 
1431 	p = get_proc_task(inode);
1432 	if (!p)
1433 		return -ESRCH;
1434 	proc_sched_set_task(p);
1435 
1436 	put_task_struct(p);
1437 
1438 	return count;
1439 }
1440 
1441 static int sched_open(struct inode *inode, struct file *filp)
1442 {
1443 	return single_open(filp, sched_show, inode);
1444 }
1445 
1446 static const struct file_operations proc_pid_sched_operations = {
1447 	.open		= sched_open,
1448 	.read		= seq_read,
1449 	.write		= sched_write,
1450 	.llseek		= seq_lseek,
1451 	.release	= single_release,
1452 };
1453 
1454 #endif
1455 
1456 #ifdef CONFIG_SCHED_AUTOGROUP
1457 /*
1458  * Print out autogroup related information:
1459  */
1460 static int sched_autogroup_show(struct seq_file *m, void *v)
1461 {
1462 	struct inode *inode = m->private;
1463 	struct task_struct *p;
1464 
1465 	p = get_proc_task(inode);
1466 	if (!p)
1467 		return -ESRCH;
1468 	proc_sched_autogroup_show_task(p, m);
1469 
1470 	put_task_struct(p);
1471 
1472 	return 0;
1473 }
1474 
1475 static ssize_t
1476 sched_autogroup_write(struct file *file, const char __user *buf,
1477 	    size_t count, loff_t *offset)
1478 {
1479 	struct inode *inode = file_inode(file);
1480 	struct task_struct *p;
1481 	char buffer[PROC_NUMBUF];
1482 	int nice;
1483 	int err;
1484 
1485 	memset(buffer, 0, sizeof(buffer));
1486 	if (count > sizeof(buffer) - 1)
1487 		count = sizeof(buffer) - 1;
1488 	if (copy_from_user(buffer, buf, count))
1489 		return -EFAULT;
1490 
1491 	err = kstrtoint(strstrip(buffer), 0, &nice);
1492 	if (err < 0)
1493 		return err;
1494 
1495 	p = get_proc_task(inode);
1496 	if (!p)
1497 		return -ESRCH;
1498 
1499 	err = proc_sched_autogroup_set_nice(p, nice);
1500 	if (err)
1501 		count = err;
1502 
1503 	put_task_struct(p);
1504 
1505 	return count;
1506 }
1507 
1508 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1509 {
1510 	int ret;
1511 
1512 	ret = single_open(filp, sched_autogroup_show, NULL);
1513 	if (!ret) {
1514 		struct seq_file *m = filp->private_data;
1515 
1516 		m->private = inode;
1517 	}
1518 	return ret;
1519 }
1520 
1521 static const struct file_operations proc_pid_sched_autogroup_operations = {
1522 	.open		= sched_autogroup_open,
1523 	.read		= seq_read,
1524 	.write		= sched_autogroup_write,
1525 	.llseek		= seq_lseek,
1526 	.release	= single_release,
1527 };
1528 
1529 #endif /* CONFIG_SCHED_AUTOGROUP */
1530 
1531 static ssize_t comm_write(struct file *file, const char __user *buf,
1532 				size_t count, loff_t *offset)
1533 {
1534 	struct inode *inode = file_inode(file);
1535 	struct task_struct *p;
1536 	char buffer[TASK_COMM_LEN];
1537 	const size_t maxlen = sizeof(buffer) - 1;
1538 
1539 	memset(buffer, 0, sizeof(buffer));
1540 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1541 		return -EFAULT;
1542 
1543 	p = get_proc_task(inode);
1544 	if (!p)
1545 		return -ESRCH;
1546 
1547 	if (same_thread_group(current, p))
1548 		set_task_comm(p, buffer);
1549 	else
1550 		count = -EINVAL;
1551 
1552 	put_task_struct(p);
1553 
1554 	return count;
1555 }
1556 
1557 static int comm_show(struct seq_file *m, void *v)
1558 {
1559 	struct inode *inode = m->private;
1560 	struct task_struct *p;
1561 
1562 	p = get_proc_task(inode);
1563 	if (!p)
1564 		return -ESRCH;
1565 
1566 	proc_task_name(m, p, false);
1567 	seq_putc(m, '\n');
1568 
1569 	put_task_struct(p);
1570 
1571 	return 0;
1572 }
1573 
1574 static int comm_open(struct inode *inode, struct file *filp)
1575 {
1576 	return single_open(filp, comm_show, inode);
1577 }
1578 
1579 static const struct file_operations proc_pid_set_comm_operations = {
1580 	.open		= comm_open,
1581 	.read		= seq_read,
1582 	.write		= comm_write,
1583 	.llseek		= seq_lseek,
1584 	.release	= single_release,
1585 };
1586 
1587 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1588 {
1589 	struct task_struct *task;
1590 	struct file *exe_file;
1591 
1592 	task = get_proc_task(d_inode(dentry));
1593 	if (!task)
1594 		return -ENOENT;
1595 	exe_file = get_task_exe_file(task);
1596 	put_task_struct(task);
1597 	if (exe_file) {
1598 		*exe_path = exe_file->f_path;
1599 		path_get(&exe_file->f_path);
1600 		fput(exe_file);
1601 		return 0;
1602 	} else
1603 		return -ENOENT;
1604 }
1605 
1606 static const char *proc_pid_get_link(struct dentry *dentry,
1607 				     struct inode *inode,
1608 				     struct delayed_call *done)
1609 {
1610 	struct path path;
1611 	int error = -EACCES;
1612 
1613 	if (!dentry)
1614 		return ERR_PTR(-ECHILD);
1615 
1616 	/* Are we allowed to snoop on the tasks file descriptors? */
1617 	if (!proc_fd_access_allowed(inode))
1618 		goto out;
1619 
1620 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1621 	if (error)
1622 		goto out;
1623 
1624 	nd_jump_link(&path);
1625 	return NULL;
1626 out:
1627 	return ERR_PTR(error);
1628 }
1629 
1630 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1631 {
1632 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1633 	char *pathname;
1634 	int len;
1635 
1636 	if (!tmp)
1637 		return -ENOMEM;
1638 
1639 	pathname = d_path(path, tmp, PAGE_SIZE);
1640 	len = PTR_ERR(pathname);
1641 	if (IS_ERR(pathname))
1642 		goto out;
1643 	len = tmp + PAGE_SIZE - 1 - pathname;
1644 
1645 	if (len > buflen)
1646 		len = buflen;
1647 	if (copy_to_user(buffer, pathname, len))
1648 		len = -EFAULT;
1649  out:
1650 	free_page((unsigned long)tmp);
1651 	return len;
1652 }
1653 
1654 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1655 {
1656 	int error = -EACCES;
1657 	struct inode *inode = d_inode(dentry);
1658 	struct path path;
1659 
1660 	/* Are we allowed to snoop on the tasks file descriptors? */
1661 	if (!proc_fd_access_allowed(inode))
1662 		goto out;
1663 
1664 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1665 	if (error)
1666 		goto out;
1667 
1668 	error = do_proc_readlink(&path, buffer, buflen);
1669 	path_put(&path);
1670 out:
1671 	return error;
1672 }
1673 
1674 const struct inode_operations proc_pid_link_inode_operations = {
1675 	.readlink	= proc_pid_readlink,
1676 	.get_link	= proc_pid_get_link,
1677 	.setattr	= proc_setattr,
1678 };
1679 
1680 
1681 /* building an inode */
1682 
1683 void task_dump_owner(struct task_struct *task, umode_t mode,
1684 		     kuid_t *ruid, kgid_t *rgid)
1685 {
1686 	/* Depending on the state of dumpable compute who should own a
1687 	 * proc file for a task.
1688 	 */
1689 	const struct cred *cred;
1690 	kuid_t uid;
1691 	kgid_t gid;
1692 
1693 	if (unlikely(task->flags & PF_KTHREAD)) {
1694 		*ruid = GLOBAL_ROOT_UID;
1695 		*rgid = GLOBAL_ROOT_GID;
1696 		return;
1697 	}
1698 
1699 	/* Default to the tasks effective ownership */
1700 	rcu_read_lock();
1701 	cred = __task_cred(task);
1702 	uid = cred->euid;
1703 	gid = cred->egid;
1704 	rcu_read_unlock();
1705 
1706 	/*
1707 	 * Before the /proc/pid/status file was created the only way to read
1708 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1709 	 * /proc/pid/status is slow enough that procps and other packages
1710 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1711 	 * made this apply to all per process world readable and executable
1712 	 * directories.
