1 /* -*- mode: c; c-basic-offset: 8; -*- 2 * vim: noexpandtab sw=8 ts=8 sts=0: 3 * 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public 17 * License along with this program; if not, write to the 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 19 * Boston, MA 021110-1307, USA. 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 #include <linux/highmem.h> 25 #include <linux/pagemap.h> 26 #include <asm/byteorder.h> 27 #include <linux/swap.h> 28 #include <linux/pipe_fs_i.h> 29 #include <linux/mpage.h> 30 #include <linux/quotaops.h> 31 #include <linux/blkdev.h> 32 #include <linux/uio.h> 33 34 #include <cluster/masklog.h> 35 36 #include "ocfs2.h" 37 38 #include "alloc.h" 39 #include "aops.h" 40 #include "dlmglue.h" 41 #include "extent_map.h" 42 #include "file.h" 43 #include "inode.h" 44 #include "journal.h" 45 #include "suballoc.h" 46 #include "super.h" 47 #include "symlink.h" 48 #include "refcounttree.h" 49 #include "ocfs2_trace.h" 50 51 #include "buffer_head_io.h" 52 #include "dir.h" 53 #include "namei.h" 54 #include "sysfile.h" 55 56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 57 struct buffer_head *bh_result, int create) 58 { 59 int err = -EIO; 60 int status; 61 struct ocfs2_dinode *fe = NULL; 62 struct buffer_head *bh = NULL; 63 struct buffer_head *buffer_cache_bh = NULL; 64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 65 void *kaddr; 66 67 trace_ocfs2_symlink_get_block( 68 (unsigned long long)OCFS2_I(inode)->ip_blkno, 69 (unsigned long long)iblock, bh_result, create); 70 71 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 72 73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 75 (unsigned long long)iblock); 76 goto bail; 77 } 78 79 status = ocfs2_read_inode_block(inode, &bh); 80 if (status < 0) { 81 mlog_errno(status); 82 goto bail; 83 } 84 fe = (struct ocfs2_dinode *) bh->b_data; 85 86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 87 le32_to_cpu(fe->i_clusters))) { 88 err = -ENOMEM; 89 mlog(ML_ERROR, "block offset is outside the allocated size: " 90 "%llu\n", (unsigned long long)iblock); 91 goto bail; 92 } 93 94 /* We don't use the page cache to create symlink data, so if 95 * need be, copy it over from the buffer cache. */ 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 98 iblock; 99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 100 if (!buffer_cache_bh) { 101 err = -ENOMEM; 102 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 103 goto bail; 104 } 105 106 /* we haven't locked out transactions, so a commit 107 * could've happened. Since we've got a reference on 108 * the bh, even if it commits while we're doing the 109 * copy, the data is still good. */ 110 if (buffer_jbd(buffer_cache_bh) 111 && ocfs2_inode_is_new(inode)) { 112 kaddr = kmap_atomic(bh_result->b_page); 113 if (!kaddr) { 114 mlog(ML_ERROR, "couldn't kmap!\n"); 115 goto bail; 116 } 117 memcpy(kaddr + (bh_result->b_size * iblock), 118 buffer_cache_bh->b_data, 119 bh_result->b_size); 120 kunmap_atomic(kaddr); 121 set_buffer_uptodate(bh_result); 122 } 123 brelse(buffer_cache_bh); 124 } 125 126 map_bh(bh_result, inode->i_sb, 127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 128 129 err = 0; 130 131 bail: 132 brelse(bh); 133 134 return err; 135 } 136 137 int ocfs2_get_block(struct inode *inode, sector_t iblock, 138 struct buffer_head *bh_result, int create) 139 { 140 int err = 0; 141 unsigned int ext_flags; 142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 143 u64 p_blkno, count, past_eof; 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 145 146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 147 (unsigned long long)iblock, bh_result, create); 148 149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 151 inode, inode->i_ino); 152 153 if (S_ISLNK(inode->i_mode)) { 154 /* this always does I/O for some reason. */ 155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 156 goto bail; 157 } 158 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 160 &ext_flags); 161 if (err) { 162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, 164 (unsigned long long)p_blkno); 165 goto bail; 166 } 167 168 if (max_blocks < count) 169 count = max_blocks; 170 171 /* 172 * ocfs2 never allocates in this function - the only time we 173 * need to use BH_New is when we're extending i_size on a file 174 * system which doesn't support holes, in which case BH_New 175 * allows __block_write_begin() to zero. 176 * 177 * If we see this on a sparse file system, then a truncate has 178 * raced us and removed the cluster. In this case, we clear 179 * the buffers dirty and uptodate bits and let the buffer code 180 * ignore it as a hole. 181 */ 182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 183 clear_buffer_dirty(bh_result); 184 clear_buffer_uptodate(bh_result); 185 goto bail; 186 } 187 188 /* Treat the unwritten extent as a hole for zeroing purposes. */ 189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 190 map_bh(bh_result, inode->i_sb, p_blkno); 191 192 bh_result->b_size = count << inode->i_blkbits; 193 194 if (!ocfs2_sparse_alloc(osb)) { 195 if (p_blkno == 0) { 196 err = -EIO; 197 mlog(ML_ERROR, 198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 199 (unsigned long long)iblock, 200 (unsigned long long)p_blkno, 201 (unsigned long long)OCFS2_I(inode)->ip_blkno); 202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 203 dump_stack(); 204 goto bail; 205 } 206 } 207 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 209 210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 211 (unsigned long long)past_eof); 212 if (create && (iblock >= past_eof)) 213 set_buffer_new(bh_result); 214 215 bail: 216 if (err < 0) 217 err = -EIO; 218 219 return err; 220 } 221 222 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 223 struct buffer_head *di_bh) 224 { 225 void *kaddr; 226 loff_t size; 227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 228 229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag", 231 (unsigned long long)OCFS2_I(inode)->ip_blkno); 232 return -EROFS; 233 } 234 235 size = i_size_read(inode); 236 237 if (size > PAGE_CACHE_SIZE || 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 239 ocfs2_error(inode->i_sb, 240 "Inode %llu has with inline data has bad size: %Lu", 241 (unsigned long long)OCFS2_I(inode)->ip_blkno, 242 (unsigned long long)size); 243 return -EROFS; 244 } 245 246 kaddr = kmap_atomic(page); 247 if (size) 248 memcpy(kaddr, di->id2.i_data.id_data, size); 249 /* Clear the remaining part of the page */ 250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size); 251 flush_dcache_page(page); 252 kunmap_atomic(kaddr); 253 254 SetPageUptodate(page); 255 256 return 0; 257 } 258 259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 260 { 261 int ret; 262 struct buffer_head *di_bh = NULL; 263 264 BUG_ON(!PageLocked(page)); 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 266 267 ret = ocfs2_read_inode_block(inode, &di_bh); 268 if (ret) { 269 mlog_errno(ret); 270 goto out; 271 } 272 273 ret = ocfs2_read_inline_data(inode, page, di_bh); 274 out: 275 unlock_page(page); 276 277 brelse(di_bh); 278 return ret; 279 } 280 281 static int ocfs2_readpage(struct file *file, struct page *page) 282 { 283 struct inode *inode = page->mapping->host; 284 struct ocfs2_inode_info *oi = OCFS2_I(inode); 285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT; 286 int ret, unlock = 1; 287 288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, 289 (page ? page->index : 0)); 290 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 292 if (ret != 0) { 293 if (ret == AOP_TRUNCATED_PAGE) 294 unlock = 0; 295 mlog_errno(ret); 296 goto out; 297 } 298 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 300 /* 301 * Unlock the page and cycle ip_alloc_sem so that we don't 302 * busyloop waiting for ip_alloc_sem to unlock 303 */ 304 ret = AOP_TRUNCATED_PAGE; 305 unlock_page(page); 306 unlock = 0; 307 down_read(&oi->ip_alloc_sem); 308 up_read(&oi->ip_alloc_sem); 309 goto out_inode_unlock; 310 } 311 312 /* 313 * i_size might have just been updated as we grabed the meta lock. We 314 * might now be discovering a truncate that hit on another node. 315 * block_read_full_page->get_block freaks out if it is asked to read 316 * beyond the end of a file, so we check here. Callers 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 318 * and notice that the page they just read isn't needed. 