1 /* 2 * fs/nfs/nfs4proc.c 3 * 4 * Client-side procedure declarations for NFSv4. 5 * 6 * Copyright (c) 2002 The Regents of the University of Michigan. 7 * All rights reserved. 8 * 9 * Kendrick Smith <kmsmith@umich.edu> 10 * Andy Adamson <andros@umich.edu> 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 #include <linux/mm.h> 39 #include <linux/utsname.h> 40 #include <linux/delay.h> 41 #include <linux/errno.h> 42 #include <linux/string.h> 43 #include <linux/sunrpc/clnt.h> 44 #include <linux/nfs.h> 45 #include <linux/nfs4.h> 46 #include <linux/nfs_fs.h> 47 #include <linux/nfs_page.h> 48 #include <linux/smp_lock.h> 49 #include <linux/namei.h> 50 #include <linux/mount.h> 51 52 #include "nfs4_fs.h" 53 #include "delegation.h" 54 #include "iostat.h" 55 56 #define NFSDBG_FACILITY NFSDBG_PROC 57 58 #define NFS4_POLL_RETRY_MIN (1*HZ) 59 #define NFS4_POLL_RETRY_MAX (15*HZ) 60 61 struct nfs4_opendata; 62 static int _nfs4_proc_open(struct nfs4_opendata *data); 63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *); 64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *); 65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry); 66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception); 67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp); 68 extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus); 69 extern struct rpc_procinfo nfs4_procedures[]; 70 71 /* Prevent leaks of NFSv4 errors into userland */ 72 int nfs4_map_errors(int err) 73 { 74 if (err < -1000) { 75 dprintk("%s could not handle NFSv4 error %d\n", 76 __FUNCTION__, -err); 77 return -EIO; 78 } 79 return err; 80 } 81 82 /* 83 * This is our standard bitmap for GETATTR requests. 84 */ 85 const u32 nfs4_fattr_bitmap[2] = { 86 FATTR4_WORD0_TYPE 87 | FATTR4_WORD0_CHANGE 88 | FATTR4_WORD0_SIZE 89 | FATTR4_WORD0_FSID 90 | FATTR4_WORD0_FILEID, 91 FATTR4_WORD1_MODE 92 | FATTR4_WORD1_NUMLINKS 93 | FATTR4_WORD1_OWNER 94 | FATTR4_WORD1_OWNER_GROUP 95 | FATTR4_WORD1_RAWDEV 96 | FATTR4_WORD1_SPACE_USED 97 | FATTR4_WORD1_TIME_ACCESS 98 | FATTR4_WORD1_TIME_METADATA 99 | FATTR4_WORD1_TIME_MODIFY 100 }; 101 102 const u32 nfs4_statfs_bitmap[2] = { 103 FATTR4_WORD0_FILES_AVAIL 104 | FATTR4_WORD0_FILES_FREE 105 | FATTR4_WORD0_FILES_TOTAL, 106 FATTR4_WORD1_SPACE_AVAIL 107 | FATTR4_WORD1_SPACE_FREE 108 | FATTR4_WORD1_SPACE_TOTAL 109 }; 110 111 const u32 nfs4_pathconf_bitmap[2] = { 112 FATTR4_WORD0_MAXLINK 113 | FATTR4_WORD0_MAXNAME, 114 0 115 }; 116 117 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE 118 | FATTR4_WORD0_MAXREAD 119 | FATTR4_WORD0_MAXWRITE 120 | FATTR4_WORD0_LEASE_TIME, 121 0 122 }; 123 124 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry, 125 struct nfs4_readdir_arg *readdir) 126 { 127 u32 *start, *p; 128 129 BUG_ON(readdir->count < 80); 130 if (cookie > 2) { 131 readdir->cookie = cookie; 132 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier)); 133 return; 134 } 135 136 readdir->cookie = 0; 137 memset(&readdir->verifier, 0, sizeof(readdir->verifier)); 138 if (cookie == 2) 139 return; 140 141 /* 142 * NFSv4 servers do not return entries for '.' and '..' 143 * Therefore, we fake these entries here. We let '.' 144 * have cookie 0 and '..' have cookie 1. Note that 145 * when talking to the server, we always send cookie 0 146 * instead of 1 or 2. 147 */ 148 start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0); 149 150 if (cookie == 0) { 151 *p++ = xdr_one; /* next */ 152 *p++ = xdr_zero; /* cookie, first word */ 153 *p++ = xdr_one; /* cookie, second word */ 154 *p++ = xdr_one; /* entry len */ 155 memcpy(p, ".\0\0\0", 4); /* entry */ 156 p++; 157 *p++ = xdr_one; /* bitmap length */ 158 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ 159 *p++ = htonl(8); /* attribute buffer length */ 160 p = xdr_encode_hyper(p, dentry->d_inode->i_ino); 161 } 162 163 *p++ = xdr_one; /* next */ 164 *p++ = xdr_zero; /* cookie, first word */ 165 *p++ = xdr_two; /* cookie, second word */ 166 *p++ = xdr_two; /* entry len */ 167 memcpy(p, "..\0\0", 4); /* entry */ 168 p++; 169 *p++ = xdr_one; /* bitmap length */ 170 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ 171 *p++ = htonl(8); /* attribute buffer length */ 172 p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino); 173 174 readdir->pgbase = (char *)p - (char *)start; 175 readdir->count -= readdir->pgbase; 176 kunmap_atomic(start, KM_USER0); 177 } 178 179 static void renew_lease(const struct nfs_server *server, unsigned long timestamp) 180 { 181 struct nfs4_client *clp = server->nfs4_state; 182 spin_lock(&clp->cl_lock); 183 if (time_before(clp->cl_last_renewal,timestamp)) 184 clp->cl_last_renewal = timestamp; 185 spin_unlock(&clp->cl_lock); 186 } 187 188 static void update_changeattr(struct inode *inode, struct nfs4_change_info *cinfo) 189 { 190 struct nfs_inode *nfsi = NFS_I(inode); 191 192 spin_lock(&inode->i_lock); 193 nfsi->cache_validity |= NFS_INO_INVALID_ATTR; 194 if (cinfo->before == nfsi->change_attr && cinfo->atomic) 195 nfsi->change_attr = cinfo->after; 196 spin_unlock(&inode->i_lock); 197 } 198 199 struct nfs4_opendata { 200 atomic_t count; 201 struct nfs_openargs o_arg; 202 struct nfs_openres o_res; 203 struct nfs_open_confirmargs c_arg; 204 struct nfs_open_confirmres c_res; 205 struct nfs_fattr f_attr; 206 struct nfs_fattr dir_attr; 207 struct dentry *dentry; 208 struct dentry *dir; 209 struct nfs4_state_owner *owner; 210 struct iattr attrs; 211 unsigned long timestamp; 212 int rpc_status; 213 int cancelled; 214 }; 215 216 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry, 217 struct nfs4_state_owner *sp, int flags, 218 const struct iattr *attrs) 219 { 220 struct dentry *parent = dget_parent(dentry); 221 struct inode *dir = parent->d_inode; 222 struct nfs_server *server = NFS_SERVER(dir); 223 struct nfs4_opendata *p; 224 225 p = kzalloc(sizeof(*p), GFP_KERNEL); 226 if (p == NULL) 227 goto err; 228 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid); 229 if (p->o_arg.seqid == NULL) 230 goto err_free; 231 atomic_set(&p->count, 1); 232 p->dentry = dget(dentry); 233 p->dir = parent; 234 p->owner = sp; 235 atomic_inc(&sp->so_count); 236 p->o_arg.fh = NFS_FH(dir); 237 p->o_arg.open_flags = flags, 238 p->o_arg.clientid = server->nfs4_state->cl_clientid; 239 p->o_arg.id = sp->so_id; 240 p->o_arg.name = &dentry->d_name; 241 p->o_arg.server = server; 242 p->o_arg.bitmask = server->attr_bitmask; 243 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL; 244 p->o_res.f_attr = &p->f_attr; 245 p->o_res.dir_attr = &p->dir_attr; 246 p->o_res.server = server; 247 nfs_fattr_init(&p->f_attr); 248 nfs_fattr_init(&p->dir_attr); 249 if (flags & O_EXCL) { 250 u32 *s = (u32 *) p->o_arg.u.verifier.data; 251 s[0] = jiffies; 252 s[1] = current->pid; 253 } else if (flags & O_CREAT) { 254 p->o_arg.u.attrs = &p->attrs; 255 memcpy(&p->attrs, attrs, sizeof(p->attrs)); 256 } 257 p->c_arg.fh = &p->o_res.fh; 258 p->c_arg.stateid = &p->o_res.stateid; 259 p->c_arg.seqid = p->o_arg.seqid; 260 return p; 261 err_free: 262 kfree(p); 263 err: 264 dput(parent); 265 return NULL; 266 } 267 268 static void nfs4_opendata_free(struct nfs4_opendata *p) 269 { 270 if (p != NULL && atomic_dec_and_test(&p->count)) { 271 nfs_free_seqid(p->o_arg.seqid); 272 nfs4_put_state_owner(p->owner); 273 dput(p->dir); 274 dput(p->dentry); 275 kfree(p); 276 } 277 } 278 279 /* Helper for asynchronous RPC calls */ 280 static int nfs4_call_async(struct rpc_clnt *clnt, 281 const struct rpc_call_ops *tk_ops, void *calldata) 282 { 283 struct rpc_task *task; 284 285 if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata))) 286 return -ENOMEM; 287 rpc_execute(task); 288 return 0; 289 } 290 291 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task) 292 { 293 sigset_t oldset; 294 int ret; 295 296 rpc_clnt_sigmask(task->tk_client, &oldset); 297 ret = rpc_wait_for_completion_task(task); 298 rpc_clnt_sigunmask(task->tk_client, &oldset); 299 return ret; 300 } 301 302 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags) 303 { 304 switch (open_flags) { 305 case FMODE_WRITE: 306 state->n_wronly++; 307 break; 308 case FMODE_READ: 309 state->n_rdonly++; 310 break; 311 case FMODE_READ|FMODE_WRITE: 312 state->n_rdwr++; 313 } 314 } 315 316 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags) 317 { 318 struct inode *inode = state->inode; 319 320 open_flags &= (FMODE_READ|FMODE_WRITE); 321 /* Protect against nfs4_find_state_byowner() */ 322 spin_lock(&state->owner->so_lock); 323 spin_lock(&inode->i_lock); 324 memcpy(&state->stateid, stateid, sizeof(state->stateid)); 325 update_open_stateflags(state, open_flags); 326 nfs4_state_set_mode_locked(state, state->state | open_flags); 327 spin_unlock(&inode->i_lock); 328 spin_unlock(&state->owner->so_lock); 329 } 330 331 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data) 332 { 333 struct inode *inode; 334 struct nfs4_state *state = NULL; 335 336 if (!(data->f_attr.valid & NFS_ATTR_FATTR)) 337 goto out; 338 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr); 339 if (IS_ERR(inode)) 340 goto out; 341 state = nfs4_get_open_state(inode, data->owner); 342 if (state == NULL) 343 goto put_inode; 344 update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags); 345 put_inode: 346 iput(inode); 347 out: 348 return state; 349 } 350 351 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state) 352 { 353 struct nfs_inode *nfsi = NFS_I(state->inode); 354 struct nfs_open_context *ctx; 355 356 spin_lock(&state->inode->i_lock); 357 list_for_each_entry(ctx, &nfsi->open_files, list) { 358 if (ctx->state != state) 359 continue; 360 get_nfs_open_context(ctx); 361 spin_unlock(&state->inode->i_lock); 362 return ctx; 363 } 364 spin_unlock(&state->inode->i_lock); 365 return ERR_PTR(-ENOENT); 366 } 367 368 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid) 369 { 370 int ret; 371 372 opendata->o_arg.open_flags = openflags; 373 ret = _nfs4_proc_open(opendata); 374 if (ret != 0) 375 return ret; 376 memcpy(stateid->data, opendata->o_res.stateid.data, 377 sizeof(stateid->data)); 378 return 0; 379 } 380 381 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state) 382 { 383 nfs4_stateid stateid; 384 struct nfs4_state *newstate; 385 int mode = 0; 386 int delegation = 0; 387 int ret; 388 389 /* memory barrier prior to reading state->n_* */ 390 smp_rmb(); 391 if (state->n_rdwr != 0) { 392 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid); 393 if (ret != 0) 394 return ret; 395 mode |= FMODE_READ|FMODE_WRITE; 396 if (opendata->o_res.delegation_type != 0) 397 delegation = opendata->o_res.delegation_type; 398 smp_rmb(); 399 } 400 if (state->n_wronly != 0) { 401 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid); 402 if (ret != 0) 403 return ret; 404 mode |= FMODE_WRITE; 405 if (opendata->o_res.delegation_type != 0) 406 delegation = opendata->o_res.delegation_type; 407 smp_rmb(); 408 } 409 if (state->n_rdonly != 0) { 410 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid); 411 if (ret != 0) 412 return ret; 413 mode |= FMODE_READ; 414 } 415 clear_bit(NFS_DELEGATED_STATE, &state->flags); 416 if (mode == 0) 417 return 0; 418 if (opendata->o_res.delegation_type == 0) 419 opendata->o_res.delegation_type = delegation; 420 opendata->o_arg.open_flags |= mode; 421 newstate = nfs4_opendata_to_nfs4_state(opendata); 422 if (newstate != NULL) { 423 if (opendata->o_res.delegation_type != 0) { 424 struct nfs_inode *nfsi = NFS_I(newstate->inode); 425 int delegation_flags = 0; 426 if (nfsi->delegation) 427 delegation_flags = nfsi->delegation->flags; 428 if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM)) 429 nfs_inode_set_delegation(newstate->inode, 430 opendata->owner->so_cred, 431 &opendata->o_res); 432 else 433 nfs_inode_reclaim_delegation(newstate->inode, 434 opendata->owner->so_cred, 435 &opendata->o_res); 436 } 437 nfs4_close_state(newstate, opendata->o_arg.open_flags); 438 } 439 if (newstate != state) 440 return -ESTALE; 441 return 0; 442 } 443 444 /* 445 * OPEN_RECLAIM: 446 * reclaim state on the server after a reboot. 