1713 	 */
1714 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1715 		struct mm_struct *mm;
1716 		task_lock(task);
1717 		mm = task->mm;
1718 		/* Make non-dumpable tasks owned by some root */
1719 		if (mm) {
1720 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1721 				struct user_namespace *user_ns = mm->user_ns;
1722 
1723 				uid = make_kuid(user_ns, 0);
1724 				if (!uid_valid(uid))
1725 					uid = GLOBAL_ROOT_UID;
1726 
1727 				gid = make_kgid(user_ns, 0);
1728 				if (!gid_valid(gid))
1729 					gid = GLOBAL_ROOT_GID;
1730 			}
1731 		} else {
1732 			uid = GLOBAL_ROOT_UID;
1733 			gid = GLOBAL_ROOT_GID;
1734 		}
1735 		task_unlock(task);
1736 	}
1737 	*ruid = uid;
1738 	*rgid = gid;
1739 }
1740 
1741 struct inode *proc_pid_make_inode(struct super_block * sb,
1742 				  struct task_struct *task, umode_t mode)
1743 {
1744 	struct inode * inode;
1745 	struct proc_inode *ei;
1746 
1747 	/* We need a new inode */
1748 
1749 	inode = new_inode(sb);
1750 	if (!inode)
1751 		goto out;
1752 
1753 	/* Common stuff */
1754 	ei = PROC_I(inode);
1755 	inode->i_mode = mode;
1756 	inode->i_ino = get_next_ino();
1757 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1758 	inode->i_op = &proc_def_inode_operations;
1759 
1760 	/*
1761 	 * grab the reference to task.
1762 	 */
1763 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1764 	if (!ei->pid)
1765 		goto out_unlock;
1766 
1767 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1768 	security_task_to_inode(task, inode);
1769 
1770 out:
1771 	return inode;
1772 
1773 out_unlock:
1774 	iput(inode);
1775 	return NULL;
1776 }
1777 
1778 int pid_getattr(const struct path *path, struct kstat *stat,
1779 		u32 request_mask, unsigned int query_flags)
1780 {
1781 	struct inode *inode = d_inode(path->dentry);
1782 	struct pid_namespace *pid = proc_pid_ns(inode);
1783 	struct task_struct *task;
1784 
1785 	generic_fillattr(inode, stat);
1786 
1787 	rcu_read_lock();
1788 	stat->uid = GLOBAL_ROOT_UID;
1789 	stat->gid = GLOBAL_ROOT_GID;
1790 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1791 	if (task) {
1792 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1793 			rcu_read_unlock();
1794 			/*
1795 			 * This doesn't prevent learning whether PID exists,
1796 			 * it only makes getattr() consistent with readdir().
1797 			 */
1798 			return -ENOENT;
1799 		}
1800 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1801 	}
1802 	rcu_read_unlock();
1803 	return 0;
1804 }
1805 
1806 /* dentry stuff */
1807 
1808 /*
1809  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1810  */
1811 void pid_update_inode(struct task_struct *task, struct inode *inode)
1812 {
1813 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1814 
1815 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1816 	security_task_to_inode(task, inode);
1817 }
1818 
1819 /*
1820  * Rewrite the inode's ownerships here because the owning task may have
1821  * performed a setuid(), etc.
1822  *
1823  */
1824 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1825 {
1826 	struct inode *inode;
1827 	struct task_struct *task;
1828 
1829 	if (flags & LOOKUP_RCU)
1830 		return -ECHILD;
1831 
1832 	inode = d_inode(dentry);
1833 	task = get_proc_task(inode);
1834 
1835 	if (task) {
1836 		pid_update_inode(task, inode);
1837 		put_task_struct(task);
1838 		return 1;
1839 	}
1840 	return 0;
1841 }
1842 
1843 static inline bool proc_inode_is_dead(struct inode *inode)
1844 {
1845 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1846 }
1847 
1848 int pid_delete_dentry(const struct dentry *dentry)
1849 {
1850 	/* Is the task we represent dead?
1851 	 * If so, then don't put the dentry on the lru list,
1852 	 * kill it immediately.
1853 	 */
1854 	return proc_inode_is_dead(d_inode(dentry));
1855 }
1856 
1857 const struct dentry_operations pid_dentry_operations =
1858 {
1859 	.d_revalidate	= pid_revalidate,
1860 	.d_delete	= pid_delete_dentry,
1861 };
1862 
1863 /* Lookups */
1864 
1865 /*
1866  * Fill a directory entry.
1867  *
1868  * If possible create the dcache entry and derive our inode number and
1869  * file type from dcache entry.
1870  *
1871  * Since all of the proc inode numbers are dynamically generated, the inode
1872  * numbers do not exist until the inode is cache.  This means creating the
1873  * the dcache entry in readdir is necessary to keep the inode numbers
1874  * reported by readdir in sync with the inode numbers reported
1875  * by stat.
1876  */
1877 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1878 	const char *name, int len,
1879 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1880 {
1881 	struct dentry *child, *dir = file->f_path.dentry;
1882 	struct qstr qname = QSTR_INIT(name, len);
1883 	struct inode *inode;
1884 	unsigned type = DT_UNKNOWN;
1885 	ino_t ino = 1;
1886 
1887 	child = d_hash_and_lookup(dir, &qname);
1888 	if (!child) {
1889 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1890 		child = d_alloc_parallel(dir, &qname, &wq);
1891 		if (IS_ERR(child))
1892 			goto end_instantiate;
1893 		if (d_in_lookup(child)) {
1894 			struct dentry *res;
1895 			res = instantiate(child, task, ptr);
1896 			d_lookup_done(child);
1897 			if (IS_ERR(res))
1898 				goto end_instantiate;
1899 			if (unlikely(res)) {
1900 				dput(child);
1901 				child = res;
1902 			}
1903 		}
1904 	}
1905 	inode = d_inode(child);
1906 	ino = inode->i_ino;
1907 	type = inode->i_mode >> 12;
1908 end_instantiate:
1909 	dput(child);
1910 	return dir_emit(ctx, name, len, ino, type);
1911 }
1912 
1913 /*
1914  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1915  * which represent vma start and end addresses.
1916  */
1917 static int dname_to_vma_addr(struct dentry *dentry,
1918 			     unsigned long *start, unsigned long *end)
1919 {
1920 	const char *str = dentry->d_name.name;
1921 	unsigned long long sval, eval;
1922 	unsigned int len;
1923 
1924 	if (str[0] == '0' && str[1] != '-')
1925 		return -EINVAL;
1926 	len = _parse_integer(str, 16, &sval);
1927 	if (len & KSTRTOX_OVERFLOW)
1928 		return -EINVAL;
1929 	if (sval != (unsigned long)sval)
1930 		return -EINVAL;
1931 	str += len;
1932 
1933 	if (*str != '-')
1934 		return -EINVAL;
1935 	str++;
1936 
1937 	if (str[0] == '0' && str[1])
1938 		return -EINVAL;
1939 	len = _parse_integer(str, 16, &eval);
1940 	if (len & KSTRTOX_OVERFLOW)
1941 		return -EINVAL;
1942 	if (eval != (unsigned long)eval)
1943 		return -EINVAL;
1944 	str += len;
1945 
1946 	if (*str != '\0')
1947 		return -EINVAL;
1948 
1949 	*start = sval;
1950 	*end = eval;
1951 
1952 	return 0;
1953 }
1954 
1955 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1956 {
1957 	unsigned long vm_start, vm_end;
1958 	bool exact_vma_exists = false;
1959 	struct mm_struct *mm = NULL;
1960 	struct task_struct *task;
1961 	struct inode *inode;
1962 	int status = 0;
1963 
1964 	if (flags & LOOKUP_RCU)
1965 		return -ECHILD;
1966 
1967 	inode = d_inode(dentry);
1968 	task = get_proc_task(inode);
1969 	if (!task)
1970 		goto out_notask;
1971 
1972 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1973 	if (IS_ERR_OR_NULL(mm))
1974 		goto out;
1975 
1976 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1977 		down_read(&mm->mmap_sem);
1978 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1979 		up_read(&mm->mmap_sem);
1980 	}
1981 
1982 	mmput(mm);
1983 
1984 	if (exact_vma_exists) {
1985 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1986 
1987 		security_task_to_inode(task, inode);
1988 		status = 1;
1989 	}
1990 
1991 out:
1992 	put_task_struct(task);
1993 
1994 out_notask:
1995 	return status;
1996 }
1997 
1998 static const struct dentry_operations tid_map_files_dentry_operations = {
1999 	.d_revalidate	= map_files_d_revalidate,
2000 	.d_delete	= pid_delete_dentry,
2001 };
2002 
2003 static int map_files_get_link(struct dentry *dentry, struct path *path)
2004 {
2005 	unsigned long vm_start, vm_end;
2006 	struct vm_area_struct *vma;
2007 	struct task_struct *task;
2008 	struct mm_struct *mm;
2009 	int rc;
2010 
2011 	rc = -ENOENT;
2012 	task = get_proc_task(d_inode(dentry));
2013 	if (!task)
2014 		goto out;
2015 
2016 	mm = get_task_mm(task);
2017 	put_task_struct(task);
2018 	if (!mm)
2019 		goto out;
2020 
2021 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2022 	if (rc)
2023 		goto out_mmput;
2024 
2025 	rc = -ENOENT;
2026 	down_read(&mm->mmap_sem);
2027 	vma = find_exact_vma(mm, vm_start, vm_end);
2028 	if (vma && vma->vm_file) {
2029 		*path = vma->vm_file->f_path;
2030 		path_get(path);
2031 		rc = 0;
2032 	}
2033 	up_read(&mm->mmap_sem);
2034 
2035 out_mmput:
2036 	mmput(mm);
2037 out:
2038 	return rc;
2039 }
2040 
2041 struct map_files_info {
2042 	unsigned long	start;
2043 	unsigned long	end;
2044 	fmode_t		mode;
2045 };
2046 
2047 /*
2048  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2049  * symlinks may be used to bypass permissions on ancestor directories in the
2050  * path to the file in question.
