xref: /linux/fs/nfs/nfs4proc.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55 
56 #define NFSDBG_FACILITY		NFSDBG_PROC
57 
58 #define NFS4_POLL_RETRY_MIN	(1*HZ)
59 #define NFS4_POLL_RETRY_MAX	(15*HZ)
60 
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp);
68 extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus);
69 extern struct rpc_procinfo nfs4_procedures[];
70 
71 /* Prevent leaks of NFSv4 errors into userland */
72 int nfs4_map_errors(int err)
73 {
74 	if (err < -1000) {
75 		dprintk("%s could not handle NFSv4 error %d\n",
76 				__FUNCTION__, -err);
77 		return -EIO;
78 	}
79 	return err;
80 }
81 
82 /*
83  * This is our standard bitmap for GETATTR requests.
84  */
85 const u32 nfs4_fattr_bitmap[2] = {
86 	FATTR4_WORD0_TYPE
87 	| FATTR4_WORD0_CHANGE
88 	| FATTR4_WORD0_SIZE
89 	| FATTR4_WORD0_FSID
90 	| FATTR4_WORD0_FILEID,
91 	FATTR4_WORD1_MODE
92 	| FATTR4_WORD1_NUMLINKS
93 	| FATTR4_WORD1_OWNER
94 	| FATTR4_WORD1_OWNER_GROUP
95 	| FATTR4_WORD1_RAWDEV
96 	| FATTR4_WORD1_SPACE_USED
97 	| FATTR4_WORD1_TIME_ACCESS
98 	| FATTR4_WORD1_TIME_METADATA
99 	| FATTR4_WORD1_TIME_MODIFY
100 };
101 
102 const u32 nfs4_statfs_bitmap[2] = {
103 	FATTR4_WORD0_FILES_AVAIL
104 	| FATTR4_WORD0_FILES_FREE
105 	| FATTR4_WORD0_FILES_TOTAL,
106 	FATTR4_WORD1_SPACE_AVAIL
107 	| FATTR4_WORD1_SPACE_FREE
108 	| FATTR4_WORD1_SPACE_TOTAL
109 };
110 
111 const u32 nfs4_pathconf_bitmap[2] = {
112 	FATTR4_WORD0_MAXLINK
113 	| FATTR4_WORD0_MAXNAME,
114 	0
115 };
116 
117 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
118 			| FATTR4_WORD0_MAXREAD
119 			| FATTR4_WORD0_MAXWRITE
120 			| FATTR4_WORD0_LEASE_TIME,
121 			0
122 };
123 
124 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
125 		struct nfs4_readdir_arg *readdir)
126 {
127 	u32 *start, *p;
128 
129 	BUG_ON(readdir->count < 80);
130 	if (cookie > 2) {
131 		readdir->cookie = cookie;
132 		memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
133 		return;
134 	}
135 
136 	readdir->cookie = 0;
137 	memset(&readdir->verifier, 0, sizeof(readdir->verifier));
138 	if (cookie == 2)
139 		return;
140 
141 	/*
142 	 * NFSv4 servers do not return entries for '.' and '..'
143 	 * Therefore, we fake these entries here.  We let '.'
144 	 * have cookie 0 and '..' have cookie 1.  Note that
145 	 * when talking to the server, we always send cookie 0
146 	 * instead of 1 or 2.
147 	 */
148 	start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
149 
150 	if (cookie == 0) {
151 		*p++ = xdr_one;                                  /* next */
152 		*p++ = xdr_zero;                   /* cookie, first word */
153 		*p++ = xdr_one;                   /* cookie, second word */
154 		*p++ = xdr_one;                             /* entry len */
155 		memcpy(p, ".\0\0\0", 4);                        /* entry */
156 		p++;
157 		*p++ = xdr_one;                         /* bitmap length */
158 		*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
159 		*p++ = htonl(8);              /* attribute buffer length */
160 		p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
161 	}
162 
163 	*p++ = xdr_one;                                  /* next */
164 	*p++ = xdr_zero;                   /* cookie, first word */
165 	*p++ = xdr_two;                   /* cookie, second word */
166 	*p++ = xdr_two;                             /* entry len */
167 	memcpy(p, "..\0\0", 4);                         /* entry */
168 	p++;
169 	*p++ = xdr_one;                         /* bitmap length */
170 	*p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
171 	*p++ = htonl(8);              /* attribute buffer length */
172 	p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
173 
174 	readdir->pgbase = (char *)p - (char *)start;
175 	readdir->count -= readdir->pgbase;
176 	kunmap_atomic(start, KM_USER0);
177 }
178 
179 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
180 {
181 	struct nfs4_client *clp = server->nfs4_state;
182 	spin_lock(&clp->cl_lock);
183 	if (time_before(clp->cl_last_renewal,timestamp))
184 		clp->cl_last_renewal = timestamp;
185 	spin_unlock(&clp->cl_lock);
186 }
187 
188 static void update_changeattr(struct inode *inode, struct nfs4_change_info *cinfo)
189 {
190 	struct nfs_inode *nfsi = NFS_I(inode);
191 
192 	spin_lock(&inode->i_lock);
193 	nfsi->cache_validity |= NFS_INO_INVALID_ATTR;
194 	if (cinfo->before == nfsi->change_attr && cinfo->atomic)
195 		nfsi->change_attr = cinfo->after;
196 	spin_unlock(&inode->i_lock);
197 }
198 
199 struct nfs4_opendata {
200 	atomic_t count;
201 	struct nfs_openargs o_arg;
202 	struct nfs_openres o_res;
203 	struct nfs_open_confirmargs c_arg;
204 	struct nfs_open_confirmres c_res;
205 	struct nfs_fattr f_attr;
206 	struct nfs_fattr dir_attr;
207 	struct dentry *dentry;
208 	struct dentry *dir;
209 	struct nfs4_state_owner *owner;
210 	struct iattr attrs;
211 	unsigned long timestamp;
212 	int rpc_status;
213 	int cancelled;
214 };
215 
216 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
217 		struct nfs4_state_owner *sp, int flags,
218 		const struct iattr *attrs)
219 {
220 	struct dentry *parent = dget_parent(dentry);
221 	struct inode *dir = parent->d_inode;
222 	struct nfs_server *server = NFS_SERVER(dir);
223 	struct nfs4_opendata *p;
224 
225 	p = kzalloc(sizeof(*p), GFP_KERNEL);
226 	if (p == NULL)
227 		goto err;
228 	p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
229 	if (p->o_arg.seqid == NULL)
230 		goto err_free;
231 	atomic_set(&p->count, 1);
232 	p->dentry = dget(dentry);
233 	p->dir = parent;
234 	p->owner = sp;
235 	atomic_inc(&sp->so_count);
236 	p->o_arg.fh = NFS_FH(dir);
237 	p->o_arg.open_flags = flags,
238 	p->o_arg.clientid = server->nfs4_state->cl_clientid;
239 	p->o_arg.id = sp->so_id;
240 	p->o_arg.name = &dentry->d_name;
241 	p->o_arg.server = server;
242 	p->o_arg.bitmask = server->attr_bitmask;
243 	p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
244 	p->o_res.f_attr = &p->f_attr;
245 	p->o_res.dir_attr = &p->dir_attr;
246 	p->o_res.server = server;
247 	nfs_fattr_init(&p->f_attr);
248 	nfs_fattr_init(&p->dir_attr);
249 	if (flags & O_EXCL) {
250 		u32 *s = (u32 *) p->o_arg.u.verifier.data;
251 		s[0] = jiffies;
252 		s[1] = current->pid;
253 	} else if (flags & O_CREAT) {
254 		p->o_arg.u.attrs = &p->attrs;
255 		memcpy(&p->attrs, attrs, sizeof(p->attrs));
256 	}
257 	p->c_arg.fh = &p->o_res.fh;
258 	p->c_arg.stateid = &p->o_res.stateid;
259 	p->c_arg.seqid = p->o_arg.seqid;
260 	return p;
261 err_free:
262 	kfree(p);
263 err:
264 	dput(parent);
265 	return NULL;
266 }
267 
268 static void nfs4_opendata_free(struct nfs4_opendata *p)
269 {
270 	if (p != NULL && atomic_dec_and_test(&p->count)) {
271 		nfs_free_seqid(p->o_arg.seqid);
272 		nfs4_put_state_owner(p->owner);
273 		dput(p->dir);
274 		dput(p->dentry);
275 		kfree(p);
276 	}
277 }
278 
279 /* Helper for asynchronous RPC calls */
280 static int nfs4_call_async(struct rpc_clnt *clnt,
281 		const struct rpc_call_ops *tk_ops, void *calldata)
282 {
283 	struct rpc_task *task;
284 
285 	if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
286 		return -ENOMEM;
287 	rpc_execute(task);
288 	return 0;
289 }
290 
291 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
292 {
293 	sigset_t oldset;
294 	int ret;
295 
296 	rpc_clnt_sigmask(task->tk_client, &oldset);
297 	ret = rpc_wait_for_completion_task(task);
298 	rpc_clnt_sigunmask(task->tk_client, &oldset);
299 	return ret;
300 }
301 
302 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
303 {
304 	switch (open_flags) {
305 		case FMODE_WRITE:
306 			state->n_wronly++;
307 			break;
308 		case FMODE_READ:
309 			state->n_rdonly++;
310 			break;
311 		case FMODE_READ|FMODE_WRITE:
312 			state->n_rdwr++;
313 	}
314 }
315 
316 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
317 {
318 	struct inode *inode = state->inode;
319 
320 	open_flags &= (FMODE_READ|FMODE_WRITE);
321 	/* Protect against nfs4_find_state_byowner() */
322 	spin_lock(&state->owner->so_lock);
323 	spin_lock(&inode->i_lock);
324 	memcpy(&state->stateid, stateid, sizeof(state->stateid));
325 	update_open_stateflags(state, open_flags);
326 	nfs4_state_set_mode_locked(state, state->state | open_flags);
327 	spin_unlock(&inode->i_lock);
328 	spin_unlock(&state->owner->so_lock);
329 }
330 
331 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
332 {
333 	struct inode *inode;
334 	struct nfs4_state *state = NULL;
335 
336 	if (!(data->f_attr.valid & NFS_ATTR_FATTR))
337 		goto out;
338 	inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
339 	if (IS_ERR(inode))
340 		goto out;
341 	state = nfs4_get_open_state(inode, data->owner);
342 	if (state == NULL)
343 		goto put_inode;
344 	update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
345 put_inode:
346 	iput(inode);
347 out:
348 	return state;
349 }
350 
351 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
352 {
353 	struct nfs_inode *nfsi = NFS_I(state->inode);
354 	struct nfs_open_context *ctx;
355 
356 	spin_lock(&state->inode->i_lock);
357 	list_for_each_entry(ctx, &nfsi->open_files, list) {
358 		if (ctx->state != state)
359 			continue;
360 		get_nfs_open_context(ctx);
361 		spin_unlock(&state->inode->i_lock);
362 		return ctx;
363 	}
364 	spin_unlock(&state->inode->i_lock);
365 	return ERR_PTR(-ENOENT);
366 }
367 
368 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
369 {
370 	int ret;
371 
372 	opendata->o_arg.open_flags = openflags;
373 	ret = _nfs4_proc_open(opendata);
374 	if (ret != 0)
375 		return ret;
376 	memcpy(stateid->data, opendata->o_res.stateid.data,
377 			sizeof(stateid->data));
378 	return 0;
379 }
380 
381 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
382 {
383 	nfs4_stateid stateid;
384 	struct nfs4_state *newstate;
385 	int mode = 0;
386 	int delegation = 0;
387 	int ret;
388 
389 	/* memory barrier prior to reading state->n_* */
390 	smp_rmb();
391 	if (state->n_rdwr != 0) {
392 		ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
393 		if (ret != 0)
394 			return ret;
395 		mode |= FMODE_READ|FMODE_WRITE;
396 		if (opendata->o_res.delegation_type != 0)
397 			delegation = opendata->o_res.delegation_type;
398 		smp_rmb();
399 	}
400 	if (state->n_wronly != 0) {
401 		ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
402 		if (ret != 0)
403 			return ret;
404 		mode |= FMODE_WRITE;
405 		if (opendata->o_res.delegation_type != 0)
406 			delegation = opendata->o_res.delegation_type;
407 		smp_rmb();
408 	}
409 	if (state->n_rdonly != 0) {
410 		ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
411 		if (ret != 0)
412 			return ret;
413 		mode |= FMODE_READ;
414 	}
415 	clear_bit(NFS_DELEGATED_STATE, &state->flags);
416 	if (mode == 0)
417 		return 0;
418 	if (opendata->o_res.delegation_type == 0)
419 		opendata->o_res.delegation_type = delegation;
420 	opendata->o_arg.open_flags |= mode;
421 	newstate = nfs4_opendata_to_nfs4_state(opendata);
422 	if (newstate != NULL) {
423 		if (opendata->o_res.delegation_type != 0) {
424 			struct nfs_inode *nfsi = NFS_I(newstate->inode);
425 			int delegation_flags = 0;
426 			if (nfsi->delegation)
427 				delegation_flags = nfsi->delegation->flags;
428 			if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
429 				nfs_inode_set_delegation(newstate->inode,
430 						opendata->owner->so_cred,
431 						&opendata->o_res);
432 			else
433 				nfs_inode_reclaim_delegation(newstate->inode,
434 						opendata->owner->so_cred,
435 						&opendata->o_res);
436 		}
437 		nfs4_close_state(newstate, opendata->o_arg.open_flags);
438 	}
439 	if (newstate != state)
440 		return -ESTALE;
441 	return 0;
442 }
443 
444 /*
445  * OPEN_RECLAIM:
446  * 	reclaim state on the server after a reboot.
