xref: /linux/fs/namespace.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/seq_file.h>
22 #include <linux/namespace.h>
23 #include <linux/namei.h>
24 #include <linux/security.h>
25 #include <linux/mount.h>
26 #include <asm/uaccess.h>
27 #include <asm/unistd.h>
28 #include "pnode.h"
29 
30 extern int __init init_rootfs(void);
31 
32 #ifdef CONFIG_SYSFS
33 extern int __init sysfs_init(void);
34 #else
35 static inline int sysfs_init(void)
36 {
37 	return 0;
38 }
39 #endif
40 
41 /* spinlock for vfsmount related operations, inplace of dcache_lock */
42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
43 
44 static int event;
45 
46 static struct list_head *mount_hashtable __read_mostly;
47 static int hash_mask __read_mostly, hash_bits __read_mostly;
48 static kmem_cache_t *mnt_cache __read_mostly;
49 static struct rw_semaphore namespace_sem;
50 
51 /* /sys/fs */
52 decl_subsys(fs, NULL, NULL);
53 EXPORT_SYMBOL_GPL(fs_subsys);
54 
55 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
56 {
57 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
58 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
59 	tmp = tmp + (tmp >> hash_bits);
60 	return tmp & hash_mask;
61 }
62 
63 struct vfsmount *alloc_vfsmnt(const char *name)
64 {
65 	struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
66 	if (mnt) {
67 		memset(mnt, 0, sizeof(struct vfsmount));
68 		atomic_set(&mnt->mnt_count, 1);
69 		INIT_LIST_HEAD(&mnt->mnt_hash);
70 		INIT_LIST_HEAD(&mnt->mnt_child);
71 		INIT_LIST_HEAD(&mnt->mnt_mounts);
72 		INIT_LIST_HEAD(&mnt->mnt_list);
73 		INIT_LIST_HEAD(&mnt->mnt_expire);
74 		INIT_LIST_HEAD(&mnt->mnt_share);
75 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
76 		INIT_LIST_HEAD(&mnt->mnt_slave);
77 		if (name) {
78 			int size = strlen(name) + 1;
79 			char *newname = kmalloc(size, GFP_KERNEL);
80 			if (newname) {
81 				memcpy(newname, name, size);
82 				mnt->mnt_devname = newname;
83 			}
84 		}
85 	}
86 	return mnt;
87 }
88 
89 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
90 {
91 	mnt->mnt_sb = sb;
92 	mnt->mnt_root = dget(sb->s_root);
93 	return 0;
94 }
95 
96 EXPORT_SYMBOL(simple_set_mnt);
97 
98 void free_vfsmnt(struct vfsmount *mnt)
99 {
100 	kfree(mnt->mnt_devname);
101 	kmem_cache_free(mnt_cache, mnt);
102 }
103 
104 /*
105  * find the first or last mount at @dentry on vfsmount @mnt depending on
106  * @dir. If @dir is set return the first mount else return the last mount.
107  */
108 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
109 			      int dir)
110 {
111 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
112 	struct list_head *tmp = head;
113 	struct vfsmount *p, *found = NULL;
114 
115 	for (;;) {
116 		tmp = dir ? tmp->next : tmp->prev;
117 		p = NULL;
118 		if (tmp == head)
119 			break;
120 		p = list_entry(tmp, struct vfsmount, mnt_hash);
121 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
122 			found = p;
123 			break;
124 		}
125 	}
126 	return found;
127 }
128 
129 /*
130  * lookup_mnt increments the ref count before returning
131  * the vfsmount struct.
132  */
133 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
134 {
135 	struct vfsmount *child_mnt;
136 	spin_lock(&vfsmount_lock);
137 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
138 		mntget(child_mnt);
139 	spin_unlock(&vfsmount_lock);
140 	return child_mnt;
141 }
142 
143 static inline int check_mnt(struct vfsmount *mnt)
144 {
145 	return mnt->mnt_namespace == current->namespace;
146 }
147 
148 static void touch_namespace(struct namespace *ns)
149 {
150 	if (ns) {
151 		ns->event = ++event;
152 		wake_up_interruptible(&ns->poll);
153 	}
154 }
155 
156 static void __touch_namespace(struct namespace *ns)
157 {
158 	if (ns && ns->event != event) {
159 		ns->event = event;
160 		wake_up_interruptible(&ns->poll);
161 	}
162 }
163 
164 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
165 {
166 	old_nd->dentry = mnt->mnt_mountpoint;
167 	old_nd->mnt = mnt->mnt_parent;
168 	mnt->mnt_parent = mnt;
169 	mnt->mnt_mountpoint = mnt->mnt_root;
170 	list_del_init(&mnt->mnt_child);
171 	list_del_init(&mnt->mnt_hash);
172 	old_nd->dentry->d_mounted--;
173 }
174 
175 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
176 			struct vfsmount *child_mnt)
177 {
178 	child_mnt->mnt_parent = mntget(mnt);
179 	child_mnt->mnt_mountpoint = dget(dentry);
180 	dentry->d_mounted++;
181 }
182 
183 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
184 {
185 	mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
186 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
187 			hash(nd->mnt, nd->dentry));
188 	list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
189 }
190 
191 /*
192  * the caller must hold vfsmount_lock
193  */
194 static void commit_tree(struct vfsmount *mnt)
195 {
196 	struct vfsmount *parent = mnt->mnt_parent;
197 	struct vfsmount *m;
198 	LIST_HEAD(head);
199 	struct namespace *n = parent->mnt_namespace;
200 
201 	BUG_ON(parent == mnt);
202 
203 	list_add_tail(&head, &mnt->mnt_list);
204 	list_for_each_entry(m, &head, mnt_list)
205 		m->mnt_namespace = n;
206 	list_splice(&head, n->list.prev);
207 
208 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
209 				hash(parent, mnt->mnt_mountpoint));
210 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
211 	touch_namespace(n);
212 }
213 
214 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
215 {
216 	struct list_head *next = p->mnt_mounts.next;
217 	if (next == &p->mnt_mounts) {
218 		while (1) {
219 			if (p == root)
220 				return NULL;
221 			next = p->mnt_child.next;
222 			if (next != &p->mnt_parent->mnt_mounts)
223 				break;
224 			p = p->mnt_parent;
225 		}
226 	}
227 	return list_entry(next, struct vfsmount, mnt_child);
228 }
229 
230 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
231 {
232 	struct list_head *prev = p->mnt_mounts.prev;
233 	while (prev != &p->mnt_mounts) {
234 		p = list_entry(prev, struct vfsmount, mnt_child);
235 		prev = p->mnt_mounts.prev;
236 	}
237 	return p;
238 }
239 
240 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
241 					int flag)
242 {
243 	struct super_block *sb = old->mnt_sb;
244 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
245 
246 	if (mnt) {
247 		mnt->mnt_flags = old->mnt_flags;
248 		atomic_inc(&sb->s_active);
249 		mnt->mnt_sb = sb;
250 		mnt->mnt_root = dget(root);
251 		mnt->mnt_mountpoint = mnt->mnt_root;
