xref: /linux/fs/mpage.c (revision f30828a6745281edda735f642b5f814e1123ecd3)
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	akpm@zip.com.au
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/bio.h>
20 #include <linux/fs.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/highmem.h>
24 #include <linux/prefetch.h>
25 #include <linux/mpage.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 
30 /*
31  * I/O completion handler for multipage BIOs.
32  *
33  * The mpage code never puts partial pages into a BIO (except for end-of-file).
34  * If a page does not map to a contiguous run of blocks then it simply falls
35  * back to block_read_full_page().
36  *
37  * Why is this?  If a page's completion depends on a number of different BIOs
38  * which can complete in any order (or at the same time) then determining the
39  * status of that page is hard.  See end_buffer_async_read() for the details.
40  * There is no point in duplicating all that complexity.
41  */
42 static void mpage_end_io_read(struct bio *bio, int err)
43 {
44 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
45 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
46 
47 	do {
48 		struct page *page = bvec->bv_page;
49 
50 		if (--bvec >= bio->bi_io_vec)
51 			prefetchw(&bvec->bv_page->flags);
52 
53 		if (uptodate) {
54 			SetPageUptodate(page);
55 		} else {
56 			ClearPageUptodate(page);
57 			SetPageError(page);
58 		}
59 		unlock_page(page);
60 	} while (bvec >= bio->bi_io_vec);
61 	bio_put(bio);
62 }
63 
64 static void mpage_end_io_write(struct bio *bio, int err)
65 {
66 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
67 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
68 
69 	do {
70 		struct page *page = bvec->bv_page;
71 
72 		if (--bvec >= bio->bi_io_vec)
73 			prefetchw(&bvec->bv_page->flags);
74 
75 		if (!uptodate){
76 			SetPageError(page);
77 			if (page->mapping)
78 				set_bit(AS_EIO, &page->mapping->flags);
79 		}
80 		end_page_writeback(page);
81 	} while (bvec >= bio->bi_io_vec);
82 	bio_put(bio);
83 }
84 
85 struct bio *mpage_bio_submit(int rw, struct bio *bio)
86 {
87 	bio->bi_end_io = mpage_end_io_read;
88 	if (rw == WRITE)
89 		bio->bi_end_io = mpage_end_io_write;
90 	submit_bio(rw, bio);
91 	return NULL;
92 }
93 EXPORT_SYMBOL(mpage_bio_submit);
94 
95 static struct bio *
96 mpage_alloc(struct block_device *bdev,
97 		sector_t first_sector, int nr_vecs,
98 		gfp_t gfp_flags)
99 {
100 	struct bio *bio;
101 
102 	bio = bio_alloc(gfp_flags, nr_vecs);
103 
104 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
105 		while (!bio && (nr_vecs /= 2))
106 			bio = bio_alloc(gfp_flags, nr_vecs);
107 	}
108 
109 	if (bio) {
110 		bio->bi_bdev = bdev;
111 		bio->bi_sector = first_sector;
112 	}
113 	return bio;
114 }
115 
116 /*
117  * support function for mpage_readpages.  The fs supplied get_block might
118  * return an up to date buffer.  This is used to map that buffer into
119  * the page, which allows readpage to avoid triggering a duplicate call
120  * to get_block.
121  *
122  * The idea is to avoid adding buffers to pages that don't already have
123  * them.  So when the buffer is up to date and the page size == block size,
124  * this marks the page up to date instead of adding new buffers.
125  */
126 static void
127 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
128 {
129 	struct inode *inode = page->mapping->host;
130 	struct buffer_head *page_bh, *head;
131 	int block = 0;
132 
133 	if (!page_has_buffers(page)) {
134 		/*
135 		 * don't make any buffers if there is only one buffer on
136 		 * the page and the page just needs to be set up to date
137 		 */
138 		if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
139 		    buffer_uptodate(bh)) {
140 			SetPageUptodate(page);
141 			return;
142 		}
143 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
144 	}
145 	head = page_buffers(page);
146 	page_bh = head;
147 	do {
148 		if (block == page_block) {
149 			page_bh->b_state = bh->b_state;
150 			page_bh->b_bdev = bh->b_bdev;
151 			page_bh->b_blocknr = bh->b_blocknr;
152 			break;
153 		}
154 		page_bh = page_bh->b_this_page;
155 		block++;
156 	} while (page_bh != head);
157 }
158 
159 /*
160  * This is the worker routine which does all the work of mapping the disk
161  * blocks and constructs largest possible bios, submits them for IO if the
162  * blocks are not contiguous on the disk.
163  *
164  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
165  * represent the validity of its disk mapping and to decide when to do the next
166  * get_block() call.