447 */ 448 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry) 449 { 450 struct nfs_delegation *delegation = NFS_I(state->inode)->delegation; 451 struct nfs4_opendata *opendata; 452 int delegation_type = 0; 453 int status; 454 455 if (delegation != NULL) { 456 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) { 457 memcpy(&state->stateid, &delegation->stateid, 458 sizeof(state->stateid)); 459 set_bit(NFS_DELEGATED_STATE, &state->flags); 460 return 0; 461 } 462 delegation_type = delegation->type; 463 } 464 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL); 465 if (opendata == NULL) 466 return -ENOMEM; 467 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS; 468 opendata->o_arg.fh = NFS_FH(state->inode); 469 nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh); 470 opendata->o_arg.u.delegation_type = delegation_type; 471 status = nfs4_open_recover(opendata, state); 472 nfs4_opendata_free(opendata); 473 return status; 474 } 475 476 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry) 477 { 478 struct nfs_server *server = NFS_SERVER(state->inode); 479 struct nfs4_exception exception = { }; 480 int err; 481 do { 482 err = _nfs4_do_open_reclaim(sp, state, dentry); 483 if (err != -NFS4ERR_DELAY) 484 break; 485 nfs4_handle_exception(server, err, &exception); 486 } while (exception.retry); 487 return err; 488 } 489 490 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state) 491 { 492 struct nfs_open_context *ctx; 493 int ret; 494 495 ctx = nfs4_state_find_open_context(state); 496 if (IS_ERR(ctx)) 497 return PTR_ERR(ctx); 498 ret = nfs4_do_open_reclaim(sp, state, ctx->dentry); 499 put_nfs_open_context(ctx); 500 return ret; 501 } 502 503 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state) 504 { 505 struct nfs4_state_owner *sp = state->owner; 506 struct nfs4_opendata *opendata; 507 int ret; 508 509 if (!test_bit(NFS_DELEGATED_STATE, &state->flags)) 510 return 0; 511 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL); 512 if (opendata == NULL) 513 return -ENOMEM; 514 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR; 515 memcpy(opendata->o_arg.u.delegation.data, state->stateid.data, 516 sizeof(opendata->o_arg.u.delegation.data)); 517 ret = nfs4_open_recover(opendata, state); 518 nfs4_opendata_free(opendata); 519 return ret; 520 } 521 522 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state) 523 { 524 struct nfs4_exception exception = { }; 525 struct nfs_server *server = NFS_SERVER(dentry->d_inode); 526 int err; 527 do { 528 err = _nfs4_open_delegation_recall(dentry, state); 529 switch (err) { 530 case 0: 531 return err; 532 case -NFS4ERR_STALE_CLIENTID: 533 case -NFS4ERR_STALE_STATEID: 534 case -NFS4ERR_EXPIRED: 535 /* Don't recall a delegation if it was lost */ 536 nfs4_schedule_state_recovery(server->nfs4_state); 537 return err; 538 } 539 err = nfs4_handle_exception(server, err, &exception); 540 } while (exception.retry); 541 return err; 542 } 543 544 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata) 545 { 546 struct nfs4_opendata *data = calldata; 547 struct rpc_message msg = { 548 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM], 549 .rpc_argp = &data->c_arg, 550 .rpc_resp = &data->c_res, 551 .rpc_cred = data->owner->so_cred, 552 }; 553 data->timestamp = jiffies; 554 rpc_call_setup(task, &msg, 0); 555 } 556 557 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata) 558 { 559 struct nfs4_opendata *data = calldata; 560 561 data->rpc_status = task->tk_status; 562 if (RPC_ASSASSINATED(task)) 563 return; 564 if (data->rpc_status == 0) { 565 memcpy(data->o_res.stateid.data, data->c_res.stateid.data, 566 sizeof(data->o_res.stateid.data)); 567 renew_lease(data->o_res.server, data->timestamp); 568 } 569 nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid); 570 nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status); 571 } 572 573 static void nfs4_open_confirm_release(void *calldata) 574 { 575 struct nfs4_opendata *data = calldata; 576 struct nfs4_state *state = NULL; 577 578 /* If this request hasn't been cancelled, do nothing */ 579 if (data->cancelled == 0) 580 goto out_free; 581 /* In case of error, no cleanup! */ 582 if (data->rpc_status != 0) 583 goto out_free; 584 nfs_confirm_seqid(&data->owner->so_seqid, 0); 585 state = nfs4_opendata_to_nfs4_state(data); 586 if (state != NULL) 587 nfs4_close_state(state, data->o_arg.open_flags); 588 out_free: 589 nfs4_opendata_free(data); 590 } 591 592 static const struct rpc_call_ops nfs4_open_confirm_ops = { 593 .rpc_call_prepare = nfs4_open_confirm_prepare, 594 .rpc_call_done = nfs4_open_confirm_done, 595 .rpc_release = nfs4_open_confirm_release, 596 }; 597 598 /* 599 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata 600 */ 601 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data) 602 { 603 struct nfs_server *server = NFS_SERVER(data->dir->d_inode); 604 struct rpc_task *task; 605 int status; 606 607 atomic_inc(&data->count); 608 /* 609 * If rpc_run_task() ends up calling ->rpc_release(), we 610 * want to ensure that it takes the 'error' code path. 611 */ 612 data->rpc_status = -ENOMEM; 613 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data); 614 if (IS_ERR(task)) 615 return PTR_ERR(task); 616 status = nfs4_wait_for_completion_rpc_task(task); 617 if (status != 0) { 618 data->cancelled = 1; 619 smp_wmb(); 620 } else 621 status = data->rpc_status; 622 rpc_release_task(task); 623 return status; 624 } 625 626 static void nfs4_open_prepare(struct rpc_task *task, void *calldata) 627 { 628 struct nfs4_opendata *data = calldata; 629 struct nfs4_state_owner *sp = data->owner; 630 struct rpc_message msg = { 631 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN], 632 .rpc_argp = &data->o_arg, 633 .rpc_resp = &data->o_res, 634 .rpc_cred = sp->so_cred, 635 }; 636 637 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0) 638 return; 639 /* Update sequence id. */ 640 data->o_arg.id = sp->so_id; 641 data->o_arg.clientid = sp->so_client->cl_clientid; 642 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) 643 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR]; 644 data->timestamp = jiffies; 645 rpc_call_setup(task, &msg, 0); 646 } 647 648 static void nfs4_open_done(struct rpc_task *task, void *calldata) 649 { 650 struct nfs4_opendata *data = calldata; 651 652 data->rpc_status = task->tk_status; 653 if (RPC_ASSASSINATED(task)) 654 return; 655 if (task->tk_status == 0) { 656 switch (data->o_res.f_attr->mode & S_IFMT) { 657 case S_IFREG: 658 break; 659 case S_IFLNK: 660 data->rpc_status = -ELOOP; 661 break; 662 case S_IFDIR: 663 data->rpc_status = -EISDIR; 664 break; 665 default: 666 data->rpc_status = -ENOTDIR; 667 } 668 renew_lease(data->o_res.server, data->timestamp); 669 } 670 nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid); 671 } 672 673 static void nfs4_open_release(void *calldata) 674 { 675 struct nfs4_opendata *data = calldata; 676 struct nfs4_state *state = NULL; 677 678 /* If this request hasn't been cancelled, do nothing */ 679 if (data->cancelled == 0) 680 goto out_free; 681 /* In case of error, no cleanup! */ 682 if (data->rpc_status != 0) 683 goto out_free; 684 /* In case we need an open_confirm, no cleanup! */ 685 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM) 686 goto out_free; 687 nfs_confirm_seqid(&data->owner->so_seqid, 0); 688 state = nfs4_opendata_to_nfs4_state(data); 689 if (state != NULL) 690 nfs4_close_state(state, data->o_arg.open_flags); 691 out_free: 692 nfs4_opendata_free(data); 693 } 694 695 static const struct rpc_call_ops nfs4_open_ops = { 696 .rpc_call_prepare = nfs4_open_prepare, 697 .rpc_call_done = nfs4_open_done, 698 .rpc_release = nfs4_open_release, 699 }; 700 701 /* 702 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata 703 */ 704 static int _nfs4_proc_open(struct nfs4_opendata *data) 705 { 706 struct inode *dir = data->dir->d_inode; 707 struct nfs_server *server = NFS_SERVER(dir); 708 struct nfs_openargs *o_arg = &data->o_arg; 709 struct nfs_openres *o_res = &data->o_res; 710 struct rpc_task *task; 711 int status; 712 713 atomic_inc(&data->count); 714 /* 715 * If rpc_run_task() ends up calling ->rpc_release(), we 716 * want to ensure that it takes the 'error' code path. 717 */ 718 data->rpc_status = -ENOMEM; 719 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data); 720 if (IS_ERR(task)) 721 return PTR_ERR(task); 722 status = nfs4_wait_for_completion_rpc_task(task); 723 if (status != 0) { 724 data->cancelled = 1; 725 smp_wmb(); 726 } else 727 status = data->rpc_status; 728 rpc_release_task(task); 729 if (status != 0) 730 return status; 731 732 if (o_arg->open_flags & O_CREAT) { 733 update_changeattr(dir, &o_res->cinfo); 734 nfs_post_op_update_inode(dir, o_res->dir_attr); 735 } else 736 nfs_refresh_inode(dir, o_res->dir_attr); 737 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) { 738 status = _nfs4_proc_open_confirm(data); 739 if (status != 0) 740 return status; 741 } 742 nfs_confirm_seqid(&data->owner->so_seqid, 0); 743 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR)) 744 return server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr); 745 return 0; 746 } 747 748 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags) 749 { 750 struct nfs_access_entry cache; 751 int mask = 0; 752 int status; 753 754 if (openflags & FMODE_READ) 755 mask |= MAY_READ; 756 if (openflags & FMODE_WRITE) 757 mask |= MAY_WRITE; 758 status = nfs_access_get_cached(inode, cred, &cache); 759 if (status == 0) 760 goto out; 761 762 /* Be clever: ask server to check for all possible rights */ 763 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 764 cache.cred = cred; 765 cache.jiffies = jiffies; 766 status = _nfs4_proc_access(inode, &cache); 767 if (status != 0) 768 return status; 769 nfs_access_add_cache(inode, &cache); 770 out: 771 if ((cache.mask & mask) == mask) 772 return 0; 773 return -EACCES; 774 } 775 776 int nfs4_recover_expired_lease(struct nfs_server *server) 777 { 778 struct nfs4_client *clp = server->nfs4_state; 779 780 if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state)) 781 nfs4_schedule_state_recovery(clp); 782 return nfs4_wait_clnt_recover(server->client, clp); 783 } 784 785 /* 786 * OPEN_EXPIRED: 787 * reclaim state on the server after a network partition. 788 * Assumes caller holds the appropriate lock 789 */ 790 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry) 791 { 792 struct inode *inode = state->inode; 793 struct nfs_delegation *delegation = NFS_I(inode)->delegation; 794 struct nfs4_opendata *opendata; 795 int openflags = state->state & (FMODE_READ|FMODE_WRITE); 796 int ret; 797 798 if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) { 799 ret = _nfs4_do_access(inode, sp->so_cred, openflags); 800 if (ret < 0) 801 return ret; 802 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid)); 803 set_bit(NFS_DELEGATED_STATE, &state->flags); 804 return 0; 805 } 806 opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL); 807 if (opendata == NULL) 808 return -ENOMEM; 809 ret = nfs4_open_recover(opendata, state); 810 if (ret == -ESTALE) { 811 /* Invalidate the state owner so we don't ever use it again */ 812 nfs4_drop_state_owner(sp); 813 d_drop(dentry); 814 } 815 nfs4_opendata_free(opendata); 816 return ret; 817 } 818 819 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry) 820 { 821 struct nfs_server *server = NFS_SERVER(dentry->d_inode); 822 struct nfs4_exception exception = { }; 823 int err; 824 825 do { 826 err = _nfs4_open_expired(sp, state, dentry); 827 if (err == -NFS4ERR_DELAY) 828 nfs4_handle_exception(server, err, &exception); 829 } while (exception.retry); 830 return err; 831 } 832 833 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state) 834 { 835 struct nfs_open_context *ctx; 836 int ret; 837 838 ctx = nfs4_state_find_open_context(state); 839 if (IS_ERR(ctx)) 840 return PTR_ERR(ctx); 841 ret = nfs4_do_open_expired(sp, state, ctx->dentry); 842 put_nfs_open_context(ctx); 843 return ret; 844 } 845 846 /* 847 * Returns a referenced nfs4_state if there is an open delegation on the file 848 */ 849 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res) 850 { 851 struct nfs_delegation *delegation; 852 struct nfs_server *server = NFS_SERVER(inode); 853 struct nfs4_client *clp = server->nfs4_state; 854 struct nfs_inode *nfsi = NFS_I(inode); 855 struct nfs4_state_owner *sp = NULL; 856 struct nfs4_state *state = NULL; 857 int open_flags = flags & (FMODE_READ|FMODE_WRITE); 858 int err; 859 860 err = -ENOMEM; 861 if (!(sp = nfs4_get_state_owner(server, cred))) { 862 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__); 863 return err; 864 } 865 err = nfs4_recover_expired_lease(server); 866 if (err != 0) 867 goto out_put_state_owner; 868 /* Protect against reboot recovery - NOTE ORDER! */ 869 down_read(&clp->cl_sem); 870 /* Protect against delegation recall */ 871 down_read(&nfsi->rwsem); 872 delegation = NFS_I(inode)->delegation; 873 err = -ENOENT; 874 if (delegation == NULL || (delegation->type & open_flags) != open_flags) 875 goto out_err; 876 err = -ENOMEM; 877 state = nfs4_get_open_state(inode, sp); 878 if (state == NULL) 879 goto out_err; 880 881 err = -ENOENT; 882 if ((state->state & open_flags) == open_flags) { 883 spin_lock(&inode->i_lock); 884 update_open_stateflags(state, open_flags); 885 spin_unlock(&inode->i_lock); 886 goto out_ok; 887 } else if (state->state != 0) 888 goto out_put_open_state; 889 890 lock_kernel(); 891 err = _nfs4_do_access(inode, cred, open_flags); 892 unlock_kernel(); 893 if (err != 0) 894 goto out_put_open_state; 895 set_bit(NFS_DELEGATED_STATE, &state->flags); 896 update_open_stateid(state, &delegation->stateid, open_flags); 897 out_ok: 898 nfs4_put_state_owner(sp); 899 up_read(&nfsi->rwsem); 900 up_read(&clp->cl_sem); 901 *res = state; 902 return 0; 903 out_put_open_state: 904 nfs4_put_open_state(state); 905 out_err: 906 up_read(&nfsi->rwsem); 907 up_read(&clp->cl_sem); 908 if (err != -EACCES) 909 nfs_inode_return_delegation(inode); 910 out_put_state_owner: 911 nfs4_put_state_owner(sp); 912 return err; 913 } 914 915 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred) 916 { 917 struct nfs4_exception exception = { }; 918 struct nfs4_state *res = ERR_PTR(-EIO); 919 int err; 920 921 do { 922 err = _nfs4_open_delegated(inode, flags, cred, &res); 923 if (err == 0) 924 break; 925 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode), 926 err, &exception)); 927 } while (exception.retry); 928 return res; 929 } 930 931 /* 932 * Returns a referenced nfs4_state 933 */ 934 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res) 935 { 936 struct nfs4_state_owner *sp; 937 struct nfs4_state *state = NULL; 938 struct nfs_server *server = NFS_SERVER(dir); 939 struct nfs4_client *clp = server->nfs4_state; 940 struct nfs4_opendata *opendata; 941 int status; 942 943 /* Protect against reboot recovery conflicts */ 944 status = -ENOMEM; 945 if (!