1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 #include <linux/nstree.h>
37
38 #include "pnode.h"
39 #include "internal.h"
40
41 /* Maximum number of mounts in a mount namespace */
42 static unsigned int sysctl_mount_max __read_mostly = 100000;
43
44 static unsigned int m_hash_mask __ro_after_init;
45 static unsigned int m_hash_shift __ro_after_init;
46 static unsigned int mp_hash_mask __ro_after_init;
47 static unsigned int mp_hash_shift __ro_after_init;
48
49 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)50 static int __init set_mhash_entries(char *str)
51 {
52 if (!str)
53 return 0;
54 mhash_entries = simple_strtoul(str, &str, 0);
55 return 1;
56 }
57 __setup("mhash_entries=", set_mhash_entries);
58
59 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)60 static int __init set_mphash_entries(char *str)
61 {
62 if (!str)
63 return 0;
64 mphash_entries = simple_strtoul(str, &str, 0);
65 return 1;
66 }
67 __setup("mphash_entries=", set_mphash_entries);
68
69 static char * __initdata initramfs_options;
initramfs_options_setup(char * str)70 static int __init initramfs_options_setup(char *str)
71 {
72 initramfs_options = str;
73 return 1;
74 }
75
76 __setup("initramfs_options=", initramfs_options_setup);
77
78 static u64 event;
79 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
80 static DEFINE_IDA(mnt_group_ida);
81
82 /* Don't allow confusion with old 32bit mount ID */
83 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
84 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
85
86 static struct hlist_head *mount_hashtable __ro_after_init;
87 static struct hlist_head *mountpoint_hashtable __ro_after_init;
88 static struct kmem_cache *mnt_cache __ro_after_init;
89 static DECLARE_RWSEM(namespace_sem);
90 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
91 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
92 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
93
94 static inline void namespace_lock(void);
95 static void namespace_unlock(void);
96 DEFINE_LOCK_GUARD_0(namespace_excl, namespace_lock(), namespace_unlock())
97 DEFINE_LOCK_GUARD_0(namespace_shared, down_read(&namespace_sem),
98 up_read(&namespace_sem))
99
100 DEFINE_FREE(mntput, struct vfsmount *, if (!IS_ERR(_T)) mntput(_T))
101
102 #ifdef CONFIG_FSNOTIFY
103 LIST_HEAD(notify_list); /* protected by namespace_sem */
104 #endif
105
106 enum mount_kattr_flags_t {
107 MOUNT_KATTR_RECURSE = (1 << 0),
108 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1),
109 };
110
111 struct mount_kattr {
112 unsigned int attr_set;
113 unsigned int attr_clr;
114 unsigned int propagation;
115 unsigned int lookup_flags;
116 enum mount_kattr_flags_t kflags;
117 struct user_namespace *mnt_userns;
118 struct mnt_idmap *mnt_idmap;
119 };
120
121 /* /sys/fs */
122 struct kobject *fs_kobj __ro_after_init;
123 EXPORT_SYMBOL_GPL(fs_kobj);
124
125 /*
126 * vfsmount lock may be taken for read to prevent changes to the
127 * vfsmount hash, ie. during mountpoint lookups or walking back
128 * up the tree.
129 *
130 * It should be taken for write in all cases where the vfsmount
131 * tree or hash is modified or when a vfsmount structure is modified.
132 */
133 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
134
mnt_ns_release(struct mnt_namespace * ns)135 static void mnt_ns_release(struct mnt_namespace *ns)
136 {
137 /* keep alive for {list,stat}mount() */
138 if (ns && refcount_dec_and_test(&ns->passive)) {
139 fsnotify_mntns_delete(ns);
140 put_user_ns(ns->user_ns);
141 kfree(ns);
142 }
143 }
144 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *,
145 if (!IS_ERR(_T)) mnt_ns_release(_T))
146
mnt_ns_release_rcu(struct rcu_head * rcu)147 static void mnt_ns_release_rcu(struct rcu_head *rcu)
148 {
149 mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu));
150 }
151
mnt_ns_tree_remove(struct mnt_namespace * ns)152 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
153 {
154 /* remove from global mount namespace list */
155 if (ns_tree_active(ns))
156 ns_tree_remove(ns);
157
158 call_rcu(&ns->ns.ns_rcu, mnt_ns_release_rcu);
159 }
160
161 /*
162 * Lookup a mount namespace by id and take a passive reference count. Taking a
163 * passive reference means the mount namespace can be emptied if e.g., the last
164 * task holding an active reference exits. To access the mounts of the
165 * namespace the @namespace_sem must first be acquired. If the namespace has
166 * already shut down before acquiring @namespace_sem, {list,stat}mount() will
167 * see that the mount rbtree of the namespace is empty.
168 *
169 * Note the lookup is lockless protected by a sequence counter. We only
170 * need to guard against false negatives as false positives aren't
171 * possible. So if we didn't find a mount namespace and the sequence
172 * counter has changed we need to retry. If the sequence counter is
173 * still the same we know the search actually failed.
174 */
lookup_mnt_ns(u64 mnt_ns_id)175 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
176 {
177 struct mnt_namespace *mnt_ns;
178 struct ns_common *ns;
179
180 guard(rcu)();
181 ns = ns_tree_lookup_rcu(mnt_ns_id, CLONE_NEWNS);
182 if (!ns)
183 return NULL;
184
185 /*
186 * The last reference count is put with RCU delay so we can
187 * unconditonally acquire a reference here.
188 */
189 mnt_ns = container_of(ns, struct mnt_namespace, ns);
190 refcount_inc(&mnt_ns->passive);
191 return mnt_ns;
192 }
193
lock_mount_hash(void)194 static inline void lock_mount_hash(void)
195 {
196 write_seqlock(&mount_lock);
197 }
198
unlock_mount_hash(void)199 static inline void unlock_mount_hash(void)
200 {
201 write_sequnlock(&mount_lock);
202 }
203
m_hash(struct vfsmount * mnt,struct dentry * dentry)204 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
205 {
206 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
207 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
208 tmp = tmp + (tmp >> m_hash_shift);
209 return &mount_hashtable[tmp & m_hash_mask];
210 }
211
mp_hash(struct dentry * dentry)212 static inline struct hlist_head *mp_hash(struct dentry *dentry)
213 {
214 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
215 tmp = tmp + (tmp >> mp_hash_shift);
216 return &mountpoint_hashtable[tmp & mp_hash_mask];
217 }
218
mnt_alloc_id(struct mount * mnt)219 static int mnt_alloc_id(struct mount *mnt)
220 {
221 int res;
222
223 xa_lock(&mnt_id_xa);
224 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
225 if (!res)
226 mnt->mnt_id_unique = ++mnt_id_ctr;
227 xa_unlock(&mnt_id_xa);
228 return res;
229 }
230
mnt_free_id(struct mount * mnt)231 static void mnt_free_id(struct mount *mnt)
232 {
233 xa_erase(&mnt_id_xa, mnt->mnt_id);
234 }
235
236 /*
237 * Allocate a new peer group ID
238 */
mnt_alloc_group_id(struct mount * mnt)239 static int mnt_alloc_group_id(struct mount *mnt)
240 {
241 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
242
243 if (res < 0)
244 return res;
245 mnt->mnt_group_id = res;
246 return 0;
247 }
248
249 /*
250 * Release a peer group ID
251 */
mnt_release_group_id(struct mount * mnt)252 void mnt_release_group_id(struct mount *mnt)
253 {
254 ida_free(&mnt_group_ida, mnt->mnt_group_id);
255 mnt->mnt_group_id = 0;
256 }
257
258 /*
259 * vfsmount lock must be held for read
260 */
mnt_add_count(struct mount * mnt,int n)261 static inline void mnt_add_count(struct mount *mnt, int n)
262 {
263 #ifdef CONFIG_SMP
264 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
265 #else
266 preempt_disable();
267 mnt->mnt_count += n;
268 preempt_enable();
269 #endif
270 }
271
272 /*
273 * vfsmount lock must be held for write
274 */
mnt_get_count(struct mount * mnt)275 int mnt_get_count(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 int count = 0;
279 int cpu;
280
281 for_each_possible_cpu(cpu) {
282 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
283 }
284
285 return count;
286 #else
287 return mnt->mnt_count;
288 #endif
289 }
290
alloc_vfsmnt(const char * name)291 static struct mount *alloc_vfsmnt(const char *name)
292 {
293 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
294 if (mnt) {
295 int err;
296
297 err = mnt_alloc_id(mnt);
298 if (err)
299 goto out_free_cache;
300
301 if (name)
302 mnt->mnt_devname = kstrdup_const(name,
303 GFP_KERNEL_ACCOUNT);
304 else
305 mnt->mnt_devname = "none";
306 if (!mnt->mnt_devname)
307 goto out_free_id;
308
309 #ifdef CONFIG_SMP
310 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
311 if (!mnt->mnt_pcp)
312 goto out_free_devname;
313
314 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
315 #else
316 mnt->mnt_count = 1;
317 mnt->mnt_writers = 0;
318 #endif
319
320 INIT_HLIST_NODE(&mnt->mnt_hash);
321 INIT_LIST_HEAD(&mnt->mnt_child);
322 INIT_LIST_HEAD(&mnt->mnt_mounts);
323 INIT_LIST_HEAD(&mnt->mnt_list);
324 INIT_LIST_HEAD(&mnt->mnt_expire);
325 INIT_LIST_HEAD(&mnt->mnt_share);
326 INIT_HLIST_HEAD(&mnt->mnt_slave_list);
327 INIT_HLIST_NODE(&mnt->mnt_slave);
328 INIT_HLIST_NODE(&mnt->mnt_mp_list);
329 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
330 RB_CLEAR_NODE(&mnt->mnt_node);
331 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
332 }
333 return mnt;
334
335 #ifdef CONFIG_SMP
336 out_free_devname:
337 kfree_const(mnt->mnt_devname);
338 #endif
339 out_free_id:
340 mnt_free_id(mnt);
341 out_free_cache:
342 kmem_cache_free(mnt_cache, mnt);
343 return NULL;
344 }
345
346 /*
347 * Most r/o checks on a fs are for operations that take
348 * discrete amounts of time, like a write() or unlink().
349 * We must keep track of when those operations start
350 * (for permission checks) and when they end, so that
351 * we can determine when writes are able to occur to
352 * a filesystem.
353 */
354 /*
355 * __mnt_is_readonly: check whether a mount is read-only
356 * @mnt: the mount to check for its write status
357 *
358 * This shouldn't be used directly ouside of the VFS.
359 * It does not guarantee that the filesystem will stay
360 * r/w, just that it is right *now*. This can not and
361 * should not be used in place of IS_RDONLY(inode).
362 * mnt_want/drop_write() will _keep_ the filesystem
363 * r/w.
364 */
__mnt_is_readonly(const struct vfsmount * mnt)365 bool __mnt_is_readonly(const struct vfsmount *mnt)
366 {
367 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
368 }
369 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
370
mnt_inc_writers(struct mount * mnt)371 static inline void mnt_inc_writers(struct mount *mnt)
372 {
373 #ifdef CONFIG_SMP
374 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
375 #else
376 mnt->mnt_writers++;
377 #endif
378 }
379
mnt_dec_writers(struct mount * mnt)380 static inline void mnt_dec_writers(struct mount *mnt)
381 {
382 #ifdef CONFIG_SMP
383 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
384 #else
385 mnt->mnt_writers--;
386 #endif
387 }
388
mnt_get_writers(struct mount * mnt)389 static unsigned int mnt_get_writers(struct mount *mnt)
390 {
391 #ifdef CONFIG_SMP
392 unsigned int count = 0;
393 int cpu;
394
395 for_each_possible_cpu(cpu) {
396 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
397 }
398
399 return count;
400 #else
401 return mnt->mnt_writers;
402 #endif
403 }
404
mnt_is_readonly(const struct vfsmount * mnt)405 static int mnt_is_readonly(const struct vfsmount *mnt)
406 {
407 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
408 return 1;
409 /*
410 * The barrier pairs with the barrier in sb_start_ro_state_change()
411 * making sure if we don't see s_readonly_remount set yet, we also will
412 * not see any superblock / mount flag changes done by remount.
413 * It also pairs with the barrier in sb_end_ro_state_change()
414 * assuring that if we see s_readonly_remount already cleared, we will
415 * see the values of superblock / mount flags updated by remount.
416 */
417 smp_rmb();
418 return __mnt_is_readonly(mnt);
419 }
420
421 /*
422 * Most r/o & frozen checks on a fs are for operations that take discrete
423 * amounts of time, like a write() or unlink(). We must keep track of when
424 * those operations start (for permission checks) and when they end, so that we
425 * can determine when writes are able to occur to a filesystem.
426 */
427 /**
428 * mnt_get_write_access - get write access to a mount without freeze protection
429 * @m: the mount on which to take a write
430 *
431 * This tells the low-level filesystem that a write is about to be performed to
432 * it, and makes sure that writes are allowed (mnt it read-write) before
433 * returning success. This operation does not protect against filesystem being
434 * frozen. When the write operation is finished, mnt_put_write_access() must be
435 * called. This is effectively a refcount.
436 */
mnt_get_write_access(struct vfsmount * m)437 int mnt_get_write_access(struct vfsmount *m)
438 {
439 struct mount *mnt = real_mount(m);
440 int ret = 0;
441
442 preempt_disable();
443 mnt_inc_writers(mnt);
444 /*
445 * The store to mnt_inc_writers must be visible before we pass
446 * WRITE_HOLD loop below, so that the slowpath can see our
447 * incremented count after it has set WRITE_HOLD.
448 */
449 smp_mb();
450 might_lock(&mount_lock.lock);
451 while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) {
452 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
453 cpu_relax();
454 } else {
455 /*
456 * This prevents priority inversion, if the task
457 * setting WRITE_HOLD got preempted on a remote
458 * CPU, and it prevents life lock if the task setting
459 * WRITE_HOLD has a lower priority and is bound to
460 * the same CPU as the task that is spinning here.
461 */
462 preempt_enable();
463 read_seqlock_excl(&mount_lock);
464 read_sequnlock_excl(&mount_lock);
465 preempt_disable();
466 }
467 }
468 /*
469 * The barrier pairs with the barrier sb_start_ro_state_change() making
470 * sure that if we see WRITE_HOLD cleared, we will also see
471 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
472 * mnt_is_readonly() and bail in case we are racing with remount
473 * read-only.
474 */
475 smp_rmb();
476 if (mnt_is_readonly(m)) {
477 mnt_dec_writers(mnt);
478 ret = -EROFS;
479 }
480 preempt_enable();
481
482 return ret;
483 }
484 EXPORT_SYMBOL_GPL(mnt_get_write_access);
485
486 /**
487 * mnt_want_write - get write access to a mount
488 * @m: the mount on which to take a write
489 *
490 * This tells the low-level filesystem that a write is about to be performed to
491 * it, and makes sure that writes are allowed (mount is read-write, filesystem
492 * is not frozen) before returning success. When the write operation is
493 * finished, mnt_drop_write() must be called. This is effectively a refcount.
494 */
mnt_want_write(struct vfsmount * m)495 int mnt_want_write(struct vfsmount *m)
496 {
497 int ret;
498
499 sb_start_write(m->mnt_sb);
500 ret = mnt_get_write_access(m);
501 if (ret)
502 sb_end_write(m->mnt_sb);
503 return ret;
504 }
505 EXPORT_SYMBOL_GPL(mnt_want_write);
506
507 /**
508 * mnt_get_write_access_file - get write access to a file's mount
509 * @file: the file who's mount on which to take a write
510 *
511 * This is like mnt_get_write_access, but if @file is already open for write it
512 * skips incrementing mnt_writers (since the open file already has a reference)
513 * and instead only does the check for emergency r/o remounts. This must be
514 * paired with mnt_put_write_access_file.
515 */
mnt_get_write_access_file(struct file * file)516 int mnt_get_write_access_file(struct file *file)
517 {
518 if (file->f_mode & FMODE_WRITER) {
519 /*
520 * Superblock may have become readonly while there are still
521 * writable fd's, e.g. due to a fs error with errors=remount-ro
522 */
523 if (__mnt_is_readonly(file->f_path.mnt))
524 return -EROFS;
525 return 0;
526 }
527 return mnt_get_write_access(file->f_path.mnt);
528 }
529
530 /**
531 * mnt_want_write_file - get write access to a file's mount
532 * @file: the file who's mount on which to take a write
533 *
534 * This is like mnt_want_write, but if the file is already open for writing it
535 * skips incrementing mnt_writers (since the open file already has a reference)
536 * and instead only does the freeze protection and the check for emergency r/o
537 * remounts. This must be paired with mnt_drop_write_file.
538 */
mnt_want_write_file(struct file * file)539 int mnt_want_write_file(struct file *file)
540 {
541 int ret;
542
543 sb_start_write(file_inode(file)->i_sb);
544 ret = mnt_get_write_access_file(file);
545 if (ret)
546 sb_end_write(file_inode(file)->i_sb);
547 return ret;
548 }
549 EXPORT_SYMBOL_GPL(mnt_want_write_file);
550
551 /**
552 * mnt_put_write_access - give up write access to a mount
553 * @mnt: the mount on which to give up write access
554 *
555 * Tells the low-level filesystem that we are done
556 * performing writes to it. Must be matched with
557 * mnt_get_write_access() call above.
558 */
mnt_put_write_access(struct vfsmount * mnt)559 void mnt_put_write_access(struct vfsmount *mnt)
560 {
561 preempt_disable();
562 mnt_dec_writers(real_mount(mnt));
563 preempt_enable();
564 }
565 EXPORT_SYMBOL_GPL(mnt_put_write_access);
566
567 /**
568 * mnt_drop_write - give up write access to a mount
569 * @mnt: the mount on which to give up write access
570 *
571 * Tells the low-level filesystem that we are done performing writes to it and
572 * also allows filesystem to be frozen again. Must be matched with
573 * mnt_want_write() call above.
574 */
mnt_drop_write(struct vfsmount * mnt)575 void mnt_drop_write(struct vfsmount *mnt)
576 {
577 mnt_put_write_access(mnt);
578 sb_end_write(mnt->mnt_sb);
579 }
580 EXPORT_SYMBOL_GPL(mnt_drop_write);
581
mnt_put_write_access_file(struct file * file)582 void mnt_put_write_access_file(struct file *file)
583 {
584 if (!(file->f_mode & FMODE_WRITER))
585 mnt_put_write_access(file->f_path.mnt);
586 }
587
mnt_drop_write_file(struct file * file)588 void mnt_drop_write_file(struct file *file)
589 {
590 mnt_put_write_access_file(file);
591 sb_end_write(file_inode(file)->i_sb);
592 }
593 EXPORT_SYMBOL(mnt_drop_write_file);
594
595 /**
596 * mnt_hold_writers - prevent write access to the given mount
597 * @mnt: mnt to prevent write access to
598 *
599 * Prevents write access to @mnt if there are no active writers for @mnt.
600 * This function needs to be called and return successfully before changing
601 * properties of @mnt that need to remain stable for callers with write access
602 * to @mnt.
603 *
604 * After this functions has been called successfully callers must pair it with
605 * a call to mnt_unhold_writers() in order to stop preventing write access to
606 * @mnt.
607 *
608 * Context: This function expects to be in mount_locked_reader scope serializing
609 * setting WRITE_HOLD.
610 * Return: On success 0 is returned.
611 * On error, -EBUSY is returned.
612 */
mnt_hold_writers(struct mount * mnt)613 static inline int mnt_hold_writers(struct mount *mnt)
614 {
615 set_write_hold(mnt);
616 /*
617 * After storing WRITE_HOLD, we'll read the counters. This store
618 * should be visible before we do.
619 */
620 smp_mb();
621
622 /*
623 * With writers on hold, if this value is zero, then there are
624 * definitely no active writers (although held writers may subsequently
625 * increment the count, they'll have to wait, and decrement it after
626 * seeing MNT_READONLY).
627 *
628 * It is OK to have counter incremented on one CPU and decremented on
629 * another: the sum will add up correctly. The danger would be when we
630 * sum up each counter, if we read a counter before it is incremented,
631 * but then read another CPU's count which it has been subsequently
632 * decremented from -- we would see more decrements than we should.
633 * WRITE_HOLD protects against this scenario, because
634 * mnt_want_write first increments count, then smp_mb, then spins on
635 * WRITE_HOLD, so it can't be decremented by another CPU while
636 * we're counting up here.
637 */
638 if (mnt_get_writers(mnt) > 0)
639 return -EBUSY;
640
641 return 0;
642 }
643
644 /**
645 * mnt_unhold_writers - stop preventing write access to the given mount
646 * @mnt: mnt to stop preventing write access to
647 *
648 * Stop preventing write access to @mnt allowing callers to gain write access
649 * to @mnt again.
650 *
651 * This function can only be called after a call to mnt_hold_writers().
652 *
653 * Context: This function expects to be in the same mount_locked_reader scope
654 * as the matching mnt_hold_writers().
655 */
mnt_unhold_writers(struct mount * mnt)656 static inline void mnt_unhold_writers(struct mount *mnt)
657 {
658 if (!test_write_hold(mnt))
659 return;
660 /*
661 * MNT_READONLY must become visible before ~WRITE_HOLD, so writers
662 * that become unheld will see MNT_READONLY.
663 */
664 smp_wmb();
665 clear_write_hold(mnt);
666 }
667
mnt_del_instance(struct mount * m)668 static inline void mnt_del_instance(struct mount *m)
669 {
670 struct mount **p = m->mnt_pprev_for_sb;
671 struct mount *next = m->mnt_next_for_sb;
672
673 if (next)
674 next->mnt_pprev_for_sb = p;
675 *p = next;
676 }
677
mnt_add_instance(struct mount * m,struct super_block * s)678 static inline void mnt_add_instance(struct mount *m, struct super_block *s)
679 {
680 struct mount *first = s->s_mounts;
681
682 if (first)
683 first->mnt_pprev_for_sb = &m->mnt_next_for_sb;
684 m->mnt_next_for_sb = first;
685 m->mnt_pprev_for_sb = &s->s_mounts;
686 s->s_mounts = m;
687 }
688
mnt_make_readonly(struct mount * mnt)689 static int mnt_make_readonly(struct mount *mnt)
690 {
691 int ret;
692
693 ret = mnt_hold_writers(mnt);
694 if (!ret)
695 mnt->mnt.mnt_flags |= MNT_READONLY;
696 mnt_unhold_writers(mnt);
697 return ret;
698 }
699
sb_prepare_remount_readonly(struct super_block * sb)700 int sb_prepare_remount_readonly(struct super_block *sb)
701 {
702 int err = 0;
703
704 /* Racy optimization. Recheck the counter under WRITE_HOLD */
705 if (atomic_long_read(&sb->s_remove_count))
706 return -EBUSY;
707
708 guard(mount_locked_reader)();
709
710 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
711 if (!(m->mnt.mnt_flags & MNT_READONLY)) {
712 err = mnt_hold_writers(m);
713 if (err)
714 break;
715 }
716 }
717 if (!err && atomic_long_read(&sb->s_remove_count))
718 err = -EBUSY;
719
720 if (!err)
721 sb_start_ro_state_change(sb);
722 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
723 if (test_write_hold(m))
724 clear_write_hold(m);
725 }
726
727 return err;
728 }
729
free_vfsmnt(struct mount * mnt)730 static void free_vfsmnt(struct mount *mnt)
731 {
732 mnt_idmap_put(mnt_idmap(&mnt->mnt));
733 kfree_const(mnt->mnt_devname);
734 #ifdef CONFIG_SMP
735 free_percpu(mnt->mnt_pcp);
736 #endif
737 kmem_cache_free(mnt_cache, mnt);
738 }
739
delayed_free_vfsmnt(struct rcu_head * head)740 static void delayed_free_vfsmnt(struct rcu_head *head)
741 {
742 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
743 }
744
745 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)746 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
747 {
748 struct mount *mnt;
749 if (read_seqretry(&mount_lock, seq))
750 return 1;
751 if (bastard == NULL)
752 return 0;
753 mnt = real_mount(bastard);
754 mnt_add_count(mnt, 1);
755 smp_mb(); // see mntput_no_expire() and do_umount()
756 if (likely(!read_seqretry(&mount_lock, seq)))
757 return 0;
758 lock_mount_hash();
759 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
760 mnt_add_count(mnt, -1);
761 unlock_mount_hash();
762 return 1;
763 }
764 unlock_mount_hash();
765 /* caller will mntput() */
766 return -1;
767 }
768
769 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)770 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
771 {
772 int res = __legitimize_mnt(bastard, seq);
773 if (likely(!res))
774 return true;
775 if (unlikely(res < 0)) {
776 rcu_read_unlock();
777 mntput(bastard);
778 rcu_read_lock();
779 }
780 return false;
781 }
782
783 /**
784 * __lookup_mnt - mount hash lookup
785 * @mnt: parent mount
786 * @dentry: dentry of mountpoint
787 *
788 * If @mnt has a child mount @c mounted on @dentry find and return it.
789 * Caller must either hold the spinlock component of @mount_lock or
790 * hold rcu_read_lock(), sample the seqcount component before the call
791 * and recheck it afterwards.
792 *
793 * Return: The child of @mnt mounted on @dentry or %NULL.