447  */
448 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
449 {
450 	struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
451 	struct nfs4_opendata *opendata;
452 	int delegation_type = 0;
453 	int status;
454 
455 	if (delegation != NULL) {
456 		if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
457 			memcpy(&state->stateid, &delegation->stateid,
458 					sizeof(state->stateid));
459 			set_bit(NFS_DELEGATED_STATE, &state->flags);
460 			return 0;
461 		}
462 		delegation_type = delegation->type;
463 	}
464 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
465 	if (opendata == NULL)
466 		return -ENOMEM;
467 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
468 	opendata->o_arg.fh = NFS_FH(state->inode);
469 	nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
470 	opendata->o_arg.u.delegation_type = delegation_type;
471 	status = nfs4_open_recover(opendata, state);
472 	nfs4_opendata_free(opendata);
473 	return status;
474 }
475 
476 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
477 {
478 	struct nfs_server *server = NFS_SERVER(state->inode);
479 	struct nfs4_exception exception = { };
480 	int err;
481 	do {
482 		err = _nfs4_do_open_reclaim(sp, state, dentry);
483 		if (err != -NFS4ERR_DELAY)
484 			break;
485 		nfs4_handle_exception(server, err, &exception);
486 	} while (exception.retry);
487 	return err;
488 }
489 
490 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
491 {
492 	struct nfs_open_context *ctx;
493 	int ret;
494 
495 	ctx = nfs4_state_find_open_context(state);
496 	if (IS_ERR(ctx))
497 		return PTR_ERR(ctx);
498 	ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
499 	put_nfs_open_context(ctx);
500 	return ret;
501 }
502 
503 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
504 {
505 	struct nfs4_state_owner  *sp  = state->owner;
506 	struct nfs4_opendata *opendata;
507 	int ret;
508 
509 	if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
510 		return 0;
511 	opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
512 	if (opendata == NULL)
513 		return -ENOMEM;
514 	opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
515 	memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
516 			sizeof(opendata->o_arg.u.delegation.data));
517 	ret = nfs4_open_recover(opendata, state);
518 	nfs4_opendata_free(opendata);
519 	return ret;
520 }
521 
522 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
523 {
524 	struct nfs4_exception exception = { };
525 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
526 	int err;
527 	do {
528 		err = _nfs4_open_delegation_recall(dentry, state);
529 		switch (err) {
530 			case 0:
531 				return err;
532 			case -NFS4ERR_STALE_CLIENTID:
533 			case -NFS4ERR_STALE_STATEID:
534 			case -NFS4ERR_EXPIRED:
535 				/* Don't recall a delegation if it was lost */
536 				nfs4_schedule_state_recovery(server->nfs4_state);
537 				return err;
538 		}
539 		err = nfs4_handle_exception(server, err, &exception);
540 	} while (exception.retry);
541 	return err;
542 }
543 
544 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
545 {
546 	struct nfs4_opendata *data = calldata;
547 	struct  rpc_message msg = {
548 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
549 		.rpc_argp = &data->c_arg,
550 		.rpc_resp = &data->c_res,
551 		.rpc_cred = data->owner->so_cred,
552 	};
553 	data->timestamp = jiffies;
554 	rpc_call_setup(task, &msg, 0);
555 }
556 
557 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
558 {
559 	struct nfs4_opendata *data = calldata;
560 
561 	data->rpc_status = task->tk_status;
562 	if (RPC_ASSASSINATED(task))
563 		return;
564 	if (data->rpc_status == 0) {
565 		memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
566 				sizeof(data->o_res.stateid.data));
567 		renew_lease(data->o_res.server, data->timestamp);
568 	}
569 	nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
570 	nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
571 }
572 
573 static void nfs4_open_confirm_release(void *calldata)
574 {
575 	struct nfs4_opendata *data = calldata;
576 	struct nfs4_state *state = NULL;
577 
578 	/* If this request hasn't been cancelled, do nothing */
579 	if (data->cancelled == 0)
580 		goto out_free;
581 	/* In case of error, no cleanup! */
582 	if (data->rpc_status != 0)
583 		goto out_free;
584 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
585 	state = nfs4_opendata_to_nfs4_state(data);
586 	if (state != NULL)
587 		nfs4_close_state(state, data->o_arg.open_flags);
588 out_free:
589 	nfs4_opendata_free(data);
590 }
591 
592 static const struct rpc_call_ops nfs4_open_confirm_ops = {
593 	.rpc_call_prepare = nfs4_open_confirm_prepare,
594 	.rpc_call_done = nfs4_open_confirm_done,
595 	.rpc_release = nfs4_open_confirm_release,
596 };
597 
598 /*
599  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
600  */
601 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
602 {
603 	struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
604 	struct rpc_task *task;
605 	int status;
606 
607 	atomic_inc(&data->count);
608 	/*
609 	 * If rpc_run_task() ends up calling ->rpc_release(), we
610 	 * want to ensure that it takes the 'error' code path.
611 	 */
612 	data->rpc_status = -ENOMEM;
613 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
614 	if (IS_ERR(task))
615 		return PTR_ERR(task);
616 	status = nfs4_wait_for_completion_rpc_task(task);
617 	if (status != 0) {
618 		data->cancelled = 1;
619 		smp_wmb();
620 	} else
621 		status = data->rpc_status;
622 	rpc_release_task(task);
623 	return status;
624 }
625 
626 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
627 {
628 	struct nfs4_opendata *data = calldata;
629 	struct nfs4_state_owner *sp = data->owner;
630 	struct rpc_message msg = {
631 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
632 		.rpc_argp = &data->o_arg,
633 		.rpc_resp = &data->o_res,
634 		.rpc_cred = sp->so_cred,
635 	};
636 
637 	if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
638 		return;
639 	/* Update sequence id. */
640 	data->o_arg.id = sp->so_id;
641 	data->o_arg.clientid = sp->so_client->cl_clientid;
642 	if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
643 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
644 	data->timestamp = jiffies;
645 	rpc_call_setup(task, &msg, 0);
646 }
647 
648 static void nfs4_open_done(struct rpc_task *task, void *calldata)
649 {
650 	struct nfs4_opendata *data = calldata;
651 
652 	data->rpc_status = task->tk_status;
653 	if (RPC_ASSASSINATED(task))
654 		return;
655 	if (task->tk_status == 0) {
656 		switch (data->o_res.f_attr->mode & S_IFMT) {
657 			case S_IFREG:
658 				break;
659 			case S_IFLNK:
660 				data->rpc_status = -ELOOP;
661 				break;
662 			case S_IFDIR:
663 				data->rpc_status = -EISDIR;
664 				break;
665 			default:
666 				data->rpc_status = -ENOTDIR;
667 		}
668 		renew_lease(data->o_res.server, data->timestamp);
669 	}
670 	nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
671 }
672 
673 static void nfs4_open_release(void *calldata)
674 {
675 	struct nfs4_opendata *data = calldata;
676 	struct nfs4_state *state = NULL;
677 
678 	/* If this request hasn't been cancelled, do nothing */
679 	if (data->cancelled == 0)
680 		goto out_free;
681 	/* In case of error, no cleanup! */
682 	if (data->rpc_status != 0)
683 		goto out_free;
684 	/* In case we need an open_confirm, no cleanup! */
685 	if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
686 		goto out_free;
687 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
688 	state = nfs4_opendata_to_nfs4_state(data);
689 	if (state != NULL)
690 		nfs4_close_state(state, data->o_arg.open_flags);
691 out_free:
692 	nfs4_opendata_free(data);
693 }
694 
695 static const struct rpc_call_ops nfs4_open_ops = {
696 	.rpc_call_prepare = nfs4_open_prepare,
697 	.rpc_call_done = nfs4_open_done,
698 	.rpc_release = nfs4_open_release,
699 };
700 
701 /*
702  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
703  */
704 static int _nfs4_proc_open(struct nfs4_opendata *data)
705 {
706 	struct inode *dir = data->dir->d_inode;
707 	struct nfs_server *server = NFS_SERVER(dir);
708 	struct nfs_openargs *o_arg = &data->o_arg;
709 	struct nfs_openres *o_res = &data->o_res;
710 	struct rpc_task *task;
711 	int status;
712 
713 	atomic_inc(&data->count);
714 	/*
715 	 * If rpc_run_task() ends up calling ->rpc_release(), we
716 	 * want to ensure that it takes the 'error' code path.
717 	 */
718 	data->rpc_status = -ENOMEM;
719 	task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
720 	if (IS_ERR(task))
721 		return PTR_ERR(task);
722 	status = nfs4_wait_for_completion_rpc_task(task);
723 	if (status != 0) {
724 		data->cancelled = 1;
725 		smp_wmb();
726 	} else
727 		status = data->rpc_status;
728 	rpc_release_task(task);
729 	if (status != 0)
730 		return status;
731 
732 	if (o_arg->open_flags & O_CREAT) {
733 		update_changeattr(dir, &o_res->cinfo);
734 		nfs_post_op_update_inode(dir, o_res->dir_attr);
735 	} else
736 		nfs_refresh_inode(dir, o_res->dir_attr);
737 	if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
738 		status = _nfs4_proc_open_confirm(data);
739 		if (status != 0)
740 			return status;
741 	}
742 	nfs_confirm_seqid(&data->owner->so_seqid, 0);
743 	if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
744 		return server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
745 	return 0;
746 }
747 
748 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
749 {
750 	struct nfs_access_entry cache;
751 	int mask = 0;
752 	int status;
753 
754 	if (openflags & FMODE_READ)
755 		mask |= MAY_READ;
756 	if (openflags & FMODE_WRITE)
757 		mask |= MAY_WRITE;
758 	status = nfs_access_get_cached(inode, cred, &cache);
759 	if (status == 0)
760 		goto out;
761 
762 	/* Be clever: ask server to check for all possible rights */
763 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
764 	cache.cred = cred;
765 	cache.jiffies = jiffies;
766 	status = _nfs4_proc_access(inode, &cache);
767 	if (status != 0)
768 		return status;
769 	nfs_access_add_cache(inode, &cache);
770 out:
771 	if ((cache.mask & mask) == mask)
772 		return 0;
773 	return -EACCES;
774 }
775 
776 int nfs4_recover_expired_lease(struct nfs_server *server)
777 {
778 	struct nfs4_client *clp = server->nfs4_state;
779 
780 	if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
781 		nfs4_schedule_state_recovery(clp);
782 	return nfs4_wait_clnt_recover(server->client, clp);
783 }
784 
785 /*
786  * OPEN_EXPIRED:
787  * 	reclaim state on the server after a network partition.
788  * 	Assumes caller holds the appropriate lock
789  */
790 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
791 {
792 	struct inode *inode = state->inode;
793 	struct nfs_delegation *delegation = NFS_I(inode)->delegation;
794 	struct nfs4_opendata *opendata;
795 	int openflags = state->state & (FMODE_READ|FMODE_WRITE);
796 	int ret;
797 
798 	if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
799 		ret = _nfs4_do_access(inode, sp->so_cred, openflags);
800 		if (ret < 0)
801 			return ret;
802 		memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
803 		set_bit(NFS_DELEGATED_STATE, &state->flags);
804 		return 0;
805 	}
806 	opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
807 	if (opendata == NULL)
808 		return -ENOMEM;
809 	ret = nfs4_open_recover(opendata, state);
810 	if (ret == -ESTALE) {
811 		/* Invalidate the state owner so we don't ever use it again */
812 		nfs4_drop_state_owner(sp);
813 		d_drop(dentry);
814 	}
815 	nfs4_opendata_free(opendata);
816 	return ret;
817 }
818 
819 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
820 {
821 	struct nfs_server *server = NFS_SERVER(dentry->d_inode);
822 	struct nfs4_exception exception = { };
823 	int err;
824 
825 	do {
826 		err = _nfs4_open_expired(sp, state, dentry);
827 		if (err == -NFS4ERR_DELAY)
828 			nfs4_handle_exception(server, err, &exception);
829 	} while (exception.retry);
830 	return err;
831 }
832 
833 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
834 {
835 	struct nfs_open_context *ctx;
836 	int ret;
837 
838 	ctx = nfs4_state_find_open_context(state);
839 	if (IS_ERR(ctx))
840 		return PTR_ERR(ctx);
841 	ret = nfs4_do_open_expired(sp, state, ctx->dentry);
842 	put_nfs_open_context(ctx);
843 	return ret;
844 }
845 
846 /*
847  * Returns a referenced nfs4_state if there is an open delegation on the file
848  */
849 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
850 {
851 	struct nfs_delegation *delegation;
852 	struct nfs_server *server = NFS_SERVER(inode);
853 	struct nfs4_client *clp = server->nfs4_state;
854 	struct nfs_inode *nfsi = NFS_I(inode);
855 	struct nfs4_state_owner *sp = NULL;
856 	struct nfs4_state *state = NULL;
857 	int open_flags = flags & (FMODE_READ|FMODE_WRITE);
858 	int err;
859 
860 	err = -ENOMEM;
861 	if (!(sp = nfs4_get_state_owner(server, cred))) {
862 		dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
863 		return err;
864 	}
865 	err = nfs4_recover_expired_lease(server);
866 	if (err != 0)
867 		goto out_put_state_owner;
868 	/* Protect against reboot recovery - NOTE ORDER! */
869 	down_read(&clp->cl_sem);
870 	/* Protect against delegation recall */
871 	down_read(&nfsi->rwsem);
872 	delegation = NFS_I(inode)->delegation;
873 	err = -ENOENT;
874 	if (delegation == NULL || (delegation->type & open_flags) != open_flags)
875 		goto out_err;
876 	err = -ENOMEM;
877 	state = nfs4_get_open_state(inode, sp);
878 	if (state == NULL)
879 		goto out_err;
880 
881 	err = -ENOENT;
882 	if ((state->state & open_flags) == open_flags) {
883 		spin_lock(&inode->i_lock);
884 		update_open_stateflags(state, open_flags);
885 		spin_unlock(&inode->i_lock);
886 		goto out_ok;
887 	} else if (state->state != 0)
888 		goto out_put_open_state;
889 
890 	lock_kernel();
891 	err = _nfs4_do_access(inode, cred, open_flags);
892 	unlock_kernel();
893 	if (err != 0)
894 		goto out_put_open_state;
895 	set_bit(NFS_DELEGATED_STATE, &state->flags);
896 	update_open_stateid(state, &delegation->stateid, open_flags);
897 out_ok:
898 	nfs4_put_state_owner(sp);
899 	up_read(&nfsi->rwsem);
900 	up_read(&clp->cl_sem);
901 	*res = state;
902 	return 0;
903 out_put_open_state:
904 	nfs4_put_open_state(state);
905 out_err:
906 	up_read(&nfsi->rwsem);
907 	up_read(&clp->cl_sem);
908 	if (err != -EACCES)
909 		nfs_inode_return_delegation(inode);
910 out_put_state_owner:
911 	nfs4_put_state_owner(sp);
912 	return err;
913 }
914 
915 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
916 {
917 	struct nfs4_exception exception = { };
918 	struct nfs4_state *res = ERR_PTR(-EIO);
919 	int err;
920 
921 	do {
922 		err = _nfs4_open_delegated(inode, flags, cred, &res);
923 		if (err == 0)
924 			break;
925 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
926 					err, &exception));
927 	} while (exception.retry);
928 	return res;
929 }
930 
931 /*
932  * Returns a referenced nfs4_state
933  */
934 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
935 {
936 	struct nfs4_state_owner  *sp;
937 	struct nfs4_state     *state = NULL;
938 	struct nfs_server       *server = NFS_SERVER(dir);
939 	struct nfs4_client *clp = server->nfs4_state;
940 	struct nfs4_opendata *opendata;
941 	int                     status;
942 
943 	/* Protect against reboot recovery conflicts */
944 	status = -ENOMEM;
945 	if (!(sp = nfs4_get_state_owner(server, cred))) {
946 		dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
947 		goto out_err;
948 	}
949 	status = nfs4_recover_expired_lease(server);
950 	if (status != 0)
951 		goto err_put_state_owner;
952 	down_read(&clp->cl_sem);
953 	status = -ENOMEM;
954 	opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
955 	if (opendata == NULL)
956 		goto err_put_state_owner;
957 
958 	status = _nfs4_proc_open(opendata);
959 	if (status != 0)
960 		goto err_opendata_free;
961 
962 	status = -ENOMEM;
963 	state = nfs4_opendata_to_nfs4_state(opendata);
964 	if (state == NULL)
965 		goto err_opendata_free;
966 	if (opendata->o_res.delegation_type != 0)
967 		nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
968 	nfs4_opendata_free(opendata);
969 	nfs4_put_state_owner(sp);
970 	up_read(&clp->cl_sem);
971 	*res = state;
972 	return 0;
973 err_opendata_free:
974 	nfs4_opendata_free(opendata);
975 err_put_state_owner:
976 	nfs4_put_state_owner(sp);
977 out_err:
978 	/* Note: clp->cl_sem must be released before nfs4_put_open_state()! */
979 	up_read(&clp->cl_sem);
980 	*res = NULL;
981 	return status;
982 }
983 
984 
985 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
986 {
987 	struct nfs4_exception exception = { };
988 	struct nfs4_state *res;
989 	int status;
990 
991 	do {
992 		status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
993 		if (status == 0)
994 			break;
995 		/* NOTE: BAD_SEQID means the server and client disagree about the
996 		 * book-keeping w.r.t. state-changing operations
997 		 * (OPEN/CLOSE/LOCK/LOCKU...)
