1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <linux/posix_acl.h> 36 #include <asm/uaccess.h> 37 38 #include "internal.h" 39 #include "mount.h" 40 41 /* [Feb-1997 T. Schoebel-Theuer] 42 * Fundamental changes in the pathname lookup mechanisms (namei) 43 * were necessary because of omirr. The reason is that omirr needs 44 * to know the _real_ pathname, not the user-supplied one, in case 45 * of symlinks (and also when transname replacements occur). 46 * 47 * The new code replaces the old recursive symlink resolution with 48 * an iterative one (in case of non-nested symlink chains). It does 49 * this with calls to <fs>_follow_link(). 50 * As a side effect, dir_namei(), _namei() and follow_link() are now 51 * replaced with a single function lookup_dentry() that can handle all 52 * the special cases of the former code. 53 * 54 * With the new dcache, the pathname is stored at each inode, at least as 55 * long as the refcount of the inode is positive. As a side effect, the 56 * size of the dcache depends on the inode cache and thus is dynamic. 57 * 58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 59 * resolution to correspond with current state of the code. 60 * 61 * Note that the symlink resolution is not *completely* iterative. 62 * There is still a significant amount of tail- and mid- recursion in 63 * the algorithm. Also, note that <fs>_readlink() is not used in 64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 65 * may return different results than <fs>_follow_link(). Many virtual 66 * filesystems (including /proc) exhibit this behavior. 67 */ 68 69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 71 * and the name already exists in form of a symlink, try to create the new 72 * name indicated by the symlink. The old code always complained that the 73 * name already exists, due to not following the symlink even if its target 74 * is nonexistent. The new semantics affects also mknod() and link() when 75 * the name is a symlink pointing to a non-existent name. 76 * 77 * I don't know which semantics is the right one, since I have no access 78 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 80 * "old" one. Personally, I think the new semantics is much more logical. 81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 82 * file does succeed in both HP-UX and SunOs, but not in Solaris 83 * and in the old Linux semantics. 84 */ 85 86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 87 * semantics. See the comments in "open_namei" and "do_link" below. 88 * 89 * [10-Sep-98 Alan Modra] Another symlink change. 90 */ 91 92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 93 * inside the path - always follow. 94 * in the last component in creation/removal/renaming - never follow. 95 * if LOOKUP_FOLLOW passed - follow. 96 * if the pathname has trailing slashes - follow. 97 * otherwise - don't follow. 98 * (applied in that order). 99 * 100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 102 * During the 2.4 we need to fix the userland stuff depending on it - 103 * hopefully we will be able to get rid of that wart in 2.5. So far only 104 * XEmacs seems to be relying on it... 105 */ 106 /* 107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 109 * any extra contention... 110 */ 111 112 /* In order to reduce some races, while at the same time doing additional 113 * checking and hopefully speeding things up, we copy filenames to the 114 * kernel data space before using them.. 115 * 116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 117 * PATH_MAX includes the nul terminator --RR. 118 */ 119 static int do_getname(const char __user *filename, char *page) 120 { 121 int retval; 122 unsigned long len = PATH_MAX; 123 124 if (!segment_eq(get_fs(), KERNEL_DS)) { 125 if ((unsigned long) filename >= TASK_SIZE) 126 return -EFAULT; 127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 128 len = TASK_SIZE - (unsigned long) filename; 129 } 130 131 retval = strncpy_from_user(page, filename, len); 132 if (retval > 0) { 133 if (retval < len) 134 return 0; 135 return -ENAMETOOLONG; 136 } else if (!retval) 137 retval = -ENOENT; 138 return retval; 139 } 140 141 static char *getname_flags(const char __user *filename, int flags, int *empty) 142 { 143 char *result = __getname(); 144 int retval; 145 146 if (!result) 147 return ERR_PTR(-ENOMEM); 148 149 retval = do_getname(filename, result); 150 if (retval < 0) { 151 if (retval == -ENOENT && empty) 152 *empty = 1; 153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) { 154 __putname(result); 155 return ERR_PTR(retval); 156 } 157 } 158 audit_getname(result); 159 return result; 160 } 161 162 char *getname(const char __user * filename) 163 { 164 return getname_flags(filename, 0, 0); 165 } 166 167 #ifdef CONFIG_AUDITSYSCALL 168 void putname(const char *name) 169 { 170 if (unlikely(!audit_dummy_context())) 171 audit_putname(name); 172 else 173 __putname(name); 174 } 175 EXPORT_SYMBOL(putname); 176 #endif 177 178 static int check_acl(struct inode *inode, int mask) 179 { 180 #ifdef CONFIG_FS_POSIX_ACL 181 struct posix_acl *acl; 182 183 if (mask & MAY_NOT_BLOCK) { 184 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 185 if (!acl) 186 return -EAGAIN; 187 /* no ->get_acl() calls in RCU mode... */ 188 if (acl == ACL_NOT_CACHED) 189 return -ECHILD; 190 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 191 } 192 193 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 194 195 /* 196 * A filesystem can force a ACL callback by just never filling the 197 * ACL cache. But normally you'd fill the cache either at inode 198 * instantiation time, or on the first ->get_acl call. 199 * 200 * If the filesystem doesn't have a get_acl() function at all, we'll 201 * just create the negative cache entry. 202 */ 203 if (acl == ACL_NOT_CACHED) { 204 if (inode->i_op->get_acl) { 205 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 206 if (IS_ERR(acl)) 207 return PTR_ERR(acl); 208 } else { 209 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 210 return -EAGAIN; 211 } 212 } 213 214 if (acl) { 215 int error = posix_acl_permission(inode, acl, mask); 216 posix_acl_release(acl); 217 return error; 218 } 219 #endif 220 221 return -EAGAIN; 222 } 223 224 /* 225 * This does the basic permission checking 226 */ 227 static int acl_permission_check(struct inode *inode, int mask) 228 { 229 unsigned int mode = inode->i_mode; 230 231 if (current_user_ns() != inode_userns(inode)) 232 goto other_perms; 233 234 if (likely(current_fsuid() == inode->i_uid)) 235 mode >>= 6; 236 else { 237 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 238 int error = check_acl(inode, mask); 239 if (error != -EAGAIN) 240 return error; 241 } 242 243 if (in_group_p(inode->i_gid)) 244 mode >>= 3; 245 } 246 247 other_perms: 248 /* 249 * If the DACs are ok we don't need any capability check. 250 */ 251 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 252 return 0; 253 return -EACCES; 254 } 255 256 /** 257 * generic_permission - check for access rights on a Posix-like filesystem 258 * @inode: inode to check access rights for 259 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 260 * 261 * Used to check for read/write/execute permissions on a file. 262 * We use "fsuid" for this, letting us set arbitrary permissions 263 * for filesystem access without changing the "normal" uids which 264 * are used for other things. 265 * 266 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 267 * request cannot be satisfied (eg. requires blocking or too much complexity). 268 * It would then be called again in ref-walk mode. 269 */ 270 int generic_permission(struct inode *inode, int mask) 271 { 272 int ret; 273 274 /* 275 * Do the basic permission checks. 276 */ 277 ret = acl_permission_check(inode, mask); 278 if (ret != -EACCES) 279 return ret; 280 281 if (S_ISDIR(inode->i_mode)) { 282 /* DACs are overridable for directories */ 283 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 284 return 0; 285 if (!(mask & MAY_WRITE)) 286 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 287 return 0; 288 return -EACCES; 289 } 290 /* 291 * Read/write DACs are always overridable. 292 * Executable DACs are overridable when there is 293 * at least one exec bit set. 294 */ 295 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 296 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) 297 return 0; 298 299 /* 300 * Searching includes executable on directories, else just read. 301 */ 302 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 303 if (mask == MAY_READ) 304 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) 305 return 0; 306 307 return -EACCES; 308 } 309 310 /* 311 * We _really_ want to just do "generic_permission()" without 312 * even looking at the inode->i_op values. So we keep a cache 313 * flag in inode->i_opflags, that says "this has not special 314 * permission function, use the fast case". 315 */ 316 static inline int do_inode_permission(struct inode *inode, int mask) 317 { 318 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 319 if (likely(inode->i_op->permission)) 320 return inode->i_op->permission(inode, mask); 321 322 /* This gets set once for the inode lifetime */ 323 spin_lock(&inode->i_lock); 324 inode->i_opflags |= IOP_FASTPERM; 325 spin_unlock(&inode->i_lock); 326 } 327 return generic_permission(inode, mask); 328 } 329 330 /** 331 * inode_permission - check for access rights to a given inode 332 * @inode: inode to check permission on 333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 334 * 335 * Used to check for read/write/execute permissions on an inode. 336 * We use "fsuid" for this, letting us set arbitrary permissions 337 * for filesystem access without changing the "normal" uids which 338 * are used for other things. 339 * 340 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 341 */ 342 int inode_permission(struct inode *inode, int mask) 343 { 344 int retval; 345 346 if (unlikely(mask & MAY_WRITE)) { 347 umode_t mode = inode->i_mode; 348 349 /* 350 * Nobody gets write access to a read-only fs. 351 */ 352 if (IS_RDONLY(inode) && 353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 354 return -EROFS; 355 356 /* 357 * Nobody gets write access to an immutable file. 358 */ 359 if (IS_IMMUTABLE(inode)) 360 return -EACCES; 361 } 362 363 retval = do_inode_permission(inode, mask); 364 if (retval) 365 return retval; 366 367 retval = devcgroup_inode_permission(inode, mask); 368 if (retval) 369 return retval; 370 371 return security_inode_permission(inode, mask); 372 } 373 374 /** 375 * path_get - get a reference to a path 376 * @path: path to get the reference to 377 * 378 * Given a path increment the reference count to the dentry and the vfsmount. 379 */ 380 void path_get(struct path *path) 381 { 382 mntget(path->mnt); 383 dget(path->dentry); 384 } 385 EXPORT_SYMBOL(path_get); 386 387 /** 388 * path_put - put a reference to a path 389 * @path: path to put the reference to 390 * 391 * Given a path decrement the reference count to the dentry and the vfsmount. 392 */ 393 void path_put(struct path *path) 394 { 395 dput(path->dentry); 396 mntput(path->mnt); 397 } 398 EXPORT_SYMBOL(path_put); 399 400 /* 401 * Path walking has 2 modes, rcu-walk and ref-walk (see 402 * Documentation/filesystems/path-lookup.txt). In situations when we can't 403 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 404 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 405 * mode. Refcounts are grabbed at the last known good point before rcu-walk 406 * got stuck, so ref-walk may continue from there. If this is not successful 407 * (eg. a seqcount has changed), then failure is returned and it's up to caller 408 * to restart the path walk from the beginning in ref-walk mode. 409 */ 410 411 /** 412 * unlazy_walk - try to switch to ref-walk mode. 413 * @nd: nameidata pathwalk data 414 * @dentry: child of nd->path.dentry or NULL 415 * Returns: 0 on success, -ECHILD on failure 416 * 417 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 418 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 419 * @nd or NULL. Must be called from rcu-walk context. 