794 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)795 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
796 {
797 struct hlist_head *head = m_hash(mnt, dentry);
798 struct mount *p;
799
800 hlist_for_each_entry_rcu(p, head, mnt_hash)
801 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
802 return p;
803 return NULL;
804 }
805
806 /**
807 * lookup_mnt - Return the child mount mounted at given location
808 * @path: location in the namespace
809 *
810 * Acquires and returns a new reference to mount at given location
811 * or %NULL if nothing is mounted there.
812 */
lookup_mnt(const struct path * path)813 struct vfsmount *lookup_mnt(const struct path *path)
814 {
815 struct mount *child_mnt;
816 struct vfsmount *m;
817 unsigned seq;
818
819 rcu_read_lock();
820 do {
821 seq = read_seqbegin(&mount_lock);
822 child_mnt = __lookup_mnt(path->mnt, path->dentry);
823 m = child_mnt ? &child_mnt->mnt : NULL;
824 } while (!legitimize_mnt(m, seq));
825 rcu_read_unlock();
826 return m;
827 }
828
829 /*
830 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
831 * current mount namespace.
832 *
833 * The common case is dentries are not mountpoints at all and that
834 * test is handled inline. For the slow case when we are actually
835 * dealing with a mountpoint of some kind, walk through all of the
836 * mounts in the current mount namespace and test to see if the dentry
837 * is a mountpoint.
838 *
839 * The mount_hashtable is not usable in the context because we
840 * need to identify all mounts that may be in the current mount
841 * namespace not just a mount that happens to have some specified
842 * parent mount.
843 */
__is_local_mountpoint(const struct dentry * dentry)844 bool __is_local_mountpoint(const struct dentry *dentry)
845 {
846 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
847 struct mount *mnt, *n;
848
849 guard(namespace_shared)();
850
851 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node)
852 if (mnt->mnt_mountpoint == dentry)
853 return true;
854
855 return false;
856 }
857
858 struct pinned_mountpoint {
859 struct hlist_node node;
860 struct mountpoint *mp;
861 struct mount *parent;
862 };
863
lookup_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)864 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
865 {
866 struct hlist_head *chain = mp_hash(dentry);
867 struct mountpoint *mp;
868
869 hlist_for_each_entry(mp, chain, m_hash) {
870 if (mp->m_dentry == dentry) {
871 hlist_add_head(&m->node, &mp->m_list);
872 m->mp = mp;
873 return true;
874 }
875 }
876 return false;
877 }
878
get_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)879 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
880 {
881 struct mountpoint *mp __free(kfree) = NULL;
882 bool found;
883 int ret;
884
885 if (d_mountpoint(dentry)) {
886 /* might be worth a WARN_ON() */
887 if (d_unlinked(dentry))
888 return -ENOENT;
889 mountpoint:
890 read_seqlock_excl(&mount_lock);
891 found = lookup_mountpoint(dentry, m);
892 read_sequnlock_excl(&mount_lock);
893 if (found)
894 return 0;
895 }
896
897 if (!mp)
898 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
899 if (!mp)
900 return -ENOMEM;
901
902 /* Exactly one processes may set d_mounted */
903 ret = d_set_mounted(dentry);
904
905 /* Someone else set d_mounted? */
906 if (ret == -EBUSY)
907 goto mountpoint;
908
909 /* The dentry is not available as a mountpoint? */
910 if (ret)
911 return ret;
912
913 /* Add the new mountpoint to the hash table */
914 read_seqlock_excl(&mount_lock);
915 mp->m_dentry = dget(dentry);
916 hlist_add_head(&mp->m_hash, mp_hash(dentry));
917 INIT_HLIST_HEAD(&mp->m_list);
918 hlist_add_head(&m->node, &mp->m_list);
919 m->mp = no_free_ptr(mp);
920 read_sequnlock_excl(&mount_lock);
921 return 0;
922 }
923
924 /*
925 * vfsmount lock must be held. Additionally, the caller is responsible
926 * for serializing calls for given disposal list.
927 */
maybe_free_mountpoint(struct mountpoint * mp,struct list_head * list)928 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
929 {
930 if (hlist_empty(&mp->m_list)) {
931 struct dentry *dentry = mp->m_dentry;
932 spin_lock(&dentry->d_lock);
933 dentry->d_flags &= ~DCACHE_MOUNTED;
934 spin_unlock(&dentry->d_lock);
935 dput_to_list(dentry, list);
936 hlist_del(&mp->m_hash);
937 kfree(mp);
938 }
939 }
940
941 /*
942 * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
943 */
unpin_mountpoint(struct pinned_mountpoint * m)944 static void unpin_mountpoint(struct pinned_mountpoint *m)
945 {
946 if (m->mp) {
947 hlist_del(&m->node);
948 maybe_free_mountpoint(m->mp, &ex_mountpoints);
949 }
950 }
951
check_mnt(const struct mount * mnt)952 static inline int check_mnt(const struct mount *mnt)
953 {
954 return mnt->mnt_ns == current->nsproxy->mnt_ns;
955 }
956
check_anonymous_mnt(struct mount * mnt)957 static inline bool check_anonymous_mnt(struct mount *mnt)
958 {
959 u64 seq;
960
961 if (!is_anon_ns(mnt->mnt_ns))
962 return false;
963
964 seq = mnt->mnt_ns->seq_origin;
965 return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id);
966 }
967
968 /*
969 * vfsmount lock must be held for write
970 */
touch_mnt_namespace(struct mnt_namespace * ns)971 static void touch_mnt_namespace(struct mnt_namespace *ns)
972 {
973 if (ns) {
974 ns->event = ++event;
975 wake_up_interruptible(&ns->poll);
976 }
977 }
978
979 /*
980 * vfsmount lock must be held for write
981 */
__touch_mnt_namespace(struct mnt_namespace * ns)982 static void __touch_mnt_namespace(struct mnt_namespace *ns)
983 {
984 if (ns && ns->event != event) {
985 ns->event = event;
986 wake_up_interruptible(&ns->poll);
987 }
988 }
989
990 /*
991 * locks: mount_lock[write_seqlock]
992 */
__umount_mnt(struct mount * mnt,struct list_head * shrink_list)993 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
994 {
995 struct mountpoint *mp;
996 struct mount *parent = mnt->mnt_parent;
997 if (unlikely(parent->overmount == mnt))
998 parent->overmount = NULL;
999 mnt->mnt_parent = mnt;
1000 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1001 list_del_init(&mnt->mnt_child);
1002 hlist_del_init_rcu(&mnt->mnt_hash);
1003 hlist_del_init(&mnt->mnt_mp_list);
1004 mp = mnt->mnt_mp;
1005 mnt->mnt_mp = NULL;
1006 maybe_free_mountpoint(mp, shrink_list);
1007 }
1008
1009 /*
1010 * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1011 */
umount_mnt(struct mount * mnt)1012 static void umount_mnt(struct mount *mnt)
1013 {
1014 __umount_mnt(mnt, &ex_mountpoints);
1015 }
1016
1017 /*
1018 * vfsmount lock must be held for write
1019 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1020 void mnt_set_mountpoint(struct mount *mnt,
1021 struct mountpoint *mp,
1022 struct mount *child_mnt)
1023 {
1024 child_mnt->mnt_mountpoint = mp->m_dentry;
1025 child_mnt->mnt_parent = mnt;
1026 child_mnt->mnt_mp = mp;
1027 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1028 }
1029
make_visible(struct mount * mnt)1030 static void make_visible(struct mount *mnt)
1031 {
1032 struct mount *parent = mnt->mnt_parent;
1033 if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1034 parent->overmount = mnt;
1035 hlist_add_head_rcu(&mnt->mnt_hash,
1036 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1037 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1038 }
1039
1040 /**
1041 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1042 * list of child mounts
1043 * @parent: the parent
1044 * @mnt: the new mount
1045 * @mp: the new mountpoint
1046 *
1047 * Mount @mnt at @mp on @parent. Then attach @mnt
1048 * to @parent's child mount list and to @mount_hashtable.
1049 *
1050 * Note, when make_visible() is called @mnt->mnt_parent already points
1051 * to the correct parent.
1052 *
1053 * Context: This function expects namespace_lock() and lock_mount_hash()
1054 * to have been acquired in that order.
1055 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)1056 static void attach_mnt(struct mount *mnt, struct mount *parent,
1057 struct mountpoint *mp)
1058 {
1059 mnt_set_mountpoint(parent, mp, mnt);
1060 make_visible(mnt);
1061 }
1062
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1063 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1064 {
1065 struct mountpoint *old_mp = mnt->mnt_mp;
1066
1067 list_del_init(&mnt->mnt_child);
1068 hlist_del_init(&mnt->mnt_mp_list);
1069 hlist_del_init_rcu(&mnt->mnt_hash);
1070
1071 attach_mnt(mnt, parent, mp);
1072
1073 maybe_free_mountpoint(old_mp, &ex_mountpoints);
1074 }
1075
node_to_mount(struct rb_node * node)1076 static inline struct mount *node_to_mount(struct rb_node *node)
1077 {
1078 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1079 }
1080
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1081 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1082 {
1083 struct rb_node **link = &ns->mounts.rb_node;
1084 struct rb_node *parent = NULL;
1085 bool mnt_first_node = true, mnt_last_node = true;
1086
1087 WARN_ON(mnt_ns_attached(mnt));
1088 mnt->mnt_ns = ns;
1089 while (*link) {
1090 parent = *link;
1091 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1092 link = &parent->rb_left;
1093 mnt_last_node = false;
1094 } else {
1095 link = &parent->rb_right;
1096 mnt_first_node = false;
1097 }
1098 }
1099
1100 if (mnt_last_node)
1101 ns->mnt_last_node = &mnt->mnt_node;
1102 if (mnt_first_node)
1103 ns->mnt_first_node = &mnt->mnt_node;
1104 rb_link_node(&mnt->mnt_node, parent, link);
1105 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1106
1107 mnt_notify_add(mnt);
1108 }
1109
next_mnt(struct mount * p,struct mount * root)1110 static struct mount *next_mnt(struct mount *p, struct mount *root)
1111 {
1112 struct list_head *next = p->mnt_mounts.next;
1113 if (next == &p->mnt_mounts) {
1114 while (1) {
1115 if (p == root)
1116 return NULL;
1117 next = p->mnt_child.next;
1118 if (next != &p->mnt_parent->mnt_mounts)
1119 break;
1120 p = p->mnt_parent;
1121 }
1122 }
1123 return list_entry(next, struct mount, mnt_child);
1124 }
1125
skip_mnt_tree(struct mount * p)1126 static struct mount *skip_mnt_tree(struct mount *p)
1127 {
1128 struct list_head *prev = p->mnt_mounts.prev;
1129 while (prev != &p->mnt_mounts) {
1130 p = list_entry(prev, struct mount, mnt_child);
1131 prev = p->mnt_mounts.prev;
1132 }
1133 return p;
1134 }
1135
1136 /*
1137 * vfsmount lock must be held for write
1138 */
commit_tree(struct mount * mnt)1139 static void commit_tree(struct mount *mnt)
1140 {
1141 struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1142
1143 if (!mnt_ns_attached(mnt)) {
1144 for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1145 mnt_add_to_ns(n, m);
1146 n->nr_mounts += n->pending_mounts;
1147 n->pending_mounts = 0;
1148 }
1149
1150 make_visible(mnt);
1151 touch_mnt_namespace(n);
1152 }
1153
setup_mnt(struct mount * m,struct dentry * root)1154 static void setup_mnt(struct mount *m, struct dentry *root)
1155 {
1156 struct super_block *s = root->d_sb;
1157
1158 atomic_inc(&s->s_active);
1159 m->mnt.mnt_sb = s;
1160 m->mnt.mnt_root = dget(root);
1161 m->mnt_mountpoint = m->mnt.mnt_root;
1162 m->mnt_parent = m;
1163
1164 guard(mount_locked_reader)();
1165 mnt_add_instance(m, s);
1166 }
1167
1168 /**
1169 * vfs_create_mount - Create a mount for a configured superblock
1170 * @fc: The configuration context with the superblock attached
1171 *
1172 * Create a mount to an already configured superblock. If necessary, the
1173 * caller should invoke vfs_get_tree() before calling this.
1174 *
1175 * Note that this does not attach the mount to anything.
1176 */
vfs_create_mount(struct fs_context * fc)1177 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1178 {
1179 struct mount *mnt;
1180
1181 if (!fc->root)
1182 return ERR_PTR(-EINVAL);
1183
1184 mnt = alloc_vfsmnt(fc->source);
1185 if (!mnt)
1186 return ERR_PTR(-ENOMEM);
1187
1188 if (fc->sb_flags & SB_KERNMOUNT)
1189 mnt->mnt.mnt_flags = MNT_INTERNAL;
1190
1191 setup_mnt(mnt, fc->root);
1192
1193 return &mnt->mnt;
1194 }
1195 EXPORT_SYMBOL(vfs_create_mount);
1196
fc_mount(struct fs_context * fc)1197 struct vfsmount *fc_mount(struct fs_context *fc)
1198 {
1199 int err = vfs_get_tree(fc);
1200 if (!err) {
1201 up_write(&fc->root->d_sb->s_umount);
1202 return vfs_create_mount(fc);
1203 }
1204 return ERR_PTR(err);
1205 }
1206 EXPORT_SYMBOL(fc_mount);
1207
fc_mount_longterm(struct fs_context * fc)1208 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1209 {
1210 struct vfsmount *mnt = fc_mount(fc);
1211 if (!IS_ERR(mnt))
1212 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1213 return mnt;
1214 }
1215 EXPORT_SYMBOL(fc_mount_longterm);
1216
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1217 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1218 int flags, const char *name,
1219 void *data)
1220 {
1221 struct fs_context *fc;
1222 struct vfsmount *mnt;
1223 int ret = 0;
1224
1225 if (!type)
1226 return ERR_PTR(-EINVAL);
1227
1228 fc = fs_context_for_mount(type, flags);
1229 if (IS_ERR(fc))
1230 return ERR_CAST(fc);
1231
1232 if (name)
1233 ret = vfs_parse_fs_string(fc, "source", name);
1234 if (!ret)
1235 ret = parse_monolithic_mount_data(fc, data);
1236 if (!ret)
1237 mnt = fc_mount(fc);
1238 else
1239 mnt = ERR_PTR(ret);
1240
1241 put_fs_context(fc);
1242 return mnt;
1243 }
1244 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1245
clone_mnt(struct mount * old,struct dentry * root,int flag)1246 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1247 int flag)
1248 {
1249 struct mount *mnt;
1250 int err;
1251
1252 mnt = alloc_vfsmnt(old->mnt_devname);
1253 if (!mnt)
1254 return ERR_PTR(-ENOMEM);
1255
1256 mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1257 ~MNT_INTERNAL_FLAGS;
1258
1259 if (flag & (CL_SLAVE | CL_PRIVATE))
1260 mnt->mnt_group_id = 0; /* not a peer of original */
1261 else
1262 mnt->mnt_group_id = old->mnt_group_id;
1263
1264 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1265 err = mnt_alloc_group_id(mnt);
1266 if (err)
1267 goto out_free;
1268 }
1269
1270 if (mnt->mnt_group_id)
1271 set_mnt_shared(mnt);
1272
1273 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1274
1275 setup_mnt(mnt, root);
1276
1277 if (flag & CL_PRIVATE) // we are done with it
1278 return mnt;
1279
1280 if (peers(mnt, old))
1281 list_add(&mnt->mnt_share, &old->mnt_share);
1282
1283 if ((flag & CL_SLAVE) && old->mnt_group_id) {
1284 hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1285 mnt->mnt_master = old;
1286 } else if (IS_MNT_SLAVE(old)) {
1287 hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1288 mnt->mnt_master = old->mnt_master;
1289 }
1290 return mnt;
1291
1292 out_free:
1293 mnt_free_id(mnt);
1294 free_vfsmnt(mnt);
1295 return ERR_PTR(err);
1296 }
1297
cleanup_mnt(struct mount * mnt)1298 static void cleanup_mnt(struct mount *mnt)
1299 {
1300 struct hlist_node *p;
1301 struct mount *m;
1302 /*
1303 * The warning here probably indicates that somebody messed
1304 * up a mnt_want/drop_write() pair. If this happens, the
1305 * filesystem was probably unable to make r/w->r/o transitions.
1306 * The locking used to deal with mnt_count decrement provides barriers,
1307 * so mnt_get_writers() below is safe.
1308 */
1309 WARN_ON(mnt_get_writers(mnt));
1310 if (unlikely(mnt->mnt_pins.first))
1311 mnt_pin_kill(mnt);
1312 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1313 hlist_del(&m->mnt_umount);
1314 mntput(&m->mnt);
1315 }
1316 fsnotify_vfsmount_delete(&mnt->mnt);
1317 dput(mnt->mnt.mnt_root);
1318 deactivate_super(mnt->mnt.mnt_sb);
1319 mnt_free_id(mnt);
1320 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1321 }
1322
__cleanup_mnt(struct rcu_head * head)1323 static void __cleanup_mnt(struct rcu_head *head)
1324 {
1325 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1326 }
1327
1328 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1329 static void delayed_mntput(struct work_struct *unused)
1330 {
1331 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1332 struct mount *m, *t;
1333
1334 llist_for_each_entry_safe(m, t, node, mnt_llist)
1335 cleanup_mnt(m);
1336 }
1337 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1338
mntput_no_expire_slowpath(struct mount * mnt)1339 static void noinline mntput_no_expire_slowpath(struct mount *mnt)
1340 {
1341 LIST_HEAD(list);
1342 int count;
1343
1344 VFS_BUG_ON(mnt->mnt_ns);
1345 lock_mount_hash();
1346 /*
1347 * make sure that if __legitimize_mnt() has not seen us grab
1348 * mount_lock, we'll see their refcount increment here.
1349 */
1350 smp_mb();
1351 mnt_add_count(mnt, -1);
1352 count = mnt_get_count(mnt);
1353 if (count != 0) {
1354 WARN_ON(count < 0);
1355 rcu_read_unlock();
1356 unlock_mount_hash();
1357 return;
1358 }
1359 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1360 rcu_read_unlock();
1361 unlock_mount_hash();
1362 return;
1363 }
1364 mnt->mnt.mnt_flags |= MNT_DOOMED;
1365 rcu_read_unlock();
1366
1367 mnt_del_instance(mnt);
1368 if (unlikely(!list_empty(&mnt->mnt_expire)))
1369 list_del(&mnt->mnt_expire);
1370
1371 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1372 struct mount *p, *tmp;
1373 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1374 __umount_mnt(p, &list);
1375 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1376 }
1377 }
1378 unlock_mount_hash();
1379 shrink_dentry_list(&list);
1380
1381 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1382 struct task_struct *task = current;
1383 if (likely(!(task->flags & PF_KTHREAD))) {
1384 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1385 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1386 return;
1387 }
1388 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1389 schedule_delayed_work(&delayed_mntput_work, 1);
1390 return;
1391 }
1392 cleanup_mnt(mnt);
1393 }
1394
mntput_no_expire(struct mount * mnt)1395 static void mntput_no_expire(struct mount *mnt)
1396 {
1397 rcu_read_lock();
1398 if (likely(READ_ONCE(mnt->mnt_ns))) {
1399 /*
1400 * Since we don't do lock_mount_hash() here,
1401 * ->mnt_ns can change under us. However, if it's
1402 * non-NULL, then there's a reference that won't
1403 * be dropped until after an RCU delay done after
1404 * turning ->mnt_ns NULL. So if we observe it
1405 * non-NULL under rcu_read_lock(), the reference
1406 * we are dropping is not the final one.
1407 */
1408 mnt_add_count(mnt, -1);
1409 rcu_read_unlock();
1410 return;
1411 }
1412 mntput_no_expire_slowpath(mnt);
1413 }
1414
mntput(struct vfsmount * mnt)1415 void mntput(struct vfsmount *mnt)
1416 {
1417 if (mnt) {
1418 struct mount *m = real_mount(mnt);
1419 /* avoid cacheline pingpong */
1420 if (unlikely(m->mnt_expiry_mark))
1421 WRITE_ONCE(m->mnt_expiry_mark, 0);
1422 mntput_no_expire(m);
1423 }
1424 }
1425 EXPORT_SYMBOL(mntput);
1426
mntget(struct vfsmount * mnt)1427 struct vfsmount *mntget(struct vfsmount *mnt)
1428 {
1429 if (mnt)
1430 mnt_add_count(real_mount(mnt), 1);
1431 return mnt;
1432 }
1433 EXPORT_SYMBOL(mntget);
1434
1435 /*
1436 * Make a mount point inaccessible to new lookups.
1437 * Because there may still be current users, the caller MUST WAIT
1438 * for an RCU grace period before destroying the mount point.
1439 */
mnt_make_shortterm(struct vfsmount * mnt)1440 void mnt_make_shortterm(struct vfsmount *mnt)
1441 {
1442 if (mnt)
1443 real_mount(mnt)->mnt_ns = NULL;
1444 }
1445
1446 /**
1447 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1448 * @path: path to check
1449 *
1450 * d_mountpoint() can only be used reliably to establish if a dentry is
1451 * not mounted in any namespace and that common case is handled inline.
1452 * d_mountpoint() isn't aware of the possibility there may be multiple
1453 * mounts using a given dentry in a different namespace. This function
1454 * checks if the passed in path is a mountpoint rather than the dentry
1455 * alone.
1456 */
path_is_mountpoint(const struct path * path)1457 bool path_is_mountpoint(const struct path *path)
1458 {
1459 unsigned seq;
1460 bool res;
1461
1462 if (!d_mountpoint(path->dentry))
1463 return false;
1464
1465 rcu_read_lock();
1466 do {
1467 seq = read_seqbegin(&mount_lock);
1468 res = __path_is_mountpoint(path);
1469 } while (read_seqretry(&mount_lock, seq));
1470 rcu_read_unlock();
1471
1472 return res;
1473 }
1474 EXPORT_SYMBOL(path_is_mountpoint);
1475
mnt_clone_internal(const struct path * path)1476 struct vfsmount *mnt_clone_internal(const struct path *path)
1477 {
1478 struct mount *p;
1479 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1480 if (IS_ERR(p))
1481 return ERR_CAST(p);
1482 p->mnt.mnt_flags |= MNT_INTERNAL;
1483 return &p->mnt;
1484 }
1485
1486 /*
1487 * Returns the mount which either has the specified mnt_id, or has the next
1488 * smallest id afer the specified one.
1489 */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1490 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1491 {
1492 struct rb_node *node = ns->mounts.rb_node;
1493 struct mount *ret = NULL;
1494
1495 while (node) {
1496 struct mount *m = node_to_mount(node);
1497
1498 if (mnt_id <= m->mnt_id_unique) {
1499 ret = node_to_mount(node);
1500 if (mnt_id == m->mnt_id_unique)
1501 break;
1502 node = node->rb_left;
1503 } else {
1504 node = node->rb_right;
1505 }
1506 }
1507 return ret;
1508 }
1509
1510 /*
1511 * Returns the mount which either has the specified mnt_id, or has the next
1512 * greater id before the specified one.
1513 */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1514 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1515 {
1516 struct rb_node *node = ns->mounts.rb_node;
1517 struct mount *ret = NULL;
1518
1519 while (node) {
1520 struct mount *m = node_to_mount(node);
1521
1522 if (mnt_id >= m->mnt_id_unique) {
1523 ret = node_to_mount(node);
1524 if (mnt_id == m->mnt_id_unique)
1525 break;
1526 node = node->rb_right;
1527 } else {
1528 node = node->rb_left;
1529 }
1530 }
1531 return ret;
1532 }
1533
1534 #ifdef CONFIG_PROC_FS
1535
1536 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1537 static void *m_start(struct seq_file *m, loff_t *pos)
1538 {
1539 struct proc_mounts *p = m->private;
1540
1541 down_read(&namespace_sem);
1542
1543 return mnt_find_id_at(p->ns, *pos);
1544 }
1545
m_next(struct seq_file * m,void * v,loff_t * pos)1546 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1547 {
1548 struct mount *next = NULL, *mnt = v;
1549 struct rb_node *node = rb_next(&mnt->mnt_node);
1550
1551 ++*pos;
1552 if (node) {
1553 next = node_to_mount(node);
1554 *pos = next->mnt_id_unique;
1555 }
1556 return next;
1557 }
1558
m_stop(struct seq_file * m,void * v)1559 static void m_stop(struct seq_file *m, void *v)
1560 {
1561 up_read(&namespace_sem);
1562 }
1563
m_show(struct seq_file * m,void * v)1564 static int m_show(struct seq_file *m, void *v)
1565 {
1566 struct proc_mounts *p = m->private;
1567 struct mount *r = v;
1568 return p->show(m, &r->mnt);
1569 }
1570
1571 const struct seq_operations mounts_op = {
1572 .start = m_start,
1573 .next = m_next,
1574 .stop = m_stop,
1575 .show = m_show,
1576 };
1577
1578 #endif /* CONFIG_PROC_FS */
1579
1580 /**
1581 * may_umount_tree - check if a mount tree is busy
1582 * @m: root of mount tree
1583 *
1584 * This is called to check if a tree of mounts has any
1585 * open files, pwds, chroots or sub mounts that are
1586 * busy.
