xref: /linux/fs/ocfs2/aops.c (revision 9d796e66230205cd3366f5660387bd9ecca9d336)
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33 
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50 
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55 
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 				   struct buffer_head *bh_result, int create)
58 {
59 	int err = -EIO;
60 	int status;
61 	struct ocfs2_dinode *fe = NULL;
62 	struct buffer_head *bh = NULL;
63 	struct buffer_head *buffer_cache_bh = NULL;
64 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 	void *kaddr;
66 
67 	trace_ocfs2_symlink_get_block(
68 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
69 			(unsigned long long)iblock, bh_result, create);
70 
71 	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72 
73 	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 		     (unsigned long long)iblock);
76 		goto bail;
77 	}
78 
79 	status = ocfs2_read_inode_block(inode, &bh);
80 	if (status < 0) {
81 		mlog_errno(status);
82 		goto bail;
83 	}
84 	fe = (struct ocfs2_dinode *) bh->b_data;
85 
86 	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 						    le32_to_cpu(fe->i_clusters))) {
88 		err = -ENOMEM;
89 		mlog(ML_ERROR, "block offset is outside the allocated size: "
90 		     "%llu\n", (unsigned long long)iblock);
91 		goto bail;
92 	}
93 
94 	/* We don't use the page cache to create symlink data, so if
95 	 * need be, copy it over from the buffer cache. */
96 	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 			    iblock;
99 		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 		if (!buffer_cache_bh) {
101 			err = -ENOMEM;
102 			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 			goto bail;
104 		}
105 
106 		/* we haven't locked out transactions, so a commit
107 		 * could've happened. Since we've got a reference on
108 		 * the bh, even if it commits while we're doing the
109 		 * copy, the data is still good. */
110 		if (buffer_jbd(buffer_cache_bh)
111 		    && ocfs2_inode_is_new(inode)) {
112 			kaddr = kmap_atomic(bh_result->b_page);
113 			if (!kaddr) {
114 				mlog(ML_ERROR, "couldn't kmap!\n");
115 				goto bail;
116 			}
117 			memcpy(kaddr + (bh_result->b_size * iblock),
118 			       buffer_cache_bh->b_data,
119 			       bh_result->b_size);
120 			kunmap_atomic(kaddr);
121 			set_buffer_uptodate(bh_result);
122 		}
123 		brelse(buffer_cache_bh);
124 	}
125 
126 	map_bh(bh_result, inode->i_sb,
127 	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128 
129 	err = 0;
130 
131 bail:
132 	brelse(bh);
133 
134 	return err;
135 }
136 
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 		    struct buffer_head *bh_result, int create)
139 {
140 	int err = 0;
141 	unsigned int ext_flags;
142 	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 	u64 p_blkno, count, past_eof;
144 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 
146 	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 			      (unsigned long long)iblock, bh_result, create);
148 
149 	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 		     inode, inode->i_ino);
152 
153 	if (S_ISLNK(inode->i_mode)) {
154 		/* this always does I/O for some reason. */
155 		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 		goto bail;
157 	}
158 
159 	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160 					  &ext_flags);
161 	if (err) {
162 		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163 		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 		     (unsigned long long)p_blkno);
165 		goto bail;
166 	}
167 
168 	if (max_blocks < count)
169 		count = max_blocks;
170 
171 	/*
172 	 * ocfs2 never allocates in this function - the only time we
173 	 * need to use BH_New is when we're extending i_size on a file
174 	 * system which doesn't support holes, in which case BH_New
175 	 * allows __block_write_begin() to zero.
176 	 *
177 	 * If we see this on a sparse file system, then a truncate has
178 	 * raced us and removed the cluster. In this case, we clear
179 	 * the buffers dirty and uptodate bits and let the buffer code
180 	 * ignore it as a hole.
181 	 */
182 	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 		clear_buffer_dirty(bh_result);
184 		clear_buffer_uptodate(bh_result);
185 		goto bail;
186 	}
187 
188 	/* Treat the unwritten extent as a hole for zeroing purposes. */
189 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190 		map_bh(bh_result, inode->i_sb, p_blkno);
191 
192 	bh_result->b_size = count << inode->i_blkbits;
193 
194 	if (!ocfs2_sparse_alloc(osb)) {
195 		if (p_blkno == 0) {
196 			err = -EIO;
197 			mlog(ML_ERROR,
198 			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 			     (unsigned long long)iblock,
200 			     (unsigned long long)p_blkno,
201 			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 			dump_stack();
204 			goto bail;
205 		}
206 	}
207 
208 	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209 
210 	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 				  (unsigned long long)past_eof);
212 	if (create && (iblock >= past_eof))
213 		set_buffer_new(bh_result);
214 
215 bail:
216 	if (err < 0)
217 		err = -EIO;
218 
219 	return err;
220 }
221 
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 			   struct buffer_head *di_bh)
224 {
225 	void *kaddr;
226 	loff_t size;
227 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228 
229 	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 		return -EROFS;
233 	}
234 
235 	size = i_size_read(inode);
236 
237 	if (size > PAGE_CACHE_SIZE ||
238 	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239 		ocfs2_error(inode->i_sb,
240 			    "Inode %llu has with inline data has bad size: %Lu",
241 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 			    (unsigned long long)size);
243 		return -EROFS;
244 	}
245 
246 	kaddr = kmap_atomic(page);
247 	if (size)
248 		memcpy(kaddr, di->id2.i_data.id_data, size);
249 	/* Clear the remaining part of the page */
250 	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 	flush_dcache_page(page);
252 	kunmap_atomic(kaddr);
253 
254 	SetPageUptodate(page);
255 
256 	return 0;
257 }
258 
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261 	int ret;
262 	struct buffer_head *di_bh = NULL;
263 
264 	BUG_ON(!PageLocked(page));
265 	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266 
267 	ret = ocfs2_read_inode_block(inode, &di_bh);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out;
271 	}
272 
273 	ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275 	unlock_page(page);
276 
277 	brelse(di_bh);
278 	return ret;
279 }
280 
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283 	struct inode *inode = page->mapping->host;
284 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
285 	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 	int ret, unlock = 1;
287 
288 	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 			     (page ? page->index : 0));
290 
291 	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292 	if (ret != 0) {
293 		if (ret == AOP_TRUNCATED_PAGE)
294 			unlock = 0;
295 		mlog_errno(ret);
296 		goto out;
297 	}
298 
299 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300 		/*
301 		 * Unlock the page and cycle ip_alloc_sem so that we don't
302 		 * busyloop waiting for ip_alloc_sem to unlock
303 		 */
304 		ret = AOP_TRUNCATED_PAGE;
305 		unlock_page(page);
306 		unlock = 0;
307 		down_read(&oi->ip_alloc_sem);
308 		up_read(&oi->ip_alloc_sem);
309 		goto out_inode_unlock;
310 	}
311 
312 	/*
313 	 * i_size might have just been updated as we grabed the meta lock.  We
314 	 * might now be discovering a truncate that hit on another node.
315 	 * block_read_full_page->get_block freaks out if it is asked to read
316 	 * beyond the end of a file, so we check here.  Callers
317 	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 	 * and notice that the page they just read isn't needed.
319 	 *
320 	 * XXX sys_readahead() seems to get that wrong?
321 	 */
322 	if (start >= i_size_read(inode)) {
323 		zero_user(page, 0, PAGE_SIZE);
324 		SetPageUptodate(page);
325 		ret = 0;
326 		goto out_alloc;
327 	}
328 
329 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 		ret = ocfs2_readpage_inline(inode, page);
331 	else
332 		ret = block_read_full_page(page, ocfs2_get_block);
333 	unlock = 0;
334 
335 out_alloc:
336 	up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338 	ocfs2_inode_unlock(inode, 0);
339 out:
340 	if (unlock)
341 		unlock_page(page);
342 	return ret;
343 }
344 
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 			   struct list_head *pages, unsigned nr_pages)
356 {
357 	int ret, err = -EIO;
358 	struct inode *inode = mapping->host;
359 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 	loff_t start;
361 	struct page *last;
362 
363 	/*
364 	 * Use the nonblocking flag for the dlm code to avoid page
365 	 * lock inversion, but don't bother with retrying.
366 	 */
367 	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 	if (ret)
369 		return err;
370 
371 	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 		ocfs2_inode_unlock(inode, 0);
373 		return err;
374 	}
375 
376 	/*
377 	 * Don't bother with inline-data. There isn't anything
378 	 * to read-ahead in that case anyway...
379 	 */
380 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 		goto out_unlock;
382 
383 	/*
384 	 * Check whether a remote node truncated this file - we just
385 	 * drop out in that case as it's not worth handling here.