998 		 * It is actually a sign of a bug on the client or on the server.
999 		 *
1000 		 * If we receive a BAD_SEQID error in the particular case of
1001 		 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1002 		 * have unhashed the old state_owner for us, and that we can
1003 		 * therefore safely retry using a new one. We should still warn
1004 		 * the user though...
1005 		 */
1006 		if (status == -NFS4ERR_BAD_SEQID) {
1007 			printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1008 			exception.retry = 1;
1009 			continue;
1010 		}
1011 		/*
1012 		 * BAD_STATEID on OPEN means that the server cancelled our
1013 		 * state before it received the OPEN_CONFIRM.
1014 		 * Recover by retrying the request as per the discussion
1015 		 * on Page 181 of RFC3530.
1016 		 */
1017 		if (status == -NFS4ERR_BAD_STATEID) {
1018 			exception.retry = 1;
1019 			continue;
1020 		}
1021 		res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1022 					status, &exception));
1023 	} while (exception.retry);
1024 	return res;
1025 }
1026 
1027 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1028                 struct iattr *sattr, struct nfs4_state *state)
1029 {
1030 	struct nfs_server *server = NFS_SERVER(inode);
1031         struct nfs_setattrargs  arg = {
1032                 .fh             = NFS_FH(inode),
1033                 .iap            = sattr,
1034 		.server		= server,
1035 		.bitmask = server->attr_bitmask,
1036         };
1037         struct nfs_setattrres  res = {
1038 		.fattr		= fattr,
1039 		.server		= server,
1040         };
1041         struct rpc_message msg = {
1042                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1043                 .rpc_argp       = &arg,
1044                 .rpc_resp       = &res,
1045         };
1046 	unsigned long timestamp = jiffies;
1047 	int status;
1048 
1049 	nfs_fattr_init(fattr);
1050 
1051 	if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1052 		/* Use that stateid */
1053 	} else if (state != NULL) {
1054 		msg.rpc_cred = state->owner->so_cred;
1055 		nfs4_copy_stateid(&arg.stateid, state, current->files);
1056 	} else
1057 		memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1058 
1059 	status = rpc_call_sync(server->client, &msg, 0);
1060 	if (status == 0 && state != NULL)
1061 		renew_lease(server, timestamp);
1062 	return status;
1063 }
1064 
1065 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1066                 struct iattr *sattr, struct nfs4_state *state)
1067 {
1068 	struct nfs_server *server = NFS_SERVER(inode);
1069 	struct nfs4_exception exception = { };
1070 	int err;
1071 	do {
1072 		err = nfs4_handle_exception(server,
1073 				_nfs4_do_setattr(inode, fattr, sattr, state),
1074 				&exception);
1075 	} while (exception.retry);
1076 	return err;
1077 }
1078 
1079 struct nfs4_closedata {
1080 	struct inode *inode;
1081 	struct nfs4_state *state;
1082 	struct nfs_closeargs arg;
1083 	struct nfs_closeres res;
1084 	struct nfs_fattr fattr;
1085 	unsigned long timestamp;
1086 };
1087 
1088 static void nfs4_free_closedata(void *data)
1089 {
1090 	struct nfs4_closedata *calldata = data;
1091 	struct nfs4_state_owner *sp = calldata->state->owner;
1092 
1093 	nfs4_put_open_state(calldata->state);
1094 	nfs_free_seqid(calldata->arg.seqid);
1095 	nfs4_put_state_owner(sp);
1096 	kfree(calldata);
1097 }
1098 
1099 static void nfs4_close_done(struct rpc_task *task, void *data)
1100 {
1101 	struct nfs4_closedata *calldata = data;
1102 	struct nfs4_state *state = calldata->state;
1103 	struct nfs_server *server = NFS_SERVER(calldata->inode);
1104 
1105 	if (RPC_ASSASSINATED(task))
1106 		return;
1107         /* hmm. we are done with the inode, and in the process of freeing
1108 	 * the state_owner. we keep this around to process errors
1109 	 */
1110 	nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1111 	switch (task->tk_status) {
1112 		case 0:
1113 			memcpy(&state->stateid, &calldata->res.stateid,
1114 					sizeof(state->stateid));
1115 			renew_lease(server, calldata->timestamp);
1116 			break;
1117 		case -NFS4ERR_STALE_STATEID:
1118 		case -NFS4ERR_EXPIRED:
1119 			nfs4_schedule_state_recovery(server->nfs4_state);
1120 			break;
1121 		default:
1122 			if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1123 				rpc_restart_call(task);
1124 				return;
1125 			}
1126 	}
1127 	nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1128 }
1129 
1130 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1131 {
1132 	struct nfs4_closedata *calldata = data;
1133 	struct nfs4_state *state = calldata->state;
1134 	struct rpc_message msg = {
1135 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1136 		.rpc_argp = &calldata->arg,
1137 		.rpc_resp = &calldata->res,
1138 		.rpc_cred = state->owner->so_cred,
1139 	};
1140 	int mode = 0, old_mode;
1141 
1142 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1143 		return;
1144 	/* Recalculate the new open mode in case someone reopened the file
1145 	 * while we were waiting in line to be scheduled.
1146 	 */
1147 	spin_lock(&state->owner->so_lock);
1148 	spin_lock(&calldata->inode->i_lock);
1149 	mode = old_mode = state->state;
1150 	if (state->n_rdwr == 0) {
1151 		if (state->n_rdonly == 0)
1152 			mode &= ~FMODE_READ;
1153 		if (state->n_wronly == 0)
1154 			mode &= ~FMODE_WRITE;
1155 	}
1156 	nfs4_state_set_mode_locked(state, mode);
1157 	spin_unlock(&calldata->inode->i_lock);
1158 	spin_unlock(&state->owner->so_lock);
1159 	if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1160 		/* Note: exit _without_ calling nfs4_close_done */
1161 		task->tk_action = NULL;
1162 		return;
1163 	}
1164 	nfs_fattr_init(calldata->res.fattr);
1165 	if (mode != 0)
1166 		msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1167 	calldata->arg.open_flags = mode;
1168 	calldata->timestamp = jiffies;
1169 	rpc_call_setup(task, &msg, 0);
1170 }
1171 
1172 static const struct rpc_call_ops nfs4_close_ops = {
1173 	.rpc_call_prepare = nfs4_close_prepare,
1174 	.rpc_call_done = nfs4_close_done,
1175 	.rpc_release = nfs4_free_closedata,
1176 };
1177 
1178 /*
1179  * It is possible for data to be read/written from a mem-mapped file
1180  * after the sys_close call (which hits the vfs layer as a flush).
1181  * This means that we can't safely call nfsv4 close on a file until
1182  * the inode is cleared. This in turn means that we are not good
1183  * NFSv4 citizens - we do not indicate to the server to update the file's
1184  * share state even when we are done with one of the three share
1185  * stateid's in the inode.
1186  *
1187  * NOTE: Caller must be holding the sp->so_owner semaphore!
1188  */
1189 int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1190 {
1191 	struct nfs_server *server = NFS_SERVER(inode);
1192 	struct nfs4_closedata *calldata;
1193 	int status = -ENOMEM;
1194 
1195 	calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1196 	if (calldata == NULL)
1197 		goto out;
1198 	calldata->inode = inode;
1199 	calldata->state = state;
1200 	calldata->arg.fh = NFS_FH(inode);
1201 	calldata->arg.stateid = &state->stateid;
1202 	/* Serialization for the sequence id */
1203 	calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1204 	if (calldata->arg.seqid == NULL)
1205 		goto out_free_calldata;
1206 	calldata->arg.bitmask = server->attr_bitmask;
1207 	calldata->res.fattr = &calldata->fattr;
1208 	calldata->res.server = server;
1209 
1210 	status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1211 	if (status == 0)
1212 		goto out;
1213 
1214 	nfs_free_seqid(calldata->arg.seqid);
1215 out_free_calldata:
1216 	kfree(calldata);
1217 out:
1218 	return status;
1219 }
1220 
1221 static void nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1222 {
1223 	struct file *filp;
1224 
1225 	filp = lookup_instantiate_filp(nd, dentry, NULL);
1226 	if (!IS_ERR(filp)) {
1227 		struct nfs_open_context *ctx;
1228 		ctx = (struct nfs_open_context *)filp->private_data;
1229 		ctx->state = state;
1230 	} else
1231 		nfs4_close_state(state, nd->intent.open.flags);
1232 }
1233 
1234 struct dentry *
1235 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1236 {
1237 	struct iattr attr;
1238 	struct rpc_cred *cred;
1239 	struct nfs4_state *state;
1240 	struct dentry *res;
1241 
1242 	if (nd->flags & LOOKUP_CREATE) {
1243 		attr.ia_mode = nd->intent.open.create_mode;
1244 		attr.ia_valid = ATTR_MODE;
1245 		if (!IS_POSIXACL(dir))
1246 			attr.ia_mode &= ~current->fs->umask;
1247 	} else {
1248 		attr.ia_valid = 0;
1249 		BUG_ON(nd->intent.open.flags & O_CREAT);
1250 	}
1251 
1252 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1253 	if (IS_ERR(cred))
1254 		return (struct dentry *)cred;
1255 	state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1256 	put_rpccred(cred);
1257 	if (IS_ERR(state)) {
1258 		if (PTR_ERR(state) == -ENOENT)
1259 			d_add(dentry, NULL);
1260 		return (struct dentry *)state;
1261 	}
1262 	res = d_add_unique(dentry, igrab(state->inode));
1263 	if (res != NULL)
1264 		dentry = res;
1265 	nfs4_intent_set_file(nd, dentry, state);
1266 	return res;
1267 }
1268 
1269 int
1270 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1271 {
1272 	struct rpc_cred *cred;
1273 	struct nfs4_state *state;
1274 
1275 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1276 	if (IS_ERR(cred))
1277 		return PTR_ERR(cred);
1278 	state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1279 	if (IS_ERR(state))
1280 		state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1281 	put_rpccred(cred);
1282 	if (IS_ERR(state)) {
1283 		switch (PTR_ERR(state)) {
1284 			case -EPERM:
1285 			case -EACCES:
1286 			case -EDQUOT:
1287 			case -ENOSPC:
1288 			case -EROFS:
1289 				lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1290 				return 1;
1291 			case -ENOENT:
1292 				if (dentry->d_inode == NULL)
1293 					return 1;
1294 		}
1295 		goto out_drop;
1296 	}
1297 	if (state->inode == dentry->d_inode) {
1298 		nfs4_intent_set_file(nd, dentry, state);
1299 		return 1;
1300 	}
1301 	nfs4_close_state(state, openflags);
1302 out_drop:
1303 	d_drop(dentry);
1304 	return 0;
1305 }
1306 
1307 
1308 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1309 {
1310 	struct nfs4_server_caps_res res = {};
1311 	struct rpc_message msg = {
1312 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1313 		.rpc_argp = fhandle,
1314 		.rpc_resp = &res,
1315 	};
1316 	int status;
1317 
1318 	status = rpc_call_sync(server->client, &msg, 0);
1319 	if (status == 0) {
1320 		memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1321 		if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1322 			server->caps |= NFS_CAP_ACLS;
1323 		if (res.has_links != 0)
1324 			server->caps |= NFS_CAP_HARDLINKS;
1325 		if (res.has_symlinks != 0)
1326 			server->caps |= NFS_CAP_SYMLINKS;
1327 		server->acl_bitmask = res.acl_bitmask;
1328 	}
1329 	return status;
1330 }
1331 
1332 static int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1333 {
1334 	struct nfs4_exception exception = { };
1335 	int err;
1336 	do {
1337 		err = nfs4_handle_exception(server,
1338 				_nfs4_server_capabilities(server, fhandle),
1339 				&exception);
1340 	} while (exception.retry);
1341 	return err;
1342 }
1343 
1344 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1345 		struct nfs_fsinfo *info)
1346 {
1347 	struct nfs4_lookup_root_arg args = {
1348 		.bitmask = nfs4_fattr_bitmap,
1349 	};
1350 	struct nfs4_lookup_res res = {
1351 		.server = server,
1352 		.fattr = info->fattr,
1353 		.fh = fhandle,
1354 	};
1355 	struct rpc_message msg = {
1356 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1357 		.rpc_argp = &args,
1358 		.rpc_resp = &res,
1359 	};
1360 	nfs_fattr_init(info->fattr);
1361 	return rpc_call_sync(server->client, &msg, 0);
1362 }
1363 
1364 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1365 		struct nfs_fsinfo *info)
1366 {
1367 	struct nfs4_exception exception = { };
1368 	int err;
1369 	do {
1370 		err = nfs4_handle_exception(server,
1371 				_nfs4_lookup_root(server, fhandle, info),
1372 				&exception);
1373 	} while (exception.retry);
1374 	return err;
1375 }
1376 
1377 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1378 		struct nfs_fsinfo *info)
1379 {
1380 	struct nfs_fattr *	fattr = info->fattr;
1381 	unsigned char *		p;
1382 	struct qstr		q;
1383 	struct nfs4_lookup_arg args = {
1384 		.dir_fh = fhandle,
1385 		.name = &q,
1386 		.bitmask = nfs4_fattr_bitmap,
1387 	};
1388 	struct nfs4_lookup_res res = {
1389 		.server = server,
1390 		.fattr = fattr,
1391 		.fh = fhandle,
1392 	};
1393 	struct rpc_message msg = {
1394 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1395 		.rpc_argp = &args,
1396 		.rpc_resp = &res,
1397 	};
1398 	int status;
1399 
1400 	/*
1401 	 * Now we do a separate LOOKUP for each component of the mount path.