(sp = nfs4_get_state_owner(server, cred))) { 946 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n"); 947 goto out_err; 948 } 949 status = nfs4_recover_expired_lease(server); 950 if (status != 0) 951 goto err_put_state_owner; 952 down_read(&clp->cl_sem); 953 status = -ENOMEM; 954 opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr); 955 if (opendata == NULL) 956 goto err_put_state_owner; 957 958 status = _nfs4_proc_open(opendata); 959 if (status != 0) 960 goto err_opendata_free; 961 962 status = -ENOMEM; 963 state = nfs4_opendata_to_nfs4_state(opendata); 964 if (state == NULL) 965 goto err_opendata_free; 966 if (opendata->o_res.delegation_type != 0) 967 nfs_inode_set_delegation(state->inode, cred, &opendata->o_res); 968 nfs4_opendata_free(opendata); 969 nfs4_put_state_owner(sp); 970 up_read(&clp->cl_sem); 971 *res = state; 972 return 0; 973 err_opendata_free: 974 nfs4_opendata_free(opendata); 975 err_put_state_owner: 976 nfs4_put_state_owner(sp); 977 out_err: 978 /* Note: clp->cl_sem must be released before nfs4_put_open_state()! */ 979 up_read(&clp->cl_sem); 980 *res = NULL; 981 return status; 982 } 983 984 985 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred) 986 { 987 struct nfs4_exception exception = { }; 988 struct nfs4_state *res; 989 int status; 990 991 do { 992 status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res); 993 if (status == 0) 994 break; 995 /* NOTE: BAD_SEQID means the server and client disagree about the 996 * book-keeping w.r.t. state-changing operations 997 * (OPEN/CLOSE/LOCK/LOCKU...) 998 * It is actually a sign of a bug on the client or on the server. 999 * 1000 * If we receive a BAD_SEQID error in the particular case of 1001 * doing an OPEN, we assume that nfs_increment_open_seqid() will 1002 * have unhashed the old state_owner for us, and that we can 1003 * therefore safely retry using a new one. We should still warn 1004 * the user though... 1005 */ 1006 if (status == -NFS4ERR_BAD_SEQID) { 1007 printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n"); 1008 exception.retry = 1; 1009 continue; 1010 } 1011 /* 1012 * BAD_STATEID on OPEN means that the server cancelled our 1013 * state before it received the OPEN_CONFIRM. 1014 * Recover by retrying the request as per the discussion 1015 * on Page 181 of RFC3530. 1016 */ 1017 if (status == -NFS4ERR_BAD_STATEID) { 1018 exception.retry = 1; 1019 continue; 1020 } 1021 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir), 1022 status, &exception)); 1023 } while (exception.retry); 1024 return res; 1025 } 1026 1027 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr, 1028 struct iattr *sattr, struct nfs4_state *state) 1029 { 1030 struct nfs_server *server = NFS_SERVER(inode); 1031 struct nfs_setattrargs arg = { 1032 .fh = NFS_FH(inode), 1033 .iap = sattr, 1034 .server = server, 1035 .bitmask = server->attr_bitmask, 1036 }; 1037 struct nfs_setattrres res = { 1038 .fattr = fattr, 1039 .server = server, 1040 }; 1041 struct rpc_message msg = { 1042 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR], 1043 .rpc_argp = &arg, 1044 .rpc_resp = &res, 1045 }; 1046 unsigned long timestamp = jiffies; 1047 int status; 1048 1049 nfs_fattr_init(fattr); 1050 1051 if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) { 1052 /* Use that stateid */ 1053 } else if (state != NULL) { 1054 msg.rpc_cred = state->owner->so_cred; 1055 nfs4_copy_stateid(&arg.stateid, state, current->files); 1056 } else 1057 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid)); 1058 1059 status = rpc_call_sync(server->client, &msg, 0); 1060 if (status == 0 && state != NULL) 1061 renew_lease(server, timestamp); 1062 return status; 1063 } 1064 1065 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr, 1066 struct iattr *sattr, struct nfs4_state *state) 1067 { 1068 struct nfs_server *server = NFS_SERVER(inode); 1069 struct nfs4_exception exception = { }; 1070 int err; 1071 do { 1072 err = nfs4_handle_exception(server, 1073 _nfs4_do_setattr(inode, fattr, sattr, state), 1074 &exception); 1075 } while (exception.retry); 1076 return err; 1077 } 1078 1079 struct nfs4_closedata { 1080 struct inode *inode; 1081 struct nfs4_state *state; 1082 struct nfs_closeargs arg; 1083 struct nfs_closeres res; 1084 struct nfs_fattr fattr; 1085 unsigned long timestamp; 1086 }; 1087 1088 static void nfs4_free_closedata(void *data) 1089 { 1090 struct nfs4_closedata *calldata = data; 1091 struct nfs4_state_owner *sp = calldata->state->owner; 1092 1093 nfs4_put_open_state(calldata->state); 1094 nfs_free_seqid(calldata->arg.seqid); 1095 nfs4_put_state_owner(sp); 1096 kfree(calldata); 1097 } 1098 1099 static void nfs4_close_done(struct rpc_task *task, void *data) 1100 { 1101 struct nfs4_closedata *calldata = data; 1102 struct nfs4_state *state = calldata->state; 1103 struct nfs_server *server = NFS_SERVER(calldata->inode); 1104 1105 if (RPC_ASSASSINATED(task)) 1106 return; 1107 /* hmm. we are done with the inode, and in the process of freeing 1108 * the state_owner. we keep this around to process errors 1109 */ 1110 nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid); 1111 switch (task->tk_status) { 1112 case 0: 1113 memcpy(&state->stateid, &calldata->res.stateid, 1114 sizeof(state->stateid)); 1115 renew_lease(server, calldata->timestamp); 1116 break; 1117 case -NFS4ERR_STALE_STATEID: 1118 case -NFS4ERR_EXPIRED: 1119 nfs4_schedule_state_recovery(server->nfs4_state); 1120 break; 1121 default: 1122 if (nfs4_async_handle_error(task, server) == -EAGAIN) { 1123 rpc_restart_call(task); 1124 return; 1125 } 1126 } 1127 nfs_refresh_inode(calldata->inode, calldata->res.fattr); 1128 } 1129 1130 static void nfs4_close_prepare(struct rpc_task *task, void *data) 1131 { 1132 struct nfs4_closedata *calldata = data; 1133 struct nfs4_state *state = calldata->state; 1134 struct rpc_message msg = { 1135 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE], 1136 .rpc_argp = &calldata->arg, 1137 .rpc_resp = &calldata->res, 1138 .rpc_cred = state->owner->so_cred, 1139 }; 1140 int mode = 0, old_mode; 1141 1142 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) 1143 return; 1144 /* Recalculate the new open mode in case someone reopened the file 1145 * while we were waiting in line to be scheduled. 1146 */ 1147 spin_lock(&state->owner->so_lock); 1148 spin_lock(&calldata->inode->i_lock); 1149 mode = old_mode = state->state; 1150 if (state->n_rdwr == 0) { 1151 if (state->n_rdonly == 0) 1152 mode &= ~FMODE_READ; 1153 if (state->n_wronly == 0) 1154 mode &= ~FMODE_WRITE; 1155 } 1156 nfs4_state_set_mode_locked(state, mode); 1157 spin_unlock(&calldata->inode->i_lock); 1158 spin_unlock(&state->owner->so_lock); 1159 if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) { 1160 /* Note: exit _without_ calling nfs4_close_done */ 1161 task->tk_action = NULL; 1162 return; 1163 } 1164 nfs_fattr_init(calldata->res.fattr); 1165 if (mode != 0) 1166 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE]; 1167 calldata->arg.open_flags = mode; 1168 calldata->timestamp = jiffies; 1169 rpc_call_setup(task, &msg, 0); 1170 } 1171 1172 static const struct rpc_call_ops nfs4_close_ops = { 1173 .rpc_call_prepare = nfs4_close_prepare, 1174 .rpc_call_done = nfs4_close_done, 1175 .rpc_release = nfs4_free_closedata, 1176 }; 1177 1178 /* 1179 * It is possible for data to be read/written from a mem-mapped file 1180 * after the sys_close call (which hits the vfs layer as a flush). 1181 * This means that we can't safely call nfsv4 close on a file until 1182 * the inode is cleared. This in turn means that we are not good 1183 * NFSv4 citizens - we do not indicate to the server to update the file's 1184 * share state even when we are done with one of the three share 1185 * stateid's in the inode. 1186 * 1187 * NOTE: Caller must be holding the sp->so_owner semaphore! 1188 */ 1189 int nfs4_do_close(struct inode *inode, struct nfs4_state *state) 1190 { 1191 struct nfs_server *server = NFS_SERVER(inode); 1192 struct nfs4_closedata *calldata; 1193 int status = -ENOMEM; 1194 1195 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL); 1196 if (calldata == NULL) 1197 goto out; 1198 calldata->inode = inode; 1199 calldata->state = state; 1200 calldata->arg.fh = NFS_FH(inode); 1201 calldata->arg.stateid = &state->stateid; 1202 /* Serialization for the sequence id */ 1203 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid); 1204 if (calldata->arg.seqid == NULL) 1205 goto out_free_calldata; 1206 calldata->arg.bitmask = server->attr_bitmask; 1207 calldata->res.fattr = &calldata->fattr; 1208 calldata->res.server = server; 1209 1210 status = nfs4_call_async(server->client, &nfs4_close_ops, calldata); 1211 if (status == 0) 1212 goto out; 1213 1214 nfs_free_seqid(calldata->arg.seqid); 1215 out_free_calldata: 1216 kfree(calldata); 1217 out: 1218 return status; 1219 } 1220 1221 static void nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state) 1222 { 1223 struct file *filp; 1224 1225 filp = lookup_instantiate_filp(nd, dentry, NULL); 1226 if (!IS_ERR(filp)) { 1227 struct nfs_open_context *ctx; 1228 ctx = (struct nfs_open_context *)filp->private_data; 1229 ctx->state = state; 1230 } else 1231 nfs4_close_state(state, nd->intent.open.flags); 1232 } 1233 1234 struct dentry * 1235 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 1236 { 1237 struct iattr attr; 1238 struct rpc_cred *cred; 1239 struct nfs4_state *state; 1240 struct dentry *res; 1241 1242 if (nd->flags & LOOKUP_CREATE) { 1243 attr.ia_mode = nd->intent.open.create_mode; 1244 attr.ia_valid = ATTR_MODE; 1245 if (!IS_POSIXACL(dir)) 1246 attr.ia_mode &= ~current->fs->umask; 1247 } else { 1248 attr.ia_valid = 0; 1249 BUG_ON(nd->intent.open.flags & O_CREAT); 1250 } 1251 1252 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0); 1253 if (IS_ERR(cred)) 1254 return (struct dentry *)cred; 1255 state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred); 1256 put_rpccred(cred); 1257 if (IS_ERR(state)) { 1258 if (PTR_ERR(state) == -ENOENT) 1259 d_add(dentry, NULL); 1260 return (struct dentry *)state; 1261 } 1262 res = d_add_unique(dentry, igrab(state->inode)); 1263 if (res != NULL) 1264 dentry = res; 1265 nfs4_intent_set_file(nd, dentry, state); 1266 return res; 1267 } 1268 1269 int 1270 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd) 1271 { 1272 struct rpc_cred *cred; 1273 struct nfs4_state *state; 1274 1275 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0); 1276 if (IS_ERR(cred)) 1277 return PTR_ERR(cred); 1278 state = nfs4_open_delegated(dentry->d_inode, openflags, cred); 1279 if (IS_ERR(state)) 1280 state = nfs4_do_open(dir, dentry, openflags, NULL, cred); 1281 put_rpccred(cred); 1282 if (IS_ERR(state)) { 1283 switch (PTR_ERR(state)) { 1284 case -EPERM: 1285 case -EACCES: 1286 case -EDQUOT: 1287 case -ENOSPC: 1288 case -EROFS: 1289 lookup_instantiate_filp(nd, (struct dentry *)state, NULL); 1290 return 1; 1291 case -ENOENT: 1292 if (dentry->d_inode == NULL) 1293 return 1; 1294 } 1295 goto out_drop; 1296 } 1297 if (state->inode == dentry->d_inode) { 1298 nfs4_intent_set_file(nd, dentry, state); 1299 return 1; 1300 } 1301 nfs4_close_state(state, openflags); 1302 out_drop: 1303 d_drop(dentry); 1304 return 0; 1305 } 1306 1307 1308 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) 1309 { 1310 struct nfs4_server_caps_res res = {}; 1311 struct rpc_message msg = { 1312 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS], 1313 .rpc_argp = fhandle, 1314 .rpc_resp = &res, 1315 }; 1316 int status; 1317 1318 status = rpc_call_sync(server->client, &msg, 0); 1319 if (status == 0) { 1320 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask)); 1321 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL) 1322 server->caps |= NFS_CAP_ACLS; 1323 if (res.has_links != 0) 1324 server->caps |= NFS_CAP_HARDLINKS; 1325 if (res.has_symlinks != 0) 1326 server->caps |= NFS_CAP_SYMLINKS; 1327 server->acl_bitmask = res.acl_bitmask; 1328 } 1329 return status; 1330 } 1331 1332 static int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) 1333 { 1334 struct nfs4_exception exception = { }; 1335 int err; 1336 do { 1337 err = nfs4_handle_exception(server, 1338 _nfs4_server_capabilities(server, fhandle), 1339 &exception); 1340 } while (exception.retry); 1341 return err; 1342 } 1343 1344 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, 1345 struct nfs_fsinfo *info) 1346 { 1347 struct nfs4_lookup_root_arg args = { 1348 .bitmask = nfs4_fattr_bitmap, 1349 }; 1350 struct nfs4_lookup_res res = { 1351 .server = server, 1352 .fattr = info->fattr, 1353 .fh = fhandle, 1354 }; 1355 struct rpc_message msg = { 1356 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT], 1357 .rpc_argp = &args, 1358 .rpc_resp = &res, 1359 }; 1360 nfs_fattr_init(info->fattr); 1361 return rpc_call_sync(server->client, &msg, 0); 1362 } 1363 1364 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, 1365 struct nfs_fsinfo *info) 1366 { 1367 struct nfs4_exception exception = { }; 1368 int err; 1369 do { 1370 err = nfs4_handle_exception(server, 1371 _nfs4_lookup_root(server, fhandle, info), 1372 &exception); 1373 } while (exception.retry); 1374 return err; 1375 } 1376 1377 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle, 1378 struct nfs_fsinfo *info) 1379 { 1380 struct nfs_fattr * fattr = info->fattr; 1381 unsigned char * p; 1382 struct qstr q; 1383 struct nfs4_lookup_arg args = { 1384 .dir_fh = fhandle, 1385 .name = &q, 1386 .bitmask = nfs4_fattr_bitmap, 1387 }; 1388 struct nfs4_lookup_res res = { 1389 .server = server, 1390 .fattr = fattr, 1391 .fh = fhandle, 1392 }; 1393 struct rpc_message msg = { 1394 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP], 1395 .rpc_argp = &args, 1396 .rpc_resp = &res, 1397 }; 1398 int status; 1399 1400 /* 1401 * Now we do a separate LOOKUP for each component of the mount path. 1402 * The LOOKUPs are done separately so that we can conveniently 1403 * catch an ERR_WRONGSEC if it occurs along the way... 1404 */ 1405 status = nfs4_lookup_root(server, fhandle, info); 1406 if (status) 1407 goto out; 1408 1409 p = server->mnt_path; 1410 for (;;) { 1411 struct nfs4_exception exception = { }; 1412 1413 while (*p == '/') 1414 p++; 1415 if (!