386 	 */
387 	last = list_entry(pages->prev, struct page, lru);
388 	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 	if (start >= i_size_read(inode))
390 		goto out_unlock;
391 
392 	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393 
394 out_unlock:
395 	up_read(&oi->ip_alloc_sem);
396 	ocfs2_inode_unlock(inode, 0);
397 
398 	return err;
399 }
400 
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414 	trace_ocfs2_writepage(
415 		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 		page->index);
417 
418 	return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420 
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(	handle_t *handle,
426 			struct buffer_head *head,
427 			unsigned from,
428 			unsigned to,
429 			int *partial,
430 			int (*fn)(	handle_t *handle,
431 					struct buffer_head *bh))
432 {
433 	struct buffer_head *bh;
434 	unsigned block_start, block_end;
435 	unsigned blocksize = head->b_size;
436 	int err, ret = 0;
437 	struct buffer_head *next;
438 
439 	for (	bh = head, block_start = 0;
440 		ret == 0 && (bh != head || !block_start);
441 	    	block_start = block_end, bh = next)
442 	{
443 		next = bh->b_this_page;
444 		block_end = block_start + blocksize;
445 		if (block_end <= from || block_start >= to) {
446 			if (partial && !buffer_uptodate(bh))
447 				*partial = 1;
448 			continue;
449 		}
450 		err = (*fn)(handle, bh);
451 		if (!ret)
452 			ret = err;
453 	}
454 	return ret;
455 }
456 
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459 	sector_t status;
460 	u64 p_blkno = 0;
461 	int err = 0;
462 	struct inode *inode = mapping->host;
463 
464 	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 			 (unsigned long long)block);
466 
467 	/* We don't need to lock journal system files, since they aren't
468 	 * accessed concurrently from multiple nodes.
469 	 */
470 	if (!INODE_JOURNAL(inode)) {
471 		err = ocfs2_inode_lock(inode, NULL, 0);
472 		if (err) {
473 			if (err != -ENOENT)
474 				mlog_errno(err);
475 			goto bail;
476 		}
477 		down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 	}
479 
480 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 						  NULL);
483 
484 	if (!INODE_JOURNAL(inode)) {
485 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
486 		ocfs2_inode_unlock(inode, 0);
487 	}
488 
489 	if (err) {
490 		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 		     (unsigned long long)block);
492 		mlog_errno(err);
493 		goto bail;
494 	}
495 
496 bail:
497 	status = err ? 0 : p_blkno;
498 
499 	return status;
500 }
501 
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  * 					fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516 				     struct buffer_head *bh_result, int create)
517 {
518 	int ret;
519 	u32 cpos = 0;
520 	int alloc_locked = 0;
521 	u64 p_blkno, inode_blocks, contig_blocks;
522 	unsigned int ext_flags;
523 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524 	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525 	unsigned long len = bh_result->b_size;
526 	unsigned int clusters_to_alloc = 0;
527 
528 	cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529 
530 	/* This function won't even be called if the request isn't all
531 	 * nicely aligned and of the right size, so there's no need
532 	 * for us to check any of that. */
533 
534 	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535 
536 	/* This figures out the size of the next contiguous block, and
537 	 * our logical offset */
538 	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539 					  &contig_blocks, &ext_flags);
540 	if (ret) {
541 		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542 		     (unsigned long long)iblock);
543 		ret = -EIO;
544 		goto bail;
545 	}
546 
547 	/* We should already CoW the refcounted extent in case of create. */
548 	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549 
550 	/* allocate blocks if no p_blkno is found, and create == 1 */
551 	if (!p_blkno && create) {
552 		ret = ocfs2_inode_lock(inode, NULL, 1);
553 		if (ret < 0) {
554 			mlog_errno(ret);
555 			goto bail;
556 		}
557 
558 		alloc_locked = 1;
559 
560 		/* fill hole, allocate blocks can't be larger than the size
561 		 * of the hole */
562 		clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563 		if (clusters_to_alloc > contig_blocks)
564 			clusters_to_alloc = contig_blocks;
565 
566 		/* allocate extent and insert them into the extent tree */
567 		ret = ocfs2_extend_allocation(inode, cpos,
568 				clusters_to_alloc, 0);
569 		if (ret < 0) {
570 			mlog_errno(ret);
571 			goto bail;
572 		}
573 
574 		ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575 				&contig_blocks, &ext_flags);
576 		if (ret < 0) {
577 			mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578 					(unsigned long long)iblock);
579 			ret = -EIO;
580 			goto bail;
581 		}
582 	}
583 
584 	/*
585 	 * get_more_blocks() expects us to describe a hole by clearing
586 	 * the mapped bit on bh_result().
587 	 *
588 	 * Consider an unwritten extent as a hole.
589 	 */
590 	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
591 		map_bh(bh_result, inode->i_sb, p_blkno);
592 	else
593 		clear_buffer_mapped(bh_result);
594 
595 	/* make sure we don't map more than max_blocks blocks here as
596 	   that's all the kernel will handle at this point. */
597 	if (max_blocks < contig_blocks)
598 		contig_blocks = max_blocks;
599 	bh_result->b_size = contig_blocks << blocksize_bits;
600 bail:
601 	if (alloc_locked)
602 		ocfs2_inode_unlock(inode, 1);
603 	return ret;
604 }
605 
606 /*
607  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
608  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
609  * to protect io on one node from truncation on another.
610  */
611 static void ocfs2_dio_end_io(struct kiocb *iocb,
612 			     loff_t offset,
613 			     ssize_t bytes,
614 			     void *private)
615 {
616 	struct inode *inode = file_inode(iocb->ki_filp);
617 	int level;
618 
619 	/* this io's submitter should not have unlocked this before we could */
620 	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
621 
622 	if (ocfs2_iocb_is_sem_locked(iocb))
623 		ocfs2_iocb_clear_sem_locked(iocb);
624 
625 	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626 		ocfs2_iocb_clear_unaligned_aio(iocb);
627 
628 		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
629 	}
630 
631 	ocfs2_iocb_clear_rw_locked(iocb);
632 
633 	level = ocfs2_iocb_rw_locked_level(iocb);
634 	ocfs2_rw_unlock(inode, level);
635 }
636 
637 static int ocfs2_releasepage(struct page *page, gfp_t wait)
638 {
639 	if (!page_has_buffers(page))
640 		return 0;
641 	return try_to_free_buffers(page);
642 }
643 
644 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645 		struct inode *inode, loff_t offset)
646 {
647 	int ret = 0;
648 	u32 v_cpos = 0;
649 	u32 p_cpos = 0;
650 	unsigned int num_clusters = 0;
651 	unsigned int ext_flags = 0;
652 
653 	v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655 			&num_clusters, &ext_flags);
656 	if (ret < 0) {
657 		mlog_errno(ret);
658 		return ret;
659 	}
660 
661 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662 		return 1;
663 
664 	return 0;
665 }
666 
667 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
668 		struct inode *inode, loff_t offset,
669 		u64 zero_len, int cluster_align)
670 {
671 	u32 p_cpos = 0;
672 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
673 	unsigned int num_clusters = 0;
674 	unsigned int ext_flags = 0;
675 	int ret = 0;
676 
677 	if (offset <= i_size_read(inode) || cluster_align)
678 		return 0;
679 
680 	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
681 			&ext_flags);
682 	if (ret < 0) {
683 		mlog_errno(ret);
684 		return ret;
685 	}
686 
687 	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
688 		u64 s = i_size_read(inode);
689 		sector_t sector = (p_cpos << (osb->s_clustersize_bits - 9)) +
690 			(do_div(s, osb->s_clustersize) >> 9);
691 
692 		ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
693 				zero_len >> 9, GFP_NOFS, false);
694 		if (ret < 0)
695 			mlog_errno(ret);
696 	}
697 
698 	return ret;
699 }
700 
701 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
702 		struct inode *inode, loff_t offset)
703 {
704 	u64 zero_start, zero_len, total_zero_len;
705 	u32 p_cpos = 0, clusters_to_add;
706 	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
707 	unsigned int num_clusters = 0;
708 	unsigned int ext_flags = 0;
709 	u32 size_div, offset_div;
710 	int ret = 0;
711 
712 	{
713 		u64 o = offset;
714 		u64 s = i_size_read(inode);
715 
716 		offset_div = do_div(o, osb->s_clustersize);
717 		size_div = do_div(s, osb->s_clustersize);
718 	}
719 
720 	if (offset <= i_size_read(inode))
721 		return 0;
722 
723 	clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
724 		ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
725 	total_zero_len = offset - i_size_read(inode);
726 	if (clusters_to_add)
727 		total_zero_len -= offset_div;
728 
729 	/* Allocate clusters to fill out holes, and this is only needed
730 	 * when we add more than one clusters. Otherwise the cluster will
731 	 * be allocated during direct IO */
732 	if (clusters_to_add > 1) {
733 		ret = ocfs2_extend_allocation(inode,
734 				OCFS2_I(inode)->ip_clusters,
735 				clusters_to_add - 1, 0);
736 		if (ret) {
737 			mlog_errno(ret);
738 			goto out;
739 		}
740 	}
741 
742 	while (total_zero_len) {
743 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
744 				&ext_flags);
745 		if (ret < 0) {
746 			mlog_errno(ret);
747 			goto out;
748 		}
749 
750 		zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
751 			size_div;
752 		zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
753 			size_div;
754 		zero_len = min(total_zero_len, zero_len);
755 
756 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
757 			ret = blkdev_issue_zeroout(osb->sb->s_bdev,
758 					zero_start >> 9, zero_len >> 9,
759 					GFP_NOFS, false);
760 			if (ret < 0) {
761 				mlog_errno(ret);
762 				goto out;
763 			}
764 		}
765 
766 		total_zero_len -= zero_len;
767 		v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
768 
769 		/* Only at first iteration can be cluster not aligned.