319 * 320 * XXX sys_readahead() seems to get that wrong? 321 */ 322 if (start >= i_size_read(inode)) { 323 zero_user(page, 0, PAGE_SIZE); 324 SetPageUptodate(page); 325 ret = 0; 326 goto out_alloc; 327 } 328 329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 330 ret = ocfs2_readpage_inline(inode, page); 331 else 332 ret = block_read_full_page(page, ocfs2_get_block); 333 unlock = 0; 334 335 out_alloc: 336 up_read(&OCFS2_I(inode)->ip_alloc_sem); 337 out_inode_unlock: 338 ocfs2_inode_unlock(inode, 0); 339 out: 340 if (unlock) 341 unlock_page(page); 342 return ret; 343 } 344 345 /* 346 * This is used only for read-ahead. Failures or difficult to handle 347 * situations are safe to ignore. 348 * 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists 350 * are quite large (243 extents on 4k blocks), so most inodes don't 351 * grow out to a tree. If need be, detecting boundary extents could 352 * trivially be added in a future version of ocfs2_get_block(). 353 */ 354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, 355 struct list_head *pages, unsigned nr_pages) 356 { 357 int ret, err = -EIO; 358 struct inode *inode = mapping->host; 359 struct ocfs2_inode_info *oi = OCFS2_I(inode); 360 loff_t start; 361 struct page *last; 362 363 /* 364 * Use the nonblocking flag for the dlm code to avoid page 365 * lock inversion, but don't bother with retrying. 366 */ 367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 368 if (ret) 369 return err; 370 371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 372 ocfs2_inode_unlock(inode, 0); 373 return err; 374 } 375 376 /* 377 * Don't bother with inline-data. There isn't anything 378 * to read-ahead in that case anyway... 379 */ 380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 381 goto out_unlock; 382 383 /* 384 * Check whether a remote node truncated this file - we just 385 * drop out in that case as it's not worth handling here. 386 */ 387 last = list_entry(pages->prev, struct page, lru); 388 start = (loff_t)last->index << PAGE_CACHE_SHIFT; 389 if (start >= i_size_read(inode)) 390 goto out_unlock; 391 392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 393 394 out_unlock: 395 up_read(&oi->ip_alloc_sem); 396 ocfs2_inode_unlock(inode, 0); 397 398 return err; 399 } 400 401 /* Note: Because we don't support holes, our allocation has 402 * already happened (allocation writes zeros to the file data) 403 * so we don't have to worry about ordered writes in 404 * ocfs2_writepage. 405 * 406 * ->writepage is called during the process of invalidating the page cache 407 * during blocked lock processing. It can't block on any cluster locks 408 * to during block mapping. It's relying on the fact that the block 409 * mapping can't have disappeared under the dirty pages that it is 410 * being asked to write back. 411 */ 412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 413 { 414 trace_ocfs2_writepage( 415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, 416 page->index); 417 418 return block_write_full_page(page, ocfs2_get_block, wbc); 419 } 420 421 /* Taken from ext3. We don't necessarily need the full blown 422 * functionality yet, but IMHO it's better to cut and paste the whole 423 * thing so we can avoid introducing our own bugs (and easily pick up 424 * their fixes when they happen) --Mark */ 425 int walk_page_buffers( handle_t *handle, 426 struct buffer_head *head, 427 unsigned from, 428 unsigned to, 429 int *partial, 430 int (*fn)( handle_t *handle, 431 struct buffer_head *bh)) 432 { 433 struct buffer_head *bh; 434 unsigned block_start, block_end; 435 unsigned blocksize = head->b_size; 436 int err, ret = 0; 437 struct buffer_head *next; 438 439 for ( bh = head, block_start = 0; 440 ret == 0 && (bh != head || !block_start); 441 block_start = block_end, bh = next) 442 { 443 next = bh->b_this_page; 444 block_end = block_start + blocksize; 445 if (block_end <= from || block_start >= to) { 446 if (partial && !buffer_uptodate(bh)) 447 *partial = 1; 448 continue; 449 } 450 err = (*fn)(handle, bh); 451 if (!ret) 452 ret = err; 453 } 454 return ret; 455 } 456 457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 458 { 459 sector_t status; 460 u64 p_blkno = 0; 461 int err = 0; 462 struct inode *inode = mapping->host; 463 464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 465 (unsigned long long)block); 466 467 /* We don't need to lock journal system files, since they aren't 468 * accessed concurrently from multiple nodes. 469 */ 470 if (!INODE_JOURNAL(inode)) { 471 err = ocfs2_inode_lock(inode, NULL, 0); 472 if (err) { 473 if (err != -ENOENT) 474 mlog_errno(err); 475 goto bail; 476 } 477 down_read(&OCFS2_I(inode)->ip_alloc_sem); 478 } 479 480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 482 NULL); 483 484 if (!INODE_JOURNAL(inode)) { 485 up_read(&OCFS2_I(inode)->ip_alloc_sem); 486 ocfs2_inode_unlock(inode, 0); 487 } 488 489 if (err) { 490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 491 (unsigned long long)block); 492 mlog_errno(err); 493 goto bail; 494 } 495 496 bail: 497 status = err ? 0 : p_blkno; 498 499 return status; 500 } 501 502 /* 503 * TODO: Make this into a generic get_blocks function. 504 * 505 * From do_direct_io in direct-io.c: 506 * "So what we do is to permit the ->get_blocks function to populate 507 * bh.b_size with the size of IO which is permitted at this offset and 508 * this i_blkbits." 509 * 510 * This function is called directly from get_more_blocks in direct-io.c. 511 * 512 * called like this: dio->get_blocks(dio->inode, fs_startblk, 513 * fs_count, map_bh, dio->rw == WRITE); 514 */ 515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock, 516 struct buffer_head *bh_result, int create) 517 { 518 int ret; 519 u32 cpos = 0; 520 int alloc_locked = 0; 521 u64 p_blkno, inode_blocks, contig_blocks; 522 unsigned int ext_flags; 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits; 525 unsigned long len = bh_result->b_size; 526 unsigned int clusters_to_alloc = 0; 527 528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock); 529 530 /* This function won't even be called if the request isn't all 531 * nicely aligned and of the right size, so there's no need 532 * for us to check any of that. */ 533 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 535 536 /* This figures out the size of the next contiguous block, and 537 * our logical offset */ 538 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 539 &contig_blocks, &ext_flags); 540 if (ret) { 541 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 542 (unsigned long long)iblock); 543 ret = -EIO; 544 goto bail; 545 } 546 547 /* We should already CoW the refcounted extent in case of create. */ 548 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED)); 549 550 /* allocate blocks if no p_blkno is found, and create == 1 */ 551 if (!p_blkno && create) { 552 ret = ocfs2_inode_lock(inode, NULL, 1); 553 if (ret < 0) { 554 mlog_errno(ret); 555 goto bail; 556 } 557 558 alloc_locked = 1; 559 560 /* fill hole, allocate blocks can't be larger than the size 561 * of the hole */ 562 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len); 563 if (clusters_to_alloc > contig_blocks) 564 clusters_to_alloc = contig_blocks; 565 566 /* allocate extent and insert them into the extent tree */ 567 ret = ocfs2_extend_allocation(inode, cpos, 568 clusters_to_alloc, 0); 569 if (ret < 0) { 570 mlog_errno(ret); 571 goto bail; 572 } 573 574 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, 575 &contig_blocks, &ext_flags); 576 if (ret < 0) { 577 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n", 578 (unsigned long long)iblock); 579 ret = -EIO; 580 goto bail; 581 } 582 } 583 584 /* 585 * get_more_blocks() expects us to describe a hole by clearing 586 * the mapped bit on bh_result(). 587 * 588 * Consider an unwritten extent as a hole. 589 */ 590 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 591 map_bh(bh_result, inode->i_sb, p_blkno); 592 else 593 clear_buffer_mapped(bh_result); 594 595 /* make sure we don't map more than max_blocks blocks here as 596 that's all the kernel will handle at this point. */ 597 if (max_blocks < contig_blocks) 598 contig_blocks = max_blocks; 599 bh_result->b_size = contig_blocks << blocksize_bits; 600 bail: 601 if (alloc_locked) 602 ocfs2_inode_unlock(inode, 1); 603 return ret; 604 } 605 606 /* 607 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 608 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 609 * to protect io on one node from truncation on another. 