252 		mnt->mnt_parent = mnt;
253 
254 		if (flag & CL_SLAVE) {
255 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
256 			mnt->mnt_master = old;
257 			CLEAR_MNT_SHARED(mnt);
258 		} else {
259 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
260 				list_add(&mnt->mnt_share, &old->mnt_share);
261 			if (IS_MNT_SLAVE(old))
262 				list_add(&mnt->mnt_slave, &old->mnt_slave);
263 			mnt->mnt_master = old->mnt_master;
264 		}
265 		if (flag & CL_MAKE_SHARED)
266 			set_mnt_shared(mnt);
267 
268 		/* stick the duplicate mount on the same expiry list
269 		 * as the original if that was on one */
270 		if (flag & CL_EXPIRE) {
271 			spin_lock(&vfsmount_lock);
272 			if (!list_empty(&old->mnt_expire))
273 				list_add(&mnt->mnt_expire, &old->mnt_expire);
274 			spin_unlock(&vfsmount_lock);
275 		}
276 	}
277 	return mnt;
278 }
279 
280 static inline void __mntput(struct vfsmount *mnt)
281 {
282 	struct super_block *sb = mnt->mnt_sb;
283 	dput(mnt->mnt_root);
284 	free_vfsmnt(mnt);
285 	deactivate_super(sb);
286 }
287 
288 void mntput_no_expire(struct vfsmount *mnt)
289 {
290 repeat:
291 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
292 		if (likely(!mnt->mnt_pinned)) {
293 			spin_unlock(&vfsmount_lock);
294 			__mntput(mnt);
295 			return;
296 		}
297 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
298 		mnt->mnt_pinned = 0;
299 		spin_unlock(&vfsmount_lock);
300 		acct_auto_close_mnt(mnt);
301 		security_sb_umount_close(mnt);
302 		goto repeat;
303 	}
304 }
305 
306 EXPORT_SYMBOL(mntput_no_expire);
307 
308 void mnt_pin(struct vfsmount *mnt)
309 {
310 	spin_lock(&vfsmount_lock);
311 	mnt->mnt_pinned++;
312 	spin_unlock(&vfsmount_lock);
313 }
314 
315 EXPORT_SYMBOL(mnt_pin);
316 
317 void mnt_unpin(struct vfsmount *mnt)
318 {
319 	spin_lock(&vfsmount_lock);
320 	if (mnt->mnt_pinned) {
321 		atomic_inc(&mnt->mnt_count);
322 		mnt->mnt_pinned--;
323 	}
324 	spin_unlock(&vfsmount_lock);
325 }
326 
327 EXPORT_SYMBOL(mnt_unpin);
328 
329 /* iterator */
330 static void *m_start(struct seq_file *m, loff_t *pos)
331 {
332 	struct namespace *n = m->private;
333 	struct list_head *p;
334 	loff_t l = *pos;
335 
336 	down_read(&namespace_sem);
337 	list_for_each(p, &n->list)
338 		if (!l--)
339 			return list_entry(p, struct vfsmount, mnt_list);
340 	return NULL;
341 }
342 
343 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
344 {
345 	struct namespace *n = m->private;
346 	struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
347 	(*pos)++;
348 	return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
349 }
350 
351 static void m_stop(struct seq_file *m, void *v)
352 {
353 	up_read(&namespace_sem);
354 }
355 
356 static inline void mangle(struct seq_file *m, const char *s)
357 {
358 	seq_escape(m, s, " \t\n\\");
359 }
360 
361 static int show_vfsmnt(struct seq_file *m, void *v)
362 {
363 	struct vfsmount *mnt = v;
364 	int err = 0;
365 	static struct proc_fs_info {
366 		int flag;
367 		char *str;
368 	} fs_info[] = {
369 		{ MS_SYNCHRONOUS, ",sync" },
370 		{ MS_DIRSYNC, ",dirsync" },
371 		{ MS_MANDLOCK, ",mand" },
372 		{ 0, NULL }
373 	};
374 	static struct proc_fs_info mnt_info[] = {
375 		{ MNT_NOSUID, ",nosuid" },
376 		{ MNT_NODEV, ",nodev" },
377 		{ MNT_NOEXEC, ",noexec" },
378 		{ MNT_NOATIME, ",noatime" },
379 		{ MNT_NODIRATIME, ",nodiratime" },
380 		{ 0, NULL }
381 	};
382 	struct proc_fs_info *fs_infop;
383 
384 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
385 	seq_putc(m, ' ');
386 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
387 	seq_putc(m, ' ');
388 	mangle(m, mnt->mnt_sb->s_type->name);
389 	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
390 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
391 		if (mnt->mnt_sb->s_flags & fs_infop->flag)
392 			seq_puts(m, fs_infop->str);
393 	}
394 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
395 		if (mnt->mnt_flags & fs_infop->flag)
396 			seq_puts(m, fs_infop->str);
397 	}
398 	if (mnt->mnt_sb->s_op->show_options)
399 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
400 	seq_puts(m, " 0 0\n");
401 	return err;
402 }
403 
404 struct seq_operations mounts_op = {
405 	.start	= m_start,
406 	.next	= m_next,
407 	.stop	= m_stop,
408 	.show	= show_vfsmnt
409 };
410 
411 static int show_vfsstat(struct seq_file *m, void *v)
412 {
413 	struct vfsmount *mnt = v;
414 	int err = 0;
415 
416 	/* device */
417 	if (mnt->mnt_devname) {
418 		seq_puts(m, "device ");
419 		mangle(m, mnt->mnt_devname);
420 	} else
421 		seq_puts(m, "no device");
422 
423 	/* mount point */
424 	seq_puts(m, " mounted on ");
425 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
426 	seq_putc(m, ' ');
427 
428 	/* file system type */
429 	seq_puts(m, "with fstype ");
430 	mangle(m, mnt->mnt_sb->s_type->name);
431 
432 	/* optional statistics */
433 	if (mnt->mnt_sb->s_op->show_stats) {
434 		seq_putc(m, ' ');
435 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
436 	}
437 
438 	seq_putc(m, '\n');
439 	return err;
440 }
441 
442 struct seq_operations mountstats_op = {
443 	.start	= m_start,
444 	.next	= m_next,
445 	.stop	= m_stop,
446 	.show	= show_vfsstat,
447 };
448 
449 /**
450  * may_umount_tree - check if a mount tree is busy
451  * @mnt: root of mount tree
452  *
453  * This is called to check if a tree of mounts has any
454  * open files, pwds, chroots or sub mounts that are
455  * busy.
456  */
457 int may_umount_tree(struct vfsmount *mnt)
458 {
459 	int actual_refs = 0;
460 	int minimum_refs = 0;
461 	struct vfsmount *p;
462 
463 	spin_lock(&vfsmount_lock);
464 	for (p = mnt; p; p = next_mnt(p, mnt)) {
465 		actual_refs += atomic_read(&p->mnt_count);
466 		minimum_refs += 2;
467 	}
468 	spin_unlock(&vfsmount_lock);
469 
470 	if (actual_refs > minimum_refs)
471 		return 0;
472 
473 	return 1;
474 }
475 
476 EXPORT_SYMBOL(may_umount_tree);
477 
478 /**
479  * may_umount - check if a mount point is busy
480  * @mnt: root of mount
481  *
482  * This is called to check if a mount point has any
483  * open files, pwds, chroots or sub mounts. If the
484  * mount has sub mounts this will return busy
485  * regardless of whether the sub mounts are busy.
486  *
487  * Doesn't take quota and stuff into account. IOW, in some cases it will
488  * give false negatives. The main reason why it's here is that we need
489  * a non-destructive way to look for easily umountable filesystems.