770 		 * So set size_div to 0 for the rest */
771 		size_div = 0;
772 	}
773 
774 out:
775 	return ret;
776 }
777 
778 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
779 		struct iov_iter *iter,
780 		loff_t offset)
781 {
782 	ssize_t ret = 0;
783 	ssize_t written = 0;
784 	bool orphaned = false;
785 	int is_overwrite = 0;
786 	struct file *file = iocb->ki_filp;
787 	struct inode *inode = file_inode(file)->i_mapping->host;
788 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
789 	struct buffer_head *di_bh = NULL;
790 	size_t count = iter->count;
791 	journal_t *journal = osb->journal->j_journal;
792 	u64 zero_len_head, zero_len_tail;
793 	int cluster_align_head, cluster_align_tail;
794 	loff_t final_size = offset + count;
795 	int append_write = offset >= i_size_read(inode) ? 1 : 0;
796 	unsigned int num_clusters = 0;
797 	unsigned int ext_flags = 0;
798 
799 	{
800 		u64 o = offset;
801 		u64 s = i_size_read(inode);
802 
803 		zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
804 		cluster_align_head = !zero_len_head;
805 
806 		zero_len_tail = osb->s_clustersize -
807 			do_div(s, osb->s_clustersize);
808 		if ((offset - i_size_read(inode)) < zero_len_tail)
809 			zero_len_tail = offset - i_size_read(inode);
810 		cluster_align_tail = !zero_len_tail;
811 	}
812 
813 	/*
814 	 * when final_size > inode->i_size, inode->i_size will be
815 	 * updated after direct write, so add the inode to orphan
816 	 * dir first.
817 	 */
818 	if (final_size > i_size_read(inode)) {
819 		ret = ocfs2_add_inode_to_orphan(osb, inode);
820 		if (ret < 0) {
821 			mlog_errno(ret);
822 			goto out;
823 		}
824 		orphaned = true;
825 	}
826 
827 	if (append_write) {
828 		ret = ocfs2_inode_lock(inode, NULL, 1);
829 		if (ret < 0) {
830 			mlog_errno(ret);
831 			goto clean_orphan;
832 		}
833 
834 		/* zeroing out the previously allocated cluster tail
835 		 * that but not zeroed */
836 		if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
837 			ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
838 					zero_len_tail, cluster_align_tail);
839 		else
840 			ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
841 					offset);
842 		if (ret < 0) {
843 			mlog_errno(ret);
844 			ocfs2_inode_unlock(inode, 1);
845 			goto clean_orphan;
846 		}
847 
848 		is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
849 		if (is_overwrite < 0) {
850 			mlog_errno(is_overwrite);
851 			ocfs2_inode_unlock(inode, 1);
852 			goto clean_orphan;
853 		}
854 
855 		ocfs2_inode_unlock(inode, 1);
856 	}
857 
858 	written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
859 			iter, offset,
860 			ocfs2_direct_IO_get_blocks,
861 			ocfs2_dio_end_io, NULL, 0);
862 	if (unlikely(written < 0)) {
863 		loff_t i_size = i_size_read(inode);
864 
865 		if (offset + count > i_size) {
866 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
867 			if (ret < 0) {
868 				mlog_errno(ret);
869 				goto clean_orphan;
870 			}
871 
872 			if (i_size == i_size_read(inode)) {
873 				ret = ocfs2_truncate_file(inode, di_bh,
874 						i_size);
875 				if (ret < 0) {
876 					if (ret != -ENOSPC)
877 						mlog_errno(ret);
878 
879 					ocfs2_inode_unlock(inode, 1);
880 					brelse(di_bh);
881 					goto clean_orphan;
882 				}
883 			}
884 
885 			ocfs2_inode_unlock(inode, 1);
886 			brelse(di_bh);
887 
888 			ret = jbd2_journal_force_commit(journal);
889 			if (ret < 0)
890 				mlog_errno(ret);
891 		}
892 	} else if (written > 0 && append_write && !is_overwrite &&
893 			!cluster_align_head) {
894 		/* zeroing out the allocated cluster head */
895 		u32 p_cpos = 0;
896 		u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
897 
898 		ret = ocfs2_inode_lock(inode, NULL, 0);
899 		if (ret < 0) {
900 			mlog_errno(ret);
901 			goto clean_orphan;
902 		}
903 
904 		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
905 				&num_clusters, &ext_flags);
906 		if (ret < 0) {
907 			mlog_errno(ret);
908 			ocfs2_inode_unlock(inode, 0);
909 			goto clean_orphan;
910 		}
911 
912 		BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
913 
914 		ret = blkdev_issue_zeroout(osb->sb->s_bdev,
915 				p_cpos << (osb->s_clustersize_bits - 9),
916 				zero_len_head >> 9, GFP_NOFS, false);
917 		if (ret < 0)
918 			mlog_errno(ret);
919 
920 		ocfs2_inode_unlock(inode, 0);
921 	}
922 
923 clean_orphan:
924 	if (orphaned) {
925 		int tmp_ret;
926 		int update_isize = written > 0 ? 1 : 0;
927 		loff_t end = update_isize ? offset + written : 0;
928 
929 		tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
930 				update_isize, end);
931 		if (tmp_ret < 0) {
932 			ret = tmp_ret;
933 			goto out;
934 		}
935 
936 		tmp_ret = jbd2_journal_force_commit(journal);
937 		if (tmp_ret < 0) {
938 			ret = tmp_ret;
939 			mlog_errno(tmp_ret);
940 		}
941 	}
942 
943 out:
944 	if (ret >= 0)
945 		ret = written;
946 	return ret;
947 }
948 
949 static ssize_t ocfs2_direct_IO(int rw,
950 			       struct kiocb *iocb,
951 			       struct iov_iter *iter,
952 			       loff_t offset)
953 {
954 	struct file *file = iocb->ki_filp;
955 	struct inode *inode = file_inode(file)->i_mapping->host;
956 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
957 	int full_coherency = !(osb->s_mount_opt &
958 			OCFS2_MOUNT_COHERENCY_BUFFERED);
959 
960 	/*
961 	 * Fallback to buffered I/O if we see an inode without
962 	 * extents.
963 	 */
964 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
965 		return 0;
966 
967 	/* Fallback to buffered I/O if we are appending and
968 	 * concurrent O_DIRECT writes are allowed.
969 	 */
970 	if (i_size_read(inode) <= offset && !full_coherency)
971 		return 0;
972 
973 	if (rw == READ)
974 		return __blockdev_direct_IO(rw, iocb, inode,
975 				    inode->i_sb->s_bdev,
976 				    iter, offset,
977 				    ocfs2_direct_IO_get_blocks,
978 				    ocfs2_dio_end_io, NULL, 0);
979 	else
980 		return ocfs2_direct_IO_write(iocb, iter, offset);
981 }
982 
983 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
984 					    u32 cpos,
985 					    unsigned int *start,
986 					    unsigned int *end)
987 {
988 	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
989 
990 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
991 		unsigned int cpp;
992 
993 		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
994 
995 		cluster_start = cpos % cpp;
996 		cluster_start = cluster_start << osb->s_clustersize_bits;
997 
998 		cluster_end = cluster_start + osb->s_clustersize;
999 	}
1000 
1001 	BUG_ON(cluster_start > PAGE_SIZE);
1002 	BUG_ON(cluster_end > PAGE_SIZE);
1003 
1004 	if (start)
1005 		*start = cluster_start;
1006 	if (end)
1007 		*end = cluster_end;
1008 }
1009 
1010 /*
1011  * 'from' and 'to' are the region in the page to avoid zeroing.
1012  *
1013  * If pagesize > clustersize, this function will avoid zeroing outside
1014  * of the cluster boundary.