*p) 1416 break; 1417 q.name = p; 1418 while (*p && (*p != '/')) 1419 p++; 1420 q.len = p - q.name; 1421 1422 do { 1423 nfs_fattr_init(fattr); 1424 status = nfs4_handle_exception(server, 1425 rpc_call_sync(server->client, &msg, 0), 1426 &exception); 1427 } while (exception.retry); 1428 if (status == 0) 1429 continue; 1430 if (status == -ENOENT) { 1431 printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path); 1432 printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n"); 1433 } 1434 break; 1435 } 1436 if (status == 0) 1437 status = nfs4_server_capabilities(server, fhandle); 1438 if (status == 0) 1439 status = nfs4_do_fsinfo(server, fhandle, info); 1440 out: 1441 return nfs4_map_errors(status); 1442 } 1443 1444 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1445 { 1446 struct nfs4_getattr_arg args = { 1447 .fh = fhandle, 1448 .bitmask = server->attr_bitmask, 1449 }; 1450 struct nfs4_getattr_res res = { 1451 .fattr = fattr, 1452 .server = server, 1453 }; 1454 struct rpc_message msg = { 1455 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR], 1456 .rpc_argp = &args, 1457 .rpc_resp = &res, 1458 }; 1459 1460 nfs_fattr_init(fattr); 1461 return rpc_call_sync(server->client, &msg, 0); 1462 } 1463 1464 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1465 { 1466 struct nfs4_exception exception = { }; 1467 int err; 1468 do { 1469 err = nfs4_handle_exception(server, 1470 _nfs4_proc_getattr(server, fhandle, fattr), 1471 &exception); 1472 } while (exception.retry); 1473 return err; 1474 } 1475 1476 /* 1477 * The file is not closed if it is opened due to the a request to change 1478 * the size of the file. The open call will not be needed once the 1479 * VFS layer lookup-intents are implemented. 1480 * 1481 * Close is called when the inode is destroyed. 1482 * If we haven't opened the file for O_WRONLY, we 1483 * need to in the size_change case to obtain a stateid. 1484 * 1485 * Got race? 1486 * Because OPEN is always done by name in nfsv4, it is 1487 * possible that we opened a different file by the same 1488 * name. We can recognize this race condition, but we 1489 * can't do anything about it besides returning an error. 1490 * 1491 * This will be fixed with VFS changes (lookup-intent). 1492 */ 1493 static int 1494 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr, 1495 struct iattr *sattr) 1496 { 1497 struct rpc_cred *cred; 1498 struct inode *inode = dentry->d_inode; 1499 struct nfs_open_context *ctx; 1500 struct nfs4_state *state = NULL; 1501 int status; 1502 1503 nfs_fattr_init(fattr); 1504 1505 cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0); 1506 if (IS_ERR(cred)) 1507 return PTR_ERR(cred); 1508 1509 /* Search for an existing open(O_WRITE) file */ 1510 ctx = nfs_find_open_context(inode, cred, FMODE_WRITE); 1511 if (ctx != NULL) 1512 state = ctx->state; 1513 1514 status = nfs4_do_setattr(inode, fattr, sattr, state); 1515 if (status == 0) 1516 nfs_setattr_update_inode(inode, sattr); 1517 if (ctx != NULL) 1518 put_nfs_open_context(ctx); 1519 put_rpccred(cred); 1520 return status; 1521 } 1522 1523 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name, 1524 struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1525 { 1526 int status; 1527 struct nfs_server *server = NFS_SERVER(dir); 1528 struct nfs4_lookup_arg args = { 1529 .bitmask = server->attr_bitmask, 1530 .dir_fh = NFS_FH(dir), 1531 .name = name, 1532 }; 1533 struct nfs4_lookup_res res = { 1534 .server = server, 1535 .fattr = fattr, 1536 .fh = fhandle, 1537 }; 1538 struct rpc_message msg = { 1539 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP], 1540 .rpc_argp = &args, 1541 .rpc_resp = &res, 1542 }; 1543 1544 nfs_fattr_init(fattr); 1545 1546 dprintk("NFS call lookup %s\n", name->name); 1547 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); 1548 dprintk("NFS reply lookup: %d\n", status); 1549 return status; 1550 } 1551 1552 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) 1553 { 1554 struct nfs4_exception exception = { }; 1555 int err; 1556 do { 1557 err = nfs4_handle_exception(NFS_SERVER(dir), 1558 _nfs4_proc_lookup(dir, name, fhandle, fattr), 1559 &exception); 1560 } while (exception.retry); 1561 return err; 1562 } 1563 1564 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) 1565 { 1566 struct nfs4_accessargs args = { 1567 .fh = NFS_FH(inode), 1568 }; 1569 struct nfs4_accessres res = { 0 }; 1570 struct rpc_message msg = { 1571 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS], 1572 .rpc_argp = &args, 1573 .rpc_resp = &res, 1574 .rpc_cred = entry->cred, 1575 }; 1576 int mode = entry->mask; 1577 int status; 1578 1579 /* 1580 * Determine which access bits we want to ask for... 1581 */ 1582 if (mode & MAY_READ) 1583 args.access |= NFS4_ACCESS_READ; 1584 if (S_ISDIR(inode->i_mode)) { 1585 if (mode & MAY_WRITE) 1586 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE; 1587 if (mode & MAY_EXEC) 1588 args.access |= NFS4_ACCESS_LOOKUP; 1589 } else { 1590 if (mode & MAY_WRITE) 1591 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND; 1592 if (mode & MAY_EXEC) 1593 args.access |= NFS4_ACCESS_EXECUTE; 1594 } 1595 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); 1596 if (!status) { 1597 entry->mask = 0; 1598 if (res.access & NFS4_ACCESS_READ) 1599 entry->mask |= MAY_READ; 1600 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 1601 entry->mask |= MAY_WRITE; 1602 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 1603 entry->mask |= MAY_EXEC; 1604 } 1605 return status; 1606 } 1607 1608 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) 1609 { 1610 struct nfs4_exception exception = { }; 1611 int err; 1612 do { 1613 err = nfs4_handle_exception(NFS_SERVER(inode), 1614 _nfs4_proc_access(inode, entry), 1615 &exception); 1616 } while (exception.retry); 1617 return err; 1618 } 1619 1620 /* 1621 * TODO: For the time being, we don't try to get any attributes 1622 * along with any of the zero-copy operations READ, READDIR, 1623 * READLINK, WRITE. 1624 * 1625 * In the case of the first three, we want to put the GETATTR 1626 * after the read-type operation -- this is because it is hard 1627 * to predict the length of a GETATTR response in v4, and thus 1628 * align the READ data correctly. This means that the GETATTR 1629 * may end up partially falling into the page cache, and we should 1630 * shift it into the 'tail' of the xdr_buf before processing. 1631 * To do this efficiently, we need to know the total length 1632 * of data received, which doesn't seem to be available outside 1633 * of the RPC layer. 1634 * 1635 * In the case of WRITE, we also want to put the GETATTR after 1636 * the operation -- in this case because we want to make sure 1637 * we get the post-operation mtime and size. This means that 1638 * we can't use xdr_encode_pages() as written: we need a variant 1639 * of it which would leave room in the 'tail' iovec. 1640 * 1641 * Both of these changes to the XDR layer would in fact be quite 1642 * minor, but I decided to leave them for a subsequent patch. 1643 */ 1644 static int _nfs4_proc_readlink(struct inode *inode, struct page *page, 1645 unsigned int pgbase, unsigned int pglen) 1646 { 1647 struct nfs4_readlink args = { 1648 .fh = NFS_FH(inode), 1649 .pgbase = pgbase, 1650 .pglen = pglen, 1651 .pages = &page, 1652 }; 1653 struct rpc_message msg = { 1654 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK], 1655 .rpc_argp = &args, 1656 .rpc_resp = NULL, 1657 }; 1658 1659 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0); 1660 } 1661 1662 static int nfs4_proc_readlink(struct inode *inode, struct page *page, 1663 unsigned int pgbase, unsigned int pglen) 1664 { 1665 struct nfs4_exception exception = { }; 1666 int err; 1667 do { 1668 err = nfs4_handle_exception(NFS_SERVER(inode), 1669 _nfs4_proc_readlink(inode, page, pgbase, pglen), 1670 &exception); 1671 } while (exception.retry); 1672 return err; 1673 } 1674 1675 static int _nfs4_proc_read(struct nfs_read_data *rdata) 1676 { 1677 int flags = rdata->flags; 1678 struct inode *inode = rdata->inode; 1679 struct nfs_fattr *fattr = rdata->res.fattr; 1680 struct nfs_server *server = NFS_SERVER(inode); 1681 struct rpc_message msg = { 1682 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ], 1683 .rpc_argp = &rdata->args, 1684 .rpc_resp = &rdata->res, 1685 .rpc_cred = rdata->cred, 1686 }; 1687 unsigned long timestamp = jiffies; 1688 int status; 1689 1690 dprintk("NFS call read %d @ %Ld\n", rdata->args.count, 1691 (long long) rdata->args.offset); 1692 1693 nfs_fattr_init(fattr); 1694 status = rpc_call_sync(server->client, &msg, flags); 1695 if (!status) 1696 renew_lease(server, timestamp); 1697 dprintk("NFS reply read: %d\n", status); 1698 return status; 1699 } 1700 1701 static int nfs4_proc_read(struct nfs_read_data *rdata) 1702 { 1703 struct nfs4_exception exception = { }; 1704 int err; 1705 do { 1706 err = nfs4_handle_exception(NFS_SERVER(rdata->inode), 1707 _nfs4_proc_read(rdata), 1708 &exception); 1709 } while (exception.retry); 1710 return err; 1711 } 1712 1713 static int _nfs4_proc_write(struct nfs_write_data *wdata) 1714 { 1715 int rpcflags = wdata->flags; 1716 struct inode *inode = wdata->inode; 1717 struct nfs_fattr *fattr = wdata->res.fattr; 1718 struct nfs_server *server = NFS_SERVER(inode); 1719 struct rpc_message msg = { 1720 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE], 1721 .rpc_argp = &wdata->args, 1722 .rpc_resp = &wdata->res, 1723 .rpc_cred = wdata->cred, 1724 }; 1725 int status; 1726 1727 dprintk("NFS call write %d @ %Ld\n", wdata->args.count, 1728 (long long) wdata->args.offset); 1729 1730 wdata->args.bitmask = server->attr_bitmask; 1731 wdata->res.server = server; 1732 wdata->timestamp = jiffies; 1733 nfs_fattr_init(fattr); 1734 status = rpc_call_sync(server->client, &msg, rpcflags); 1735 dprintk("NFS reply write: %d\n", status); 1736 if (status < 0) 1737 return status; 1738 renew_lease(server, wdata->timestamp); 1739 nfs_post_op_update_inode(inode, fattr); 1740 return wdata->res.count; 1741 } 1742 1743 static int nfs4_proc_write(struct nfs_write_data *wdata) 1744 { 1745 struct nfs4_exception exception = { }; 1746 int err; 1747 do { 1748 err = nfs4_handle_exception(NFS_SERVER(wdata->inode), 1749 _nfs4_proc_write(wdata), 1750 &exception); 1751 } while (exception.retry); 1752 return err; 1753 } 1754 1755 static int _nfs4_proc_commit(struct nfs_write_data *cdata) 1756 { 1757 struct inode *inode = cdata->inode; 1758 struct nfs_fattr *fattr = cdata->res.fattr; 1759 struct nfs_server *server = NFS_SERVER(inode); 1760 struct rpc_message msg = { 1761 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT], 1762 .rpc_argp = &cdata->args, 1763 .rpc_resp = &cdata->res, 1764 .rpc_cred = cdata->cred, 1765 }; 1766 int status; 1767 1768 dprintk("NFS call commit %d @ %Ld\n", cdata->args.count, 1769 (long long) cdata->args.offset); 1770 1771 cdata->args.bitmask = server->attr_bitmask; 1772 cdata->res.server = server; 1773 cdata->timestamp = jiffies; 1774 nfs_fattr_init(fattr); 1775 status = rpc_call_sync(server->client, &msg, 0); 1776 if (status >= 0) 1777 renew_lease(server, cdata->timestamp); 1778 dprintk("NFS reply commit: %d\n", status); 1779 if (status >= 0) 1780 nfs_post_op_update_inode(inode, fattr); 1781 return status; 1782 } 1783 1784 static int nfs4_proc_commit(struct nfs_write_data *cdata) 1785 { 1786 struct nfs4_exception exception = { }; 1787 int err; 1788 do { 1789 err = nfs4_handle_exception(NFS_SERVER(cdata->inode), 1790 _nfs4_proc_commit(cdata), 1791 &exception); 1792 } while (exception.retry); 1793 return err; 1794 } 1795 1796 /* 1797 * Got race? 1798 * We will need to arrange for the VFS layer to provide an atomic open. 1799 * Until then, this create/open method is prone to inefficiency and race 1800 * conditions due to the lookup, create, and open VFS calls from sys_open() 1801 * placed on the wire. 1802 * 1803 * Given the above sorry state of affairs, I'm simply sending an OPEN. 1804 * The file will be opened again in the subsequent VFS open call 1805 * (nfs4_proc_file_open). 