1587 */
may_umount_tree(struct vfsmount * m)1588 int may_umount_tree(struct vfsmount *m)
1589 {
1590 struct mount *mnt = real_mount(m);
1591 bool busy = false;
1592
1593 /* write lock needed for mnt_get_count */
1594 lock_mount_hash();
1595 for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1596 if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1597 busy = true;
1598 break;
1599 }
1600 }
1601 unlock_mount_hash();
1602
1603 return !busy;
1604 }
1605
1606 EXPORT_SYMBOL(may_umount_tree);
1607
1608 /**
1609 * may_umount - check if a mount point is busy
1610 * @mnt: root of mount
1611 *
1612 * This is called to check if a mount point has any
1613 * open files, pwds, chroots or sub mounts. If the
1614 * mount has sub mounts this will return busy
1615 * regardless of whether the sub mounts are busy.
1616 *
1617 * Doesn't take quota and stuff into account. IOW, in some cases it will
1618 * give false negatives. The main reason why it's here is that we need
1619 * a non-destructive way to look for easily umountable filesystems.
1620 */
may_umount(struct vfsmount * mnt)1621 int may_umount(struct vfsmount *mnt)
1622 {
1623 int ret = 1;
1624 down_read(&namespace_sem);
1625 lock_mount_hash();
1626 if (propagate_mount_busy(real_mount(mnt), 2))
1627 ret = 0;
1628 unlock_mount_hash();
1629 up_read(&namespace_sem);
1630 return ret;
1631 }
1632
1633 EXPORT_SYMBOL(may_umount);
1634
1635 #ifdef CONFIG_FSNOTIFY
mnt_notify(struct mount * p)1636 static void mnt_notify(struct mount *p)
1637 {
1638 if (!p->prev_ns && p->mnt_ns) {
1639 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1640 } else if (p->prev_ns && !p->mnt_ns) {
1641 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1642 } else if (p->prev_ns == p->mnt_ns) {
1643 fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1644 } else {
1645 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1646 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1647 }
1648 p->prev_ns = p->mnt_ns;
1649 }
1650
notify_mnt_list(void)1651 static void notify_mnt_list(void)
1652 {
1653 struct mount *m, *tmp;
1654 /*
1655 * Notify about mounts that were added/reparented/detached/remain
1656 * connected after unmount.
1657 */
1658 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) {
1659 mnt_notify(m);
1660 list_del_init(&m->to_notify);
1661 }
1662 }
1663
need_notify_mnt_list(void)1664 static bool need_notify_mnt_list(void)
1665 {
1666 return !list_empty(¬ify_list);
1667 }
1668 #else
notify_mnt_list(void)1669 static void notify_mnt_list(void)
1670 {
1671 }
1672
need_notify_mnt_list(void)1673 static bool need_notify_mnt_list(void)
1674 {
1675 return false;
1676 }
1677 #endif
1678
1679 static void free_mnt_ns(struct mnt_namespace *);
namespace_unlock(void)1680 static void namespace_unlock(void)
1681 {
1682 struct hlist_head head;
1683 struct hlist_node *p;
1684 struct mount *m;
1685 struct mnt_namespace *ns = emptied_ns;
1686 LIST_HEAD(list);
1687
1688 hlist_move_list(&unmounted, &head);
1689 list_splice_init(&ex_mountpoints, &list);
1690 emptied_ns = NULL;
1691
1692 if (need_notify_mnt_list()) {
1693 /*
1694 * No point blocking out concurrent readers while notifications
1695 * are sent. This will also allow statmount()/listmount() to run
1696 * concurrently.
1697 */
1698 downgrade_write(&namespace_sem);
1699 notify_mnt_list();
1700 up_read(&namespace_sem);
1701 } else {
1702 up_write(&namespace_sem);
1703 }
1704 if (unlikely(ns)) {
1705 /* Make sure we notice when we leak mounts. */
1706 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1707 free_mnt_ns(ns);
1708 }
1709
1710 shrink_dentry_list(&list);
1711
1712 if (likely(hlist_empty(&head)))
1713 return;
1714
1715 synchronize_rcu_expedited();
1716
1717 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1718 hlist_del(&m->mnt_umount);
1719 mntput(&m->mnt);
1720 }
1721 }
1722
namespace_lock(void)1723 static inline void namespace_lock(void)
1724 {
1725 down_write(&namespace_sem);
1726 }
1727
1728 enum umount_tree_flags {
1729 UMOUNT_SYNC = 1,
1730 UMOUNT_PROPAGATE = 2,
1731 UMOUNT_CONNECTED = 4,
1732 };
1733
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1734 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1735 {
1736 /* Leaving mounts connected is only valid for lazy umounts */
1737 if (how & UMOUNT_SYNC)
1738 return true;
1739
1740 /* A mount without a parent has nothing to be connected to */
1741 if (!mnt_has_parent(mnt))
1742 return true;
1743
1744 /* Because the reference counting rules change when mounts are
1745 * unmounted and connected, umounted mounts may not be
1746 * connected to mounted mounts.
1747 */
1748 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1749 return true;
1750
1751 /* Has it been requested that the mount remain connected? */
1752 if (how & UMOUNT_CONNECTED)
1753 return false;
1754
1755 /* Is the mount locked such that it needs to remain connected? */
1756 if (IS_MNT_LOCKED(mnt))
1757 return false;
1758
1759 /* By default disconnect the mount */
1760 return true;
1761 }
1762
1763 /*
1764 * mount_lock must be held
1765 * namespace_sem must be held for write
1766 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1767 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1768 {
1769 LIST_HEAD(tmp_list);
1770 struct mount *p;
1771
1772 if (how & UMOUNT_PROPAGATE)
1773 propagate_mount_unlock(mnt);
1774
1775 /* Gather the mounts to umount */
1776 for (p = mnt; p; p = next_mnt(p, mnt)) {
1777 p->mnt.mnt_flags |= MNT_UMOUNT;
1778 if (mnt_ns_attached(p))
1779 move_from_ns(p);
1780 list_add_tail(&p->mnt_list, &tmp_list);
1781 }
1782
1783 /* Hide the mounts from mnt_mounts */
1784 list_for_each_entry(p, &tmp_list, mnt_list) {
1785 list_del_init(&p->mnt_child);
1786 }
1787
1788 /* Add propagated mounts to the tmp_list */
1789 if (how & UMOUNT_PROPAGATE)
1790 propagate_umount(&tmp_list);
1791
1792 bulk_make_private(&tmp_list);
1793
1794 while (!list_empty(&tmp_list)) {
1795 struct mnt_namespace *ns;
1796 bool disconnect;
1797 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1798 list_del_init(&p->mnt_expire);
1799 list_del_init(&p->mnt_list);
1800 ns = p->mnt_ns;
1801 if (ns) {
1802 ns->nr_mounts--;
1803 __touch_mnt_namespace(ns);
1804 }
1805 p->mnt_ns = NULL;
1806 if (how & UMOUNT_SYNC)
1807 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1808
1809 disconnect = disconnect_mount(p, how);
1810 if (mnt_has_parent(p)) {
1811 if (!disconnect) {
1812 /* Don't forget about p */
1813 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1814 } else {
1815 umount_mnt(p);
1816 }
1817 }
1818 if (disconnect)
1819 hlist_add_head(&p->mnt_umount, &unmounted);
1820
1821 /*
1822 * At this point p->mnt_ns is NULL, notification will be queued
1823 * only if
1824 *
1825 * - p->prev_ns is non-NULL *and*
1826 * - p->prev_ns->n_fsnotify_marks is non-NULL
1827 *
1828 * This will preclude queuing the mount if this is a cleanup
1829 * after a failed copy_tree() or destruction of an anonymous
1830 * namespace, etc.
1831 */
1832 mnt_notify_add(p);
1833 }
1834 }
1835
1836 static void shrink_submounts(struct mount *mnt);
1837
do_umount_root(struct super_block * sb)1838 static int do_umount_root(struct super_block *sb)
1839 {
1840 int ret = 0;
1841
1842 down_write(&sb->s_umount);
1843 if (!sb_rdonly(sb)) {
1844 struct fs_context *fc;
1845
1846 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1847 SB_RDONLY);
1848 if (IS_ERR(fc)) {
1849 ret = PTR_ERR(fc);
1850 } else {
1851 ret = parse_monolithic_mount_data(fc, NULL);
1852 if (!ret)
1853 ret = reconfigure_super(fc);
1854 put_fs_context(fc);
1855 }
1856 }
1857 up_write(&sb->s_umount);
1858 return ret;
1859 }
1860
do_umount(struct mount * mnt,int flags)1861 static int do_umount(struct mount *mnt, int flags)
1862 {
1863 struct super_block *sb = mnt->mnt.mnt_sb;
1864 int retval;
1865
1866 retval = security_sb_umount(&mnt->mnt, flags);
1867 if (retval)
1868 return retval;
1869
1870 /*
1871 * Allow userspace to request a mountpoint be expired rather than
1872 * unmounting unconditionally. Unmount only happens if:
1873 * (1) the mark is already set (the mark is cleared by mntput())
1874 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1875 */
1876 if (flags & MNT_EXPIRE) {
1877 if (&mnt->mnt == current->fs->root.mnt ||
1878 flags & (MNT_FORCE | MNT_DETACH))
1879 return -EINVAL;
1880
1881 /*
1882 * probably don't strictly need the lock here if we examined
1883 * all race cases, but it's a slowpath.
1884 */
1885 lock_mount_hash();
1886 if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1887 unlock_mount_hash();
1888 return -EBUSY;
1889 }
1890 unlock_mount_hash();
1891
1892 if (!xchg(&mnt->mnt_expiry_mark, 1))
1893 return -EAGAIN;
1894 }
1895
1896 /*
1897 * If we may have to abort operations to get out of this
1898 * mount, and they will themselves hold resources we must
1899 * allow the fs to do things. In the Unix tradition of
1900 * 'Gee thats tricky lets do it in userspace' the umount_begin
1901 * might fail to complete on the first run through as other tasks
1902 * must return, and the like. Thats for the mount program to worry
1903 * about for the moment.
1904 */
1905
1906 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1907 sb->s_op->umount_begin(sb);
1908 }
1909
1910 /*
1911 * No sense to grab the lock for this test, but test itself looks
1912 * somewhat bogus. Suggestions for better replacement?
1913 * Ho-hum... In principle, we might treat that as umount + switch
1914 * to rootfs. GC would eventually take care of the old vfsmount.
1915 * Actually it makes sense, especially if rootfs would contain a
1916 * /reboot - static binary that would close all descriptors and
1917 * call reboot(9). Then init(8) could umount root and exec /reboot.
1918 */
1919 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1920 /*
1921 * Special case for "unmounting" root ...
1922 * we just try to remount it readonly.
1923 */
1924 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1925 return -EPERM;
1926 return do_umount_root(sb);
1927 }
1928
1929 namespace_lock();
1930 lock_mount_hash();
1931
1932 /* Repeat the earlier racy checks, now that we are holding the locks */
1933 retval = -EINVAL;
1934 if (!check_mnt(mnt))
1935 goto out;
1936
1937 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1938 goto out;
1939
1940 if (!mnt_has_parent(mnt)) /* not the absolute root */
1941 goto out;
1942
1943 event++;
1944 if (flags & MNT_DETACH) {
1945 umount_tree(mnt, UMOUNT_PROPAGATE);
1946 retval = 0;
1947 } else {
1948 smp_mb(); // paired with __legitimize_mnt()
1949 shrink_submounts(mnt);
1950 retval = -EBUSY;
1951 if (!propagate_mount_busy(mnt, 2)) {
1952 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1953 retval = 0;
1954 }
1955 }
1956 out:
1957 unlock_mount_hash();
1958 namespace_unlock();
1959 return retval;
1960 }
1961
1962 /*
1963 * __detach_mounts - lazily unmount all mounts on the specified dentry
1964 *
1965 * During unlink, rmdir, and d_drop it is possible to loose the path
1966 * to an existing mountpoint, and wind up leaking the mount.
1967 * detach_mounts allows lazily unmounting those mounts instead of
1968 * leaking them.
1969 *
1970 * The caller may hold dentry->d_inode->i_rwsem.
1971 */
__detach_mounts(struct dentry * dentry)1972 void __detach_mounts(struct dentry *dentry)
1973 {
1974 struct pinned_mountpoint mp = {};
1975 struct mount *mnt;
1976
1977 guard(namespace_excl)();
1978 guard(mount_writer)();
1979
1980 if (!lookup_mountpoint(dentry, &mp))
1981 return;
1982
1983 event++;
1984 while (mp.node.next) {
1985 mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
1986 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1987 umount_mnt(mnt);
1988 hlist_add_head(&mnt->mnt_umount, &unmounted);
1989 }
1990 else umount_tree(mnt, UMOUNT_CONNECTED);
1991 }
1992 unpin_mountpoint(&mp);
1993 }
1994
1995 /*
1996 * Is the caller allowed to modify his namespace?
1997 */
may_mount(void)1998 bool may_mount(void)
1999 {
2000 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2001 }
2002
warn_mandlock(void)2003 static void warn_mandlock(void)
2004 {
2005 pr_warn_once("=======================================================\n"
2006 "WARNING: The mand mount option has been deprecated and\n"
2007 " and is ignored by this kernel. Remove the mand\n"
2008 " option from the mount to silence this warning.\n"
2009 "=======================================================\n");
2010 }
2011
can_umount(const struct path * path,int flags)2012 static int can_umount(const struct path *path, int flags)
2013 {
2014 struct mount *mnt = real_mount(path->mnt);
2015 struct super_block *sb = path->dentry->d_sb;
2016
2017 if (!may_mount())
2018 return -EPERM;
2019 if (!path_mounted(path))
2020 return -EINVAL;
2021 if (!check_mnt(mnt))
2022 return -EINVAL;
2023 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2024 return -EINVAL;
2025 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2026 return -EPERM;
2027 return 0;
2028 }
2029
2030 // caller is responsible for flags being sane
path_umount(const struct path * path,int flags)2031 int path_umount(const struct path *path, int flags)
2032 {
2033 struct mount *mnt = real_mount(path->mnt);
2034 int ret;
2035
2036 ret = can_umount(path, flags);
2037 if (!ret)
2038 ret = do_umount(mnt, flags);
2039
2040 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2041 dput(path->dentry);
2042 mntput_no_expire(mnt);
2043 return ret;
2044 }
2045
ksys_umount(char __user * name,int flags)2046 static int ksys_umount(char __user *name, int flags)
2047 {
2048 int lookup_flags = LOOKUP_MOUNTPOINT;
2049 struct path path;
2050 int ret;
2051
2052 // basic validity checks done first
2053 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2054 return -EINVAL;
2055
2056 if (!(flags & UMOUNT_NOFOLLOW))
2057 lookup_flags |= LOOKUP_FOLLOW;
2058 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2059 if (ret)
2060 return ret;
2061 return path_umount(&path, flags);
2062 }
2063
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2064 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2065 {
2066 return ksys_umount(name, flags);
2067 }
2068
2069 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2070
2071 /*
2072 * The 2.0 compatible umount. No flags.
2073 */
SYSCALL_DEFINE1(oldumount,char __user *,name)2074 SYSCALL_DEFINE1(oldumount, char __user *, name)
2075 {
2076 return ksys_umount(name, 0);
2077 }
2078
2079 #endif
2080
is_mnt_ns_file(struct dentry * dentry)2081 static bool is_mnt_ns_file(struct dentry *dentry)
2082 {
2083 struct ns_common *ns;
2084
2085 /* Is this a proxy for a mount namespace? */
2086 if (dentry->d_op != &ns_dentry_operations)
2087 return false;
2088
2089 ns = d_inode(dentry)->i_private;
2090
2091 return ns->ops == &mntns_operations;
2092 }
2093
from_mnt_ns(struct mnt_namespace * mnt)2094 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2095 {
2096 return &mnt->ns;
2097 }
2098
get_sequential_mnt_ns(struct mnt_namespace * mntns,bool previous)2099 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2100 {
2101 struct ns_common *ns;
2102
2103 guard(rcu)();
2104
2105 for (;;) {
2106 ns = ns_tree_adjoined_rcu(mntns, previous);
2107 if (IS_ERR(ns))
2108 return ERR_CAST(ns);
2109
2110 mntns = to_mnt_ns(ns);
2111
2112 /*
2113 * The last passive reference count is put with RCU
2114 * delay so accessing the mount namespace is not just
2115 * safe but all relevant members are still valid.
2116 */
2117 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2118 continue;
2119
2120 /*
2121 * We need an active reference count as we're persisting
2122 * the mount namespace and it might already be on its
2123 * deathbed.
2124 */
2125 if (!ns_ref_get(mntns))
2126 continue;
2127
2128 return mntns;
2129 }
2130 }
2131
mnt_ns_from_dentry(struct dentry * dentry)2132 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2133 {
2134 if (!is_mnt_ns_file(dentry))
2135 return NULL;
2136
2137 return to_mnt_ns(get_proc_ns(dentry->d_inode));
2138 }
2139
mnt_ns_loop(struct dentry * dentry)2140 static bool mnt_ns_loop(struct dentry *dentry)
2141 {
2142 /* Could bind mounting the mount namespace inode cause a
2143 * mount namespace loop?
2144 */
2145 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2146
2147 if (!mnt_ns)
2148 return false;
2149
2150 return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id;
2151 }
2152
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2153 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2154 int flag)
2155 {
2156 struct mount *res, *src_parent, *src_root_child, *src_mnt,
2157 *dst_parent, *dst_mnt;
2158
2159 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2160 return ERR_PTR(-EINVAL);
2161
2162 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2163 return ERR_PTR(-EINVAL);
2164
2165 res = dst_mnt = clone_mnt(src_root, dentry, flag);
2166 if (IS_ERR(dst_mnt))
2167 return dst_mnt;
2168
2169 src_parent = src_root;
2170
2171 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2172 if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2173 continue;
2174
2175 for (src_mnt = src_root_child; src_mnt;
2176 src_mnt = next_mnt(src_mnt, src_root_child)) {
2177 if (!(flag & CL_COPY_UNBINDABLE) &&
2178 IS_MNT_UNBINDABLE(src_mnt)) {
2179 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2180 /* Both unbindable and locked. */
2181 dst_mnt = ERR_PTR(-EPERM);
2182 goto out;
2183 } else {
2184 src_mnt = skip_mnt_tree(src_mnt);
2185 continue;
2186 }
2187 }
2188 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2189 is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2190 src_mnt = skip_mnt_tree(src_mnt);
2191 continue;
2192 }
2193 while (src_parent != src_mnt->mnt_parent) {
2194 src_parent = src_parent->mnt_parent;
2195 dst_mnt = dst_mnt->mnt_parent;
2196 }
2197
2198 src_parent = src_mnt;
2199 dst_parent = dst_mnt;
2200 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2201 if (IS_ERR(dst_mnt))
2202 goto out;
2203 lock_mount_hash();
2204 if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2205 dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2206 if (unlikely(flag & CL_EXPIRE)) {
2207 /* stick the duplicate mount on the same expiry
2208 * list as the original if that was on one */
2209 if (!list_empty(&src_mnt->mnt_expire))
2210 list_add(&dst_mnt->mnt_expire,
2211 &src_mnt->mnt_expire);
2212 }
2213 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2214 unlock_mount_hash();
2215 }
2216 }
2217 return res;
2218
2219 out:
2220 if (res) {
2221 lock_mount_hash();
2222 umount_tree(res, UMOUNT_SYNC);
2223 unlock_mount_hash();
2224 }
2225 return dst_mnt;
2226 }
2227
extend_array(struct path ** res,struct path ** to_free,unsigned n,unsigned * count,unsigned new_count)2228 static inline bool extend_array(struct path **res, struct path **to_free,
2229 unsigned n, unsigned *count, unsigned new_count)
2230 {
2231 struct path *p;
2232
2233 if (likely(n < *count))
2234 return true;
2235 p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2236 if (p && *count)
2237 memcpy(p, *res, *count * sizeof(struct path));
2238 *count = new_count;
2239 kfree(*to_free);
2240 *to_free = *res = p;
2241 return p;
2242 }
2243
collect_paths(const struct path * path,struct path * prealloc,unsigned count)2244 const struct path *collect_paths(const struct path *path,
2245 struct path *prealloc, unsigned count)
2246 {
2247 struct mount *root = real_mount(path->mnt);
2248 struct mount *child;
2249 struct path *res = prealloc, *to_free = NULL;
2250 unsigned n = 0;
2251
2252 guard(namespace_shared)();
2253
2254 if (!check_mnt(root))
2255 return ERR_PTR(-EINVAL);
2256 if (!extend_array(&res, &to_free, 0, &count, 32))
2257 return ERR_PTR(-ENOMEM);
2258 res[n++] = *path;
2259 list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2260 if (!is_subdir(child->mnt_mountpoint, path->dentry))
2261 continue;
2262 for (struct mount *m = child; m; m = next_mnt(m, child)) {
2263 if (!extend_array(&res, &to_free, n, &count, 2 * count))
2264 return ERR_PTR(-ENOMEM);
2265 res[n].mnt = &m->mnt;
2266 res[n].dentry = m->mnt.mnt_root;
2267 n++;
2268 }
2269 }
2270 if (!extend_array(&res, &to_free, n, &count, count + 1))
2271 return ERR_PTR(-ENOMEM);
2272 memset(res + n, 0, (count - n) * sizeof(struct path));
2273 for (struct path *p = res; p->mnt; p++)
2274 path_get(p);
2275 return res;
2276 }
2277
drop_collected_paths(const struct path * paths,const struct path * prealloc)2278 void drop_collected_paths(const struct path *paths, const struct path *prealloc)
2279 {
2280 for (const struct path *p = paths; p->mnt; p++)
2281 path_put(p);
2282 if (paths != prealloc)
2283 kfree(paths);
2284 }
2285
2286 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2287
dissolve_on_fput(struct vfsmount * mnt)2288 void dissolve_on_fput(struct vfsmount *mnt)
2289 {
2290 struct mount *m = real_mount(mnt);
2291
2292 /*
2293 * m used to be the root of anon namespace; if it still is one,
2294 * we need to dissolve the mount tree and free that namespace.
2295 * Let's try to avoid taking namespace_sem if we can determine
2296 * that there's nothing to do without it - rcu_read_lock() is
2297 * enough to make anon_ns_root() memory-safe and once m has
2298 * left its namespace, it's no longer our concern, since it will
2299 * never become a root of anon ns again.
2300 */
2301
2302 scoped_guard(rcu) {
2303 if (!anon_ns_root(m))
2304 return;
2305 }
2306
2307 scoped_guard(namespace_excl) {
2308 if (!anon_ns_root(m))
2309 return;
2310
2311 emptied_ns = m->mnt_ns;
2312 lock_mount_hash();
2313 umount_tree(m, UMOUNT_CONNECTED);
2314 unlock_mount_hash();
2315 }
2316 }
2317
2318 /* locks: namespace_shared && pinned(mnt) || mount_locked_reader */
__has_locked_children(struct mount * mnt,struct dentry * dentry)2319 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2320 {
2321 struct mount *child;
2322
2323 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2324 if (!is_subdir(child->mnt_mountpoint, dentry))
2325 continue;
2326
2327 if (child->mnt.mnt_flags & MNT_LOCKED)
2328 return true;
2329 }
2330 return false;
2331 }
2332
has_locked_children(struct mount * mnt,struct dentry * dentry)2333 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2334 {
2335 guard(mount_locked_reader)();
2336 return __has_locked_children(mnt, dentry);
2337 }
2338
2339 /*
2340 * Check that there aren't references to earlier/same mount namespaces in the
2341 * specified subtree. Such references can act as pins for mount namespaces
2342 * that aren't checked by the mount-cycle checking code, thereby allowing
2343 * cycles to be made.
2344 *
2345 * locks: mount_locked_reader || namespace_shared && pinned(subtree)
2346 */
check_for_nsfs_mounts(struct mount * subtree)2347 static bool check_for_nsfs_mounts(struct mount *subtree)
2348 {
2349 for (struct mount *p = subtree; p; p = next_mnt(p, subtree))
2350 if (mnt_ns_loop(p->mnt.mnt_root))
2351 return false;
2352 return true;
2353 }
2354
2355 /**
2356 * clone_private_mount - create a private clone of a path
2357 * @path: path to clone
2358 *
2359 * This creates a new vfsmount, which will be the clone of @path. The new mount
2360 * will not be attached anywhere in the namespace and will be private (i.e.
2361 * changes to the originating mount won't be propagated into this).
2362 *
2363 * This assumes caller has called or done the equivalent of may_mount().
2364 *
2365 * Release with mntput().
2366 */
clone_private_mount(const struct path * path)2367 struct vfsmount *clone_private_mount(const struct path *path)
2368 {
2369 struct mount *old_mnt = real_mount(path->mnt);
2370 struct mount *new_mnt;
2371
2372 guard(namespace_shared)();
2373
2374 if (IS_MNT_UNBINDABLE(old_mnt))
2375 return ERR_PTR(-EINVAL);
2376
2377 /*
2378 * Make sure the source mount is acceptable.
2379 * Anything mounted in our mount namespace is allowed.
2380 * Otherwise, it must be the root of an anonymous mount
2381 * namespace, and we need to make sure no namespace
2382 * loops get created.