1015  *
1016  * from == to == 0 is code for "zero the entire cluster region"
1017  */
1018 static void ocfs2_clear_page_regions(struct page *page,
1019 				     struct ocfs2_super *osb, u32 cpos,
1020 				     unsigned from, unsigned to)
1021 {
1022 	void *kaddr;
1023 	unsigned int cluster_start, cluster_end;
1024 
1025 	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1026 
1027 	kaddr = kmap_atomic(page);
1028 
1029 	if (from || to) {
1030 		if (from > cluster_start)
1031 			memset(kaddr + cluster_start, 0, from - cluster_start);
1032 		if (to < cluster_end)
1033 			memset(kaddr + to, 0, cluster_end - to);
1034 	} else {
1035 		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1036 	}
1037 
1038 	kunmap_atomic(kaddr);
1039 }
1040 
1041 /*
1042  * Nonsparse file systems fully allocate before we get to the write
1043  * code. This prevents ocfs2_write() from tagging the write as an
1044  * allocating one, which means ocfs2_map_page_blocks() might try to
1045  * read-in the blocks at the tail of our file. Avoid reading them by
1046  * testing i_size against each block offset.
1047  */
1048 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1049 				 unsigned int block_start)
1050 {
1051 	u64 offset = page_offset(page) + block_start;
1052 
1053 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1054 		return 1;
1055 
1056 	if (i_size_read(inode) > offset)
1057 		return 1;
1058 
1059 	return 0;
1060 }
1061 
1062 /*
1063  * Some of this taken from __block_write_begin(). We already have our
1064  * mapping by now though, and the entire write will be allocating or
1065  * it won't, so not much need to use BH_New.
1066  *
1067  * This will also skip zeroing, which is handled externally.
1068  */
1069 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1070 			  struct inode *inode, unsigned int from,
1071 			  unsigned int to, int new)
1072 {
1073 	int ret = 0;
1074 	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1075 	unsigned int block_end, block_start;
1076 	unsigned int bsize = 1 << inode->i_blkbits;
1077 
1078 	if (!page_has_buffers(page))
1079 		create_empty_buffers(page, bsize, 0);
1080 
1081 	head = page_buffers(page);
1082 	for (bh = head, block_start = 0; bh != head || !block_start;
1083 	     bh = bh->b_this_page, block_start += bsize) {
1084 		block_end = block_start + bsize;
1085 
1086 		clear_buffer_new(bh);
1087 
1088 		/*
1089 		 * Ignore blocks outside of our i/o range -
1090 		 * they may belong to unallocated clusters.
1091 		 */
1092 		if (block_start >= to || block_end <= from) {
1093 			if (PageUptodate(page))
1094 				set_buffer_uptodate(bh);
1095 			continue;
1096 		}
1097 
1098 		/*
1099 		 * For an allocating write with cluster size >= page
1100 		 * size, we always write the entire page.
1101 		 */
1102 		if (new)
1103 			set_buffer_new(bh);
1104 
1105 		if (!buffer_mapped(bh)) {
1106 			map_bh(bh, inode->i_sb, *p_blkno);
1107 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1108 		}
1109 
1110 		if (PageUptodate(page)) {
1111 			if (!buffer_uptodate(bh))
1112 				set_buffer_uptodate(bh);
1113 		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1114 			   !buffer_new(bh) &&
1115 			   ocfs2_should_read_blk(inode, page, block_start) &&
1116 			   (block_start < from || block_end > to)) {
1117 			ll_rw_block(READ, 1, &bh);
1118 			*wait_bh++=bh;
1119 		}
1120 
1121 		*p_blkno = *p_blkno + 1;
1122 	}
1123 
1124 	/*
1125 	 * If we issued read requests - let them complete.
1126 	 */
1127 	while(wait_bh > wait) {
1128 		wait_on_buffer(*--wait_bh);
1129 		if (!buffer_uptodate(*wait_bh))
1130 			ret = -EIO;
1131 	}
1132 
1133 	if (ret == 0 || !new)
1134 		return ret;
1135 
1136 	/*
1137 	 * If we get -EIO above, zero out any newly allocated blocks
1138 	 * to avoid exposing stale data.
1139 	 */
1140 	bh = head;
1141 	block_start = 0;
1142 	do {
1143 		block_end = block_start + bsize;
1144 		if (block_end <= from)
1145 			goto next_bh;
1146 		if (block_start >= to)
1147 			break;
1148 
1149 		zero_user(page, block_start, bh->b_size);
1150 		set_buffer_uptodate(bh);
1151 		mark_buffer_dirty(bh);
1152 
1153 next_bh:
1154 		block_start = block_end;
1155 		bh = bh->b_this_page;
1156 	} while (bh != head);
1157 
1158 	return ret;
1159 }
1160 
1161 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1162 #define OCFS2_MAX_CTXT_PAGES	1
1163 #else
1164 #define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1165 #endif
1166 
1167 #define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1168 
1169 /*
1170  * Describe the state of a single cluster to be written to.
1171  */
1172 struct ocfs2_write_cluster_desc {
1173 	u32		c_cpos;
1174 	u32		c_phys;
1175 	/*
1176 	 * Give this a unique field because c_phys eventually gets
1177 	 * filled.
1178 	 */
1179 	unsigned	c_new;
1180 	unsigned	c_unwritten;
1181 	unsigned	c_needs_zero;
1182 };
1183 
1184 struct ocfs2_write_ctxt {
1185 	/* Logical cluster position / len of write */
1186 	u32				w_cpos;
1187 	u32				w_clen;
1188 
1189 	/* First cluster allocated in a nonsparse extend */
1190 	u32				w_first_new_cpos;
1191 
1192 	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1193 
1194 	/*
1195 	 * This is true if page_size > cluster_size.
1196 	 *
1197 	 * It triggers a set of special cases during write which might
1198 	 * have to deal with allocating writes to partial pages.
1199 	 */
1200 	unsigned int			w_large_pages;
1201 
1202 	/*
1203 	 * Pages involved in this write.
1204 	 *
1205 	 * w_target_page is the page being written to by the user.
1206 	 *
1207 	 * w_pages is an array of pages which always contains
1208 	 * w_target_page, and in the case of an allocating write with
1209 	 * page_size < cluster size, it will contain zero'd and mapped
1210 	 * pages adjacent to w_target_page which need to be written
1211 	 * out in so that future reads from that region will get
1212 	 * zero's.
1213 	 */
1214 	unsigned int			w_num_pages;
1215 	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
1216 	struct page			*w_target_page;
1217 
1218 	/*
1219 	 * w_target_locked is used for page_mkwrite path indicating no unlocking
1220 	 * against w_target_page in ocfs2_write_end_nolock.
1221 	 */
1222 	unsigned int			w_target_locked:1;
1223 
1224 	/*
1225 	 * ocfs2_write_end() uses this to know what the real range to
1226 	 * write in the target should be.
1227 	 */
1228 	unsigned int			w_target_from;
1229 	unsigned int			w_target_to;
1230 
1231 	/*
1232 	 * We could use journal_current_handle() but this is cleaner,
1233 	 * IMHO -Mark
1234 	 */
1235 	handle_t			*w_handle;
1236 
1237 	struct buffer_head		*w_di_bh;
1238 
1239 	struct ocfs2_cached_dealloc_ctxt w_dealloc;
1240 };
1241 
1242 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1243 {
1244 	int i;
1245 
1246 	for(i = 0; i < num_pages; i++) {
1247 		if (pages[i]) {
1248 			unlock_page(pages[i]);
1249 			mark_page_accessed(pages[i]);
1250 			page_cache_release(pages[i]);
1251 		}
1252 	}
1253 }
1254 
1255 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1256 {
1257 	int i;
1258 
1259 	/*
1260 	 * w_target_locked is only set to true in the page_mkwrite() case.
1261 	 * The intent is to allow us to lock the target page from write_begin()
1262 	 * to write_end(). The caller must hold a ref on w_target_page.
1263 	 */
1264 	if (wc->w_target_locked) {
1265 		BUG_ON(!wc->w_target_page);
1266 		for (i = 0; i < wc->w_num_pages; i++) {
1267 			if (wc->w_target_page == wc->w_pages[i]) {
1268 				wc->w_pages[i] = NULL;
1269 				break;
1270 			}
1271 		}
1272 		mark_page_accessed(wc->w_target_page);
1273 		page_cache_release(wc->w_target_page);
1274 	}
1275 	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1276 }
1277 
1278 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1279 {
1280 	ocfs2_unlock_pages(wc);
1281 	brelse(wc->w_di_bh);
1282 	kfree(wc);
1283 }
1284 
1285 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1286 				  struct ocfs2_super *osb, loff_t pos,
1287 				  unsigned len, struct buffer_head *di_bh)
1288 {
1289 	u32 cend;
1290 	struct ocfs2_write_ctxt *wc;
1291 
1292 	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1293 	if (!wc)
1294 		return -ENOMEM;
1295 
1296 	wc->w_cpos = pos >> osb->s_clustersize_bits;
1297 	wc->w_first_new_cpos = UINT_MAX;
1298 	cend = (pos + len - 1) >> osb->s_clustersize_bits;
1299 	wc->w_clen = cend - wc->w_cpos + 1;
1300 	get_bh(di_bh);
1301 	wc->w_di_bh = di_bh;
1302 
1303 	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1304 		wc->w_large_pages = 1;
1305 	else
1306 		wc->w_large_pages = 0;
1307 
1308 	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1309 
1310 	*wcp = wc;
1311 
1312 	return 0;
1313 }
1314 
1315 /*
1316  * If a page has any new buffers, zero them out here, and mark them uptodate
1317  * and dirty so they'll be written out (in order to prevent uninitialised
1318  * block data from leaking). And clear the new bit.