490  */
491 int may_umount(struct vfsmount *mnt)
492 {
493 	int ret = 1;
494 	spin_lock(&vfsmount_lock);
495 	if (propagate_mount_busy(mnt, 2))
496 		ret = 0;
497 	spin_unlock(&vfsmount_lock);
498 	return ret;
499 }
500 
501 EXPORT_SYMBOL(may_umount);
502 
503 void release_mounts(struct list_head *head)
504 {
505 	struct vfsmount *mnt;
506 	while (!list_empty(head)) {
507 		mnt = list_entry(head->next, struct vfsmount, mnt_hash);
508 		list_del_init(&mnt->mnt_hash);
509 		if (mnt->mnt_parent != mnt) {
510 			struct dentry *dentry;
511 			struct vfsmount *m;
512 			spin_lock(&vfsmount_lock);
513 			dentry = mnt->mnt_mountpoint;
514 			m = mnt->mnt_parent;
515 			mnt->mnt_mountpoint = mnt->mnt_root;
516 			mnt->mnt_parent = mnt;
517 			spin_unlock(&vfsmount_lock);
518 			dput(dentry);
519 			mntput(m);
520 		}
521 		mntput(mnt);
522 	}
523 }
524 
525 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
526 {
527 	struct vfsmount *p;
528 
529 	for (p = mnt; p; p = next_mnt(p, mnt))
530 		list_move(&p->mnt_hash, kill);
531 
532 	if (propagate)
533 		propagate_umount(kill);
534 
535 	list_for_each_entry(p, kill, mnt_hash) {
536 		list_del_init(&p->mnt_expire);
537 		list_del_init(&p->mnt_list);
538 		__touch_namespace(p->mnt_namespace);
539 		p->mnt_namespace = NULL;
540 		list_del_init(&p->mnt_child);
541 		if (p->mnt_parent != p)
542 			p->mnt_mountpoint->d_mounted--;
543 		change_mnt_propagation(p, MS_PRIVATE);
544 	}
545 }
546 
547 static int do_umount(struct vfsmount *mnt, int flags)
548 {
549 	struct super_block *sb = mnt->mnt_sb;
550 	int retval;
551 	LIST_HEAD(umount_list);
552 
553 	retval = security_sb_umount(mnt, flags);
554 	if (retval)
555 		return retval;
556 
557 	/*
558 	 * Allow userspace to request a mountpoint be expired rather than
559 	 * unmounting unconditionally. Unmount only happens if:
560 	 *  (1) the mark is already set (the mark is cleared by mntput())
561 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
562 	 */
563 	if (flags & MNT_EXPIRE) {
564 		if (mnt == current->fs->rootmnt ||
565 		    flags & (MNT_FORCE | MNT_DETACH))
566 			return -EINVAL;
567 
568 		if (atomic_read(&mnt->mnt_count) != 2)
569 			return -EBUSY;
570 
571 		if (!xchg(&mnt->mnt_expiry_mark, 1))
572 			return -EAGAIN;
573 	}
574 
575 	/*
576 	 * If we may have to abort operations to get out of this
577 	 * mount, and they will themselves hold resources we must
578 	 * allow the fs to do things. In the Unix tradition of
579 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
580 	 * might fail to complete on the first run through as other tasks
581 	 * must return, and the like. Thats for the mount program to worry
582 	 * about for the moment.
583 	 */
584 
585 	lock_kernel();
586 	if (sb->s_op->umount_begin)
587 		sb->s_op->umount_begin(mnt, flags);
588 	unlock_kernel();
589 
590 	/*
591 	 * No sense to grab the lock for this test, but test itself looks
592 	 * somewhat bogus. Suggestions for better replacement?
593 	 * Ho-hum... In principle, we might treat that as umount + switch
594 	 * to rootfs. GC would eventually take care of the old vfsmount.
595 	 * Actually it makes sense, especially if rootfs would contain a
596 	 * /reboot - static binary that would close all descriptors and
597 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
598 	 */
599 	if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
600 		/*
601 		 * Special case for "unmounting" root ...
602 		 * we just try to remount it readonly.
603 		 */
604 		down_write(&sb->s_umount);
605 		if (!(sb->s_flags & MS_RDONLY)) {
606 			lock_kernel();
607 			DQUOT_OFF(sb);
608 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
609 			unlock_kernel();
610 		}
611 		up_write(&sb->s_umount);
612 		return retval;
613 	}
614 
615 	down_write(&namespace_sem);
616 	spin_lock(&vfsmount_lock);
617 	event++;
618 
619 	retval = -EBUSY;
620 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
621 		if (!list_empty(&mnt->mnt_list))
622 			umount_tree(mnt, 1, &umount_list);
623 		retval = 0;
624 	}
625 	spin_unlock(&vfsmount_lock);
626 	if (retval)
627 		security_sb_umount_busy(mnt);
628 	up_write(&namespace_sem);
629 	release_mounts(&umount_list);
630 	return retval;
631 }
632 
633 /*
634  * Now umount can handle mount points as well as block devices.
635  * This is important for filesystems which use unnamed block devices.
636  *
637  * We now support a flag for forced unmount like the other 'big iron'
638  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
639  */
640 
641 asmlinkage long sys_umount(char __user * name, int flags)
642 {
643 	struct nameidata nd;
644 	int retval;
645 
646 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
647 	if (retval)
648 		goto out;
649 	retval = -EINVAL;
650 	if (nd.dentry != nd.mnt->mnt_root)
651 		goto dput_and_out;
652 	if (!check_mnt(nd.mnt))
653 		goto dput_and_out;
654 
655 	retval = -EPERM;
656 	if (!capable(CAP_SYS_ADMIN))
657 		goto dput_and_out;
658 
659 	retval = do_umount(nd.mnt, flags);
660 dput_and_out:
661 	path_release_on_umount(&nd);
662 out:
663 	return retval;
664 }
665 
666 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
667 
668 /*
669  *	The 2.0 compatible umount. No flags.
670  */
671 asmlinkage long sys_oldumount(char __user * name)
672 {
673 	return sys_umount(name, 0);
674 }
675 
676 #endif
677 
678 static int mount_is_safe(struct nameidata *nd)
679 {
680 	if (capable(CAP_SYS_ADMIN))
681 		return 0;
682 	return -EPERM;
683 #ifdef notyet
684 	if (S_ISLNK(nd->dentry->d_inode->i_mode))
685 		return -EPERM;
686 	if (nd->dentry->d_inode->i_mode & S_ISVTX) {
687 		if (current->uid != nd->dentry->d_inode->i_uid)
688 			return -EPERM;
689 	}
690 	if (vfs_permission(nd, MAY_WRITE))
691 		return -EPERM;
692 	return 0;
693 #endif
694 }
695 
696 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
697 {
698 	while (1) {
699 		if (d == dentry)
700 			return 1;
701 		if (d == NULL || d == d->d_parent)
702 			return 0;
703 		d = d->d_parent;
704 	}
705 }
706 
707 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
708 					int flag)
709 {
710 	struct vfsmount *res, *p, *q, *r, *s;
711 	struct nameidata nd;
712 
713 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
714 		return NULL;
715 
716 	res = q = clone_mnt(mnt, dentry, flag);
717 	if (!q)
718 		goto Enomem;
719 	q->mnt_mountpoint = mnt->mnt_mountpoint;
720 
721 	p = mnt;
722 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
723 		if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
724 			continue;
725 
726 		for (s = r; s; s = next_mnt(s, r)) {
727 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
728 				s = skip_mnt_tree(s);
729 				continue;
730 			}
731 			while (p != s->mnt_parent) {
732 				p = p->mnt_parent;
733 				q = q->mnt_parent;
734 			}
735 			p = s;
736 			nd.mnt = q;
737 			nd.dentry = p->mnt_mountpoint;
738 			q = clone_mnt(p, p->mnt_root, flag);
739 			if (!q)
740 				goto Enomem;
741 			spin_lock(&vfsmount_lock);
742 			list_add_tail(&q->mnt_list, &res->mnt_list);
743 			attach_mnt(q, &nd);
744 			spin_unlock(&vfsmount_lock);
745 		}
746 	}
747 	return res;
748 Enomem:
749 	if (res) {
750 		LIST_HEAD(umount_list);
751 		spin_lock(&vfsmount_lock);
752 		umount_tree(res, 0, &umount_list);
753 		spin_unlock(&vfsmount_lock);
754 		release_mounts(&umount_list);
755 	}
756 	return NULL;
757 }
758 
759 /*
760  *  @source_mnt : mount tree to be attached
761  *  @nd         : place the mount tree @source_mnt is attached
762  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
763  *  		   store the parent mount and mountpoint dentry.