2051  */
2052 static const char *
2053 proc_map_files_get_link(struct dentry *dentry,
2054 			struct inode *inode,
2055 		        struct delayed_call *done)
2056 {
2057 	if (!capable(CAP_SYS_ADMIN))
2058 		return ERR_PTR(-EPERM);
2059 
2060 	return proc_pid_get_link(dentry, inode, done);
2061 }
2062 
2063 /*
2064  * Identical to proc_pid_link_inode_operations except for get_link()
2065  */
2066 static const struct inode_operations proc_map_files_link_inode_operations = {
2067 	.readlink	= proc_pid_readlink,
2068 	.get_link	= proc_map_files_get_link,
2069 	.setattr	= proc_setattr,
2070 };
2071 
2072 static struct dentry *
2073 proc_map_files_instantiate(struct dentry *dentry,
2074 			   struct task_struct *task, const void *ptr)
2075 {
2076 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2077 	struct proc_inode *ei;
2078 	struct inode *inode;
2079 
2080 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2081 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2082 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2083 	if (!inode)
2084 		return ERR_PTR(-ENOENT);
2085 
2086 	ei = PROC_I(inode);
2087 	ei->op.proc_get_link = map_files_get_link;
2088 
2089 	inode->i_op = &proc_map_files_link_inode_operations;
2090 	inode->i_size = 64;
2091 
2092 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2093 	return d_splice_alias(inode, dentry);
2094 }
2095 
2096 static struct dentry *proc_map_files_lookup(struct inode *dir,
2097 		struct dentry *dentry, unsigned int flags)
2098 {
2099 	unsigned long vm_start, vm_end;
2100 	struct vm_area_struct *vma;
2101 	struct task_struct *task;
2102 	struct dentry *result;
2103 	struct mm_struct *mm;
2104 
2105 	result = ERR_PTR(-ENOENT);
2106 	task = get_proc_task(dir);
2107 	if (!task)
2108 		goto out;
2109 
2110 	result = ERR_PTR(-EACCES);
2111 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2112 		goto out_put_task;
2113 
2114 	result = ERR_PTR(-ENOENT);
2115 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2116 		goto out_put_task;
2117 
2118 	mm = get_task_mm(task);
2119 	if (!mm)
2120 		goto out_put_task;
2121 
2122 	down_read(&mm->mmap_sem);
2123 	vma = find_exact_vma(mm, vm_start, vm_end);
2124 	if (!vma)
2125 		goto out_no_vma;
2126 
2127 	if (vma->vm_file)
2128 		result = proc_map_files_instantiate(dentry, task,
2129 				(void *)(unsigned long)vma->vm_file->f_mode);
2130 
2131 out_no_vma:
2132 	up_read(&mm->mmap_sem);
2133 	mmput(mm);
2134 out_put_task:
2135 	put_task_struct(task);
2136 out:
2137 	return result;
2138 }
2139 
2140 static const struct inode_operations proc_map_files_inode_operations = {
2141 	.lookup		= proc_map_files_lookup,
2142 	.permission	= proc_fd_permission,
2143 	.setattr	= proc_setattr,
2144 };
2145 
2146 static int
2147 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2148 {
2149 	struct vm_area_struct *vma;
2150 	struct task_struct *task;
2151 	struct mm_struct *mm;
2152 	unsigned long nr_files, pos, i;
2153 	struct flex_array *fa = NULL;
2154 	struct map_files_info info;
2155 	struct map_files_info *p;
2156 	int ret;
2157 
2158 	ret = -ENOENT;
2159 	task = get_proc_task(file_inode(file));
2160 	if (!task)
2161 		goto out;
2162 
2163 	ret = -EACCES;
2164 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2165 		goto out_put_task;
2166 
2167 	ret = 0;
2168 	if (!dir_emit_dots(file, ctx))
2169 		goto out_put_task;
2170 
2171 	mm = get_task_mm(task);
2172 	if (!mm)
2173 		goto out_put_task;
2174 	down_read(&mm->mmap_sem);
2175 
2176 	nr_files = 0;
2177 
2178 	/*
2179 	 * We need two passes here:
2180 	 *
2181 	 *  1) Collect vmas of mapped files with mmap_sem taken
2182 	 *  2) Release mmap_sem and instantiate entries
2183 	 *
2184 	 * otherwise we get lockdep complained, since filldir()
2185 	 * routine might require mmap_sem taken in might_fault().