1806 * 1807 * The open for read will just hang around to be used by any process that 1808 * opens the file O_RDONLY. This will all be resolved with the VFS changes. 1809 */ 1810 1811 static int 1812 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr, 1813 int flags, struct nameidata *nd) 1814 { 1815 struct nfs4_state *state; 1816 struct rpc_cred *cred; 1817 int status = 0; 1818 1819 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0); 1820 if (IS_ERR(cred)) { 1821 status = PTR_ERR(cred); 1822 goto out; 1823 } 1824 state = nfs4_do_open(dir, dentry, flags, sattr, cred); 1825 put_rpccred(cred); 1826 if (IS_ERR(state)) { 1827 status = PTR_ERR(state); 1828 goto out; 1829 } 1830 d_instantiate(dentry, igrab(state->inode)); 1831 if (flags & O_EXCL) { 1832 struct nfs_fattr fattr; 1833 status = nfs4_do_setattr(state->inode, &fattr, sattr, state); 1834 if (status == 0) 1835 nfs_setattr_update_inode(state->inode, sattr); 1836 } 1837 if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN)) 1838 nfs4_intent_set_file(nd, dentry, state); 1839 else 1840 nfs4_close_state(state, flags); 1841 out: 1842 return status; 1843 } 1844 1845 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name) 1846 { 1847 struct nfs_server *server = NFS_SERVER(dir); 1848 struct nfs4_remove_arg args = { 1849 .fh = NFS_FH(dir), 1850 .name = name, 1851 .bitmask = server->attr_bitmask, 1852 }; 1853 struct nfs_fattr dir_attr; 1854 struct nfs4_remove_res res = { 1855 .server = server, 1856 .dir_attr = &dir_attr, 1857 }; 1858 struct rpc_message msg = { 1859 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE], 1860 .rpc_argp = &args, 1861 .rpc_resp = &res, 1862 }; 1863 int status; 1864 1865 nfs_fattr_init(res.dir_attr); 1866 status = rpc_call_sync(server->client, &msg, 0); 1867 if (status == 0) { 1868 update_changeattr(dir, &res.cinfo); 1869 nfs_post_op_update_inode(dir, res.dir_attr); 1870 } 1871 return status; 1872 } 1873 1874 static int nfs4_proc_remove(struct inode *dir, struct qstr *name) 1875 { 1876 struct nfs4_exception exception = { }; 1877 int err; 1878 do { 1879 err = nfs4_handle_exception(NFS_SERVER(dir), 1880 _nfs4_proc_remove(dir, name), 1881 &exception); 1882 } while (exception.retry); 1883 return err; 1884 } 1885 1886 struct unlink_desc { 1887 struct nfs4_remove_arg args; 1888 struct nfs4_remove_res res; 1889 struct nfs_fattr dir_attr; 1890 }; 1891 1892 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir, 1893 struct qstr *name) 1894 { 1895 struct nfs_server *server = NFS_SERVER(dir->d_inode); 1896 struct unlink_desc *up; 1897 1898 up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL); 1899 if (!up) 1900 return -ENOMEM; 1901 1902 up->args.fh = NFS_FH(dir->d_inode); 1903 up->args.name = name; 1904 up->args.bitmask = server->attr_bitmask; 1905 up->res.server = server; 1906 up->res.dir_attr = &up->dir_attr; 1907 1908 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE]; 1909 msg->rpc_argp = &up->args; 1910 msg->rpc_resp = &up->res; 1911 return 0; 1912 } 1913 1914 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task) 1915 { 1916 struct rpc_message *msg = &task->tk_msg; 1917 struct unlink_desc *up; 1918 1919 if (msg->rpc_resp != NULL) { 1920 up = container_of(msg->rpc_resp, struct unlink_desc, res); 1921 update_changeattr(dir->d_inode, &up->res.cinfo); 1922 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr); 1923 kfree(up); 1924 msg->rpc_resp = NULL; 1925 msg->rpc_argp = NULL; 1926 } 1927 return 0; 1928 } 1929 1930 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, 1931 struct inode *new_dir, struct qstr *new_name) 1932 { 1933 struct nfs_server *server = NFS_SERVER(old_dir); 1934 struct nfs4_rename_arg arg = { 1935 .old_dir = NFS_FH(old_dir), 1936 .new_dir = NFS_FH(new_dir), 1937 .old_name = old_name, 1938 .new_name = new_name, 1939 .bitmask = server->attr_bitmask, 1940 }; 1941 struct nfs_fattr old_fattr, new_fattr; 1942 struct nfs4_rename_res res = { 1943 .server = server, 1944 .old_fattr = &old_fattr, 1945 .new_fattr = &new_fattr, 1946 }; 1947 struct rpc_message msg = { 1948 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME], 1949 .rpc_argp = &arg, 1950 .rpc_resp = &res, 1951 }; 1952 int status; 1953 1954 nfs_fattr_init(res.old_fattr); 1955 nfs_fattr_init(res.new_fattr); 1956 status = rpc_call_sync(server->client, &msg, 0); 1957 1958 if (!status) { 1959 update_changeattr(old_dir, &res.old_cinfo); 1960 nfs_post_op_update_inode(old_dir, res.old_fattr); 1961 update_changeattr(new_dir, &res.new_cinfo); 1962 nfs_post_op_update_inode(new_dir, res.new_fattr); 1963 } 1964 return status; 1965 } 1966 1967 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, 1968 struct inode *new_dir, struct qstr *new_name) 1969 { 1970 struct nfs4_exception exception = { }; 1971 int err; 1972 do { 1973 err = nfs4_handle_exception(NFS_SERVER(old_dir), 1974 _nfs4_proc_rename(old_dir, old_name, 1975 new_dir, new_name), 1976 &exception); 1977 } while (exception.retry); 1978 return err; 1979 } 1980 1981 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) 1982 { 1983 struct nfs_server *server = NFS_SERVER(inode); 1984 struct nfs4_link_arg arg = { 1985 .fh = NFS_FH(inode), 1986 .dir_fh = NFS_FH(dir), 1987 .name = name, 1988 .bitmask = server->attr_bitmask, 1989 }; 1990 struct nfs_fattr fattr, dir_attr; 1991 struct nfs4_link_res res = { 1992 .server = server, 1993 .fattr = &fattr, 1994 .dir_attr = &dir_attr, 1995 }; 1996 struct rpc_message msg = { 1997 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK], 1998 .rpc_argp = &arg, 1999 .rpc_resp = &res, 2000 }; 2001 int status; 2002 2003 nfs_fattr_init(res.fattr); 2004 nfs_fattr_init(res.dir_attr); 2005 status = rpc_call_sync(server->client, &msg, 0); 2006 if (!status) { 2007 update_changeattr(dir, &res.cinfo); 2008 nfs_post_op_update_inode(dir, res.dir_attr); 2009 nfs_refresh_inode(inode, res.fattr); 2010 } 2011 2012 return status; 2013 } 2014 2015 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) 2016 { 2017 struct nfs4_exception exception = { }; 2018 int err; 2019 do { 2020 err = nfs4_handle_exception(NFS_SERVER(inode), 2021 _nfs4_proc_link(inode, dir, name), 2022 &exception); 2023 } while (exception.retry); 2024 return err; 2025 } 2026 2027 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name, 2028 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle, 2029 struct nfs_fattr *fattr) 2030 { 2031 struct nfs_server *server = NFS_SERVER(dir); 2032 struct nfs_fattr dir_fattr; 2033 struct nfs4_create_arg arg = { 2034 .dir_fh = NFS_FH(dir), 2035 .server = server, 2036 .name = name, 2037 .attrs = sattr, 2038 .ftype = NF4LNK, 2039 .bitmask = server->attr_bitmask, 2040 }; 2041 struct nfs4_create_res res = { 2042 .server = server, 2043 .fh = fhandle, 2044 .fattr = fattr, 2045 .dir_fattr = &dir_fattr, 2046 }; 2047 struct rpc_message msg = { 2048 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK], 2049 .rpc_argp = &arg, 2050 .rpc_resp = &res, 2051 }; 2052 int status; 2053 2054 if (path->len > NFS4_MAXPATHLEN) 2055 return -ENAMETOOLONG; 2056 arg.u.symlink = path; 2057 nfs_fattr_init(fattr); 2058 nfs_fattr_init(&dir_fattr); 2059 2060 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); 2061 if (!status) 2062 update_changeattr(dir, &res.dir_cinfo); 2063 nfs_post_op_update_inode(dir, res.dir_fattr); 2064 return status; 2065 } 2066 2067 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name, 2068 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle, 2069 struct nfs_fattr *fattr) 2070 { 2071 struct nfs4_exception exception = { }; 2072 int err; 2073 do { 2074 err = nfs4_handle_exception(NFS_SERVER(dir), 2075 _nfs4_proc_symlink(dir, name, path, sattr, 2076 fhandle, fattr), 2077 &exception); 2078 } while (exception.retry); 2079 return err; 2080 } 2081 2082 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, 2083 struct iattr *sattr) 2084 { 2085 struct nfs_server *server = NFS_SERVER(dir); 2086 struct nfs_fh fhandle; 2087 struct nfs_fattr fattr, dir_fattr; 2088 struct nfs4_create_arg arg = { 2089 .dir_fh = NFS_FH(dir), 2090 .server = server, 2091 .name = &dentry->d_name, 2092 .attrs = sattr, 2093 .ftype = NF4DIR, 2094 .bitmask = server->attr_bitmask, 2095 }; 2096 struct nfs4_create_res res = { 2097 .server = server, 2098 .fh = &fhandle, 2099 .fattr = &fattr, 2100 .dir_fattr = &dir_fattr, 2101 }; 2102 struct rpc_message msg = { 2103 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE], 2104 .rpc_argp = &arg, 2105 .rpc_resp = &res, 2106 }; 2107 int status; 2108 2109 nfs_fattr_init(&fattr); 2110 nfs_fattr_init(&dir_fattr); 2111 2112 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); 2113 if (!status) { 2114 update_changeattr(dir, &res.dir_cinfo); 2115 nfs_post_op_update_inode(dir, res.dir_fattr); 2116 status = nfs_instantiate(dentry, &fhandle, &fattr); 2117 } 2118 return status; 2119 } 2120 2121 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, 2122 struct iattr *sattr) 2123 { 2124 struct nfs4_exception exception = { }; 2125 int err; 2126 do { 2127 err = nfs4_handle_exception(NFS_SERVER(dir), 2128 _nfs4_proc_mkdir(dir, dentry, sattr), 2129 &exception); 2130 } while (exception.retry); 2131 return err; 2132 } 2133 2134 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, 2135 u64 cookie, struct page *page, unsigned int count, int plus) 2136 { 2137 struct inode *dir = dentry->d_inode; 2138 struct nfs4_readdir_arg args = { 2139 .fh = NFS_FH(dir), 2140 .pages = &page, 2141 .pgbase = 0, 2142 .count = count, 2143 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask, 2144 }; 2145 struct nfs4_readdir_res res; 2146 struct rpc_message msg = { 2147 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR], 2148 .rpc_argp = &args, 2149 .rpc_resp = &res, 2150 .rpc_cred = cred, 2151 }; 2152 int status; 2153 2154 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__, 2155 dentry->d_parent->d_name.name, 2156 dentry->d_name.name, 2157 (unsigned long long)cookie); 2158 lock_kernel(); 2159 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args); 2160 res.pgbase = args.pgbase; 2161 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); 2162 if (status == 0) 2163 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE); 2164 unlock_kernel(); 2165 dprintk("%s: returns %d\n", __FUNCTION__, status); 2166 return status; 2167 } 2168 2169 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, 2170 u64 cookie, struct page *page, unsigned int count, int plus) 2171 { 2172 struct nfs4_exception exception = { }; 2173 int err; 2174 do { 2175 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode), 2176 _nfs4_proc_readdir(dentry, cred, cookie, 2177 page, count, plus), 2178 &exception); 2179 } while (exception.retry); 2180 return err; 2181 } 2182 2183 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, 2184 struct iattr *sattr, dev_t rdev) 2185 { 2186 struct nfs_server *server = NFS_SERVER(dir); 2187 struct nfs_fh fh; 2188 struct nfs_fattr fattr, dir_fattr; 2189 struct nfs4_create_arg arg = { 2190 .dir_fh = NFS_FH(dir), 2191 .server = server, 2192 .name = &dentry->d_name, 2193 .attrs = sattr, 2194 .bitmask = server->attr_bitmask, 2195 }; 2196 struct nfs4_create_res res = { 2197 .server = server, 2198 .fh = &fh, 2199 .fattr = &fattr, 2200 .dir_fattr = &dir_fattr, 2201 }; 2202 struct rpc_message msg = { 2203 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE], 2204 .rpc_argp = &arg, 2205 .rpc_resp = &res, 2206 }; 2207 int status; 2208 int mode = sattr->ia_mode; 2209 2210 nfs_fattr_init(&fattr); 2211 nfs_fattr_init(&dir_fattr); 2212 2213 BUG_ON(!