167  */
168 static struct bio *
169 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
170 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
171 		unsigned long *first_logical_block, get_block_t get_block)
172 {
173 	struct inode *inode = page->mapping->host;
174 	const unsigned blkbits = inode->i_blkbits;
175 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
176 	const unsigned blocksize = 1 << blkbits;
177 	sector_t block_in_file;
178 	sector_t last_block;
179 	sector_t last_block_in_file;
180 	sector_t blocks[MAX_BUF_PER_PAGE];
181 	unsigned page_block;
182 	unsigned first_hole = blocks_per_page;
183 	struct block_device *bdev = NULL;
184 	int length;
185 	int fully_mapped = 1;
186 	unsigned nblocks;
187 	unsigned relative_block;
188 
189 	if (page_has_buffers(page))
190 		goto confused;
191 
192 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
193 	last_block = block_in_file + nr_pages * blocks_per_page;
194 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
195 	if (last_block > last_block_in_file)
196 		last_block = last_block_in_file;
197 	page_block = 0;
198 
199 	/*
200 	 * Map blocks using the result from the previous get_blocks call first.
201 	 */
202 	nblocks = map_bh->b_size >> blkbits;
203 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
204 			block_in_file < (*first_logical_block + nblocks)) {
205 		unsigned map_offset = block_in_file - *first_logical_block;
206 		unsigned last = nblocks - map_offset;
207 
208 		for (relative_block = 0; ; relative_block++) {
209 			if (relative_block == last) {
210 				clear_buffer_mapped(map_bh);
211 				break;
212 			}
213 			if (page_block == blocks_per_page)
214 				break;
215 			blocks[page_block] = map_bh->b_blocknr + map_offset +
216 						relative_block;
217 			page_block++;
218 			block_in_file++;
219 		}
220 		bdev = map_bh->b_bdev;
221 	}
222 
223 	/*
224 	 * Then do more get_blocks calls until we are done with this page.
225 	 */
226 	map_bh->b_page = page;
227 	while (page_block < blocks_per_page) {
228 		map_bh->b_state = 0;
229 		map_bh->b_size = 0;
230 
231 		if (block_in_file < last_block) {
232 			map_bh->b_size = (last_block-block_in_file) << blkbits;
233 			if (get_block(inode, block_in_file, map_bh, 0))
234 				goto confused;
235 			*first_logical_block = block_in_file;
236 		}
237 
238 		if (!buffer_mapped(map_bh)) {
239 			fully_mapped = 0;
240 			if (first_hole == blocks_per_page)
241 				first_hole = page_block;
242 			page_block++;
243 			block_in_file++;
244 			clear_buffer_mapped(map_bh);
245 			continue;
246 		}
247 
248 		/* some filesystems will copy data into the page during
249 		 * the get_block call, in which case we don't want to
250 		 * read it again.  map_buffer_to_page copies the data
251 		 * we just collected from get_block into the page's buffers
252 		 * so readpage doesn't have to repeat the get_block call
253 		 */
254 		if (buffer_uptodate(map_bh)) {
255 			map_buffer_to_page(page, map_bh, page_block);
256 			goto confused;
257 		}
258 
259 		if (first_hole != blocks_per_page)
260 			goto confused;		/* hole -> non-hole */
261 
262 		/* Contiguous blocks? */
263 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
264 			goto confused;
265 		nblocks = map_bh->b_size >> blkbits;
266 		for (relative_block = 0; ; relative_block++) {
267 			if (relative_block == nblocks) {
268 				clear_buffer_mapped(map_bh);
269 				break;
270 			} else if (page_block == blocks_per_page)
271 				break;
272 			blocks[page_block] = map_bh->b_blocknr+relative_block;
273 			page_block++;
274 			block_in_file++;
275 		}
276 		bdev = map_bh->b_bdev;
277 	}
278 
279 	if (first_hole != blocks_per_page) {
280 		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
281 		if (first_hole == 0) {
282 			SetPageUptodate(page);
283 			unlock_page(page);
284 			goto out;
285 		}
286 	} else if (fully_mapped) {
287 		SetPageMappedToDisk(page);
288 	}
289 
290 	/*
291 	 * This page will go to BIO.  Do we need to send this BIO off first?