1402 	 * The LOOKUPs are done separately so that we can conveniently
1403 	 * catch an ERR_WRONGSEC if it occurs along the way...
1404 	 */
1405 	status = nfs4_lookup_root(server, fhandle, info);
1406 	if (status)
1407 		goto out;
1408 
1409 	p = server->mnt_path;
1410 	for (;;) {
1411 		struct nfs4_exception exception = { };
1412 
1413 		while (*p == '/')
1414 			p++;
1415 		if (!*p)
1416 			break;
1417 		q.name = p;
1418 		while (*p && (*p != '/'))
1419 			p++;
1420 		q.len = p - q.name;
1421 
1422 		do {
1423 			nfs_fattr_init(fattr);
1424 			status = nfs4_handle_exception(server,
1425 					rpc_call_sync(server->client, &msg, 0),
1426 					&exception);
1427 		} while (exception.retry);
1428 		if (status == 0)
1429 			continue;
1430 		if (status == -ENOENT) {
1431 			printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path);
1432 			printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n");
1433 		}
1434 		break;
1435 	}
1436 	if (status == 0)
1437 		status = nfs4_server_capabilities(server, fhandle);
1438 	if (status == 0)
1439 		status = nfs4_do_fsinfo(server, fhandle, info);
1440 out:
1441 	return nfs4_map_errors(status);
1442 }
1443 
1444 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1445 {
1446 	struct nfs4_getattr_arg args = {
1447 		.fh = fhandle,
1448 		.bitmask = server->attr_bitmask,
1449 	};
1450 	struct nfs4_getattr_res res = {
1451 		.fattr = fattr,
1452 		.server = server,
1453 	};
1454 	struct rpc_message msg = {
1455 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1456 		.rpc_argp = &args,
1457 		.rpc_resp = &res,
1458 	};
1459 
1460 	nfs_fattr_init(fattr);
1461 	return rpc_call_sync(server->client, &msg, 0);
1462 }
1463 
1464 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1465 {
1466 	struct nfs4_exception exception = { };
1467 	int err;
1468 	do {
1469 		err = nfs4_handle_exception(server,
1470 				_nfs4_proc_getattr(server, fhandle, fattr),
1471 				&exception);
1472 	} while (exception.retry);
1473 	return err;
1474 }
1475 
1476 /*
1477  * The file is not closed if it is opened due to the a request to change
1478  * the size of the file. The open call will not be needed once the
1479  * VFS layer lookup-intents are implemented.
1480  *
1481  * Close is called when the inode is destroyed.
1482  * If we haven't opened the file for O_WRONLY, we
1483  * need to in the size_change case to obtain a stateid.
1484  *
1485  * Got race?
1486  * Because OPEN is always done by name in nfsv4, it is
1487  * possible that we opened a different file by the same
1488  * name.  We can recognize this race condition, but we
1489  * can't do anything about it besides returning an error.
1490  *
1491  * This will be fixed with VFS changes (lookup-intent).
1492  */
1493 static int
1494 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1495 		  struct iattr *sattr)
1496 {
1497 	struct rpc_cred *cred;
1498 	struct inode *inode = dentry->d_inode;
1499 	struct nfs_open_context *ctx;
1500 	struct nfs4_state *state = NULL;
1501 	int status;
1502 
1503 	nfs_fattr_init(fattr);
1504 
1505 	cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0);
1506 	if (IS_ERR(cred))
1507 		return PTR_ERR(cred);
1508 
1509 	/* Search for an existing open(O_WRITE) file */
1510 	ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1511 	if (ctx != NULL)
1512 		state = ctx->state;
1513 
1514 	status = nfs4_do_setattr(inode, fattr, sattr, state);
1515 	if (status == 0)
1516 		nfs_setattr_update_inode(inode, sattr);
1517 	if (ctx != NULL)
1518 		put_nfs_open_context(ctx);
1519 	put_rpccred(cred);
1520 	return status;
1521 }
1522 
1523 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1524 		struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1525 {
1526 	int		       status;
1527 	struct nfs_server *server = NFS_SERVER(dir);
1528 	struct nfs4_lookup_arg args = {
1529 		.bitmask = server->attr_bitmask,
1530 		.dir_fh = NFS_FH(dir),
1531 		.name = name,
1532 	};
1533 	struct nfs4_lookup_res res = {
1534 		.server = server,
1535 		.fattr = fattr,
1536 		.fh = fhandle,
1537 	};
1538 	struct rpc_message msg = {
1539 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1540 		.rpc_argp = &args,
1541 		.rpc_resp = &res,
1542 	};
1543 
1544 	nfs_fattr_init(fattr);
1545 
1546 	dprintk("NFS call  lookup %s\n", name->name);
1547 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1548 	dprintk("NFS reply lookup: %d\n", status);
1549 	return status;
1550 }
1551 
1552 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1553 {
1554 	struct nfs4_exception exception = { };
1555 	int err;
1556 	do {
1557 		err = nfs4_handle_exception(NFS_SERVER(dir),
1558 				_nfs4_proc_lookup(dir, name, fhandle, fattr),
1559 				&exception);
1560 	} while (exception.retry);
1561 	return err;
1562 }
1563 
1564 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1565 {
1566 	struct nfs4_accessargs args = {
1567 		.fh = NFS_FH(inode),
1568 	};
1569 	struct nfs4_accessres res = { 0 };
1570 	struct rpc_message msg = {
1571 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1572 		.rpc_argp = &args,
1573 		.rpc_resp = &res,
1574 		.rpc_cred = entry->cred,
1575 	};
1576 	int mode = entry->mask;
1577 	int status;
1578 
1579 	/*
1580 	 * Determine which access bits we want to ask for...
1581 	 */
1582 	if (mode & MAY_READ)
1583 		args.access |= NFS4_ACCESS_READ;
1584 	if (S_ISDIR(inode->i_mode)) {
1585 		if (mode & MAY_WRITE)
1586 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1587 		if (mode & MAY_EXEC)
1588 			args.access |= NFS4_ACCESS_LOOKUP;
1589 	} else {
1590 		if (mode & MAY_WRITE)
1591 			args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1592 		if (mode & MAY_EXEC)
1593 			args.access |= NFS4_ACCESS_EXECUTE;
1594 	}
1595 	status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1596 	if (!status) {
1597 		entry->mask = 0;
1598 		if (res.access & NFS4_ACCESS_READ)
1599 			entry->mask |= MAY_READ;
1600 		if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1601 			entry->mask |= MAY_WRITE;
1602 		if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1603 			entry->mask |= MAY_EXEC;
1604 	}
1605 	return status;
1606 }
1607 
1608 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1609 {
1610 	struct nfs4_exception exception = { };
1611 	int err;
1612 	do {
1613 		err = nfs4_handle_exception(NFS_SERVER(inode),
1614 				_nfs4_proc_access(inode, entry),
1615 				&exception);
1616 	} while (exception.retry);
1617 	return err;
1618 }
1619 
1620 /*
1621  * TODO: For the time being, we don't try to get any attributes
1622  * along with any of the zero-copy operations READ, READDIR,
1623  * READLINK, WRITE.
1624  *
1625  * In the case of the first three, we want to put the GETATTR
1626  * after the read-type operation -- this is because it is hard
1627  * to predict the length of a GETATTR response in v4, and thus
1628  * align the READ data correctly.  This means that the GETATTR
1629  * may end up partially falling into the page cache, and we should
1630  * shift it into the 'tail' of the xdr_buf before processing.
1631  * To do this efficiently, we need to know the total length
1632  * of data received, which doesn't seem to be available outside
1633  * of the RPC layer.
1634  *
1635  * In the case of WRITE, we also want to put the GETATTR after
1636  * the operation -- in this case because we want to make sure
1637  * we get the post-operation mtime and size.  This means that
1638  * we can't use xdr_encode_pages() as written: we need a variant
1639  * of it which would leave room in the 'tail' iovec.
1640  *
1641  * Both of these changes to the XDR layer would in fact be quite
1642  * minor, but I decided to leave them for a subsequent patch.
1643  */
1644 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1645 		unsigned int pgbase, unsigned int pglen)
1646 {
1647 	struct nfs4_readlink args = {
1648 		.fh       = NFS_FH(inode),
1649 		.pgbase	  = pgbase,
1650 		.pglen    = pglen,
1651 		.pages    = &page,
1652 	};
1653 	struct rpc_message msg = {
1654 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1655 		.rpc_argp = &args,
1656 		.rpc_resp = NULL,
1657 	};
1658 
1659 	return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1660 }
1661 
1662 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1663 		unsigned int pgbase, unsigned int pglen)
1664 {
1665 	struct nfs4_exception exception = { };
1666 	int err;
1667 	do {
1668 		err = nfs4_handle_exception(NFS_SERVER(inode),
1669 				_nfs4_proc_readlink(inode, page, pgbase, pglen),
1670 				&exception);
1671 	} while (exception.retry);
1672 	return err;
1673 }
1674 
1675 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1676 {
1677 	int flags = rdata->flags;
1678 	struct inode *inode = rdata->inode;
1679 	struct nfs_fattr *fattr = rdata->res.fattr;
1680 	struct nfs_server *server = NFS_SERVER(inode);
1681 	struct rpc_message msg = {
1682 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_READ],
1683 		.rpc_argp	= &rdata->args,
1684 		.rpc_resp	= &rdata->res,
1685 		.rpc_cred	= rdata->cred,
1686 	};
1687 	unsigned long timestamp = jiffies;
1688 	int status;
1689 
1690 	dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
1691 			(long long) rdata->args.offset);
1692 
1693 	nfs_fattr_init(fattr);
1694 	status = rpc_call_sync(server->client, &msg, flags);
1695 	if (!status)
1696 		renew_lease(server, timestamp);
1697 	dprintk("NFS reply read: %d\n", status);
1698 	return status;
1699 }
1700 
1701 static int nfs4_proc_read(struct nfs_read_data *rdata)
1702 {
1703 	struct nfs4_exception exception = { };
1704 	int err;
1705 	do {
1706 		err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1707 				_nfs4_proc_read(rdata),
1708 				&exception);
1709 	} while (exception.retry);
1710 	return err;
1711 }
1712 
1713 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1714 {
1715 	int rpcflags = wdata->flags;
1716 	struct inode *inode = wdata->inode;
1717 	struct nfs_fattr *fattr = wdata->res.fattr;
1718 	struct nfs_server *server = NFS_SERVER(inode);
1719 	struct rpc_message msg = {
1720 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1721 		.rpc_argp	= &wdata->args,
1722 		.rpc_resp	= &wdata->res,
1723 		.rpc_cred	= wdata->cred,
1724 	};
1725 	int status;
1726 
1727 	dprintk("NFS call  write %d @ %Ld\n", wdata->args.count,
1728 			(long long) wdata->args.offset);
1729 
1730 	wdata->args.bitmask = server->attr_bitmask;
1731 	wdata->res.server = server;
1732 	wdata->timestamp = jiffies;
1733 	nfs_fattr_init(fattr);
1734 	status = rpc_call_sync(server->client, &msg, rpcflags);
1735 	dprintk("NFS reply write: %d\n", status);
1736 	if (status < 0)
1737 		return status;
1738 	renew_lease(server, wdata->timestamp);
1739 	nfs_post_op_update_inode(inode, fattr);
1740 	return wdata->res.count;
1741 }
1742 
1743 static int nfs4_proc_write(struct nfs_write_data *wdata)
1744 {
1745 	struct nfs4_exception exception = { };
1746 	int err;
1747 	do {
1748 		err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1749 				_nfs4_proc_write(wdata),
1750 				&exception);
1751 	} while (exception.retry);
1752 	return err;
1753 }
1754 
1755 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1756 {
1757 	struct inode *inode = cdata->inode;
1758 	struct nfs_fattr *fattr = cdata->res.fattr;
1759 	struct nfs_server *server = NFS_SERVER(inode);
1760 	struct rpc_message msg = {
1761 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1762 		.rpc_argp	= &cdata->args,
1763 		.rpc_resp	= &cdata->res,
1764 		.rpc_cred	= cdata->cred,
1765 	};
1766 	int status;
1767 
1768 	dprintk("NFS call  commit %d @ %Ld\n", cdata->args.count,
1769 			(long long) cdata->args.offset);
1770 
1771 	cdata->args.bitmask = server->attr_bitmask;
1772 	cdata->res.server = server;
1773 	cdata->timestamp = jiffies;
1774 	nfs_fattr_init(fattr);
1775 	status = rpc_call_sync(server->client, &msg, 0);
1776 	if (status >= 0)
1777 		renew_lease(server, cdata->timestamp);
1778 	dprintk("NFS reply commit: %d\n", status);
1779 	if (status >= 0)
1780 		nfs_post_op_update_inode(inode, fattr);
1781 	return status;
1782 }
1783 
1784 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1785 {
1786 	struct nfs4_exception exception = { };
1787 	int err;
1788 	do {
1789 		err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1790 				_nfs4_proc_commit(cdata),
1791 				&exception);
1792 	} while (exception.retry);
1793 	return err;
1794 }
1795 
1796 /*
1797  * Got race?
1798  * We will need to arrange for the VFS layer to provide an atomic open.
1799  * Until then, this create/open method is prone to inefficiency and race
1800  * conditions due to the lookup, create, and open VFS calls from sys_open()
1801  * placed on the wire.
1802  *
1803  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1804  * The file will be opened again in the subsequent VFS open call
1805  * (nfs4_proc_file_open).