610 */ 611 static void ocfs2_dio_end_io(struct kiocb *iocb, 612 loff_t offset, 613 ssize_t bytes, 614 void *private) 615 { 616 struct inode *inode = file_inode(iocb->ki_filp); 617 int level; 618 619 /* this io's submitter should not have unlocked this before we could */ 620 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 621 622 if (ocfs2_iocb_is_sem_locked(iocb)) 623 ocfs2_iocb_clear_sem_locked(iocb); 624 625 if (ocfs2_iocb_is_unaligned_aio(iocb)) { 626 ocfs2_iocb_clear_unaligned_aio(iocb); 627 628 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio); 629 } 630 631 ocfs2_iocb_clear_rw_locked(iocb); 632 633 level = ocfs2_iocb_rw_locked_level(iocb); 634 ocfs2_rw_unlock(inode, level); 635 } 636 637 static int ocfs2_releasepage(struct page *page, gfp_t wait) 638 { 639 if (!page_has_buffers(page)) 640 return 0; 641 return try_to_free_buffers(page); 642 } 643 644 static int ocfs2_is_overwrite(struct ocfs2_super *osb, 645 struct inode *inode, loff_t offset) 646 { 647 int ret = 0; 648 u32 v_cpos = 0; 649 u32 p_cpos = 0; 650 unsigned int num_clusters = 0; 651 unsigned int ext_flags = 0; 652 653 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 654 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 655 &num_clusters, &ext_flags); 656 if (ret < 0) { 657 mlog_errno(ret); 658 return ret; 659 } 660 661 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 662 return 1; 663 664 return 0; 665 } 666 667 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb, 668 struct inode *inode, loff_t offset, 669 u64 zero_len, int cluster_align) 670 { 671 u32 p_cpos = 0; 672 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode)); 673 unsigned int num_clusters = 0; 674 unsigned int ext_flags = 0; 675 int ret = 0; 676 677 if (offset <= i_size_read(inode) || cluster_align) 678 return 0; 679 680 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters, 681 &ext_flags); 682 if (ret < 0) { 683 mlog_errno(ret); 684 return ret; 685 } 686 687 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 688 u64 s = i_size_read(inode); 689 sector_t sector = (p_cpos << (osb->s_clustersize_bits - 9)) + 690 (do_div(s, osb->s_clustersize) >> 9); 691 692 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector, 693 zero_len >> 9, GFP_NOFS, false); 694 if (ret < 0) 695 mlog_errno(ret); 696 } 697 698 return ret; 699 } 700 701 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb, 702 struct inode *inode, loff_t offset) 703 { 704 u64 zero_start, zero_len, total_zero_len; 705 u32 p_cpos = 0, clusters_to_add; 706 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode)); 707 unsigned int num_clusters = 0; 708 unsigned int ext_flags = 0; 709 u32 size_div, offset_div; 710 int ret = 0; 711 712 { 713 u64 o = offset; 714 u64 s = i_size_read(inode); 715 716 offset_div = do_div(o, osb->s_clustersize); 717 size_div = do_div(s, osb->s_clustersize); 718 } 719 720 if (offset <= i_size_read(inode)) 721 return 0; 722 723 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) - 724 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode)); 725 total_zero_len = offset - i_size_read(inode); 726 if (clusters_to_add) 727 total_zero_len -= offset_div; 728 729 /* Allocate clusters to fill out holes, and this is only needed 730 * when we add more than one clusters. Otherwise the cluster will 731 * be allocated during direct IO */ 732 if (clusters_to_add > 1) { 733 ret = ocfs2_extend_allocation(inode, 734 OCFS2_I(inode)->ip_clusters, 735 clusters_to_add - 1, 0); 736 if (ret) { 737 mlog_errno(ret); 738 goto out; 739 } 740 } 741 742 while (total_zero_len) { 743 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters, 744 &ext_flags); 745 if (ret < 0) { 746 mlog_errno(ret); 747 goto out; 748 } 749 750 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) + 751 size_div; 752 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) - 753 size_div; 754 zero_len = min(total_zero_len, zero_len); 755 756 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 757 ret = blkdev_issue_zeroout(osb->sb->s_bdev, 758 zero_start >> 9, zero_len >> 9, 759 GFP_NOFS, false); 760 if (ret < 0) { 761 mlog_errno(ret); 762 goto out; 763 } 764 } 765 766 total_zero_len -= zero_len; 767 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div); 768 769 /* Only at first iteration can be cluster not aligned. 770 * So set size_div to 0 for the rest */ 771 size_div = 0; 772 } 773 774 out: 775 return ret; 776 } 777 778 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb, 779 struct iov_iter *iter, 780 loff_t offset) 781 { 782 ssize_t ret = 0; 783 ssize_t written = 0; 784 bool orphaned = false; 785 int is_overwrite = 0; 786 struct file *file = iocb->ki_filp; 787 struct inode *inode = file_inode(file)->i_mapping->host; 788 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 789 struct buffer_head *di_bh = NULL; 790 size_t count = iter->count; 791 journal_t *journal = osb->journal->j_journal; 792 u64 zero_len_head, zero_len_tail; 793 int cluster_align_head, cluster_align_tail; 794 loff_t final_size = offset + count; 795 int append_write = offset >= i_size_read(inode) ? 1 : 0; 796 unsigned int num_clusters = 0; 797 unsigned int ext_flags = 0; 798 799 { 800 u64 o = offset; 801 u64 s = i_size_read(inode); 802 803 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits); 804 cluster_align_head = !zero_len_head; 805 806 zero_len_tail = osb->s_clustersize - 807 do_div(s, osb->s_clustersize); 808 if ((offset - i_size_read(inode)) < zero_len_tail) 809 zero_len_tail = offset - i_size_read(inode); 810 cluster_align_tail = !zero_len_tail; 811 } 812 813 /* 814 * when final_size > inode->i_size, inode->i_size will be 815 * updated after direct write, so add the inode to orphan 816 * dir first. 817 */ 818 if (final_size > i_size_read(inode)) { 819 ret = ocfs2_add_inode_to_orphan(osb, inode); 820 if (ret < 0) { 821 mlog_errno(ret); 822 goto out; 823 } 824 orphaned = true; 825 } 826 827 if (append_write) { 828 ret = ocfs2_inode_lock(inode, NULL, 1); 829 if (ret < 0) { 830 mlog_errno(ret); 831 goto clean_orphan; 832 } 833 834 /* zeroing out the previously allocated cluster tail 835 * that but not zeroed */ 836 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 837 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset, 838 zero_len_tail, cluster_align_tail); 839 else 840 ret = ocfs2_direct_IO_extend_no_holes(osb, inode, 841 offset); 842 if (ret < 0) { 843 mlog_errno(ret); 844 ocfs2_inode_unlock(inode, 1); 845 goto clean_orphan; 846 } 847 848 is_overwrite = ocfs2_is_overwrite(osb, inode, offset); 849 if (is_overwrite < 0) { 850 mlog_errno(is_overwrite); 851 ocfs2_inode_unlock(inode, 1); 852 goto clean_orphan; 853 } 854 855 ocfs2_inode_unlock(inode, 1); 856 } 857 858 written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev, 859 iter, offset, 860 ocfs2_direct_IO_get_blocks, 861 ocfs2_dio_end_io, NULL, 0); 862 if (unlikely(written < 0)) { 863 loff_t i_size = i_size_read(inode); 864 865 if (offset + count > i_size) { 866 ret = ocfs2_inode_lock(inode, &di_bh, 1); 867 if (ret < 0) { 868 mlog_errno(ret); 869 goto clean_orphan; 870 } 871 872 if (i_size == i_size_read(inode)) { 873 ret = ocfs2_truncate_file(inode, di_bh, 874 i_size); 875 if (ret < 0) { 876 if (ret != -ENOSPC) 877 mlog_errno(ret); 878 879 ocfs2_inode_unlock(inode, 1); 880 brelse(di_bh); 881 goto clean_orphan; 882 } 883 } 884 885 ocfs2_inode_unlock(inode, 1); 886 brelse(di_bh); 887 888 ret = jbd2_journal_force_commit(journal); 889 if (ret < 0) 890 mlog_errno(ret); 891 } 892 } else if (written > 0 && append_write && !is_overwrite && 893 !cluster_align_head) { 894 /* zeroing out the allocated cluster head */ 895 u32 p_cpos = 0; 896 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset); 897 898 ret = ocfs2_inode_lock(inode, NULL, 0); 899 if (ret < 0) { 900 mlog_errno(ret); 901 goto clean_orphan; 902 } 903 904 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, 905 &num_clusters, &ext_flags); 906 if (ret < 0) { 907 mlog_errno(ret); 908 ocfs2_inode_unlock(inode, 0); 909 goto clean_orphan; 910 } 911 912 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)); 913 914 ret = blkdev_issue_zeroout(osb->sb->s_bdev, 915 p_cpos << (osb->s_clustersize_bits - 9), 916 zero_len_head >> 9, GFP_NOFS, false); 917 if (ret < 0) 918 mlog_errno(ret); 919 920 ocfs2_inode_unlock(inode, 0); 921 } 922 923 clean_orphan: 924 if (orphaned) { 925 int tmp_ret; 926 int update_isize = written > 0 ? 