420 */ 421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 422 { 423 struct fs_struct *fs = current->fs; 424 struct dentry *parent = nd->path.dentry; 425 int want_root = 0; 426 427 BUG_ON(!(nd->flags & LOOKUP_RCU)); 428 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 429 want_root = 1; 430 spin_lock(&fs->lock); 431 if (nd->root.mnt != fs->root.mnt || 432 nd->root.dentry != fs->root.dentry) 433 goto err_root; 434 } 435 spin_lock(&parent->d_lock); 436 if (!dentry) { 437 if (!__d_rcu_to_refcount(parent, nd->seq)) 438 goto err_parent; 439 BUG_ON(nd->inode != parent->d_inode); 440 } else { 441 if (dentry->d_parent != parent) 442 goto err_parent; 443 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 444 if (!__d_rcu_to_refcount(dentry, nd->seq)) 445 goto err_child; 446 /* 447 * If the sequence check on the child dentry passed, then 448 * the child has not been removed from its parent. This 449 * means the parent dentry must be valid and able to take 450 * a reference at this point. 451 */ 452 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 453 BUG_ON(!parent->d_count); 454 parent->d_count++; 455 spin_unlock(&dentry->d_lock); 456 } 457 spin_unlock(&parent->d_lock); 458 if (want_root) { 459 path_get(&nd->root); 460 spin_unlock(&fs->lock); 461 } 462 mntget(nd->path.mnt); 463 464 rcu_read_unlock(); 465 br_read_unlock(vfsmount_lock); 466 nd->flags &= ~LOOKUP_RCU; 467 return 0; 468 469 err_child: 470 spin_unlock(&dentry->d_lock); 471 err_parent: 472 spin_unlock(&parent->d_lock); 473 err_root: 474 if (want_root) 475 spin_unlock(&fs->lock); 476 return -ECHILD; 477 } 478 479 /** 480 * release_open_intent - free up open intent resources 481 * @nd: pointer to nameidata 482 */ 483 void release_open_intent(struct nameidata *nd) 484 { 485 struct file *file = nd->intent.open.file; 486 487 if (file && !IS_ERR(file)) { 488 if (file->f_path.dentry == NULL) 489 put_filp(file); 490 else 491 fput(file); 492 } 493 } 494 495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd) 496 { 497 return dentry->d_op->d_revalidate(dentry, nd); 498 } 499 500 /** 501 * complete_walk - successful completion of path walk 502 * @nd: pointer nameidata 503 * 504 * If we had been in RCU mode, drop out of it and legitimize nd->path. 505 * Revalidate the final result, unless we'd already done that during 506 * the path walk or the filesystem doesn't ask for it. Return 0 on 507 * success, -error on failure. In case of failure caller does not 508 * need to drop nd->path. 509 */ 510 static int complete_walk(struct nameidata *nd) 511 { 512 struct dentry *dentry = nd->path.dentry; 513 int status; 514 515 if (nd->flags & LOOKUP_RCU) { 516 nd->flags &= ~LOOKUP_RCU; 517 if (!(nd->flags & LOOKUP_ROOT)) 518 nd->root.mnt = NULL; 519 spin_lock(&dentry->d_lock); 520 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 521 spin_unlock(&dentry->d_lock); 522 rcu_read_unlock(); 523 br_read_unlock(vfsmount_lock); 524 return -ECHILD; 525 } 526 BUG_ON(nd->inode != dentry->d_inode); 527 spin_unlock(&dentry->d_lock); 528 mntget(nd->path.mnt); 529 rcu_read_unlock(); 530 br_read_unlock(vfsmount_lock); 531 } 532 533 if (likely(!(nd->flags & LOOKUP_JUMPED))) 534 return 0; 535 536 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 537 return 0; 538 539 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 540 return 0; 541 542 /* Note: we do not d_invalidate() */ 543 status = d_revalidate(dentry, nd); 544 if (status > 0) 545 return 0; 546 547 if (!status) 548 status = -ESTALE; 549 550 path_put(&nd->path); 551 return status; 552 } 553 554 static __always_inline void set_root(struct nameidata *nd) 555 { 556 if (!nd->root.mnt) 557 get_fs_root(current->fs, &nd->root); 558 } 559 560 static int link_path_walk(const char *, struct nameidata *); 561 562 static __always_inline void set_root_rcu(struct nameidata *nd) 563 { 564 if (!nd->root.mnt) { 565 struct fs_struct *fs = current->fs; 566 unsigned seq; 567 568 do { 569 seq = read_seqcount_begin(&fs->seq); 570 nd->root = fs->root; 571 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 572 } while (read_seqcount_retry(&fs->seq, seq)); 573 } 574 } 575 576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 577 { 578 int ret; 579 580 if (IS_ERR(link)) 581 goto fail; 582 583 if (*link == '/') { 584 set_root(nd); 585 path_put(&nd->path); 586 nd->path = nd->root; 587 path_get(&nd->root); 588 nd->flags |= LOOKUP_JUMPED; 589 } 590 nd->inode = nd->path.dentry->d_inode; 591 592 ret = link_path_walk(link, nd); 593 return ret; 594 fail: 595 path_put(&nd->path); 596 return PTR_ERR(link); 597 } 598 599 static void path_put_conditional(struct path *path, struct nameidata *nd) 600 { 601 dput(path->dentry); 602 if (path->mnt != nd->path.mnt) 603 mntput(path->mnt); 604 } 605 606 static inline void path_to_nameidata(const struct path *path, 607 struct nameidata *nd) 608 { 609 if (!(nd->flags & LOOKUP_RCU)) { 610 dput(nd->path.dentry); 611 if (nd->path.mnt != path->mnt) 612 mntput(nd->path.mnt); 613 } 614 nd->path.mnt = path->mnt; 615 nd->path.dentry = path->dentry; 616 } 617 618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 619 { 620 struct inode *inode = link->dentry->d_inode; 621 if (!IS_ERR(cookie) && inode->i_op->put_link) 622 inode->i_op->put_link(link->dentry, nd, cookie); 623 path_put(link); 624 } 625 626 static __always_inline int 627 follow_link(struct path *link, struct nameidata *nd, void **p) 628 { 629 int error; 630 struct dentry *dentry = link->dentry; 631 632 BUG_ON(nd->flags & LOOKUP_RCU); 633 634 if (link->mnt == nd->path.mnt) 635 mntget(link->mnt); 636 637 if (unlikely(current->total_link_count >= 40)) { 638 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */ 639 path_put(&nd->path); 640 return -ELOOP; 641 } 642 cond_resched(); 643 current->total_link_count++; 644 645 touch_atime(link->mnt, dentry); 646 nd_set_link(nd, NULL); 647 648 error = security_inode_follow_link(link->dentry, nd); 649 if (error) { 650 *p = ERR_PTR(error); /* no ->put_link(), please */ 651 path_put(&nd->path); 652 return error; 653 } 654 655 nd->last_type = LAST_BIND; 656 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 657 error = PTR_ERR(*p); 658 if (!IS_ERR(*p)) { 659 char *s = nd_get_link(nd); 660 error = 0; 661 if (s) 662 error = __vfs_follow_link(nd, s); 663 else if (nd->last_type == LAST_BIND) { 664 nd->flags |= LOOKUP_JUMPED; 665 nd->inode = nd->path.dentry->d_inode; 666 if (nd->inode->i_op->follow_link) { 667 /* stepped on a _really_ weird one */ 668 path_put(&nd->path); 669 error = -ELOOP; 670 } 671 } 672 } 673 return error; 674 } 675 676 static int follow_up_rcu(struct path *path) 677 { 678 struct mount *mnt = real_mount(path->mnt); 679 struct mount *parent; 680 struct dentry *mountpoint; 681 682 parent = mnt->mnt_parent; 683 if (&parent->mnt == path->mnt) 684 return 0; 685 mountpoint = mnt->mnt_mountpoint; 686 path->dentry = mountpoint; 687 path->mnt = &parent->mnt; 688 return 1; 689 } 690 691 int follow_up(struct path *path) 692 { 693 struct mount *mnt = real_mount(path->mnt); 694 struct mount *parent; 695 struct dentry *mountpoint; 696 697 br_read_lock(vfsmount_lock); 698 parent = mnt->mnt_parent; 699 if (&parent->mnt == path->mnt) { 700 br_read_unlock(vfsmount_lock); 701 return 0; 702 } 703 mntget(&parent->mnt); 704 mountpoint = dget(mnt->mnt_mountpoint); 705 br_read_unlock(vfsmount_lock); 706 dput(path->dentry); 707 path->dentry = mountpoint; 708 mntput(path->mnt); 709 path->mnt = &parent->mnt; 710 return 1; 711 } 712 713 /* 714 * Perform an automount 715 * - return -EISDIR to tell follow_managed() to stop and return the path we 716 * were called with. 717 */ 718 static int follow_automount(struct path *path, unsigned flags, 719 bool *need_mntput) 720 { 721 struct vfsmount *mnt; 722 int err; 723 724 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 725 return -EREMOTE; 726 727 /* We don't want to mount if someone's just doing a stat - 728 * unless they're stat'ing a directory and appended a '/' to 729 * the name. 730 * 731 * We do, however, want to mount if someone wants to open or 732 * create a file of any type under the mountpoint, wants to 733 * traverse through the mountpoint or wants to open the 734 * mounted directory. Also, autofs may mark negative dentries 735 * as being automount points. These will need the attentions 736 * of the daemon to instantiate them before they can be used. 737 */ 738 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 739 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 740 path->dentry->d_inode) 741 return -EISDIR; 742 743 current->total_link_count++; 744 if (current->total_link_count >= 40) 745 return -ELOOP; 746 747 mnt = path->dentry->d_op->d_automount(path); 748 if (IS_ERR(mnt)) { 749 /* 750 * The filesystem is allowed to return -EISDIR here to indicate 751 * it doesn't want to automount. For instance, autofs would do 752 * this so that its userspace daemon can mount on this dentry. 753 * 754 * However, we can only permit this if it's a terminal point in 755 * the path being looked up; if it wasn't then the remainder of 756 * the path is inaccessible and we should say so. 757 */ 758 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 759 return -EREMOTE; 760 return PTR_ERR(mnt); 761 } 762 763 if (!mnt) /* mount collision */ 764 return 0; 765 766 if (!*need_mntput) { 767 /* lock_mount() may release path->mnt on error */ 768 mntget(path->mnt); 769 *need_mntput = true; 770 } 771 err = finish_automount(mnt, path); 772 773 switch (err) { 774 case -EBUSY: 775 /* Someone else made a mount here whilst we were busy */ 776 return 0; 777 case 0: 778 path_put(path); 779 path->mnt = mnt; 780 path->dentry = dget(mnt->mnt_root); 781 return 0; 782 default: 783 return err; 784 } 785 786 } 787 788 /* 789 * Handle a dentry that is managed in some way. 790 * - Flagged for transit management (autofs) 791 * - Flagged as mountpoint 792 * - Flagged as automount point 793 * 794 * This may only be called in refwalk mode. 795 * 796 * Serialization is taken care of in namespace.c 797 */ 798 static int follow_managed(struct path *path, unsigned flags) 799 { 800 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 801 unsigned managed; 802 bool need_mntput = false; 803 int ret = 0; 804 805 /* Given that we're not holding a lock here, we retain the value in a 806 * local variable for each dentry as we look at it so that we don't see 807 * the components of that value change under us */ 808 while (managed = ACCESS_ONCE(path->dentry->d_flags), 809 managed &= DCACHE_MANAGED_DENTRY, 810 unlikely(managed != 0)) { 811 /* Allow the filesystem to manage the transit without i_mutex 812 * being held. */ 813 if (managed & DCACHE_MANAGE_TRANSIT) { 814 BUG_ON(!path->dentry->d_op); 815 BUG_ON(!path->dentry->d_op->d_manage); 816 ret = path->dentry->d_op->d_manage(path->dentry, false); 817 if (ret < 0) 818 break; 819 } 820 821 /* Transit to a mounted filesystem. */ 822 if (managed & DCACHE_MOUNTED) { 823 struct vfsmount *mounted = lookup_mnt(path); 824 if (mounted) { 825 dput(path->dentry); 826 if (need_mntput) 827 mntput(path->mnt); 828 path->mnt = mounted; 829 path->dentry = dget(mounted->mnt_root); 830 need_mntput = true; 831 continue; 832 } 833 834 /* Something is mounted on this dentry in another 835 * namespace and/or whatever was mounted there in this 836 * namespace got unmounted before we managed to get the 837 * vfsmount_lock */ 838 } 839 840 /* Handle an automount point */ 841 if (managed & DCACHE_NEED_AUTOMOUNT) { 842 ret = follow_automount(path, flags, &need_mntput); 843 if (ret < 0) 844 break; 845 continue; 846 } 847 848 /* We didn't change the current path point */ 849 break; 850 } 851 852 if (need_mntput && path->mnt == mnt) 853 mntput(path->mnt); 854 if (ret == -EISDIR) 855 ret = 0; 856 return ret < 0 ? ret : need_mntput; 857 } 858 859 int follow_down_one(struct path *path) 860 { 861 struct vfsmount *mounted; 862 863 mounted = lookup_mnt(path); 864 if (mounted) { 865 dput(path->dentry); 866 mntput(path->mnt); 867 path->mnt = mounted; 868 path->dentry = dget(mounted->mnt_root); 869 return 1; 870 } 871 return 0; 872 } 873 874 static inline bool managed_dentry_might_block(struct dentry *dentry) 875 { 876 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 877 dentry->d_op->d_manage(dentry, true) < 0); 878 } 879 880 /* 881 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 882 * we meet a managed dentry that would need blocking. 