764  *  		   (done when source_mnt is moved)
765  *
766  *  NOTE: in the table below explains the semantics when a source mount
767  *  of a given type is attached to a destination mount of a given type.
768  * ---------------------------------------------------------------------------
769  * |         BIND MOUNT OPERATION                                            |
770  * |**************************************************************************
771  * | source-->| shared        |       private  |       slave    | unbindable |
772  * | dest     |               |                |                |            |
773  * |   |      |               |                |                |            |
774  * |   v      |               |                |                |            |
775  * |**************************************************************************
776  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
777  * |          |               |                |                |            |
778  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
779  * ***************************************************************************
780  * A bind operation clones the source mount and mounts the clone on the
781  * destination mount.
782  *
783  * (++)  the cloned mount is propagated to all the mounts in the propagation
784  * 	 tree of the destination mount and the cloned mount is added to
785  * 	 the peer group of the source mount.
786  * (+)   the cloned mount is created under the destination mount and is marked
787  *       as shared. The cloned mount is added to the peer group of the source
788  *       mount.
789  * (+++) the mount is propagated to all the mounts in the propagation tree
790  *       of the destination mount and the cloned mount is made slave
791  *       of the same master as that of the source mount. The cloned mount
792  *       is marked as 'shared and slave'.
793  * (*)   the cloned mount is made a slave of the same master as that of the
794  * 	 source mount.
795  *
796  * ---------------------------------------------------------------------------
797  * |         		MOVE MOUNT OPERATION                                 |
798  * |**************************************************************************
799  * | source-->| shared        |       private  |       slave    | unbindable |
800  * | dest     |               |                |                |            |
801  * |   |      |               |                |                |            |
802  * |   v      |               |                |                |            |
803  * |**************************************************************************
804  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
805  * |          |               |                |                |            |
806  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
807  * ***************************************************************************
808  *
809  * (+)  the mount is moved to the destination. And is then propagated to
810  * 	all the mounts in the propagation tree of the destination mount.
811  * (+*)  the mount is moved to the destination.
812  * (+++)  the mount is moved to the destination and is then propagated to
813  * 	all the mounts belonging to the destination mount's propagation tree.
814  * 	the mount is marked as 'shared and slave'.
815  * (*)	the mount continues to be a slave at the new location.
816  *
817  * if the source mount is a tree, the operations explained above is
818  * applied to each mount in the tree.
819  * Must be called without spinlocks held, since this function can sleep
820  * in allocations.
821  */
822 static int attach_recursive_mnt(struct vfsmount *source_mnt,
823 			struct nameidata *nd, struct nameidata *parent_nd)
824 {
825 	LIST_HEAD(tree_list);
826 	struct vfsmount *dest_mnt = nd->mnt;
827 	struct dentry *dest_dentry = nd->dentry;
828 	struct vfsmount *child, *p;
829 
830 	if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
831 		return -EINVAL;
832 
833 	if (IS_MNT_SHARED(dest_mnt)) {
834 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
835 			set_mnt_shared(p);
836 	}
837 
838 	spin_lock(&vfsmount_lock);
839 	if (parent_nd) {
840 		detach_mnt(source_mnt, parent_nd);
841 		attach_mnt(source_mnt, nd);
842 		touch_namespace(current->namespace);
843 	} else {
844 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
845 		commit_tree(source_mnt);
846 	}
847 
848 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
849 		list_del_init(&child->mnt_hash);
850 		commit_tree(child);
851 	}
852 	spin_unlock(&vfsmount_lock);
853 	return 0;
854 }
855 
856 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
857 {
858 	int err;
859 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
860 		return -EINVAL;
861 
862 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
863 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
864 		return -ENOTDIR;
865 
866 	err = -ENOENT;
867 	mutex_lock(&nd->dentry->d_inode->i_mutex);
868 	if (IS_DEADDIR(nd->dentry->d_inode))
869 		goto out_unlock;
870 
871 	err = security_sb_check_sb(mnt, nd);
872 	if (err)
873 		goto out_unlock;
874 
875 	err = -ENOENT;
876 	if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
877 		err = attach_recursive_mnt(mnt, nd, NULL);
878 out_unlock:
879 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
880 	if (!err)
881 		security_sb_post_addmount(mnt, nd);
882 	return err;
883 }
884 
885 /*
886  * recursively change the type of the mountpoint.
887  */
888 static int do_change_type(struct nameidata *nd, int flag)
889 {
890 	struct vfsmount *m, *mnt = nd->mnt;
891 	int recurse = flag & MS_REC;
892 	int type = flag & ~MS_REC;
893 
894 	if (nd->dentry != nd->mnt->mnt_root)
895 		return -EINVAL;
896 
897 	down_write(&namespace_sem);
898 	spin_lock(&vfsmount_lock);
899 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
900 		change_mnt_propagation(m, type);
901 	spin_unlock(&vfsmount_lock);
902 	up_write(&namespace_sem);
903 	return 0;
904 }
905 
906 /*
907  * do loopback mount.
908  */
909 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
910 {
911 	struct nameidata old_nd;
912 	struct vfsmount *mnt = NULL;
913 	int err = mount_is_safe(nd);
914 	if (err)
915 		return err;
916 	if (!old_name || !*old_name)
917 		return -EINVAL;
918 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
919 	if (err)
920 		return err;
921 
922 	down_write(&namespace_sem);
923 	err = -EINVAL;
924 	if (IS_MNT_UNBINDABLE(old_nd.mnt))
925  		goto out;
926 
927 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
928 		goto out;
929 
930 	err = -ENOMEM;
931 	if (recurse)
932 		mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
933 	else
934 		mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
935 
936 	if (!mnt)
937 		goto out;
938 
939 	err = graft_tree(mnt, nd);
940 	if (err) {
941 		LIST_HEAD(umount_list);
942 		spin_lock(&vfsmount_lock);
943 		umount_tree(mnt, 0, &umount_list);
944 		spin_unlock(&vfsmount_lock);
945 		release_mounts(&umount_list);
946 	}
947 
948 out:
949 	up_write(&namespace_sem);
950 	path_release(&old_nd);
951 	return err;
952 }
953 
954 /*
955  * change filesystem flags. dir should be a physical root of filesystem.
956  * If you've mounted a non-root directory somewhere and want to do remount
957  * on it - tough luck.