2186 	 */
2187 
2188 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2189 		if (vma->vm_file && ++pos > ctx->pos)
2190 			nr_files++;
2191 	}
2192 
2193 	if (nr_files) {
2194 		fa = flex_array_alloc(sizeof(info), nr_files,
2195 					GFP_KERNEL);
2196 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2197 						GFP_KERNEL)) {
2198 			ret = -ENOMEM;
2199 			if (fa)
2200 				flex_array_free(fa);
2201 			up_read(&mm->mmap_sem);
2202 			mmput(mm);
2203 			goto out_put_task;
2204 		}
2205 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2206 				vma = vma->vm_next) {
2207 			if (!vma->vm_file)
2208 				continue;
2209 			if (++pos <= ctx->pos)
2210 				continue;
2211 
2212 			info.start = vma->vm_start;
2213 			info.end = vma->vm_end;
2214 			info.mode = vma->vm_file->f_mode;
2215 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2216 				BUG();
2217 		}
2218 	}
2219 	up_read(&mm->mmap_sem);
2220 	mmput(mm);
2221 
2222 	for (i = 0; i < nr_files; i++) {
2223 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2224 		unsigned int len;
2225 
2226 		p = flex_array_get(fa, i);
2227 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2228 		if (!proc_fill_cache(file, ctx,
2229 				      buf, len,
2230 				      proc_map_files_instantiate,
2231 				      task,
2232 				      (void *)(unsigned long)p->mode))
2233 			break;
2234 		ctx->pos++;
2235 	}
2236 	if (fa)
2237 		flex_array_free(fa);
2238 
2239 out_put_task:
2240 	put_task_struct(task);
2241 out:
2242 	return ret;
2243 }
2244 
2245 static const struct file_operations proc_map_files_operations = {
2246 	.read		= generic_read_dir,
2247 	.iterate_shared	= proc_map_files_readdir,
2248 	.llseek		= generic_file_llseek,
2249 };
2250 
2251 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2252 struct timers_private {
2253 	struct pid *pid;
2254 	struct task_struct *task;
2255 	struct sighand_struct *sighand;
2256 	struct pid_namespace *ns;
2257 	unsigned long flags;
2258 };
2259 
2260 static void *timers_start(struct seq_file *m, loff_t *pos)
2261 {
2262 	struct timers_private *tp = m->private;
2263 
2264 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2265 	if (!tp->task)
2266 		return ERR_PTR(-ESRCH);
2267 
2268 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2269 	if (!tp->sighand)
2270 		return ERR_PTR(-ESRCH);
2271 
2272 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2273 }
2274 
2275 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2276 {
2277 	struct timers_private *tp = m->private;
2278 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2279 }
2280 
2281 static void timers_stop(struct seq_file *m, void *v)
2282 {
2283 	struct timers_private *tp = m->private;
2284 
2285 	if (tp->sighand) {
2286 		unlock_task_sighand(tp->task, &tp->flags);
2287 		tp->sighand = NULL;
2288 	}
2289 
2290 	if (tp->task) {
2291 		put_task_struct(tp->task);
2292 		tp->task = NULL;
2293 	}
2294 }
2295 
2296 static int show_timer(struct seq_file *m, void *v)
2297 {
2298 	struct k_itimer *timer;
2299 	struct timers_private *tp = m->private;
2300 	int notify;
2301 	static const char * const nstr[] = {
2302 		[SIGEV_SIGNAL] = "signal",
2303 		[SIGEV_NONE] = "none",
2304 		[SIGEV_THREAD] = "thread",
2305 	};
2306 
2307 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2308 	notify = timer->it_sigev_notify;
2309 
2310 	seq_printf(m, "ID: %d\n", timer->it_id);
2311 	seq_printf(m, "signal: %d/%px\n",
2312 		   timer->sigq->info.si_signo,
2313 		   timer->sigq->info.si_value.sival_ptr);
2314 	seq_printf(m, "notify: %s/%s.%d\n",
2315 		   nstr[notify & ~SIGEV_THREAD_ID],
2316 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2317 		   pid_nr_ns(timer->it_pid, tp->ns));
2318 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2319 
2320 	return 0;
2321 }
2322 
2323 static const struct seq_operations proc_timers_seq_ops = {
2324 	.start	= timers_start,
2325 	.next	= timers_next,
2326 	.stop	= timers_stop,
2327 	.show	= show_timer,
2328 };
2329 
2330 static int proc_timers_open(struct inode *inode, struct file *file)
2331 {
2332 	struct timers_private *tp;
2333 
2334 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2335 			sizeof(struct timers_private));
2336 	if (!tp)
2337 		return -ENOMEM;
2338 
2339 	tp->pid = proc_pid(inode);
2340 	tp->ns = proc_pid_ns(inode);
2341 	return 0;
2342 }
2343 
2344 static const struct file_operations proc_timers_operations = {
2345 	.open		= proc_timers_open,
2346 	.read		= seq_read,
2347 	.llseek		= seq_lseek,
2348 	.release	= seq_release_private,
2349 };
2350 #endif
2351 
2352 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2353 					size_t count, loff_t *offset)
2354 {
2355 	struct inode *inode = file_inode(file);
2356 	struct task_struct *p;
2357 	u64 slack_ns;
2358 	int err;
2359 
2360 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2361 	if (err < 0)
2362 		return err;
2363 
2364 	p = get_proc_task(inode);
2365 	if (!p)
2366 		return -ESRCH;
2367 
2368 	if (p != current) {
2369 		if (!capable(CAP_SYS_NICE)) {
2370 			count = -EPERM;
2371 			goto out;
2372 		}
2373 
2374 		err = security_task_setscheduler(p);
2375 		if (err) {
2376 			count = err;
2377 			goto out;
2378 		}
2379 	}
2380 
2381 	task_lock(p);
2382 	if (slack_ns == 0)
2383 		p->timer_slack_ns = p->default_timer_slack_ns;
2384 	else
2385 		p->timer_slack_ns = slack_ns;
2386 	task_unlock(p);
2387 
2388 out:
2389 	put_task_struct(p);
2390 
2391 	return count;
2392 }
2393 
2394 static int timerslack_ns_show(struct seq_file *m, void *v)
2395 {
2396 	struct inode *inode = m->private;
2397 	struct task_struct *p;
2398 	int err = 0;
2399 
2400 	p = get_proc_task(inode);
2401 	if (!p)
2402 		return -ESRCH;
2403 
2404 	if (p != current) {
2405 
2406 		if (!capable(CAP_SYS_NICE)) {
2407 			err = -EPERM;
2408 			goto out;
2409 		}
2410 		err = security_task_getscheduler(p);
2411 		if (err)
2412 			goto out;
2413 	}
2414 
2415 	task_lock(p);
2416 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2417 	task_unlock(p);
2418 
2419 out:
2420 	put_task_struct(p);
2421 
2422 	return err;
2423 }
2424 
2425 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2426 {
2427 	return single_open(filp, timerslack_ns_show, inode);
2428 }
2429 
2430 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2431 	.open		= timerslack_ns_open,
2432 	.read		= seq_read,
2433 	.write		= timerslack_ns_write,
2434 	.llseek		= seq_lseek,
2435 	.release	= single_release,
2436 };
2437 
2438 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2439 	struct task_struct *task, const void *ptr)
2440 {
2441 	const struct pid_entry *p = ptr;
2442 	struct inode *inode;
2443 	struct proc_inode *ei;
2444 
2445 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2446 	if (!inode)
2447 		return ERR_PTR(-ENOENT);
2448 
2449 	ei = PROC_I(inode);
2450 	if (S_ISDIR(inode->i_mode))
2451 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2452 	if (p->iop)
2453 		inode->i_op = p->iop;
2454 	if (p->fop)
2455 		inode->i_fop = p->fop;
2456 	ei->op = p->op;
2457 	pid_update_inode(task, inode);
2458 	d_set_d_op(dentry, &pid_dentry_operations);
2459 	return d_splice_alias(inode, dentry);
2460 }
2461 
2462 static struct dentry *proc_pident_lookup(struct inode *dir,
2463 					 struct dentry *dentry,
2464 					 const struct pid_entry *ents,
2465 					 unsigned int nents)
2466 {
2467 	struct task_struct *task = get_proc_task(dir);
2468 	const struct pid_entry *p, *last;
2469 	struct dentry *res = ERR_PTR(-ENOENT);
2470 
2471 	if (!task)
2472 		goto out_no_task;
2473 
2474 	/*
2475 	 * Yes, it does not scale. And it should not. Don't add
2476 	 * new entries into /proc/<tgid>/ without very good reasons.