292 	 */
293 	if (bio && (*last_block_in_bio != blocks[0] - 1))
294 		bio = mpage_bio_submit(READ, bio);
295 
296 alloc_new:
297 	if (bio == NULL) {
298 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
299 			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
300 				GFP_KERNEL);
301 		if (bio == NULL)
302 			goto confused;
303 	}
304 
305 	length = first_hole << blkbits;
306 	if (bio_add_page(bio, page, length, 0) < length) {
307 		bio = mpage_bio_submit(READ, bio);
308 		goto alloc_new;
309 	}
310 
311 	if (buffer_boundary(map_bh) || (first_hole != blocks_per_page))
312 		bio = mpage_bio_submit(READ, bio);
313 	else
314 		*last_block_in_bio = blocks[blocks_per_page - 1];
315 out:
316 	return bio;
317 
318 confused:
319 	if (bio)
320 		bio = mpage_bio_submit(READ, bio);
321 	if (!PageUptodate(page))
322 	        block_read_full_page(page, get_block);
323 	else
324 		unlock_page(page);
325 	goto out;
326 }
327 
328 /**
329  * mpage_readpages - populate an address space with some pages & start reads against them
330  * @mapping: the address_space
331  * @pages: The address of a list_head which contains the target pages.  These
332  *   pages have their ->index populated and are otherwise uninitialised.
333  *   The page at @pages->prev has the lowest file offset, and reads should be
334  *   issued in @pages->prev to @pages->next order.
335  * @nr_pages: The number of pages at *@pages
336  * @get_block: The filesystem's block mapper function.
337  *
338  * This function walks the pages and the blocks within each page, building and
339  * emitting large BIOs.
340  *
341  * If anything unusual happens, such as:
342  *
343  * - encountering a page which has buffers
344  * - encountering a page which has a non-hole after a hole
345  * - encountering a page with non-contiguous blocks
346  *
347  * then this code just gives up and calls the buffer_head-based read function.
348  * It does handle a page which has holes at the end - that is a common case:
349  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
350  *
351  * BH_Boundary explanation:
352  *
353  * There is a problem.  The mpage read code assembles several pages, gets all
354  * their disk mappings, and then submits them all.  That's fine, but obtaining
355  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
356  *
357  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
358  * submitted in the following order:
359  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
360  *
361  * because the indirect block has to be read to get the mappings of blocks
362  * 13,14,15,16.  Obviously, this impacts performance.
363  *
364  * So what we do it to allow the filesystem's get_block() function to set
365  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
366  * after this one will require I/O against a block which is probably close to
367  * this one.  So you should push what I/O you have currently accumulated.
368  *
369  * This all causes the disk requests to be issued in the correct order.
370  */
371 int
372 mpage_readpages(struct address_space *mapping, struct list_head *pages,
373 				unsigned nr_pages, get_block_t get_block)
374 {
375 	struct bio *bio = NULL;
376 	unsigned page_idx;
377 	sector_t last_block_in_bio = 0;
378 	struct buffer_head map_bh;
379 	unsigned long first_logical_block = 0;
380 
381 	clear_buffer_mapped(&map_bh);
382 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
383 		struct page *page = list_entry(pages->prev, struct page, lru);
384 
385 		prefetchw(&page->flags);
386 		list_del(&page->lru);
387 		if (!add_to_page_cache_lru(page, mapping,
388 					page->index, GFP_KERNEL)) {
389 			bio = do_mpage_readpage(bio, page,
390 					nr_pages - page_idx,
391 					&last_block_in_bio, &map_bh,
392 					&first_logical_block,
393 					get_block);
394 		}
395 		page_cache_release(page);
396 	}
397 	BUG_ON(!list_empty(pages));
398 	if (bio)
399 		mpage_bio_submit(READ, bio);
400 	return 0;
401 }
402 EXPORT_SYMBOL(mpage_readpages);
403 
404 /*
405  * This isn't called much at all
406  */
407 int mpage_readpage(struct page *page, get_block_t get_block)
408 {
409 	struct bio *bio = NULL;
410 	sector_t last_block_in_bio = 0;
411 	struct buffer_head map_bh;
412 	unsigned long first_logical_block = 0;
413 
414 	clear_buffer_mapped(&map_bh);
415 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
416 			&map_bh, &first_logical_block, get_block);
417 	if (bio)
418 		mpage_bio_submit(READ, bio);
419 	return 0;
420 }
421 EXPORT_SYMBOL(mpage_readpage);
422 
423 /*
424  * Writing is not so simple.
425  *
426  * If the page has buffers then they will be used for obtaining the disk
427  * mapping.  We only support pages which are fully mapped-and-dirty, with a
428  * special case for pages which are unmapped at the end: end-of-file.
429  *
430  * If the page has no buffers (preferred) then the page is mapped here.
431  *
432  * If all blocks are found to be contiguous then the page can go into the
433  * BIO.  Otherwise fall back to the mapping's writepage().
434  *
435  * FIXME: This code wants an estimate of how many pages are still to be
436  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
437  * just allocate full-size (16-page) BIOs.