1319  */
1320 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1321 {
1322 	unsigned int block_start, block_end;
1323 	struct buffer_head *head, *bh;
1324 
1325 	BUG_ON(!PageLocked(page));
1326 	if (!page_has_buffers(page))
1327 		return;
1328 
1329 	bh = head = page_buffers(page);
1330 	block_start = 0;
1331 	do {
1332 		block_end = block_start + bh->b_size;
1333 
1334 		if (buffer_new(bh)) {
1335 			if (block_end > from && block_start < to) {
1336 				if (!PageUptodate(page)) {
1337 					unsigned start, end;
1338 
1339 					start = max(from, block_start);
1340 					end = min(to, block_end);
1341 
1342 					zero_user_segment(page, start, end);
1343 					set_buffer_uptodate(bh);
1344 				}
1345 
1346 				clear_buffer_new(bh);
1347 				mark_buffer_dirty(bh);
1348 			}
1349 		}
1350 
1351 		block_start = block_end;
1352 		bh = bh->b_this_page;
1353 	} while (bh != head);
1354 }
1355 
1356 /*
1357  * Only called when we have a failure during allocating write to write
1358  * zero's to the newly allocated region.
1359  */
1360 static void ocfs2_write_failure(struct inode *inode,
1361 				struct ocfs2_write_ctxt *wc,
1362 				loff_t user_pos, unsigned user_len)
1363 {
1364 	int i;
1365 	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1366 		to = user_pos + user_len;
1367 	struct page *tmppage;
1368 
1369 	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1370 
1371 	for(i = 0; i < wc->w_num_pages; i++) {
1372 		tmppage = wc->w_pages[i];
1373 
1374 		if (page_has_buffers(tmppage)) {
1375 			if (ocfs2_should_order_data(inode))
1376 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1377 
1378 			block_commit_write(tmppage, from, to);
1379 		}
1380 	}
1381 }
1382 
1383 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1384 					struct ocfs2_write_ctxt *wc,
1385 					struct page *page, u32 cpos,
1386 					loff_t user_pos, unsigned user_len,
1387 					int new)
1388 {
1389 	int ret;
1390 	unsigned int map_from = 0, map_to = 0;
1391 	unsigned int cluster_start, cluster_end;
1392 	unsigned int user_data_from = 0, user_data_to = 0;
1393 
1394 	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1395 					&cluster_start, &cluster_end);
1396 
1397 	/* treat the write as new if the a hole/lseek spanned across
1398 	 * the page boundary.
1399 	 */
1400 	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1401 			(page_offset(page) <= user_pos));
1402 
1403 	if (page == wc->w_target_page) {
1404 		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1405 		map_to = map_from + user_len;
1406 
1407 		if (new)
1408 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1409 						    cluster_start, cluster_end,
1410 						    new);
1411 		else
1412 			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1413 						    map_from, map_to, new);
1414 		if (ret) {
1415 			mlog_errno(ret);
1416 			goto out;
1417 		}
1418 
1419 		user_data_from = map_from;
1420 		user_data_to = map_to;
1421 		if (new) {
1422 			map_from = cluster_start;
1423 			map_to = cluster_end;
1424 		}
1425 	} else {
1426 		/*
1427 		 * If we haven't allocated the new page yet, we
1428 		 * shouldn't be writing it out without copying user
1429 		 * data. This is likely a math error from the caller.
1430 		 */
1431 		BUG_ON(!new);
1432 
1433 		map_from = cluster_start;
1434 		map_to = cluster_end;
1435 
1436 		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1437 					    cluster_start, cluster_end, new);
1438 		if (ret) {
1439 			mlog_errno(ret);
1440 			goto out;
1441 		}
1442 	}
1443 
1444 	/*
1445 	 * Parts of newly allocated pages need to be zero'd.
1446 	 *
1447 	 * Above, we have also rewritten 'to' and 'from' - as far as
1448 	 * the rest of the function is concerned, the entire cluster
1449 	 * range inside of a page needs to be written.
1450 	 *
1451 	 * We can skip this if the page is up to date - it's already
1452 	 * been zero'd from being read in as a hole.
1453 	 */
1454 	if (new && !PageUptodate(page))
1455 		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1456 					 cpos, user_data_from, user_data_to);
1457 
1458 	flush_dcache_page(page);
1459 
1460 out:
1461 	return ret;
1462 }
1463 
1464 /*
1465  * This function will only grab one clusters worth of pages.
1466  */
1467 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1468 				      struct ocfs2_write_ctxt *wc,
1469 				      u32 cpos, loff_t user_pos,
1470 				      unsigned user_len, int new,
1471 				      struct page *mmap_page)
1472 {
1473 	int ret = 0, i;
1474 	unsigned long start, target_index, end_index, index;
1475 	struct inode *inode = mapping->host;
1476 	loff_t last_byte;
1477 
1478 	target_index = user_pos >> PAGE_CACHE_SHIFT;
1479 
1480 	/*
1481 	 * Figure out how many pages we'll be manipulating here. For
1482 	 * non allocating write, we just change the one
1483 	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1484 	 * writing past i_size, we only need enough pages to cover the
1485 	 * last page of the write.
1486 	 */
1487 	if (new) {
1488 		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1489 		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1490 		/*
1491 		 * We need the index *past* the last page we could possibly
1492 		 * touch.  This is the page past the end of the write or
1493 		 * i_size, whichever is greater.
1494 		 */
1495 		last_byte = max(user_pos + user_len, i_size_read(inode));
1496 		BUG_ON(last_byte < 1);
1497 		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1498 		if ((start + wc->w_num_pages) > end_index)
1499 			wc->w_num_pages = end_index - start;
1500 	} else {
1501 		wc->w_num_pages = 1;
1502 		start = target_index;
1503 	}
1504 
1505 	for(i = 0; i < wc->w_num_pages; i++) {
1506 		index = start + i;
1507 
1508 		if (index == target_index && mmap_page) {
1509 			/*
1510 			 * ocfs2_pagemkwrite() is a little different
1511 			 * and wants us to directly use the page
1512 			 * passed in.
1513 			 */
1514 			lock_page(mmap_page);
1515 
1516 			/* Exit and let the caller retry */
1517 			if (mmap_page->mapping != mapping) {
1518 				WARN_ON(mmap_page->mapping);
1519 				unlock_page(mmap_page);
1520 				ret = -EAGAIN;
1521 				goto out;
1522 			}
1523 
1524 			page_cache_get(mmap_page);
1525 			wc->w_pages[i] = mmap_page;
1526 			wc->w_target_locked = true;
1527 		} else {
1528 			wc->w_pages[i] = find_or_create_page(mapping, index,
1529 							     GFP_NOFS);
1530 			if (!wc->w_pages[i]) {
1531 				ret = -ENOMEM;
1532 				mlog_errno(ret);
1533 				goto out;
1534 			}
1535 		}
1536 		wait_for_stable_page(wc->w_pages[i]);
1537 
1538 		if (index == target_index)
1539 			wc->w_target_page = wc->w_pages[i];
1540 	}
1541 out:
1542 	if (ret)
1543 		wc->w_target_locked = false;
1544 	return ret;
1545 }
1546 
1547 /*
1548  * Prepare a single cluster for write one cluster into the file.
1549  */
1550 static int ocfs2_write_cluster(struct address_space *mapping,
1551 			       u32 phys, unsigned int unwritten,
1552 			       unsigned int should_zero,
1553 			       struct ocfs2_alloc_context *data_ac,
1554 			       struct ocfs2_alloc_context *meta_ac,
1555 			       struct ocfs2_write_ctxt *wc, u32 cpos,
1556 			       loff_t user_pos, unsigned user_len)
1557 {
1558 	int ret, i, new;
1559 	u64 v_blkno, p_blkno;
1560 	struct inode *inode = mapping->host;
1561 	struct ocfs2_extent_tree et;
1562 
1563 	new = phys == 0 ? 1 : 0;
1564 	if (new) {
1565 		u32 tmp_pos;
1566 
1567 		/*
1568 		 * This is safe to call with the page locks - it won't take
1569 		 * any additional semaphores or cluster locks.
1570 		 */
1571 		tmp_pos = cpos;
1572 		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1573 					   &tmp_pos, 1, 0, wc->w_di_bh,
1574 					   wc->w_handle, data_ac,
1575 					   meta_ac, NULL);
1576 		/*
1577 		 * This shouldn't happen because we must have already
1578 		 * calculated the correct meta data allocation required. The
1579 		 * internal tree allocation code should know how to increase
1580 		 * transaction credits itself.
1581 		 *
1582 		 * If need be, we could handle -EAGAIN for a
1583 		 * RESTART_TRANS here.