2477 	 */
2478 	last = &ents[nents];
2479 	for (p = ents; p < last; p++) {
2480 		if (p->len != dentry->d_name.len)
2481 			continue;
2482 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2483 			break;
2484 	}
2485 	if (p >= last)
2486 		goto out;
2487 
2488 	res = proc_pident_instantiate(dentry, task, p);
2489 out:
2490 	put_task_struct(task);
2491 out_no_task:
2492 	return res;
2493 }
2494 
2495 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2496 		const struct pid_entry *ents, unsigned int nents)
2497 {
2498 	struct task_struct *task = get_proc_task(file_inode(file));
2499 	const struct pid_entry *p;
2500 
2501 	if (!task)
2502 		return -ENOENT;
2503 
2504 	if (!dir_emit_dots(file, ctx))
2505 		goto out;
2506 
2507 	if (ctx->pos >= nents + 2)
2508 		goto out;
2509 
2510 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2511 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2512 				proc_pident_instantiate, task, p))
2513 			break;
2514 		ctx->pos++;
2515 	}
2516 out:
2517 	put_task_struct(task);
2518 	return 0;
2519 }
2520 
2521 #ifdef CONFIG_SECURITY
2522 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2523 				  size_t count, loff_t *ppos)
2524 {
2525 	struct inode * inode = file_inode(file);
2526 	char *p = NULL;
2527 	ssize_t length;
2528 	struct task_struct *task = get_proc_task(inode);
2529 
2530 	if (!task)
2531 		return -ESRCH;
2532 
2533 	length = security_getprocattr(task,
2534 				      (char*)file->f_path.dentry->d_name.name,
2535 				      &p);
2536 	put_task_struct(task);
2537 	if (length > 0)
2538 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2539 	kfree(p);
2540 	return length;
2541 }
2542 
2543 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2544 				   size_t count, loff_t *ppos)
2545 {
2546 	struct inode * inode = file_inode(file);
2547 	void *page;
2548 	ssize_t length;
2549 	struct task_struct *task = get_proc_task(inode);
2550 
2551 	length = -ESRCH;
2552 	if (!task)
2553 		goto out_no_task;
2554 
2555 	/* A task may only write its own attributes. */
2556 	length = -EACCES;
2557 	if (current != task)
2558 		goto out;
2559 
2560 	if (count > PAGE_SIZE)
2561 		count = PAGE_SIZE;
2562 
2563 	/* No partial writes. */
2564 	length = -EINVAL;
2565 	if (*ppos != 0)
2566 		goto out;
2567 
2568 	page = memdup_user(buf, count);
2569 	if (IS_ERR(page)) {
2570 		length = PTR_ERR(page);
2571 		goto out;
2572 	}
2573 
2574 	/* Guard against adverse ptrace interaction */
2575 	length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2576 	if (length < 0)
2577 		goto out_free;
2578 
2579 	length = security_setprocattr(file->f_path.dentry->d_name.name,
2580 				      page, count);
2581 	mutex_unlock(&current->signal->cred_guard_mutex);
2582 out_free:
2583 	kfree(page);
2584 out:
2585 	put_task_struct(task);
2586 out_no_task:
2587 	return length;
2588 }
2589 
2590 static const struct file_operations proc_pid_attr_operations = {
2591 	.read		= proc_pid_attr_read,
2592 	.write		= proc_pid_attr_write,
2593 	.llseek		= generic_file_llseek,
2594 };
2595 
2596 static const struct pid_entry attr_dir_stuff[] = {
2597 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2598 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2599 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2600 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2601 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2602 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2603 };
2604 
2605 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2606 {
2607 	return proc_pident_readdir(file, ctx,
2608 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2609 }
2610 
2611 static const struct file_operations proc_attr_dir_operations = {
2612 	.read		= generic_read_dir,
2613 	.iterate_shared	= proc_attr_dir_readdir,
2614 	.llseek		= generic_file_llseek,
2615 };
2616 
2617 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2618 				struct dentry *dentry, unsigned int flags)
2619 {
2620 	return proc_pident_lookup(dir, dentry,
2621 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2622 }
2623 
2624 static const struct inode_operations proc_attr_dir_inode_operations = {
2625 	.lookup		= proc_attr_dir_lookup,
2626 	.getattr	= pid_getattr,
2627 	.setattr	= proc_setattr,
2628 };
2629 
2630 #endif
2631 
2632 #ifdef CONFIG_ELF_CORE
2633 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2634 					 size_t count, loff_t *ppos)
2635 {
2636 	struct task_struct *task = get_proc_task(file_inode(file));
2637 	struct mm_struct *mm;
2638 	char buffer[PROC_NUMBUF];
2639 	size_t len;
2640 	int ret;
2641 
2642 	if (!task)
2643 		return -ESRCH;
2644 
2645 	ret = 0;
2646 	mm = get_task_mm(task);
2647 	if (mm) {
2648 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2649 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2650 				MMF_DUMP_FILTER_SHIFT));
2651 		mmput(mm);
2652 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2653 	}
2654 
2655 	put_task_struct(task);
2656 
2657 	return ret;
2658 }
2659 
2660 static ssize_t proc_coredump_filter_write(struct file *file,
2661 					  const char __user *buf,
2662 					  size_t count,
2663 					  loff_t *ppos)
2664 {
2665 	struct task_struct *task;
2666 	struct mm_struct *mm;
2667 	unsigned int val;
2668 	int ret;
2669 	int i;
2670 	unsigned long mask;
2671 
2672 	ret = kstrtouint_from_user(buf, count, 0, &val);
2673 	if (ret < 0)
2674 		return ret;
2675 
2676 	ret = -ESRCH;
2677 	task = get_proc_task(file_inode(file));
2678 	if (!task)
2679 		goto out_no_task;
2680 
2681 	mm = get_task_mm(task);
2682 	if (!mm)
2683 		goto out_no_mm;
2684 	ret = 0;
2685 
2686 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2687 		if (val & mask)
2688 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2689 		else
2690 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2691 	}
2692 
2693 	mmput(mm);
2694  out_no_mm:
2695 	put_task_struct(task);
2696  out_no_task:
2697 	if (ret < 0)
2698 		return ret;
2699 	return count;
2700 }
2701 
2702 static const struct file_operations proc_coredump_filter_operations = {
2703 	.read		= proc_coredump_filter_read,
2704 	.write		= proc_coredump_filter_write,
2705 	.llseek		= generic_file_llseek,
2706 };
2707 #endif
2708 
2709 #ifdef CONFIG_TASK_IO_ACCOUNTING
2710 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2711 {
2712 	struct task_io_accounting acct = task->ioac;
2713 	unsigned long flags;
2714 	int result;
2715 
2716 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2717 	if (result)
2718 		return result;
2719 
2720 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2721 		result = -EACCES;
2722 		goto out_unlock;
2723 	}
2724 
2725 	if (whole && lock_task_sighand(task, &flags)) {
2726 		struct task_struct *t = task;
2727 
2728 		task_io_accounting_add(&acct, &task->signal->ioac);
2729 		while_each_thread(task, t)
2730 			task_io_accounting_add(&acct, &t->ioac);
2731 
2732 		unlock_task_sighand(task, &flags);
2733 	}
2734 	seq_printf(m,
2735 		   "rchar: %llu\n"
2736 		   "wchar: %llu\n"
2737 		   "syscr: %llu\n"
2738 		   "syscw: %llu\n"
2739 		   "read_bytes: %llu\n"
2740 		   "write_bytes: %llu\n"
2741 		   "cancelled_write_bytes: %llu\n",
2742 		   (unsigned long long)acct.rchar,
2743 		   (unsigned long long)acct.wchar,
2744 		   (unsigned long long)acct.syscr,
2745 		   (unsigned long long)acct.syscw,
2746 		   (unsigned long long)acct.read_bytes,
2747 		   (unsigned long long)acct.write_bytes,
2748 		   (unsigned long long)acct.cancelled_write_bytes);
2749 	result = 0;
2750 
2751 out_unlock:
2752 	mutex_unlock(&task->signal->cred_guard_mutex);
2753 	return result;
2754 }
2755 
2756 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2757 				  struct pid *pid, struct task_struct *task)
2758 {
2759 	return do_io_accounting(task, m, 0);
2760 }
2761 
2762 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2763 				   struct pid *pid, struct task_struct *task)
2764 {
2765 	return do_io_accounting(task, m, 1);
2766 }
2767 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2768 
2769 #ifdef CONFIG_USER_NS
2770 static int proc_id_map_open(struct inode *inode, struct file *file,
2771 	const struct seq_operations *seq_ops)
2772 {
2773 	struct user_namespace *ns = NULL;
2774 	struct task_struct *task;
2775 	struct seq_file *seq;
2776 	int ret = -EINVAL;
2777 
2778 	task = get_proc_task(inode);
2779 	if (task) {
2780 		rcu_read_lock();
2781 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2782 		rcu_read_unlock();
2783 		put_task_struct(task);
2784 	}
2785 	if (!ns)
2786 		goto err;
2787 
2788 	ret = seq_open(file, seq_ops);
2789 	if (ret)
2790 		goto err_put_ns;
2791 
2792 	seq = file->private_data;
2793 	seq->private = ns;
2794 
2795 	return 0;
2796 err_put_ns:
2797 	put_user_ns(ns);
2798 err:
2799 	return ret;
2800 }
2801 
2802 static int proc_id_map_release(struct inode *inode, struct file *file)
2803 {
2804 	struct seq_file *seq = file->private_data;
2805 	struct user_namespace *ns = seq->private;
2806 	put_user_ns(ns);
2807 	return seq_release(inode, file);
2808 }
2809 
2810 static int proc_uid_map_open(struct inode *inode, struct file *file)
2811 {
2812 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2813 }
2814 
2815 static int proc_gid_map_open(struct inode *inode, struct file *file)
2816 {
2817 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2818 }
2819 
2820 static int proc_projid_map_open(struct inode *inode, struct file *file)