2383 */
2384 if (!check_mnt(old_mnt)) {
2385 if (!anon_ns_root(old_mnt))
2386 return ERR_PTR(-EINVAL);
2387
2388 if (!check_for_nsfs_mounts(old_mnt))
2389 return ERR_PTR(-EINVAL);
2390 }
2391
2392 if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2393 return ERR_PTR(-EPERM);
2394
2395 if (__has_locked_children(old_mnt, path->dentry))
2396 return ERR_PTR(-EINVAL);
2397
2398 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2399 if (IS_ERR(new_mnt))
2400 return ERR_PTR(-EINVAL);
2401
2402 /* Longterm mount to be removed by kern_unmount*() */
2403 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2404 return &new_mnt->mnt;
2405 }
2406 EXPORT_SYMBOL_GPL(clone_private_mount);
2407
lock_mnt_tree(struct mount * mnt)2408 static void lock_mnt_tree(struct mount *mnt)
2409 {
2410 struct mount *p;
2411
2412 for (p = mnt; p; p = next_mnt(p, mnt)) {
2413 int flags = p->mnt.mnt_flags;
2414 /* Don't allow unprivileged users to change mount flags */
2415 flags |= MNT_LOCK_ATIME;
2416
2417 if (flags & MNT_READONLY)
2418 flags |= MNT_LOCK_READONLY;
2419
2420 if (flags & MNT_NODEV)
2421 flags |= MNT_LOCK_NODEV;
2422
2423 if (flags & MNT_NOSUID)
2424 flags |= MNT_LOCK_NOSUID;
2425
2426 if (flags & MNT_NOEXEC)
2427 flags |= MNT_LOCK_NOEXEC;
2428 /* Don't allow unprivileged users to reveal what is under a mount */
2429 if (list_empty(&p->mnt_expire) && p != mnt)
2430 flags |= MNT_LOCKED;
2431 p->mnt.mnt_flags = flags;
2432 }
2433 }
2434
cleanup_group_ids(struct mount * mnt,struct mount * end)2435 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2436 {
2437 struct mount *p;
2438
2439 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2440 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2441 mnt_release_group_id(p);
2442 }
2443 }
2444
invent_group_ids(struct mount * mnt,bool recurse)2445 static int invent_group_ids(struct mount *mnt, bool recurse)
2446 {
2447 struct mount *p;
2448
2449 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2450 if (!p->mnt_group_id) {
2451 int err = mnt_alloc_group_id(p);
2452 if (err) {
2453 cleanup_group_ids(mnt, p);
2454 return err;
2455 }
2456 }
2457 }
2458
2459 return 0;
2460 }
2461
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2462 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2463 {
2464 unsigned int max = READ_ONCE(sysctl_mount_max);
2465 unsigned int mounts = 0;
2466 struct mount *p;
2467
2468 if (ns->nr_mounts >= max)
2469 return -ENOSPC;
2470 max -= ns->nr_mounts;
2471 if (ns->pending_mounts >= max)
2472 return -ENOSPC;
2473 max -= ns->pending_mounts;
2474
2475 for (p = mnt; p; p = next_mnt(p, mnt))
2476 mounts++;
2477
2478 if (mounts > max)
2479 return -ENOSPC;
2480
2481 ns->pending_mounts += mounts;
2482 return 0;
2483 }
2484
2485 enum mnt_tree_flags_t {
2486 MNT_TREE_BENEATH = BIT(0),
2487 MNT_TREE_PROPAGATION = BIT(1),
2488 };
2489
2490 /**
2491 * attach_recursive_mnt - attach a source mount tree
2492 * @source_mnt: mount tree to be attached
2493 * @dest: the context for mounting at the place where the tree should go
2494 *
2495 * NOTE: in the table below explains the semantics when a source mount
2496 * of a given type is attached to a destination mount of a given type.
2497 * ---------------------------------------------------------------------------
2498 * | BIND MOUNT OPERATION |
2499 * |**************************************************************************
2500 * | source-->| shared | private | slave | unbindable |
2501 * | dest | | | | |
2502 * | | | | | | |
2503 * | v | | | | |
2504 * |**************************************************************************
2505 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2506 * | | | | | |
2507 * |non-shared| shared (+) | private | slave (*) | invalid |
2508 * ***************************************************************************
2509 * A bind operation clones the source mount and mounts the clone on the
2510 * destination mount.
2511 *
2512 * (++) the cloned mount is propagated to all the mounts in the propagation
2513 * tree of the destination mount and the cloned mount is added to
2514 * the peer group of the source mount.
2515 * (+) the cloned mount is created under the destination mount and is marked
2516 * as shared. The cloned mount is added to the peer group of the source
2517 * mount.
2518 * (+++) the mount is propagated to all the mounts in the propagation tree
2519 * of the destination mount and the cloned mount is made slave
2520 * of the same master as that of the source mount. The cloned mount
2521 * is marked as 'shared and slave'.
2522 * (*) the cloned mount is made a slave of the same master as that of the
2523 * source mount.
2524 *
2525 * ---------------------------------------------------------------------------
2526 * | MOVE MOUNT OPERATION |
2527 * |**************************************************************************
2528 * | source-->| shared | private | slave | unbindable |
2529 * | dest | | | | |
2530 * | | | | | | |
2531 * | v | | | | |
2532 * |**************************************************************************
2533 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2534 * | | | | | |
2535 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2536 * ***************************************************************************
2537 *
2538 * (+) the mount is moved to the destination. And is then propagated to
2539 * all the mounts in the propagation tree of the destination mount.
2540 * (+*) the mount is moved to the destination.
2541 * (+++) the mount is moved to the destination and is then propagated to
2542 * all the mounts belonging to the destination mount's propagation tree.
2543 * the mount is marked as 'shared and slave'.
2544 * (*) the mount continues to be a slave at the new location.
2545 *
2546 * if the source mount is a tree, the operations explained above is
2547 * applied to each mount in the tree.
2548 * Must be called without spinlocks held, since this function can sleep
2549 * in allocations.
2550 *
2551 * Context: The function expects namespace_lock() to be held.
2552 * Return: If @source_mnt was successfully attached 0 is returned.
2553 * Otherwise a negative error code is returned.
2554 */
attach_recursive_mnt(struct mount * source_mnt,const struct pinned_mountpoint * dest)2555 static int attach_recursive_mnt(struct mount *source_mnt,
2556 const struct pinned_mountpoint *dest)
2557 {
2558 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2559 struct mount *dest_mnt = dest->parent;
2560 struct mountpoint *dest_mp = dest->mp;
2561 HLIST_HEAD(tree_list);
2562 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2563 struct pinned_mountpoint root = {};
2564 struct mountpoint *shorter = NULL;
2565 struct mount *child, *p;
2566 struct mount *top;
2567 struct hlist_node *n;
2568 int err = 0;
2569 bool moving = mnt_has_parent(source_mnt);
2570
2571 /*
2572 * Preallocate a mountpoint in case the new mounts need to be
2573 * mounted beneath mounts on the same mountpoint.
2574 */
2575 for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2576 if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2577 shorter = top->mnt_mp;
2578 }
2579 err = get_mountpoint(top->mnt.mnt_root, &root);
2580 if (err)
2581 return err;
2582
2583 /* Is there space to add these mounts to the mount namespace? */
2584 if (!moving) {
2585 err = count_mounts(ns, source_mnt);
2586 if (err)
2587 goto out;
2588 }
2589
2590 if (IS_MNT_SHARED(dest_mnt)) {
2591 err = invent_group_ids(source_mnt, true);
2592 if (err)
2593 goto out;
2594 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2595 }
2596 lock_mount_hash();
2597 if (err)
2598 goto out_cleanup_ids;
2599
2600 if (IS_MNT_SHARED(dest_mnt)) {
2601 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2602 set_mnt_shared(p);
2603 }
2604
2605 if (moving) {
2606 umount_mnt(source_mnt);
2607 mnt_notify_add(source_mnt);
2608 /* if the mount is moved, it should no longer be expired
2609 * automatically */
2610 list_del_init(&source_mnt->mnt_expire);
2611 } else {
2612 if (source_mnt->mnt_ns) {
2613 /* move from anon - the caller will destroy */
2614 emptied_ns = source_mnt->mnt_ns;
2615 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2616 move_from_ns(p);
2617 }
2618 }
2619
2620 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2621 /*
2622 * Now the original copy is in the same state as the secondaries -
2623 * its root attached to mountpoint, but not hashed and all mounts
2624 * in it are either in our namespace or in no namespace at all.
2625 * Add the original to the list of copies and deal with the
2626 * rest of work for all of them uniformly.
2627 */
2628 hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2629
2630 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2631 struct mount *q;
2632 hlist_del_init(&child->mnt_hash);
2633 /* Notice when we are propagating across user namespaces */
2634 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2635 lock_mnt_tree(child);
2636 q = __lookup_mnt(&child->mnt_parent->mnt,
2637 child->mnt_mountpoint);
2638 commit_tree(child);
2639 if (q) {
2640 struct mount *r = topmost_overmount(child);
2641 struct mountpoint *mp = root.mp;
2642
2643 if (unlikely(shorter) && child != source_mnt)
2644 mp = shorter;
2645 mnt_change_mountpoint(r, mp, q);
2646 }
2647 }
2648 unpin_mountpoint(&root);
2649 unlock_mount_hash();
2650
2651 return 0;
2652
2653 out_cleanup_ids:
2654 while (!hlist_empty(&tree_list)) {
2655 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2656 child->mnt_parent->mnt_ns->pending_mounts = 0;
2657 umount_tree(child, UMOUNT_SYNC);
2658 }
2659 unlock_mount_hash();
2660 cleanup_group_ids(source_mnt, NULL);
2661 out:
2662 ns->pending_mounts = 0;
2663
2664 read_seqlock_excl(&mount_lock);
2665 unpin_mountpoint(&root);
2666 read_sequnlock_excl(&mount_lock);
2667
2668 return err;
2669 }
2670
where_to_mount(const struct path * path,struct dentry ** dentry,bool beneath)2671 static inline struct mount *where_to_mount(const struct path *path,
2672 struct dentry **dentry,
2673 bool beneath)
2674 {
2675 struct mount *m;
2676
2677 if (unlikely(beneath)) {
2678 m = topmost_overmount(real_mount(path->mnt));
2679 *dentry = m->mnt_mountpoint;
2680 return m->mnt_parent;
2681 }
2682 m = __lookup_mnt(path->mnt, path->dentry);
2683 if (unlikely(m)) {
2684 m = topmost_overmount(m);
2685 *dentry = m->mnt.mnt_root;
2686 return m;
2687 }
2688 *dentry = path->dentry;
2689 return real_mount(path->mnt);
2690 }
2691
2692 /**
2693 * do_lock_mount - acquire environment for mounting
2694 * @path: target path
2695 * @res: context to set up
2696 * @beneath: whether the intention is to mount beneath @path
2697 *
2698 * To mount something at given location, we need
2699 * namespace_sem locked exclusive
2700 * inode of dentry we are mounting on locked exclusive
2701 * struct mountpoint for that dentry
2702 * struct mount we are mounting on
2703 *
2704 * Results are stored in caller-supplied context (pinned_mountpoint);
2705 * on success we have res->parent and res->mp pointing to parent and
2706 * mountpoint respectively and res->node inserted into the ->m_list
2707 * of the mountpoint, making sure the mountpoint won't disappear.
2708 * On failure we have res->parent set to ERR_PTR(-E...), res->mp
2709 * left NULL, res->node - empty.
2710 * In case of success do_lock_mount returns with locks acquired (in
2711 * proper order - inode lock nests outside of namespace_sem).
2712 *
2713 * Request to mount on overmounted location is treated as "mount on
2714 * top of whatever's overmounting it"; request to mount beneath
2715 * a location - "mount immediately beneath the topmost mount at that
2716 * place".
2717 *
2718 * In all cases the location must not have been unmounted and the
2719 * chosen mountpoint must be allowed to be mounted on. For "beneath"
2720 * case we also require the location to be at the root of a mount
2721 * that has a parent (i.e. is not a root of some namespace).
2722 */
do_lock_mount(const struct path * path,struct pinned_mountpoint * res,bool beneath)2723 static void do_lock_mount(const struct path *path,
2724 struct pinned_mountpoint *res,
2725 bool beneath)
2726 {
2727 int err;
2728
2729 if (unlikely(beneath) && !path_mounted(path)) {
2730 res->parent = ERR_PTR(-EINVAL);
2731 return;
2732 }
2733
2734 do {
2735 struct dentry *dentry, *d;
2736 struct mount *m, *n;
2737
2738 scoped_guard(mount_locked_reader) {
2739 m = where_to_mount(path, &dentry, beneath);
2740 if (&m->mnt != path->mnt) {
2741 mntget(&m->mnt);
2742 dget(dentry);
2743 }
2744 }
2745
2746 inode_lock(dentry->d_inode);
2747 namespace_lock();
2748
2749 // check if the chain of mounts (if any) has changed.
2750 scoped_guard(mount_locked_reader)
2751 n = where_to_mount(path, &d, beneath);
2752
2753 if (unlikely(n != m || dentry != d))
2754 err = -EAGAIN; // something moved, retry
2755 else if (unlikely(cant_mount(dentry) || !is_mounted(path->mnt)))
2756 err = -ENOENT; // not to be mounted on
2757 else if (beneath && &m->mnt == path->mnt && !m->overmount)
2758 err = -EINVAL;
2759 else
2760 err = get_mountpoint(dentry, res);
2761
2762 if (unlikely(err)) {
2763 res->parent = ERR_PTR(err);
2764 namespace_unlock();
2765 inode_unlock(dentry->d_inode);
2766 } else {
2767 res->parent = m;
2768 }
2769 /*
2770 * Drop the temporary references. This is subtle - on success
2771 * we are doing that under namespace_sem, which would normally
2772 * be forbidden. However, in that case we are guaranteed that
2773 * refcounts won't reach zero, since we know that path->mnt
2774 * is mounted and thus all mounts reachable from it are pinned
2775 * and stable, along with their mountpoints and roots.
2776 */
2777 if (&m->mnt != path->mnt) {
2778 dput(dentry);
2779 mntput(&m->mnt);
2780 }
2781 } while (err == -EAGAIN);
2782 }
2783
__unlock_mount(struct pinned_mountpoint * m)2784 static void __unlock_mount(struct pinned_mountpoint *m)
2785 {
2786 inode_unlock(m->mp->m_dentry->d_inode);
2787 read_seqlock_excl(&mount_lock);
2788 unpin_mountpoint(m);
2789 read_sequnlock_excl(&mount_lock);
2790 namespace_unlock();
2791 }
2792
unlock_mount(struct pinned_mountpoint * m)2793 static inline void unlock_mount(struct pinned_mountpoint *m)
2794 {
2795 if (!IS_ERR(m->parent))
2796 __unlock_mount(m);
2797 }
2798
2799 #define LOCK_MOUNT_MAYBE_BENEATH(mp, path, beneath) \
2800 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2801 do_lock_mount((path), &mp, (beneath))
2802 #define LOCK_MOUNT(mp, path) LOCK_MOUNT_MAYBE_BENEATH(mp, (path), false)
2803 #define LOCK_MOUNT_EXACT(mp, path) \
2804 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2805 lock_mount_exact((path), &mp)
2806
graft_tree(struct mount * mnt,const struct pinned_mountpoint * mp)2807 static int graft_tree(struct mount *mnt, const struct pinned_mountpoint *mp)
2808 {
2809 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2810 return -EINVAL;
2811
2812 if (d_is_dir(mp->mp->m_dentry) !=
2813 d_is_dir(mnt->mnt.mnt_root))
2814 return -ENOTDIR;
2815
2816 return attach_recursive_mnt(mnt, mp);
2817 }
2818
may_change_propagation(const struct mount * m)2819 static int may_change_propagation(const struct mount *m)
2820 {
2821 struct mnt_namespace *ns = m->mnt_ns;
2822
2823 // it must be mounted in some namespace
2824 if (IS_ERR_OR_NULL(ns)) // is_mounted()
2825 return -EINVAL;
2826 // and the caller must be admin in userns of that namespace
2827 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2828 return -EPERM;
2829 return 0;
2830 }
2831
2832 /*
2833 * Sanity check the flags to change_mnt_propagation.
2834 */
2835
flags_to_propagation_type(int ms_flags)2836 static int flags_to_propagation_type(int ms_flags)
2837 {
2838 int type = ms_flags & ~(MS_REC | MS_SILENT);
2839
2840 /* Fail if any non-propagation flags are set */
2841 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2842 return 0;
2843 /* Only one propagation flag should be set */
2844 if (!is_power_of_2(type))
2845 return 0;
2846 return type;
2847 }
2848
2849 /*
2850 * recursively change the type of the mountpoint.
2851 */
do_change_type(const struct path * path,int ms_flags)2852 static int do_change_type(const struct path *path, int ms_flags)
2853 {
2854 struct mount *m;
2855 struct mount *mnt = real_mount(path->mnt);
2856 int recurse = ms_flags & MS_REC;
2857 int type;
2858 int err;
2859
2860 if (!path_mounted(path))
2861 return -EINVAL;
2862
2863 type = flags_to_propagation_type(ms_flags);
2864 if (!type)
2865 return -EINVAL;
2866
2867 guard(namespace_excl)();
2868
2869 err = may_change_propagation(mnt);
2870 if (err)
2871 return err;
2872
2873 if (type == MS_SHARED) {
2874 err = invent_group_ids(mnt, recurse);
2875 if (err)
2876 return err;
2877 }
2878
2879 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2880 change_mnt_propagation(m, type);
2881
2882 return 0;
2883 }
2884
2885 /* may_copy_tree() - check if a mount tree can be copied
2886 * @path: path to the mount tree to be copied
2887 *
2888 * This helper checks if the caller may copy the mount tree starting
2889 * from @path->mnt. The caller may copy the mount tree under the
2890 * following circumstances:
2891 *
2892 * (1) The caller is located in the mount namespace of the mount tree.
2893 * This also implies that the mount does not belong to an anonymous
2894 * mount namespace.
2895 * (2) The caller tries to copy an nfs mount referring to a mount
2896 * namespace, i.e., the caller is trying to copy a mount namespace
2897 * entry from nsfs.
2898 * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2899 * (4) The caller is trying to copy a mount tree that belongs to an
2900 * anonymous mount namespace.
2901 *
2902 * For that to be safe, this helper enforces that the origin mount
2903 * namespace the anonymous mount namespace was created from is the
2904 * same as the caller's mount namespace by comparing the sequence
2905 * numbers.
2906 *
2907 * This is not strictly necessary. The current semantics of the new
2908 * mount api enforce that the caller must be located in the same
2909 * mount namespace as the mount tree it interacts with. Using the
2910 * origin sequence number preserves these semantics even for
2911 * anonymous mount namespaces. However, one could envision extending
2912 * the api to directly operate across mount namespace if needed.
2913 *
2914 * The ownership of a non-anonymous mount namespace such as the
2915 * caller's cannot change.
2916 * => We know that the caller's mount namespace is stable.
2917 *
2918 * If the origin sequence number of the anonymous mount namespace is
2919 * the same as the sequence number of the caller's mount namespace.
2920 * => The owning namespaces are the same.
2921 *
2922 * ==> The earlier capability check on the owning namespace of the
2923 * caller's mount namespace ensures that the caller has the
2924 * ability to copy the mount tree.
2925 *
2926 * Returns true if the mount tree can be copied, false otherwise.
2927 */
may_copy_tree(const struct path * path)2928 static inline bool may_copy_tree(const struct path *path)
2929 {
2930 struct mount *mnt = real_mount(path->mnt);
2931 const struct dentry_operations *d_op;
2932
2933 if (check_mnt(mnt))
2934 return true;
2935
2936 d_op = path->dentry->d_op;
2937 if (d_op == &ns_dentry_operations)
2938 return true;
2939
2940 if (d_op == &pidfs_dentry_operations)
2941 return true;
2942
2943 if (!is_mounted(path->mnt))
2944 return false;
2945
2946 return check_anonymous_mnt(mnt);
2947 }
2948
2949
__do_loopback(const struct path * old_path,int recurse)2950 static struct mount *__do_loopback(const struct path *old_path, int recurse)
2951 {
2952 struct mount *old = real_mount(old_path->mnt);
2953
2954 if (IS_MNT_UNBINDABLE(old))
2955 return ERR_PTR(-EINVAL);
2956
2957 if (!may_copy_tree(old_path))
2958 return ERR_PTR(-EINVAL);
2959
2960 if (!recurse && __has_locked_children(old, old_path->dentry))
2961 return ERR_PTR(-EINVAL);
2962
2963 if (recurse)
2964 return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2965 else
2966 return clone_mnt(old, old_path->dentry, 0);
2967 }
2968
2969 /*
2970 * do loopback mount.
2971 */
do_loopback(const struct path * path,const char * old_name,int recurse)2972 static int do_loopback(const struct path *path, const char *old_name,
2973 int recurse)
2974 {
2975 struct path old_path __free(path_put) = {};
2976 struct mount *mnt = NULL;
2977 int err;
2978 if (!old_name || !*old_name)
2979 return -EINVAL;
2980 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2981 if (err)
2982 return err;
2983
2984 if (mnt_ns_loop(old_path.dentry))
2985 return -EINVAL;
2986
2987 LOCK_MOUNT(mp, path);
2988 if (IS_ERR(mp.parent))
2989 return PTR_ERR(mp.parent);
2990
2991 if (!check_mnt(mp.parent))
2992 return -EINVAL;
2993
2994 mnt = __do_loopback(&old_path, recurse);
2995 if (IS_ERR(mnt))
2996 return PTR_ERR(mnt);
2997
2998 err = graft_tree(mnt, &mp);
2999 if (err) {
3000 lock_mount_hash();
3001 umount_tree(mnt, UMOUNT_SYNC);
3002 unlock_mount_hash();
3003 }
3004 return err;
3005 }
3006
get_detached_copy(const struct path * path,bool recursive)3007 static struct mnt_namespace *get_detached_copy(const struct path *path, bool recursive)
3008 {
3009 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3010 struct user_namespace *user_ns = mnt_ns->user_ns;
3011 struct mount *mnt, *p;
3012
3013 ns = alloc_mnt_ns(user_ns, true);
3014 if (IS_ERR(ns))
3015 return ns;
3016
3017 guard(namespace_excl)();
3018
3019 /*
3020 * Record the sequence number of the source mount namespace.
3021 * This needs to hold namespace_sem to ensure that the mount
3022 * doesn't get attached.
3023 */
3024 if (is_mounted(path->mnt)) {
3025 src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3026 if (is_anon_ns(src_mnt_ns))
3027 ns->seq_origin = src_mnt_ns->seq_origin;
3028 else
3029 ns->seq_origin = src_mnt_ns->ns.ns_id;
3030 }
3031
3032 mnt = __do_loopback(path, recursive);
3033 if (IS_ERR(mnt)) {
3034 emptied_ns = ns;
3035 return ERR_CAST(mnt);
3036 }
3037
3038 for (p = mnt; p; p = next_mnt(p, mnt)) {
3039 mnt_add_to_ns(ns, p);
3040 ns->nr_mounts++;
3041 }
3042 ns->root = mnt;
3043 return ns;
3044 }
3045
open_detached_copy(struct path * path,bool recursive)3046 static struct file *open_detached_copy(struct path *path, bool recursive)
3047 {
3048 struct mnt_namespace *ns = get_detached_copy(path, recursive);
3049 struct file *file;
3050
3051 if (IS_ERR(ns))
3052 return ERR_CAST(ns);
3053
3054 mntput(path->mnt);
3055 path->mnt = mntget(&ns->root->mnt);
3056 file = dentry_open(path, O_PATH, current_cred());
3057 if (IS_ERR(file))
3058 dissolve_on_fput(path->mnt);
3059 else
3060 file->f_mode |= FMODE_NEED_UNMOUNT;
3061 return file;
3062 }
3063
vfs_open_tree(int dfd,const char __user * filename,unsigned int flags)3064 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3065 {
3066 int ret;
3067 struct path path __free(path_put) = {};
3068 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3069 bool detached = flags & OPEN_TREE_CLONE;
3070
3071 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3072
3073 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3074 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3075 OPEN_TREE_CLOEXEC))
3076 return ERR_PTR(-EINVAL);
3077
3078 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3079 return ERR_PTR(-EINVAL);
3080
3081 if (flags & AT_NO_AUTOMOUNT)
3082 lookup_flags &= ~LOOKUP_AUTOMOUNT;
3083 if (flags & AT_SYMLINK_NOFOLLOW)
3084 lookup_flags &= ~LOOKUP_FOLLOW;
3085 if (flags & AT_EMPTY_PATH)
3086 lookup_flags |= LOOKUP_EMPTY;
3087
3088 if (detached && !may_mount())
3089 return ERR_PTR(-EPERM);
3090
3091 ret = user_path_at(dfd, filename, lookup_flags, &path);
3092 if (unlikely(ret))
3093 return ERR_PTR(ret);
3094
3095 if (detached)
3096 return open_detached_copy(&path, flags & AT_RECURSIVE);
3097
3098 return dentry_open(&path, O_PATH, current_cred());
3099 }
3100
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)3101 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3102 {
3103 int fd;
3104 struct file *file __free(fput) = NULL;
3105
3106 file = vfs_open_tree(dfd, filename, flags);
3107 if (IS_ERR(file))
3108 return PTR_ERR(file);
3109
3110 fd = get_unused_fd_flags(flags & O_CLOEXEC);
3111 if (fd < 0)
3112 return fd;
3113
3114 fd_install(fd, no_free_ptr(file));
3115 return fd;
3116 }
3117
3118 /*
3119 * Don't allow locked mount flags to be cleared.