883 */ 884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 885 struct inode **inode) 886 { 887 for (;;) { 888 struct mount *mounted; 889 /* 890 * Don't forget we might have a non-mountpoint managed dentry 891 * that wants to block transit. 892 */ 893 if (unlikely(managed_dentry_might_block(path->dentry))) 894 return false; 895 896 if (!d_mountpoint(path->dentry)) 897 break; 898 899 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 900 if (!mounted) 901 break; 902 path->mnt = &mounted->mnt; 903 path->dentry = mounted->mnt.mnt_root; 904 nd->flags |= LOOKUP_JUMPED; 905 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 906 /* 907 * Update the inode too. We don't need to re-check the 908 * dentry sequence number here after this d_inode read, 909 * because a mount-point is always pinned. 910 */ 911 *inode = path->dentry->d_inode; 912 } 913 return true; 914 } 915 916 static void follow_mount_rcu(struct nameidata *nd) 917 { 918 while (d_mountpoint(nd->path.dentry)) { 919 struct mount *mounted; 920 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 921 if (!mounted) 922 break; 923 nd->path.mnt = &mounted->mnt; 924 nd->path.dentry = mounted->mnt.mnt_root; 925 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 926 } 927 } 928 929 static int follow_dotdot_rcu(struct nameidata *nd) 930 { 931 set_root_rcu(nd); 932 933 while (1) { 934 if (nd->path.dentry == nd->root.dentry && 935 nd->path.mnt == nd->root.mnt) { 936 break; 937 } 938 if (nd->path.dentry != nd->path.mnt->mnt_root) { 939 struct dentry *old = nd->path.dentry; 940 struct dentry *parent = old->d_parent; 941 unsigned seq; 942 943 seq = read_seqcount_begin(&parent->d_seq); 944 if (read_seqcount_retry(&old->d_seq, nd->seq)) 945 goto failed; 946 nd->path.dentry = parent; 947 nd->seq = seq; 948 break; 949 } 950 if (!follow_up_rcu(&nd->path)) 951 break; 952 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 953 } 954 follow_mount_rcu(nd); 955 nd->inode = nd->path.dentry->d_inode; 956 return 0; 957 958 failed: 959 nd->flags &= ~LOOKUP_RCU; 960 if (!(nd->flags & LOOKUP_ROOT)) 961 nd->root.mnt = NULL; 962 rcu_read_unlock(); 963 br_read_unlock(vfsmount_lock); 964 return -ECHILD; 965 } 966 967 /* 968 * Follow down to the covering mount currently visible to userspace. At each 969 * point, the filesystem owning that dentry may be queried as to whether the 970 * caller is permitted to proceed or not. 971 */ 972 int follow_down(struct path *path) 973 { 974 unsigned managed; 975 int ret; 976 977 while (managed = ACCESS_ONCE(path->dentry->d_flags), 978 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 979 /* Allow the filesystem to manage the transit without i_mutex 980 * being held. 981 * 982 * We indicate to the filesystem if someone is trying to mount 983 * something here. This gives autofs the chance to deny anyone 984 * other than its daemon the right to mount on its 985 * superstructure. 986 * 987 * The filesystem may sleep at this point. 988 */ 989 if (managed & DCACHE_MANAGE_TRANSIT) { 990 BUG_ON(!path->dentry->d_op); 991 BUG_ON(!path->dentry->d_op->d_manage); 992 ret = path->dentry->d_op->d_manage( 993 path->dentry, false); 994 if (ret < 0) 995 return ret == -EISDIR ? 0 : ret; 996 } 997 998 /* Transit to a mounted filesystem. */ 999 if (managed & DCACHE_MOUNTED) { 1000 struct vfsmount *mounted = lookup_mnt(path); 1001 if (!mounted) 1002 break; 1003 dput(path->dentry); 1004 mntput(path->mnt); 1005 path->mnt = mounted; 1006 path->dentry = dget(mounted->mnt_root); 1007 continue; 1008 } 1009 1010 /* Don't handle automount points here */ 1011 break; 1012 } 1013 return 0; 1014 } 1015 1016 /* 1017 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1018 */ 1019 static void follow_mount(struct path *path) 1020 { 1021 while (d_mountpoint(path->dentry)) { 1022 struct vfsmount *mounted = lookup_mnt(path); 1023 if (!mounted) 1024 break; 1025 dput(path->dentry); 1026 mntput(path->mnt); 1027 path->mnt = mounted; 1028 path->dentry = dget(mounted->mnt_root); 1029 } 1030 } 1031 1032 static void follow_dotdot(struct nameidata *nd) 1033 { 1034 set_root(nd); 1035 1036 while(1) { 1037 struct dentry *old = nd->path.dentry; 1038 1039 if (nd->path.dentry == nd->root.dentry && 1040 nd->path.mnt == nd->root.mnt) { 1041 break; 1042 } 1043 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1044 /* rare case of legitimate dget_parent()... */ 1045 nd->path.dentry = dget_parent(nd->path.dentry); 1046 dput(old); 1047 break; 1048 } 1049 if (!follow_up(&nd->path)) 1050 break; 1051 } 1052 follow_mount(&nd->path); 1053 nd->inode = nd->path.dentry->d_inode; 1054 } 1055 1056 /* 1057 * Allocate a dentry with name and parent, and perform a parent 1058 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 1059 * on error. parent->d_inode->i_mutex must be held. d_lookup must 1060 * have verified that no child exists while under i_mutex. 1061 */ 1062 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 1063 struct qstr *name, struct nameidata *nd) 1064 { 1065 struct inode *inode = parent->d_inode; 1066 struct dentry *dentry; 1067 struct dentry *old; 1068 1069 /* Don't create child dentry for a dead directory. */ 1070 if (unlikely(IS_DEADDIR(inode))) 1071 return ERR_PTR(-ENOENT); 1072 1073 dentry = d_alloc(parent, name); 1074 if (unlikely(!dentry)) 1075 return ERR_PTR(-ENOMEM); 1076 1077 old = inode->i_op->lookup(inode, dentry, nd); 1078 if (unlikely(old)) { 1079 dput(dentry); 1080 dentry = old; 1081 } 1082 return dentry; 1083 } 1084 1085 /* 1086 * We already have a dentry, but require a lookup to be performed on the parent 1087 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error. 1088 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no 1089 * child exists while under i_mutex. 1090 */ 1091 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry, 1092 struct nameidata *nd) 1093 { 1094 struct inode *inode = parent->d_inode; 1095 struct dentry *old; 1096 1097 /* Don't create child dentry for a dead directory. */ 1098 if (unlikely(IS_DEADDIR(inode))) { 1099 dput(dentry); 1100 return ERR_PTR(-ENOENT); 1101 } 1102 1103 old = inode->i_op->lookup(inode, dentry, nd); 1104 if (unlikely(old)) { 1105 dput(dentry); 1106 dentry = old; 1107 } 1108 return dentry; 1109 } 1110 1111 /* 1112 * It's more convoluted than I'd like it to be, but... it's still fairly 1113 * small and for now I'd prefer to have fast path as straight as possible. 1114 * It _is_ time-critical. 1115 */ 1116 static int do_lookup(struct nameidata *nd, struct qstr *name, 1117 struct path *path, struct inode **inode) 1118 { 1119 struct vfsmount *mnt = nd->path.mnt; 1120 struct dentry *dentry, *parent = nd->path.dentry; 1121 int need_reval = 1; 1122 int status = 1; 1123 int err; 1124 1125 /* 1126 * Rename seqlock is not required here because in the off chance 1127 * of a false negative due to a concurrent rename, we're going to 1128 * do the non-racy lookup, below. 1129 */ 1130 if (nd->flags & LOOKUP_RCU) { 1131 unsigned seq; 1132 *inode = nd->inode; 1133 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1134 if (!dentry) 1135 goto unlazy; 1136 1137 /* Memory barrier in read_seqcount_begin of child is enough */ 1138 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1139 return -ECHILD; 1140 nd->seq = seq; 1141 1142 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1143 status = d_revalidate(dentry, nd); 1144 if (unlikely(status <= 0)) { 1145 if (status != -ECHILD) 1146 need_reval = 0; 1147 goto unlazy; 1148 } 1149 } 1150 if (unlikely(d_need_lookup(dentry))) 1151 goto unlazy; 1152 path->mnt = mnt; 1153 path->dentry = dentry; 1154 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1155 goto unlazy; 1156 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1157 goto unlazy; 1158 return 0; 1159 unlazy: 1160 if (unlazy_walk(nd, dentry)) 1161 return -ECHILD; 1162 } else { 1163 dentry = __d_lookup(parent, name); 1164 } 1165 1166 if (dentry && unlikely(d_need_lookup(dentry))) { 1167 dput(dentry); 1168 dentry = NULL; 1169 } 1170 retry: 1171 if (unlikely(!dentry)) { 1172 struct inode *dir = parent->d_inode; 1173 BUG_ON(nd->inode != dir); 1174 1175 mutex_lock(&dir->i_mutex); 1176 dentry = d_lookup(parent, name); 1177 if (likely(!dentry)) { 1178 dentry = d_alloc_and_lookup(parent, name, nd); 1179 if (IS_ERR(dentry)) { 1180 mutex_unlock(&dir->i_mutex); 1181 return PTR_ERR(dentry); 1182 } 1183 /* known good */ 1184 need_reval = 0; 1185 status = 1; 1186 } else if (unlikely(d_need_lookup(dentry))) { 1187 dentry = d_inode_lookup(parent, dentry, nd); 1188 if (IS_ERR(dentry)) { 1189 mutex_unlock(&dir->i_mutex); 1190 return PTR_ERR(dentry); 1191 } 1192 /* known good */ 1193 need_reval = 0; 1194 status = 1; 1195 } 1196 mutex_unlock(&dir->i_mutex); 1197 } 1198 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1199 status = d_revalidate(dentry, nd); 1200 if (unlikely(status <= 0)) { 1201 if (status < 0) { 1202 dput(dentry); 1203 return status; 1204 } 1205 if (!d_invalidate(dentry)) { 1206 dput(dentry); 1207 dentry = NULL; 1208 need_reval = 1; 1209 goto retry; 1210 } 1211 } 1212 1213 path->mnt = mnt; 1214 path->dentry = dentry; 1215 err = follow_managed(path, nd->flags); 1216 if (unlikely(err < 0)) { 1217 path_put_conditional(path, nd); 1218 return err; 1219 } 1220 if (err) 1221 nd->flags |= LOOKUP_JUMPED; 1222 *inode = path->dentry->d_inode; 1223 return 0; 1224 } 1225 1226 static inline int may_lookup(struct nameidata *nd) 1227 { 1228 if (nd->flags & LOOKUP_RCU) { 1229 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1230 if (err != -ECHILD) 1231 return err; 1232 if (unlazy_walk(nd, NULL)) 1233 return -ECHILD; 1234 } 1235 return inode_permission(nd->inode, MAY_EXEC); 1236 } 1237 1238 static inline int handle_dots(struct nameidata *nd, int type) 1239 { 1240 if (type == LAST_DOTDOT) { 1241 if (nd->flags & LOOKUP_RCU) { 1242 if (follow_dotdot_rcu(nd)) 1243 return -ECHILD; 1244 } else 1245 follow_dotdot(nd); 1246 } 1247 return 0; 1248 } 1249 1250 static void terminate_walk(struct nameidata *nd) 1251 { 1252 if (!(nd->flags & LOOKUP_RCU)) { 1253 path_put(&nd->path); 1254 } else { 1255 nd->flags &= ~LOOKUP_RCU; 1256 if (!