(sattr->ia_valid & ATTR_MODE)); 2214 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode)); 2215 if (S_ISFIFO(mode)) 2216 arg.ftype = NF4FIFO; 2217 else if (S_ISBLK(mode)) { 2218 arg.ftype = NF4BLK; 2219 arg.u.device.specdata1 = MAJOR(rdev); 2220 arg.u.device.specdata2 = MINOR(rdev); 2221 } 2222 else if (S_ISCHR(mode)) { 2223 arg.ftype = NF4CHR; 2224 arg.u.device.specdata1 = MAJOR(rdev); 2225 arg.u.device.specdata2 = MINOR(rdev); 2226 } 2227 else 2228 arg.ftype = NF4SOCK; 2229 2230 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); 2231 if (status == 0) { 2232 update_changeattr(dir, &res.dir_cinfo); 2233 nfs_post_op_update_inode(dir, res.dir_fattr); 2234 status = nfs_instantiate(dentry, &fh, &fattr); 2235 } 2236 return status; 2237 } 2238 2239 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, 2240 struct iattr *sattr, dev_t rdev) 2241 { 2242 struct nfs4_exception exception = { }; 2243 int err; 2244 do { 2245 err = nfs4_handle_exception(NFS_SERVER(dir), 2246 _nfs4_proc_mknod(dir, dentry, sattr, rdev), 2247 &exception); 2248 } while (exception.retry); 2249 return err; 2250 } 2251 2252 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, 2253 struct nfs_fsstat *fsstat) 2254 { 2255 struct nfs4_statfs_arg args = { 2256 .fh = fhandle, 2257 .bitmask = server->attr_bitmask, 2258 }; 2259 struct rpc_message msg = { 2260 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS], 2261 .rpc_argp = &args, 2262 .rpc_resp = fsstat, 2263 }; 2264 2265 nfs_fattr_init(fsstat->fattr); 2266 return rpc_call_sync(server->client, &msg, 0); 2267 } 2268 2269 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat) 2270 { 2271 struct nfs4_exception exception = { }; 2272 int err; 2273 do { 2274 err = nfs4_handle_exception(server, 2275 _nfs4_proc_statfs(server, fhandle, fsstat), 2276 &exception); 2277 } while (exception.retry); 2278 return err; 2279 } 2280 2281 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, 2282 struct nfs_fsinfo *fsinfo) 2283 { 2284 struct nfs4_fsinfo_arg args = { 2285 .fh = fhandle, 2286 .bitmask = server->attr_bitmask, 2287 }; 2288 struct rpc_message msg = { 2289 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO], 2290 .rpc_argp = &args, 2291 .rpc_resp = fsinfo, 2292 }; 2293 2294 return rpc_call_sync(server->client, &msg, 0); 2295 } 2296 2297 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) 2298 { 2299 struct nfs4_exception exception = { }; 2300 int err; 2301 2302 do { 2303 err = nfs4_handle_exception(server, 2304 _nfs4_do_fsinfo(server, fhandle, fsinfo), 2305 &exception); 2306 } while (exception.retry); 2307 return err; 2308 } 2309 2310 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) 2311 { 2312 nfs_fattr_init(fsinfo->fattr); 2313 return nfs4_do_fsinfo(server, fhandle, fsinfo); 2314 } 2315 2316 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, 2317 struct nfs_pathconf *pathconf) 2318 { 2319 struct nfs4_pathconf_arg args = { 2320 .fh = fhandle, 2321 .bitmask = server->attr_bitmask, 2322 }; 2323 struct rpc_message msg = { 2324 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF], 2325 .rpc_argp = &args, 2326 .rpc_resp = pathconf, 2327 }; 2328 2329 /* None of the pathconf attributes are mandatory to implement */ 2330 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) { 2331 memset(pathconf, 0, sizeof(*pathconf)); 2332 return 0; 2333 } 2334 2335 nfs_fattr_init(pathconf->fattr); 2336 return rpc_call_sync(server->client, &msg, 0); 2337 } 2338 2339 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, 2340 struct nfs_pathconf *pathconf) 2341 { 2342 struct nfs4_exception exception = { }; 2343 int err; 2344 2345 do { 2346 err = nfs4_handle_exception(server, 2347 _nfs4_proc_pathconf(server, fhandle, pathconf), 2348 &exception); 2349 } while (exception.retry); 2350 return err; 2351 } 2352 2353 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data) 2354 { 2355 struct nfs_server *server = NFS_SERVER(data->inode); 2356 2357 if (nfs4_async_handle_error(task, server) == -EAGAIN) { 2358 rpc_restart_call(task); 2359 return -EAGAIN; 2360 } 2361 if (task->tk_status > 0) 2362 renew_lease(server, data->timestamp); 2363 return 0; 2364 } 2365 2366 static void nfs4_proc_read_setup(struct nfs_read_data *data) 2367 { 2368 struct rpc_message msg = { 2369 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ], 2370 .rpc_argp = &data->args, 2371 .rpc_resp = &data->res, 2372 .rpc_cred = data->cred, 2373 }; 2374 2375 data->timestamp = jiffies; 2376 2377 rpc_call_setup(&data->task, &msg, 0); 2378 } 2379 2380 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data) 2381 { 2382 struct inode *inode = data->inode; 2383 2384 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) { 2385 rpc_restart_call(task); 2386 return -EAGAIN; 2387 } 2388 if (task->tk_status >= 0) { 2389 renew_lease(NFS_SERVER(inode), data->timestamp); 2390 nfs_post_op_update_inode(inode, data->res.fattr); 2391 } 2392 return 0; 2393 } 2394 2395 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how) 2396 { 2397 struct rpc_message msg = { 2398 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE], 2399 .rpc_argp = &data->args, 2400 .rpc_resp = &data->res, 2401 .rpc_cred = data->cred, 2402 }; 2403 struct inode *inode = data->inode; 2404 struct nfs_server *server = NFS_SERVER(inode); 2405 int stable; 2406 2407 if (how & FLUSH_STABLE) { 2408 if (!NFS_I(inode)->ncommit) 2409 stable = NFS_FILE_SYNC; 2410 else 2411 stable = NFS_DATA_SYNC; 2412 } else 2413 stable = NFS_UNSTABLE; 2414 data->args.stable = stable; 2415 data->args.bitmask = server->attr_bitmask; 2416 data->res.server = server; 2417 2418 data->timestamp = jiffies; 2419 2420 /* Finalize the task. */ 2421 rpc_call_setup(&data->task, &msg, 0); 2422 } 2423 2424 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data) 2425 { 2426 struct inode *inode = data->inode; 2427 2428 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) { 2429 rpc_restart_call(task); 2430 return -EAGAIN; 2431 } 2432 if (task->tk_status >= 0) 2433 nfs_post_op_update_inode(inode, data->res.fattr); 2434 return 0; 2435 } 2436 2437 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how) 2438 { 2439 struct rpc_message msg = { 2440 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT], 2441 .rpc_argp = &data->args, 2442 .rpc_resp = &data->res, 2443 .rpc_cred = data->cred, 2444 }; 2445 struct nfs_server *server = NFS_SERVER(data->inode); 2446 2447 data->args.bitmask = server->attr_bitmask; 2448 data->res.server = server; 2449 2450 rpc_call_setup(&data->task, &msg, 0); 2451 } 2452 2453 /* 2454 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special 2455 * standalone procedure for queueing an asynchronous RENEW. 2456 */ 2457 static void nfs4_renew_done(struct rpc_task *task, void *data) 2458 { 2459 struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp; 2460 unsigned long timestamp = (unsigned long)data; 2461 2462 if (task->tk_status < 0) { 2463 switch (task->tk_status) { 2464 case -NFS4ERR_STALE_CLIENTID: 2465 case -NFS4ERR_EXPIRED: 2466 case -NFS4ERR_CB_PATH_DOWN: 2467 nfs4_schedule_state_recovery(clp); 2468 } 2469 return; 2470 } 2471 spin_lock(&clp->cl_lock); 2472 if (time_before(clp->cl_last_renewal,timestamp)) 2473 clp->cl_last_renewal = timestamp; 2474 spin_unlock(&clp->cl_lock); 2475 } 2476 2477 static const struct rpc_call_ops nfs4_renew_ops = { 2478 .rpc_call_done = nfs4_renew_done, 2479 }; 2480 2481 int nfs4_proc_async_renew(struct nfs4_client *clp, struct rpc_cred *cred) 2482 { 2483 struct rpc_message msg = { 2484 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], 2485 .rpc_argp = clp, 2486 .rpc_cred = cred, 2487 }; 2488 2489 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT, 2490 &nfs4_renew_ops, (void *)jiffies); 2491 } 2492 2493 int nfs4_proc_renew(struct nfs4_client *clp, struct rpc_cred *cred) 2494 { 2495 struct rpc_message msg = { 2496 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], 2497 .rpc_argp = clp, 2498 .rpc_cred = cred, 2499 }; 2500 unsigned long now = jiffies; 2501 int status; 2502 2503 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); 2504 if (status < 0) 2505 return status; 2506 spin_lock(&clp->cl_lock); 2507 if (time_before(clp->cl_last_renewal,now)) 2508 clp->cl_last_renewal = now; 2509 spin_unlock(&clp->cl_lock); 2510 return 0; 2511 } 2512 2513 static inline int nfs4_server_supports_acls(struct nfs_server *server) 2514 { 2515 return (server->caps & NFS_CAP_ACLS) 2516 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL) 2517 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL); 2518 } 2519 2520 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that 2521 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on 2522 * the stack. 2523 */ 2524 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT) 2525 2526 static void buf_to_pages(const void *buf, size_t buflen, 2527 struct page **pages, unsigned int *pgbase) 2528 { 2529 const void *p = buf; 2530 2531 *pgbase = offset_in_page(buf); 2532 p -= *pgbase; 2533 while (p < buf + buflen) { 2534 *(pages++) = virt_to_page(p); 2535 p += PAGE_CACHE_SIZE; 2536 } 2537 } 2538 2539 struct nfs4_cached_acl { 2540 int cached; 2541 size_t len; 2542 char data[0]; 2543 }; 2544 2545 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl) 2546 { 2547 struct nfs_inode *nfsi = NFS_I(inode); 2548 2549 spin_lock(&inode->i_lock); 2550 kfree(nfsi->nfs4_acl); 2551 nfsi->nfs4_acl = acl; 2552 spin_unlock(&inode->i_lock); 2553 } 2554 2555 static void nfs4_zap_acl_attr(struct inode *inode) 2556 { 2557 nfs4_set_cached_acl(inode, NULL); 2558 } 2559 2560 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen) 2561 { 2562 struct nfs_inode *nfsi = NFS_I(inode); 2563 struct nfs4_cached_acl *acl; 2564 int ret = -ENOENT; 2565 2566 spin_lock(&inode->i_lock); 2567 acl = nfsi->nfs4_acl; 2568 if (acl == NULL) 2569 goto out; 2570 if (buf == NULL) /* user is just asking for length */ 2571 goto out_len; 2572 if (acl->cached == 0) 2573 goto out; 2574 ret = -ERANGE; /* see getxattr(2) man page */ 2575 if (acl->len > buflen) 2576 goto out; 2577 memcpy(buf, acl->data, acl->len); 2578 out_len: 2579 ret = acl->len; 2580 out: 2581 spin_unlock(&inode->i_lock); 2582 return ret; 2583 } 2584 2585 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len) 2586 { 2587 struct nfs4_cached_acl *acl; 2588 2589 if (buf && acl_len <= PAGE_SIZE) { 2590 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL); 2591 if (acl == NULL) 2592 goto out; 2593 acl->cached = 1; 2594 memcpy(acl->data, buf, acl_len); 2595 } else { 2596 acl = kmalloc(sizeof(*acl), GFP_KERNEL); 2597 if (acl == NULL) 2598 goto out; 2599 acl->cached = 0; 2600 } 2601 acl->len = acl_len; 2602 out: 2603 nfs4_set_cached_acl(inode, acl); 2604 } 2605 2606 static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen) 2607 { 2608 struct page *pages[NFS4ACL_MAXPAGES]; 2609 struct nfs_getaclargs args = { 2610 .fh = NFS_FH(inode), 2611 .acl_pages = pages, 2612 .acl_len = buflen, 2613 }; 2614 size_t resp_len = buflen; 2615 void *resp_buf; 2616 struct rpc_message msg = { 2617 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL], 2618 .rpc_argp = &args, 2619 .rpc_resp = &resp_len, 2620 }; 2621 struct page *localpage = NULL; 2622 int ret; 2623 2624 if (buflen < PAGE_SIZE) { 2625 /* As long as we're doing a round trip to the server anyway, 2626 * let's be prepared for a page of acl data. */ 2627 localpage = alloc_page(GFP_KERNEL); 2628 resp_buf = page_address(localpage); 2629 if (localpage == NULL) 2630 return -ENOMEM; 2631 args.acl_pages[0] = localpage; 2632 args.acl_pgbase = 0; 2633 resp_len = args.acl_len = PAGE_SIZE; 2634 } else { 2635 resp_buf = buf; 2636 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase); 2637 } 2638 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); 2639 if (ret) 2640 goto out_free; 2641 if (resp_len > args.acl_len) 2642 nfs4_write_cached_acl(inode, NULL, resp_len); 2643 else 2644 nfs4_write_cached_acl(inode, resp_buf, resp_len); 2645 if (buf) { 2646 ret = -ERANGE; 2647 if (resp_len > buflen) 2648 goto out_free; 2649 if (localpage) 2650 memcpy(buf, resp_buf, resp_len); 2651 } 2652 ret = resp_len; 2653 out_free: 2654 if (localpage) 2655 __free_page(localpage); 2656 return ret; 2657 } 2658 2659 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen) 2660 { 2661 struct nfs_server *server = NFS_SERVER(inode); 2662 int ret; 2663 2664 if (!nfs4_server_supports_acls(server)) 2665 return -EOPNOTSUPP; 2666 ret = nfs_revalidate_inode(server, inode); 2667 if (ret < 0) 2668 return ret; 2669 ret = nfs4_read_cached_acl(inode, buf, buflen); 2670 if (ret != -ENOENT) 2671 return ret; 2672 return nfs4_get_acl_uncached(inode, buf, buflen); 2673 } 2674 2675 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen) 2676 { 2677 struct nfs_server *server = NFS_SERVER(inode); 2678 struct page *pages[NFS4ACL_MAXPAGES]; 2679 struct nfs_setaclargs arg = { 2680 .fh = NFS_FH(inode), 2681 .acl_pages = pages, 2682 .acl_len = buflen, 2683 }; 2684 struct rpc_message msg = { 2685 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL], 2686 .rpc_argp = &arg, 2687 .rpc_resp = NULL, 2688 }; 2689 int ret; 2690 2691 if (!nfs4_server_supports_acls(server)) 2692 return -EOPNOTSUPP; 2693 nfs_inode_return_delegation(inode); 2694 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase); 2695 ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0); 2696 if (ret == 0) 2697 nfs4_write_cached_acl(inode, buf, buflen); 2698 return ret; 2699 } 2700 2701 static int 2702 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server) 2703 { 2704 struct nfs4_client *clp = server->nfs4_state; 2705 2706 if (!clp || task->tk_status >= 0) 2707 return 0; 2708 switch(task->tk_status) { 2709 case -NFS4ERR_STALE_CLIENTID: 2710 case -NFS4ERR_STALE_STATEID: 2711 case -NFS4ERR_EXPIRED: 2712 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL); 2713 nfs4_schedule_state_recovery(clp); 2714 if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0) 2715 rpc_wake_up_task(task); 2716 task->tk_status = 0; 2717 return -EAGAIN; 2718 case -NFS4ERR_DELAY: 2719 nfs_inc_server_stats((struct nfs_server *) server, 2720 NFSIOS_DELAY); 2721 case -NFS4ERR_GRACE: 2722 rpc_delay(task, NFS4_POLL_RETRY_MAX); 2723 task->tk_status = 0; 2724 return -EAGAIN; 2725 case -NFS4ERR_OLD_STATEID: 2726 task->tk_status = 0; 2727 return -EAGAIN; 2728 } 2729 task->tk_status = nfs4_map_errors(task->tk_status); 2730 return 0; 2731 } 2732 2733 static int nfs4_wait_bit_interruptible(void *word) 2734 { 2735 if (signal_pending(current)) 2736 return -ERESTARTSYS; 2737 schedule(); 2738 return 0; 2739 } 2740 2741 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp) 2742 { 2743 sigset_t oldset; 2744 int res; 2745 2746 might_sleep(); 2747 2748 rpc_clnt_sigmask(clnt, &oldset); 2749 res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER, 2750 nfs4_wait_bit_interruptible, 2751 TASK_INTERRUPTIBLE); 2752 rpc_clnt_sigunmask(clnt, &oldset); 2753 return res; 2754 } 2755 2756 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout) 2757 { 2758 sigset_t oldset; 2759 int res = 0; 2760 2761 might_sleep(); 2762 2763 if (*timeout <= 0) 2764 *timeout = NFS4_POLL_RETRY_MIN; 2765 if (*timeout > NFS4_POLL_RETRY_MAX) 2766 *timeout = NFS4_POLL_RETRY_MAX; 2767 rpc_clnt_sigmask(clnt, &oldset); 2768 if (clnt->cl_intr) { 2769 schedule_timeout_interruptible(*timeout); 2770 if (signalled()) 2771 res = -ERESTARTSYS; 2772 } else 2773 schedule_timeout_uninterruptible(*timeout); 2774 rpc_clnt_sigunmask(clnt, &oldset); 2775 *timeout <<= 1; 2776 return res; 2777 } 2778 2779 /* This is the error handling routine for processes that are allowed 2780 * to sleep. 