3120 *
3121 * No locks need to be held here while testing the various MNT_LOCK
3122 * flags because those flags can never be cleared once they are set.
3123 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)3124 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3125 {
3126 unsigned int fl = mnt->mnt.mnt_flags;
3127
3128 if ((fl & MNT_LOCK_READONLY) &&
3129 !(mnt_flags & MNT_READONLY))
3130 return false;
3131
3132 if ((fl & MNT_LOCK_NODEV) &&
3133 !(mnt_flags & MNT_NODEV))
3134 return false;
3135
3136 if ((fl & MNT_LOCK_NOSUID) &&
3137 !(mnt_flags & MNT_NOSUID))
3138 return false;
3139
3140 if ((fl & MNT_LOCK_NOEXEC) &&
3141 !(mnt_flags & MNT_NOEXEC))
3142 return false;
3143
3144 if ((fl & MNT_LOCK_ATIME) &&
3145 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3146 return false;
3147
3148 return true;
3149 }
3150
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)3151 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3152 {
3153 bool readonly_request = (mnt_flags & MNT_READONLY);
3154
3155 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3156 return 0;
3157
3158 if (readonly_request)
3159 return mnt_make_readonly(mnt);
3160
3161 mnt->mnt.mnt_flags &= ~MNT_READONLY;
3162 return 0;
3163 }
3164
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)3165 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3166 {
3167 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3168 mnt->mnt.mnt_flags = mnt_flags;
3169 touch_mnt_namespace(mnt->mnt_ns);
3170 }
3171
mnt_warn_timestamp_expiry(const struct path * mountpoint,struct vfsmount * mnt)3172 static void mnt_warn_timestamp_expiry(const struct path *mountpoint,
3173 struct vfsmount *mnt)
3174 {
3175 struct super_block *sb = mnt->mnt_sb;
3176
3177 if (!__mnt_is_readonly(mnt) &&
3178 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3179 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3180 char *buf, *mntpath;
3181
3182 buf = (char *)__get_free_page(GFP_KERNEL);
3183 if (buf)
3184 mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3185 else
3186 mntpath = ERR_PTR(-ENOMEM);
3187 if (IS_ERR(mntpath))
3188 mntpath = "(unknown)";
3189
3190 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3191 sb->s_type->name,
3192 is_mounted(mnt) ? "remounted" : "mounted",
3193 mntpath, &sb->s_time_max,
3194 (unsigned long long)sb->s_time_max);
3195
3196 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3197 if (buf)
3198 free_page((unsigned long)buf);
3199 }
3200 }
3201
3202 /*
3203 * Handle reconfiguration of the mountpoint only without alteration of the
3204 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
3205 * to mount(2).
3206 */
do_reconfigure_mnt(const struct path * path,unsigned int mnt_flags)3207 static int do_reconfigure_mnt(const struct path *path, unsigned int mnt_flags)
3208 {
3209 struct super_block *sb = path->mnt->mnt_sb;
3210 struct mount *mnt = real_mount(path->mnt);
3211 int ret;
3212
3213 if (!check_mnt(mnt))
3214 return -EINVAL;
3215
3216 if (!path_mounted(path))
3217 return -EINVAL;
3218
3219 if (!can_change_locked_flags(mnt, mnt_flags))
3220 return -EPERM;
3221
3222 /*
3223 * We're only checking whether the superblock is read-only not
3224 * changing it, so only take down_read(&sb->s_umount).
3225 */
3226 down_read(&sb->s_umount);
3227 lock_mount_hash();
3228 ret = change_mount_ro_state(mnt, mnt_flags);
3229 if (ret == 0)
3230 set_mount_attributes(mnt, mnt_flags);
3231 unlock_mount_hash();
3232 up_read(&sb->s_umount);
3233
3234 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3235
3236 return ret;
3237 }
3238
3239 /*
3240 * change filesystem flags. dir should be a physical root of filesystem.
3241 * If you've mounted a non-root directory somewhere and want to do remount
3242 * on it - tough luck.
3243 */
do_remount(const struct path * path,int sb_flags,int mnt_flags,void * data)3244 static int do_remount(const struct path *path, int sb_flags,
3245 int mnt_flags, void *data)
3246 {
3247 int err;
3248 struct super_block *sb = path->mnt->mnt_sb;
3249 struct mount *mnt = real_mount(path->mnt);
3250 struct fs_context *fc;
3251
3252 if (!check_mnt(mnt))
3253 return -EINVAL;
3254
3255 if (!path_mounted(path))
3256 return -EINVAL;
3257
3258 if (!can_change_locked_flags(mnt, mnt_flags))
3259 return -EPERM;
3260
3261 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3262 if (IS_ERR(fc))
3263 return PTR_ERR(fc);
3264
3265 /*
3266 * Indicate to the filesystem that the remount request is coming
3267 * from the legacy mount system call.
3268 */
3269 fc->oldapi = true;
3270
3271 err = parse_monolithic_mount_data(fc, data);
3272 if (!err) {
3273 down_write(&sb->s_umount);
3274 err = -EPERM;
3275 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3276 err = reconfigure_super(fc);
3277 if (!err) {
3278 lock_mount_hash();
3279 set_mount_attributes(mnt, mnt_flags);
3280 unlock_mount_hash();
3281 }
3282 }
3283 up_write(&sb->s_umount);
3284 }
3285
3286 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3287
3288 put_fs_context(fc);
3289 return err;
3290 }
3291
tree_contains_unbindable(struct mount * mnt)3292 static inline int tree_contains_unbindable(struct mount *mnt)
3293 {
3294 struct mount *p;
3295 for (p = mnt; p; p = next_mnt(p, mnt)) {
3296 if (IS_MNT_UNBINDABLE(p))
3297 return 1;
3298 }
3299 return 0;
3300 }
3301
do_set_group(const struct path * from_path,const struct path * to_path)3302 static int do_set_group(const struct path *from_path, const struct path *to_path)
3303 {
3304 struct mount *from = real_mount(from_path->mnt);
3305 struct mount *to = real_mount(to_path->mnt);
3306 int err;
3307
3308 guard(namespace_excl)();
3309
3310 err = may_change_propagation(from);
3311 if (err)
3312 return err;
3313 err = may_change_propagation(to);
3314 if (err)
3315 return err;
3316
3317 /* To and From paths should be mount roots */
3318 if (!path_mounted(from_path))
3319 return -EINVAL;
3320 if (!path_mounted(to_path))
3321 return -EINVAL;
3322
3323 /* Setting sharing groups is only allowed across same superblock */
3324 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3325 return -EINVAL;
3326
3327 /* From mount root should be wider than To mount root */
3328 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3329 return -EINVAL;
3330
3331 /* From mount should not have locked children in place of To's root */
3332 if (__has_locked_children(from, to->mnt.mnt_root))
3333 return -EINVAL;
3334
3335 /* Setting sharing groups is only allowed on private mounts */
3336 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3337 return -EINVAL;
3338
3339 /* From should not be private */
3340 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3341 return -EINVAL;
3342
3343 if (IS_MNT_SLAVE(from)) {
3344 hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3345 to->mnt_master = from->mnt_master;
3346 }
3347
3348 if (IS_MNT_SHARED(from)) {
3349 to->mnt_group_id = from->mnt_group_id;
3350 list_add(&to->mnt_share, &from->mnt_share);
3351 set_mnt_shared(to);
3352 }
3353 return 0;
3354 }
3355
3356 /**
3357 * path_overmounted - check if path is overmounted
3358 * @path: path to check
3359 *
3360 * Check if path is overmounted, i.e., if there's a mount on top of
3361 * @path->mnt with @path->dentry as mountpoint.
3362 *
3363 * Context: namespace_sem must be held at least shared.
3364 * MUST NOT be called under lock_mount_hash() (there one should just
3365 * call __lookup_mnt() and check if it returns NULL).
3366 * Return: If path is overmounted true is returned, false if not.
3367 */
path_overmounted(const struct path * path)3368 static inline bool path_overmounted(const struct path *path)
3369 {
3370 unsigned seq = read_seqbegin(&mount_lock);
3371 bool no_child;
3372
3373 rcu_read_lock();
3374 no_child = !__lookup_mnt(path->mnt, path->dentry);
3375 rcu_read_unlock();
3376 if (need_seqretry(&mount_lock, seq)) {
3377 read_seqlock_excl(&mount_lock);
3378 no_child = !__lookup_mnt(path->mnt, path->dentry);
3379 read_sequnlock_excl(&mount_lock);
3380 }
3381 return unlikely(!no_child);
3382 }
3383
3384 /*
3385 * Check if there is a possibly empty chain of descent from p1 to p2.
3386 * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3387 */
mount_is_ancestor(const struct mount * p1,const struct mount * p2)3388 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3389 {
3390 while (p2 != p1 && mnt_has_parent(p2))
3391 p2 = p2->mnt_parent;
3392 return p2 == p1;
3393 }
3394
3395 /**
3396 * can_move_mount_beneath - check that we can mount beneath the top mount
3397 * @mnt_from: mount we are trying to move
3398 * @mnt_to: mount under which to mount
3399 * @mp: mountpoint of @mnt_to
3400 *
3401 * - Make sure that nothing can be mounted beneath the caller's current
3402 * root or the rootfs of the namespace.
3403 * - Make sure that the caller can unmount the topmost mount ensuring
3404 * that the caller could reveal the underlying mountpoint.
3405 * - Ensure that nothing has been mounted on top of @mnt_from before we
3406 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3407 * - Prevent mounting beneath a mount if the propagation relationship
3408 * between the source mount, parent mount, and top mount would lead to
3409 * nonsensical mount trees.
3410 *
3411 * Context: This function expects namespace_lock() to be held.
3412 * Return: On success 0, and on error a negative error code is returned.
3413 */
can_move_mount_beneath(const struct mount * mnt_from,const struct mount * mnt_to,const struct mountpoint * mp)3414 static int can_move_mount_beneath(const struct mount *mnt_from,
3415 const struct mount *mnt_to,
3416 const struct mountpoint *mp)
3417 {
3418 struct mount *parent_mnt_to = mnt_to->mnt_parent;
3419
3420 if (IS_MNT_LOCKED(mnt_to))
3421 return -EINVAL;
3422
3423 /* Avoid creating shadow mounts during mount propagation. */
3424 if (mnt_from->overmount)
3425 return -EINVAL;
3426
3427 /*
3428 * Mounting beneath the rootfs only makes sense when the
3429 * semantics of pivot_root(".", ".") are used.
3430 */
3431 if (&mnt_to->mnt == current->fs->root.mnt)
3432 return -EINVAL;
3433 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3434 return -EINVAL;
3435
3436 if (mount_is_ancestor(mnt_to, mnt_from))
3437 return -EINVAL;
3438
3439 /*
3440 * If the parent mount propagates to the child mount this would
3441 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3442 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3443 * defeats the whole purpose of mounting beneath another mount.
3444 */
3445 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3446 return -EINVAL;
3447
3448 /*
3449 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3450 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3451 * Afterwards @mnt_from would be mounted on top of
3452 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3453 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3454 * already mounted on @mnt_from, @mnt_to would ultimately be
3455 * remounted on top of @c. Afterwards, @mnt_from would be
3456 * covered by a copy @c of @mnt_from and @c would be covered by
3457 * @mnt_from itself. This defeats the whole purpose of mounting
3458 * @mnt_from beneath @mnt_to.
3459 */
3460 if (check_mnt(mnt_from) &&
3461 propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3462 return -EINVAL;
3463
3464 return 0;
3465 }
3466
3467 /* may_use_mount() - check if a mount tree can be used
3468 * @mnt: vfsmount to be used
3469 *
3470 * This helper checks if the caller may use the mount tree starting
3471 * from @path->mnt. The caller may use the mount tree under the
3472 * following circumstances:
3473 *
3474 * (1) The caller is located in the mount namespace of the mount tree.
3475 * This also implies that the mount does not belong to an anonymous
3476 * mount namespace.
3477 * (2) The caller is trying to use a mount tree that belongs to an
3478 * anonymous mount namespace.
3479 *
3480 * For that to be safe, this helper enforces that the origin mount
3481 * namespace the anonymous mount namespace was created from is the
3482 * same as the caller's mount namespace by comparing the sequence
3483 * numbers.
3484 *
3485 * The ownership of a non-anonymous mount namespace such as the
3486 * caller's cannot change.
3487 * => We know that the caller's mount namespace is stable.
3488 *
3489 * If the origin sequence number of the anonymous mount namespace is
3490 * the same as the sequence number of the caller's mount namespace.
3491 * => The owning namespaces are the same.
3492 *
3493 * ==> The earlier capability check on the owning namespace of the
3494 * caller's mount namespace ensures that the caller has the
3495 * ability to use the mount tree.
3496 *
3497 * Returns true if the mount tree can be used, false otherwise.
3498 */
may_use_mount(struct mount * mnt)3499 static inline bool may_use_mount(struct mount *mnt)
3500 {
3501 if (check_mnt(mnt))
3502 return true;
3503
3504 /*
3505 * Make sure that noone unmounted the target path or somehow
3506 * managed to get their hands on something purely kernel
3507 * internal.
3508 */
3509 if (!is_mounted(&mnt->mnt))
3510 return false;
3511
3512 return check_anonymous_mnt(mnt);
3513 }
3514
do_move_mount(const struct path * old_path,const struct path * new_path,enum mnt_tree_flags_t flags)3515 static int do_move_mount(const struct path *old_path,
3516 const struct path *new_path,
3517 enum mnt_tree_flags_t flags)
3518 {
3519 struct mount *old = real_mount(old_path->mnt);
3520 int err;
3521 bool beneath = flags & MNT_TREE_BENEATH;
3522
3523 if (!path_mounted(old_path))
3524 return -EINVAL;
3525
3526 if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry))
3527 return -EINVAL;
3528
3529 LOCK_MOUNT_MAYBE_BENEATH(mp, new_path, beneath);
3530 if (IS_ERR(mp.parent))
3531 return PTR_ERR(mp.parent);
3532
3533 if (check_mnt(old)) {
3534 /* if the source is in our namespace... */
3535 /* ... it should be detachable from parent */
3536 if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3537 return -EINVAL;
3538 /* ... which should not be shared */
3539 if (IS_MNT_SHARED(old->mnt_parent))
3540 return -EINVAL;
3541 /* ... and the target should be in our namespace */
3542 if (!check_mnt(mp.parent))
3543 return -EINVAL;
3544 } else {
3545 /*
3546 * otherwise the source must be the root of some anon namespace.
3547 */
3548 if (!anon_ns_root(old))
3549 return -EINVAL;
3550 /*
3551 * Bail out early if the target is within the same namespace -
3552 * subsequent checks would've rejected that, but they lose
3553 * some corner cases if we check it early.
3554 */
3555 if (old->mnt_ns == mp.parent->mnt_ns)
3556 return -EINVAL;
3557 /*
3558 * Target should be either in our namespace or in an acceptable
3559 * anon namespace, sensu check_anonymous_mnt().
3560 */
3561 if (!may_use_mount(mp.parent))
3562 return -EINVAL;
3563 }
3564
3565 if (beneath) {
3566 struct mount *over = real_mount(new_path->mnt);
3567
3568 if (mp.parent != over->mnt_parent)
3569 over = mp.parent->overmount;
3570 err = can_move_mount_beneath(old, over, mp.mp);
3571 if (err)
3572 return err;
3573 }
3574
3575 /*
3576 * Don't move a mount tree containing unbindable mounts to a destination
3577 * mount which is shared.
3578 */
3579 if (IS_MNT_SHARED(mp.parent) && tree_contains_unbindable(old))
3580 return -EINVAL;
3581 if (!check_for_nsfs_mounts(old))
3582 return -ELOOP;
3583 if (mount_is_ancestor(old, mp.parent))
3584 return -ELOOP;
3585
3586 return attach_recursive_mnt(old, &mp);
3587 }
3588
do_move_mount_old(const struct path * path,const char * old_name)3589 static int do_move_mount_old(const struct path *path, const char *old_name)
3590 {
3591 struct path old_path __free(path_put) = {};
3592 int err;
3593
3594 if (!old_name || !*old_name)
3595 return -EINVAL;
3596
3597 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3598 if (err)
3599 return err;
3600
3601 return do_move_mount(&old_path, path, 0);
3602 }
3603
3604 /*
3605 * add a mount into a namespace's mount tree
3606 */
do_add_mount(struct mount * newmnt,const struct pinned_mountpoint * mp,int mnt_flags)3607 static int do_add_mount(struct mount *newmnt, const struct pinned_mountpoint *mp,
3608 int mnt_flags)
3609 {
3610 struct mount *parent = mp->parent;
3611
3612 if (IS_ERR(parent))
3613 return PTR_ERR(parent);
3614
3615 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3616
3617 if (unlikely(!check_mnt(parent))) {
3618 /* that's acceptable only for automounts done in private ns */
3619 if (!(mnt_flags & MNT_SHRINKABLE))
3620 return -EINVAL;
3621 /* ... and for those we'd better have mountpoint still alive */
3622 if (!parent->mnt_ns)
3623 return -EINVAL;
3624 }
3625
3626 /* Refuse the same filesystem on the same mount point */
3627 if (parent->mnt.mnt_sb == newmnt->mnt.mnt_sb &&
3628 parent->mnt.mnt_root == mp->mp->m_dentry)
3629 return -EBUSY;
3630
3631 if (d_is_symlink(newmnt->mnt.mnt_root))
3632 return -EINVAL;
3633
3634 newmnt->mnt.mnt_flags = mnt_flags;
3635 return graft_tree(newmnt, mp);
3636 }
3637
3638 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3639
3640 /*
3641 * Create a new mount using a superblock configuration and request it
3642 * be added to the namespace tree.
3643 */
do_new_mount_fc(struct fs_context * fc,const struct path * mountpoint,unsigned int mnt_flags)3644 static int do_new_mount_fc(struct fs_context *fc, const struct path *mountpoint,
3645 unsigned int mnt_flags)
3646 {
3647 struct super_block *sb;
3648 struct vfsmount *mnt __free(mntput) = fc_mount(fc);
3649 int error;
3650
3651 if (IS_ERR(mnt))
3652 return PTR_ERR(mnt);
3653
3654 sb = fc->root->d_sb;
3655 error = security_sb_kern_mount(sb);
3656 if (unlikely(error))
3657 return error;
3658
3659 if (unlikely(mount_too_revealing(sb, &mnt_flags))) {
3660 errorfcp(fc, "VFS", "Mount too revealing");
3661 return -EPERM;
3662 }
3663
3664 mnt_warn_timestamp_expiry(mountpoint, mnt);
3665
3666 LOCK_MOUNT(mp, mountpoint);
3667 error = do_add_mount(real_mount(mnt), &mp, mnt_flags);
3668 if (!error)
3669 retain_and_null_ptr(mnt); // consumed on success
3670 return error;
3671 }
3672
3673 /*
3674 * create a new mount for userspace and request it to be added into the
3675 * namespace's tree
3676 */
do_new_mount(const struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3677 static int do_new_mount(const struct path *path, const char *fstype,
3678 int sb_flags, int mnt_flags,
3679 const char *name, void *data)
3680 {
3681 struct file_system_type *type;
3682 struct fs_context *fc;
3683 const char *subtype = NULL;
3684 int err = 0;
3685
3686 if (!fstype)
3687 return -EINVAL;
3688
3689 type = get_fs_type(fstype);
3690 if (!type)
3691 return -ENODEV;
3692
3693 if (type->fs_flags & FS_HAS_SUBTYPE) {
3694 subtype = strchr(fstype, '.');
3695 if (subtype) {
3696 subtype++;
3697 if (!*subtype) {
3698 put_filesystem(type);
3699 return -EINVAL;
3700 }
3701 }
3702 }
3703
3704 fc = fs_context_for_mount(type, sb_flags);
3705 put_filesystem(type);
3706 if (IS_ERR(fc))
3707 return PTR_ERR(fc);
3708
3709 /*
3710 * Indicate to the filesystem that the mount request is coming
3711 * from the legacy mount system call.
3712 */
3713 fc->oldapi = true;
3714
3715 if (subtype)
3716 err = vfs_parse_fs_string(fc, "subtype", subtype);
3717 if (!err && name)
3718 err = vfs_parse_fs_string(fc, "source", name);
3719 if (!err)
3720 err = parse_monolithic_mount_data(fc, data);
3721 if (!err && !mount_capable(fc))
3722 err = -EPERM;
3723 if (!err)
3724 err = do_new_mount_fc(fc, path, mnt_flags);
3725
3726 put_fs_context(fc);
3727 return err;
3728 }
3729
lock_mount_exact(const struct path * path,struct pinned_mountpoint * mp)3730 static void lock_mount_exact(const struct path *path,
3731 struct pinned_mountpoint *mp)
3732 {
3733 struct dentry *dentry = path->dentry;
3734 int err;
3735
3736 inode_lock(dentry->d_inode);
3737 namespace_lock();
3738 if (unlikely(cant_mount(dentry)))
3739 err = -ENOENT;
3740 else if (path_overmounted(path))
3741 err = -EBUSY;
3742 else
3743 err = get_mountpoint(dentry, mp);
3744 if (unlikely(err)) {
3745 namespace_unlock();
3746 inode_unlock(dentry->d_inode);
3747 mp->parent = ERR_PTR(err);
3748 } else {
3749 mp->parent = real_mount(path->mnt);
3750 }
3751 }
3752
finish_automount(struct vfsmount * __m,const struct path * path)3753 int finish_automount(struct vfsmount *__m, const struct path *path)
3754 {
3755 struct vfsmount *m __free(mntput) = __m;
3756 struct mount *mnt;
3757 int err;
3758
3759 if (!m)
3760 return 0;
3761 if (IS_ERR(m))
3762 return PTR_ERR(m);
3763
3764 mnt = real_mount(m);
3765
3766 if (m->mnt_root == path->dentry)
3767 return -ELOOP;
3768
3769 /*
3770 * we don't want to use LOCK_MOUNT() - in this case finding something
3771 * that overmounts our mountpoint to be means "quitely drop what we've
3772 * got", not "try to mount it on top".
3773 */
3774 LOCK_MOUNT_EXACT(mp, path);
3775 if (mp.parent == ERR_PTR(-EBUSY))
3776 return 0;
3777
3778 err = do_add_mount(mnt, &mp, path->mnt->mnt_flags | MNT_SHRINKABLE);
3779 if (likely(!err))
3780 retain_and_null_ptr(m);
3781 return err;
3782 }
3783
3784 /**
3785 * mnt_set_expiry - Put a mount on an expiration list
3786 * @mnt: The mount to list.
3787 * @expiry_list: The list to add the mount to.
3788 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3789 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3790 {
3791 guard(mount_locked_reader)();
3792 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3793 }
3794 EXPORT_SYMBOL(mnt_set_expiry);
3795
3796 /*
3797 * process a list of expirable mountpoints with the intent of discarding any
3798 * mountpoints that aren't in use and haven't been touched since last we came
3799 * here
3800 */
mark_mounts_for_expiry(struct list_head * mounts)3801 void mark_mounts_for_expiry(struct list_head *mounts)
3802 {
3803 struct mount *mnt, *next;
3804 LIST_HEAD(graveyard);
3805
3806 if (list_empty(mounts))
3807 return;
3808
3809 guard(namespace_excl)();
3810 guard(mount_writer)();
3811
3812 /* extract from the expiration list every vfsmount that matches the
3813 * following criteria:
3814 * - already mounted
3815 * - only referenced by its parent vfsmount
3816 * - still marked for expiry (marked on the last call here; marks are
3817 * cleared by mntput())
3818 */
3819 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3820 if (!is_mounted(&mnt->mnt))
3821 continue;
3822 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3823 propagate_mount_busy(mnt, 1))
3824 continue;
3825 list_move(&mnt->mnt_expire, &graveyard);
3826 }
3827 while (!list_empty(&graveyard)) {
3828 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3829 touch_mnt_namespace(mnt->mnt_ns);
3830 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3831 }
3832 }
3833
3834 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3835
3836 /*
3837 * Ripoff of 'select_parent()'
3838 *
3839 * search the list of submounts for a given mountpoint, and move any
3840 * shrinkable submounts to the 'graveyard' list.
3841 */
select_submounts(struct mount * parent,struct list_head * graveyard)3842 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3843 {
3844 struct mount *this_parent = parent;
3845 struct list_head *next;
3846 int found = 0;
3847
3848 repeat:
3849 next = this_parent->mnt_mounts.next;
3850 resume:
3851 while (next != &this_parent->mnt_mounts) {
3852 struct list_head *tmp = next;
3853 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3854
3855 next = tmp->next;
3856 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3857 continue;
3858 /*
3859 * Descend a level if the d_mounts list is non-empty.