(nd->flags & LOOKUP_ROOT)) 1257 nd->root.mnt = NULL; 1258 rcu_read_unlock(); 1259 br_read_unlock(vfsmount_lock); 1260 } 1261 } 1262 1263 /* 1264 * Do we need to follow links? We _really_ want to be able 1265 * to do this check without having to look at inode->i_op, 1266 * so we keep a cache of "no, this doesn't need follow_link" 1267 * for the common case. 1268 */ 1269 static inline int should_follow_link(struct inode *inode, int follow) 1270 { 1271 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1272 if (likely(inode->i_op->follow_link)) 1273 return follow; 1274 1275 /* This gets set once for the inode lifetime */ 1276 spin_lock(&inode->i_lock); 1277 inode->i_opflags |= IOP_NOFOLLOW; 1278 spin_unlock(&inode->i_lock); 1279 } 1280 return 0; 1281 } 1282 1283 static inline int walk_component(struct nameidata *nd, struct path *path, 1284 struct qstr *name, int type, int follow) 1285 { 1286 struct inode *inode; 1287 int err; 1288 /* 1289 * "." and ".." are special - ".." especially so because it has 1290 * to be able to know about the current root directory and 1291 * parent relationships. 1292 */ 1293 if (unlikely(type != LAST_NORM)) 1294 return handle_dots(nd, type); 1295 err = do_lookup(nd, name, path, &inode); 1296 if (unlikely(err)) { 1297 terminate_walk(nd); 1298 return err; 1299 } 1300 if (!inode) { 1301 path_to_nameidata(path, nd); 1302 terminate_walk(nd); 1303 return -ENOENT; 1304 } 1305 if (should_follow_link(inode, follow)) { 1306 if (nd->flags & LOOKUP_RCU) { 1307 if (unlikely(unlazy_walk(nd, path->dentry))) { 1308 terminate_walk(nd); 1309 return -ECHILD; 1310 } 1311 } 1312 BUG_ON(inode != path->dentry->d_inode); 1313 return 1; 1314 } 1315 path_to_nameidata(path, nd); 1316 nd->inode = inode; 1317 return 0; 1318 } 1319 1320 /* 1321 * This limits recursive symlink follows to 8, while 1322 * limiting consecutive symlinks to 40. 1323 * 1324 * Without that kind of total limit, nasty chains of consecutive 1325 * symlinks can cause almost arbitrarily long lookups. 1326 */ 1327 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1328 { 1329 int res; 1330 1331 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1332 path_put_conditional(path, nd); 1333 path_put(&nd->path); 1334 return -ELOOP; 1335 } 1336 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1337 1338 nd->depth++; 1339 current->link_count++; 1340 1341 do { 1342 struct path link = *path; 1343 void *cookie; 1344 1345 res = follow_link(&link, nd, &cookie); 1346 if (!res) 1347 res = walk_component(nd, path, &nd->last, 1348 nd->last_type, LOOKUP_FOLLOW); 1349 put_link(nd, &link, cookie); 1350 } while (res > 0); 1351 1352 current->link_count--; 1353 nd->depth--; 1354 return res; 1355 } 1356 1357 /* 1358 * We really don't want to look at inode->i_op->lookup 1359 * when we don't have to. So we keep a cache bit in 1360 * the inode ->i_opflags field that says "yes, we can 1361 * do lookup on this inode". 1362 */ 1363 static inline int can_lookup(struct inode *inode) 1364 { 1365 if (likely(inode->i_opflags & IOP_LOOKUP)) 1366 return 1; 1367 if (likely(!inode->i_op->lookup)) 1368 return 0; 1369 1370 /* We do this once for the lifetime of the inode */ 1371 spin_lock(&inode->i_lock); 1372 inode->i_opflags |= IOP_LOOKUP; 1373 spin_unlock(&inode->i_lock); 1374 return 1; 1375 } 1376 1377 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1378 { 1379 unsigned long hash = init_name_hash(); 1380 while (len--) 1381 hash = partial_name_hash(*name++, hash); 1382 return end_name_hash(hash); 1383 } 1384 EXPORT_SYMBOL(full_name_hash); 1385 1386 /* 1387 * We know there's a real path component here of at least 1388 * one character. 1389 */ 1390 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1391 { 1392 unsigned long hash = init_name_hash(); 1393 unsigned long len = 0, c; 1394 1395 c = (unsigned char)*name; 1396 do { 1397 len++; 1398 hash = partial_name_hash(c, hash); 1399 c = (unsigned char)name[len]; 1400 } while (c && c != '/'); 1401 *hashp = end_name_hash(hash); 1402 return len; 1403 } 1404 1405 /* 1406 * Name resolution. 1407 * This is the basic name resolution function, turning a pathname into 1408 * the final dentry. We expect 'base' to be positive and a directory. 1409 * 1410 * Returns 0 and nd will have valid dentry and mnt on success. 1411 * Returns error and drops reference to input namei data on failure. 1412 */ 1413 static int link_path_walk(const char *name, struct nameidata *nd) 1414 { 1415 struct path next; 1416 int err; 1417 1418 while (*name=='/') 1419 name++; 1420 if (!*name) 1421 return 0; 1422 1423 /* At this point we know we have a real path component. */ 1424 for(;;) { 1425 struct qstr this; 1426 long len; 1427 int type; 1428 1429 err = may_lookup(nd); 1430 if (err) 1431 break; 1432 1433 len = hash_name(name, &this.hash); 1434 this.name = name; 1435 this.len = len; 1436 1437 type = LAST_NORM; 1438 if (name[0] == '.') switch (len) { 1439 case 2: 1440 if (name[1] == '.') { 1441 type = LAST_DOTDOT; 1442 nd->flags |= LOOKUP_JUMPED; 1443 } 1444 break; 1445 case 1: 1446 type = LAST_DOT; 1447 } 1448 if (likely(type == LAST_NORM)) { 1449 struct dentry *parent = nd->path.dentry; 1450 nd->flags &= ~LOOKUP_JUMPED; 1451 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1452 err = parent->d_op->d_hash(parent, nd->inode, 1453 &this); 1454 if (err < 0) 1455 break; 1456 } 1457 } 1458 1459 if (!name[len]) 1460 goto last_component; 1461 /* 1462 * If it wasn't NUL, we know it was '/'. Skip that 1463 * slash, and continue until no more slashes. 1464 */ 1465 do { 1466 len++; 1467 } while (unlikely(name[len] == '/')); 1468 if (!name[len]) 1469 goto last_component; 1470 name += len; 1471 1472 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1473 if (err < 0) 1474 return err; 1475 1476 if (err) { 1477 err = nested_symlink(&next, nd); 1478 if (err) 1479 return err; 1480 } 1481 if (can_lookup(nd->inode)) 1482 continue; 1483 err = -ENOTDIR; 1484 break; 1485 /* here ends the main loop */ 1486 1487 last_component: 1488 nd->last = this; 1489 nd->last_type = type; 1490 return 0; 1491 } 1492 terminate_walk(nd); 1493 return err; 1494 } 1495 1496 static int path_init(int dfd, const char *name, unsigned int flags, 1497 struct nameidata *nd, struct file **fp) 1498 { 1499 int retval = 0; 1500 int fput_needed; 1501 struct file *file; 1502 1503 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1504 nd->flags = flags | LOOKUP_JUMPED; 1505 nd->depth = 0; 1506 if (flags & LOOKUP_ROOT) { 1507 struct inode *inode = nd->root.dentry->d_inode; 1508 if (*name) { 1509 if (!inode->i_op->lookup) 1510 return -ENOTDIR; 1511 retval = inode_permission(inode, MAY_EXEC); 1512 if (retval) 1513 return retval; 1514 } 1515 nd->path = nd->root; 1516 nd->inode = inode; 1517 if (flags & LOOKUP_RCU) { 1518 br_read_lock(vfsmount_lock); 1519 rcu_read_lock(); 1520 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1521 } else { 1522 path_get(&nd->path); 1523 } 1524 return 0; 1525 } 1526 1527 nd->root.mnt = NULL; 1528 1529 if (*name=='/') { 1530 if (flags & LOOKUP_RCU) { 1531 br_read_lock(vfsmount_lock); 1532 rcu_read_lock(); 1533 set_root_rcu(nd); 1534 } else { 1535 set_root(nd); 1536 path_get(&nd->root); 1537 } 1538 nd->path = nd->root; 1539 } else if (dfd == AT_FDCWD) { 1540 if (flags & LOOKUP_RCU) { 1541 struct fs_struct *fs = current->fs; 1542 unsigned seq; 1543 1544 br_read_lock(vfsmount_lock); 1545 rcu_read_lock(); 1546 1547 do { 1548 seq = read_seqcount_begin(&fs->seq); 1549 nd->path = fs->pwd; 1550 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1551 } while (read_seqcount_retry(&fs->seq, seq)); 1552 } else { 1553 get_fs_pwd(current->fs, &nd->path); 1554 } 1555 } else { 1556 struct dentry *dentry; 1557 1558 file = fget_raw_light(dfd, &fput_needed); 1559 retval = -EBADF; 1560 if (!file) 1561 goto out_fail; 1562 1563 dentry = file->f_path.dentry; 1564 1565 if (*name) { 1566 retval = -ENOTDIR; 1567 if (!S_ISDIR(dentry->d_inode->i_mode)) 1568 goto fput_fail; 1569 1570 retval = inode_permission(dentry->d_inode, MAY_EXEC); 1571 if (retval) 1572 goto fput_fail; 1573 } 1574 1575 nd->path = file->f_path; 1576 if (flags & LOOKUP_RCU) { 1577 if (fput_needed) 1578 *fp = file; 1579 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1580 br_read_lock(vfsmount_lock); 1581 rcu_read_lock(); 1582 } else { 1583 path_get(&file->f_path); 1584 fput_light(file, fput_needed); 1585 } 1586 } 1587 1588 nd->inode = nd->path.dentry->d_inode; 1589 return 0; 1590 1591 fput_fail: 1592 fput_light(file, fput_needed); 1593 out_fail: 1594 return retval; 1595 } 1596 1597 static inline int lookup_last(struct nameidata *nd, struct path *path) 1598 { 1599 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1600 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1601 1602 nd->flags &= ~LOOKUP_PARENT; 1603 return walk_component(nd, path, &nd->last, nd->last_type, 1604 nd->flags & LOOKUP_FOLLOW); 1605 } 1606 1607 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1608 static int path_lookupat(int dfd, const char *name, 1609 unsigned int flags, struct nameidata *nd) 1610 { 1611 struct file *base = NULL; 1612 struct path path; 1613 int err; 1614 1615 /* 1616 * Path walking is largely split up into 2 different synchronisation 1617 * schemes, rcu-walk and ref-walk (explained in 1618 * Documentation/filesystems/path-lookup.txt). These share much of the 1619 * path walk code, but some things particularly setup, cleanup, and 1620 * following mounts are sufficiently divergent that functions are 1621 * duplicated. Typically there is a function foo(), and its RCU 1622 * analogue, foo_rcu(). 1623 * 1624 * -ECHILD is the error number of choice (just to avoid clashes) that 1625 * is returned if some aspect of an rcu-walk fails. Such an error must 1626 * be handled by restarting a traditional ref-walk (which will always 1627 * be able to complete). 1628 */ 1629 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1630 1631 if (unlikely(err)) 1632 return err; 1633 1634 current->total_link_count = 0; 1635 err = link_path_walk(name, nd); 1636 1637 if (!err && !(flags & LOOKUP_PARENT)) { 1638 err = lookup_last(nd, &path); 1639 while (err > 0) { 1640 void *cookie; 1641 struct path link = path; 1642 nd->flags |= LOOKUP_PARENT; 1643 err = follow_link(&link, nd, &cookie); 1644 if (!err) 1645 err = lookup_last(nd, &path); 1646 put_link(nd, &link, cookie); 1647 } 1648 } 1649 1650 if (!err) 1651 err = complete_walk(nd); 1652 1653 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1654 if (!nd->inode->i_op->lookup) { 1655 path_put(&nd->path); 1656 err = -ENOTDIR; 1657 } 1658 } 1659 1660 if (base) 1661 fput(base); 1662 1663 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1664 path_put(&nd->root); 1665 nd->root.mnt = NULL; 1666 } 1667 return err; 1668 } 1669 1670 static int do_path_lookup(int dfd, const char *name, 1671 unsigned int flags, struct nameidata *nd) 1672 { 1673 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1674 if (unlikely(retval == -ECHILD)) 1675 retval = path_lookupat(dfd, name, flags, nd); 1676 if (unlikely(retval == -ESTALE)) 1677 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1678 1679 if (likely(!retval)) { 1680 if (unlikely(!audit_dummy_context())) { 1681 if (nd->path.dentry && nd->inode) 1682 audit_inode(name, nd->path.dentry); 1683 } 1684 } 1685 return retval; 1686 } 1687 1688 int kern_path_parent(const char *name, struct nameidata *nd) 1689 { 1690 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd); 1691 } 1692 1693 int kern_path(const char *name, unsigned int flags, struct path *path) 1694 { 1695 struct nameidata nd; 1696 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1697 if (!res) 1698 *path = nd.path; 1699 return res; 1700 } 1701 1702 /** 1703 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1704 * @dentry: pointer to dentry of the base directory 1705 * @mnt: pointer to vfs mount of the base directory 1706 * @name: pointer to file name 1707 * @flags: lookup flags 1708 * @path: pointer to struct path to fill 1709 */ 1710 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1711 const char *name, unsigned int flags, 1712 struct path *path) 1713 { 1714 struct nameidata nd; 1715 int err; 1716 nd.root.dentry = dentry; 1717 nd.root.mnt = mnt; 1718 BUG_ON(flags & LOOKUP_PARENT); 1719 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 1720 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 1721 if (!err) 1722 *path = nd.path; 1723 return err; 1724 } 1725 1726 static struct dentry *__lookup_hash(struct qstr *name, 1727 struct dentry *base, struct nameidata *nd) 1728 { 1729 struct inode *inode = base->d_inode; 1730 struct dentry *dentry; 1731 int err; 1732 1733 err = inode_permission(inode, MAY_EXEC); 1734 if (err) 1735 return ERR_PTR(err); 1736 1737 /* 1738 * Don't bother with __d_lookup: callers are for creat as 1739 * well as unlink, so a lot of the time it would cost 1740 * a double lookup. 