958  */
959 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
960 		      void *data)
961 {
962 	int err;
963 	struct super_block *sb = nd->mnt->mnt_sb;
964 
965 	if (!capable(CAP_SYS_ADMIN))
966 		return -EPERM;
967 
968 	if (!check_mnt(nd->mnt))
969 		return -EINVAL;
970 
971 	if (nd->dentry != nd->mnt->mnt_root)
972 		return -EINVAL;
973 
974 	down_write(&sb->s_umount);
975 	err = do_remount_sb(sb, flags, data, 0);
976 	if (!err)
977 		nd->mnt->mnt_flags = mnt_flags;
978 	up_write(&sb->s_umount);
979 	if (!err)
980 		security_sb_post_remount(nd->mnt, flags, data);
981 	return err;
982 }
983 
984 static inline int tree_contains_unbindable(struct vfsmount *mnt)
985 {
986 	struct vfsmount *p;
987 	for (p = mnt; p; p = next_mnt(p, mnt)) {
988 		if (IS_MNT_UNBINDABLE(p))
989 			return 1;
990 	}
991 	return 0;
992 }
993 
994 static int do_move_mount(struct nameidata *nd, char *old_name)
995 {
996 	struct nameidata old_nd, parent_nd;
997 	struct vfsmount *p;
998 	int err = 0;
999 	if (!capable(CAP_SYS_ADMIN))
1000 		return -EPERM;
1001 	if (!old_name || !*old_name)
1002 		return -EINVAL;
1003 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1004 	if (err)
1005 		return err;
1006 
1007 	down_write(&namespace_sem);
1008 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1009 		;
1010 	err = -EINVAL;
1011 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1012 		goto out;
1013 
1014 	err = -ENOENT;
1015 	mutex_lock(&nd->dentry->d_inode->i_mutex);
1016 	if (IS_DEADDIR(nd->dentry->d_inode))
1017 		goto out1;
1018 
1019 	if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1020 		goto out1;
1021 
1022 	err = -EINVAL;
1023 	if (old_nd.dentry != old_nd.mnt->mnt_root)
1024 		goto out1;
1025 
1026 	if (old_nd.mnt == old_nd.mnt->mnt_parent)
1027 		goto out1;
1028 
1029 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1030 	      S_ISDIR(old_nd.dentry->d_inode->i_mode))
1031 		goto out1;
1032 	/*
1033 	 * Don't move a mount residing in a shared parent.
1034 	 */
1035 	if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1036 		goto out1;
1037 	/*
1038 	 * Don't move a mount tree containing unbindable mounts to a destination
1039 	 * mount which is shared.
1040 	 */
1041 	if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1042 		goto out1;
1043 	err = -ELOOP;
1044 	for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1045 		if (p == old_nd.mnt)
1046 			goto out1;
1047 
1048 	if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1049 		goto out1;
1050 
1051 	spin_lock(&vfsmount_lock);
1052 	/* if the mount is moved, it should no longer be expire
1053 	 * automatically */
1054 	list_del_init(&old_nd.mnt->mnt_expire);
1055 	spin_unlock(&vfsmount_lock);
1056 out1:
1057 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
1058 out:
1059 	up_write(&namespace_sem);
1060 	if (!err)
1061 		path_release(&parent_nd);
1062 	path_release(&old_nd);
1063 	return err;
1064 }
1065 
1066 /*
1067  * create a new mount for userspace and request it to be added into the
1068  * namespace's tree
1069  */
1070 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1071 			int mnt_flags, char *name, void *data)
1072 {
1073 	struct vfsmount *mnt;
1074 
1075 	if (!type || !memchr(type, 0, PAGE_SIZE))
1076 		return -EINVAL;
1077 
1078 	/* we need capabilities... */
1079 	if (!capable(CAP_SYS_ADMIN))
1080 		return -EPERM;
1081 
1082 	mnt = do_kern_mount(type, flags, name, data);
1083 	if (IS_ERR(mnt))
1084 		return PTR_ERR(mnt);
1085 
1086 	return do_add_mount(mnt, nd, mnt_flags, NULL);
1087 }
1088 
1089 /*
1090  * add a mount into a namespace's mount tree
1091  * - provide the option of adding the new mount to an expiration list
1092  */
1093 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1094 		 int mnt_flags, struct list_head *fslist)
1095 {
1096 	int err;
1097 
1098 	down_write(&namespace_sem);
1099 	/* Something was mounted here while we slept */
1100 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1101 		;
1102 	err = -EINVAL;
1103 	if (!check_mnt(nd->mnt))
1104 		goto unlock;
1105 
1106 	/* Refuse the same filesystem on the same mount point */
1107 	err = -EBUSY;
1108 	if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1109 	    nd->mnt->mnt_root == nd->dentry)
1110 		goto unlock;
1111 
1112 	err = -EINVAL;
1113 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1114 		goto unlock;
1115 
1116 	newmnt->mnt_flags = mnt_flags;
1117 	if ((err = graft_tree(newmnt, nd)))
1118 		goto unlock;
1119 
1120 	if (fslist) {
1121 		/* add to the specified expiration list */
1122 		spin_lock(&vfsmount_lock);
1123 		list_add_tail(&newmnt->mnt_expire, fslist);
1124 		spin_unlock(&vfsmount_lock);
1125 	}
1126 	up_write(&namespace_sem);
1127 	return 0;
1128 
1129 unlock:
1130 	up_write(&namespace_sem);
1131 	mntput(newmnt);
1132 	return err;
1133 }
1134 
1135 EXPORT_SYMBOL_GPL(do_add_mount);
1136 
1137 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1138 				struct list_head *umounts)
1139 {
1140 	spin_lock(&vfsmount_lock);
1141 
1142 	/*
1143 	 * Check if mount is still attached, if not, let whoever holds it deal
1144 	 * with the sucker
1145 	 */
1146 	if (mnt->mnt_parent == mnt) {
1147 		spin_unlock(&vfsmount_lock);
1148 		return;
1149 	}
1150 
1151 	/*
1152 	 * Check that it is still dead: the count should now be 2 - as
1153 	 * contributed by the vfsmount parent and the mntget above
1154 	 */
1155 	if (!propagate_mount_busy(mnt, 2)) {
1156 		/* delete from the namespace */
1157 		touch_namespace(mnt->mnt_namespace);
1158 		list_del_init(&mnt->mnt_list);
1159 		mnt->mnt_namespace = NULL;
1160 		umount_tree(mnt, 1, umounts);
1161 		spin_unlock(&vfsmount_lock);
1162 	} else {
1163 		/*
1164 		 * Someone brought it back to life whilst we didn't have any
1165 		 * locks held so return it to the expiration list
1166 		 */
1167 		list_add_tail(&mnt->mnt_expire, mounts);
1168 		spin_unlock(&vfsmount_lock);
1169 	}
1170 }
1171 
1172 /*
1173  * go through the vfsmounts we've just consigned to the graveyard to
1174  * - check that they're still dead
1175  * - delete the vfsmount from the appropriate namespace under lock
1176  * - dispose of the corpse
1177  */
1178 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1179 {
1180 	struct namespace *namespace;
1181 	struct vfsmount *mnt;
1182 
1183 	while (!list_empty(graveyard)) {
1184 		LIST_HEAD(umounts);
1185 		mnt = list_entry(graveyard->next, struct vfsmount, mnt_expire);
1186 		list_del_init(&mnt->mnt_expire);
1187 
1188 		/* don't do anything if the namespace is dead - all the
1189 		 * vfsmounts from it are going away anyway */
1190 		namespace = mnt->mnt_namespace;
1191 		if (!namespace || !namespace->root)
1192 			continue;
1193 		get_namespace(namespace);
1194 
1195 		spin_unlock(&vfsmount_lock);
1196 		down_write(&namespace_sem);
1197 		expire_mount(mnt, mounts, &umounts);
1198 		up_write(&namespace_sem);
1199 		release_mounts(&umounts);
1200 		mntput(mnt);
1201 		put_namespace(namespace);
1202 		spin_lock(&vfsmount_lock);
1203 	}
1204 }
1205 
1206 /*
1207  * process a list of expirable mountpoints with the intent of discarding any
1208  * mountpoints that aren't in use and haven't been touched since last we came
1209  * here
1210  */
1211 void mark_mounts_for_expiry(struct list_head *mounts)
1212 {
1213 	struct vfsmount *mnt, *next;
1214 	LIST_HEAD(graveyard);
1215 
1216 	if (list_empty(mounts))
1217 		return;
1218 
1219 	spin_lock(&vfsmount_lock);
1220 
1221 	/* extract from the expiration list every vfsmount that matches the
1222 	 * following criteria:
1223 	 * - only referenced by its parent vfsmount
1224 	 * - still marked for expiry (marked on the last call here; marks are
1225 	 *   cleared by mntput())
1226 	 */
1227 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1228 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1229 		    atomic_read(&mnt->mnt_count) != 1)
1230 			continue;
1231 
1232 		mntget(mnt);
1233 		list_move(&mnt->mnt_expire, &graveyard);
1234 	}
1235 
1236 	expire_mount_list(&graveyard, mounts);
1237 
1238 	spin_unlock(&vfsmount_lock);
1239 }
1240 
1241 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1242 
1243 /*
1244  * Ripoff of 'select_parent()'
1245  *
1246  * search the list of submounts for a given mountpoint, and move any
1247  * shrinkable submounts to the 'graveyard' list.