1806  *
1807  * The open for read will just hang around to be used by any process that
1808  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1809  */
1810 
1811 static int
1812 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1813                  int flags, struct nameidata *nd)
1814 {
1815 	struct nfs4_state *state;
1816 	struct rpc_cred *cred;
1817 	int status = 0;
1818 
1819 	cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1820 	if (IS_ERR(cred)) {
1821 		status = PTR_ERR(cred);
1822 		goto out;
1823 	}
1824 	state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1825 	put_rpccred(cred);
1826 	if (IS_ERR(state)) {
1827 		status = PTR_ERR(state);
1828 		goto out;
1829 	}
1830 	d_instantiate(dentry, igrab(state->inode));
1831 	if (flags & O_EXCL) {
1832 		struct nfs_fattr fattr;
1833 		status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1834 		if (status == 0)
1835 			nfs_setattr_update_inode(state->inode, sattr);
1836 	}
1837 	if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1838 		nfs4_intent_set_file(nd, dentry, state);
1839 	else
1840 		nfs4_close_state(state, flags);
1841 out:
1842 	return status;
1843 }
1844 
1845 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1846 {
1847 	struct nfs_server *server = NFS_SERVER(dir);
1848 	struct nfs4_remove_arg args = {
1849 		.fh = NFS_FH(dir),
1850 		.name = name,
1851 		.bitmask = server->attr_bitmask,
1852 	};
1853 	struct nfs_fattr dir_attr;
1854 	struct nfs4_remove_res	res = {
1855 		.server = server,
1856 		.dir_attr = &dir_attr,
1857 	};
1858 	struct rpc_message msg = {
1859 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1860 		.rpc_argp	= &args,
1861 		.rpc_resp	= &res,
1862 	};
1863 	int			status;
1864 
1865 	nfs_fattr_init(res.dir_attr);
1866 	status = rpc_call_sync(server->client, &msg, 0);
1867 	if (status == 0) {
1868 		update_changeattr(dir, &res.cinfo);
1869 		nfs_post_op_update_inode(dir, res.dir_attr);
1870 	}
1871 	return status;
1872 }
1873 
1874 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1875 {
1876 	struct nfs4_exception exception = { };
1877 	int err;
1878 	do {
1879 		err = nfs4_handle_exception(NFS_SERVER(dir),
1880 				_nfs4_proc_remove(dir, name),
1881 				&exception);
1882 	} while (exception.retry);
1883 	return err;
1884 }
1885 
1886 struct unlink_desc {
1887 	struct nfs4_remove_arg	args;
1888 	struct nfs4_remove_res	res;
1889 	struct nfs_fattr dir_attr;
1890 };
1891 
1892 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1893 		struct qstr *name)
1894 {
1895 	struct nfs_server *server = NFS_SERVER(dir->d_inode);
1896 	struct unlink_desc *up;
1897 
1898 	up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1899 	if (!up)
1900 		return -ENOMEM;
1901 
1902 	up->args.fh = NFS_FH(dir->d_inode);
1903 	up->args.name = name;
1904 	up->args.bitmask = server->attr_bitmask;
1905 	up->res.server = server;
1906 	up->res.dir_attr = &up->dir_attr;
1907 
1908 	msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1909 	msg->rpc_argp = &up->args;
1910 	msg->rpc_resp = &up->res;
1911 	return 0;
1912 }
1913 
1914 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1915 {
1916 	struct rpc_message *msg = &task->tk_msg;
1917 	struct unlink_desc *up;
1918 
1919 	if (msg->rpc_resp != NULL) {
1920 		up = container_of(msg->rpc_resp, struct unlink_desc, res);
1921 		update_changeattr(dir->d_inode, &up->res.cinfo);
1922 		nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1923 		kfree(up);
1924 		msg->rpc_resp = NULL;
1925 		msg->rpc_argp = NULL;
1926 	}
1927 	return 0;
1928 }
1929 
1930 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1931 		struct inode *new_dir, struct qstr *new_name)
1932 {
1933 	struct nfs_server *server = NFS_SERVER(old_dir);
1934 	struct nfs4_rename_arg arg = {
1935 		.old_dir = NFS_FH(old_dir),
1936 		.new_dir = NFS_FH(new_dir),
1937 		.old_name = old_name,
1938 		.new_name = new_name,
1939 		.bitmask = server->attr_bitmask,
1940 	};
1941 	struct nfs_fattr old_fattr, new_fattr;
1942 	struct nfs4_rename_res res = {
1943 		.server = server,
1944 		.old_fattr = &old_fattr,
1945 		.new_fattr = &new_fattr,
1946 	};
1947 	struct rpc_message msg = {
1948 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1949 		.rpc_argp = &arg,
1950 		.rpc_resp = &res,
1951 	};
1952 	int			status;
1953 
1954 	nfs_fattr_init(res.old_fattr);
1955 	nfs_fattr_init(res.new_fattr);
1956 	status = rpc_call_sync(server->client, &msg, 0);
1957 
1958 	if (!status) {
1959 		update_changeattr(old_dir, &res.old_cinfo);
1960 		nfs_post_op_update_inode(old_dir, res.old_fattr);
1961 		update_changeattr(new_dir, &res.new_cinfo);
1962 		nfs_post_op_update_inode(new_dir, res.new_fattr);
1963 	}
1964 	return status;
1965 }
1966 
1967 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1968 		struct inode *new_dir, struct qstr *new_name)
1969 {
1970 	struct nfs4_exception exception = { };
1971 	int err;
1972 	do {
1973 		err = nfs4_handle_exception(NFS_SERVER(old_dir),
1974 				_nfs4_proc_rename(old_dir, old_name,
1975 					new_dir, new_name),
1976 				&exception);
1977 	} while (exception.retry);
1978 	return err;
1979 }
1980 
1981 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1982 {
1983 	struct nfs_server *server = NFS_SERVER(inode);
1984 	struct nfs4_link_arg arg = {
1985 		.fh     = NFS_FH(inode),
1986 		.dir_fh = NFS_FH(dir),
1987 		.name   = name,
1988 		.bitmask = server->attr_bitmask,
1989 	};
1990 	struct nfs_fattr fattr, dir_attr;
1991 	struct nfs4_link_res res = {
1992 		.server = server,
1993 		.fattr = &fattr,
1994 		.dir_attr = &dir_attr,
1995 	};
1996 	struct rpc_message msg = {
1997 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
1998 		.rpc_argp = &arg,
1999 		.rpc_resp = &res,
2000 	};
2001 	int			status;
2002 
2003 	nfs_fattr_init(res.fattr);
2004 	nfs_fattr_init(res.dir_attr);
2005 	status = rpc_call_sync(server->client, &msg, 0);
2006 	if (!status) {
2007 		update_changeattr(dir, &res.cinfo);
2008 		nfs_post_op_update_inode(dir, res.dir_attr);
2009 		nfs_refresh_inode(inode, res.fattr);
2010 	}
2011 
2012 	return status;
2013 }
2014 
2015 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2016 {
2017 	struct nfs4_exception exception = { };
2018 	int err;
2019 	do {
2020 		err = nfs4_handle_exception(NFS_SERVER(inode),
2021 				_nfs4_proc_link(inode, dir, name),
2022 				&exception);
2023 	} while (exception.retry);
2024 	return err;
2025 }
2026 
2027 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2028 		struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2029 		struct nfs_fattr *fattr)
2030 {
2031 	struct nfs_server *server = NFS_SERVER(dir);
2032 	struct nfs_fattr dir_fattr;
2033 	struct nfs4_create_arg arg = {
2034 		.dir_fh = NFS_FH(dir),
2035 		.server = server,
2036 		.name = name,
2037 		.attrs = sattr,
2038 		.ftype = NF4LNK,
2039 		.bitmask = server->attr_bitmask,
2040 	};
2041 	struct nfs4_create_res res = {
2042 		.server = server,
2043 		.fh = fhandle,
2044 		.fattr = fattr,
2045 		.dir_fattr = &dir_fattr,
2046 	};
2047 	struct rpc_message msg = {
2048 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2049 		.rpc_argp = &arg,
2050 		.rpc_resp = &res,
2051 	};
2052 	int			status;
2053 
2054 	if (path->len > NFS4_MAXPATHLEN)
2055 		return -ENAMETOOLONG;
2056 	arg.u.symlink = path;
2057 	nfs_fattr_init(fattr);
2058 	nfs_fattr_init(&dir_fattr);
2059 
2060 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2061 	if (!status)
2062 		update_changeattr(dir, &res.dir_cinfo);
2063 	nfs_post_op_update_inode(dir, res.dir_fattr);
2064 	return status;
2065 }
2066 
2067 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2068 		struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2069 		struct nfs_fattr *fattr)
2070 {
2071 	struct nfs4_exception exception = { };
2072 	int err;
2073 	do {
2074 		err = nfs4_handle_exception(NFS_SERVER(dir),
2075 				_nfs4_proc_symlink(dir, name, path, sattr,
2076 					fhandle, fattr),
2077 				&exception);
2078 	} while (exception.retry);
2079 	return err;
2080 }
2081 
2082 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2083 		struct iattr *sattr)
2084 {
2085 	struct nfs_server *server = NFS_SERVER(dir);
2086 	struct nfs_fh fhandle;
2087 	struct nfs_fattr fattr, dir_fattr;
2088 	struct nfs4_create_arg arg = {
2089 		.dir_fh = NFS_FH(dir),
2090 		.server = server,
2091 		.name = &dentry->d_name,
2092 		.attrs = sattr,
2093 		.ftype = NF4DIR,
2094 		.bitmask = server->attr_bitmask,
2095 	};
2096 	struct nfs4_create_res res = {
2097 		.server = server,
2098 		.fh = &fhandle,
2099 		.fattr = &fattr,
2100 		.dir_fattr = &dir_fattr,
2101 	};
2102 	struct rpc_message msg = {
2103 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2104 		.rpc_argp = &arg,
2105 		.rpc_resp = &res,
2106 	};
2107 	int			status;
2108 
2109 	nfs_fattr_init(&fattr);
2110 	nfs_fattr_init(&dir_fattr);
2111 
2112 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2113 	if (!status) {
2114 		update_changeattr(dir, &res.dir_cinfo);
2115 		nfs_post_op_update_inode(dir, res.dir_fattr);
2116 		status = nfs_instantiate(dentry, &fhandle, &fattr);
2117 	}
2118 	return status;
2119 }
2120 
2121 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2122 		struct iattr *sattr)
2123 {
2124 	struct nfs4_exception exception = { };
2125 	int err;
2126 	do {
2127 		err = nfs4_handle_exception(NFS_SERVER(dir),
2128 				_nfs4_proc_mkdir(dir, dentry, sattr),
2129 				&exception);
2130 	} while (exception.retry);
2131 	return err;
2132 }
2133 
2134 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2135                   u64 cookie, struct page *page, unsigned int count, int plus)
2136 {
2137 	struct inode		*dir = dentry->d_inode;
2138 	struct nfs4_readdir_arg args = {
2139 		.fh = NFS_FH(dir),
2140 		.pages = &page,
2141 		.pgbase = 0,
2142 		.count = count,
2143 		.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2144 	};
2145 	struct nfs4_readdir_res res;
2146 	struct rpc_message msg = {
2147 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2148 		.rpc_argp = &args,
2149 		.rpc_resp = &res,
2150 		.rpc_cred = cred,
2151 	};
2152 	int			status;
2153 
2154 	dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2155 			dentry->d_parent->d_name.name,
2156 			dentry->d_name.name,
2157 			(unsigned long long)cookie);
2158 	lock_kernel();
2159 	nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2160 	res.pgbase = args.pgbase;
2161 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2162 	if (status == 0)
2163 		memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2164 	unlock_kernel();
2165 	dprintk("%s: returns %d\n", __FUNCTION__, status);
2166 	return status;
2167 }
2168 
2169 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2170                   u64 cookie, struct page *page, unsigned int count, int plus)
2171 {
2172 	struct nfs4_exception exception = { };
2173 	int err;
2174 	do {
2175 		err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2176 				_nfs4_proc_readdir(dentry, cred, cookie,
2177 					page, count, plus),
2178 				&exception);
2179 	} while (exception.retry);
2180 	return err;
2181 }
2182 
2183 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2184 		struct iattr *sattr, dev_t rdev)
2185 {
2186 	struct nfs_server *server = NFS_SERVER(dir);
2187 	struct nfs_fh fh;
2188 	struct nfs_fattr fattr, dir_fattr;
2189 	struct nfs4_create_arg arg = {
2190 		.dir_fh = NFS_FH(dir),
2191 		.server = server,
2192 		.name = &dentry->d_name,
2193 		.attrs = sattr,
2194 		.bitmask = server->attr_bitmask,
2195 	};
2196 	struct nfs4_create_res res = {
2197 		.server = server,
2198 		.fh = &fh,
2199 		.fattr = &fattr,
2200 		.dir_fattr = &dir_fattr,
2201 	};
2202 	struct rpc_message msg = {
2203 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2204 		.rpc_argp = &arg,
2205 		.rpc_resp = &res,
2206 	};
2207 	int			status;
2208 	int                     mode = sattr->ia_mode;
2209 
2210 	nfs_fattr_init(&fattr);
2211 	nfs_fattr_init(&dir_fattr);
2212 
2213 	BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2214 	BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2215 	if (S_ISFIFO(mode))
2216 		arg.ftype = NF4FIFO;
2217 	else if (S_ISBLK(mode)) {
2218 		arg.ftype = NF4BLK;
2219 		arg.u.device.specdata1 = MAJOR(rdev);
2220 		arg.u.device.specdata2 = MINOR(rdev);
2221 	}
2222 	else if (S_ISCHR(mode)) {
2223 		arg.ftype = NF4CHR;
2224 		arg.u.device.specdata1 = MAJOR(rdev);
2225 		arg.u.device.specdata2 = MINOR(rdev);
2226 	}
2227 	else
2228 		arg.ftype = NF4SOCK;
2229 
2230 	status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2231 	if (status == 0) {
2232 		update_changeattr(dir, &res.dir_cinfo);
2233 		nfs_post_op_update_inode(dir, res.dir_fattr);
2234 		status = nfs_instantiate(dentry, &fh, &fattr);
2235 	}
2236 	return status;
2237 }
2238 
2239 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2240 		struct iattr *sattr, dev_t rdev)
2241 {
2242 	struct nfs4_exception exception = { };
2243 	int err;
2244 	do {
2245 		err = nfs4_handle_exception(NFS_SERVER(dir),
2246 				_nfs4_proc_mknod(dir, dentry, sattr, rdev),
2247 				&exception);
2248 	} while (exception.retry);
2249 	return err;
2250 }
2251 
2252 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2253 		 struct nfs_fsstat *fsstat)
2254 {
2255 	struct nfs4_statfs_arg args = {
2256 		.fh = fhandle,
2257 		.bitmask = server->attr_bitmask,
2258 	};
2259 	struct rpc_message msg = {
2260 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2261 		.rpc_argp = &args,
2262 		.rpc_resp = fsstat,
2263 	};
2264 
2265 	nfs_fattr_init(fsstat->fattr);
2266 	return rpc_call_sync(server->client, &msg, 0);
2267 }
2268 
2269 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2270 {
2271 	struct nfs4_exception exception = { };
2272 	int err;
2273 	do {
2274 		err = nfs4_handle_exception(server,
2275 				_nfs4_proc_statfs(server, fhandle, fsstat),
2276 				&exception);
2277 	} while (exception.retry);
2278 	return err;
2279 }
2280 
2281 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2282 		struct nfs_fsinfo *fsinfo)