1741 */ 1742 dentry = d_lookup(base, name); 1743 1744 if (dentry && d_need_lookup(dentry)) { 1745 /* 1746 * __lookup_hash is called with the parent dir's i_mutex already 1747 * held, so we are good to go here. 1748 */ 1749 dentry = d_inode_lookup(base, dentry, nd); 1750 if (IS_ERR(dentry)) 1751 return dentry; 1752 } 1753 1754 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1755 int status = d_revalidate(dentry, nd); 1756 if (unlikely(status <= 0)) { 1757 /* 1758 * The dentry failed validation. 1759 * If d_revalidate returned 0 attempt to invalidate 1760 * the dentry otherwise d_revalidate is asking us 1761 * to return a fail status. 1762 */ 1763 if (status < 0) { 1764 dput(dentry); 1765 return ERR_PTR(status); 1766 } else if (!d_invalidate(dentry)) { 1767 dput(dentry); 1768 dentry = NULL; 1769 } 1770 } 1771 } 1772 1773 if (!dentry) 1774 dentry = d_alloc_and_lookup(base, name, nd); 1775 1776 return dentry; 1777 } 1778 1779 /* 1780 * Restricted form of lookup. Doesn't follow links, single-component only, 1781 * needs parent already locked. Doesn't follow mounts. 1782 * SMP-safe. 1783 */ 1784 static struct dentry *lookup_hash(struct nameidata *nd) 1785 { 1786 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1787 } 1788 1789 /** 1790 * lookup_one_len - filesystem helper to lookup single pathname component 1791 * @name: pathname component to lookup 1792 * @base: base directory to lookup from 1793 * @len: maximum length @len should be interpreted to 1794 * 1795 * Note that this routine is purely a helper for filesystem usage and should 1796 * not be called by generic code. Also note that by using this function the 1797 * nameidata argument is passed to the filesystem methods and a filesystem 1798 * using this helper needs to be prepared for that. 1799 */ 1800 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1801 { 1802 struct qstr this; 1803 unsigned int c; 1804 1805 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1806 1807 this.name = name; 1808 this.len = len; 1809 this.hash = full_name_hash(name, len); 1810 if (!len) 1811 return ERR_PTR(-EACCES); 1812 1813 while (len--) { 1814 c = *(const unsigned char *)name++; 1815 if (c == '/' || c == '\0') 1816 return ERR_PTR(-EACCES); 1817 } 1818 /* 1819 * See if the low-level filesystem might want 1820 * to use its own hash.. 1821 */ 1822 if (base->d_flags & DCACHE_OP_HASH) { 1823 int err = base->d_op->d_hash(base, base->d_inode, &this); 1824 if (err < 0) 1825 return ERR_PTR(err); 1826 } 1827 1828 return __lookup_hash(&this, base, NULL); 1829 } 1830 1831 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 1832 struct path *path, int *empty) 1833 { 1834 struct nameidata nd; 1835 char *tmp = getname_flags(name, flags, empty); 1836 int err = PTR_ERR(tmp); 1837 if (!IS_ERR(tmp)) { 1838 1839 BUG_ON(flags & LOOKUP_PARENT); 1840 1841 err = do_path_lookup(dfd, tmp, flags, &nd); 1842 putname(tmp); 1843 if (!err) 1844 *path = nd.path; 1845 } 1846 return err; 1847 } 1848 1849 int user_path_at(int dfd, const char __user *name, unsigned flags, 1850 struct path *path) 1851 { 1852 return user_path_at_empty(dfd, name, flags, path, 0); 1853 } 1854 1855 static int user_path_parent(int dfd, const char __user *path, 1856 struct nameidata *nd, char **name) 1857 { 1858 char *s = getname(path); 1859 int error; 1860 1861 if (IS_ERR(s)) 1862 return PTR_ERR(s); 1863 1864 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1865 if (error) 1866 putname(s); 1867 else 1868 *name = s; 1869 1870 return error; 1871 } 1872 1873 /* 1874 * It's inline, so penalty for filesystems that don't use sticky bit is 1875 * minimal. 1876 */ 1877 static inline int check_sticky(struct inode *dir, struct inode *inode) 1878 { 1879 uid_t fsuid = current_fsuid(); 1880 1881 if (!(dir->i_mode & S_ISVTX)) 1882 return 0; 1883 if (current_user_ns() != inode_userns(inode)) 1884 goto other_userns; 1885 if (inode->i_uid == fsuid) 1886 return 0; 1887 if (dir->i_uid == fsuid) 1888 return 0; 1889 1890 other_userns: 1891 return !ns_capable(inode_userns(inode), CAP_FOWNER); 1892 } 1893 1894 /* 1895 * Check whether we can remove a link victim from directory dir, check 1896 * whether the type of victim is right. 1897 * 1. We can't do it if dir is read-only (done in permission()) 1898 * 2. We should have write and exec permissions on dir 1899 * 3. We can't remove anything from append-only dir 1900 * 4. We can't do anything with immutable dir (done in permission()) 1901 * 5. If the sticky bit on dir is set we should either 1902 * a. be owner of dir, or 1903 * b. be owner of victim, or 1904 * c. have CAP_FOWNER capability 1905 * 6. If the victim is append-only or immutable we can't do antyhing with 1906 * links pointing to it. 1907 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1908 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1909 * 9. We can't remove a root or mountpoint. 1910 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1911 * nfs_async_unlink(). 1912 */ 1913 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1914 { 1915 int error; 1916 1917 if (!victim->d_inode) 1918 return -ENOENT; 1919 1920 BUG_ON(victim->d_parent->d_inode != dir); 1921 audit_inode_child(victim, dir); 1922 1923 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1924 if (error) 1925 return error; 1926 if (IS_APPEND(dir)) 1927 return -EPERM; 1928 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1929 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1930 return -EPERM; 1931 if (isdir) { 1932 if (!S_ISDIR(victim->d_inode->i_mode)) 1933 return -ENOTDIR; 1934 if (IS_ROOT(victim)) 1935 return -EBUSY; 1936 } else if (S_ISDIR(victim->d_inode->i_mode)) 1937 return -EISDIR; 1938 if (IS_DEADDIR(dir)) 1939 return -ENOENT; 1940 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1941 return -EBUSY; 1942 return 0; 1943 } 1944 1945 /* Check whether we can create an object with dentry child in directory 1946 * dir. 1947 * 1. We can't do it if child already exists (open has special treatment for 1948 * this case, but since we are inlined it's OK) 1949 * 2. We can't do it if dir is read-only (done in permission()) 1950 * 3. We should have write and exec permissions on dir 1951 * 4. We can't do it if dir is immutable (done in permission()) 1952 */ 1953 static inline int may_create(struct inode *dir, struct dentry *child) 1954 { 1955 if (child->d_inode) 1956 return -EEXIST; 1957 if (IS_DEADDIR(dir)) 1958 return -ENOENT; 1959 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1960 } 1961 1962 /* 1963 * p1 and p2 should be directories on the same fs. 1964 */ 1965 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1966 { 1967 struct dentry *p; 1968 1969 if (p1 == p2) { 1970 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1971 return NULL; 1972 } 1973 1974 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1975 1976 p = d_ancestor(p2, p1); 1977 if (p) { 1978 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1979 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1980 return p; 1981 } 1982 1983 p = d_ancestor(p1, p2); 1984 if (p) { 1985 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1986 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1987 return p; 1988 } 1989 1990 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1991 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1992 return NULL; 1993 } 1994 1995 void unlock_rename(struct dentry *p1, struct dentry *p2) 1996 { 1997 mutex_unlock(&p1->d_inode->i_mutex); 1998 if (p1 != p2) { 1999 mutex_unlock(&p2->d_inode->i_mutex); 2000 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2001 } 2002 } 2003 2004 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2005 struct nameidata *nd) 2006 { 2007 int error = may_create(dir, dentry); 2008 2009 if (error) 2010 return error; 2011 2012 if (!dir->i_op->create) 2013 return -EACCES; /* shouldn't it be ENOSYS? */ 2014 mode &= S_IALLUGO; 2015 mode |= S_IFREG; 2016 error = security_inode_create(dir, dentry, mode); 2017 if (error) 2018 return error; 2019 error = dir->i_op->create(dir, dentry, mode, nd); 2020 if (!error) 2021 fsnotify_create(dir, dentry); 2022 return error; 2023 } 2024 2025 static int may_open(struct path *path, int acc_mode, int flag) 2026 { 2027 struct dentry *dentry = path->dentry; 2028 struct inode *inode = dentry->d_inode; 2029 int error; 2030 2031 /* O_PATH? */ 2032 if (!acc_mode) 2033 return 0; 2034 2035 if (!inode) 2036 return -ENOENT; 2037 2038 switch (inode->i_mode & S_IFMT) { 2039 case S_IFLNK: 2040 return -ELOOP; 2041 case S_IFDIR: 2042 if (acc_mode & MAY_WRITE) 2043 return -EISDIR; 2044 break; 2045 case S_IFBLK: 2046 case S_IFCHR: 2047 if (path->mnt->mnt_flags & MNT_NODEV) 2048 return -EACCES; 2049 /*FALLTHRU*/ 2050 case S_IFIFO: 2051 case S_IFSOCK: 2052 flag &= ~O_TRUNC; 2053 break; 2054 } 2055 2056 error = inode_permission(inode, acc_mode); 2057 if (error) 2058 return error; 2059 2060 /* 2061 * An append-only file must be opened in append mode for writing. 2062 */ 2063 if (IS_APPEND(inode)) { 2064 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2065 return -EPERM; 2066 if (flag & O_TRUNC) 2067 return -EPERM; 2068 } 2069 2070 /* O_NOATIME can only be set by the owner or superuser */ 2071 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2072 return -EPERM; 2073 2074 return 0; 2075 } 2076 2077 static int handle_truncate(struct file *filp) 2078 { 2079 struct path *path = &filp->f_path; 2080 struct inode *inode = path->dentry->d_inode; 2081 int error = get_write_access(inode); 2082 if (error) 2083 return error; 2084 /* 2085 * Refuse to truncate files with mandatory locks held on them. 2086 */ 2087 error = locks_verify_locked(inode); 2088 if (!error) 2089 error = security_path_truncate(path); 2090 if (!error) { 2091 error = do_truncate(path->dentry, 0, 2092 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2093 filp); 2094 } 2095 put_write_access(inode); 2096 return error; 2097 } 2098 2099 static inline int open_to_namei_flags(int flag) 2100 { 2101 if ((flag & O_ACCMODE) == 3) 2102 flag--; 2103 return flag; 2104 } 2105 2106 /* 2107 * Handle the last step of open() 2108 */ 2109 static struct file *do_last(struct nameidata *nd, struct path *path, 2110 const struct open_flags *op, const char *pathname) 2111 { 2112 struct dentry *dir = nd->path.dentry; 2113 struct dentry *dentry; 2114 int open_flag = op->open_flag; 2115 int will_truncate = open_flag & O_TRUNC; 2116 int want_write = 0; 2117 int acc_mode = op->acc_mode; 2118 struct file *filp; 2119 int error; 2120 2121 nd->flags &= ~LOOKUP_PARENT; 2122 nd->flags |= op->intent; 2123 2124 switch (nd->last_type) { 2125 case LAST_DOTDOT: 2126 case LAST_DOT: 2127 error = handle_dots(nd, nd->last_type); 2128 if (error) 2129 return ERR_PTR(error); 2130 /* fallthrough */ 2131 case LAST_ROOT: 2132 error = complete_walk(nd); 2133 if (error) 2134 return ERR_PTR(error); 2135 audit_inode(pathname, nd->path.dentry); 2136 if (open_flag & O_CREAT) { 2137 error = -EISDIR; 2138 goto exit; 2139 } 2140 goto ok; 2141 case LAST_BIND: 2142 error = complete_walk(nd); 2143 if (error) 2144 return ERR_PTR(error); 2145 audit_inode(pathname, dir); 2146 goto ok; 2147 } 2148 2149 if (!