3860 */
3861 if (!list_empty(&mnt->mnt_mounts)) {
3862 this_parent = mnt;
3863 goto repeat;
3864 }
3865
3866 if (!propagate_mount_busy(mnt, 1)) {
3867 list_move_tail(&mnt->mnt_expire, graveyard);
3868 found++;
3869 }
3870 }
3871 /*
3872 * All done at this level ... ascend and resume the search
3873 */
3874 if (this_parent != parent) {
3875 next = this_parent->mnt_child.next;
3876 this_parent = this_parent->mnt_parent;
3877 goto resume;
3878 }
3879 return found;
3880 }
3881
3882 /*
3883 * process a list of expirable mountpoints with the intent of discarding any
3884 * submounts of a specific parent mountpoint
3885 *
3886 * mount_lock must be held for write
3887 */
shrink_submounts(struct mount * mnt)3888 static void shrink_submounts(struct mount *mnt)
3889 {
3890 LIST_HEAD(graveyard);
3891 struct mount *m;
3892
3893 /* extract submounts of 'mountpoint' from the expiration list */
3894 while (select_submounts(mnt, &graveyard)) {
3895 while (!list_empty(&graveyard)) {
3896 m = list_first_entry(&graveyard, struct mount,
3897 mnt_expire);
3898 touch_mnt_namespace(m->mnt_ns);
3899 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3900 }
3901 }
3902 }
3903
copy_mount_options(const void __user * data)3904 static void *copy_mount_options(const void __user * data)
3905 {
3906 char *copy;
3907 unsigned left, offset;
3908
3909 if (!data)
3910 return NULL;
3911
3912 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3913 if (!copy)
3914 return ERR_PTR(-ENOMEM);
3915
3916 left = copy_from_user(copy, data, PAGE_SIZE);
3917
3918 /*
3919 * Not all architectures have an exact copy_from_user(). Resort to
3920 * byte at a time.
3921 */
3922 offset = PAGE_SIZE - left;
3923 while (left) {
3924 char c;
3925 if (get_user(c, (const char __user *)data + offset))
3926 break;
3927 copy[offset] = c;
3928 left--;
3929 offset++;
3930 }
3931
3932 if (left == PAGE_SIZE) {
3933 kfree(copy);
3934 return ERR_PTR(-EFAULT);
3935 }
3936
3937 return copy;
3938 }
3939
copy_mount_string(const void __user * data)3940 static char *copy_mount_string(const void __user *data)
3941 {
3942 return data ? strndup_user(data, PATH_MAX) : NULL;
3943 }
3944
3945 /*
3946 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3947 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3948 *
3949 * data is a (void *) that can point to any structure up to
3950 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3951 * information (or be NULL).
3952 *
3953 * Pre-0.97 versions of mount() didn't have a flags word.
3954 * When the flags word was introduced its top half was required
3955 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3956 * Therefore, if this magic number is present, it carries no information
3957 * and must be discarded.
3958 */
path_mount(const char * dev_name,const struct path * path,const char * type_page,unsigned long flags,void * data_page)3959 int path_mount(const char *dev_name, const struct path *path,
3960 const char *type_page, unsigned long flags, void *data_page)
3961 {
3962 unsigned int mnt_flags = 0, sb_flags;
3963 int ret;
3964
3965 /* Discard magic */
3966 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3967 flags &= ~MS_MGC_MSK;
3968
3969 /* Basic sanity checks */
3970 if (data_page)
3971 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3972
3973 if (flags & MS_NOUSER)
3974 return -EINVAL;
3975
3976 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3977 if (ret)
3978 return ret;
3979 if (!may_mount())
3980 return -EPERM;
3981 if (flags & SB_MANDLOCK)
3982 warn_mandlock();
3983
3984 /* Default to relatime unless overriden */
3985 if (!(flags & MS_NOATIME))
3986 mnt_flags |= MNT_RELATIME;
3987
3988 /* Separate the per-mountpoint flags */
3989 if (flags & MS_NOSUID)
3990 mnt_flags |= MNT_NOSUID;
3991 if (flags & MS_NODEV)
3992 mnt_flags |= MNT_NODEV;
3993 if (flags & MS_NOEXEC)
3994 mnt_flags |= MNT_NOEXEC;
3995 if (flags & MS_NOATIME)
3996 mnt_flags |= MNT_NOATIME;
3997 if (flags & MS_NODIRATIME)
3998 mnt_flags |= MNT_NODIRATIME;
3999 if (flags & MS_STRICTATIME)
4000 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4001 if (flags & MS_RDONLY)
4002 mnt_flags |= MNT_READONLY;
4003 if (flags & MS_NOSYMFOLLOW)
4004 mnt_flags |= MNT_NOSYMFOLLOW;
4005
4006 /* The default atime for remount is preservation */
4007 if ((flags & MS_REMOUNT) &&
4008 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4009 MS_STRICTATIME)) == 0)) {
4010 mnt_flags &= ~MNT_ATIME_MASK;
4011 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4012 }
4013
4014 sb_flags = flags & (SB_RDONLY |
4015 SB_SYNCHRONOUS |
4016 SB_MANDLOCK |
4017 SB_DIRSYNC |
4018 SB_SILENT |
4019 SB_POSIXACL |
4020 SB_LAZYTIME |
4021 SB_I_VERSION);
4022
4023 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4024 return do_reconfigure_mnt(path, mnt_flags);
4025 if (flags & MS_REMOUNT)
4026 return do_remount(path, sb_flags, mnt_flags, data_page);
4027 if (flags & MS_BIND)
4028 return do_loopback(path, dev_name, flags & MS_REC);
4029 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4030 return do_change_type(path, flags);
4031 if (flags & MS_MOVE)
4032 return do_move_mount_old(path, dev_name);
4033
4034 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4035 data_page);
4036 }
4037
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)4038 int do_mount(const char *dev_name, const char __user *dir_name,
4039 const char *type_page, unsigned long flags, void *data_page)
4040 {
4041 struct path path __free(path_put) = {};
4042 int ret;
4043
4044 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4045 if (ret)
4046 return ret;
4047 return path_mount(dev_name, &path, type_page, flags, data_page);
4048 }
4049
inc_mnt_namespaces(struct user_namespace * ns)4050 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4051 {
4052 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4053 }
4054
dec_mnt_namespaces(struct ucounts * ucounts)4055 static void dec_mnt_namespaces(struct ucounts *ucounts)
4056 {
4057 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4058 }
4059
free_mnt_ns(struct mnt_namespace * ns)4060 static void free_mnt_ns(struct mnt_namespace *ns)
4061 {
4062 if (!is_anon_ns(ns))
4063 ns_common_free(ns);
4064 dec_mnt_namespaces(ns->ucounts);
4065 mnt_ns_tree_remove(ns);
4066 }
4067
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)4068 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4069 {
4070 struct mnt_namespace *new_ns;
4071 struct ucounts *ucounts;
4072 int ret;
4073
4074 ucounts = inc_mnt_namespaces(user_ns);
4075 if (!ucounts)
4076 return ERR_PTR(-ENOSPC);
4077
4078 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4079 if (!new_ns) {
4080 dec_mnt_namespaces(ucounts);
4081 return ERR_PTR(-ENOMEM);
4082 }
4083
4084 if (anon)
4085 ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO);
4086 else
4087 ret = ns_common_init(new_ns);
4088 if (ret) {
4089 kfree(new_ns);
4090 dec_mnt_namespaces(ucounts);
4091 return ERR_PTR(ret);
4092 }
4093 ns_tree_gen_id(new_ns);
4094
4095 new_ns->is_anon = anon;
4096 refcount_set(&new_ns->passive, 1);
4097 new_ns->mounts = RB_ROOT;
4098 init_waitqueue_head(&new_ns->poll);
4099 new_ns->user_ns = get_user_ns(user_ns);
4100 new_ns->ucounts = ucounts;
4101 return new_ns;
4102 }
4103
4104 __latent_entropy
copy_mnt_ns(u64 flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)4105 struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns,
4106 struct user_namespace *user_ns, struct fs_struct *new_fs)
4107 {
4108 struct mnt_namespace *new_ns;
4109 struct vfsmount *rootmnt __free(mntput) = NULL;
4110 struct vfsmount *pwdmnt __free(mntput) = NULL;
4111 struct mount *p, *q;
4112 struct mount *old;
4113 struct mount *new;
4114 int copy_flags;
4115
4116 BUG_ON(!ns);
4117
4118 if (likely(!(flags & CLONE_NEWNS))) {
4119 get_mnt_ns(ns);
4120 return ns;
4121 }
4122
4123 old = ns->root;
4124
4125 new_ns = alloc_mnt_ns(user_ns, false);
4126 if (IS_ERR(new_ns))
4127 return new_ns;
4128
4129 guard(namespace_excl)();
4130 /* First pass: copy the tree topology */
4131 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4132 if (user_ns != ns->user_ns)
4133 copy_flags |= CL_SLAVE;
4134 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4135 if (IS_ERR(new)) {
4136 emptied_ns = new_ns;
4137 return ERR_CAST(new);
4138 }
4139 if (user_ns != ns->user_ns) {
4140 guard(mount_writer)();
4141 lock_mnt_tree(new);
4142 }
4143 new_ns->root = new;
4144
4145 /*
4146 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4147 * as belonging to new namespace. We have already acquired a private
4148 * fs_struct, so tsk->fs->lock is not needed.
4149 */
4150 p = old;
4151 q = new;
4152 while (p) {
4153 mnt_add_to_ns(new_ns, q);
4154 new_ns->nr_mounts++;
4155 if (new_fs) {
4156 if (&p->mnt == new_fs->root.mnt) {
4157 new_fs->root.mnt = mntget(&q->mnt);
4158 rootmnt = &p->mnt;
4159 }
4160 if (&p->mnt == new_fs->pwd.mnt) {
4161 new_fs->pwd.mnt = mntget(&q->mnt);
4162 pwdmnt = &p->mnt;
4163 }
4164 }
4165 p = next_mnt(p, old);
4166 q = next_mnt(q, new);
4167 if (!q)
4168 break;
4169 // an mntns binding we'd skipped?
4170 while (p->mnt.mnt_root != q->mnt.mnt_root)
4171 p = next_mnt(skip_mnt_tree(p), old);
4172 }
4173 ns_tree_add_raw(new_ns);
4174 return new_ns;
4175 }
4176
mount_subtree(struct vfsmount * m,const char * name)4177 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4178 {
4179 struct mount *mnt = real_mount(m);
4180 struct mnt_namespace *ns;
4181 struct super_block *s;
4182 struct path path;
4183 int err;
4184
4185 ns = alloc_mnt_ns(&init_user_ns, true);
4186 if (IS_ERR(ns)) {
4187 mntput(m);
4188 return ERR_CAST(ns);
4189 }
4190 ns->root = mnt;
4191 ns->nr_mounts++;
4192 mnt_add_to_ns(ns, mnt);
4193
4194 err = vfs_path_lookup(m->mnt_root, m,
4195 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4196
4197 put_mnt_ns(ns);
4198
4199 if (err)
4200 return ERR_PTR(err);
4201
4202 /* trade a vfsmount reference for active sb one */
4203 s = path.mnt->mnt_sb;
4204 atomic_inc(&s->s_active);
4205 mntput(path.mnt);
4206 /* lock the sucker */
4207 down_write(&s->s_umount);
4208 /* ... and return the root of (sub)tree on it */
4209 return path.dentry;
4210 }
4211 EXPORT_SYMBOL(mount_subtree);
4212
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4213 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4214 char __user *, type, unsigned long, flags, void __user *, data)
4215 {
4216 int ret;
4217 char *kernel_type;
4218 char *kernel_dev;
4219 void *options;
4220
4221 kernel_type = copy_mount_string(type);
4222 ret = PTR_ERR(kernel_type);
4223 if (IS_ERR(kernel_type))
4224 goto out_type;
4225
4226 kernel_dev = copy_mount_string(dev_name);
4227 ret = PTR_ERR(kernel_dev);
4228 if (IS_ERR(kernel_dev))
4229 goto out_dev;
4230
4231 options = copy_mount_options(data);
4232 ret = PTR_ERR(options);
4233 if (IS_ERR(options))
4234 goto out_data;
4235
4236 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4237
4238 kfree(options);
4239 out_data:
4240 kfree(kernel_dev);
4241 out_dev:
4242 kfree(kernel_type);
4243 out_type:
4244 return ret;
4245 }
4246
4247 #define FSMOUNT_VALID_FLAGS \
4248 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
4249 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
4250 MOUNT_ATTR_NOSYMFOLLOW)
4251
4252 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4253
4254 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4255 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4256
attr_flags_to_mnt_flags(u64 attr_flags)4257 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4258 {
4259 unsigned int mnt_flags = 0;
4260
4261 if (attr_flags & MOUNT_ATTR_RDONLY)
4262 mnt_flags |= MNT_READONLY;
4263 if (attr_flags & MOUNT_ATTR_NOSUID)
4264 mnt_flags |= MNT_NOSUID;
4265 if (attr_flags & MOUNT_ATTR_NODEV)
4266 mnt_flags |= MNT_NODEV;
4267 if (attr_flags & MOUNT_ATTR_NOEXEC)
4268 mnt_flags |= MNT_NOEXEC;
4269 if (attr_flags & MOUNT_ATTR_NODIRATIME)
4270 mnt_flags |= MNT_NODIRATIME;
4271 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4272 mnt_flags |= MNT_NOSYMFOLLOW;
4273
4274 return mnt_flags;
4275 }
4276
4277 /*
4278 * Create a kernel mount representation for a new, prepared superblock
4279 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4280 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4281 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4282 unsigned int, attr_flags)
4283 {
4284 struct mnt_namespace *ns;
4285 struct fs_context *fc;
4286 struct file *file;
4287 struct path newmount;
4288 struct mount *mnt;
4289 unsigned int mnt_flags = 0;
4290 long ret;
4291
4292 if (!may_mount())
4293 return -EPERM;
4294
4295 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4296 return -EINVAL;
4297
4298 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4299 return -EINVAL;
4300
4301 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4302
4303 switch (attr_flags & MOUNT_ATTR__ATIME) {
4304 case MOUNT_ATTR_STRICTATIME:
4305 break;
4306 case MOUNT_ATTR_NOATIME:
4307 mnt_flags |= MNT_NOATIME;
4308 break;
4309 case MOUNT_ATTR_RELATIME:
4310 mnt_flags |= MNT_RELATIME;
4311 break;
4312 default:
4313 return -EINVAL;
4314 }
4315
4316 CLASS(fd, f)(fs_fd);
4317 if (fd_empty(f))
4318 return -EBADF;
4319
4320 if (fd_file(f)->f_op != &fscontext_fops)
4321 return -EINVAL;
4322
4323 fc = fd_file(f)->private_data;
4324
4325 ret = mutex_lock_interruptible(&fc->uapi_mutex);
4326 if (ret < 0)
4327 return ret;
4328
4329 /* There must be a valid superblock or we can't mount it */
4330 ret = -EINVAL;
4331 if (!fc->root)
4332 goto err_unlock;
4333
4334 ret = -EPERM;
4335 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4336 errorfcp(fc, "VFS", "Mount too revealing");
4337 goto err_unlock;
4338 }
4339
4340 ret = -EBUSY;
4341 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4342 goto err_unlock;
4343
4344 if (fc->sb_flags & SB_MANDLOCK)
4345 warn_mandlock();
4346
4347 newmount.mnt = vfs_create_mount(fc);
4348 if (IS_ERR(newmount.mnt)) {
4349 ret = PTR_ERR(newmount.mnt);
4350 goto err_unlock;
4351 }
4352 newmount.dentry = dget(fc->root);
4353 newmount.mnt->mnt_flags = mnt_flags;
4354
4355 /* We've done the mount bit - now move the file context into more or
4356 * less the same state as if we'd done an fspick(). We don't want to
4357 * do any memory allocation or anything like that at this point as we
4358 * don't want to have to handle any errors incurred.
4359 */
4360 vfs_clean_context(fc);
4361
4362 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4363 if (IS_ERR(ns)) {
4364 ret = PTR_ERR(ns);
4365 goto err_path;
4366 }
4367 mnt = real_mount(newmount.mnt);
4368 ns->root = mnt;
4369 ns->nr_mounts = 1;
4370 mnt_add_to_ns(ns, mnt);
4371 mntget(newmount.mnt);
4372
4373 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4374 * it, not just simply put it.
4375 */
4376 file = dentry_open(&newmount, O_PATH, fc->cred);
4377 if (IS_ERR(file)) {
4378 dissolve_on_fput(newmount.mnt);
4379 ret = PTR_ERR(file);
4380 goto err_path;
4381 }
4382 file->f_mode |= FMODE_NEED_UNMOUNT;
4383
4384 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4385 if (ret >= 0)
4386 fd_install(ret, file);
4387 else
4388 fput(file);
4389
4390 err_path:
4391 path_put(&newmount);
4392 err_unlock:
4393 mutex_unlock(&fc->uapi_mutex);
4394 return ret;
4395 }
4396
vfs_move_mount(const struct path * from_path,const struct path * to_path,enum mnt_tree_flags_t mflags)4397 static inline int vfs_move_mount(const struct path *from_path,
4398 const struct path *to_path,
4399 enum mnt_tree_flags_t mflags)
4400 {
4401 int ret;
4402
4403 ret = security_move_mount(from_path, to_path);
4404 if (ret)
4405 return ret;
4406
4407 if (mflags & MNT_TREE_PROPAGATION)
4408 return do_set_group(from_path, to_path);
4409
4410 return do_move_mount(from_path, to_path, mflags);
4411 }
4412
4413 /*
4414 * Move a mount from one place to another. In combination with
4415 * fsopen()/fsmount() this is used to install a new mount and in combination
4416 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4417 * a mount subtree.
4418 *
4419 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4420 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4421 SYSCALL_DEFINE5(move_mount,
4422 int, from_dfd, const char __user *, from_pathname,
4423 int, to_dfd, const char __user *, to_pathname,
4424 unsigned int, flags)
4425 {
4426 struct path to_path __free(path_put) = {};
4427 struct path from_path __free(path_put) = {};
4428 struct filename *to_name __free(putname) = NULL;
4429 struct filename *from_name __free(putname) = NULL;
4430 unsigned int lflags, uflags;
4431 enum mnt_tree_flags_t mflags = 0;
4432 int ret = 0;
4433
4434 if (!may_mount())
4435 return -EPERM;
4436
4437 if (flags & ~MOVE_MOUNT__MASK)
4438 return -EINVAL;
4439
4440 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4441 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4442 return -EINVAL;
4443
4444 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION;
4445 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH;
4446
4447 uflags = 0;
4448 if (flags & MOVE_MOUNT_T_EMPTY_PATH)
4449 uflags = AT_EMPTY_PATH;
4450
4451 to_name = getname_maybe_null(to_pathname, uflags);
4452 if (IS_ERR(to_name))
4453 return PTR_ERR(to_name);
4454
4455 if (!to_name && to_dfd >= 0) {
4456 CLASS(fd_raw, f_to)(to_dfd);
4457 if (fd_empty(f_to))
4458 return -EBADF;
4459
4460 to_path = fd_file(f_to)->f_path;
4461 path_get(&to_path);
4462 } else {
4463 lflags = 0;
4464 if (flags & MOVE_MOUNT_T_SYMLINKS)
4465 lflags |= LOOKUP_FOLLOW;
4466 if (flags & MOVE_MOUNT_T_AUTOMOUNTS)
4467 lflags |= LOOKUP_AUTOMOUNT;
4468 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4469 if (ret)
4470 return ret;
4471 }
4472
4473 uflags = 0;
4474 if (flags & MOVE_MOUNT_F_EMPTY_PATH)
4475 uflags = AT_EMPTY_PATH;
4476
4477 from_name = getname_maybe_null(from_pathname, uflags);
4478 if (IS_ERR(from_name))
4479 return PTR_ERR(from_name);
4480
4481 if (!from_name && from_dfd >= 0) {
4482 CLASS(fd_raw, f_from)(from_dfd);
4483 if (fd_empty(f_from))
4484 return -EBADF;
4485
4486 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4487 }
4488
4489 lflags = 0;
4490 if (flags & MOVE_MOUNT_F_SYMLINKS)
4491 lflags |= LOOKUP_FOLLOW;
4492 if (flags & MOVE_MOUNT_F_AUTOMOUNTS)
4493 lflags |= LOOKUP_AUTOMOUNT;
4494 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4495 if (ret)
4496 return ret;
4497
4498 return vfs_move_mount(&from_path, &to_path, mflags);
4499 }
4500
4501 /*
4502 * Return true if path is reachable from root
4503 *
4504 * locks: mount_locked_reader || namespace_shared && is_mounted(mnt)
4505 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4506 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4507 const struct path *root)
4508 {
4509 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4510 dentry = mnt->mnt_mountpoint;
4511 mnt = mnt->mnt_parent;
4512 }
4513 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4514 }
4515
path_is_under(const struct path * path1,const struct path * path2)4516 bool path_is_under(const struct path *path1, const struct path *path2)
4517 {
4518 guard(mount_locked_reader)();
4519 return is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4520 }
4521 EXPORT_SYMBOL(path_is_under);
4522
4523 /*
4524 * pivot_root Semantics:
4525 * Moves the root file system of the current process to the directory put_old,
4526 * makes new_root as the new root file system of the current process, and sets
4527 * root/cwd of all processes which had them on the current root to new_root.
4528 *
4529 * Restrictions:
4530 * The new_root and put_old must be directories, and must not be on the
4531 * same file system as the current process root. The put_old must be
4532 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4533 * pointed to by put_old must yield the same directory as new_root. No other
4534 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4535 *
4536 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4537 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4538 * in this situation.
4539 *
4540 * Notes:
4541 * - we don't move root/cwd if they are not at the root (reason: if something
4542 * cared enough to change them, it's probably wrong to force them elsewhere)
4543 * - it's okay to pick a root that isn't the root of a file system, e.g.
4544 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4545 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4546 * first.
4547 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4548 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4549 const char __user *, put_old)
4550 {
4551 struct path new __free(path_put) = {};
4552 struct path old __free(path_put) = {};
4553 struct path root __free(path_put) = {};
4554 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4555 int error;
4556
4557 if (!may_mount())
4558 return -EPERM;
4559
4560 error = user_path_at(AT_FDCWD, new_root,
4561 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4562 if (error)
4563 return error;
4564
4565 error = user_path_at(AT_FDCWD, put_old,
4566 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4567 if (error)
4568 return error;
4569
4570 error = security_sb_pivotroot(&old, &new);
4571 if (error)
4572 return error;
4573
4574 get_fs_root(current->fs, &root);
4575
4576 LOCK_MOUNT(old_mp, &old);
4577 old_mnt = old_mp.parent;
4578 if (IS_ERR(old_mnt))
4579 return PTR_ERR(old_mnt);
4580
4581 new_mnt = real_mount(new.mnt);
4582 root_mnt = real_mount(root.mnt);
4583 ex_parent = new_mnt->mnt_parent;
4584 root_parent = root_mnt->mnt_parent;
4585 if (IS_MNT_SHARED(old_mnt) ||
4586 IS_MNT_SHARED(ex_parent) ||
4587 IS_MNT_SHARED(root_parent))
4588 return -EINVAL;
4589 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4590 return -EINVAL;
4591 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4592 return -EINVAL;
4593 if (d_unlinked(new.dentry))
4594 return -ENOENT;
4595 if (new_mnt == root_mnt || old_mnt == root_mnt)
4596 return -EBUSY; /* loop, on the same file system */
4597 if (!path_mounted(&root))
4598 return -EINVAL; /* not a mountpoint */
4599 if (!mnt_has_parent(root_mnt))
4600 return -EINVAL; /* absolute root */
4601 if (!path_mounted(&new))
4602 return -EINVAL; /* not a mountpoint */
4603 if (!mnt_has_parent(new_mnt))
4604 return -EINVAL; /* absolute root */
4605 /* make sure we can reach put_old from new_root */
4606 if (!is_path_reachable(old_mnt, old_mp.mp->m_dentry, &new))
4607 return -EINVAL;
4608 /* make certain new is below the root */
4609 if (!is_path_reachable(new_mnt, new.dentry, &root))
4610 return -EINVAL;
4611 lock_mount_hash();
4612 umount_mnt(new_mnt);
4613 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4614 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4615 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4616 }
4617 /* mount new_root on / */
4618 attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4619 umount_mnt(root_mnt);
4620 /* mount old root on put_old */
4621 attach_mnt(root_mnt, old_mnt, old_mp.mp);
4622 touch_mnt_namespace(current->nsproxy->mnt_ns);
4623 /* A moved mount should not expire automatically */
4624 list_del_init(&new_mnt->mnt_expire);
4625 unlock_mount_hash();
4626 mnt_notify_add(root_mnt);
4627 mnt_notify_add(new_mnt);
4628 chroot_fs_refs(&root, &new);
4629 return 0;
4630 }
4631
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4632 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4633 {
4634 unsigned int flags = mnt->mnt.mnt_flags;
4635
4636 /* flags to clear */
4637 flags &= ~kattr->attr_clr;
4638 /* flags to raise */
4639 flags |= kattr->attr_set;
4640
4641 return flags;
4642 }
4643
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4644 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4645 {
4646 struct vfsmount *m = &mnt->mnt;
4647 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4648
4649 if (!kattr->mnt_idmap)
4650 return 0;
4651
4652 /*
4653 * Creating an idmapped mount with the filesystem wide idmapping
4654 * doesn't make sense so block that. We don't allow mushy semantics.
4655 */
4656 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4657 return -EINVAL;
4658
4659 /*
4660 * We only allow an mount to change it's idmapping if it has
4661 * never been accessible to userspace.