1248  */
1249 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1250 {
1251 	struct vfsmount *this_parent = parent;
1252 	struct list_head *next;
1253 	int found = 0;
1254 
1255 repeat:
1256 	next = this_parent->mnt_mounts.next;
1257 resume:
1258 	while (next != &this_parent->mnt_mounts) {
1259 		struct list_head *tmp = next;
1260 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1261 
1262 		next = tmp->next;
1263 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1264 			continue;
1265 		/*
1266 		 * Descend a level if the d_mounts list is non-empty.
1267 		 */
1268 		if (!list_empty(&mnt->mnt_mounts)) {
1269 			this_parent = mnt;
1270 			goto repeat;
1271 		}
1272 
1273 		if (!propagate_mount_busy(mnt, 1)) {
1274 			mntget(mnt);
1275 			list_move_tail(&mnt->mnt_expire, graveyard);
1276 			found++;
1277 		}
1278 	}
1279 	/*
1280 	 * All done at this level ... ascend and resume the search
1281 	 */
1282 	if (this_parent != parent) {
1283 		next = this_parent->mnt_child.next;
1284 		this_parent = this_parent->mnt_parent;
1285 		goto resume;
1286 	}
1287 	return found;
1288 }
1289 
1290 /*
1291  * process a list of expirable mountpoints with the intent of discarding any
1292  * submounts of a specific parent mountpoint
1293  */
1294 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1295 {
1296 	LIST_HEAD(graveyard);
1297 	int found;
1298 
1299 	spin_lock(&vfsmount_lock);
1300 
1301 	/* extract submounts of 'mountpoint' from the expiration list */
1302 	while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1303 		expire_mount_list(&graveyard, mounts);
1304 
1305 	spin_unlock(&vfsmount_lock);
1306 }
1307 
1308 EXPORT_SYMBOL_GPL(shrink_submounts);
1309 
1310 /*
1311  * Some copy_from_user() implementations do not return the exact number of
1312  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1313  * Note that this function differs from copy_from_user() in that it will oops
1314  * on bad values of `to', rather than returning a short copy.
1315  */
1316 static long exact_copy_from_user(void *to, const void __user * from,
1317 				 unsigned long n)
1318 {
1319 	char *t = to;
1320 	const char __user *f = from;
1321 	char c;
1322 
1323 	if (!access_ok(VERIFY_READ, from, n))
1324 		return n;
1325 
1326 	while (n) {
1327 		if (__get_user(c, f)) {
1328 			memset(t, 0, n);
1329 			break;
1330 		}
1331 		*t++ = c;
1332 		f++;
1333 		n--;
1334 	}
1335 	return n;
1336 }
1337 
1338 int copy_mount_options(const void __user * data, unsigned long *where)
1339 {
1340 	int i;
1341 	unsigned long page;
1342 	unsigned long size;
1343 
1344 	*where = 0;
1345 	if (!data)
1346 		return 0;
1347 
1348 	if (!(page = __get_free_page(GFP_KERNEL)))
1349 		return -ENOMEM;
1350 
1351 	/* We only care that *some* data at the address the user
1352 	 * gave us is valid.  Just in case, we'll zero
1353 	 * the remainder of the page.
1354 	 */
1355 	/* copy_from_user cannot cross TASK_SIZE ! */
1356 	size = TASK_SIZE - (unsigned long)data;
1357 	if (size > PAGE_SIZE)
1358 		size = PAGE_SIZE;
1359 
1360 	i = size - exact_copy_from_user((void *)page, data, size);
1361 	if (!i) {
1362 		free_page(page);
1363 		return -EFAULT;
1364 	}
1365 	if (i != PAGE_SIZE)
1366 		memset((char *)page + i, 0, PAGE_SIZE - i);
1367 	*where = page;
1368 	return 0;
1369 }
1370 
1371 /*
1372  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1373  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1374  *
1375  * data is a (void *) that can point to any structure up to
1376  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1377  * information (or be NULL).
1378  *
1379  * Pre-0.97 versions of mount() didn't have a flags word.
1380  * When the flags word was introduced its top half was required
1381  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1382  * Therefore, if this magic number is present, it carries no information
1383  * and must be discarded.
1384  */
1385 long do_mount(char *dev_name, char *dir_name, char *type_page,
1386 		  unsigned long flags, void *data_page)
1387 {
1388 	struct nameidata nd;
1389 	int retval = 0;
1390 	int mnt_flags = 0;
1391 
1392 	/* Discard magic */
1393 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1394 		flags &= ~MS_MGC_MSK;
1395 
1396 	/* Basic sanity checks */
1397 
1398 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1399 		return -EINVAL;
1400 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1401 		return -EINVAL;
1402 
1403 	if (data_page)
1404 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1405 
1406 	/* Separate the per-mountpoint flags */
1407 	if (flags & MS_NOSUID)
1408 		mnt_flags |= MNT_NOSUID;
1409 	if (flags & MS_NODEV)
1410 		mnt_flags |= MNT_NODEV;
1411 	if (flags & MS_NOEXEC)
1412 		mnt_flags |= MNT_NOEXEC;
1413 	if (flags & MS_NOATIME)
1414 		mnt_flags |= MNT_NOATIME;
1415 	if (flags & MS_NODIRATIME)
1416 		mnt_flags |= MNT_NODIRATIME;
1417 
1418 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1419 		   MS_NOATIME | MS_NODIRATIME);
1420 
1421 	/* ... and get the mountpoint */
1422 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1423 	if (retval)
1424 		return retval;
1425 
1426 	retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1427 	if (retval)
1428 		goto dput_out;
1429 
1430 	if (flags & MS_REMOUNT)
1431 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1432 				    data_page);
1433 	else if (flags & MS_BIND)
1434 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1435 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1436 		retval = do_change_type(&nd, flags);
1437 	else if (flags & MS_MOVE)
1438 		retval = do_move_mount(&nd, dev_name);
1439 	else
1440 		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1441 				      dev_name, data_page);
1442 dput_out:
1443 	path_release(&nd);
1444 	return retval;
1445 }
1446 
1447 /*
1448  * Allocate a new namespace structure and populate it with contents
1449  * copied from the namespace of the passed in task structure.