2781 */ 2782 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception) 2783 { 2784 struct nfs4_client *clp = server->nfs4_state; 2785 int ret = errorcode; 2786 2787 exception->retry = 0; 2788 switch(errorcode) { 2789 case 0: 2790 return 0; 2791 case -NFS4ERR_STALE_CLIENTID: 2792 case -NFS4ERR_STALE_STATEID: 2793 case -NFS4ERR_EXPIRED: 2794 nfs4_schedule_state_recovery(clp); 2795 ret = nfs4_wait_clnt_recover(server->client, clp); 2796 if (ret == 0) 2797 exception->retry = 1; 2798 break; 2799 case -NFS4ERR_GRACE: 2800 case -NFS4ERR_DELAY: 2801 ret = nfs4_delay(server->client, &exception->timeout); 2802 if (ret != 0) 2803 break; 2804 case -NFS4ERR_OLD_STATEID: 2805 exception->retry = 1; 2806 } 2807 /* We failed to handle the error */ 2808 return nfs4_map_errors(ret); 2809 } 2810 2811 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port, struct rpc_cred *cred) 2812 { 2813 nfs4_verifier sc_verifier; 2814 struct nfs4_setclientid setclientid = { 2815 .sc_verifier = &sc_verifier, 2816 .sc_prog = program, 2817 }; 2818 struct rpc_message msg = { 2819 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID], 2820 .rpc_argp = &setclientid, 2821 .rpc_resp = clp, 2822 .rpc_cred = cred, 2823 }; 2824 u32 *p; 2825 int loop = 0; 2826 int status; 2827 2828 p = (u32*)sc_verifier.data; 2829 *p++ = htonl((u32)clp->cl_boot_time.tv_sec); 2830 *p = htonl((u32)clp->cl_boot_time.tv_nsec); 2831 2832 for(;;) { 2833 setclientid.sc_name_len = scnprintf(setclientid.sc_name, 2834 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u", 2835 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr), 2836 cred->cr_ops->cr_name, 2837 clp->cl_id_uniquifier); 2838 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid, 2839 sizeof(setclientid.sc_netid), "tcp"); 2840 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr, 2841 sizeof(setclientid.sc_uaddr), "%s.%d.%d", 2842 clp->cl_ipaddr, port >> 8, port & 255); 2843 2844 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); 2845 if (status != -NFS4ERR_CLID_INUSE) 2846 break; 2847 if (signalled()) 2848 break; 2849 if (loop++ & 1) 2850 ssleep(clp->cl_lease_time + 1); 2851 else 2852 if (++clp->cl_id_uniquifier == 0) 2853 break; 2854 } 2855 return status; 2856 } 2857 2858 static int _nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred) 2859 { 2860 struct nfs_fsinfo fsinfo; 2861 struct rpc_message msg = { 2862 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM], 2863 .rpc_argp = clp, 2864 .rpc_resp = &fsinfo, 2865 .rpc_cred = cred, 2866 }; 2867 unsigned long now; 2868 int status; 2869 2870 now = jiffies; 2871 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); 2872 if (status == 0) { 2873 spin_lock(&clp->cl_lock); 2874 clp->cl_lease_time = fsinfo.lease_time * HZ; 2875 clp->cl_last_renewal = now; 2876 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state); 2877 spin_unlock(&clp->cl_lock); 2878 } 2879 return status; 2880 } 2881 2882 int nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred) 2883 { 2884 long timeout; 2885 int err; 2886 do { 2887 err = _nfs4_proc_setclientid_confirm(clp, cred); 2888 switch (err) { 2889 case 0: 2890 return err; 2891 case -NFS4ERR_RESOURCE: 2892 /* The IBM lawyers misread another document! */ 2893 case -NFS4ERR_DELAY: 2894 err = nfs4_delay(clp->cl_rpcclient, &timeout); 2895 } 2896 } while (err == 0); 2897 return err; 2898 } 2899 2900 struct nfs4_delegreturndata { 2901 struct nfs4_delegreturnargs args; 2902 struct nfs4_delegreturnres res; 2903 struct nfs_fh fh; 2904 nfs4_stateid stateid; 2905 struct rpc_cred *cred; 2906 unsigned long timestamp; 2907 struct nfs_fattr fattr; 2908 int rpc_status; 2909 }; 2910 2911 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata) 2912 { 2913 struct nfs4_delegreturndata *data = calldata; 2914 struct rpc_message msg = { 2915 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN], 2916 .rpc_argp = &data->args, 2917 .rpc_resp = &data->res, 2918 .rpc_cred = data->cred, 2919 }; 2920 nfs_fattr_init(data->res.fattr); 2921 rpc_call_setup(task, &msg, 0); 2922 } 2923 2924 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata) 2925 { 2926 struct nfs4_delegreturndata *data = calldata; 2927 data->rpc_status = task->tk_status; 2928 if (data->rpc_status == 0) 2929 renew_lease(data->res.server, data->timestamp); 2930 } 2931 2932 static void nfs4_delegreturn_release(void *calldata) 2933 { 2934 struct nfs4_delegreturndata *data = calldata; 2935 2936 put_rpccred(data->cred); 2937 kfree(calldata); 2938 } 2939 2940 static const struct rpc_call_ops nfs4_delegreturn_ops = { 2941 .rpc_call_prepare = nfs4_delegreturn_prepare, 2942 .rpc_call_done = nfs4_delegreturn_done, 2943 .rpc_release = nfs4_delegreturn_release, 2944 }; 2945 2946 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid) 2947 { 2948 struct nfs4_delegreturndata *data; 2949 struct nfs_server *server = NFS_SERVER(inode); 2950 struct rpc_task *task; 2951 int status; 2952 2953 data = kmalloc(sizeof(*data), GFP_KERNEL); 2954 if (data == NULL) 2955 return -ENOMEM; 2956 data->args.fhandle = &data->fh; 2957 data->args.stateid = &data->stateid; 2958 data->args.bitmask = server->attr_bitmask; 2959 nfs_copy_fh(&data->fh, NFS_FH(inode)); 2960 memcpy(&data->stateid, stateid, sizeof(data->stateid)); 2961 data->res.fattr = &data->fattr; 2962 data->res.server = server; 2963 data->cred = get_rpccred(cred); 2964 data->timestamp = jiffies; 2965 data->rpc_status = 0; 2966 2967 task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data); 2968 if (IS_ERR(task)) 2969 return PTR_ERR(task); 2970 status = nfs4_wait_for_completion_rpc_task(task); 2971 if (status == 0) { 2972 status = data->rpc_status; 2973 if (status == 0) 2974 nfs_post_op_update_inode(inode, &data->fattr); 2975 } 2976 rpc_release_task(task); 2977 return status; 2978 } 2979 2980 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid) 2981 { 2982 struct nfs_server *server = NFS_SERVER(inode); 2983 struct nfs4_exception exception = { }; 2984 int err; 2985 do { 2986 err = _nfs4_proc_delegreturn(inode, cred, stateid); 2987 switch (err) { 2988 case -NFS4ERR_STALE_STATEID: 2989 case -NFS4ERR_EXPIRED: 2990 nfs4_schedule_state_recovery(server->nfs4_state); 2991 case 0: 2992 return 0; 2993 } 2994 err = nfs4_handle_exception(server, err, &exception); 2995 } while (exception.retry); 2996 return err; 2997 } 2998 2999 #define NFS4_LOCK_MINTIMEOUT (1 * HZ) 3000 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ) 3001 3002 /* 3003 * sleep, with exponential backoff, and retry the LOCK operation. 3004 */ 3005 static unsigned long 3006 nfs4_set_lock_task_retry(unsigned long timeout) 3007 { 3008 schedule_timeout_interruptible(timeout); 3009 timeout <<= 1; 3010 if (timeout > NFS4_LOCK_MAXTIMEOUT) 3011 return NFS4_LOCK_MAXTIMEOUT; 3012 return timeout; 3013 } 3014 3015 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3016 { 3017 struct inode *inode = state->inode; 3018 struct nfs_server *server = NFS_SERVER(inode); 3019 struct nfs4_client *clp = server->nfs4_state; 3020 struct nfs_lockt_args arg = { 3021 .fh = NFS_FH(inode), 3022 .fl = request, 3023 }; 3024 struct nfs_lockt_res res = { 3025 .denied = request, 3026 }; 3027 struct rpc_message msg = { 3028 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT], 3029 .rpc_argp = &arg, 3030 .rpc_resp = &res, 3031 .rpc_cred = state->owner->so_cred, 3032 }; 3033 struct nfs4_lock_state *lsp; 3034 int status; 3035 3036 down_read(&clp->cl_sem); 3037 arg.lock_owner.clientid = clp->cl_clientid; 3038 status = nfs4_set_lock_state(state, request); 3039 if (status != 0) 3040 goto out; 3041 lsp = request->fl_u.nfs4_fl.owner; 3042 arg.lock_owner.id = lsp->ls_id; 3043 status = rpc_call_sync(server->client, &msg, 0); 3044 switch (status) { 3045 case 0: 3046 request->fl_type = F_UNLCK; 3047 break; 3048 case -NFS4ERR_DENIED: 3049 status = 0; 3050 } 3051 out: 3052 up_read(&clp->cl_sem); 3053 return status; 3054 } 3055 3056 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3057 { 3058 struct nfs4_exception exception = { }; 3059 int err; 3060 3061 do { 3062 err = nfs4_handle_exception(NFS_SERVER(state->inode), 3063 _nfs4_proc_getlk(state, cmd, request), 3064 &exception); 3065 } while (exception.retry); 3066 return err; 3067 } 3068 3069 static int do_vfs_lock(struct file *file, struct file_lock *fl) 3070 { 3071 int res = 0; 3072 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 3073 case FL_POSIX: 3074 res = posix_lock_file_wait(file, fl); 3075 break; 3076 case FL_FLOCK: 3077 res = flock_lock_file_wait(file, fl); 3078 break; 3079 default: 3080 BUG(); 3081 } 3082 if (res < 0) 3083 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", 3084 __FUNCTION__); 3085 return res; 3086 } 3087 3088 struct nfs4_unlockdata { 3089 struct nfs_locku_args arg; 3090 struct nfs_locku_res res; 3091 struct nfs4_lock_state *lsp; 3092 struct nfs_open_context *ctx; 3093 struct file_lock fl; 3094 const struct nfs_server *server; 3095 unsigned long timestamp; 3096 }; 3097 3098 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl, 3099 struct nfs_open_context *ctx, 3100 struct nfs4_lock_state *lsp, 3101 struct nfs_seqid *seqid) 3102 { 3103 struct nfs4_unlockdata *p; 3104 struct inode *inode = lsp->ls_state->inode; 3105 3106 p = kmalloc(sizeof(*p), GFP_KERNEL); 3107 if (p == NULL) 3108 return NULL; 3109 p->arg.fh = NFS_FH(inode); 3110 p->arg.fl = &p->fl; 3111 p->arg.seqid = seqid; 3112 p->arg.stateid = &lsp->ls_stateid; 3113 p->lsp = lsp; 3114 atomic_inc(&lsp->ls_count); 3115 /* Ensure we don't close file until we're done freeing locks! */ 3116 p->ctx = get_nfs_open_context(ctx); 3117 memcpy(&p->fl, fl, sizeof(p->fl)); 3118 p->server = NFS_SERVER(inode); 3119 return p; 3120 } 3121 3122 static void nfs4_locku_release_calldata(void *data) 3123 { 3124 struct nfs4_unlockdata *calldata = data; 3125 nfs_free_seqid(calldata->arg.seqid); 3126 nfs4_put_lock_state(calldata->lsp); 3127 put_nfs_open_context(calldata->ctx); 3128 kfree(calldata); 3129 } 3130 3131 static void nfs4_locku_done(struct rpc_task *task, void *data) 3132 { 3133 struct nfs4_unlockdata *calldata = data; 3134 3135 if (RPC_ASSASSINATED(task)) 3136 return; 3137 nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid); 3138 switch (task->tk_status) { 3139 case 0: 3140 memcpy(calldata->lsp->ls_stateid.data, 3141 calldata->res.stateid.data, 3142 sizeof(calldata->lsp->ls_stateid.data)); 3143 renew_lease(calldata->server, calldata->timestamp); 3144 break; 3145 case -NFS4ERR_STALE_STATEID: 3146 case -NFS4ERR_EXPIRED: 3147 nfs4_schedule_state_recovery(calldata->server->nfs4_state); 3148 break; 3149 default: 3150 if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) { 3151 rpc_restart_call(task); 3152 } 3153 } 3154 } 3155 3156 static void nfs4_locku_prepare(struct rpc_task *task, void *data) 3157 { 3158 struct nfs4_unlockdata *calldata = data; 3159 struct rpc_message msg = { 3160 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU], 3161 .rpc_argp = &calldata->arg, 3162 .rpc_resp = &calldata->res, 3163 .rpc_cred = calldata->lsp->ls_state->owner->so_cred, 3164 }; 3165 3166 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) 3167 return; 3168 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) { 3169 /* Note: exit _without_ running nfs4_locku_done */ 3170 task->tk_action = NULL; 3171 return; 3172 } 3173 calldata->timestamp = jiffies; 3174 rpc_call_setup(task, &msg, 0); 3175 } 3176 3177 static const struct rpc_call_ops nfs4_locku_ops = { 3178 .rpc_call_prepare = nfs4_locku_prepare, 3179 .rpc_call_done = nfs4_locku_done, 3180 .rpc_release = nfs4_locku_release_calldata, 3181 }; 3182 3183 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl, 3184 struct nfs_open_context *ctx, 3185 struct nfs4_lock_state *lsp, 3186 struct nfs_seqid *seqid) 3187 { 3188 struct nfs4_unlockdata *data; 3189 3190 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid); 3191 if (data == NULL) { 3192 nfs_free_seqid(seqid); 3193 return ERR_PTR(-ENOMEM); 3194 } 3195 3196 /* Unlock _before_ we do the RPC call */ 3197 do_vfs_lock(fl->fl_file, fl); 3198 return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data); 3199 } 3200 3201 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request) 3202 { 3203 struct nfs_seqid *seqid; 