4662 */
4663 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4664 return -EPERM;
4665
4666 /* The underlying filesystem doesn't support idmapped mounts yet. */
4667 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4668 return -EINVAL;
4669
4670 /* The filesystem has turned off idmapped mounts. */
4671 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4672 return -EINVAL;
4673
4674 /* We're not controlling the superblock. */
4675 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4676 return -EPERM;
4677
4678 /* Mount has already been visible in the filesystem hierarchy. */
4679 if (!is_anon_ns(mnt->mnt_ns))
4680 return -EINVAL;
4681
4682 return 0;
4683 }
4684
4685 /**
4686 * mnt_allow_writers() - check whether the attribute change allows writers
4687 * @kattr: the new mount attributes
4688 * @mnt: the mount to which @kattr will be applied
4689 *
4690 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4691 *
4692 * Return: true if writers need to be held, false if not
4693 */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4694 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4695 const struct mount *mnt)
4696 {
4697 return (!(kattr->attr_set & MNT_READONLY) ||
4698 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4699 !kattr->mnt_idmap;
4700 }
4701
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4702 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4703 {
4704 struct mount *m;
4705 int err;
4706
4707 for (m = mnt; m; m = next_mnt(m, mnt)) {
4708 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4709 err = -EPERM;
4710 break;
4711 }
4712
4713 err = can_idmap_mount(kattr, m);
4714 if (err)
4715 break;
4716
4717 if (!mnt_allow_writers(kattr, m)) {
4718 err = mnt_hold_writers(m);
4719 if (err) {
4720 m = next_mnt(m, mnt);
4721 break;
4722 }
4723 }
4724
4725 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4726 return 0;
4727 }
4728
4729 if (err) {
4730 /* undo all mnt_hold_writers() we'd done */
4731 for (struct mount *p = mnt; p != m; p = next_mnt(p, mnt))
4732 mnt_unhold_writers(p);
4733 }
4734 return err;
4735 }
4736
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4737 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4738 {
4739 struct mnt_idmap *old_idmap;
4740
4741 if (!kattr->mnt_idmap)
4742 return;
4743
4744 old_idmap = mnt_idmap(&mnt->mnt);
4745
4746 /* Pairs with smp_load_acquire() in mnt_idmap(). */
4747 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4748 mnt_idmap_put(old_idmap);
4749 }
4750
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4751 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4752 {
4753 struct mount *m;
4754
4755 for (m = mnt; m; m = next_mnt(m, mnt)) {
4756 unsigned int flags;
4757
4758 do_idmap_mount(kattr, m);
4759 flags = recalc_flags(kattr, m);
4760 WRITE_ONCE(m->mnt.mnt_flags, flags);
4761
4762 /* If we had to hold writers unblock them. */
4763 mnt_unhold_writers(m);
4764
4765 if (kattr->propagation)
4766 change_mnt_propagation(m, kattr->propagation);
4767 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4768 break;
4769 }
4770 touch_mnt_namespace(mnt->mnt_ns);
4771 }
4772
do_mount_setattr(const struct path * path,struct mount_kattr * kattr)4773 static int do_mount_setattr(const struct path *path, struct mount_kattr *kattr)
4774 {
4775 struct mount *mnt = real_mount(path->mnt);
4776 int err = 0;
4777
4778 if (!path_mounted(path))
4779 return -EINVAL;
4780
4781 if (kattr->mnt_userns) {
4782 struct mnt_idmap *mnt_idmap;
4783
4784 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4785 if (IS_ERR(mnt_idmap))
4786 return PTR_ERR(mnt_idmap);
4787 kattr->mnt_idmap = mnt_idmap;
4788 }
4789
4790 if (kattr->propagation) {
4791 /*
4792 * Only take namespace_lock() if we're actually changing
4793 * propagation.
4794 */
4795 namespace_lock();
4796 if (kattr->propagation == MS_SHARED) {
4797 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4798 if (err) {
4799 namespace_unlock();
4800 return err;
4801 }
4802 }
4803 }
4804
4805 err = -EINVAL;
4806 lock_mount_hash();
4807
4808 if (!anon_ns_root(mnt) && !check_mnt(mnt))
4809 goto out;
4810
4811 /*
4812 * First, we get the mount tree in a shape where we can change mount
4813 * properties without failure. If we succeeded to do so we commit all
4814 * changes and if we failed we clean up.
4815 */
4816 err = mount_setattr_prepare(kattr, mnt);
4817 if (!err)
4818 mount_setattr_commit(kattr, mnt);
4819
4820 out:
4821 unlock_mount_hash();
4822
4823 if (kattr->propagation) {
4824 if (err)
4825 cleanup_group_ids(mnt, NULL);
4826 namespace_unlock();
4827 }
4828
4829 return err;
4830 }
4831
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4832 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4833 struct mount_kattr *kattr)
4834 {
4835 struct ns_common *ns;
4836 struct user_namespace *mnt_userns;
4837
4838 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4839 return 0;
4840
4841 if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4842 /*
4843 * We can only remove an idmapping if it's never been
4844 * exposed to userspace.
4845 */
4846 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4847 return -EINVAL;
4848
4849 /*
4850 * Removal of idmappings is equivalent to setting
4851 * nop_mnt_idmap.
4852 */
4853 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4854 kattr->mnt_idmap = &nop_mnt_idmap;
4855 return 0;
4856 }
4857 }
4858
4859 if (attr->userns_fd > INT_MAX)
4860 return -EINVAL;
4861
4862 CLASS(fd, f)(attr->userns_fd);
4863 if (fd_empty(f))
4864 return -EBADF;
4865
4866 if (!proc_ns_file(fd_file(f)))
4867 return -EINVAL;
4868
4869 ns = get_proc_ns(file_inode(fd_file(f)));
4870 if (ns->ns_type != CLONE_NEWUSER)
4871 return -EINVAL;
4872
4873 /*
4874 * The initial idmapping cannot be used to create an idmapped
4875 * mount. We use the initial idmapping as an indicator of a mount
4876 * that is not idmapped. It can simply be passed into helpers that
4877 * are aware of idmapped mounts as a convenient shortcut. A user
4878 * can just create a dedicated identity mapping to achieve the same
4879 * result.
4880 */
4881 mnt_userns = container_of(ns, struct user_namespace, ns);
4882 if (mnt_userns == &init_user_ns)
4883 return -EPERM;
4884
4885 /* We're not controlling the target namespace. */
4886 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4887 return -EPERM;
4888
4889 kattr->mnt_userns = get_user_ns(mnt_userns);
4890 return 0;
4891 }
4892
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4893 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4894 struct mount_kattr *kattr)
4895 {
4896 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4897 return -EINVAL;
4898 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4899 return -EINVAL;
4900 kattr->propagation = attr->propagation;
4901
4902 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4903 return -EINVAL;
4904
4905 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4906 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4907
4908 /*
4909 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4910 * users wanting to transition to a different atime setting cannot
4911 * simply specify the atime setting in @attr_set, but must also
4912 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4913 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4914 * @attr_clr and that @attr_set can't have any atime bits set if
4915 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4916 */
4917 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4918 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4919 return -EINVAL;
4920
4921 /*
4922 * Clear all previous time settings as they are mutually
4923 * exclusive.
4924 */
4925 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4926 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4927 case MOUNT_ATTR_RELATIME:
4928 kattr->attr_set |= MNT_RELATIME;
4929 break;
4930 case MOUNT_ATTR_NOATIME:
4931 kattr->attr_set |= MNT_NOATIME;
4932 break;
4933 case MOUNT_ATTR_STRICTATIME:
4934 break;
4935 default:
4936 return -EINVAL;
4937 }
4938 } else {
4939 if (attr->attr_set & MOUNT_ATTR__ATIME)
4940 return -EINVAL;
4941 }
4942
4943 return build_mount_idmapped(attr, usize, kattr);
4944 }
4945
finish_mount_kattr(struct mount_kattr * kattr)4946 static void finish_mount_kattr(struct mount_kattr *kattr)
4947 {
4948 if (kattr->mnt_userns) {
4949 put_user_ns(kattr->mnt_userns);
4950 kattr->mnt_userns = NULL;
4951 }
4952
4953 if (kattr->mnt_idmap)
4954 mnt_idmap_put(kattr->mnt_idmap);
4955 }
4956
wants_mount_setattr(struct mount_attr __user * uattr,size_t usize,struct mount_kattr * kattr)4957 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
4958 struct mount_kattr *kattr)
4959 {
4960 int ret;
4961 struct mount_attr attr;
4962
4963 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4964
4965 if (unlikely(usize > PAGE_SIZE))
4966 return -E2BIG;
4967 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4968 return -EINVAL;
4969
4970 if (!may_mount())
4971 return -EPERM;
4972
4973 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4974 if (ret)
4975 return ret;
4976
4977 /* Don't bother walking through the mounts if this is a nop. */
4978 if (attr.attr_set == 0 &&
4979 attr.attr_clr == 0 &&
4980 attr.propagation == 0)
4981 return 0; /* Tell caller to not bother. */
4982
4983 ret = build_mount_kattr(&attr, usize, kattr);
4984 if (ret < 0)
4985 return ret;
4986
4987 return 1;
4988 }
4989
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4990 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4991 unsigned int, flags, struct mount_attr __user *, uattr,
4992 size_t, usize)
4993 {
4994 int err;
4995 struct path target;
4996 struct mount_kattr kattr;
4997 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4998
4999 if (flags & ~(AT_EMPTY_PATH |
5000 AT_RECURSIVE |
5001 AT_SYMLINK_NOFOLLOW |
5002 AT_NO_AUTOMOUNT))
5003 return -EINVAL;
5004
5005 if (flags & AT_NO_AUTOMOUNT)
5006 lookup_flags &= ~LOOKUP_AUTOMOUNT;
5007 if (flags & AT_SYMLINK_NOFOLLOW)
5008 lookup_flags &= ~LOOKUP_FOLLOW;
5009 if (flags & AT_EMPTY_PATH)
5010 lookup_flags |= LOOKUP_EMPTY;
5011
5012 kattr = (struct mount_kattr) {
5013 .lookup_flags = lookup_flags,
5014 };
5015
5016 if (flags & AT_RECURSIVE)
5017 kattr.kflags |= MOUNT_KATTR_RECURSE;
5018
5019 err = wants_mount_setattr(uattr, usize, &kattr);
5020 if (err <= 0)
5021 return err;
5022
5023 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5024 if (!err) {
5025 err = do_mount_setattr(&target, &kattr);
5026 path_put(&target);
5027 }
5028 finish_mount_kattr(&kattr);
5029 return err;
5030 }
5031
SYSCALL_DEFINE5(open_tree_attr,int,dfd,const char __user *,filename,unsigned,flags,struct mount_attr __user *,uattr,size_t,usize)5032 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5033 unsigned, flags, struct mount_attr __user *, uattr,
5034 size_t, usize)
5035 {
5036 struct file __free(fput) *file = NULL;
5037 int fd;
5038
5039 if (!uattr && usize)
5040 return -EINVAL;
5041
5042 file = vfs_open_tree(dfd, filename, flags);
5043 if (IS_ERR(file))
5044 return PTR_ERR(file);
5045
5046 if (uattr) {
5047 int ret;
5048 struct mount_kattr kattr = {};
5049
5050 if (flags & OPEN_TREE_CLONE)
5051 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5052 if (flags & AT_RECURSIVE)
5053 kattr.kflags |= MOUNT_KATTR_RECURSE;
5054
5055 ret = wants_mount_setattr(uattr, usize, &kattr);
5056 if (ret > 0) {
5057 ret = do_mount_setattr(&file->f_path, &kattr);
5058 finish_mount_kattr(&kattr);
5059 }
5060 if (ret)
5061 return ret;
5062 }
5063
5064 fd = get_unused_fd_flags(flags & O_CLOEXEC);
5065 if (fd < 0)
5066 return fd;
5067
5068 fd_install(fd, no_free_ptr(file));
5069 return fd;
5070 }
5071
show_path(struct seq_file * m,struct dentry * root)5072 int show_path(struct seq_file *m, struct dentry *root)
5073 {
5074 if (root->d_sb->s_op->show_path)
5075 return root->d_sb->s_op->show_path(m, root);
5076
5077 seq_dentry(m, root, " \t\n\\");
5078 return 0;
5079 }
5080
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)5081 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5082 {
5083 struct mount *mnt = mnt_find_id_at(ns, id);
5084
5085 if (!mnt || mnt->mnt_id_unique != id)
5086 return NULL;
5087
5088 return &mnt->mnt;
5089 }
5090
5091 struct kstatmount {
5092 struct statmount __user *buf;
5093 size_t bufsize;
5094 struct vfsmount *mnt;
5095 struct mnt_idmap *idmap;
5096 u64 mask;
5097 struct path root;
5098 struct seq_file seq;
5099
5100 /* Must be last --ends in a flexible-array member. */
5101 struct statmount sm;
5102 };
5103
mnt_to_attr_flags(struct vfsmount * mnt)5104 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5105 {
5106 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5107 u64 attr_flags = 0;
5108
5109 if (mnt_flags & MNT_READONLY)
5110 attr_flags |= MOUNT_ATTR_RDONLY;
5111 if (mnt_flags & MNT_NOSUID)
5112 attr_flags |= MOUNT_ATTR_NOSUID;
5113 if (mnt_flags & MNT_NODEV)
5114 attr_flags |= MOUNT_ATTR_NODEV;
5115 if (mnt_flags & MNT_NOEXEC)
5116 attr_flags |= MOUNT_ATTR_NOEXEC;
5117 if (mnt_flags & MNT_NODIRATIME)
5118 attr_flags |= MOUNT_ATTR_NODIRATIME;
5119 if (mnt_flags & MNT_NOSYMFOLLOW)
5120 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5121
5122 if (mnt_flags & MNT_NOATIME)
5123 attr_flags |= MOUNT_ATTR_NOATIME;
5124 else if (mnt_flags & MNT_RELATIME)
5125 attr_flags |= MOUNT_ATTR_RELATIME;
5126 else
5127 attr_flags |= MOUNT_ATTR_STRICTATIME;
5128
5129 if (is_idmapped_mnt(mnt))
5130 attr_flags |= MOUNT_ATTR_IDMAP;
5131
5132 return attr_flags;
5133 }
5134
mnt_to_propagation_flags(struct mount * m)5135 static u64 mnt_to_propagation_flags(struct mount *m)
5136 {
5137 u64 propagation = 0;
5138
5139 if (IS_MNT_SHARED(m))
5140 propagation |= MS_SHARED;
5141 if (IS_MNT_SLAVE(m))
5142 propagation |= MS_SLAVE;
5143 if (IS_MNT_UNBINDABLE(m))
5144 propagation |= MS_UNBINDABLE;
5145 if (!propagation)
5146 propagation |= MS_PRIVATE;
5147
5148 return propagation;
5149 }
5150
statmount_sb_basic(struct kstatmount * s)5151 static void statmount_sb_basic(struct kstatmount *s)
5152 {
5153 struct super_block *sb = s->mnt->mnt_sb;
5154
5155 s->sm.mask |= STATMOUNT_SB_BASIC;
5156 s->sm.sb_dev_major = MAJOR(sb->s_dev);
5157 s->sm.sb_dev_minor = MINOR(sb->s_dev);
5158 s->sm.sb_magic = sb->s_magic;
5159 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5160 }
5161
statmount_mnt_basic(struct kstatmount * s)5162 static void statmount_mnt_basic(struct kstatmount *s)
5163 {
5164 struct mount *m = real_mount(s->mnt);
5165
5166 s->sm.mask |= STATMOUNT_MNT_BASIC;
5167 s->sm.mnt_id = m->mnt_id_unique;
5168 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5169 s->sm.mnt_id_old = m->mnt_id;
5170 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5171 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5172 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5173 s->sm.mnt_peer_group = m->mnt_group_id;
5174 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5175 }
5176
statmount_propagate_from(struct kstatmount * s)5177 static void statmount_propagate_from(struct kstatmount *s)
5178 {
5179 struct mount *m = real_mount(s->mnt);
5180
5181 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5182 if (IS_MNT_SLAVE(m))
5183 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
5184 }
5185
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5186 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5187 {
5188 int ret;
5189 size_t start = seq->count;
5190
5191 ret = show_path(seq, s->mnt->mnt_root);
5192 if (ret)
5193 return ret;
5194
5195 if (unlikely(seq_has_overflowed(seq)))
5196 return -EAGAIN;
5197
5198 /*
5199 * Unescape the result. It would be better if supplied string was not
5200 * escaped in the first place, but that's a pretty invasive change.
5201 */
5202 seq->buf[seq->count] = '\0';
5203 seq->count = start;
5204 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5205 return 0;
5206 }
5207
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5208 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5209 {
5210 struct vfsmount *mnt = s->mnt;
5211 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5212 int err;
5213
5214 err = seq_path_root(seq, &mnt_path, &s->root, "");
5215 return err == SEQ_SKIP ? 0 : err;
5216 }
5217
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5218 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5219 {
5220 struct super_block *sb = s->mnt->mnt_sb;
5221
5222 seq_puts(seq, sb->s_type->name);
5223 return 0;
5224 }
5225
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)5226 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5227 {
5228 struct super_block *sb = s->mnt->mnt_sb;
5229
5230 if (sb->s_subtype)
5231 seq_puts(seq, sb->s_subtype);
5232 }
5233
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5234 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5235 {
5236 struct super_block *sb = s->mnt->mnt_sb;
5237 struct mount *r = real_mount(s->mnt);
5238
5239 if (sb->s_op->show_devname) {
5240 size_t start = seq->count;
5241 int ret;
5242
5243 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5244 if (ret)
5245 return ret;
5246
5247 if (unlikely(seq_has_overflowed(seq)))
5248 return -EAGAIN;
5249
5250 /* Unescape the result */
5251 seq->buf[seq->count] = '\0';
5252 seq->count = start;
5253 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5254 } else {
5255 seq_puts(seq, r->mnt_devname);
5256 }
5257 return 0;
5258 }
5259
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5260 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5261 {
5262 s->sm.mask |= STATMOUNT_MNT_NS_ID;
5263 s->sm.mnt_ns_id = ns->ns.ns_id;
5264 }
5265
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5266 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5267 {
5268 struct vfsmount *mnt = s->mnt;
5269 struct super_block *sb = mnt->mnt_sb;
5270 size_t start = seq->count;
5271 int err;
5272
5273 err = security_sb_show_options(seq, sb);
5274 if (err)
5275 return err;
5276
5277 if (sb->s_op->show_options) {
5278 err = sb->s_op->show_options(seq, mnt->mnt_root);
5279 if (err)
5280 return err;
5281 }
5282
5283 if (unlikely(seq_has_overflowed(seq)))
5284 return -EAGAIN;
5285
5286 if (seq->count == start)
5287 return 0;
5288
5289 /* skip leading comma */
5290 memmove(seq->buf + start, seq->buf + start + 1,
5291 seq->count - start - 1);
5292 seq->count--;
5293
5294 return 0;
5295 }
5296
statmount_opt_process(struct seq_file * seq,size_t start)5297 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5298 {
5299 char *buf_end, *opt_end, *src, *dst;
5300 int count = 0;
5301
5302 if (unlikely(seq_has_overflowed(seq)))
5303 return -EAGAIN;
5304
5305 buf_end = seq->buf + seq->count;
5306 dst = seq->buf + start;
5307 src = dst + 1; /* skip initial comma */
5308
5309 if (src >= buf_end) {
5310 seq->count = start;
5311 return 0;
5312 }
5313
5314 *buf_end = '\0';
5315 for (; src < buf_end; src = opt_end + 1) {
5316 opt_end = strchrnul(src, ',');
5317 *opt_end = '\0';
5318 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5319 if (WARN_ON_ONCE(++count == INT_MAX))
5320 return -EOVERFLOW;
5321 }
5322 seq->count = dst - 1 - seq->buf;
5323 return count;
5324 }
5325
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5326 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5327 {
5328 struct vfsmount *mnt = s->mnt;
5329 struct super_block *sb = mnt->mnt_sb;
5330 size_t start = seq->count;
5331 int err;
5332
5333 if (!sb->s_op->show_options)
5334 return 0;
5335
5336 err = sb->s_op->show_options(seq, mnt->mnt_root);
5337 if (err)
5338 return err;
5339
5340 err = statmount_opt_process(seq, start);
5341 if (err < 0)
5342 return err;
5343
5344 s->sm.opt_num = err;
5345 return 0;
5346 }
5347
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5348 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5349 {
5350 struct vfsmount *mnt = s->mnt;
5351 struct super_block *sb = mnt->mnt_sb;
5352 size_t start = seq->count;
5353 int err;
5354
5355 err = security_sb_show_options(seq, sb);
5356 if (err)
5357 return err;
5358
5359 err = statmount_opt_process(seq, start);
5360 if (err < 0)
5361 return err;
5362
5363 s->sm.opt_sec_num = err;
5364 return 0;
5365 }
5366
statmount_mnt_uidmap(struct kstatmount * s,struct seq_file * seq)5367 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5368 {
5369 int ret;
5370
5371 ret = statmount_mnt_idmap(s->idmap, seq, true);
5372 if (ret < 0)
5373 return ret;
5374
5375 s->sm.mnt_uidmap_num = ret;
5376 /*
5377 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5378 * mappings. This allows userspace to distinguish between a
5379 * non-idmapped mount and an idmapped mount where none of the
5380 * individual mappings are valid in the caller's idmapping.
5381 */
5382 if (is_valid_mnt_idmap(s->idmap))
5383 s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5384 return 0;
5385 }
5386
statmount_mnt_gidmap(struct kstatmount * s,struct seq_file * seq)5387 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5388 {
5389 int ret;
5390
5391 ret = statmount_mnt_idmap(s->idmap, seq, false);
5392 if (ret < 0)
5393 return ret;
5394
5395 s->sm.mnt_gidmap_num = ret;
5396 /*
5397 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5398 * mappings. This allows userspace to distinguish between a
5399 * non-idmapped mount and an idmapped mount where none of the
5400 * individual mappings are valid in the caller's idmapping.
5401 */
5402 if (is_valid_mnt_idmap(s->idmap))
5403 s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5404 return 0;
5405 }
5406
statmount_string(struct kstatmount * s,u64 flag)5407 static int statmount_string(struct kstatmount *s, u64 flag)
5408 {
5409 int ret = 0;
5410 size_t kbufsize;
5411 struct seq_file *seq = &s->seq;
5412 struct statmount *sm = &s->sm;
5413 u32 start, *offp;
5414
5415 /* Reserve an empty string at the beginning for any unset offsets */
5416 if (!seq->count)
5417 seq_putc(seq, 0);
5418
5419 start = seq->count;
5420
5421 switch (flag) {
5422 case STATMOUNT_FS_TYPE:
5423 offp = &sm->fs_type;
5424 ret = statmount_fs_type(s, seq);
5425 break;
5426 case STATMOUNT_MNT_ROOT:
5427 offp = &sm->mnt_root;
5428 ret = statmount_mnt_root(s, seq);
5429 break;
5430 case STATMOUNT_MNT_POINT:
5431 offp = &sm->mnt_point;
5432 ret = statmount_mnt_point(s, seq);
5433 break;
5434 case STATMOUNT_MNT_OPTS:
5435 offp = &sm->mnt_opts;
5436 ret = statmount_mnt_opts(s, seq);
5437 break;
5438 case STATMOUNT_OPT_ARRAY:
5439 offp = &sm->opt_array;
5440 ret = statmount_opt_array(s, seq);
5441 break;
5442 case STATMOUNT_OPT_SEC_ARRAY:
5443 offp = &sm->opt_sec_array;
5444 ret = statmount_opt_sec_array(s, seq);
5445 break;
5446 case STATMOUNT_FS_SUBTYPE:
5447 offp = &sm->fs_subtype;
5448 statmount_fs_subtype(s, seq);
5449 break;
5450 case STATMOUNT_SB_SOURCE:
5451 offp = &sm->sb_source;
5452 ret = statmount_sb_source(s, seq);
5453 break;
5454 case STATMOUNT_MNT_UIDMAP:
5455 offp = &sm->mnt_uidmap;
5456 ret = statmount_mnt_uidmap(s, seq);
5457 break;
5458 case STATMOUNT_MNT_GIDMAP:
5459 offp = &sm->mnt_gidmap;
5460 ret = statmount_mnt_gidmap(s, seq);
5461 break;
5462 default:
5463 WARN_ON_ONCE(true);
5464 return -EINVAL;
5465 }
5466
5467 /*
5468 * If nothing was emitted, return to avoid setting the flag
5469 * and terminating the buffer.
5470 */
5471 if (seq->count == start)
5472 return ret;
5473 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5474 return -EOVERFLOW;
5475 if (kbufsize >= s->bufsize)
5476 return -EOVERFLOW;
5477
5478 /* signal a retry */
5479 if (unlikely(seq_has_overflowed(seq)))
5480 return -EAGAIN;
5481
5482 if (ret)
5483 return ret;
5484
5485 seq->buf[seq->count++] = '\0';
5486 sm->mask |= flag;
5487 *offp = start;
5488 return 0;
5489 }
5490
copy_statmount_to_user(struct kstatmount * s)5491 static int copy_statmount_to_user(struct kstatmount *s)
5492 {
5493 struct statmount *sm = &s->sm;
5494 struct seq_file *seq = &s->seq;
5495 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5496 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5497
5498 if (seq->count && copy_to_user(str, seq->buf, seq->count))
5499 return -EFAULT;
5500
5501 /* Return the number of bytes copied to the buffer */
5502 sm->size = copysize + seq->count;
5503 if (copy_to_user(s->buf, sm, copysize))
5504 return -EFAULT;
5505
5506 return 0;
5507 }
5508
listmnt_next(struct mount * curr,bool reverse)5509 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5510 {
5511 struct rb_node *node;
5512
5513 if (reverse)
5514 node = rb_prev(&curr->mnt_node);
5515 else
5516 node = rb_next(&curr->mnt_node);
5517
5518 return node_to_mount(node);
5519 }
5520
grab_requested_root(struct mnt_namespace * ns,struct path * root)5521 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5522 {
5523 struct mount *first, *child;
5524
5525 rwsem_assert_held(&namespace_sem);
5526
5527 /* We're looking at our own ns, just use get_fs_root. */
5528 if (ns == current->nsproxy->mnt_ns) {
5529 get_fs_root(current->fs, root);
5530 return 0;
5531 }
5532
5533 /*
5534 * We have to find the first mount in our ns and use that, however it
5535 * may not exist, so handle that properly.