(open_flag & O_CREAT)) { 2150 int symlink_ok = 0; 2151 if (nd->last.name[nd->last.len]) 2152 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2153 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2154 symlink_ok = 1; 2155 /* we _can_ be in RCU mode here */ 2156 error = walk_component(nd, path, &nd->last, LAST_NORM, 2157 !symlink_ok); 2158 if (error < 0) 2159 return ERR_PTR(error); 2160 if (error) /* symlink */ 2161 return NULL; 2162 /* sayonara */ 2163 error = complete_walk(nd); 2164 if (error) 2165 return ERR_PTR(error); 2166 2167 error = -ENOTDIR; 2168 if (nd->flags & LOOKUP_DIRECTORY) { 2169 if (!nd->inode->i_op->lookup) 2170 goto exit; 2171 } 2172 audit_inode(pathname, nd->path.dentry); 2173 goto ok; 2174 } 2175 2176 /* create side of things */ 2177 /* 2178 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been 2179 * cleared when we got to the last component we are about to look up 2180 */ 2181 error = complete_walk(nd); 2182 if (error) 2183 return ERR_PTR(error); 2184 2185 audit_inode(pathname, dir); 2186 error = -EISDIR; 2187 /* trailing slashes? */ 2188 if (nd->last.name[nd->last.len]) 2189 goto exit; 2190 2191 mutex_lock(&dir->d_inode->i_mutex); 2192 2193 dentry = lookup_hash(nd); 2194 error = PTR_ERR(dentry); 2195 if (IS_ERR(dentry)) { 2196 mutex_unlock(&dir->d_inode->i_mutex); 2197 goto exit; 2198 } 2199 2200 path->dentry = dentry; 2201 path->mnt = nd->path.mnt; 2202 2203 /* Negative dentry, just create the file */ 2204 if (!dentry->d_inode) { 2205 umode_t mode = op->mode; 2206 if (!IS_POSIXACL(dir->d_inode)) 2207 mode &= ~current_umask(); 2208 /* 2209 * This write is needed to ensure that a 2210 * rw->ro transition does not occur between 2211 * the time when the file is created and when 2212 * a permanent write count is taken through 2213 * the 'struct file' in nameidata_to_filp(). 2214 */ 2215 error = mnt_want_write(nd->path.mnt); 2216 if (error) 2217 goto exit_mutex_unlock; 2218 want_write = 1; 2219 /* Don't check for write permission, don't truncate */ 2220 open_flag &= ~O_TRUNC; 2221 will_truncate = 0; 2222 acc_mode = MAY_OPEN; 2223 error = security_path_mknod(&nd->path, dentry, mode, 0); 2224 if (error) 2225 goto exit_mutex_unlock; 2226 error = vfs_create(dir->d_inode, dentry, mode, nd); 2227 if (error) 2228 goto exit_mutex_unlock; 2229 mutex_unlock(&dir->d_inode->i_mutex); 2230 dput(nd->path.dentry); 2231 nd->path.dentry = dentry; 2232 goto common; 2233 } 2234 2235 /* 2236 * It already exists. 2237 */ 2238 mutex_unlock(&dir->d_inode->i_mutex); 2239 audit_inode(pathname, path->dentry); 2240 2241 error = -EEXIST; 2242 if (open_flag & O_EXCL) 2243 goto exit_dput; 2244 2245 error = follow_managed(path, nd->flags); 2246 if (error < 0) 2247 goto exit_dput; 2248 2249 if (error) 2250 nd->flags |= LOOKUP_JUMPED; 2251 2252 error = -ENOENT; 2253 if (!path->dentry->d_inode) 2254 goto exit_dput; 2255 2256 if (path->dentry->d_inode->i_op->follow_link) 2257 return NULL; 2258 2259 path_to_nameidata(path, nd); 2260 nd->inode = path->dentry->d_inode; 2261 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 2262 error = complete_walk(nd); 2263 if (error) 2264 return ERR_PTR(error); 2265 error = -EISDIR; 2266 if (S_ISDIR(nd->inode->i_mode)) 2267 goto exit; 2268 ok: 2269 if (!S_ISREG(nd->inode->i_mode)) 2270 will_truncate = 0; 2271 2272 if (will_truncate) { 2273 error = mnt_want_write(nd->path.mnt); 2274 if (error) 2275 goto exit; 2276 want_write = 1; 2277 } 2278 common: 2279 error = may_open(&nd->path, acc_mode, open_flag); 2280 if (error) 2281 goto exit; 2282 filp = nameidata_to_filp(nd); 2283 if (!IS_ERR(filp)) { 2284 error = ima_file_check(filp, op->acc_mode); 2285 if (error) { 2286 fput(filp); 2287 filp = ERR_PTR(error); 2288 } 2289 } 2290 if (!IS_ERR(filp)) { 2291 if (will_truncate) { 2292 error = handle_truncate(filp); 2293 if (error) { 2294 fput(filp); 2295 filp = ERR_PTR(error); 2296 } 2297 } 2298 } 2299 out: 2300 if (want_write) 2301 mnt_drop_write(nd->path.mnt); 2302 path_put(&nd->path); 2303 return filp; 2304 2305 exit_mutex_unlock: 2306 mutex_unlock(&dir->d_inode->i_mutex); 2307 exit_dput: 2308 path_put_conditional(path, nd); 2309 exit: 2310 filp = ERR_PTR(error); 2311 goto out; 2312 } 2313 2314 static struct file *path_openat(int dfd, const char *pathname, 2315 struct nameidata *nd, const struct open_flags *op, int flags) 2316 { 2317 struct file *base = NULL; 2318 struct file *filp; 2319 struct path path; 2320 int error; 2321 2322 filp = get_empty_filp(); 2323 if (!filp) 2324 return ERR_PTR(-ENFILE); 2325 2326 filp->f_flags = op->open_flag; 2327 nd->intent.open.file = filp; 2328 nd->intent.open.flags = open_to_namei_flags(op->open_flag); 2329 nd->intent.open.create_mode = op->mode; 2330 2331 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2332 if (unlikely(error)) 2333 goto out_filp; 2334 2335 current->total_link_count = 0; 2336 error = link_path_walk(pathname, nd); 2337 if (unlikely(error)) 2338 goto out_filp; 2339 2340 filp = do_last(nd, &path, op, pathname); 2341 while (unlikely(!filp)) { /* trailing symlink */ 2342 struct path link = path; 2343 void *cookie; 2344 if (!(nd->flags & LOOKUP_FOLLOW)) { 2345 path_put_conditional(&path, nd); 2346 path_put(&nd->path); 2347 filp = ERR_PTR(-ELOOP); 2348 break; 2349 } 2350 nd->flags |= LOOKUP_PARENT; 2351 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2352 error = follow_link(&link, nd, &cookie); 2353 if (unlikely(error)) 2354 filp = ERR_PTR(error); 2355 else 2356 filp = do_last(nd, &path, op, pathname); 2357 put_link(nd, &link, cookie); 2358 } 2359 out: 2360 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2361 path_put(&nd->root); 2362 if (base) 2363 fput(base); 2364 release_open_intent(nd); 2365 return filp; 2366 2367 out_filp: 2368 filp = ERR_PTR(error); 2369 goto out; 2370 } 2371 2372 struct file *do_filp_open(int dfd, const char *pathname, 2373 const struct open_flags *op, int flags) 2374 { 2375 struct nameidata nd; 2376 struct file *filp; 2377 2378 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2379 if (unlikely(filp == ERR_PTR(-ECHILD))) 2380 filp = path_openat(dfd, pathname, &nd, op, flags); 2381 if (unlikely(filp == ERR_PTR(-ESTALE))) 2382 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2383 return filp; 2384 } 2385 2386 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2387 const char *name, const struct open_flags *op, int flags) 2388 { 2389 struct nameidata nd; 2390 struct file *file; 2391 2392 nd.root.mnt = mnt; 2393 nd.root.dentry = dentry; 2394 2395 flags |= LOOKUP_ROOT; 2396 2397 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2398 return ERR_PTR(-ELOOP); 2399 2400 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2401 if (unlikely(file == ERR_PTR(-ECHILD))) 2402 file = path_openat(-1, name, &nd, op, flags); 2403 if (unlikely(file == ERR_PTR(-ESTALE))) 2404 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2405 return file; 2406 } 2407 2408 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir) 2409 { 2410 struct dentry *dentry = ERR_PTR(-EEXIST); 2411 struct nameidata nd; 2412 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); 2413 if (error) 2414 return ERR_PTR(error); 2415 2416 /* 2417 * Yucky last component or no last component at all? 2418 * (foo/., foo/.., /////) 2419 */ 2420 if (nd.last_type != LAST_NORM) 2421 goto out; 2422 nd.flags &= ~LOOKUP_PARENT; 2423 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2424 nd.intent.open.flags = O_EXCL; 2425 2426 /* 2427 * Do the final lookup. 2428 */ 2429 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2430 dentry = lookup_hash(&nd); 2431 if (IS_ERR(dentry)) 2432 goto fail; 2433 2434 if (dentry->d_inode) 2435 goto eexist; 2436 /* 2437 * Special case - lookup gave negative, but... we had foo/bar/ 2438 * From the vfs_mknod() POV we just have a negative dentry - 2439 * all is fine. Let's be bastards - you had / on the end, you've 2440 * been asking for (non-existent) directory. -ENOENT for you. 2441 */ 2442 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 2443 dput(dentry); 2444 dentry = ERR_PTR(-ENOENT); 2445 goto fail; 2446 } 2447 *path = nd.path; 2448 return dentry; 2449 eexist: 2450 dput(dentry); 2451 dentry = ERR_PTR(-EEXIST); 2452 fail: 2453 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2454 out: 2455 path_put(&nd.path); 2456 return dentry; 2457 } 2458 EXPORT_SYMBOL(kern_path_create); 2459 2460 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir) 2461 { 2462 char *tmp = getname(pathname); 2463 struct dentry *res; 2464 if (IS_ERR(tmp)) 2465 return ERR_CAST(tmp); 2466 res = kern_path_create(dfd, tmp, path, is_dir); 2467 putname(tmp); 2468 return res; 2469 } 2470 EXPORT_SYMBOL(user_path_create); 2471 2472 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2473 { 2474 int error = may_create(dir, dentry); 2475 2476 if (error) 2477 return error; 2478 2479 if ((S_ISCHR(mode) || S_ISBLK(mode)) && 2480 !ns_capable(inode_userns(dir), CAP_MKNOD)) 2481 return -EPERM; 2482 2483 if (!dir->i_op->mknod) 2484 return -EPERM; 2485 2486 error = devcgroup_inode_mknod(mode, dev); 2487 if (error) 2488 return error; 2489 2490 error = security_inode_mknod(dir, dentry, mode, dev); 2491 if (error) 2492 return error; 2493 2494 error = dir->i_op->mknod(dir, dentry, mode, dev); 2495 if (!error) 2496 fsnotify_create(dir, dentry); 2497 return error; 2498 } 2499 2500 static int may_mknod(umode_t mode) 2501 { 2502 switch (mode & S_IFMT) { 2503 case S_IFREG: 2504 case S_IFCHR: 2505 case S_IFBLK: 2506 case S_IFIFO: 2507 case S_IFSOCK: 2508 case 0: /* zero mode translates to S_IFREG */ 2509 return 0; 2510 case S_IFDIR: 2511 return -EPERM; 2512 default: 2513 return -EINVAL; 2514 } 2515 } 2516 2517 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 2518 unsigned, dev) 2519 { 2520 struct dentry *dentry; 2521 struct path path; 2522 int error; 2523 2524 if (S_ISDIR(mode)) 2525 return -EPERM; 2526 2527 dentry = user_path_create(dfd, filename, &path, 0); 2528 if (IS_ERR(dentry)) 2529 return PTR_ERR(dentry); 2530 2531 if (!IS_POSIXACL(path.dentry->d_inode)) 2532 mode &= ~current_umask(); 2533 error = may_mknod(mode); 2534 if (error) 2535 goto out_dput; 2536 error = mnt_want_write(path.mnt); 2537 if (error) 2538 goto out_dput; 2539 error = security_path_mknod(&path, dentry, mode, dev); 2540 if (error) 2541 goto out_drop_write; 2542 switch (mode & S_IFMT) { 2543 case 0: case S_IFREG: 2544 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL); 2545 break; 2546 case S_IFCHR: case S_IFBLK: 2547 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 2548 new_decode_dev(dev)); 2549 break; 2550 case S_IFIFO: case S_IFSOCK: 2551 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 2552 break; 2553 } 2554 out_drop_write: 2555 mnt_drop_write(path.mnt); 2556 out_dput: 2557 dput(dentry); 2558 mutex_unlock(&path.dentry->d_inode->i_mutex); 2559 path_put(&path); 2560 2561 return error; 2562 } 2563 2564 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 2565 { 2566 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2567 } 2568 2569 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2570 { 2571 int error = may_create(dir, dentry); 