1 : 0; 927 loff_t end = update_isize ? offset + written : 0; 928 929 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, 930 update_isize, end); 931 if (tmp_ret < 0) { 932 ret = tmp_ret; 933 goto out; 934 } 935 936 tmp_ret = jbd2_journal_force_commit(journal); 937 if (tmp_ret < 0) { 938 ret = tmp_ret; 939 mlog_errno(tmp_ret); 940 } 941 } 942 943 out: 944 if (ret >= 0) 945 ret = written; 946 return ret; 947 } 948 949 static ssize_t ocfs2_direct_IO(int rw, 950 struct kiocb *iocb, 951 struct iov_iter *iter, 952 loff_t offset) 953 { 954 struct file *file = iocb->ki_filp; 955 struct inode *inode = file_inode(file)->i_mapping->host; 956 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 957 int full_coherency = !(osb->s_mount_opt & 958 OCFS2_MOUNT_COHERENCY_BUFFERED); 959 960 /* 961 * Fallback to buffered I/O if we see an inode without 962 * extents. 963 */ 964 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 965 return 0; 966 967 /* Fallback to buffered I/O if we are appending and 968 * concurrent O_DIRECT writes are allowed. 969 */ 970 if (i_size_read(inode) <= offset && !full_coherency) 971 return 0; 972 973 if (rw == READ) 974 return __blockdev_direct_IO(rw, iocb, inode, 975 inode->i_sb->s_bdev, 976 iter, offset, 977 ocfs2_direct_IO_get_blocks, 978 ocfs2_dio_end_io, NULL, 0); 979 else 980 return ocfs2_direct_IO_write(iocb, iter, offset); 981 } 982 983 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 984 u32 cpos, 985 unsigned int *start, 986 unsigned int *end) 987 { 988 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE; 989 990 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) { 991 unsigned int cpp; 992 993 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits); 994 995 cluster_start = cpos % cpp; 996 cluster_start = cluster_start << osb->s_clustersize_bits; 997 998 cluster_end = cluster_start + osb->s_clustersize; 999 } 1000 1001 BUG_ON(cluster_start > PAGE_SIZE); 1002 BUG_ON(cluster_end > PAGE_SIZE); 1003 1004 if (start) 1005 *start = cluster_start; 1006 if (end) 1007 *end = cluster_end; 1008 } 1009 1010 /* 1011 * 'from' and 'to' are the region in the page to avoid zeroing. 1012 * 1013 * If pagesize > clustersize, this function will avoid zeroing outside 1014 * of the cluster boundary. 1015 * 1016 * from == to == 0 is code for "zero the entire cluster region" 1017 */ 1018 static void ocfs2_clear_page_regions(struct page *page, 1019 struct ocfs2_super *osb, u32 cpos, 1020 unsigned from, unsigned to) 1021 { 1022 void *kaddr; 1023 unsigned int cluster_start, cluster_end; 1024 1025 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 1026 1027 kaddr = kmap_atomic(page); 1028 1029 if (from || to) { 1030 if (from > cluster_start) 1031 memset(kaddr + cluster_start, 0, from - cluster_start); 1032 if (to < cluster_end) 1033 memset(kaddr + to, 0, cluster_end - to); 1034 } else { 1035 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 1036 } 1037 1038 kunmap_atomic(kaddr); 1039 } 1040 1041 /* 1042 * Nonsparse file systems fully allocate before we get to the write 1043 * code. This prevents ocfs2_write() from tagging the write as an 1044 * allocating one, which means ocfs2_map_page_blocks() might try to 1045 * read-in the blocks at the tail of our file. Avoid reading them by 1046 * testing i_size against each block offset. 1047 */ 1048 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 1049 unsigned int block_start) 1050 { 1051 u64 offset = page_offset(page) + block_start; 1052 1053 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1054 return 1; 1055 1056 if (i_size_read(inode) > offset) 1057 return 1; 1058 1059 return 0; 1060 } 1061 1062 /* 1063 * Some of this taken from __block_write_begin(). We already have our 1064 * mapping by now though, and the entire write will be allocating or 1065 * it won't, so not much need to use BH_New. 1066 * 1067 * This will also skip zeroing, which is handled externally. 1068 */ 1069 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 1070 struct inode *inode, unsigned int from, 1071 unsigned int to, int new) 1072 { 1073 int ret = 0; 1074 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 1075 unsigned int block_end, block_start; 1076 unsigned int bsize = 1 << inode->i_blkbits; 1077 1078 if (!page_has_buffers(page)) 1079 create_empty_buffers(page, bsize, 0); 1080 1081 head = page_buffers(page); 1082 for (bh = head, block_start = 0; bh != head || !block_start; 1083 bh = bh->b_this_page, block_start += bsize) { 1084 block_end = block_start + bsize; 1085 1086 clear_buffer_new(bh); 1087 1088 /* 1089 * Ignore blocks outside of our i/o range - 1090 * they may belong to unallocated clusters. 1091 */ 1092 if (block_start >= to || block_end <= from) { 1093 if (PageUptodate(page)) 1094 set_buffer_uptodate(bh); 1095 continue; 1096 } 1097 1098 /* 1099 * For an allocating write with cluster size >= page 1100 * size, we always write the entire page. 1101 */ 1102 if (new) 1103 set_buffer_new(bh); 1104 1105 if (!buffer_mapped(bh)) { 1106 map_bh(bh, inode->i_sb, *p_blkno); 1107 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 1108 } 1109 1110 if (PageUptodate(page)) { 1111 if (!buffer_uptodate(bh)) 1112 set_buffer_uptodate(bh); 1113 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1114 !buffer_new(bh) && 1115 ocfs2_should_read_blk(inode, page, block_start) && 1116 (block_start < from || block_end > to)) { 1117 ll_rw_block(READ, 1, &bh); 1118 *wait_bh++=bh; 1119 } 1120 1121 *p_blkno = *p_blkno + 1; 1122 } 1123 1124 /* 1125 * If we issued read requests - let them complete. 1126 */ 1127 while(wait_bh > wait) { 1128 wait_on_buffer(*--wait_bh); 1129 if (!buffer_uptodate(*wait_bh)) 1130 ret = -EIO; 1131 } 1132 1133 if (ret == 0 || !new) 1134 return ret; 1135 1136 /* 1137 * If we get -EIO above, zero out any newly allocated blocks 1138 * to avoid exposing stale data. 1139 */ 1140 bh = head; 1141 block_start = 0; 1142 do { 1143 block_end = block_start + bsize; 1144 if (block_end <= from) 1145 goto next_bh; 1146 if (block_start >= to) 1147 break; 1148 1149 zero_user(page, block_start, bh->b_size); 1150 set_buffer_uptodate(bh); 1151 mark_buffer_dirty(bh); 1152 1153 next_bh: 1154 block_start = block_end; 1155 bh = bh->b_this_page; 1156 } while (bh != head); 1157 1158 return ret; 1159 } 1160 1161 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 1162 #define OCFS2_MAX_CTXT_PAGES 1 1163 #else 1164 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE) 1165 #endif 1166 1167 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE) 1168 1169 /* 1170 * Describe the state of a single cluster to be written to. 1171 */ 1172 struct ocfs2_write_cluster_desc { 1173 u32 c_cpos; 1174 u32 c_phys; 1175 /* 1176 * Give this a unique field because c_phys eventually gets 1177 * filled. 1178 */ 1179 unsigned c_new; 1180 unsigned c_unwritten; 1181 unsigned c_needs_zero; 1182 }; 1183 1184 struct ocfs2_write_ctxt { 1185 /* Logical cluster position / len of write */ 1186 u32 w_cpos; 1187 u32 w_clen; 1188 1189 /* First cluster allocated in a nonsparse extend */ 1190 u32 w_first_new_cpos; 1191 1192 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 1193 1194 /* 1195 * This is true if page_size > cluster_size. 1196 * 1197 * It triggers a set of special cases during write which might 1198 * have to deal with allocating writes to partial pages. 1199 */ 1200 unsigned int w_large_pages; 1201 1202 /* 1203 * Pages involved in this write. 1204 * 1205 * w_target_page is the page being written to by the user. 1206 * 1207 * w_pages is an array of pages which always contains 1208 * w_target_page, and in the case of an allocating write with 1209 * page_size < cluster size, it will contain zero'd and mapped 1210 * pages adjacent to w_target_page which need to be written 1211 * out in so that future reads from that region will get 1212 * zero's. 1213 */ 1214 unsigned int w_num_pages; 1215 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 1216 struct page *w_target_page; 1217 1218 /* 1219 * w_target_locked is used for page_mkwrite path indicating no unlocking 1220 * against w_target_page in ocfs2_write_end_nolock. 