5536 */
5537 if (mnt_ns_empty(ns))
5538 return -ENOENT;
5539
5540 first = child = ns->root;
5541 for (;;) {
5542 child = listmnt_next(child, false);
5543 if (!child)
5544 return -ENOENT;
5545 if (child->mnt_parent == first)
5546 break;
5547 }
5548
5549 root->mnt = mntget(&child->mnt);
5550 root->dentry = dget(root->mnt->mnt_root);
5551 return 0;
5552 }
5553
5554 /* This must be updated whenever a new flag is added */
5555 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5556 STATMOUNT_MNT_BASIC | \
5557 STATMOUNT_PROPAGATE_FROM | \
5558 STATMOUNT_MNT_ROOT | \
5559 STATMOUNT_MNT_POINT | \
5560 STATMOUNT_FS_TYPE | \
5561 STATMOUNT_MNT_NS_ID | \
5562 STATMOUNT_MNT_OPTS | \
5563 STATMOUNT_FS_SUBTYPE | \
5564 STATMOUNT_SB_SOURCE | \
5565 STATMOUNT_OPT_ARRAY | \
5566 STATMOUNT_OPT_SEC_ARRAY | \
5567 STATMOUNT_SUPPORTED_MASK | \
5568 STATMOUNT_MNT_UIDMAP | \
5569 STATMOUNT_MNT_GIDMAP)
5570
5571 /* locks: namespace_shared */
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5572 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5573 struct mnt_namespace *ns)
5574 {
5575 struct mount *m;
5576 int err;
5577
5578 /* Has the namespace already been emptied? */
5579 if (mnt_ns_id && mnt_ns_empty(ns))
5580 return -ENOENT;
5581
5582 s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5583 if (!s->mnt)
5584 return -ENOENT;
5585
5586 err = grab_requested_root(ns, &s->root);
5587 if (err)
5588 return err;
5589
5590 /*
5591 * Don't trigger audit denials. We just want to determine what
5592 * mounts to show users.
5593 */
5594 m = real_mount(s->mnt);
5595 if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
5596 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5597 return -EPERM;
5598
5599 err = security_sb_statfs(s->mnt->mnt_root);
5600 if (err)
5601 return err;
5602
5603 /*
5604 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5605 * can change concurrently as we only hold the read-side of the
5606 * namespace semaphore and mount properties may change with only
5607 * the mount lock held.
5608 *
5609 * We could sample the mount lock sequence counter to detect
5610 * those changes and retry. But it's not worth it. Worst that
5611 * happens is that the mnt->mnt_idmap pointer is already changed
5612 * while mnt->mnt_flags isn't or vica versa. So what.
5613 *
5614 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5615 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5616 * torn read/write. That's all we care about right now.
5617 */
5618 s->idmap = mnt_idmap(s->mnt);
5619 if (s->mask & STATMOUNT_MNT_BASIC)
5620 statmount_mnt_basic(s);
5621
5622 if (s->mask & STATMOUNT_SB_BASIC)
5623 statmount_sb_basic(s);
5624
5625 if (s->mask & STATMOUNT_PROPAGATE_FROM)
5626 statmount_propagate_from(s);
5627
5628 if (s->mask & STATMOUNT_FS_TYPE)
5629 err = statmount_string(s, STATMOUNT_FS_TYPE);
5630
5631 if (!err && s->mask & STATMOUNT_MNT_ROOT)
5632 err = statmount_string(s, STATMOUNT_MNT_ROOT);
5633
5634 if (!err && s->mask & STATMOUNT_MNT_POINT)
5635 err = statmount_string(s, STATMOUNT_MNT_POINT);
5636
5637 if (!err && s->mask & STATMOUNT_MNT_OPTS)
5638 err = statmount_string(s, STATMOUNT_MNT_OPTS);
5639
5640 if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5641 err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5642
5643 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5644 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5645
5646 if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5647 err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5648
5649 if (!err && s->mask & STATMOUNT_SB_SOURCE)
5650 err = statmount_string(s, STATMOUNT_SB_SOURCE);
5651
5652 if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5653 err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5654
5655 if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5656 err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5657
5658 if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5659 statmount_mnt_ns_id(s, ns);
5660
5661 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5662 s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5663 s->sm.supported_mask = STATMOUNT_SUPPORTED;
5664 }
5665
5666 if (err)
5667 return err;
5668
5669 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5670 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5671
5672 return 0;
5673 }
5674
retry_statmount(const long ret,size_t * seq_size)5675 static inline bool retry_statmount(const long ret, size_t *seq_size)
5676 {
5677 if (likely(ret != -EAGAIN))
5678 return false;
5679 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5680 return false;
5681 if (unlikely(*seq_size > MAX_RW_COUNT))
5682 return false;
5683 return true;
5684 }
5685
5686 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5687 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5688 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5689 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5690 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5691
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5692 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5693 struct statmount __user *buf, size_t bufsize,
5694 size_t seq_size)
5695 {
5696 if (!access_ok(buf, bufsize))
5697 return -EFAULT;
5698
5699 memset(ks, 0, sizeof(*ks));
5700 ks->mask = kreq->param;
5701 ks->buf = buf;
5702 ks->bufsize = bufsize;
5703
5704 if (ks->mask & STATMOUNT_STRING_REQ) {
5705 if (bufsize == sizeof(ks->sm))
5706 return -EOVERFLOW;
5707
5708 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5709 if (!ks->seq.buf)
5710 return -ENOMEM;
5711
5712 ks->seq.size = seq_size;
5713 }
5714
5715 return 0;
5716 }
5717
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5718 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5719 struct mnt_id_req *kreq)
5720 {
5721 int ret;
5722 size_t usize;
5723
5724 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5725
5726 ret = get_user(usize, &req->size);
5727 if (ret)
5728 return -EFAULT;
5729 if (unlikely(usize > PAGE_SIZE))
5730 return -E2BIG;
5731 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5732 return -EINVAL;
5733 memset(kreq, 0, sizeof(*kreq));
5734 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5735 if (ret)
5736 return ret;
5737 if (kreq->mnt_ns_fd != 0 && kreq->mnt_ns_id)
5738 return -EINVAL;
5739 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5740 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5741 return -EINVAL;
5742 return 0;
5743 }
5744
5745 /*
5746 * If the user requested a specific mount namespace id, look that up and return
5747 * that, or if not simply grab a passive reference on our mount namespace and
5748 * return that.
5749 */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5750 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5751 {
5752 struct mnt_namespace *mnt_ns;
5753
5754 if (kreq->mnt_ns_id) {
5755 mnt_ns = lookup_mnt_ns(kreq->mnt_ns_id);
5756 if (!mnt_ns)
5757 return ERR_PTR(-ENOENT);
5758 } else if (kreq->mnt_ns_fd) {
5759 struct ns_common *ns;
5760
5761 CLASS(fd, f)(kreq->mnt_ns_fd);
5762 if (fd_empty(f))
5763 return ERR_PTR(-EBADF);
5764
5765 if (!proc_ns_file(fd_file(f)))
5766 return ERR_PTR(-EINVAL);
5767
5768 ns = get_proc_ns(file_inode(fd_file(f)));
5769 if (ns->ns_type != CLONE_NEWNS)
5770 return ERR_PTR(-EINVAL);
5771
5772 mnt_ns = to_mnt_ns(ns);
5773 refcount_inc(&mnt_ns->passive);
5774 } else {
5775 mnt_ns = current->nsproxy->mnt_ns;
5776 refcount_inc(&mnt_ns->passive);
5777 }
5778
5779 return mnt_ns;
5780 }
5781
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5782 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5783 struct statmount __user *, buf, size_t, bufsize,
5784 unsigned int, flags)
5785 {
5786 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5787 struct kstatmount *ks __free(kfree) = NULL;
5788 struct mnt_id_req kreq;
5789 /* We currently support retrieval of 3 strings. */
5790 size_t seq_size = 3 * PATH_MAX;
5791 int ret;
5792
5793 if (flags)
5794 return -EINVAL;
5795
5796 ret = copy_mnt_id_req(req, &kreq);
5797 if (ret)
5798 return ret;
5799
5800 ns = grab_requested_mnt_ns(&kreq);
5801 if (IS_ERR(ns))
5802 return PTR_ERR(ns);
5803
5804 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5805 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5806 return -ENOENT;
5807
5808 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5809 if (!ks)
5810 return -ENOMEM;
5811
5812 retry:
5813 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5814 if (ret)
5815 return ret;
5816
5817 scoped_guard(namespace_shared)
5818 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5819
5820 if (!ret)
5821 ret = copy_statmount_to_user(ks);
5822 kvfree(ks->seq.buf);
5823 path_put(&ks->root);
5824 if (retry_statmount(ret, &seq_size))
5825 goto retry;
5826 return ret;
5827 }
5828
5829 struct klistmount {
5830 u64 last_mnt_id;
5831 u64 mnt_parent_id;
5832 u64 *kmnt_ids;
5833 u32 nr_mnt_ids;
5834 struct mnt_namespace *ns;
5835 struct path root;
5836 };
5837
5838 /* locks: namespace_shared */
do_listmount(struct klistmount * kls,bool reverse)5839 static ssize_t do_listmount(struct klistmount *kls, bool reverse)
5840 {
5841 struct mnt_namespace *ns = kls->ns;
5842 u64 mnt_parent_id = kls->mnt_parent_id;
5843 u64 last_mnt_id = kls->last_mnt_id;
5844 u64 *mnt_ids = kls->kmnt_ids;
5845 size_t nr_mnt_ids = kls->nr_mnt_ids;
5846 struct path orig;
5847 struct mount *r, *first;
5848 ssize_t ret;
5849
5850 rwsem_assert_held(&namespace_sem);
5851
5852 ret = grab_requested_root(ns, &kls->root);
5853 if (ret)
5854 return ret;
5855
5856 if (mnt_parent_id == LSMT_ROOT) {
5857 orig = kls->root;
5858 } else {
5859 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5860 if (!orig.mnt)
5861 return -ENOENT;
5862 orig.dentry = orig.mnt->mnt_root;
5863 }
5864
5865 /*
5866 * Don't trigger audit denials. We just want to determine what
5867 * mounts to show users.
5868 */
5869 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &kls->root) &&
5870 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5871 return -EPERM;
5872
5873 ret = security_sb_statfs(orig.dentry);
5874 if (ret)
5875 return ret;
5876
5877 if (!last_mnt_id) {
5878 if (reverse)
5879 first = node_to_mount(ns->mnt_last_node);
5880 else
5881 first = node_to_mount(ns->mnt_first_node);
5882 } else {
5883 if (reverse)
5884 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5885 else
5886 first = mnt_find_id_at(ns, last_mnt_id + 1);
5887 }
5888
5889 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5890 if (r->mnt_id_unique == mnt_parent_id)
5891 continue;
5892 if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5893 continue;
5894 *mnt_ids = r->mnt_id_unique;
5895 mnt_ids++;
5896 nr_mnt_ids--;
5897 ret++;
5898 }
5899 return ret;
5900 }
5901
__free_klistmount_free(const struct klistmount * kls)5902 static void __free_klistmount_free(const struct klistmount *kls)
5903 {
5904 path_put(&kls->root);
5905 kvfree(kls->kmnt_ids);
5906 mnt_ns_release(kls->ns);
5907 }
5908
prepare_klistmount(struct klistmount * kls,struct mnt_id_req * kreq,size_t nr_mnt_ids)5909 static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq,
5910 size_t nr_mnt_ids)
5911 {
5912 u64 last_mnt_id = kreq->param;
5913 struct mnt_namespace *ns;
5914
5915 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5916 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5917 return -EINVAL;
5918
5919 kls->last_mnt_id = last_mnt_id;
5920
5921 kls->nr_mnt_ids = nr_mnt_ids;
5922 kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids),
5923 GFP_KERNEL_ACCOUNT);
5924 if (!kls->kmnt_ids)
5925 return -ENOMEM;
5926
5927 ns = grab_requested_mnt_ns(kreq);
5928 if (IS_ERR(ns))
5929 return PTR_ERR(ns);
5930 kls->ns = ns;
5931
5932 kls->mnt_parent_id = kreq->mnt_id;
5933 return 0;
5934 }
5935
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)5936 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5937 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5938 {
5939 struct klistmount kls __free(klistmount_free) = {};
5940 const size_t maxcount = 1000000;
5941 struct mnt_id_req kreq;
5942 ssize_t ret;
5943
5944 if (flags & ~LISTMOUNT_REVERSE)
5945 return -EINVAL;
5946
5947 /*
5948 * If the mount namespace really has more than 1 million mounts the
5949 * caller must iterate over the mount namespace (and reconsider their
5950 * system design...).
5951 */
5952 if (unlikely(nr_mnt_ids > maxcount))
5953 return -EOVERFLOW;
5954
5955 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5956 return -EFAULT;
5957
5958 ret = copy_mnt_id_req(req, &kreq);
5959 if (ret)
5960 return ret;
5961
5962 ret = prepare_klistmount(&kls, &kreq, nr_mnt_ids);
5963 if (ret)
5964 return ret;
5965
5966 if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) &&
5967 !ns_capable_noaudit(kls.ns->user_ns, CAP_SYS_ADMIN))
5968 return -ENOENT;
5969
5970 /*
5971 * We only need to guard against mount topology changes as
5972 * listmount() doesn't care about any mount properties.
5973 */
5974 scoped_guard(namespace_shared)
5975 ret = do_listmount(&kls, (flags & LISTMOUNT_REVERSE));
5976 if (ret <= 0)
5977 return ret;
5978
5979 if (copy_to_user(mnt_ids, kls.kmnt_ids, ret * sizeof(*mnt_ids)))
5980 return -EFAULT;
5981
5982 return ret;
5983 }
5984
5985 struct mnt_namespace init_mnt_ns = {
5986 .ns = NS_COMMON_INIT(init_mnt_ns),
5987 .user_ns = &init_user_ns,
5988 .passive = REFCOUNT_INIT(1),
5989 .mounts = RB_ROOT,
5990 .poll = __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll),
5991 };
5992
init_mount_tree(void)5993 static void __init init_mount_tree(void)
5994 {
5995 struct vfsmount *mnt;
5996 struct mount *m;
5997 struct path root;
5998
5999 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options);
6000 if (IS_ERR(mnt))
6001 panic("Can't create rootfs");
6002
6003 m = real_mount(mnt);
6004 init_mnt_ns.root = m;
6005 init_mnt_ns.nr_mounts = 1;
6006 mnt_add_to_ns(&init_mnt_ns, m);
6007 init_task.nsproxy->mnt_ns = &init_mnt_ns;
6008 get_mnt_ns(&init_mnt_ns);
6009
6010 root.mnt = mnt;
6011 root.dentry = mnt->mnt_root;
6012
6013 set_fs_pwd(current->fs, &root);
6014 set_fs_root(current->fs, &root);
6015
6016 ns_tree_add(&init_mnt_ns);
6017 }
6018
mnt_init(void)6019 void __init mnt_init(void)
6020 {
6021 int err;
6022
6023 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6024 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6025
6026 mount_hashtable = alloc_large_system_hash("Mount-cache",
6027 sizeof(struct hlist_head),
6028 mhash_entries, 19,
6029 HASH_ZERO,
6030 &m_hash_shift, &m_hash_mask, 0, 0);
6031 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6032 sizeof(struct hlist_head),
6033 mphash_entries, 19,
6034 HASH_ZERO,
6035 &mp_hash_shift, &mp_hash_mask, 0, 0);
6036
6037 if (!mount_hashtable || !mountpoint_hashtable)
6038 panic("Failed to allocate mount hash table\n");
6039
6040 kernfs_init();
6041
6042 err = sysfs_init();
6043 if (err)
6044 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6045 __func__, err);
6046 fs_kobj = kobject_create_and_add("fs", NULL);
6047 if (!fs_kobj)
6048 printk(KERN_WARNING "%s: kobj create error\n", __func__);
6049 shmem_init();
6050 init_rootfs();
6051 init_mount_tree();
6052 }
6053
put_mnt_ns(struct mnt_namespace * ns)6054 void put_mnt_ns(struct mnt_namespace *ns)
6055 {
6056 if (!ns_ref_put(ns))
6057 return;
6058 guard(namespace_excl)();
6059 emptied_ns = ns;
6060 guard(mount_writer)();
6061 umount_tree(ns->root, 0);
6062 }
6063
kern_mount(struct file_system_type * type)6064 struct vfsmount *kern_mount(struct file_system_type *type)
6065 {
6066 struct vfsmount *mnt;
6067 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6068 if (!IS_ERR(mnt)) {
6069 /*
6070 * it is a longterm mount, don't release mnt until
6071 * we unmount before file sys is unregistered
6072 */
6073 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6074 }
6075 return mnt;
6076 }
6077 EXPORT_SYMBOL_GPL(kern_mount);
6078
kern_unmount(struct vfsmount * mnt)6079 void kern_unmount(struct vfsmount *mnt)
6080 {
6081 /* release long term mount so mount point can be released */
6082 if (!IS_ERR(mnt)) {
6083 mnt_make_shortterm(mnt);
6084 synchronize_rcu(); /* yecchhh... */
6085 mntput(mnt);
6086 }
6087 }
6088 EXPORT_SYMBOL(kern_unmount);
6089
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)6090 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6091 {
6092 unsigned int i;
6093
6094 for (i = 0; i < num; i++)
6095 mnt_make_shortterm(mnt[i]);
6096 synchronize_rcu_expedited();
6097 for (i = 0; i < num; i++)
6098 mntput(mnt[i]);
6099 }
6100 EXPORT_SYMBOL(kern_unmount_array);
6101
our_mnt(struct vfsmount * mnt)6102 bool our_mnt(struct vfsmount *mnt)
6103 {
6104 return check_mnt(real_mount(mnt));
6105 }
6106
current_chrooted(void)6107 bool current_chrooted(void)
6108 {
6109 /* Does the current process have a non-standard root */
6110 struct path fs_root __free(path_put) = {};
6111 struct mount *root;
6112
6113 get_fs_root(current->fs, &fs_root);
6114
6115 /* Find the namespace root */
6116
6117 guard(mount_locked_reader)();
6118
6119 root = topmost_overmount(current->nsproxy->mnt_ns->root);
6120
6121 return fs_root.mnt != &root->mnt || !path_mounted(&fs_root);
6122 }
6123
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)6124 static bool mnt_already_visible(struct mnt_namespace *ns,
6125 const struct super_block *sb,
6126 int *new_mnt_flags)
6127 {
6128 int new_flags = *new_mnt_flags;
6129 struct mount *mnt, *n;
6130
6131 guard(namespace_shared)();
6132 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6133 struct mount *child;
6134 int mnt_flags;
6135
6136 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6137 continue;
6138
6139 /* This mount is not fully visible if it's root directory
6140 * is not the root directory of the filesystem.
6141 */
6142 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6143 continue;
6144
6145 /* A local view of the mount flags */
6146 mnt_flags = mnt->mnt.mnt_flags;
6147
6148 /* Don't miss readonly hidden in the superblock flags */
6149 if (sb_rdonly(mnt->mnt.mnt_sb))
6150 mnt_flags |= MNT_LOCK_READONLY;
6151
6152 /* Verify the mount flags are equal to or more permissive
6153 * than the proposed new mount.
6154 */
6155 if ((mnt_flags & MNT_LOCK_READONLY) &&
6156 !(new_flags & MNT_READONLY))
6157 continue;
6158 if ((mnt_flags & MNT_LOCK_ATIME) &&
6159 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6160 continue;
6161
6162 /* This mount is not fully visible if there are any
6163 * locked child mounts that cover anything except for
6164 * empty directories.
6165 */
6166 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6167 struct inode *inode = child->mnt_mountpoint->d_inode;
6168 /* Only worry about locked mounts */
6169 if (!(child->mnt.mnt_flags & MNT_LOCKED))
6170 continue;
6171 /* Is the directory permanently empty? */
6172 if (!is_empty_dir_inode(inode))
6173 goto next;
6174 }
6175 /* Preserve the locked attributes */
6176 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6177 MNT_LOCK_ATIME);
6178 return true;
6179 next: ;
6180 }
6181 return false;
6182 }
6183
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)6184 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6185 {
6186 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6187 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6188 unsigned long s_iflags;
6189
6190 if (ns->user_ns == &init_user_ns)
6191 return false;
6192
6193 /* Can this filesystem be too revealing? */
6194 s_iflags = sb->s_iflags;
6195 if (!(s_iflags & SB_I_USERNS_VISIBLE))
6196 return false;
6197
6198 if ((s_iflags & required_iflags) != required_iflags) {
6199 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6200 required_iflags);
6201 return true;
6202 }
6203
6204 return !mnt_already_visible(ns, sb, new_mnt_flags);
6205 }
6206
mnt_may_suid(struct vfsmount * mnt)6207 bool mnt_may_suid(struct vfsmount *mnt)
6208 {
6209 /*
6210 * Foreign mounts (accessed via fchdir or through /proc
6211 * symlinks) are always treated as if they are nosuid. This
6212 * prevents namespaces from trusting potentially unsafe
6213 * suid/sgid bits, file caps, or security labels that originate
6214 * in other namespaces.
6215 */
6216 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6217 current_in_userns(mnt->mnt_sb->s_user_ns);
6218 }
6219
mntns_get(struct task_struct * task)6220 static struct ns_common *mntns_get(struct task_struct *task)
6221 {
6222 struct ns_common *ns = NULL;
6223 struct nsproxy *nsproxy;
6224
6225 task_lock(task);
6226 nsproxy = task->nsproxy;
6227 if (nsproxy) {
6228 ns = &nsproxy->mnt_ns->ns;
6229 get_mnt_ns(to_mnt_ns(ns));
6230 }
6231 task_unlock(task);
6232
6233 return ns;
6234 }
6235
mntns_put(struct ns_common * ns)6236 static void mntns_put(struct ns_common *ns)
6237 {
6238 put_mnt_ns(to_mnt_ns(ns));
6239 }
6240
mntns_install(struct nsset * nsset,struct ns_common * ns)6241 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6242 {
6243 struct nsproxy *nsproxy = nsset->nsproxy;
6244 struct fs_struct *fs = nsset->fs;
6245 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6246 struct user_namespace *user_ns = nsset->cred->user_ns;
6247 struct path root;
6248 int err;
6249
6250 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6251 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6252 !ns_capable(user_ns, CAP_SYS_ADMIN))
6253 return -EPERM;
6254
6255 if (is_anon_ns(mnt_ns))
6256 return -EINVAL;
6257
6258 if (fs->users != 1)
6259 return -EINVAL;
6260
6261 get_mnt_ns(mnt_ns);
6262 old_mnt_ns = nsproxy->mnt_ns;
6263 nsproxy->mnt_ns = mnt_ns;
6264
6265 /* Find the root */
6266 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6267 "/", LOOKUP_DOWN, &root);
6268 if (err) {
6269 /* revert to old namespace */
6270 nsproxy->mnt_ns = old_mnt_ns;
6271 put_mnt_ns(mnt_ns);
6272 return err;
6273 }
6274
6275 put_mnt_ns(old_mnt_ns);
6276
6277 /* Update the pwd and root */
6278 set_fs_pwd(fs, &root);
6279 set_fs_root(fs, &root);
6280
6281 path_put(&root);
6282 return 0;
6283 }
6284
mntns_owner(struct ns_common * ns)6285 static struct user_namespace *mntns_owner(struct ns_common *ns)
6286 {
6287 return to_mnt_ns(ns)->user_ns;
6288 }
6289
6290 const struct proc_ns_operations mntns_operations = {
6291 .name = "mnt",
6292 .get = mntns_get,
6293 .put = mntns_put,
6294 .install = mntns_install,
6295 .owner = mntns_owner,
6296 };
6297
6298 #ifdef CONFIG_SYSCTL
6299 static const struct ctl_table fs_namespace_sysctls[] = {
6300 {
6301 .procname = "mount-max",
6302 .data = &sysctl_mount_max,
6303 .maxlen = sizeof(unsigned int),
6304 .mode = 0644,
6305 .proc_handler = proc_dointvec_minmax,
6306 .extra1 = SYSCTL_ONE,
6307 },
6308 };
6309
init_fs_namespace_sysctls(void)6310 static int __init init_fs_namespace_sysctls(void)
6311 {
6312 register_sysctl_init("fs", fs_namespace_sysctls);
6313 return 0;
6314 }
6315 fs_initcall(init_fs_namespace_sysctls);
6316
6317 #endif /* CONFIG_SYSCTL */
6318