2572 2573 if (error) 2574 return error; 2575 2576 if (!dir->i_op->mkdir) 2577 return -EPERM; 2578 2579 mode &= (S_IRWXUGO|S_ISVTX); 2580 error = security_inode_mkdir(dir, dentry, mode); 2581 if (error) 2582 return error; 2583 2584 error = dir->i_op->mkdir(dir, dentry, mode); 2585 if (!error) 2586 fsnotify_mkdir(dir, dentry); 2587 return error; 2588 } 2589 2590 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 2591 { 2592 struct dentry *dentry; 2593 struct path path; 2594 int error; 2595 2596 dentry = user_path_create(dfd, pathname, &path, 1); 2597 if (IS_ERR(dentry)) 2598 return PTR_ERR(dentry); 2599 2600 if (!IS_POSIXACL(path.dentry->d_inode)) 2601 mode &= ~current_umask(); 2602 error = mnt_want_write(path.mnt); 2603 if (error) 2604 goto out_dput; 2605 error = security_path_mkdir(&path, dentry, mode); 2606 if (error) 2607 goto out_drop_write; 2608 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 2609 out_drop_write: 2610 mnt_drop_write(path.mnt); 2611 out_dput: 2612 dput(dentry); 2613 mutex_unlock(&path.dentry->d_inode->i_mutex); 2614 path_put(&path); 2615 return error; 2616 } 2617 2618 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 2619 { 2620 return sys_mkdirat(AT_FDCWD, pathname, mode); 2621 } 2622 2623 /* 2624 * The dentry_unhash() helper will try to drop the dentry early: we 2625 * should have a usage count of 2 if we're the only user of this 2626 * dentry, and if that is true (possibly after pruning the dcache), 2627 * then we drop the dentry now. 2628 * 2629 * A low-level filesystem can, if it choses, legally 2630 * do a 2631 * 2632 * if (!d_unhashed(dentry)) 2633 * return -EBUSY; 2634 * 2635 * if it cannot handle the case of removing a directory 2636 * that is still in use by something else.. 2637 */ 2638 void dentry_unhash(struct dentry *dentry) 2639 { 2640 shrink_dcache_parent(dentry); 2641 spin_lock(&dentry->d_lock); 2642 if (dentry->d_count == 1) 2643 __d_drop(dentry); 2644 spin_unlock(&dentry->d_lock); 2645 } 2646 2647 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2648 { 2649 int error = may_delete(dir, dentry, 1); 2650 2651 if (error) 2652 return error; 2653 2654 if (!dir->i_op->rmdir) 2655 return -EPERM; 2656 2657 dget(dentry); 2658 mutex_lock(&dentry->d_inode->i_mutex); 2659 2660 error = -EBUSY; 2661 if (d_mountpoint(dentry)) 2662 goto out; 2663 2664 error = security_inode_rmdir(dir, dentry); 2665 if (error) 2666 goto out; 2667 2668 shrink_dcache_parent(dentry); 2669 error = dir->i_op->rmdir(dir, dentry); 2670 if (error) 2671 goto out; 2672 2673 dentry->d_inode->i_flags |= S_DEAD; 2674 dont_mount(dentry); 2675 2676 out: 2677 mutex_unlock(&dentry->d_inode->i_mutex); 2678 dput(dentry); 2679 if (!error) 2680 d_delete(dentry); 2681 return error; 2682 } 2683 2684 static long do_rmdir(int dfd, const char __user *pathname) 2685 { 2686 int error = 0; 2687 char * name; 2688 struct dentry *dentry; 2689 struct nameidata nd; 2690 2691 error = user_path_parent(dfd, pathname, &nd, &name); 2692 if (error) 2693 return error; 2694 2695 switch(nd.last_type) { 2696 case LAST_DOTDOT: 2697 error = -ENOTEMPTY; 2698 goto exit1; 2699 case LAST_DOT: 2700 error = -EINVAL; 2701 goto exit1; 2702 case LAST_ROOT: 2703 error = -EBUSY; 2704 goto exit1; 2705 } 2706 2707 nd.flags &= ~LOOKUP_PARENT; 2708 2709 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2710 dentry = lookup_hash(&nd); 2711 error = PTR_ERR(dentry); 2712 if (IS_ERR(dentry)) 2713 goto exit2; 2714 if (!dentry->d_inode) { 2715 error = -ENOENT; 2716 goto exit3; 2717 } 2718 error = mnt_want_write(nd.path.mnt); 2719 if (error) 2720 goto exit3; 2721 error = security_path_rmdir(&nd.path, dentry); 2722 if (error) 2723 goto exit4; 2724 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2725 exit4: 2726 mnt_drop_write(nd.path.mnt); 2727 exit3: 2728 dput(dentry); 2729 exit2: 2730 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2731 exit1: 2732 path_put(&nd.path); 2733 putname(name); 2734 return error; 2735 } 2736 2737 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2738 { 2739 return do_rmdir(AT_FDCWD, pathname); 2740 } 2741 2742 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2743 { 2744 int error = may_delete(dir, dentry, 0); 2745 2746 if (error) 2747 return error; 2748 2749 if (!dir->i_op->unlink) 2750 return -EPERM; 2751 2752 mutex_lock(&dentry->d_inode->i_mutex); 2753 if (d_mountpoint(dentry)) 2754 error = -EBUSY; 2755 else { 2756 error = security_inode_unlink(dir, dentry); 2757 if (!error) { 2758 error = dir->i_op->unlink(dir, dentry); 2759 if (!error) 2760 dont_mount(dentry); 2761 } 2762 } 2763 mutex_unlock(&dentry->d_inode->i_mutex); 2764 2765 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2766 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2767 fsnotify_link_count(dentry->d_inode); 2768 d_delete(dentry); 2769 } 2770 2771 return error; 2772 } 2773 2774 /* 2775 * Make sure that the actual truncation of the file will occur outside its 2776 * directory's i_mutex. Truncate can take a long time if there is a lot of 2777 * writeout happening, and we don't want to prevent access to the directory 2778 * while waiting on the I/O. 2779 */ 2780 static long do_unlinkat(int dfd, const char __user *pathname) 2781 { 2782 int error; 2783 char *name; 2784 struct dentry *dentry; 2785 struct nameidata nd; 2786 struct inode *inode = NULL; 2787 2788 error = user_path_parent(dfd, pathname, &nd, &name); 2789 if (error) 2790 return error; 2791 2792 error = -EISDIR; 2793 if (nd.last_type != LAST_NORM) 2794 goto exit1; 2795 2796 nd.flags &= ~LOOKUP_PARENT; 2797 2798 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2799 dentry = lookup_hash(&nd); 2800 error = PTR_ERR(dentry); 2801 if (!IS_ERR(dentry)) { 2802 /* Why not before? Because we want correct error value */ 2803 if (nd.last.name[nd.last.len]) 2804 goto slashes; 2805 inode = dentry->d_inode; 2806 if (!inode) 2807 goto slashes; 2808 ihold(inode); 2809 error = mnt_want_write(nd.path.mnt); 2810 if (error) 2811 goto exit2; 2812 error = security_path_unlink(&nd.path, dentry); 2813 if (error) 2814 goto exit3; 2815 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2816 exit3: 2817 mnt_drop_write(nd.path.mnt); 2818 exit2: 2819 dput(dentry); 2820 } 2821 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2822 if (inode) 2823 iput(inode); /* truncate the inode here */ 2824 exit1: 2825 path_put(&nd.path); 2826 putname(name); 2827 return error; 2828 2829 slashes: 2830 error = !dentry->d_inode ? -ENOENT : 2831 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2832 goto exit2; 2833 } 2834 2835 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2836 { 2837 if ((flag & ~AT_REMOVEDIR) != 0) 2838 return -EINVAL; 2839 2840 if (flag & AT_REMOVEDIR) 2841 return do_rmdir(dfd, pathname); 2842 2843 return do_unlinkat(dfd, pathname); 2844 } 2845 2846 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2847 { 2848 return do_unlinkat(AT_FDCWD, pathname); 2849 } 2850 2851 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2852 { 2853 int error = may_create(dir, dentry); 2854 2855 if (error) 2856 return error; 2857 2858 if (!dir->i_op->symlink) 2859 return -EPERM; 2860 2861 error = security_inode_symlink(dir, dentry, oldname); 2862 if (error) 2863 return error; 2864 2865 error = dir->i_op->symlink(dir, dentry, oldname); 2866 if (!error) 2867 fsnotify_create(dir, dentry); 2868 return error; 2869 } 2870 2871 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2872 int, newdfd, const char __user *, newname) 2873 { 2874 int error; 2875 char *from; 2876 struct dentry *dentry; 2877 struct path path; 2878 2879 from = getname(oldname); 2880 if (IS_ERR(from)) 2881 return PTR_ERR(from); 2882 2883 dentry = user_path_create(newdfd, newname, &path, 0); 2884 error = PTR_ERR(dentry); 2885 if (IS_ERR(dentry)) 2886 goto out_putname; 2887 2888 error = mnt_want_write(path.mnt); 2889 if (error) 2890 goto out_dput; 2891 error = security_path_symlink(&path, dentry, from); 2892 if (error) 2893 goto out_drop_write; 2894 error = vfs_symlink(path.dentry->d_inode, dentry, from); 2895 out_drop_write: 2896 mnt_drop_write(path.mnt); 2897 out_dput: 2898 dput(dentry); 2899 mutex_unlock(&path.dentry->d_inode->i_mutex); 2900 path_put(&path); 2901 out_putname: 2902 putname(from); 2903 return error; 2904 } 2905 2906 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2907 { 2908 return sys_symlinkat(oldname, AT_FDCWD, newname); 2909 } 2910 2911 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2912 { 2913 struct inode *inode = old_dentry->d_inode; 2914 int error; 2915 2916 if (!inode) 2917 return -ENOENT; 2918 2919 error = may_create(dir, new_dentry); 2920 if (error) 2921 return error; 2922 2923 if (dir->i_sb != inode->i_sb) 2924 return -EXDEV; 2925 2926 /* 2927 * A link to an append-only or immutable file cannot be created. 2928 */ 2929 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2930 return -EPERM; 2931 if (!dir->i_op->link) 2932 return -EPERM; 2933 if (S_ISDIR(inode->i_mode)) 2934 return -EPERM; 2935 2936 error = security_inode_link(old_dentry, dir, new_dentry); 2937 if (error) 2938 return error; 2939 2940 mutex_lock(&inode->i_mutex); 2941 /* Make sure we don't allow creating hardlink to an unlinked file */ 2942 if (inode->i_nlink == 0) 2943 error = -ENOENT; 2944 else 2945 error = dir->i_op->link(old_dentry, dir, new_dentry); 2946 mutex_unlock(&inode->i_mutex); 2947 if (!error) 2948 fsnotify_link(dir, inode, new_dentry); 2949 return error; 2950 } 2951 2952 /* 2953 * Hardlinks are often used in delicate situations. We avoid 2954 * security-related surprises by not following symlinks on the 2955 * newname. --KAB 2956 * 2957 * We don't follow them on the oldname either to be compatible 2958 * with linux 2.0, and to avoid hard-linking to directories 2959 * and other special files. --ADM 2960 */ 2961 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2962 int, newdfd, const char __user *, newname, int, flags) 2963 { 2964 struct dentry *new_dentry; 2965 struct path old_path, new_path; 2966 int how = 0; 2967 int error; 2968 2969 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 2970 return -EINVAL; 2971 /* 2972 * To use null names we require CAP_DAC_READ_SEARCH 2973 * This ensures that not everyone will be able to create 2974 * handlink using the passed filedescriptor. 2975 */ 2976 if (flags & AT_EMPTY_PATH) { 2977 if (!capable(CAP_DAC_READ_SEARCH)) 2978 return -ENOENT; 2979 how = LOOKUP_EMPTY; 2980 } 2981 2982 if (flags & AT_SYMLINK_FOLLOW) 2983 how |= LOOKUP_FOLLOW; 2984 2985 error = user_path_at(olddfd, oldname, how, &old_path); 2986 if (error) 2987 return error; 2988 2989 new_dentry = user_path_create(newdfd, newname, &new_path, 0); 2990 error = PTR_ERR(new_dentry); 2991 if (IS_ERR(new_dentry)) 2992 goto out; 2993 2994 error = -EXDEV; 2995 if (old_path.mnt != new_path.mnt) 2996 goto out_dput; 2997 error = mnt_want_write(new_path.mnt); 2998 if (error) 2999 goto out_dput; 3000 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3001 if (error) 3002 goto out_drop_write; 3003 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 3004 out_drop_write: 3005 mnt_drop_write(new_path.mnt); 3006 out_dput: 3007 dput(new_dentry); 3008 mutex_unlock(&new_path.dentry->d_inode->i_mutex); 3009 path_put(&new_path); 3010 out: 3011 path_put(&old_path); 3012 3013 return error; 3014 } 3015 3016 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3017 { 3018 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3019 } 3020 3021 /* 3022 * The worst of all namespace operations - renaming directory. "Perverted" 3023 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3024 * Problems: 3025 * a) we can get into loop creation. Check is done in is_subdir(). 