2821 {
2822 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2823 }
2824 
2825 static const struct file_operations proc_uid_map_operations = {
2826 	.open		= proc_uid_map_open,
2827 	.write		= proc_uid_map_write,
2828 	.read		= seq_read,
2829 	.llseek		= seq_lseek,
2830 	.release	= proc_id_map_release,
2831 };
2832 
2833 static const struct file_operations proc_gid_map_operations = {
2834 	.open		= proc_gid_map_open,
2835 	.write		= proc_gid_map_write,
2836 	.read		= seq_read,
2837 	.llseek		= seq_lseek,
2838 	.release	= proc_id_map_release,
2839 };
2840 
2841 static const struct file_operations proc_projid_map_operations = {
2842 	.open		= proc_projid_map_open,
2843 	.write		= proc_projid_map_write,
2844 	.read		= seq_read,
2845 	.llseek		= seq_lseek,
2846 	.release	= proc_id_map_release,
2847 };
2848 
2849 static int proc_setgroups_open(struct inode *inode, struct file *file)
2850 {
2851 	struct user_namespace *ns = NULL;
2852 	struct task_struct *task;
2853 	int ret;
2854 
2855 	ret = -ESRCH;
2856 	task = get_proc_task(inode);
2857 	if (task) {
2858 		rcu_read_lock();
2859 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2860 		rcu_read_unlock();
2861 		put_task_struct(task);
2862 	}
2863 	if (!ns)
2864 		goto err;
2865 
2866 	if (file->f_mode & FMODE_WRITE) {
2867 		ret = -EACCES;
2868 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2869 			goto err_put_ns;
2870 	}
2871 
2872 	ret = single_open(file, &proc_setgroups_show, ns);
2873 	if (ret)
2874 		goto err_put_ns;
2875 
2876 	return 0;
2877 err_put_ns:
2878 	put_user_ns(ns);
2879 err:
2880 	return ret;
2881 }
2882 
2883 static int proc_setgroups_release(struct inode *inode, struct file *file)
2884 {
2885 	struct seq_file *seq = file->private_data;
2886 	struct user_namespace *ns = seq->private;
2887 	int ret = single_release(inode, file);
2888 	put_user_ns(ns);
2889 	return ret;
2890 }
2891 
2892 static const struct file_operations proc_setgroups_operations = {
2893 	.open		= proc_setgroups_open,
2894 	.write		= proc_setgroups_write,
2895 	.read		= seq_read,
2896 	.llseek		= seq_lseek,
2897 	.release	= proc_setgroups_release,
2898 };
2899 #endif /* CONFIG_USER_NS */
2900 
2901 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2902 				struct pid *pid, struct task_struct *task)
2903 {
2904 	int err = lock_trace(task);
2905 	if (!err) {
2906 		seq_printf(m, "%08x\n", task->personality);
2907 		unlock_trace(task);
2908 	}
2909 	return err;
2910 }
2911 
2912 #ifdef CONFIG_LIVEPATCH
2913 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2914 				struct pid *pid, struct task_struct *task)
2915 {
2916 	seq_printf(m, "%d\n", task->patch_state);
2917 	return 0;
2918 }
2919 #endif /* CONFIG_LIVEPATCH */
2920 
2921 /*
2922  * Thread groups
2923  */
2924 static const struct file_operations proc_task_operations;
2925 static const struct inode_operations proc_task_inode_operations;
2926 
2927 static const struct pid_entry tgid_base_stuff[] = {
2928 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2929 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2930 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2931 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2932 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2933 #ifdef CONFIG_NET
2934 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2935 #endif
2936 	REG("environ",    S_IRUSR, proc_environ_operations),
2937 	REG("auxv",       S_IRUSR, proc_auxv_operations),
2938 	ONE("status",     S_IRUGO, proc_pid_status),
2939 	ONE("personality", S_IRUSR, proc_pid_personality),
2940 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2941 #ifdef CONFIG_SCHED_DEBUG
2942 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2943 #endif
2944 #ifdef CONFIG_SCHED_AUTOGROUP
2945 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2946 #endif
2947 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2948 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2949 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2950 #endif
2951 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2952 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2953 	ONE("statm",      S_IRUGO, proc_pid_statm),
2954 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2955 #ifdef CONFIG_NUMA
2956 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2957 #endif
2958 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2959 	LNK("cwd",        proc_cwd_link),
2960 	LNK("root",       proc_root_link),
2961 	LNK("exe",        proc_exe_link),
2962 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2963 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2964 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2965 #ifdef CONFIG_PROC_PAGE_MONITOR
2966 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2967 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2968 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2969 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2970 #endif
2971 #ifdef CONFIG_SECURITY
2972 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2973 #endif
2974 #ifdef CONFIG_KALLSYMS
2975 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2976 #endif
2977 #ifdef CONFIG_STACKTRACE
2978 	ONE("stack",      S_IRUSR, proc_pid_stack),
2979 #endif
2980 #ifdef CONFIG_SCHED_INFO
2981 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2982 #endif
2983 #ifdef CONFIG_LATENCYTOP
2984 	REG("latency",  S_IRUGO, proc_lstats_operations),
2985 #endif
2986 #ifdef CONFIG_PROC_PID_CPUSET
2987 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2988 #endif
2989 #ifdef CONFIG_CGROUPS
2990 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2991 #endif
2992 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2993 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2994 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2995 #ifdef CONFIG_AUDITSYSCALL
2996 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2997 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2998 #endif
2999 #ifdef CONFIG_FAULT_INJECTION
3000 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3001 	REG("fail-nth", 0644, proc_fail_nth_operations),
3002 #endif
3003 #ifdef CONFIG_ELF_CORE
3004 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3005 #endif
3006 #ifdef CONFIG_TASK_IO_ACCOUNTING
3007 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3008 #endif
3009 #ifdef CONFIG_USER_NS
3010 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3011 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3012 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3013 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3014 #endif
3015 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3016 	REG("timers",	  S_IRUGO, proc_timers_operations),
3017 #endif
3018 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3019 #ifdef CONFIG_LIVEPATCH
3020 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3021 #endif
3022 };
3023 
3024 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3025 {
3026 	return proc_pident_readdir(file, ctx,
3027 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3028 }
3029 
3030 static const struct file_operations proc_tgid_base_operations = {
3031 	.read		= generic_read_dir,
3032 	.iterate_shared	= proc_tgid_base_readdir,
3033 	.llseek		= generic_file_llseek,
3034 };
3035 
3036 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3037 {
3038 	return proc_pident_lookup(dir, dentry,
3039 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3040 }
3041 
3042 static const struct inode_operations proc_tgid_base_inode_operations = {
3043 	.lookup		= proc_tgid_base_lookup,
3044 	.getattr	= pid_getattr,
3045 	.setattr	= proc_setattr,
3046 	.permission	= proc_pid_permission,
3047 };
3048 
3049 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3050 {
3051 	struct dentry *dentry, *leader, *dir;
3052 	char buf[10 + 1];
3053 	struct qstr name;
3054 
3055 	name.name = buf;
3056 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3057 	/* no ->d_hash() rejects on procfs */
3058 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3059 	if (dentry) {
3060 		d_invalidate(dentry);
3061 		dput(dentry);
3062 	}
3063 
3064 	if (pid == tgid)
3065 		return;
3066 
3067 	name.name = buf;
3068 	name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3069 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3070 	if (!leader)
3071 		goto out;
3072 
3073 	name.name = "task";
3074 	name.len = strlen(name.name);
3075 	dir = d_hash_and_lookup(leader, &name);
3076 	if (!dir)
3077 		goto out_put_leader;
3078 
3079 	name.name = buf;
3080 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3081 	dentry = d_hash_and_lookup(dir, &name);
3082 	if (dentry) {
3083 		d_invalidate(dentry);
3084 		dput(dentry);
3085 	}
3086 
3087 	dput(dir);
3088 out_put_leader:
3089 	dput(leader);
3090 out:
3091 	return;
3092 }
3093 
3094 /**
3095  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3096  * @task: task that should be flushed.
3097  *
3098  * When flushing dentries from proc, one needs to flush them from global
3099  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3100  * in. This call is supposed to do all of this job.
3101  *
3102  * Looks in the dcache for
3103  * /proc/@pid
3104  * /proc/@tgid/task/@pid
3105  * if either directory is present flushes it and all of it'ts children
3106  * from the dcache.