1584 		 */
1585 		mlog_bug_on_msg(ret == -EAGAIN,
1586 				"Inode %llu: EAGAIN return during allocation.\n",
1587 				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1588 		if (ret < 0) {
1589 			mlog_errno(ret);
1590 			goto out;
1591 		}
1592 	} else if (unwritten) {
1593 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1594 					      wc->w_di_bh);
1595 		ret = ocfs2_mark_extent_written(inode, &et,
1596 						wc->w_handle, cpos, 1, phys,
1597 						meta_ac, &wc->w_dealloc);
1598 		if (ret < 0) {
1599 			mlog_errno(ret);
1600 			goto out;
1601 		}
1602 	}
1603 
1604 	if (should_zero)
1605 		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1606 	else
1607 		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1608 
1609 	/*
1610 	 * The only reason this should fail is due to an inability to
1611 	 * find the extent added.
1612 	 */
1613 	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1614 					  NULL);
1615 	if (ret < 0) {
1616 		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1617 			    "at logical block %llu",
1618 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1619 			    (unsigned long long)v_blkno);
1620 		goto out;
1621 	}
1622 
1623 	BUG_ON(p_blkno == 0);
1624 
1625 	for(i = 0; i < wc->w_num_pages; i++) {
1626 		int tmpret;
1627 
1628 		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1629 						      wc->w_pages[i], cpos,
1630 						      user_pos, user_len,
1631 						      should_zero);
1632 		if (tmpret) {
1633 			mlog_errno(tmpret);
1634 			if (ret == 0)
1635 				ret = tmpret;
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * We only have cleanup to do in case of allocating write.
1641 	 */
1642 	if (ret && new)
1643 		ocfs2_write_failure(inode, wc, user_pos, user_len);
1644 
1645 out:
1646 
1647 	return ret;
1648 }
1649 
1650 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1651 				       struct ocfs2_alloc_context *data_ac,
1652 				       struct ocfs2_alloc_context *meta_ac,
1653 				       struct ocfs2_write_ctxt *wc,
1654 				       loff_t pos, unsigned len)
1655 {
1656 	int ret, i;
1657 	loff_t cluster_off;
1658 	unsigned int local_len = len;
1659 	struct ocfs2_write_cluster_desc *desc;
1660 	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1661 
1662 	for (i = 0; i < wc->w_clen; i++) {
1663 		desc = &wc->w_desc[i];
1664 
1665 		/*
1666 		 * We have to make sure that the total write passed in
1667 		 * doesn't extend past a single cluster.
1668 		 */
1669 		local_len = len;
1670 		cluster_off = pos & (osb->s_clustersize - 1);
1671 		if ((cluster_off + local_len) > osb->s_clustersize)
1672 			local_len = osb->s_clustersize - cluster_off;
1673 
1674 		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1675 					  desc->c_unwritten,
1676 					  desc->c_needs_zero,
1677 					  data_ac, meta_ac,
1678 					  wc, desc->c_cpos, pos, local_len);
1679 		if (ret) {
1680 			mlog_errno(ret);
1681 			goto out;
1682 		}
1683 
1684 		len -= local_len;
1685 		pos += local_len;
1686 	}
1687 
1688 	ret = 0;
1689 out:
1690 	return ret;
1691 }
1692 
1693 /*
1694  * ocfs2_write_end() wants to know which parts of the target page it
1695  * should complete the write on. It's easiest to compute them ahead of
1696  * time when a more complete view of the write is available.
1697  */
1698 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1699 					struct ocfs2_write_ctxt *wc,
1700 					loff_t pos, unsigned len, int alloc)
1701 {
1702 	struct ocfs2_write_cluster_desc *desc;
1703 
1704 	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1705 	wc->w_target_to = wc->w_target_from + len;
1706 
1707 	if (alloc == 0)
1708 		return;
1709 
1710 	/*
1711 	 * Allocating write - we may have different boundaries based
1712 	 * on page size and cluster size.
1713 	 *
1714 	 * NOTE: We can no longer compute one value from the other as
1715 	 * the actual write length and user provided length may be
1716 	 * different.
1717 	 */
1718 
1719 	if (wc->w_large_pages) {
1720 		/*
1721 		 * We only care about the 1st and last cluster within
1722 		 * our range and whether they should be zero'd or not. Either
1723 		 * value may be extended out to the start/end of a
1724 		 * newly allocated cluster.
1725 		 */
1726 		desc = &wc->w_desc[0];
1727 		if (desc->c_needs_zero)
1728 			ocfs2_figure_cluster_boundaries(osb,
1729 							desc->c_cpos,
1730 							&wc->w_target_from,
1731 							NULL);
1732 
1733 		desc = &wc->w_desc[wc->w_clen - 1];
1734 		if (desc->c_needs_zero)
1735 			ocfs2_figure_cluster_boundaries(osb,
1736 							desc->c_cpos,
1737 							NULL,
1738 							&wc->w_target_to);
1739 	} else {
1740 		wc->w_target_from = 0;
1741 		wc->w_target_to = PAGE_CACHE_SIZE;
1742 	}
1743 }
1744 
1745 /*
1746  * Populate each single-cluster write descriptor in the write context
1747  * with information about the i/o to be done.
1748  *
1749  * Returns the number of clusters that will have to be allocated, as
1750  * well as a worst case estimate of the number of extent records that
1751  * would have to be created during a write to an unwritten region.
1752  */
1753 static int ocfs2_populate_write_desc(struct inode *inode,
1754 				     struct ocfs2_write_ctxt *wc,
1755 				     unsigned int *clusters_to_alloc,
1756 				     unsigned int *extents_to_split)
1757 {
1758 	int ret;
1759 	struct ocfs2_write_cluster_desc *desc;
1760 	unsigned int num_clusters = 0;
1761 	unsigned int ext_flags = 0;
1762 	u32 phys = 0;
1763 	int i;
1764 
1765 	*clusters_to_alloc = 0;
1766 	*extents_to_split = 0;
1767 
1768 	for (i = 0; i < wc->w_clen; i++) {
1769 		desc = &wc->w_desc[i];
1770 		desc->c_cpos = wc->w_cpos + i;
1771 
1772 		if (num_clusters == 0) {
1773 			/*
1774 			 * Need to look up the next extent record.
1775 			 */
1776 			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1777 						 &num_clusters, &ext_flags);
1778 			if (ret) {
1779 				mlog_errno(ret);
1780 				goto out;
1781 			}
1782 
1783 			/* We should already CoW the refcountd extent. */
1784 			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1785 
1786 			/*
1787 			 * Assume worst case - that we're writing in
1788 			 * the middle of the extent.
1789 			 *
1790 			 * We can assume that the write proceeds from
1791 			 * left to right, in which case the extent
1792 			 * insert code is smart enough to coalesce the
1793 			 * next splits into the previous records created.
1794 			 */
1795 			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1796 				*extents_to_split = *extents_to_split + 2;
1797 		} else if (phys) {
1798 			/*
1799 			 * Only increment phys if it doesn't describe
1800 			 * a hole.
1801 			 */
1802 			phys++;
1803 		}
1804 
1805 		/*
1806 		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1807 		 * file that got extended.  w_first_new_cpos tells us
1808 		 * where the newly allocated clusters are so we can
1809 		 * zero them.
1810 		 */
1811 		if (desc->c_cpos >= wc->w_first_new_cpos) {
1812 			BUG_ON(phys == 0);
1813 			desc->c_needs_zero = 1;
1814 		}
1815 
1816 		desc->c_phys = phys;
1817 		if (phys == 0) {
1818 			desc->c_new = 1;
1819 			desc->c_needs_zero = 1;
1820 			*clusters_to_alloc = *clusters_to_alloc + 1;
1821 		}
1822 
1823 		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1824 			desc->c_unwritten = 1;
1825 			desc->c_needs_zero = 1;
1826 		}
1827 
1828 		num_clusters--;
1829 	}
1830 
1831 	ret = 0;
1832 out:
1833 	return ret;
1834 }
1835 
1836 static int ocfs2_write_begin_inline(struct address_space *mapping,
1837 				    struct inode *inode,
1838 				    struct ocfs2_write_ctxt *wc)
1839 {
1840 	int ret;
1841 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1842 	struct page *page;
1843 	handle_t *handle;
1844 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1845 
1846 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1847 	if (IS_ERR(handle)) {
1848 		ret = PTR_ERR(handle);
1849 		mlog_errno(ret);
1850 		goto out;
1851 	}
1852 
1853 	page = find_or_create_page(mapping, 0, GFP_NOFS);
1854 	if (!page) {
1855 		ocfs2_commit_trans(osb, handle);
1856 		ret = -ENOMEM;
1857 		mlog_errno(ret);
1858 		goto out;
1859 	}
1860 	/*
1861 	 * If we don't set w_num_pages then this page won't get unlocked
1862 	 * and freed on cleanup of the write context.