1221 */ 1222 unsigned int w_target_locked:1; 1223 1224 /* 1225 * ocfs2_write_end() uses this to know what the real range to 1226 * write in the target should be. 1227 */ 1228 unsigned int w_target_from; 1229 unsigned int w_target_to; 1230 1231 /* 1232 * We could use journal_current_handle() but this is cleaner, 1233 * IMHO -Mark 1234 */ 1235 handle_t *w_handle; 1236 1237 struct buffer_head *w_di_bh; 1238 1239 struct ocfs2_cached_dealloc_ctxt w_dealloc; 1240 }; 1241 1242 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 1243 { 1244 int i; 1245 1246 for(i = 0; i < num_pages; i++) { 1247 if (pages[i]) { 1248 unlock_page(pages[i]); 1249 mark_page_accessed(pages[i]); 1250 page_cache_release(pages[i]); 1251 } 1252 } 1253 } 1254 1255 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 1256 { 1257 int i; 1258 1259 /* 1260 * w_target_locked is only set to true in the page_mkwrite() case. 1261 * The intent is to allow us to lock the target page from write_begin() 1262 * to write_end(). The caller must hold a ref on w_target_page. 1263 */ 1264 if (wc->w_target_locked) { 1265 BUG_ON(!wc->w_target_page); 1266 for (i = 0; i < wc->w_num_pages; i++) { 1267 if (wc->w_target_page == wc->w_pages[i]) { 1268 wc->w_pages[i] = NULL; 1269 break; 1270 } 1271 } 1272 mark_page_accessed(wc->w_target_page); 1273 page_cache_release(wc->w_target_page); 1274 } 1275 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 1276 } 1277 1278 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc) 1279 { 1280 ocfs2_unlock_pages(wc); 1281 brelse(wc->w_di_bh); 1282 kfree(wc); 1283 } 1284 1285 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 1286 struct ocfs2_super *osb, loff_t pos, 1287 unsigned len, struct buffer_head *di_bh) 1288 { 1289 u32 cend; 1290 struct ocfs2_write_ctxt *wc; 1291 1292 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 1293 if (!wc) 1294 return -ENOMEM; 1295 1296 wc->w_cpos = pos >> osb->s_clustersize_bits; 1297 wc->w_first_new_cpos = UINT_MAX; 1298 cend = (pos + len - 1) >> osb->s_clustersize_bits; 1299 wc->w_clen = cend - wc->w_cpos + 1; 1300 get_bh(di_bh); 1301 wc->w_di_bh = di_bh; 1302 1303 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) 1304 wc->w_large_pages = 1; 1305 else 1306 wc->w_large_pages = 0; 1307 1308 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 1309 1310 *wcp = wc; 1311 1312 return 0; 1313 } 1314 1315 /* 1316 * If a page has any new buffers, zero them out here, and mark them uptodate 1317 * and dirty so they'll be written out (in order to prevent uninitialised 1318 * block data from leaking). And clear the new bit. 1319 */ 1320 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1321 { 1322 unsigned int block_start, block_end; 1323 struct buffer_head *head, *bh; 1324 1325 BUG_ON(!PageLocked(page)); 1326 if (!page_has_buffers(page)) 1327 return; 1328 1329 bh = head = page_buffers(page); 1330 block_start = 0; 1331 do { 1332 block_end = block_start + bh->b_size; 1333 1334 if (buffer_new(bh)) { 1335 if (block_end > from && block_start < to) { 1336 if (!PageUptodate(page)) { 1337 unsigned start, end; 1338 1339 start = max(from, block_start); 1340 end = min(to, block_end); 1341 1342 zero_user_segment(page, start, end); 1343 set_buffer_uptodate(bh); 1344 } 1345 1346 clear_buffer_new(bh); 1347 mark_buffer_dirty(bh); 1348 } 1349 } 1350 1351 block_start = block_end; 1352 bh = bh->b_this_page; 1353 } while (bh != head); 1354 } 1355 1356 /* 1357 * Only called when we have a failure during allocating write to write 1358 * zero's to the newly allocated region. 1359 */ 1360 static void ocfs2_write_failure(struct inode *inode, 1361 struct ocfs2_write_ctxt *wc, 1362 loff_t user_pos, unsigned user_len) 1363 { 1364 int i; 1365 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1), 1366 to = user_pos + user_len; 1367 struct page *tmppage; 1368 1369 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 1370 1371 for(i = 0; i < wc->w_num_pages; i++) { 1372 tmppage = wc->w_pages[i]; 1373 1374 if (page_has_buffers(tmppage)) { 1375 if (ocfs2_should_order_data(inode)) 1376 ocfs2_jbd2_file_inode(wc->w_handle, inode); 1377 1378 block_commit_write(tmppage, from, to); 1379 } 1380 } 1381 } 1382 1383 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 1384 struct ocfs2_write_ctxt *wc, 1385 struct page *page, u32 cpos, 1386 loff_t user_pos, unsigned user_len, 1387 int new) 1388 { 1389 int ret; 1390 unsigned int map_from = 0, map_to = 0; 1391 unsigned int cluster_start, cluster_end; 1392 unsigned int user_data_from = 0, user_data_to = 0; 1393 1394 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 1395 &cluster_start, &cluster_end); 1396 1397 /* treat the write as new if the a hole/lseek spanned across 1398 * the page boundary. 1399 */ 1400 new = new | ((i_size_read(inode) <= page_offset(page)) && 1401 (page_offset(page) <= user_pos)); 1402 1403 if (page == wc->w_target_page) { 1404 map_from = user_pos & (PAGE_CACHE_SIZE - 1); 1405 map_to = map_from + user_len; 1406 1407 if (new) 1408 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1409 cluster_start, cluster_end, 1410 new); 1411 else 1412 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1413 map_from, map_to, new); 1414 if (ret) { 1415 mlog_errno(ret); 1416 goto out; 1417 } 1418 1419 user_data_from = map_from; 1420 user_data_to = map_to; 1421 if (new) { 1422 map_from = cluster_start; 1423 map_to = cluster_end; 1424 } 1425 } else { 1426 /* 1427 * If we haven't allocated the new page yet, we 1428 * shouldn't be writing it out without copying user 1429 * data. This is likely a math error from the caller. 1430 */ 1431 BUG_ON(!new); 1432 1433 map_from = cluster_start; 1434 map_to = cluster_end; 1435 1436 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 1437 cluster_start, cluster_end, new); 1438 if (ret) { 1439 mlog_errno(ret); 1440 goto out; 1441 } 1442 } 1443 1444 /* 1445 * Parts of newly allocated pages need to be zero'd. 1446 * 1447 * Above, we have also rewritten 'to' and 'from' - as far as 1448 * the rest of the function is concerned, the entire cluster 1449 * range inside of a page needs to be written. 1450 * 1451 * We can skip this if the page is up to date - it's already 1452 * been zero'd from being read in as a hole. 1453 */ 1454 if (new && !PageUptodate(page)) 1455 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1456 cpos, user_data_from, user_data_to); 1457 1458 flush_dcache_page(page); 1459 1460 out: 1461 return ret; 1462 } 1463 1464 /* 1465 * This function will only grab one clusters worth of pages. 1466 */ 1467 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1468 struct ocfs2_write_ctxt *wc, 1469 u32 cpos, loff_t user_pos, 1470 unsigned user_len, int new, 1471 struct page *mmap_page) 1472 { 1473 int ret = 0, i; 1474 unsigned long start, target_index, end_index, index; 1475 struct inode *inode = mapping->host; 1476 loff_t last_byte; 1477 1478 target_index = user_pos >> PAGE_CACHE_SHIFT; 1479 1480 /* 1481 * Figure out how many pages we'll be manipulating here. For 1482 * non allocating write, we just change the one 1483 * page. Otherwise, we'll need a whole clusters worth. If we're 1484 * writing past i_size, we only need enough pages to cover the 1485 * last page of the write. 1486 */ 1487 if (new) { 1488 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1489 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1490 /* 1491 * We need the index *past* the last page we could possibly 1492 * touch. This is the page past the end of the write or 1493 * i_size, whichever is greater. 1494 */ 1495 last_byte = max(user_pos + user_len, i_size_read(inode)); 1496 BUG_ON(last_byte < 1); 1497 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1; 1498 if ((start + wc->w_num_pages) > end_index) 1499 wc->w_num_pages = end_index - start; 1500 } else { 1501 wc->w_num_pages = 1; 1502 start = target_index; 1503 } 1504 1505 for(i = 0; i < wc->w_num_pages; i++) { 1506 index = start + i; 1507 1508 if (index == target_index && mmap_page) { 1509 /* 1510 * ocfs2_pagemkwrite() is a little different 1511 * and wants us to directly use the page 1512 * passed in. 1513 */ 1514 lock_page(mmap_page); 1515 1516 /* Exit and let the caller retry */ 1517 if (mmap_page->mapping != mapping) { 1518 WARN_ON(mmap_page->mapping); 1519 unlock_page(mmap_page); 1520 ret = -EAGAIN; 1521 goto out; 1522 } 1523 1524 page_cache_get(mmap_page); 1525 wc->w_pages[i] = mmap_page; 1526 wc->w_target_locked = true; 1527 } else { 1528 wc->w_pages[i] = find_or_create_page(mapping, index, 1529 GFP_NOFS); 1530 if (!wc->w_pages[i]) { 1531 ret = -ENOMEM; 1532 mlog_errno(ret); 1533 goto out; 1534 } 1535 } 1536 wait_for_stable_page(wc->w_pages[i]); 1537 1538 if (index == target_index) 1539 wc->w_target_page = wc->w_pages[i]; 1540 } 1541 out: 1542 if (ret) 1543 wc->w_target_locked = false; 1544 return ret; 1545 } 1546 1547 /* 1548 * Prepare a single cluster for write one cluster into the file. 1549 */ 1550 static int ocfs2_write_cluster(struct address_space *mapping, 1551 u32 phys, unsigned int unwritten, 1552 unsigned int should_zero, 1553 struct ocfs2_alloc_context *data_ac, 1554 struct ocfs2_alloc_context *meta_ac, 1555 struct ocfs2_write_ctxt *wc, u32 cpos, 1556 loff_t user_pos, unsigned user_len) 1557 { 1558 int ret, i, new; 1559 u64 v_blkno, p_blkno; 1560 struct inode *inode = mapping->host; 1561 struct ocfs2_extent_tree et; 1562 1563 new = phys == 0 ? 