3026 * b) race potential - two innocent renames can create a loop together. 3027 * That's where 4.4 screws up. Current fix: serialization on 3028 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3029 * story. 3030 * c) we have to lock _three_ objects - parents and victim (if it exists). 3031 * And that - after we got ->i_mutex on parents (until then we don't know 3032 * whether the target exists). Solution: try to be smart with locking 3033 * order for inodes. We rely on the fact that tree topology may change 3034 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3035 * move will be locked. Thus we can rank directories by the tree 3036 * (ancestors first) and rank all non-directories after them. 3037 * That works since everybody except rename does "lock parent, lookup, 3038 * lock child" and rename is under ->s_vfs_rename_mutex. 3039 * HOWEVER, it relies on the assumption that any object with ->lookup() 3040 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3041 * we'd better make sure that there's no link(2) for them. 3042 * d) conversion from fhandle to dentry may come in the wrong moment - when 3043 * we are removing the target. Solution: we will have to grab ->i_mutex 3044 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3045 * ->i_mutex on parents, which works but leads to some truly excessive 3046 * locking]. 3047 */ 3048 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3049 struct inode *new_dir, struct dentry *new_dentry) 3050 { 3051 int error = 0; 3052 struct inode *target = new_dentry->d_inode; 3053 3054 /* 3055 * If we are going to change the parent - check write permissions, 3056 * we'll need to flip '..'. 3057 */ 3058 if (new_dir != old_dir) { 3059 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3060 if (error) 3061 return error; 3062 } 3063 3064 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3065 if (error) 3066 return error; 3067 3068 dget(new_dentry); 3069 if (target) 3070 mutex_lock(&target->i_mutex); 3071 3072 error = -EBUSY; 3073 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3074 goto out; 3075 3076 if (target) 3077 shrink_dcache_parent(new_dentry); 3078 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3079 if (error) 3080 goto out; 3081 3082 if (target) { 3083 target->i_flags |= S_DEAD; 3084 dont_mount(new_dentry); 3085 } 3086 out: 3087 if (target) 3088 mutex_unlock(&target->i_mutex); 3089 dput(new_dentry); 3090 if (!error) 3091 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3092 d_move(old_dentry,new_dentry); 3093 return error; 3094 } 3095 3096 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3097 struct inode *new_dir, struct dentry *new_dentry) 3098 { 3099 struct inode *target = new_dentry->d_inode; 3100 int error; 3101 3102 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3103 if (error) 3104 return error; 3105 3106 dget(new_dentry); 3107 if (target) 3108 mutex_lock(&target->i_mutex); 3109 3110 error = -EBUSY; 3111 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3112 goto out; 3113 3114 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3115 if (error) 3116 goto out; 3117 3118 if (target) 3119 dont_mount(new_dentry); 3120 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3121 d_move(old_dentry, new_dentry); 3122 out: 3123 if (target) 3124 mutex_unlock(&target->i_mutex); 3125 dput(new_dentry); 3126 return error; 3127 } 3128 3129 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3130 struct inode *new_dir, struct dentry *new_dentry) 3131 { 3132 int error; 3133 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3134 const unsigned char *old_name; 3135 3136 if (old_dentry->d_inode == new_dentry->d_inode) 3137 return 0; 3138 3139 error = may_delete(old_dir, old_dentry, is_dir); 3140 if (error) 3141 return error; 3142 3143 if (!new_dentry->d_inode) 3144 error = may_create(new_dir, new_dentry); 3145 else 3146 error = may_delete(new_dir, new_dentry, is_dir); 3147 if (error) 3148 return error; 3149 3150 if (!old_dir->i_op->rename) 3151 return -EPERM; 3152 3153 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3154 3155 if (is_dir) 3156 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3157 else 3158 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3159 if (!error) 3160 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3161 new_dentry->d_inode, old_dentry); 3162 fsnotify_oldname_free(old_name); 3163 3164 return error; 3165 } 3166 3167 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3168 int, newdfd, const char __user *, newname) 3169 { 3170 struct dentry *old_dir, *new_dir; 3171 struct dentry *old_dentry, *new_dentry; 3172 struct dentry *trap; 3173 struct nameidata oldnd, newnd; 3174 char *from; 3175 char *to; 3176 int error; 3177 3178 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3179 if (error) 3180 goto exit; 3181 3182 error = user_path_parent(newdfd, newname, &newnd, &to); 3183 if (error) 3184 goto exit1; 3185 3186 error = -EXDEV; 3187 if (oldnd.path.mnt != newnd.path.mnt) 3188 goto exit2; 3189 3190 old_dir = oldnd.path.dentry; 3191 error = -EBUSY; 3192 if (oldnd.last_type != LAST_NORM) 3193 goto exit2; 3194 3195 new_dir = newnd.path.dentry; 3196 if (newnd.last_type != LAST_NORM) 3197 goto exit2; 3198 3199 oldnd.flags &= ~LOOKUP_PARENT; 3200 newnd.flags &= ~LOOKUP_PARENT; 3201 newnd.flags |= LOOKUP_RENAME_TARGET; 3202 3203 trap = lock_rename(new_dir, old_dir); 3204 3205 old_dentry = lookup_hash(&oldnd); 3206 error = PTR_ERR(old_dentry); 3207 if (IS_ERR(old_dentry)) 3208 goto exit3; 3209 /* source must exist */ 3210 error = -ENOENT; 3211 if (!old_dentry->d_inode) 3212 goto exit4; 3213 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3214 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3215 error = -ENOTDIR; 3216 if (oldnd.last.name[oldnd.last.len]) 3217 goto exit4; 3218 if (newnd.last.name[newnd.last.len]) 3219 goto exit4; 3220 } 3221 /* source should not be ancestor of target */ 3222 error = -EINVAL; 3223 if (old_dentry == trap) 3224 goto exit4; 3225 new_dentry = lookup_hash(&newnd); 3226 error = PTR_ERR(new_dentry); 3227 if (IS_ERR(new_dentry)) 3228 goto exit4; 3229 /* target should not be an ancestor of source */ 3230 error = -ENOTEMPTY; 3231 if (new_dentry == trap) 3232 goto exit5; 3233 3234 error = mnt_want_write(oldnd.path.mnt); 3235 if (error) 3236 goto exit5; 3237 error = security_path_rename(&oldnd.path, old_dentry, 3238 &newnd.path, new_dentry); 3239 if (error) 3240 goto exit6; 3241 error = vfs_rename(old_dir->d_inode, old_dentry, 3242 new_dir->d_inode, new_dentry); 3243 exit6: 3244 mnt_drop_write(oldnd.path.mnt); 3245 exit5: 3246 dput(new_dentry); 3247 exit4: 3248 dput(old_dentry); 3249 exit3: 3250 unlock_rename(new_dir, old_dir); 3251 exit2: 3252 path_put(&newnd.path); 3253 putname(to); 3254 exit1: 3255 path_put(&oldnd.path); 3256 putname(from); 3257 exit: 3258 return error; 3259 } 3260 3261 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3262 { 3263 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3264 } 3265 3266 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3267 { 3268 int len; 3269 3270 len = PTR_ERR(link); 3271 if (IS_ERR(link)) 3272 goto out; 3273 3274 len = strlen(link); 3275 if (len > (unsigned) buflen) 3276 len = buflen; 3277 if (copy_to_user(buffer, link, len)) 3278 len = -EFAULT; 3279 out: 3280 return len; 3281 } 3282 3283 /* 3284 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3285 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3286 * using) it for any given inode is up to filesystem. 3287 */ 3288 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3289 { 3290 struct nameidata nd; 3291 void *cookie; 3292 int res; 3293 3294 nd.depth = 0; 3295 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3296 if (IS_ERR(cookie)) 3297 return PTR_ERR(cookie); 3298 3299 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3300 if (dentry->d_inode->i_op->put_link) 3301 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3302 return res; 3303 } 3304 3305 int vfs_follow_link(struct nameidata *nd, const char *link) 3306 { 3307 return __vfs_follow_link(nd, link); 3308 } 3309 3310 /* get the link contents into pagecache */ 3311 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3312 { 3313 char *kaddr; 3314 struct page *page; 3315 struct address_space *mapping = dentry->d_inode->i_mapping; 3316 page = read_mapping_page(mapping, 0, NULL); 3317 if (IS_ERR(page)) 3318 return (char*)page; 3319 *ppage = page; 3320 kaddr = kmap(page); 3321 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3322 return kaddr; 3323 } 3324 3325 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3326 { 3327 struct page *page = NULL; 3328 char *s = page_getlink(dentry, &page); 3329 int res = vfs_readlink(dentry,buffer,buflen,s); 3330 if (page) { 3331 kunmap(page); 3332 page_cache_release(page); 3333 } 3334 return res; 3335 } 3336 3337 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3338 { 3339 struct page *page = NULL; 3340 nd_set_link(nd, page_getlink(dentry, &page)); 3341 return page; 3342 } 3343 3344 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3345 { 3346 struct page *page = cookie; 3347 3348 if (page) { 3349 kunmap(page); 3350 page_cache_release(page); 3351 } 3352 } 3353 3354 /* 3355 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3356 */ 3357 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3358 { 3359 struct address_space *mapping = inode->i_mapping; 3360 struct page *page; 3361 void *fsdata; 3362 int err; 3363 char *kaddr; 3364 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3365 if (nofs) 3366 flags |= AOP_FLAG_NOFS; 3367 3368 retry: 3369 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3370 flags, &page, &fsdata); 3371 if (err) 3372 goto fail; 3373 3374 kaddr = kmap_atomic(page, KM_USER0); 3375 memcpy(kaddr, symname, len-1); 3376 kunmap_atomic(kaddr, KM_USER0); 3377 3378 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3379 page, fsdata); 3380 if (err < 0) 3381 goto fail; 3382 if (err < len-1) 3383 goto retry; 3384 3385 mark_inode_dirty(inode); 3386 return 0; 3387 fail: 3388 return err; 3389 } 3390 3391 int page_symlink(struct inode *inode, const char *symname, int len) 3392 { 3393 return __page_symlink(inode, symname, len, 3394 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3395 } 3396 3397 const struct inode_operations page_symlink_inode_operations = { 3398 .readlink = generic_readlink, 3399 .follow_link = page_follow_link_light, 3400 .put_link = page_put_link, 3401 }; 3402 3403 EXPORT_SYMBOL(user_path_at); 3404 EXPORT_SYMBOL(follow_down_one); 3405 EXPORT_SYMBOL(follow_down); 3406 EXPORT_SYMBOL(follow_up); 3407 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3408 EXPORT_SYMBOL(getname); 3409 EXPORT_SYMBOL(lock_rename); 3410 EXPORT_SYMBOL(lookup_one_len); 3411 EXPORT_SYMBOL(page_follow_link_light); 3412 EXPORT_SYMBOL(page_put_link); 3413 EXPORT_SYMBOL(page_readlink); 3414 EXPORT_SYMBOL(__page_symlink); 3415 EXPORT_SYMBOL(page_symlink); 3416 EXPORT_SYMBOL(page_symlink_inode_operations); 3417 EXPORT_SYMBOL(kern_path); 3418 EXPORT_SYMBOL(vfs_path_lookup); 3419 EXPORT_SYMBOL(inode_permission); 3420 EXPORT_SYMBOL(unlock_rename); 3421 EXPORT_SYMBOL(vfs_create); 3422 EXPORT_SYMBOL(vfs_follow_link); 3423 EXPORT_SYMBOL(vfs_link); 3424 EXPORT_SYMBOL(vfs_mkdir); 3425 EXPORT_SYMBOL(vfs_mknod); 3426 EXPORT_SYMBOL(generic_permission); 3427 EXPORT_SYMBOL(vfs_readlink); 3428 EXPORT_SYMBOL(vfs_rename); 3429 EXPORT_SYMBOL(vfs_rmdir); 3430 EXPORT_SYMBOL(vfs_symlink); 3431 EXPORT_SYMBOL(vfs_unlink); 3432 EXPORT_SYMBOL(dentry_unhash); 3433 EXPORT_SYMBOL(generic_readlink); 3434