2283 {
2284 	struct nfs4_fsinfo_arg args = {
2285 		.fh = fhandle,
2286 		.bitmask = server->attr_bitmask,
2287 	};
2288 	struct rpc_message msg = {
2289 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2290 		.rpc_argp = &args,
2291 		.rpc_resp = fsinfo,
2292 	};
2293 
2294 	return rpc_call_sync(server->client, &msg, 0);
2295 }
2296 
2297 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2298 {
2299 	struct nfs4_exception exception = { };
2300 	int err;
2301 
2302 	do {
2303 		err = nfs4_handle_exception(server,
2304 				_nfs4_do_fsinfo(server, fhandle, fsinfo),
2305 				&exception);
2306 	} while (exception.retry);
2307 	return err;
2308 }
2309 
2310 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2311 {
2312 	nfs_fattr_init(fsinfo->fattr);
2313 	return nfs4_do_fsinfo(server, fhandle, fsinfo);
2314 }
2315 
2316 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2317 		struct nfs_pathconf *pathconf)
2318 {
2319 	struct nfs4_pathconf_arg args = {
2320 		.fh = fhandle,
2321 		.bitmask = server->attr_bitmask,
2322 	};
2323 	struct rpc_message msg = {
2324 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2325 		.rpc_argp = &args,
2326 		.rpc_resp = pathconf,
2327 	};
2328 
2329 	/* None of the pathconf attributes are mandatory to implement */
2330 	if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2331 		memset(pathconf, 0, sizeof(*pathconf));
2332 		return 0;
2333 	}
2334 
2335 	nfs_fattr_init(pathconf->fattr);
2336 	return rpc_call_sync(server->client, &msg, 0);
2337 }
2338 
2339 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2340 		struct nfs_pathconf *pathconf)
2341 {
2342 	struct nfs4_exception exception = { };
2343 	int err;
2344 
2345 	do {
2346 		err = nfs4_handle_exception(server,
2347 				_nfs4_proc_pathconf(server, fhandle, pathconf),
2348 				&exception);
2349 	} while (exception.retry);
2350 	return err;
2351 }
2352 
2353 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2354 {
2355 	struct nfs_server *server = NFS_SERVER(data->inode);
2356 
2357 	if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2358 		rpc_restart_call(task);
2359 		return -EAGAIN;
2360 	}
2361 	if (task->tk_status > 0)
2362 		renew_lease(server, data->timestamp);
2363 	return 0;
2364 }
2365 
2366 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2367 {
2368 	struct rpc_message msg = {
2369 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2370 		.rpc_argp = &data->args,
2371 		.rpc_resp = &data->res,
2372 		.rpc_cred = data->cred,
2373 	};
2374 
2375 	data->timestamp   = jiffies;
2376 
2377 	rpc_call_setup(&data->task, &msg, 0);
2378 }
2379 
2380 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2381 {
2382 	struct inode *inode = data->inode;
2383 
2384 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2385 		rpc_restart_call(task);
2386 		return -EAGAIN;
2387 	}
2388 	if (task->tk_status >= 0) {
2389 		renew_lease(NFS_SERVER(inode), data->timestamp);
2390 		nfs_post_op_update_inode(inode, data->res.fattr);
2391 	}
2392 	return 0;
2393 }
2394 
2395 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2396 {
2397 	struct rpc_message msg = {
2398 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2399 		.rpc_argp = &data->args,
2400 		.rpc_resp = &data->res,
2401 		.rpc_cred = data->cred,
2402 	};
2403 	struct inode *inode = data->inode;
2404 	struct nfs_server *server = NFS_SERVER(inode);
2405 	int stable;
2406 
2407 	if (how & FLUSH_STABLE) {
2408 		if (!NFS_I(inode)->ncommit)
2409 			stable = NFS_FILE_SYNC;
2410 		else
2411 			stable = NFS_DATA_SYNC;
2412 	} else
2413 		stable = NFS_UNSTABLE;
2414 	data->args.stable = stable;
2415 	data->args.bitmask = server->attr_bitmask;
2416 	data->res.server = server;
2417 
2418 	data->timestamp   = jiffies;
2419 
2420 	/* Finalize the task. */
2421 	rpc_call_setup(&data->task, &msg, 0);
2422 }
2423 
2424 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2425 {
2426 	struct inode *inode = data->inode;
2427 
2428 	if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2429 		rpc_restart_call(task);
2430 		return -EAGAIN;
2431 	}
2432 	if (task->tk_status >= 0)
2433 		nfs_post_op_update_inode(inode, data->res.fattr);
2434 	return 0;
2435 }
2436 
2437 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2438 {
2439 	struct rpc_message msg = {
2440 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2441 		.rpc_argp = &data->args,
2442 		.rpc_resp = &data->res,
2443 		.rpc_cred = data->cred,
2444 	};
2445 	struct nfs_server *server = NFS_SERVER(data->inode);
2446 
2447 	data->args.bitmask = server->attr_bitmask;
2448 	data->res.server = server;
2449 
2450 	rpc_call_setup(&data->task, &msg, 0);
2451 }
2452 
2453 /*
2454  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2455  * standalone procedure for queueing an asynchronous RENEW.
2456  */
2457 static void nfs4_renew_done(struct rpc_task *task, void *data)
2458 {
2459 	struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp;
2460 	unsigned long timestamp = (unsigned long)data;
2461 
2462 	if (task->tk_status < 0) {
2463 		switch (task->tk_status) {
2464 			case -NFS4ERR_STALE_CLIENTID:
2465 			case -NFS4ERR_EXPIRED:
2466 			case -NFS4ERR_CB_PATH_DOWN:
2467 				nfs4_schedule_state_recovery(clp);
2468 		}
2469 		return;
2470 	}
2471 	spin_lock(&clp->cl_lock);
2472 	if (time_before(clp->cl_last_renewal,timestamp))
2473 		clp->cl_last_renewal = timestamp;
2474 	spin_unlock(&clp->cl_lock);
2475 }
2476 
2477 static const struct rpc_call_ops nfs4_renew_ops = {
2478 	.rpc_call_done = nfs4_renew_done,
2479 };
2480 
2481 int nfs4_proc_async_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2482 {
2483 	struct rpc_message msg = {
2484 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2485 		.rpc_argp	= clp,
2486 		.rpc_cred	= cred,
2487 	};
2488 
2489 	return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2490 			&nfs4_renew_ops, (void *)jiffies);
2491 }
2492 
2493 int nfs4_proc_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2494 {
2495 	struct rpc_message msg = {
2496 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2497 		.rpc_argp	= clp,
2498 		.rpc_cred	= cred,
2499 	};
2500 	unsigned long now = jiffies;
2501 	int status;
2502 
2503 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2504 	if (status < 0)
2505 		return status;
2506 	spin_lock(&clp->cl_lock);
2507 	if (time_before(clp->cl_last_renewal,now))
2508 		clp->cl_last_renewal = now;
2509 	spin_unlock(&clp->cl_lock);
2510 	return 0;
2511 }
2512 
2513 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2514 {
2515 	return (server->caps & NFS_CAP_ACLS)
2516 		&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2517 		&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2518 }
2519 
2520 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2521  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2522  * the stack.
2523  */
2524 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2525 
2526 static void buf_to_pages(const void *buf, size_t buflen,
2527 		struct page **pages, unsigned int *pgbase)
2528 {
2529 	const void *p = buf;
2530 
2531 	*pgbase = offset_in_page(buf);
2532 	p -= *pgbase;
2533 	while (p < buf + buflen) {
2534 		*(pages++) = virt_to_page(p);
2535 		p += PAGE_CACHE_SIZE;
2536 	}
2537 }
2538 
2539 struct nfs4_cached_acl {
2540 	int cached;
2541 	size_t len;
2542 	char data[0];
2543 };
2544 
2545 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2546 {
2547 	struct nfs_inode *nfsi = NFS_I(inode);
2548 
2549 	spin_lock(&inode->i_lock);
2550 	kfree(nfsi->nfs4_acl);
2551 	nfsi->nfs4_acl = acl;
2552 	spin_unlock(&inode->i_lock);
2553 }
2554 
2555 static void nfs4_zap_acl_attr(struct inode *inode)
2556 {
2557 	nfs4_set_cached_acl(inode, NULL);
2558 }
2559 
2560 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2561 {
2562 	struct nfs_inode *nfsi = NFS_I(inode);
2563 	struct nfs4_cached_acl *acl;
2564 	int ret = -ENOENT;
2565 
2566 	spin_lock(&inode->i_lock);
2567 	acl = nfsi->nfs4_acl;
2568 	if (acl == NULL)
2569 		goto out;
2570 	if (buf == NULL) /* user is just asking for length */
2571 		goto out_len;
2572 	if (acl->cached == 0)
2573 		goto out;
2574 	ret = -ERANGE; /* see getxattr(2) man page */
2575 	if (acl->len > buflen)
2576 		goto out;
2577 	memcpy(buf, acl->data, acl->len);
2578 out_len:
2579 	ret = acl->len;
2580 out:
2581 	spin_unlock(&inode->i_lock);
2582 	return ret;
2583 }
2584 
2585 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2586 {
2587 	struct nfs4_cached_acl *acl;
2588 
2589 	if (buf && acl_len <= PAGE_SIZE) {
2590 		acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2591 		if (acl == NULL)
2592 			goto out;
2593 		acl->cached = 1;
2594 		memcpy(acl->data, buf, acl_len);
2595 	} else {
2596 		acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2597 		if (acl == NULL)
2598 			goto out;
2599 		acl->cached = 0;
2600 	}
2601 	acl->len = acl_len;
2602 out:
2603 	nfs4_set_cached_acl(inode, acl);
2604 }
2605 
2606 static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2607 {
2608 	struct page *pages[NFS4ACL_MAXPAGES];
2609 	struct nfs_getaclargs args = {
2610 		.fh = NFS_FH(inode),
2611 		.acl_pages = pages,
2612 		.acl_len = buflen,
2613 	};
2614 	size_t resp_len = buflen;
2615 	void *resp_buf;
2616 	struct rpc_message msg = {
2617 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2618 		.rpc_argp = &args,
2619 		.rpc_resp = &resp_len,
2620 	};
2621 	struct page *localpage = NULL;
2622 	int ret;
2623 
2624 	if (buflen < PAGE_SIZE) {
2625 		/* As long as we're doing a round trip to the server anyway,
2626 		 * let's be prepared for a page of acl data. */
2627 		localpage = alloc_page(GFP_KERNEL);
2628 		resp_buf = page_address(localpage);
2629 		if (localpage == NULL)
2630 			return -ENOMEM;
2631 		args.acl_pages[0] = localpage;
2632 		args.acl_pgbase = 0;
2633 		resp_len = args.acl_len = PAGE_SIZE;
2634 	} else {
2635 		resp_buf = buf;
2636 		buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2637 	}
2638 	ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2639 	if (ret)
2640 		goto out_free;
2641 	if (resp_len > args.acl_len)
2642 		nfs4_write_cached_acl(inode, NULL, resp_len);
2643 	else
2644 		nfs4_write_cached_acl(inode, resp_buf, resp_len);
2645 	if (buf) {
2646 		ret = -ERANGE;
2647 		if (resp_len > buflen)
2648 			goto out_free;
2649 		if (localpage)
2650 			memcpy(buf, resp_buf, resp_len);
2651 	}
2652 	ret = resp_len;
2653 out_free:
2654 	if (localpage)
2655 		__free_page(localpage);
2656 	return ret;
2657 }
2658 
2659 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2660 {
2661 	struct nfs_server *server = NFS_SERVER(inode);
2662 	int ret;
2663 
2664 	if (!nfs4_server_supports_acls(server))
2665 		return -EOPNOTSUPP;
2666 	ret = nfs_revalidate_inode(server, inode);
2667 	if (ret < 0)
2668 		return ret;
2669 	ret = nfs4_read_cached_acl(inode, buf, buflen);
2670 	if (ret != -ENOENT)
2671 		return ret;
2672 	return nfs4_get_acl_uncached(inode, buf, buflen);
2673 }
2674 
2675 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2676 {
2677 	struct nfs_server *server = NFS_SERVER(inode);
2678 	struct page *pages[NFS4ACL_MAXPAGES];
2679 	struct nfs_setaclargs arg = {
2680 		.fh		= NFS_FH(inode),
2681 		.acl_pages	= pages,
2682 		.acl_len	= buflen,
2683 	};
2684 	struct rpc_message msg = {
2685 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2686 		.rpc_argp	= &arg,
2687 		.rpc_resp	= NULL,
2688 	};
2689 	int ret;
2690 
2691 	if (!nfs4_server_supports_acls(server))
2692 		return -EOPNOTSUPP;
2693 	nfs_inode_return_delegation(inode);
2694 	buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2695 	ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0);
2696 	if (ret == 0)
2697 		nfs4_write_cached_acl(inode, buf, buflen);
2698 	return ret;
2699 }
2700 
2701 static int
2702 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2703 {
2704 	struct nfs4_client *clp = server->nfs4_state;
2705 
2706 	if (!clp || task->tk_status >= 0)
2707 		return 0;
2708 	switch(task->tk_status) {
2709 		case -NFS4ERR_STALE_CLIENTID:
2710 		case -NFS4ERR_STALE_STATEID:
2711 		case -NFS4ERR_EXPIRED:
2712 			rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2713 			nfs4_schedule_state_recovery(clp);
2714 			if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2715 				rpc_wake_up_task(task);
2716 			task->tk_status = 0;
2717 			return -EAGAIN;
2718 		case -NFS4ERR_DELAY:
2719 			nfs_inc_server_stats((struct nfs_server *) server,
2720 						NFSIOS_DELAY);
2721 		case -NFS4ERR_GRACE:
2722 			rpc_delay(task, NFS4_POLL_RETRY_MAX);
2723 			task->tk_status = 0;
2724 			return -EAGAIN;
2725 		case -NFS4ERR_OLD_STATEID:
2726 			task->tk_status = 0;
2727 			return -EAGAIN;
2728 	}
2729 	task->tk_status = nfs4_map_errors(task->tk_status);
2730 	return 0;
2731 }
2732 
2733 static int nfs4_wait_bit_interruptible(void *word)
2734 {
2735 	if (signal_pending(current))
2736 		return -ERESTARTSYS;
2737 	schedule();
2738 	return 0;
2739 }
2740 
2741 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp)
2742 {
2743 	sigset_t oldset;
2744 	int res;
2745 
2746 	might_sleep();
2747 
2748 	rpc_clnt_sigmask(clnt, &oldset);
2749 	res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2750 			nfs4_wait_bit_interruptible,
2751 			TASK_INTERRUPTIBLE);
2752 	rpc_clnt_sigunmask(clnt, &oldset);
2753 	return res;
2754 }
2755 
2756 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2757 {
2758 	sigset_t oldset;
2759 	int res = 0;
2760 
2761 	might_sleep();
2762 
2763 	if (*timeout <= 0)
2764 		*timeout = NFS4_POLL_RETRY_MIN;
2765 	if (*timeout > NFS4_POLL_RETRY_MAX)
2766 		*timeout = NFS4_POLL_RETRY_MAX;
2767 	rpc_clnt_sigmask(clnt, &oldset);
2768 	if (clnt->cl_intr) {
2769 		schedule_timeout_interruptible(*timeout);
2770 		if (signalled())
2771 			res = -ERESTARTSYS;
2772 	} else
2773 		schedule_timeout_uninterruptible(*timeout);
2774 	rpc_clnt_sigunmask(clnt, &oldset);
2775 	*timeout <<= 1;
2776 	return res;
2777 }
2778 
2779 /* This is the error handling routine for processes that are allowed
2780  * to sleep.