1 : 0; 1564 if (new) { 1565 u32 tmp_pos; 1566 1567 /* 1568 * This is safe to call with the page locks - it won't take 1569 * any additional semaphores or cluster locks. 1570 */ 1571 tmp_pos = cpos; 1572 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1573 &tmp_pos, 1, 0, wc->w_di_bh, 1574 wc->w_handle, data_ac, 1575 meta_ac, NULL); 1576 /* 1577 * This shouldn't happen because we must have already 1578 * calculated the correct meta data allocation required. The 1579 * internal tree allocation code should know how to increase 1580 * transaction credits itself. 1581 * 1582 * If need be, we could handle -EAGAIN for a 1583 * RESTART_TRANS here. 1584 */ 1585 mlog_bug_on_msg(ret == -EAGAIN, 1586 "Inode %llu: EAGAIN return during allocation.\n", 1587 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1588 if (ret < 0) { 1589 mlog_errno(ret); 1590 goto out; 1591 } 1592 } else if (unwritten) { 1593 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1594 wc->w_di_bh); 1595 ret = ocfs2_mark_extent_written(inode, &et, 1596 wc->w_handle, cpos, 1, phys, 1597 meta_ac, &wc->w_dealloc); 1598 if (ret < 0) { 1599 mlog_errno(ret); 1600 goto out; 1601 } 1602 } 1603 1604 if (should_zero) 1605 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos); 1606 else 1607 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits; 1608 1609 /* 1610 * The only reason this should fail is due to an inability to 1611 * find the extent added. 1612 */ 1613 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL, 1614 NULL); 1615 if (ret < 0) { 1616 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1617 "at logical block %llu", 1618 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1619 (unsigned long long)v_blkno); 1620 goto out; 1621 } 1622 1623 BUG_ON(p_blkno == 0); 1624 1625 for(i = 0; i < wc->w_num_pages; i++) { 1626 int tmpret; 1627 1628 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1629 wc->w_pages[i], cpos, 1630 user_pos, user_len, 1631 should_zero); 1632 if (tmpret) { 1633 mlog_errno(tmpret); 1634 if (ret == 0) 1635 ret = tmpret; 1636 } 1637 } 1638 1639 /* 1640 * We only have cleanup to do in case of allocating write. 1641 */ 1642 if (ret && new) 1643 ocfs2_write_failure(inode, wc, user_pos, user_len); 1644 1645 out: 1646 1647 return ret; 1648 } 1649 1650 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1651 struct ocfs2_alloc_context *data_ac, 1652 struct ocfs2_alloc_context *meta_ac, 1653 struct ocfs2_write_ctxt *wc, 1654 loff_t pos, unsigned len) 1655 { 1656 int ret, i; 1657 loff_t cluster_off; 1658 unsigned int local_len = len; 1659 struct ocfs2_write_cluster_desc *desc; 1660 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1661 1662 for (i = 0; i < wc->w_clen; i++) { 1663 desc = &wc->w_desc[i]; 1664 1665 /* 1666 * We have to make sure that the total write passed in 1667 * doesn't extend past a single cluster. 1668 */ 1669 local_len = len; 1670 cluster_off = pos & (osb->s_clustersize - 1); 1671 if ((cluster_off + local_len) > osb->s_clustersize) 1672 local_len = osb->s_clustersize - cluster_off; 1673 1674 ret = ocfs2_write_cluster(mapping, desc->c_phys, 1675 desc->c_unwritten, 1676 desc->c_needs_zero, 1677 data_ac, meta_ac, 1678 wc, desc->c_cpos, pos, local_len); 1679 if (ret) { 1680 mlog_errno(ret); 1681 goto out; 1682 } 1683 1684 len -= local_len; 1685 pos += local_len; 1686 } 1687 1688 ret = 0; 1689 out: 1690 return ret; 1691 } 1692 1693 /* 1694 * ocfs2_write_end() wants to know which parts of the target page it 1695 * should complete the write on. It's easiest to compute them ahead of 1696 * time when a more complete view of the write is available. 1697 */ 1698 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1699 struct ocfs2_write_ctxt *wc, 1700 loff_t pos, unsigned len, int alloc) 1701 { 1702 struct ocfs2_write_cluster_desc *desc; 1703 1704 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1); 1705 wc->w_target_to = wc->w_target_from + len; 1706 1707 if (alloc == 0) 1708 return; 1709 1710 /* 1711 * Allocating write - we may have different boundaries based 1712 * on page size and cluster size. 1713 * 1714 * NOTE: We can no longer compute one value from the other as 1715 * the actual write length and user provided length may be 1716 * different. 1717 */ 1718 1719 if (wc->w_large_pages) { 1720 /* 1721 * We only care about the 1st and last cluster within 1722 * our range and whether they should be zero'd or not. Either 1723 * value may be extended out to the start/end of a 1724 * newly allocated cluster. 1725 */ 1726 desc = &wc->w_desc[0]; 1727 if (desc->c_needs_zero) 1728 ocfs2_figure_cluster_boundaries(osb, 1729 desc->c_cpos, 1730 &wc->w_target_from, 1731 NULL); 1732 1733 desc = &wc->w_desc[wc->w_clen - 1]; 1734 if (desc->c_needs_zero) 1735 ocfs2_figure_cluster_boundaries(osb, 1736 desc->c_cpos, 1737 NULL, 1738 &wc->w_target_to); 1739 } else { 1740 wc->w_target_from = 0; 1741 wc->w_target_to = PAGE_CACHE_SIZE; 1742 } 1743 } 1744 1745 /* 1746 * Populate each single-cluster write descriptor in the write context 1747 * with information about the i/o to be done. 1748 * 1749 * Returns the number of clusters that will have to be allocated, as 1750 * well as a worst case estimate of the number of extent records that 1751 * would have to be created during a write to an unwritten region. 1752 */ 1753 static int ocfs2_populate_write_desc(struct inode *inode, 1754 struct ocfs2_write_ctxt *wc, 1755 unsigned int *clusters_to_alloc, 1756 unsigned int *extents_to_split) 1757 { 1758 int ret; 1759 struct ocfs2_write_cluster_desc *desc; 1760 unsigned int num_clusters = 0; 1761 unsigned int ext_flags = 0; 1762 u32 phys = 0; 1763 int i; 1764 1765 *clusters_to_alloc = 0; 1766 *extents_to_split = 0; 1767 1768 for (i = 0; i < wc->w_clen; i++) { 1769 desc = &wc->w_desc[i]; 1770 desc->c_cpos = wc->w_cpos + i; 1771 1772 if (num_clusters == 0) { 1773 /* 1774 * Need to look up the next extent record. 1775 */ 1776 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1777 &num_clusters, &ext_flags); 1778 if (ret) { 1779 mlog_errno(ret); 1780 goto out; 1781 } 1782 1783 /* We should already CoW the refcountd extent. */ 1784 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1785 1786 /* 1787 * Assume worst case - that we're writing in 1788 * the middle of the extent. 1789 * 1790 * We can assume that the write proceeds from 1791 * left to right, in which case the extent 1792 * insert code is smart enough to coalesce the 1793 * next splits into the previous records created. 1794 */ 1795 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1796 *extents_to_split = *extents_to_split + 2; 1797 } else if (phys) { 1798 /* 1799 * Only increment phys if it doesn't describe 1800 * a hole. 1801 */ 1802 phys++; 1803 } 1804 1805 /* 1806 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1807 * file that got extended. w_first_new_cpos tells us 1808 * where the newly allocated clusters are so we can 1809 * zero them. 1810 */ 1811 if (desc->c_cpos >= wc->w_first_new_cpos) { 1812 BUG_ON(phys == 0); 1813 desc->c_needs_zero = 1; 1814 } 1815 1816 desc->c_phys = phys; 1817 if (phys == 0) { 1818 desc->c_new = 1; 1819 desc->c_needs_zero = 1; 1820 *clusters_to_alloc = *clusters_to_alloc + 1; 1821 } 1822 1823 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1824 desc->c_unwritten = 1; 1825 desc->c_needs_zero = 1; 1826 } 1827 1828 num_clusters--; 1829 } 1830 1831 ret = 0; 1832 out: 1833 return ret; 1834 } 1835 1836 static int ocfs2_write_begin_inline(struct address_space *mapping, 1837 struct inode *inode, 1838 struct ocfs2_write_ctxt *wc) 1839 { 1840 int ret; 1841 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1842 struct page *page; 1843 handle_t *handle; 1844 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1845 1846 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1847 if (IS_ERR(handle)) { 1848 ret = PTR_ERR(handle); 1849 mlog_errno(ret); 1850 goto out; 1851 } 1852 1853 page = find_or_create_page(mapping, 0, GFP_NOFS); 1854 if (!page) { 1855 ocfs2_commit_trans(osb, handle); 1856 ret = -ENOMEM; 1857 mlog_errno(ret); 1858 goto out; 1859 } 1860 /* 1861 * If we don't set w_num_pages then this page won't get unlocked 1862 * and freed on cleanup of the write context. 