1863 	 */
1864 	wc->w_pages[0] = wc->w_target_page = page;
1865 	wc->w_num_pages = 1;
1866 
1867 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1868 				      OCFS2_JOURNAL_ACCESS_WRITE);
1869 	if (ret) {
1870 		ocfs2_commit_trans(osb, handle);
1871 
1872 		mlog_errno(ret);
1873 		goto out;
1874 	}
1875 
1876 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1877 		ocfs2_set_inode_data_inline(inode, di);
1878 
1879 	if (!PageUptodate(page)) {
1880 		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1881 		if (ret) {
1882 			ocfs2_commit_trans(osb, handle);
1883 
1884 			goto out;
1885 		}
1886 	}
1887 
1888 	wc->w_handle = handle;
1889 out:
1890 	return ret;
1891 }
1892 
1893 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1894 {
1895 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1896 
1897 	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1898 		return 1;
1899 	return 0;
1900 }
1901 
1902 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1903 					  struct inode *inode, loff_t pos,
1904 					  unsigned len, struct page *mmap_page,
1905 					  struct ocfs2_write_ctxt *wc)
1906 {
1907 	int ret, written = 0;
1908 	loff_t end = pos + len;
1909 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1910 	struct ocfs2_dinode *di = NULL;
1911 
1912 	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1913 					     len, (unsigned long long)pos,
1914 					     oi->ip_dyn_features);
1915 
1916 	/*
1917 	 * Handle inodes which already have inline data 1st.
1918 	 */
1919 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1920 		if (mmap_page == NULL &&
1921 		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1922 			goto do_inline_write;
1923 
1924 		/*
1925 		 * The write won't fit - we have to give this inode an
1926 		 * inline extent list now.
1927 		 */
1928 		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1929 		if (ret)
1930 			mlog_errno(ret);
1931 		goto out;
1932 	}
1933 
1934 	/*
1935 	 * Check whether the inode can accept inline data.
1936 	 */
1937 	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1938 		return 0;
1939 
1940 	/*
1941 	 * Check whether the write can fit.
1942 	 */
1943 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1944 	if (mmap_page ||
1945 	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1946 		return 0;
1947 
1948 do_inline_write:
1949 	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1950 	if (ret) {
1951 		mlog_errno(ret);
1952 		goto out;
1953 	}
1954 
1955 	/*
1956 	 * This signals to the caller that the data can be written
1957 	 * inline.
1958 	 */
1959 	written = 1;
1960 out:
1961 	return written ? written : ret;
1962 }
1963 
1964 /*
1965  * This function only does anything for file systems which can't
1966  * handle sparse files.
1967  *
1968  * What we want to do here is fill in any hole between the current end
1969  * of allocation and the end of our write. That way the rest of the
1970  * write path can treat it as an non-allocating write, which has no
1971  * special case code for sparse/nonsparse files.
1972  */
1973 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1974 					struct buffer_head *di_bh,
1975 					loff_t pos, unsigned len,
1976 					struct ocfs2_write_ctxt *wc)
1977 {
1978 	int ret;
1979 	loff_t newsize = pos + len;
1980 
1981 	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1982 
1983 	if (newsize <= i_size_read(inode))
1984 		return 0;
1985 
1986 	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1987 	if (ret)
1988 		mlog_errno(ret);
1989 
1990 	wc->w_first_new_cpos =
1991 		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1992 
1993 	return ret;
1994 }
1995 
1996 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1997 			   loff_t pos)
1998 {
1999 	int ret = 0;
2000 
2001 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2002 	if (pos > i_size_read(inode))
2003 		ret = ocfs2_zero_extend(inode, di_bh, pos);
2004 
2005 	return ret;
2006 }
2007 
2008 /*
2009  * Try to flush truncate logs if we can free enough clusters from it.
2010  * As for return value, "< 0" means error, "0" no space and "1" means
2011  * we have freed enough spaces and let the caller try to allocate again.
2012  */
2013 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2014 					  unsigned int needed)
2015 {
2016 	tid_t target;
2017 	int ret = 0;
2018 	unsigned int truncated_clusters;
2019 
2020 	mutex_lock(&osb->osb_tl_inode->i_mutex);
2021 	truncated_clusters = osb->truncated_clusters;
2022 	mutex_unlock(&osb->osb_tl_inode->i_mutex);
2023 
2024 	/*
2025 	 * Check whether we can succeed in allocating if we free
2026 	 * the truncate log.
2027 	 */
2028 	if (truncated_clusters < needed)
2029 		goto out;
2030 
2031 	ret = ocfs2_flush_truncate_log(osb);
2032 	if (ret) {
2033 		mlog_errno(ret);
2034 		goto out;
2035 	}
2036 
2037 	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2038 		jbd2_log_wait_commit(osb->journal->j_journal, target);
2039 		ret = 1;
2040 	}
2041 out:
2042 	return ret;
2043 }
2044 
2045 int ocfs2_write_begin_nolock(struct file *filp,
2046 			     struct address_space *mapping,
2047 			     loff_t pos, unsigned len, unsigned flags,
2048 			     struct page **pagep, void **fsdata,
2049 			     struct buffer_head *di_bh, struct page *mmap_page)
2050 {
2051 	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2052 	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2053 	struct ocfs2_write_ctxt *wc;
2054 	struct inode *inode = mapping->host;
2055 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2056 	struct ocfs2_dinode *di;
2057 	struct ocfs2_alloc_context *data_ac = NULL;
2058 	struct ocfs2_alloc_context *meta_ac = NULL;
2059 	handle_t *handle;
2060 	struct ocfs2_extent_tree et;
2061 	int try_free = 1, ret1;
2062 
2063 try_again:
2064 	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2065 	if (ret) {
2066 		mlog_errno(ret);
2067 		return ret;
2068 	}
2069 
2070 	if (ocfs2_supports_inline_data(osb)) {
2071 		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2072 						     mmap_page, wc);
2073 		if (ret == 1) {
2074 			ret = 0;
2075 			goto success;
2076 		}
2077 		if (ret < 0) {
2078 			mlog_errno(ret);
2079 			goto out;
2080 		}
2081 	}
2082 
2083 	if (ocfs2_sparse_alloc(osb))
2084 		ret = ocfs2_zero_tail(inode, di_bh, pos);
2085 	else
2086 		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2087 						   wc);
2088 	if (ret) {
2089 		mlog_errno(ret);
2090 		goto out;
2091 	}
2092 
2093 	ret = ocfs2_check_range_for_refcount(inode, pos, len);
2094 	if (ret < 0) {
2095 		mlog_errno(ret);
2096 		goto out;
2097 	} else if (ret == 1) {
2098 		clusters_need = wc->w_clen;
2099 		ret = ocfs2_refcount_cow(inode, di_bh,
2100 					 wc->w_cpos, wc->w_clen, UINT_MAX);
2101 		if (ret) {
2102 			mlog_errno(ret);
2103 			goto out;
2104 		}
2105 	}
2106 
2107 	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2108 					&extents_to_split);
2109 	if (ret) {
2110 		mlog_errno(ret);
2111 		goto out;
2112 	}
2113 	clusters_need += clusters_to_alloc;
2114 
2115 	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2116 
2117 	trace_ocfs2_write_begin_nolock(
2118 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2119 			(long long)i_size_read(inode),
2120 			le32_to_cpu(di->i_clusters),
2121 			pos, len, flags, mmap_page,
2122 			clusters_to_alloc, extents_to_split);
2123 
2124 	/*
2125 	 * We set w_target_from, w_target_to here so that
2126 	 * ocfs2_write_end() knows which range in the target page to
2127 	 * write out. An allocation requires that we write the entire
2128 	 * cluster range.
2129 	 */
2130 	if (clusters_to_alloc || extents_to_split) {
2131 		/*
2132 		 * XXX: We are stretching the limits of
2133 		 * ocfs2_lock_allocators(). It greatly over-estimates
2134 		 * the work to be done.
2135 		 */
2136 		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2137 					      wc->w_di_bh);
2138 		ret = ocfs2_lock_allocators(inode, &et,
2139 					    clusters_to_alloc, extents_to_split,
2140 					    &data_ac, &meta_ac);
2141 		if (ret) {
2142 			mlog_errno(ret);
2143 			goto out;
2144 		}
2145 
2146 		if (data_ac)
2147 			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2148 
2149 		credits = ocfs2_calc_extend_credits(inode->i_sb,
2150 						    &di->id2.i_list);
2151 
2152 	}
2153 
2154 	/*
2155 	 * We have to zero sparse allocated clusters, unwritten extent clusters,
2156 	 * and non-sparse clusters we just extended.  For non-sparse writes,
2157 	 * we know zeros will only be needed in the first and/or last cluster.