2781  */
2782 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2783 {
2784 	struct nfs4_client *clp = server->nfs4_state;
2785 	int ret = errorcode;
2786 
2787 	exception->retry = 0;
2788 	switch(errorcode) {
2789 		case 0:
2790 			return 0;
2791 		case -NFS4ERR_STALE_CLIENTID:
2792 		case -NFS4ERR_STALE_STATEID:
2793 		case -NFS4ERR_EXPIRED:
2794 			nfs4_schedule_state_recovery(clp);
2795 			ret = nfs4_wait_clnt_recover(server->client, clp);
2796 			if (ret == 0)
2797 				exception->retry = 1;
2798 			break;
2799 		case -NFS4ERR_GRACE:
2800 		case -NFS4ERR_DELAY:
2801 			ret = nfs4_delay(server->client, &exception->timeout);
2802 			if (ret != 0)
2803 				break;
2804 		case -NFS4ERR_OLD_STATEID:
2805 			exception->retry = 1;
2806 	}
2807 	/* We failed to handle the error */
2808 	return nfs4_map_errors(ret);
2809 }
2810 
2811 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2812 {
2813 	nfs4_verifier sc_verifier;
2814 	struct nfs4_setclientid setclientid = {
2815 		.sc_verifier = &sc_verifier,
2816 		.sc_prog = program,
2817 	};
2818 	struct rpc_message msg = {
2819 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2820 		.rpc_argp = &setclientid,
2821 		.rpc_resp = clp,
2822 		.rpc_cred = cred,
2823 	};
2824 	u32 *p;
2825 	int loop = 0;
2826 	int status;
2827 
2828 	p = (u32*)sc_verifier.data;
2829 	*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2830 	*p = htonl((u32)clp->cl_boot_time.tv_nsec);
2831 
2832 	for(;;) {
2833 		setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2834 				sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2835 				clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr),
2836 				cred->cr_ops->cr_name,
2837 				clp->cl_id_uniquifier);
2838 		setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2839 				sizeof(setclientid.sc_netid), "tcp");
2840 		setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2841 				sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2842 				clp->cl_ipaddr, port >> 8, port & 255);
2843 
2844 		status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2845 		if (status != -NFS4ERR_CLID_INUSE)
2846 			break;
2847 		if (signalled())
2848 			break;
2849 		if (loop++ & 1)
2850 			ssleep(clp->cl_lease_time + 1);
2851 		else
2852 			if (++clp->cl_id_uniquifier == 0)
2853 				break;
2854 	}
2855 	return status;
2856 }
2857 
2858 static int _nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2859 {
2860 	struct nfs_fsinfo fsinfo;
2861 	struct rpc_message msg = {
2862 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2863 		.rpc_argp = clp,
2864 		.rpc_resp = &fsinfo,
2865 		.rpc_cred = cred,
2866 	};
2867 	unsigned long now;
2868 	int status;
2869 
2870 	now = jiffies;
2871 	status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2872 	if (status == 0) {
2873 		spin_lock(&clp->cl_lock);
2874 		clp->cl_lease_time = fsinfo.lease_time * HZ;
2875 		clp->cl_last_renewal = now;
2876 		clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2877 		spin_unlock(&clp->cl_lock);
2878 	}
2879 	return status;
2880 }
2881 
2882 int nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2883 {
2884 	long timeout;
2885 	int err;
2886 	do {
2887 		err = _nfs4_proc_setclientid_confirm(clp, cred);
2888 		switch (err) {
2889 			case 0:
2890 				return err;
2891 			case -NFS4ERR_RESOURCE:
2892 				/* The IBM lawyers misread another document! */
2893 			case -NFS4ERR_DELAY:
2894 				err = nfs4_delay(clp->cl_rpcclient, &timeout);
2895 		}
2896 	} while (err == 0);
2897 	return err;
2898 }
2899 
2900 struct nfs4_delegreturndata {
2901 	struct nfs4_delegreturnargs args;
2902 	struct nfs4_delegreturnres res;
2903 	struct nfs_fh fh;
2904 	nfs4_stateid stateid;
2905 	struct rpc_cred *cred;
2906 	unsigned long timestamp;
2907 	struct nfs_fattr fattr;
2908 	int rpc_status;
2909 };
2910 
2911 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2912 {
2913 	struct nfs4_delegreturndata *data = calldata;
2914 	struct rpc_message msg = {
2915 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2916 		.rpc_argp = &data->args,
2917 		.rpc_resp = &data->res,
2918 		.rpc_cred = data->cred,
2919 	};
2920 	nfs_fattr_init(data->res.fattr);
2921 	rpc_call_setup(task, &msg, 0);
2922 }
2923 
2924 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2925 {
2926 	struct nfs4_delegreturndata *data = calldata;
2927 	data->rpc_status = task->tk_status;
2928 	if (data->rpc_status == 0)
2929 		renew_lease(data->res.server, data->timestamp);
2930 }
2931 
2932 static void nfs4_delegreturn_release(void *calldata)
2933 {
2934 	struct nfs4_delegreturndata *data = calldata;
2935 
2936 	put_rpccred(data->cred);
2937 	kfree(calldata);
2938 }
2939 
2940 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2941 	.rpc_call_prepare = nfs4_delegreturn_prepare,
2942 	.rpc_call_done = nfs4_delegreturn_done,
2943 	.rpc_release = nfs4_delegreturn_release,
2944 };
2945 
2946 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2947 {
2948 	struct nfs4_delegreturndata *data;
2949 	struct nfs_server *server = NFS_SERVER(inode);
2950 	struct rpc_task *task;
2951 	int status;
2952 
2953 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2954 	if (data == NULL)
2955 		return -ENOMEM;
2956 	data->args.fhandle = &data->fh;
2957 	data->args.stateid = &data->stateid;
2958 	data->args.bitmask = server->attr_bitmask;
2959 	nfs_copy_fh(&data->fh, NFS_FH(inode));
2960 	memcpy(&data->stateid, stateid, sizeof(data->stateid));
2961 	data->res.fattr = &data->fattr;
2962 	data->res.server = server;
2963 	data->cred = get_rpccred(cred);
2964 	data->timestamp = jiffies;
2965 	data->rpc_status = 0;
2966 
2967 	task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2968 	if (IS_ERR(task))
2969 		return PTR_ERR(task);
2970 	status = nfs4_wait_for_completion_rpc_task(task);
2971 	if (status == 0) {
2972 		status = data->rpc_status;
2973 		if (status == 0)
2974 			nfs_post_op_update_inode(inode, &data->fattr);
2975 	}
2976 	rpc_release_task(task);
2977 	return status;
2978 }
2979 
2980 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2981 {
2982 	struct nfs_server *server = NFS_SERVER(inode);
2983 	struct nfs4_exception exception = { };
2984 	int err;
2985 	do {
2986 		err = _nfs4_proc_delegreturn(inode, cred, stateid);
2987 		switch (err) {
2988 			case -NFS4ERR_STALE_STATEID:
2989 			case -NFS4ERR_EXPIRED:
2990 				nfs4_schedule_state_recovery(server->nfs4_state);
2991 			case 0:
2992 				return 0;
2993 		}
2994 		err = nfs4_handle_exception(server, err, &exception);
2995 	} while (exception.retry);
2996 	return err;
2997 }
2998 
2999 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3000 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3001 
3002 /*
3003  * sleep, with exponential backoff, and retry the LOCK operation.
3004  */
3005 static unsigned long
3006 nfs4_set_lock_task_retry(unsigned long timeout)
3007 {
3008 	schedule_timeout_interruptible(timeout);
3009 	timeout <<= 1;
3010 	if (timeout > NFS4_LOCK_MAXTIMEOUT)
3011 		return NFS4_LOCK_MAXTIMEOUT;
3012 	return timeout;
3013 }
3014 
3015 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3016 {
3017 	struct inode *inode = state->inode;
3018 	struct nfs_server *server = NFS_SERVER(inode);
3019 	struct nfs4_client *clp = server->nfs4_state;
3020 	struct nfs_lockt_args arg = {
3021 		.fh = NFS_FH(inode),
3022 		.fl = request,
3023 	};
3024 	struct nfs_lockt_res res = {
3025 		.denied = request,
3026 	};
3027 	struct rpc_message msg = {
3028 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3029 		.rpc_argp       = &arg,
3030 		.rpc_resp       = &res,
3031 		.rpc_cred	= state->owner->so_cred,
3032 	};
3033 	struct nfs4_lock_state *lsp;
3034 	int status;
3035 
3036 	down_read(&clp->cl_sem);
3037 	arg.lock_owner.clientid = clp->cl_clientid;
3038 	status = nfs4_set_lock_state(state, request);
3039 	if (status != 0)
3040 		goto out;
3041 	lsp = request->fl_u.nfs4_fl.owner;
3042 	arg.lock_owner.id = lsp->ls_id;
3043 	status = rpc_call_sync(server->client, &msg, 0);
3044 	switch (status) {
3045 		case 0:
3046 			request->fl_type = F_UNLCK;
3047 			break;
3048 		case -NFS4ERR_DENIED:
3049 			status = 0;
3050 	}
3051 out:
3052 	up_read(&clp->cl_sem);
3053 	return status;
3054 }
3055 
3056 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3057 {
3058 	struct nfs4_exception exception = { };
3059 	int err;
3060 
3061 	do {
3062 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3063 				_nfs4_proc_getlk(state, cmd, request),
3064 				&exception);
3065 	} while (exception.retry);
3066 	return err;
3067 }
3068 
3069 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3070 {
3071 	int res = 0;
3072 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3073 		case FL_POSIX:
3074 			res = posix_lock_file_wait(file, fl);
3075 			break;
3076 		case FL_FLOCK:
3077 			res = flock_lock_file_wait(file, fl);
3078 			break;
3079 		default:
3080 			BUG();
3081 	}
3082 	if (res < 0)
3083 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n",
3084 				__FUNCTION__);
3085 	return res;
3086 }
3087 
3088 struct nfs4_unlockdata {
3089 	struct nfs_locku_args arg;
3090 	struct nfs_locku_res res;
3091 	struct nfs4_lock_state *lsp;
3092 	struct nfs_open_context *ctx;
3093 	struct file_lock fl;
3094 	const struct nfs_server *server;
3095 	unsigned long timestamp;
3096 };
3097 
3098 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3099 		struct nfs_open_context *ctx,
3100 		struct nfs4_lock_state *lsp,
3101 		struct nfs_seqid *seqid)
3102 {
3103 	struct nfs4_unlockdata *p;
3104 	struct inode *inode = lsp->ls_state->inode;
3105 
3106 	p = kmalloc(sizeof(*p), GFP_KERNEL);
3107 	if (p == NULL)
3108 		return NULL;
3109 	p->arg.fh = NFS_FH(inode);
3110 	p->arg.fl = &p->fl;
3111 	p->arg.seqid = seqid;
3112 	p->arg.stateid = &lsp->ls_stateid;
3113 	p->lsp = lsp;
3114 	atomic_inc(&lsp->ls_count);
3115 	/* Ensure we don't close file until we're done freeing locks! */
3116 	p->ctx = get_nfs_open_context(ctx);
3117 	memcpy(&p->fl, fl, sizeof(p->fl));
3118 	p->server = NFS_SERVER(inode);
3119 	return p;
3120 }
3121 
3122 static void nfs4_locku_release_calldata(void *data)
3123 {
3124 	struct nfs4_unlockdata *calldata = data;
3125 	nfs_free_seqid(calldata->arg.seqid);
3126 	nfs4_put_lock_state(calldata->lsp);
3127 	put_nfs_open_context(calldata->ctx);
3128 	kfree(calldata);
3129 }
3130 
3131 static void nfs4_locku_done(struct rpc_task *task, void *data)
3132 {
3133 	struct nfs4_unlockdata *calldata = data;
3134 
3135 	if (RPC_ASSASSINATED(task))
3136 		return;
3137 	nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3138 	switch (task->tk_status) {
3139 		case 0:
3140 			memcpy(calldata->lsp->ls_stateid.data,
3141 					calldata->res.stateid.data,
3142 					sizeof(calldata->lsp->ls_stateid.data));
3143 			renew_lease(calldata->server, calldata->timestamp);
3144 			break;
3145 		case -NFS4ERR_STALE_STATEID:
3146 		case -NFS4ERR_EXPIRED:
3147 			nfs4_schedule_state_recovery(calldata->server->nfs4_state);
3148 			break;
3149 		default:
3150 			if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3151 				rpc_restart_call(task);
3152 			}
3153 	}
3154 }
3155 
3156 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3157 {
3158 	struct nfs4_unlockdata *calldata = data;
3159 	struct rpc_message msg = {
3160 		.rpc_proc	= &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3161 		.rpc_argp       = &calldata->arg,
3162 		.rpc_resp       = &calldata->res,
3163 		.rpc_cred	= calldata->lsp->ls_state->owner->so_cred,
3164 	};
3165 
3166 	if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3167 		return;
3168 	if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3169 		/* Note: exit _without_ running nfs4_locku_done */
3170 		task->tk_action = NULL;
3171 		return;
3172 	}
3173 	calldata->timestamp = jiffies;
3174 	rpc_call_setup(task, &msg, 0);
3175 }
3176 
3177 static const struct rpc_call_ops nfs4_locku_ops = {
3178 	.rpc_call_prepare = nfs4_locku_prepare,
3179 	.rpc_call_done = nfs4_locku_done,
3180 	.rpc_release = nfs4_locku_release_calldata,
3181 };
3182 
3183 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3184 		struct nfs_open_context *ctx,
3185 		struct nfs4_lock_state *lsp,
3186 		struct nfs_seqid *seqid)
3187 {
3188 	struct nfs4_unlockdata *data;
3189 
3190 	data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3191 	if (data == NULL) {
3192 		nfs_free_seqid(seqid);
3193 		return ERR_PTR(-ENOMEM);
3194 	}
3195 
3196 	/* Unlock _before_ we do the RPC call */
3197 	do_vfs_lock(fl->fl_file, fl);
3198 	return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3199 }
3200 
3201 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3202 {
3203 	struct nfs_seqid *seqid;
3204 	struct nfs4_lock_state *lsp;
3205 	struct rpc_task *task;
3206 	int status = 0;
3207 
3208 	/* Is this a delegated lock? */
3209 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3210 		goto out_unlock;
3211 	/* Is this open_owner holding any locks on the server? */
3212 	if (test_bit(LK_STATE_IN_USE, &state->flags) == 0)
3213 		goto out_unlock;
3214 
3215 	status = nfs4_set_lock_state(state, request);
3216 	if (status != 0)
3217 		goto out_unlock;