1450  */
1451 struct namespace *dup_namespace(struct task_struct *tsk, struct fs_struct *fs)
1452 {
1453 	struct namespace *namespace = tsk->namespace;
1454 	struct namespace *new_ns;
1455 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1456 	struct vfsmount *p, *q;
1457 
1458 	new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1459 	if (!new_ns)
1460 		return NULL;
1461 
1462 	atomic_set(&new_ns->count, 1);
1463 	INIT_LIST_HEAD(&new_ns->list);
1464 	init_waitqueue_head(&new_ns->poll);
1465 	new_ns->event = 0;
1466 
1467 	down_write(&namespace_sem);
1468 	/* First pass: copy the tree topology */
1469 	new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root,
1470 					CL_COPY_ALL | CL_EXPIRE);
1471 	if (!new_ns->root) {
1472 		up_write(&namespace_sem);
1473 		kfree(new_ns);
1474 		return NULL;
1475 	}
1476 	spin_lock(&vfsmount_lock);
1477 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1478 	spin_unlock(&vfsmount_lock);
1479 
1480 	/*
1481 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1482 	 * as belonging to new namespace.  We have already acquired a private
1483 	 * fs_struct, so tsk->fs->lock is not needed.
1484 	 */
1485 	p = namespace->root;
1486 	q = new_ns->root;
1487 	while (p) {
1488 		q->mnt_namespace = new_ns;
1489 		if (fs) {
1490 			if (p == fs->rootmnt) {
1491 				rootmnt = p;
1492 				fs->rootmnt = mntget(q);
1493 			}
1494 			if (p == fs->pwdmnt) {
1495 				pwdmnt = p;
1496 				fs->pwdmnt = mntget(q);
1497 			}
1498 			if (p == fs->altrootmnt) {
1499 				altrootmnt = p;
1500 				fs->altrootmnt = mntget(q);
1501 			}
1502 		}
1503 		p = next_mnt(p, namespace->root);
1504 		q = next_mnt(q, new_ns->root);
1505 	}
1506 	up_write(&namespace_sem);
1507 
1508 	if (rootmnt)
1509 		mntput(rootmnt);
1510 	if (pwdmnt)
1511 		mntput(pwdmnt);
1512 	if (altrootmnt)
1513 		mntput(altrootmnt);
1514 
1515 	return new_ns;
1516 }
1517 
1518 int copy_namespace(int flags, struct task_struct *tsk)
1519 {
1520 	struct namespace *namespace = tsk->namespace;
1521 	struct namespace *new_ns;
1522 	int err = 0;
1523 
1524 	if (!namespace)
1525 		return 0;
1526 
1527 	get_namespace(namespace);
1528 
1529 	if (!(flags & CLONE_NEWNS))
1530 		return 0;
1531 
1532 	if (!capable(CAP_SYS_ADMIN)) {
1533 		err = -EPERM;
1534 		goto out;
1535 	}
1536 
1537 	new_ns = dup_namespace(tsk, tsk->fs);
1538 	if (!new_ns) {
1539 		err = -ENOMEM;
1540 		goto out;
1541 	}
1542 
1543 	tsk->namespace = new_ns;
1544 
1545 out:
1546 	put_namespace(namespace);
1547 	return err;
1548 }
1549 
1550 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1551 			  char __user * type, unsigned long flags,
1552 			  void __user * data)
1553 {
1554 	int retval;
1555 	unsigned long data_page;
1556 	unsigned long type_page;
1557 	unsigned long dev_page;
1558 	char *dir_page;
1559 
1560 	retval = copy_mount_options(type, &type_page);
1561 	if (retval < 0)
1562 		return retval;
1563 
1564 	dir_page = getname(dir_name);
1565 	retval = PTR_ERR(dir_page);
1566 	if (IS_ERR(dir_page))
1567 		goto out1;
1568 
1569 	retval = copy_mount_options(dev_name, &dev_page);
1570 	if (retval < 0)
1571 		goto out2;
1572 
1573 	retval = copy_mount_options(data, &data_page);
1574 	if (retval < 0)
1575 		goto out3;
1576 
1577 	lock_kernel();
1578 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1579 			  flags, (void *)data_page);
1580 	unlock_kernel();
1581 	free_page(data_page);
1582 
1583 out3:
1584 	free_page(dev_page);
1585 out2:
1586 	putname(dir_page);
1587 out1:
1588 	free_page(type_page);
1589 	return retval;
1590 }
1591 
1592 /*
1593  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1594  * It can block. Requires the big lock held.
1595  */
1596 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1597 		 struct dentry *dentry)
1598 {
1599 	struct dentry *old_root;
1600 	struct vfsmount *old_rootmnt;
1601 	write_lock(&fs->lock);
1602 	old_root = fs->root;
1603 	old_rootmnt = fs->rootmnt;
1604 	fs->rootmnt = mntget(mnt);
1605 	fs->root = dget(dentry);
1606 	write_unlock(&fs->lock);
1607 	if (old_root) {
1608 		dput(old_root);
1609 		mntput(old_rootmnt);
1610 	}
1611 }
1612 
1613 /*
1614  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1615  * It can block. Requires the big lock held.
1616  */
1617 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1618 		struct dentry *dentry)
1619 {
1620 	struct dentry *old_pwd;
1621 	struct vfsmount *old_pwdmnt;
1622 
1623 	write_lock(&fs->lock);
1624 	old_pwd = fs->pwd;
1625 	old_pwdmnt = fs->pwdmnt;
1626 	fs->pwdmnt = mntget(mnt);
1627 	fs->pwd = dget(dentry);
1628 	write_unlock(&fs->lock);
1629 
1630 	if (old_pwd) {
1631 		dput(old_pwd);
1632 		mntput(old_pwdmnt);
1633 	}
1634 }
1635 
1636 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1637 {
1638 	struct task_struct *g, *p;
1639 	struct fs_struct *fs;
1640 
1641 	read_lock(&tasklist_lock);
1642 	do_each_thread(g, p) {
1643 		task_lock(p);
1644 		fs = p->fs;
1645 		if (fs) {
1646 			atomic_inc(&fs->count);
1647 			task_unlock(p);
1648 			if (fs->root == old_nd->dentry
1649 			    && fs->rootmnt == old_nd->mnt)
1650 				set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1651 			if (fs->pwd == old_nd->dentry
1652 			    && fs->pwdmnt == old_nd->mnt)
1653 				set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1654 			put_fs_struct(fs);
1655 		} else
1656 			task_unlock(p);
1657 	} while_each_thread(g, p);
1658 	read_unlock(&tasklist_lock);
1659 }
1660 
1661 /*
1662  * pivot_root Semantics:
1663  * Moves the root file system of the current process to the directory put_old,
1664  * makes new_root as the new root file system of the current process, and sets
1665  * root/cwd of all processes which had them on the current root to new_root.