2158 	 */
2159 	if (clusters_to_alloc || extents_to_split ||
2160 	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2161 			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2162 		cluster_of_pages = 1;
2163 	else
2164 		cluster_of_pages = 0;
2165 
2166 	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2167 
2168 	handle = ocfs2_start_trans(osb, credits);
2169 	if (IS_ERR(handle)) {
2170 		ret = PTR_ERR(handle);
2171 		mlog_errno(ret);
2172 		goto out;
2173 	}
2174 
2175 	wc->w_handle = handle;
2176 
2177 	if (clusters_to_alloc) {
2178 		ret = dquot_alloc_space_nodirty(inode,
2179 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2180 		if (ret)
2181 			goto out_commit;
2182 	}
2183 	/*
2184 	 * We don't want this to fail in ocfs2_write_end(), so do it
2185 	 * here.
2186 	 */
2187 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2188 				      OCFS2_JOURNAL_ACCESS_WRITE);
2189 	if (ret) {
2190 		mlog_errno(ret);
2191 		goto out_quota;
2192 	}
2193 
2194 	/*
2195 	 * Fill our page array first. That way we've grabbed enough so
2196 	 * that we can zero and flush if we error after adding the
2197 	 * extent.
2198 	 */
2199 	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2200 					 cluster_of_pages, mmap_page);
2201 	if (ret && ret != -EAGAIN) {
2202 		mlog_errno(ret);
2203 		goto out_quota;
2204 	}
2205 
2206 	/*
2207 	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2208 	 * the target page. In this case, we exit with no error and no target
2209 	 * page. This will trigger the caller, page_mkwrite(), to re-try
2210 	 * the operation.
2211 	 */
2212 	if (ret == -EAGAIN) {
2213 		BUG_ON(wc->w_target_page);
2214 		ret = 0;
2215 		goto out_quota;
2216 	}
2217 
2218 	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2219 					  len);
2220 	if (ret) {
2221 		mlog_errno(ret);
2222 		goto out_quota;
2223 	}
2224 
2225 	if (data_ac)
2226 		ocfs2_free_alloc_context(data_ac);
2227 	if (meta_ac)
2228 		ocfs2_free_alloc_context(meta_ac);
2229 
2230 success:
2231 	*pagep = wc->w_target_page;
2232 	*fsdata = wc;
2233 	return 0;
2234 out_quota:
2235 	if (clusters_to_alloc)
2236 		dquot_free_space(inode,
2237 			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2238 out_commit:
2239 	ocfs2_commit_trans(osb, handle);
2240 
2241 out:
2242 	ocfs2_free_write_ctxt(wc);
2243 
2244 	if (data_ac) {
2245 		ocfs2_free_alloc_context(data_ac);
2246 		data_ac = NULL;
2247 	}
2248 	if (meta_ac) {
2249 		ocfs2_free_alloc_context(meta_ac);
2250 		meta_ac = NULL;
2251 	}
2252 
2253 	if (ret == -ENOSPC && try_free) {
2254 		/*
2255 		 * Try to free some truncate log so that we can have enough
2256 		 * clusters to allocate.
2257 		 */
2258 		try_free = 0;
2259 
2260 		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2261 		if (ret1 == 1)
2262 			goto try_again;
2263 
2264 		if (ret1 < 0)
2265 			mlog_errno(ret1);
2266 	}
2267 
2268 	return ret;
2269 }
2270 
2271 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2272 			     loff_t pos, unsigned len, unsigned flags,
2273 			     struct page **pagep, void **fsdata)
2274 {
2275 	int ret;
2276 	struct buffer_head *di_bh = NULL;
2277 	struct inode *inode = mapping->host;
2278 
2279 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2280 	if (ret) {
2281 		mlog_errno(ret);
2282 		return ret;
2283 	}
2284 
2285 	/*
2286 	 * Take alloc sem here to prevent concurrent lookups. That way
2287 	 * the mapping, zeroing and tree manipulation within
2288 	 * ocfs2_write() will be safe against ->readpage(). This
2289 	 * should also serve to lock out allocation from a shared
2290 	 * writeable region.
2291 	 */
2292 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2293 
2294 	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2295 				       fsdata, di_bh, NULL);
2296 	if (ret) {
2297 		mlog_errno(ret);
2298 		goto out_fail;
2299 	}
2300 
2301 	brelse(di_bh);
2302 
2303 	return 0;
2304 
2305 out_fail:
2306 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2307 
2308 	brelse(di_bh);
2309 	ocfs2_inode_unlock(inode, 1);
2310 
2311 	return ret;
2312 }
2313 
2314 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2315 				   unsigned len, unsigned *copied,
2316 				   struct ocfs2_dinode *di,
2317 				   struct ocfs2_write_ctxt *wc)
2318 {
2319 	void *kaddr;
2320 
2321 	if (unlikely(*copied < len)) {
2322 		if (!PageUptodate(wc->w_target_page)) {
2323 			*copied = 0;
2324 			return;
2325 		}
2326 	}
2327 
2328 	kaddr = kmap_atomic(wc->w_target_page);
2329 	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2330 	kunmap_atomic(kaddr);
2331 
2332 	trace_ocfs2_write_end_inline(
2333 	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2334 	     (unsigned long long)pos, *copied,
2335 	     le16_to_cpu(di->id2.i_data.id_count),
2336 	     le16_to_cpu(di->i_dyn_features));
2337 }
2338 
2339 int ocfs2_write_end_nolock(struct address_space *mapping,
2340 			   loff_t pos, unsigned len, unsigned copied,
2341 			   struct page *page, void *fsdata)
2342 {
2343 	int i;
2344 	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2345 	struct inode *inode = mapping->host;
2346 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2347 	struct ocfs2_write_ctxt *wc = fsdata;
2348 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2349 	handle_t *handle = wc->w_handle;
2350 	struct page *tmppage;
2351 
2352 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2353 		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2354 		goto out_write_size;
2355 	}
2356 
2357 	if (unlikely(copied < len)) {
2358 		if (!PageUptodate(wc->w_target_page))
2359 			copied = 0;
2360 
2361 		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2362 				       start+len);
2363 	}
2364 	flush_dcache_page(wc->w_target_page);
2365 
2366 	for(i = 0; i < wc->w_num_pages; i++) {
2367 		tmppage = wc->w_pages[i];
2368 
2369 		if (tmppage == wc->w_target_page) {
2370 			from = wc->w_target_from;
2371 			to = wc->w_target_to;
2372 
2373 			BUG_ON(from > PAGE_CACHE_SIZE ||
2374 			       to > PAGE_CACHE_SIZE ||
2375 			       to < from);
2376 		} else {
2377 			/*
2378 			 * Pages adjacent to the target (if any) imply
2379 			 * a hole-filling write in which case we want
2380 			 * to flush their entire range.
2381 			 */
2382 			from = 0;
2383 			to = PAGE_CACHE_SIZE;
2384 		}
2385 
2386 		if (page_has_buffers(tmppage)) {
2387 			if (ocfs2_should_order_data(inode))
2388 				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2389 			block_commit_write(tmppage, from, to);
2390 		}
2391 	}
2392 
2393 out_write_size:
2394 	pos += copied;
2395 	if (pos > i_size_read(inode)) {
2396 		i_size_write(inode, pos);
2397 		mark_inode_dirty(inode);
2398 	}
2399 	inode->i_blocks = ocfs2_inode_sector_count(inode);
2400 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2401 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2402 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2403 	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2404 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
2405 	ocfs2_journal_dirty(handle, wc->w_di_bh);
2406 
2407 	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2408 	 * lock, or it will cause a deadlock since journal commit threads holds
2409 	 * this lock and will ask for the page lock when flushing the data.
2410 	 * put it here to preserve the unlock order.
2411 	 */
2412 	ocfs2_unlock_pages(wc);
2413 
2414 	ocfs2_commit_trans(osb, handle);
2415 
2416 	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2417 
2418 	brelse(wc->w_di_bh);
2419 	kfree(wc);
2420 
2421 	return copied;
2422 }
2423 
2424 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2425 			   loff_t pos, unsigned len, unsigned copied,
2426 			   struct page *page, void *fsdata)
2427 {
2428 	int ret;
2429 	struct inode *inode = mapping->host;
2430 
2431 	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2432 
2433 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2434 	ocfs2_inode_unlock(inode, 1);
2435 
2436 	return ret;
2437 }
2438 
2439 const struct address_space_operations ocfs2_aops = {
2440 	.readpage		= ocfs2_readpage,
2441 	.readpages		= ocfs2_readpages,
2442 	.writepage		= ocfs2_writepage,
2443 	.write_begin		= ocfs2_write_begin,
2444 	.write_end		= ocfs2_write_end,
2445 	.bmap			= ocfs2_bmap,
2446 	.direct_IO		= ocfs2_direct_IO,
2447 	.invalidatepage		= block_invalidatepage,
2448 	.releasepage		= ocfs2_releasepage,
2449 	.migratepage		= buffer_migrate_page,
2450 	.is_partially_uptodate	= block_is_partially_uptodate,
2451 	.error_remove_page	= generic_error_remove_page,
2452 };
2453