1863 */ 1864 wc->w_pages[0] = wc->w_target_page = page; 1865 wc->w_num_pages = 1; 1866 1867 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1868 OCFS2_JOURNAL_ACCESS_WRITE); 1869 if (ret) { 1870 ocfs2_commit_trans(osb, handle); 1871 1872 mlog_errno(ret); 1873 goto out; 1874 } 1875 1876 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1877 ocfs2_set_inode_data_inline(inode, di); 1878 1879 if (!PageUptodate(page)) { 1880 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1881 if (ret) { 1882 ocfs2_commit_trans(osb, handle); 1883 1884 goto out; 1885 } 1886 } 1887 1888 wc->w_handle = handle; 1889 out: 1890 return ret; 1891 } 1892 1893 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1894 { 1895 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1896 1897 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1898 return 1; 1899 return 0; 1900 } 1901 1902 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1903 struct inode *inode, loff_t pos, 1904 unsigned len, struct page *mmap_page, 1905 struct ocfs2_write_ctxt *wc) 1906 { 1907 int ret, written = 0; 1908 loff_t end = pos + len; 1909 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1910 struct ocfs2_dinode *di = NULL; 1911 1912 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1913 len, (unsigned long long)pos, 1914 oi->ip_dyn_features); 1915 1916 /* 1917 * Handle inodes which already have inline data 1st. 1918 */ 1919 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1920 if (mmap_page == NULL && 1921 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1922 goto do_inline_write; 1923 1924 /* 1925 * The write won't fit - we have to give this inode an 1926 * inline extent list now. 1927 */ 1928 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1929 if (ret) 1930 mlog_errno(ret); 1931 goto out; 1932 } 1933 1934 /* 1935 * Check whether the inode can accept inline data. 1936 */ 1937 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1938 return 0; 1939 1940 /* 1941 * Check whether the write can fit. 1942 */ 1943 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1944 if (mmap_page || 1945 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1946 return 0; 1947 1948 do_inline_write: 1949 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1950 if (ret) { 1951 mlog_errno(ret); 1952 goto out; 1953 } 1954 1955 /* 1956 * This signals to the caller that the data can be written 1957 * inline. 1958 */ 1959 written = 1; 1960 out: 1961 return written ? written : ret; 1962 } 1963 1964 /* 1965 * This function only does anything for file systems which can't 1966 * handle sparse files. 1967 * 1968 * What we want to do here is fill in any hole between the current end 1969 * of allocation and the end of our write. That way the rest of the 1970 * write path can treat it as an non-allocating write, which has no 1971 * special case code for sparse/nonsparse files. 1972 */ 1973 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1974 struct buffer_head *di_bh, 1975 loff_t pos, unsigned len, 1976 struct ocfs2_write_ctxt *wc) 1977 { 1978 int ret; 1979 loff_t newsize = pos + len; 1980 1981 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1982 1983 if (newsize <= i_size_read(inode)) 1984 return 0; 1985 1986 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1987 if (ret) 1988 mlog_errno(ret); 1989 1990 wc->w_first_new_cpos = 1991 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1992 1993 return ret; 1994 } 1995 1996 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1997 loff_t pos) 1998 { 1999 int ret = 0; 2000 2001 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 2002 if (pos > i_size_read(inode)) 2003 ret = ocfs2_zero_extend(inode, di_bh, pos); 2004 2005 return ret; 2006 } 2007 2008 /* 2009 * Try to flush truncate logs if we can free enough clusters from it. 2010 * As for return value, "< 0" means error, "0" no space and "1" means 2011 * we have freed enough spaces and let the caller try to allocate again. 2012 */ 2013 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 2014 unsigned int needed) 2015 { 2016 tid_t target; 2017 int ret = 0; 2018 unsigned int truncated_clusters; 2019 2020 mutex_lock(&osb->osb_tl_inode->i_mutex); 2021 truncated_clusters = osb->truncated_clusters; 2022 mutex_unlock(&osb->osb_tl_inode->i_mutex); 2023 2024 /* 2025 * Check whether we can succeed in allocating if we free 2026 * the truncate log. 2027 */ 2028 if (truncated_clusters < needed) 2029 goto out; 2030 2031 ret = ocfs2_flush_truncate_log(osb); 2032 if (ret) { 2033 mlog_errno(ret); 2034 goto out; 2035 } 2036 2037 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) { 2038 jbd2_log_wait_commit(osb->journal->j_journal, target); 2039 ret = 1; 2040 } 2041 out: 2042 return ret; 2043 } 2044 2045 int ocfs2_write_begin_nolock(struct file *filp, 2046 struct address_space *mapping, 2047 loff_t pos, unsigned len, unsigned flags, 2048 struct page **pagep, void **fsdata, 2049 struct buffer_head *di_bh, struct page *mmap_page) 2050 { 2051 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 2052 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 2053 struct ocfs2_write_ctxt *wc; 2054 struct inode *inode = mapping->host; 2055 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2056 struct ocfs2_dinode *di; 2057 struct ocfs2_alloc_context *data_ac = NULL; 2058 struct ocfs2_alloc_context *meta_ac = NULL; 2059 handle_t *handle; 2060 struct ocfs2_extent_tree et; 2061 int try_free = 1, ret1; 2062 2063 try_again: 2064 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh); 2065 if (ret) { 2066 mlog_errno(ret); 2067 return ret; 2068 } 2069 2070 if (ocfs2_supports_inline_data(osb)) { 2071 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 2072 mmap_page, wc); 2073 if (ret == 1) { 2074 ret = 0; 2075 goto success; 2076 } 2077 if (ret < 0) { 2078 mlog_errno(ret); 2079 goto out; 2080 } 2081 } 2082 2083 if (ocfs2_sparse_alloc(osb)) 2084 ret = ocfs2_zero_tail(inode, di_bh, pos); 2085 else 2086 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len, 2087 wc); 2088 if (ret) { 2089 mlog_errno(ret); 2090 goto out; 2091 } 2092 2093 ret = ocfs2_check_range_for_refcount(inode, pos, len); 2094 if (ret < 0) { 2095 mlog_errno(ret); 2096 goto out; 2097 } else if (ret == 1) { 2098 clusters_need = wc->w_clen; 2099 ret = ocfs2_refcount_cow(inode, di_bh, 2100 wc->w_cpos, wc->w_clen, UINT_MAX); 2101 if (ret) { 2102 mlog_errno(ret); 2103 goto out; 2104 } 2105 } 2106 2107 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 2108 &extents_to_split); 2109 if (ret) { 2110 mlog_errno(ret); 2111 goto out; 2112 } 2113 clusters_need += clusters_to_alloc; 2114 2115 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2116 2117 trace_ocfs2_write_begin_nolock( 2118 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2119 (long long)i_size_read(inode), 2120 le32_to_cpu(di->i_clusters), 2121 pos, len, flags, mmap_page, 2122 clusters_to_alloc, extents_to_split); 2123 2124 /* 2125 * We set w_target_from, w_target_to here so that 2126 * ocfs2_write_end() knows which range in the target page to 2127 * write out. An allocation requires that we write the entire 2128 * cluster range. 2129 */ 2130 if (clusters_to_alloc || extents_to_split) { 2131 /* 2132 * XXX: We are stretching the limits of 2133 * ocfs2_lock_allocators(). It greatly over-estimates 2134 * the work to be done. 2135 */ 2136 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 2137 wc->w_di_bh); 2138 ret = ocfs2_lock_allocators(inode, &et, 2139 clusters_to_alloc, extents_to_split, 2140 &data_ac, &meta_ac); 2141 if (ret) { 2142 mlog_errno(ret); 2143 goto out; 2144 } 2145 2146 if (data_ac) 2147 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 2148 2149 credits = ocfs2_calc_extend_credits(inode->i_sb, 2150 &di->id2.i_list); 2151 2152 } 2153 2154 /* 2155 * We have to zero sparse allocated clusters, unwritten extent clusters, 2156 * and non-sparse clusters we just extended. For non-sparse writes, 2157 * we know zeros will only be needed in the first and/or last cluster. 