1666  *
1667  * Restrictions:
1668  * The new_root and put_old must be directories, and  must not be on the
1669  * same file  system as the current process root. The put_old  must  be
1670  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1671  * pointed to by put_old must yield the same directory as new_root. No other
1672  * file system may be mounted on put_old. After all, new_root is a mountpoint.
1673  *
1674  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1675  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1676  * in this situation.
1677  *
1678  * Notes:
1679  *  - we don't move root/cwd if they are not at the root (reason: if something
1680  *    cared enough to change them, it's probably wrong to force them elsewhere)
1681  *  - it's okay to pick a root that isn't the root of a file system, e.g.
1682  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1683  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1684  *    first.
1685  */
1686 asmlinkage long sys_pivot_root(const char __user * new_root,
1687 			       const char __user * put_old)
1688 {
1689 	struct vfsmount *tmp;
1690 	struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1691 	int error;
1692 
1693 	if (!capable(CAP_SYS_ADMIN))
1694 		return -EPERM;
1695 
1696 	lock_kernel();
1697 
1698 	error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1699 			    &new_nd);
1700 	if (error)
1701 		goto out0;
1702 	error = -EINVAL;
1703 	if (!check_mnt(new_nd.mnt))
1704 		goto out1;
1705 
1706 	error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1707 	if (error)
1708 		goto out1;
1709 
1710 	error = security_sb_pivotroot(&old_nd, &new_nd);
1711 	if (error) {
1712 		path_release(&old_nd);
1713 		goto out1;
1714 	}
1715 
1716 	read_lock(&current->fs->lock);
1717 	user_nd.mnt = mntget(current->fs->rootmnt);
1718 	user_nd.dentry = dget(current->fs->root);
1719 	read_unlock(&current->fs->lock);
1720 	down_write(&namespace_sem);
1721 	mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1722 	error = -EINVAL;
1723 	if (IS_MNT_SHARED(old_nd.mnt) ||
1724 		IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1725 		IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1726 		goto out2;
1727 	if (!check_mnt(user_nd.mnt))
1728 		goto out2;
1729 	error = -ENOENT;
1730 	if (IS_DEADDIR(new_nd.dentry->d_inode))
1731 		goto out2;
1732 	if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1733 		goto out2;
1734 	if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1735 		goto out2;
1736 	error = -EBUSY;
1737 	if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1738 		goto out2; /* loop, on the same file system  */
1739 	error = -EINVAL;
1740 	if (user_nd.mnt->mnt_root != user_nd.dentry)
1741 		goto out2; /* not a mountpoint */
1742 	if (user_nd.mnt->mnt_parent == user_nd.mnt)
1743 		goto out2; /* not attached */
1744 	if (new_nd.mnt->mnt_root != new_nd.dentry)
1745 		goto out2; /* not a mountpoint */
1746 	if (new_nd.mnt->mnt_parent == new_nd.mnt)
1747 		goto out2; /* not attached */
1748 	tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1749 	spin_lock(&vfsmount_lock);
1750 	if (tmp != new_nd.mnt) {
1751 		for (;;) {
1752 			if (tmp->mnt_parent == tmp)
1753 				goto out3; /* already mounted on put_old */
1754 			if (tmp->mnt_parent == new_nd.mnt)
1755 				break;
1756 			tmp = tmp->mnt_parent;
1757 		}
1758 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1759 			goto out3;
1760 	} else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1761 		goto out3;
1762 	detach_mnt(new_nd.mnt, &parent_nd);
1763 	detach_mnt(user_nd.mnt, &root_parent);
1764 	attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */
1765 	attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1766 	touch_namespace(current->namespace);
1767 	spin_unlock(&vfsmount_lock);
1768 	chroot_fs_refs(&user_nd, &new_nd);
1769 	security_sb_post_pivotroot(&user_nd, &new_nd);
1770 	error = 0;
1771 	path_release(&root_parent);
1772 	path_release(&parent_nd);
1773 out2:
1774 	mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1775 	up_write(&namespace_sem);
1776 	path_release(&user_nd);
1777 	path_release(&old_nd);
1778 out1:
1779 	path_release(&new_nd);
1780 out0:
1781 	unlock_kernel();
1782 	return error;
1783 out3:
1784 	spin_unlock(&vfsmount_lock);
1785 	goto out2;
1786 }
1787 
1788 static void __init init_mount_tree(void)
1789 {
1790 	struct vfsmount *mnt;
1791 	struct namespace *namespace;
1792 	struct task_struct *g, *p;
1793 
1794 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1795 	if (IS_ERR(mnt))
1796 		panic("Can't create rootfs");
1797 	namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1798 	if (!namespace)
1799 		panic("Can't allocate initial namespace");
1800 	atomic_set(&namespace->count, 1);
1801 	INIT_LIST_HEAD(&namespace->list);
1802 	init_waitqueue_head(&namespace->poll);
1803 	namespace->event = 0;
1804 	list_add(&mnt->mnt_list, &namespace->list);
1805 	namespace->root = mnt;
1806 	mnt->mnt_namespace = namespace;
1807 
1808 	init_task.namespace = namespace;
1809 	read_lock(&tasklist_lock);
1810 	do_each_thread(g, p) {
1811 		get_namespace(namespace);
1812 		p->namespace = namespace;
1813 	} while_each_thread(g, p);
1814 	read_unlock(&tasklist_lock);
1815 
1816 	set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1817 	set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1818 }
1819 
1820 void __init mnt_init(unsigned long mempages)
1821 {
1822 	struct list_head *d;
1823 	unsigned int nr_hash;
1824 	int i;
1825 
1826 	init_rwsem(&namespace_sem);
1827 
1828 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1829 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1830 
1831 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1832 
1833 	if (!mount_hashtable)
1834 		panic("Failed to allocate mount hash table\n");
1835 
1836 	/*
1837 	 * Find the power-of-two list-heads that can fit into the allocation..
1838 	 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1839 	 * a power-of-two.
1840 	 */
1841 	nr_hash = PAGE_SIZE / sizeof(struct list_head);
1842 	hash_bits = 0;
1843 	do {
1844 		hash_bits++;
1845 	} while ((nr_hash >> hash_bits) != 0);
1846 	hash_bits--;
1847 
1848 	/*
1849 	 * Re-calculate the actual number of entries and the mask
1850 	 * from the number of bits we can fit.
1851 	 */
1852 	nr_hash = 1UL << hash_bits;
1853 	hash_mask = nr_hash - 1;
1854 
1855 	printk("Mount-cache hash table entries: %d\n", nr_hash);
1856 
1857 	/* And initialize the newly allocated array */
1858 	d = mount_hashtable;
1859 	i = nr_hash;
1860 	do {
1861 		INIT_LIST_HEAD(d);
1862 		d++;
1863 		i--;
1864 	} while (i);
1865 	sysfs_init();
1866 	subsystem_register(&fs_subsys);
1867 	init_rootfs();
1868 	init_mount_tree();
1869 }
1870 
1871 void __put_namespace(struct namespace *namespace)
1872 {
1873 	struct vfsmount *root = namespace->root;
1874 	LIST_HEAD(umount_list);
1875 	namespace->root = NULL;
1876 	spin_unlock(&vfsmount_lock);
1877 	down_write(&namespace_sem);
1878 	spin_lock(&vfsmount_lock);
1879 	umount_tree(root, 0, &umount_list);
1880 	spin_unlock(&vfsmount_lock);
1881 	up_write(&namespace_sem);
1882 	release_mounts(&umount_list);
1883 	kfree(namespace);
1884 }
1885