3107  *
3108  * It is safe and reasonable to cache /proc entries for a task until
3109  * that task exits.  After that they just clog up the dcache with
3110  * useless entries, possibly causing useful dcache entries to be
3111  * flushed instead.  This routine is proved to flush those useless
3112  * dcache entries at process exit time.
3113  *
3114  * NOTE: This routine is just an optimization so it does not guarantee
3115  *       that no dcache entries will exist at process exit time it
3116  *       just makes it very unlikely that any will persist.
3117  */
3118 
3119 void proc_flush_task(struct task_struct *task)
3120 {
3121 	int i;
3122 	struct pid *pid, *tgid;
3123 	struct upid *upid;
3124 
3125 	pid = task_pid(task);
3126 	tgid = task_tgid(task);
3127 
3128 	for (i = 0; i <= pid->level; i++) {
3129 		upid = &pid->numbers[i];
3130 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3131 					tgid->numbers[i].nr);
3132 	}
3133 }
3134 
3135 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3136 				   struct task_struct *task, const void *ptr)
3137 {
3138 	struct inode *inode;
3139 
3140 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3141 	if (!inode)
3142 		return ERR_PTR(-ENOENT);
3143 
3144 	inode->i_op = &proc_tgid_base_inode_operations;
3145 	inode->i_fop = &proc_tgid_base_operations;
3146 	inode->i_flags|=S_IMMUTABLE;
3147 
3148 	set_nlink(inode, nlink_tgid);
3149 	pid_update_inode(task, inode);
3150 
3151 	d_set_d_op(dentry, &pid_dentry_operations);
3152 	return d_splice_alias(inode, dentry);
3153 }
3154 
3155 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3156 {
3157 	struct task_struct *task;
3158 	unsigned tgid;
3159 	struct pid_namespace *ns;
3160 	struct dentry *result = ERR_PTR(-ENOENT);
3161 
3162 	tgid = name_to_int(&dentry->d_name);
3163 	if (tgid == ~0U)
3164 		goto out;
3165 
3166 	ns = dentry->d_sb->s_fs_info;
3167 	rcu_read_lock();
3168 	task = find_task_by_pid_ns(tgid, ns);
3169 	if (task)
3170 		get_task_struct(task);
3171 	rcu_read_unlock();
3172 	if (!task)
3173 		goto out;
3174 
3175 	result = proc_pid_instantiate(dentry, task, NULL);
3176 	put_task_struct(task);
3177 out:
3178 	return result;
3179 }
3180 
3181 /*
3182  * Find the first task with tgid >= tgid
3183  *
3184  */
3185 struct tgid_iter {
3186 	unsigned int tgid;
3187 	struct task_struct *task;
3188 };
3189 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3190 {
3191 	struct pid *pid;
3192 
3193 	if (iter.task)
3194 		put_task_struct(iter.task);
3195 	rcu_read_lock();
3196 retry:
3197 	iter.task = NULL;
3198 	pid = find_ge_pid(iter.tgid, ns);
3199 	if (pid) {
3200 		iter.tgid = pid_nr_ns(pid, ns);
3201 		iter.task = pid_task(pid, PIDTYPE_PID);
3202 		/* What we to know is if the pid we have find is the
3203 		 * pid of a thread_group_leader.  Testing for task
3204 		 * being a thread_group_leader is the obvious thing
3205 		 * todo but there is a window when it fails, due to
3206 		 * the pid transfer logic in de_thread.
3207 		 *
3208 		 * So we perform the straight forward test of seeing
3209 		 * if the pid we have found is the pid of a thread
3210 		 * group leader, and don't worry if the task we have
3211 		 * found doesn't happen to be a thread group leader.
3212 		 * As we don't care in the case of readdir.
3213 		 */
3214 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3215 			iter.tgid += 1;
3216 			goto retry;
3217 		}
3218 		get_task_struct(iter.task);
3219 	}
3220 	rcu_read_unlock();
3221 	return iter;
3222 }
3223 
3224 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3225 
3226 /* for the /proc/ directory itself, after non-process stuff has been done */
3227 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3228 {
3229 	struct tgid_iter iter;
3230 	struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3231 	loff_t pos = ctx->pos;
3232 
3233 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3234 		return 0;
3235 
3236 	if (pos == TGID_OFFSET - 2) {
3237 		struct inode *inode = d_inode(ns->proc_self);
3238 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3239 			return 0;
3240 		ctx->pos = pos = pos + 1;
3241 	}
3242 	if (pos == TGID_OFFSET - 1) {
3243 		struct inode *inode = d_inode(ns->proc_thread_self);
3244 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3245 			return 0;
3246 		ctx->pos = pos = pos + 1;
3247 	}
3248 	iter.tgid = pos - TGID_OFFSET;
3249 	iter.task = NULL;
3250 	for (iter = next_tgid(ns, iter);
3251 	     iter.task;
3252 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3253 		char name[10 + 1];
3254 		int len;
3255 
3256 		cond_resched();
3257 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3258 			continue;
3259 
3260 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3261 		ctx->pos = iter.tgid + TGID_OFFSET;
3262 		if (!proc_fill_cache(file, ctx, name, len,
3263 				     proc_pid_instantiate, iter.task, NULL)) {
3264 			put_task_struct(iter.task);
3265 			return 0;
3266 		}
3267 	}
3268 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3269 	return 0;
3270 }
3271 
3272 /*
3273  * proc_tid_comm_permission is a special permission function exclusively
3274  * used for the node /proc/<pid>/task/<tid>/comm.
3275  * It bypasses generic permission checks in the case where a task of the same
3276  * task group attempts to access the node.
3277  * The rationale behind this is that glibc and bionic access this node for
3278  * cross thread naming (pthread_set/getname_np(!self)). However, if
3279  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3280  * which locks out the cross thread naming implementation.
3281  * This function makes sure that the node is always accessible for members of
3282  * same thread group.
3283  */
3284 static int proc_tid_comm_permission(struct inode *inode, int mask)
3285 {
3286 	bool is_same_tgroup;
3287 	struct task_struct *task;
3288 
3289 	task = get_proc_task(inode);
3290 	if (!task)
3291 		return -ESRCH;
3292 	is_same_tgroup = same_thread_group(current, task);
3293 	put_task_struct(task);
3294 
3295 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3296 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3297 		 * read or written by the members of the corresponding
3298 		 * thread group.