2158 */ 2159 if (clusters_to_alloc || extents_to_split || 2160 (wc->w_clen && (wc->w_desc[0].c_needs_zero || 2161 wc->w_desc[wc->w_clen - 1].c_needs_zero))) 2162 cluster_of_pages = 1; 2163 else 2164 cluster_of_pages = 0; 2165 2166 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 2167 2168 handle = ocfs2_start_trans(osb, credits); 2169 if (IS_ERR(handle)) { 2170 ret = PTR_ERR(handle); 2171 mlog_errno(ret); 2172 goto out; 2173 } 2174 2175 wc->w_handle = handle; 2176 2177 if (clusters_to_alloc) { 2178 ret = dquot_alloc_space_nodirty(inode, 2179 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2180 if (ret) 2181 goto out_commit; 2182 } 2183 /* 2184 * We don't want this to fail in ocfs2_write_end(), so do it 2185 * here. 2186 */ 2187 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 2188 OCFS2_JOURNAL_ACCESS_WRITE); 2189 if (ret) { 2190 mlog_errno(ret); 2191 goto out_quota; 2192 } 2193 2194 /* 2195 * Fill our page array first. That way we've grabbed enough so 2196 * that we can zero and flush if we error after adding the 2197 * extent. 2198 */ 2199 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 2200 cluster_of_pages, mmap_page); 2201 if (ret && ret != -EAGAIN) { 2202 mlog_errno(ret); 2203 goto out_quota; 2204 } 2205 2206 /* 2207 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 2208 * the target page. In this case, we exit with no error and no target 2209 * page. This will trigger the caller, page_mkwrite(), to re-try 2210 * the operation. 2211 */ 2212 if (ret == -EAGAIN) { 2213 BUG_ON(wc->w_target_page); 2214 ret = 0; 2215 goto out_quota; 2216 } 2217 2218 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 2219 len); 2220 if (ret) { 2221 mlog_errno(ret); 2222 goto out_quota; 2223 } 2224 2225 if (data_ac) 2226 ocfs2_free_alloc_context(data_ac); 2227 if (meta_ac) 2228 ocfs2_free_alloc_context(meta_ac); 2229 2230 success: 2231 *pagep = wc->w_target_page; 2232 *fsdata = wc; 2233 return 0; 2234 out_quota: 2235 if (clusters_to_alloc) 2236 dquot_free_space(inode, 2237 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 2238 out_commit: 2239 ocfs2_commit_trans(osb, handle); 2240 2241 out: 2242 ocfs2_free_write_ctxt(wc); 2243 2244 if (data_ac) { 2245 ocfs2_free_alloc_context(data_ac); 2246 data_ac = NULL; 2247 } 2248 if (meta_ac) { 2249 ocfs2_free_alloc_context(meta_ac); 2250 meta_ac = NULL; 2251 } 2252 2253 if (ret == -ENOSPC && try_free) { 2254 /* 2255 * Try to free some truncate log so that we can have enough 2256 * clusters to allocate. 2257 */ 2258 try_free = 0; 2259 2260 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 2261 if (ret1 == 1) 2262 goto try_again; 2263 2264 if (ret1 < 0) 2265 mlog_errno(ret1); 2266 } 2267 2268 return ret; 2269 } 2270 2271 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 2272 loff_t pos, unsigned len, unsigned flags, 2273 struct page **pagep, void **fsdata) 2274 { 2275 int ret; 2276 struct buffer_head *di_bh = NULL; 2277 struct inode *inode = mapping->host; 2278 2279 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2280 if (ret) { 2281 mlog_errno(ret); 2282 return ret; 2283 } 2284 2285 /* 2286 * Take alloc sem here to prevent concurrent lookups. That way 2287 * the mapping, zeroing and tree manipulation within 2288 * ocfs2_write() will be safe against ->readpage(). This 2289 * should also serve to lock out allocation from a shared 2290 * writeable region. 2291 */ 2292 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2293 2294 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep, 2295 fsdata, di_bh, NULL); 2296 if (ret) { 2297 mlog_errno(ret); 2298 goto out_fail; 2299 } 2300 2301 brelse(di_bh); 2302 2303 return 0; 2304 2305 out_fail: 2306 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2307 2308 brelse(di_bh); 2309 ocfs2_inode_unlock(inode, 1); 2310 2311 return ret; 2312 } 2313 2314 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 2315 unsigned len, unsigned *copied, 2316 struct ocfs2_dinode *di, 2317 struct ocfs2_write_ctxt *wc) 2318 { 2319 void *kaddr; 2320 2321 if (unlikely(*copied < len)) { 2322 if (!PageUptodate(wc->w_target_page)) { 2323 *copied = 0; 2324 return; 2325 } 2326 } 2327 2328 kaddr = kmap_atomic(wc->w_target_page); 2329 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 2330 kunmap_atomic(kaddr); 2331 2332 trace_ocfs2_write_end_inline( 2333 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2334 (unsigned long long)pos, *copied, 2335 le16_to_cpu(di->id2.i_data.id_count), 2336 le16_to_cpu(di->i_dyn_features)); 2337 } 2338 2339 int ocfs2_write_end_nolock(struct address_space *mapping, 2340 loff_t pos, unsigned len, unsigned copied, 2341 struct page *page, void *fsdata) 2342 { 2343 int i; 2344 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1); 2345 struct inode *inode = mapping->host; 2346 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2347 struct ocfs2_write_ctxt *wc = fsdata; 2348 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 2349 handle_t *handle = wc->w_handle; 2350 struct page *tmppage; 2351 2352 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 2353 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 2354 goto out_write_size; 2355 } 2356 2357 if (unlikely(copied < len)) { 2358 if (!PageUptodate(wc->w_target_page)) 2359 copied = 0; 2360 2361 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 2362 start+len); 2363 } 2364 flush_dcache_page(wc->w_target_page); 2365 2366 for(i = 0; i < wc->w_num_pages; i++) { 2367 tmppage = wc->w_pages[i]; 2368 2369 if (tmppage == wc->w_target_page) { 2370 from = wc->w_target_from; 2371 to = wc->w_target_to; 2372 2373 BUG_ON(from > PAGE_CACHE_SIZE || 2374 to > PAGE_CACHE_SIZE || 2375 to < from); 2376 } else { 2377 /* 2378 * Pages adjacent to the target (if any) imply 2379 * a hole-filling write in which case we want 2380 * to flush their entire range. 2381 */ 2382 from = 0; 2383 to = PAGE_CACHE_SIZE; 2384 } 2385 2386 if (page_has_buffers(tmppage)) { 2387 if (ocfs2_should_order_data(inode)) 2388 ocfs2_jbd2_file_inode(wc->w_handle, inode); 2389 block_commit_write(tmppage, from, to); 2390 } 2391 } 2392 2393 out_write_size: 2394 pos += copied; 2395 if (pos > i_size_read(inode)) { 2396 i_size_write(inode, pos); 2397 mark_inode_dirty(inode); 2398 } 2399 inode->i_blocks = ocfs2_inode_sector_count(inode); 2400 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2401 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2402 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2403 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2404 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2405 ocfs2_journal_dirty(handle, wc->w_di_bh); 2406 2407 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2408 * lock, or it will cause a deadlock since journal commit threads holds 2409 * this lock and will ask for the page lock when flushing the data. 2410 * put it here to preserve the unlock order. 2411 */ 2412 ocfs2_unlock_pages(wc); 2413 2414 ocfs2_commit_trans(osb, handle); 2415 2416 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2417 2418 brelse(wc->w_di_bh); 2419 kfree(wc); 2420 2421 return copied; 2422 } 2423 2424 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2425 loff_t pos, unsigned len, unsigned copied, 2426 struct page *page, void *fsdata) 2427 { 2428 int ret; 2429 struct inode *inode = mapping->host; 2430 2431 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata); 2432 2433 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2434 ocfs2_inode_unlock(inode, 1); 2435 2436 return ret; 2437 } 2438 2439 const struct address_space_operations ocfs2_aops = { 2440 .readpage = ocfs2_readpage, 2441 .readpages = ocfs2_readpages, 2442 .writepage = ocfs2_writepage, 2443 .write_begin = ocfs2_write_begin, 2444 .write_end = ocfs2_write_end, 2445 .bmap = ocfs2_bmap, 2446 .direct_IO = ocfs2_direct_IO, 2447 .invalidatepage = block_invalidatepage, 2448 .releasepage = ocfs2_releasepage, 2449 .migratepage = buffer_migrate_page, 2450 .is_partially_uptodate = block_is_partially_uptodate, 2451 .error_remove_page = generic_error_remove_page, 2452 }; 2453