3204 struct nfs4_lock_state *lsp; 3205 struct rpc_task *task; 3206 int status = 0; 3207 3208 /* Is this a delegated lock? */ 3209 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) 3210 goto out_unlock; 3211 /* Is this open_owner holding any locks on the server? */ 3212 if (test_bit(LK_STATE_IN_USE, &state->flags) == 0) 3213 goto out_unlock; 3214 3215 status = nfs4_set_lock_state(state, request); 3216 if (status != 0) 3217 goto out_unlock; 3218 lsp = request->fl_u.nfs4_fl.owner; 3219 status = -ENOMEM; 3220 seqid = nfs_alloc_seqid(&lsp->ls_seqid); 3221 if (seqid == NULL) 3222 goto out_unlock; 3223 task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid); 3224 status = PTR_ERR(task); 3225 if (IS_ERR(task)) 3226 goto out_unlock; 3227 status = nfs4_wait_for_completion_rpc_task(task); 3228 rpc_release_task(task); 3229 return status; 3230 out_unlock: 3231 do_vfs_lock(request->fl_file, request); 3232 return status; 3233 } 3234 3235 struct nfs4_lockdata { 3236 struct nfs_lock_args arg; 3237 struct nfs_lock_res res; 3238 struct nfs4_lock_state *lsp; 3239 struct nfs_open_context *ctx; 3240 struct file_lock fl; 3241 unsigned long timestamp; 3242 int rpc_status; 3243 int cancelled; 3244 }; 3245 3246 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl, 3247 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp) 3248 { 3249 struct nfs4_lockdata *p; 3250 struct inode *inode = lsp->ls_state->inode; 3251 struct nfs_server *server = NFS_SERVER(inode); 3252 3253 p = kzalloc(sizeof(*p), GFP_KERNEL); 3254 if (p == NULL) 3255 return NULL; 3256 3257 p->arg.fh = NFS_FH(inode); 3258 p->arg.fl = &p->fl; 3259 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid); 3260 if (p->arg.lock_seqid == NULL) 3261 goto out_free; 3262 p->arg.lock_stateid = &lsp->ls_stateid; 3263 p->arg.lock_owner.clientid = server->nfs4_state->cl_clientid; 3264 p->arg.lock_owner.id = lsp->ls_id; 3265 p->lsp = lsp; 3266 atomic_inc(&lsp->ls_count); 3267 p->ctx = get_nfs_open_context(ctx); 3268 memcpy(&p->fl, fl, sizeof(p->fl)); 3269 return p; 3270 out_free: 3271 kfree(p); 3272 return NULL; 3273 } 3274 3275 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata) 3276 { 3277 struct nfs4_lockdata *data = calldata; 3278 struct nfs4_state *state = data->lsp->ls_state; 3279 struct nfs4_state_owner *sp = state->owner; 3280 struct rpc_message msg = { 3281 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK], 3282 .rpc_argp = &data->arg, 3283 .rpc_resp = &data->res, 3284 .rpc_cred = sp->so_cred, 3285 }; 3286 3287 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0) 3288 return; 3289 dprintk("%s: begin!\n", __FUNCTION__); 3290 /* Do we need to do an open_to_lock_owner? */ 3291 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) { 3292 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid); 3293 if (data->arg.open_seqid == NULL) { 3294 data->rpc_status = -ENOMEM; 3295 task->tk_action = NULL; 3296 goto out; 3297 } 3298 data->arg.open_stateid = &state->stateid; 3299 data->arg.new_lock_owner = 1; 3300 } 3301 data->timestamp = jiffies; 3302 rpc_call_setup(task, &msg, 0); 3303 out: 3304 dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status); 3305 } 3306 3307 static void nfs4_lock_done(struct rpc_task *task, void *calldata) 3308 { 3309 struct nfs4_lockdata *data = calldata; 3310 3311 dprintk("%s: begin!\n", __FUNCTION__); 3312 3313 data->rpc_status = task->tk_status; 3314 if (RPC_ASSASSINATED(task)) 3315 goto out; 3316 if (data->arg.new_lock_owner != 0) { 3317 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid); 3318 if (data->rpc_status == 0) 3319 nfs_confirm_seqid(&data->lsp->ls_seqid, 0); 3320 else 3321 goto out; 3322 } 3323 if (data->rpc_status == 0) { 3324 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data, 3325 sizeof(data->lsp->ls_stateid.data)); 3326 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED; 3327 renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp); 3328 } 3329 nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid); 3330 out: 3331 dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status); 3332 } 3333 3334 static void nfs4_lock_release(void *calldata) 3335 { 3336 struct nfs4_lockdata *data = calldata; 3337 3338 dprintk("%s: begin!\n", __FUNCTION__); 3339 if (data->arg.open_seqid != NULL) 3340 nfs_free_seqid(data->arg.open_seqid); 3341 if (data->cancelled != 0) { 3342 struct rpc_task *task; 3343 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp, 3344 data->arg.lock_seqid); 3345 if (!IS_ERR(task)) 3346 rpc_release_task(task); 3347 dprintk("%s: cancelling lock!\n", __FUNCTION__); 3348 } else 3349 nfs_free_seqid(data->arg.lock_seqid); 3350 nfs4_put_lock_state(data->lsp); 3351 put_nfs_open_context(data->ctx); 3352 kfree(data); 3353 dprintk("%s: done!\n", __FUNCTION__); 3354 } 3355 3356 static const struct rpc_call_ops nfs4_lock_ops = { 3357 .rpc_call_prepare = nfs4_lock_prepare, 3358 .rpc_call_done = nfs4_lock_done, 3359 .rpc_release = nfs4_lock_release, 3360 }; 3361 3362 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim) 3363 { 3364 struct nfs4_lockdata *data; 3365 struct rpc_task *task; 3366 int ret; 3367 3368 dprintk("%s: begin!\n", __FUNCTION__); 3369 data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data, 3370 fl->fl_u.nfs4_fl.owner); 3371 if (data == NULL) 3372 return -ENOMEM; 3373 if (IS_SETLKW(cmd)) 3374 data->arg.block = 1; 3375 if (reclaim != 0) 3376 data->arg.reclaim = 1; 3377 task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC, 3378 &nfs4_lock_ops, data); 3379 if (IS_ERR(task)) 3380 return PTR_ERR(task); 3381 ret = nfs4_wait_for_completion_rpc_task(task); 3382 if (ret == 0) { 3383 ret = data->rpc_status; 3384 if (ret == -NFS4ERR_DENIED) 3385 ret = -EAGAIN; 3386 } else 3387 data->cancelled = 1; 3388 rpc_release_task(task); 3389 dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret); 3390 return ret; 3391 } 3392 3393 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request) 3394 { 3395 struct nfs_server *server = NFS_SERVER(state->inode); 3396 struct nfs4_exception exception = { }; 3397 int err; 3398 3399 /* Cache the lock if possible... */ 3400 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) 3401 return 0; 3402 do { 3403 err = _nfs4_do_setlk(state, F_SETLK, request, 1); 3404 if (err != -NFS4ERR_DELAY) 3405 break; 3406 nfs4_handle_exception(server, err, &exception); 3407 } while (exception.retry); 3408 return err; 3409 } 3410 3411 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request) 3412 { 3413 struct nfs_server *server = NFS_SERVER(state->inode); 3414 struct nfs4_exception exception = { }; 3415 int err; 3416 3417 err = nfs4_set_lock_state(state, request); 3418 if (err != 0) 3419 return err; 3420 do { 3421 err = _nfs4_do_setlk(state, F_SETLK, request, 0); 3422 if (err != -NFS4ERR_DELAY) 3423 break; 3424 nfs4_handle_exception(server, err, &exception); 3425 } while (exception.retry); 3426 return err; 3427 } 3428 3429 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3430 { 3431 struct nfs4_client *clp = state->owner->so_client; 3432 int status; 3433 3434 /* Is this a delegated open? */ 3435 if (NFS_I(state->inode)->delegation_state != 0) { 3436 /* Yes: cache locks! */ 3437 status = do_vfs_lock(request->fl_file, request); 3438 /* ...but avoid races with delegation recall... */ 3439 if (status < 0 || test_bit(NFS_DELEGATED_STATE, &state->flags)) 3440 return status; 3441 } 3442 down_read(&clp->cl_sem); 3443 status = nfs4_set_lock_state(state, request); 3444 if (status != 0) 3445 goto out; 3446 status = _nfs4_do_setlk(state, cmd, request, 0); 3447 if (status != 0) 3448 goto out; 3449 /* Note: we always want to sleep here! */ 3450 request->fl_flags |= FL_SLEEP; 3451 if (do_vfs_lock(request->fl_file, request) < 0) 3452 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__); 3453 out: 3454 up_read(&clp->cl_sem); 3455 return status; 3456 } 3457 3458 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) 3459 { 3460 struct nfs4_exception exception = { }; 3461 int err; 3462 3463 do { 3464 err = nfs4_handle_exception(NFS_SERVER(state->inode), 3465 _nfs4_proc_setlk(state, cmd, request), 3466 &exception); 3467 } while (exception.retry); 3468 return err; 3469 } 3470 3471 static int 3472 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request) 3473 { 3474 struct nfs_open_context *ctx; 3475 struct nfs4_state *state; 3476 unsigned long timeout = NFS4_LOCK_MINTIMEOUT; 3477 int status; 3478 3479 /* verify open state */ 3480 ctx = (struct nfs_open_context *)filp->private_data; 3481 state = ctx->state; 3482 3483 if (request->fl_start < 0 || request->fl_end < 0) 3484 return -EINVAL; 3485 3486 if (IS_GETLK(cmd)) 3487 return nfs4_proc_getlk(state, F_GETLK, request); 3488 3489 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd))) 3490 return -EINVAL; 3491 3492 if (request->fl_type == F_UNLCK) 3493 return nfs4_proc_unlck(state, cmd, request); 3494 3495 do { 3496 status = nfs4_proc_setlk(state, cmd, request); 3497 if ((status != -EAGAIN) || IS_SETLK(cmd)) 3498 break; 3499 timeout = nfs4_set_lock_task_retry(timeout); 3500 status = -ERESTARTSYS; 3501 if (signalled()) 3502 break; 3503 } while(status < 0); 3504 return status; 3505 } 3506 3507 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl) 3508 { 3509 struct nfs_server *server = NFS_SERVER(state->inode); 3510 struct nfs4_exception exception = { }; 3511 int err; 3512 3513 err = nfs4_set_lock_state(state, fl); 3514 if (err != 0) 3515 goto out; 3516 do { 3517 err = _nfs4_do_setlk(state, F_SETLK, fl, 0); 3518 if (err != -NFS4ERR_DELAY) 3519 break; 3520 err = nfs4_handle_exception(server, err, &exception); 3521 } while (exception.retry); 3522 out: 3523 return err; 3524 } 3525 3526 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl" 3527 3528 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf, 3529 size_t buflen, int flags) 3530 { 3531 struct inode *inode = dentry->d_inode; 3532 3533 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0) 3534 return -EOPNOTSUPP; 3535 3536 if (!S_ISREG(inode->i_mode) && 3537 (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX)) 3538 return -EPERM; 3539 3540 return nfs4_proc_set_acl(inode, buf, buflen); 3541 } 3542 3543 /* The getxattr man page suggests returning -ENODATA for unknown attributes, 3544 * and that's what we'll do for e.g. user attributes that haven't been set. 3545 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported 3546 * attributes in kernel-managed attribute namespaces. */ 3547 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf, 3548 size_t buflen) 3549 { 3550 struct inode *inode = dentry->d_inode; 3551 3552 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0) 3553 return -EOPNOTSUPP; 3554 3555 return nfs4_proc_get_acl(inode, buf, buflen); 3556 } 3557 3558 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen) 3559 { 3560 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1; 3561 3562 if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode))) 3563 return 0; 3564 if (buf && buflen < len) 3565 return -ERANGE; 3566 if (buf) 3567 memcpy(buf, XATTR_NAME_NFSV4_ACL, len); 3568 return len; 3569 } 3570 3571 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = { 3572 .recover_open = nfs4_open_reclaim, 3573 .recover_lock = nfs4_lock_reclaim, 3574 }; 3575 3576 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = { 3577 .recover_open = nfs4_open_expired, 3578 .recover_lock = nfs4_lock_expired, 3579 }; 3580 3581 static struct inode_operations nfs4_file_inode_operations = { 3582 .permission = nfs_permission, 3583 .getattr = nfs_getattr, 3584 .setattr = nfs_setattr, 3585 .getxattr = nfs4_getxattr, 3586 .setxattr = nfs4_setxattr, 3587 .listxattr = nfs4_listxattr, 3588 }; 3589 3590 struct nfs_rpc_ops nfs_v4_clientops = { 3591 .version = 4, /* protocol version */ 3592 .dentry_ops = &nfs4_dentry_operations, 3593 .dir_inode_ops = &nfs4_dir_inode_operations, 3594 .file_inode_ops = &nfs4_file_inode_operations, 3595 .getroot = nfs4_proc_get_root, 3596 .getattr = nfs4_proc_getattr, 3597 .setattr = nfs4_proc_setattr, 3598 .lookup = nfs4_proc_lookup, 3599 .access = nfs4_proc_access, 3600 .readlink = nfs4_proc_readlink, 3601 .read = nfs4_proc_read, 3602 .write = nfs4_proc_write, 3603 .commit = nfs4_proc_commit, 3604 .create = nfs4_proc_create, 3605 .remove = nfs4_proc_remove, 3606 .unlink_setup = nfs4_proc_unlink_setup, 3607 .unlink_done = nfs4_proc_unlink_done, 3608 .rename = nfs4_proc_rename, 3609 .link = nfs4_proc_link, 3610 .symlink = nfs4_proc_symlink, 3611 .mkdir = nfs4_proc_mkdir, 3612 .rmdir = nfs4_proc_remove, 3613 .readdir = nfs4_proc_readdir, 3614 .mknod = nfs4_proc_mknod, 3615 .statfs = nfs4_proc_statfs, 3616 .fsinfo = nfs4_proc_fsinfo, 3617 .pathconf = nfs4_proc_pathconf, 3618 .decode_dirent = nfs4_decode_dirent, 3619 .read_setup = nfs4_proc_read_setup, 3620 .read_done = nfs4_read_done, 3621 .write_setup = nfs4_proc_write_setup, 3622 .write_done = nfs4_write_done, 3623 .commit_setup = nfs4_proc_commit_setup, 3624 .commit_done = nfs4_commit_done, 3625 .file_open = nfs_open, 3626 .file_release = nfs_release, 3627 .lock = nfs4_proc_lock, 3628 .clear_acl_cache = nfs4_zap_acl_attr, 3629 }; 3630 3631 /* 3632 * Local variables: 3633 * c-basic-offset: 8 3634 * End: 3635 */ 3636