3299 		 */
3300 		return 0;
3301 	}
3302 
3303 	return generic_permission(inode, mask);
3304 }
3305 
3306 static const struct inode_operations proc_tid_comm_inode_operations = {
3307 		.permission = proc_tid_comm_permission,
3308 };
3309 
3310 /*
3311  * Tasks
3312  */
3313 static const struct pid_entry tid_base_stuff[] = {
3314 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3315 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3316 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3317 #ifdef CONFIG_NET
3318 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3319 #endif
3320 	REG("environ",   S_IRUSR, proc_environ_operations),
3321 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3322 	ONE("status",    S_IRUGO, proc_pid_status),
3323 	ONE("personality", S_IRUSR, proc_pid_personality),
3324 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3325 #ifdef CONFIG_SCHED_DEBUG
3326 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3327 #endif
3328 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3329 			 &proc_tid_comm_inode_operations,
3330 			 &proc_pid_set_comm_operations, {}),
3331 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3332 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3333 #endif
3334 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3335 	ONE("stat",      S_IRUGO, proc_tid_stat),
3336 	ONE("statm",     S_IRUGO, proc_pid_statm),
3337 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3338 #ifdef CONFIG_PROC_CHILDREN
3339 	REG("children",  S_IRUGO, proc_tid_children_operations),
3340 #endif
3341 #ifdef CONFIG_NUMA
3342 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3343 #endif
3344 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3345 	LNK("cwd",       proc_cwd_link),
3346 	LNK("root",      proc_root_link),
3347 	LNK("exe",       proc_exe_link),
3348 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3349 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3350 #ifdef CONFIG_PROC_PAGE_MONITOR
3351 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3352 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3353 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3354 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3355 #endif
3356 #ifdef CONFIG_SECURITY
3357 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3358 #endif
3359 #ifdef CONFIG_KALLSYMS
3360 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3361 #endif
3362 #ifdef CONFIG_STACKTRACE
3363 	ONE("stack",      S_IRUSR, proc_pid_stack),
3364 #endif
3365 #ifdef CONFIG_SCHED_INFO
3366 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3367 #endif
3368 #ifdef CONFIG_LATENCYTOP
3369 	REG("latency",  S_IRUGO, proc_lstats_operations),
3370 #endif
3371 #ifdef CONFIG_PROC_PID_CPUSET
3372 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3373 #endif
3374 #ifdef CONFIG_CGROUPS
3375 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3376 #endif
3377 	ONE("oom_score", S_IRUGO, proc_oom_score),
3378 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3379 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3380 #ifdef CONFIG_AUDITSYSCALL
3381 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3382 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3383 #endif
3384 #ifdef CONFIG_FAULT_INJECTION
3385 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3386 	REG("fail-nth", 0644, proc_fail_nth_operations),
3387 #endif
3388 #ifdef CONFIG_TASK_IO_ACCOUNTING
3389 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3390 #endif
3391 #ifdef CONFIG_USER_NS
3392 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3393 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3394 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3395 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3396 #endif
3397 #ifdef CONFIG_LIVEPATCH
3398 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3399 #endif
3400 };
3401 
3402 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3403 {
3404 	return proc_pident_readdir(file, ctx,
3405 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3406 }
3407 
3408 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3409 {
3410 	return proc_pident_lookup(dir, dentry,
3411 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3412 }
3413 
3414 static const struct file_operations proc_tid_base_operations = {
3415 	.read		= generic_read_dir,
3416 	.iterate_shared	= proc_tid_base_readdir,
3417 	.llseek		= generic_file_llseek,
3418 };
3419 
3420 static const struct inode_operations proc_tid_base_inode_operations = {
3421 	.lookup		= proc_tid_base_lookup,
3422 	.getattr	= pid_getattr,
3423 	.setattr	= proc_setattr,
3424 };
3425 
3426 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3427 	struct task_struct *task, const void *ptr)
3428 {
3429 	struct inode *inode;
3430 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3431 	if (!inode)
3432 		return ERR_PTR(-ENOENT);
3433 
3434 	inode->i_op = &proc_tid_base_inode_operations;
3435 	inode->i_fop = &proc_tid_base_operations;
3436 	inode->i_flags |= S_IMMUTABLE;
3437 
3438 	set_nlink(inode, nlink_tid);
3439 	pid_update_inode(task, inode);
3440 
3441 	d_set_d_op(dentry, &pid_dentry_operations);
3442 	return d_splice_alias(inode, dentry);
3443 }
3444 
3445 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3446 {
3447 	struct task_struct *task;
3448 	struct task_struct *leader = get_proc_task(dir);
3449 	unsigned tid;
3450 	struct pid_namespace *ns;
3451 	struct dentry *result = ERR_PTR(-ENOENT);
3452 
3453 	if (!leader)
3454 		goto out_no_task;
3455 
3456 	tid = name_to_int(&dentry->d_name);
3457 	if (tid == ~0U)
3458 		goto out;
3459 
3460 	ns = dentry->d_sb->s_fs_info;
3461 	rcu_read_lock();
3462 	task = find_task_by_pid_ns(tid, ns);
3463 	if (task)
3464 		get_task_struct(task);
3465 	rcu_read_unlock();
3466 	if (!task)
3467 		goto out;
3468 	if (!same_thread_group(leader, task))
3469 		goto out_drop_task;
3470 
3471 	result = proc_task_instantiate(dentry, task, NULL);
3472 out_drop_task:
3473 	put_task_struct(task);
3474 out:
3475 	put_task_struct(leader);
3476 out_no_task:
3477 	return result;
3478 }
3479 
3480 /*
3481  * Find the first tid of a thread group to return to user space.
3482  *
3483  * Usually this is just the thread group leader, but if the users
3484  * buffer was too small or there was a seek into the middle of the
3485  * directory we have more work todo.
3486  *
3487  * In the case of a short read we start with find_task_by_pid.
3488  *
3489  * In the case of a seek we start with the leader and walk nr
3490  * threads past it.
3491  */
3492 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3493 					struct pid_namespace *ns)
3494 {
3495 	struct task_struct *pos, *task;
3496 	unsigned long nr = f_pos;
3497 
3498 	if (nr != f_pos)	/* 32bit overflow? */
3499 		return NULL;
3500 
3501 	rcu_read_lock();
3502 	task = pid_task(pid, PIDTYPE_PID);
3503 	if (!task)
3504 		goto fail;
3505 
3506 	/* Attempt to start with the tid of a thread */
3507 	if (tid && nr) {
3508 		pos = find_task_by_pid_ns(tid, ns);
3509 		if (pos && same_thread_group(pos, task))
3510 			goto found;
3511 	}
3512 
3513 	/* If nr exceeds the number of threads there is nothing todo */
3514 	if (nr >= get_nr_threads(task))
3515 		goto fail;
3516 
3517 	/* If we haven't found our starting place yet start
3518 	 * with the leader and walk nr threads forward.
3519 	 */
3520 	pos = task = task->group_leader;
3521 	do {
3522 		if (!nr--)
3523 			goto found;
3524 	} while_each_thread(task, pos);
3525 fail:
3526 	pos = NULL;
3527 	goto out;
3528 found:
3529 	get_task_struct(pos);
3530 out:
3531 	rcu_read_unlock();
3532 	return pos;
3533 }
3534 
3535 /*
3536  * Find the next thread in the thread list.
3537  * Return NULL if there is an error or no next thread.
3538  *
3539  * The reference to the input task_struct is released.
3540  */
3541 static struct task_struct *next_tid(struct task_struct *start)
3542 {
3543 	struct task_struct *pos = NULL;
3544 	rcu_read_lock();
3545 	if (pid_alive(start)) {
3546 		pos = next_thread(start);
3547 		if (thread_group_leader(pos))
3548 			pos = NULL;
3549 		else
3550 			get_task_struct(pos);
3551 	}
3552 	rcu_read_unlock();
3553 	put_task_struct(start);
3554 	return pos;
3555 }
3556 
3557 /* for the /proc/TGID/task/ directories */
3558 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3559 {
3560 	struct inode *inode = file_inode(file);
3561 	struct task_struct *task;
3562 	struct pid_namespace *ns;
3563 	int tid;
3564 
3565 	if (proc_inode_is_dead(inode))
3566 		return -ENOENT;
3567 
3568 	if (!dir_emit_dots(file, ctx))
3569 		return 0;
3570 
3571 	/* f_version caches the tgid value that the last readdir call couldn't
3572 	 * return. lseek aka telldir automagically resets f_version to 0.
3573 	 */
3574 	ns = proc_pid_ns(inode);
3575 	tid = (int)file->f_version;
3576 	file->f_version = 0;
3577 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3578 	     task;
3579 	     task = next_tid(task), ctx->pos++) {
3580 		char name[10 + 1];
3581 		int len;
3582 		tid = task_pid_nr_ns(task, ns);
3583 		len = snprintf(name, sizeof(name), "%u", tid);
3584 		if (!proc_fill_cache(file, ctx, name, len,
3585 				proc_task_instantiate, task, NULL)) {
3586 			/* returning this tgid failed, save it as the first
3587 			 * pid for the next readir call */
3588 			file->f_version = (u64)tid;
3589 			put_task_struct(task);
3590 			break;
3591 		}
3592 	}
3593 
3594 	return 0;
3595 }
3596 
3597 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3598 			     u32 request_mask, unsigned int query_flags)
3599 {
3600 	struct inode *inode = d_inode(path->dentry);
3601 	struct task_struct *p = get_proc_task(inode);
3602 	generic_fillattr(inode, stat);
3603 
3604 	if (p) {
3605 		stat->nlink += get_nr_threads(p);
3606 		put_task_struct(p);
3607 	}
3608 
3609 	return 0;
3610 }
3611 
3612 static const struct inode_operations proc_task_inode_operations = {
3613 	.lookup		= proc_task_lookup,
3614 	.getattr	= proc_task_getattr,
3615 	.setattr	= proc_setattr,
3616 	.permission	= proc_pid_permission,
3617 };
3618 
3619 static const struct file_operations proc_task_operations = {
3620 	.read		= generic_read_dir,
3621 	.iterate_shared	= proc_task_readdir,
3622 	.llseek		= generic_file_llseek,
3623 };
3624 
3625 void __init set_proc_pid_nlink(void)
3626 {
3627 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3628 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3629 }
3630