3218 	lsp = request->fl_u.nfs4_fl.owner;
3219 	status = -ENOMEM;
3220 	seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3221 	if (seqid == NULL)
3222 		goto out_unlock;
3223 	task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3224 	status = PTR_ERR(task);
3225 	if (IS_ERR(task))
3226 		goto out_unlock;
3227 	status = nfs4_wait_for_completion_rpc_task(task);
3228 	rpc_release_task(task);
3229 	return status;
3230 out_unlock:
3231 	do_vfs_lock(request->fl_file, request);
3232 	return status;
3233 }
3234 
3235 struct nfs4_lockdata {
3236 	struct nfs_lock_args arg;
3237 	struct nfs_lock_res res;
3238 	struct nfs4_lock_state *lsp;
3239 	struct nfs_open_context *ctx;
3240 	struct file_lock fl;
3241 	unsigned long timestamp;
3242 	int rpc_status;
3243 	int cancelled;
3244 };
3245 
3246 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3247 		struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3248 {
3249 	struct nfs4_lockdata *p;
3250 	struct inode *inode = lsp->ls_state->inode;
3251 	struct nfs_server *server = NFS_SERVER(inode);
3252 
3253 	p = kzalloc(sizeof(*p), GFP_KERNEL);
3254 	if (p == NULL)
3255 		return NULL;
3256 
3257 	p->arg.fh = NFS_FH(inode);
3258 	p->arg.fl = &p->fl;
3259 	p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3260 	if (p->arg.lock_seqid == NULL)
3261 		goto out_free;
3262 	p->arg.lock_stateid = &lsp->ls_stateid;
3263 	p->arg.lock_owner.clientid = server->nfs4_state->cl_clientid;
3264 	p->arg.lock_owner.id = lsp->ls_id;
3265 	p->lsp = lsp;
3266 	atomic_inc(&lsp->ls_count);
3267 	p->ctx = get_nfs_open_context(ctx);
3268 	memcpy(&p->fl, fl, sizeof(p->fl));
3269 	return p;
3270 out_free:
3271 	kfree(p);
3272 	return NULL;
3273 }
3274 
3275 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3276 {
3277 	struct nfs4_lockdata *data = calldata;
3278 	struct nfs4_state *state = data->lsp->ls_state;
3279 	struct nfs4_state_owner *sp = state->owner;
3280 	struct rpc_message msg = {
3281 		.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3282 		.rpc_argp = &data->arg,
3283 		.rpc_resp = &data->res,
3284 		.rpc_cred = sp->so_cred,
3285 	};
3286 
3287 	if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3288 		return;
3289 	dprintk("%s: begin!\n", __FUNCTION__);
3290 	/* Do we need to do an open_to_lock_owner? */
3291 	if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3292 		data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3293 		if (data->arg.open_seqid == NULL) {
3294 			data->rpc_status = -ENOMEM;
3295 			task->tk_action = NULL;
3296 			goto out;
3297 		}
3298 		data->arg.open_stateid = &state->stateid;
3299 		data->arg.new_lock_owner = 1;
3300 	}
3301 	data->timestamp = jiffies;
3302 	rpc_call_setup(task, &msg, 0);
3303 out:
3304 	dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3305 }
3306 
3307 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3308 {
3309 	struct nfs4_lockdata *data = calldata;
3310 
3311 	dprintk("%s: begin!\n", __FUNCTION__);
3312 
3313 	data->rpc_status = task->tk_status;
3314 	if (RPC_ASSASSINATED(task))
3315 		goto out;
3316 	if (data->arg.new_lock_owner != 0) {
3317 		nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3318 		if (data->rpc_status == 0)
3319 			nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3320 		else
3321 			goto out;
3322 	}
3323 	if (data->rpc_status == 0) {
3324 		memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3325 					sizeof(data->lsp->ls_stateid.data));
3326 		data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3327 		renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3328 	}
3329 	nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3330 out:
3331 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3332 }
3333 
3334 static void nfs4_lock_release(void *calldata)
3335 {
3336 	struct nfs4_lockdata *data = calldata;
3337 
3338 	dprintk("%s: begin!\n", __FUNCTION__);
3339 	if (data->arg.open_seqid != NULL)
3340 		nfs_free_seqid(data->arg.open_seqid);
3341 	if (data->cancelled != 0) {
3342 		struct rpc_task *task;
3343 		task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3344 				data->arg.lock_seqid);
3345 		if (!IS_ERR(task))
3346 			rpc_release_task(task);
3347 		dprintk("%s: cancelling lock!\n", __FUNCTION__);
3348 	} else
3349 		nfs_free_seqid(data->arg.lock_seqid);
3350 	nfs4_put_lock_state(data->lsp);
3351 	put_nfs_open_context(data->ctx);
3352 	kfree(data);
3353 	dprintk("%s: done!\n", __FUNCTION__);
3354 }
3355 
3356 static const struct rpc_call_ops nfs4_lock_ops = {
3357 	.rpc_call_prepare = nfs4_lock_prepare,
3358 	.rpc_call_done = nfs4_lock_done,
3359 	.rpc_release = nfs4_lock_release,
3360 };
3361 
3362 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3363 {
3364 	struct nfs4_lockdata *data;
3365 	struct rpc_task *task;
3366 	int ret;
3367 
3368 	dprintk("%s: begin!\n", __FUNCTION__);
3369 	data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3370 			fl->fl_u.nfs4_fl.owner);
3371 	if (data == NULL)
3372 		return -ENOMEM;
3373 	if (IS_SETLKW(cmd))
3374 		data->arg.block = 1;
3375 	if (reclaim != 0)
3376 		data->arg.reclaim = 1;
3377 	task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3378 			&nfs4_lock_ops, data);
3379 	if (IS_ERR(task))
3380 		return PTR_ERR(task);
3381 	ret = nfs4_wait_for_completion_rpc_task(task);
3382 	if (ret == 0) {
3383 		ret = data->rpc_status;
3384 		if (ret == -NFS4ERR_DENIED)
3385 			ret = -EAGAIN;
3386 	} else
3387 		data->cancelled = 1;
3388 	rpc_release_task(task);
3389 	dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3390 	return ret;
3391 }
3392 
3393 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3394 {
3395 	struct nfs_server *server = NFS_SERVER(state->inode);
3396 	struct nfs4_exception exception = { };
3397 	int err;
3398 
3399 	/* Cache the lock if possible... */
3400 	if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3401 		return 0;
3402 	do {
3403 		err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3404 		if (err != -NFS4ERR_DELAY)
3405 			break;
3406 		nfs4_handle_exception(server, err, &exception);
3407 	} while (exception.retry);
3408 	return err;
3409 }
3410 
3411 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3412 {
3413 	struct nfs_server *server = NFS_SERVER(state->inode);
3414 	struct nfs4_exception exception = { };
3415 	int err;
3416 
3417 	err = nfs4_set_lock_state(state, request);
3418 	if (err != 0)
3419 		return err;
3420 	do {
3421 		err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3422 		if (err != -NFS4ERR_DELAY)
3423 			break;
3424 		nfs4_handle_exception(server, err, &exception);
3425 	} while (exception.retry);
3426 	return err;
3427 }
3428 
3429 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3430 {
3431 	struct nfs4_client *clp = state->owner->so_client;
3432 	int status;
3433 
3434 	/* Is this a delegated open? */
3435 	if (NFS_I(state->inode)->delegation_state != 0) {
3436 		/* Yes: cache locks! */
3437 		status = do_vfs_lock(request->fl_file, request);
3438 		/* ...but avoid races with delegation recall... */
3439 		if (status < 0 || test_bit(NFS_DELEGATED_STATE, &state->flags))
3440 			return status;
3441 	}
3442 	down_read(&clp->cl_sem);
3443 	status = nfs4_set_lock_state(state, request);
3444 	if (status != 0)
3445 		goto out;
3446 	status = _nfs4_do_setlk(state, cmd, request, 0);
3447 	if (status != 0)
3448 		goto out;
3449 	/* Note: we always want to sleep here! */
3450 	request->fl_flags |= FL_SLEEP;
3451 	if (do_vfs_lock(request->fl_file, request) < 0)
3452 		printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3453 out:
3454 	up_read(&clp->cl_sem);
3455 	return status;
3456 }
3457 
3458 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3459 {
3460 	struct nfs4_exception exception = { };
3461 	int err;
3462 
3463 	do {
3464 		err = nfs4_handle_exception(NFS_SERVER(state->inode),
3465 				_nfs4_proc_setlk(state, cmd, request),
3466 				&exception);
3467 	} while (exception.retry);
3468 	return err;
3469 }
3470 
3471 static int
3472 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3473 {
3474 	struct nfs_open_context *ctx;
3475 	struct nfs4_state *state;
3476 	unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3477 	int status;
3478 
3479 	/* verify open state */
3480 	ctx = (struct nfs_open_context *)filp->private_data;
3481 	state = ctx->state;
3482 
3483 	if (request->fl_start < 0 || request->fl_end < 0)
3484 		return -EINVAL;
3485 
3486 	if (IS_GETLK(cmd))
3487 		return nfs4_proc_getlk(state, F_GETLK, request);
3488 
3489 	if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3490 		return -EINVAL;
3491 
3492 	if (request->fl_type == F_UNLCK)
3493 		return nfs4_proc_unlck(state, cmd, request);
3494 
3495 	do {
3496 		status = nfs4_proc_setlk(state, cmd, request);
3497 		if ((status != -EAGAIN) || IS_SETLK(cmd))
3498 			break;
3499 		timeout = nfs4_set_lock_task_retry(timeout);
3500 		status = -ERESTARTSYS;
3501 		if (signalled())
3502 			break;
3503 	} while(status < 0);
3504 	return status;
3505 }
3506 
3507 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3508 {
3509 	struct nfs_server *server = NFS_SERVER(state->inode);
3510 	struct nfs4_exception exception = { };
3511 	int err;
3512 
3513 	err = nfs4_set_lock_state(state, fl);
3514 	if (err != 0)
3515 		goto out;
3516 	do {
3517 		err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3518 		if (err != -NFS4ERR_DELAY)
3519 			break;
3520 		err = nfs4_handle_exception(server, err, &exception);
3521 	} while (exception.retry);
3522 out:
3523 	return err;
3524 }
3525 
3526 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3527 
3528 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3529 		size_t buflen, int flags)
3530 {
3531 	struct inode *inode = dentry->d_inode;
3532 
3533 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3534 		return -EOPNOTSUPP;
3535 
3536 	if (!S_ISREG(inode->i_mode) &&
3537 	    (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3538 		return -EPERM;
3539 
3540 	return nfs4_proc_set_acl(inode, buf, buflen);
3541 }
3542 
3543 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3544  * and that's what we'll do for e.g. user attributes that haven't been set.
3545  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3546  * attributes in kernel-managed attribute namespaces. */
3547 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3548 		size_t buflen)
3549 {
3550 	struct inode *inode = dentry->d_inode;
3551 
3552 	if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3553 		return -EOPNOTSUPP;
3554 
3555 	return nfs4_proc_get_acl(inode, buf, buflen);
3556 }
3557 
3558 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3559 {
3560 	size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3561 
3562 	if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3563 		return 0;
3564 	if (buf && buflen < len)
3565 		return -ERANGE;
3566 	if (buf)
3567 		memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3568 	return len;
3569 }
3570 
3571 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3572 	.recover_open	= nfs4_open_reclaim,
3573 	.recover_lock	= nfs4_lock_reclaim,
3574 };
3575 
3576 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3577 	.recover_open	= nfs4_open_expired,
3578 	.recover_lock	= nfs4_lock_expired,
3579 };
3580 
3581 static struct inode_operations nfs4_file_inode_operations = {
3582 	.permission	= nfs_permission,
3583 	.getattr	= nfs_getattr,
3584 	.setattr	= nfs_setattr,
3585 	.getxattr	= nfs4_getxattr,
3586 	.setxattr	= nfs4_setxattr,
3587 	.listxattr	= nfs4_listxattr,
3588 };
3589 
3590 struct nfs_rpc_ops	nfs_v4_clientops = {
3591 	.version	= 4,			/* protocol version */
3592 	.dentry_ops	= &nfs4_dentry_operations,
3593 	.dir_inode_ops	= &nfs4_dir_inode_operations,
3594 	.file_inode_ops	= &nfs4_file_inode_operations,
3595 	.getroot	= nfs4_proc_get_root,
3596 	.getattr	= nfs4_proc_getattr,
3597 	.setattr	= nfs4_proc_setattr,
3598 	.lookup		= nfs4_proc_lookup,
3599 	.access		= nfs4_proc_access,
3600 	.readlink	= nfs4_proc_readlink,
3601 	.read		= nfs4_proc_read,
3602 	.write		= nfs4_proc_write,
3603 	.commit		= nfs4_proc_commit,
3604 	.create		= nfs4_proc_create,
3605 	.remove		= nfs4_proc_remove,
3606 	.unlink_setup	= nfs4_proc_unlink_setup,
3607 	.unlink_done	= nfs4_proc_unlink_done,
3608 	.rename		= nfs4_proc_rename,
3609 	.link		= nfs4_proc_link,
3610 	.symlink	= nfs4_proc_symlink,
3611 	.mkdir		= nfs4_proc_mkdir,
3612 	.rmdir		= nfs4_proc_remove,
3613 	.readdir	= nfs4_proc_readdir,
3614 	.mknod		= nfs4_proc_mknod,
3615 	.statfs		= nfs4_proc_statfs,
3616 	.fsinfo		= nfs4_proc_fsinfo,
3617 	.pathconf	= nfs4_proc_pathconf,
3618 	.decode_dirent	= nfs4_decode_dirent,
3619 	.read_setup	= nfs4_proc_read_setup,
3620 	.read_done	= nfs4_read_done,
3621 	.write_setup	= nfs4_proc_write_setup,
3622 	.write_done	= nfs4_write_done,
3623 	.commit_setup	= nfs4_proc_commit_setup,
3624 	.commit_done	= nfs4_commit_done,
3625 	.file_open      = nfs_open,
3626 	.file_release   = nfs_release,
3627 	.lock		= nfs4_proc_lock,
3628 	.clear_acl_cache = nfs4_zap_acl_attr,
3629 };
3630 
3631 /*
3632  * Local variables:
3633  *  c-basic-offset: 8
3634  * End:
3635  */
3636