438  */
439 
440 int __mpage_writepage(struct page *page, struct writeback_control *wbc,
441 		      void *data)
442 {
443 	struct mpage_data *mpd = data;
444 	struct bio *bio = mpd->bio;
445 	struct address_space *mapping = page->mapping;
446 	struct inode *inode = page->mapping->host;
447 	const unsigned blkbits = inode->i_blkbits;
448 	unsigned long end_index;
449 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
450 	sector_t last_block;
451 	sector_t block_in_file;
452 	sector_t blocks[MAX_BUF_PER_PAGE];
453 	unsigned page_block;
454 	unsigned first_unmapped = blocks_per_page;
455 	struct block_device *bdev = NULL;
456 	int boundary = 0;
457 	sector_t boundary_block = 0;
458 	struct block_device *boundary_bdev = NULL;
459 	int length;
460 	struct buffer_head map_bh;
461 	loff_t i_size = i_size_read(inode);
462 	int ret = 0;
463 
464 	if (page_has_buffers(page)) {
465 		struct buffer_head *head = page_buffers(page);
466 		struct buffer_head *bh = head;
467 
468 		/* If they're all mapped and dirty, do it */
469 		page_block = 0;
470 		do {
471 			BUG_ON(buffer_locked(bh));
472 			if (!buffer_mapped(bh)) {
473 				/*
474 				 * unmapped dirty buffers are created by
475 				 * __set_page_dirty_buffers -> mmapped data
476 				 */
477 				if (buffer_dirty(bh))
478 					goto confused;
479 				if (first_unmapped == blocks_per_page)
480 					first_unmapped = page_block;
481 				continue;
482 			}
483 
484 			if (first_unmapped != blocks_per_page)
485 				goto confused;	/* hole -> non-hole */
486 
487 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
488 				goto confused;
489 			if (page_block) {
490 				if (bh->b_blocknr != blocks[page_block-1] + 1)
491 					goto confused;
492 			}
493 			blocks[page_block++] = bh->b_blocknr;
494 			boundary = buffer_boundary(bh);
495 			if (boundary) {
496 				boundary_block = bh->b_blocknr;
497 				boundary_bdev = bh->b_bdev;
498 			}
499 			bdev = bh->b_bdev;
500 		} while ((bh = bh->b_this_page) != head);
501 
502 		if (first_unmapped)
503 			goto page_is_mapped;
504 
505 		/*
506 		 * Page has buffers, but they are all unmapped. The page was
507 		 * created by pagein or read over a hole which was handled by
508 		 * block_read_full_page().  If this address_space is also
509 		 * using mpage_readpages then this can rarely happen.
510 		 */
511 		goto confused;
512 	}
513 
514 	/*
515 	 * The page has no buffers: map it to disk
516 	 */
517 	BUG_ON(!PageUptodate(page));
518 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
519 	last_block = (i_size - 1) >> blkbits;
520 	map_bh.b_page = page;
521 	for (page_block = 0; page_block < blocks_per_page; ) {
522 
523 		map_bh.b_state = 0;
524 		map_bh.b_size = 1 << blkbits;
525 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
526 			goto confused;
527 		if (buffer_new(&map_bh))
528 			unmap_underlying_metadata(map_bh.b_bdev,
529 						map_bh.b_blocknr);
530 		if (buffer_boundary(&map_bh)) {
531 			boundary_block = map_bh.b_blocknr;
532 			boundary_bdev = map_bh.b_bdev;
533 		}
534 		if (page_block) {
535 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
536 				goto confused;
537 		}
538 		blocks[page_block++] = map_bh.b_blocknr;
539 		boundary = buffer_boundary(&map_bh);
540 		bdev = map_bh.b_bdev;
541 		if (block_in_file == last_block)
542 			break;
543 		block_in_file++;
544 	}
545 	BUG_ON(page_block == 0);
546 
547 	first_unmapped = page_block;
548 
549 page_is_mapped:
550 	end_index = i_size >> PAGE_CACHE_SHIFT;
551 	if (page->index >= end_index) {
552 		/*
553 		 * The page straddles i_size.  It must be zeroed out on each
554 		 * and every writepage invokation because it may be mmapped.
555 		 * "A file is mapped in multiples of the page size.  For a file
556 		 * that is not a multiple of the page size, the remaining memory
557 		 * is zeroed when mapped, and writes to that region are not
558 		 * written out to the file."
559 		 */
560 		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
561 
562 		if (page->index > end_index || !offset)
563 			goto confused;
564 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
565 	}
566 
567 	/*
568 	 * This page will go to BIO.  Do we need to send this BIO off first?
569 	 */
570 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
571 		bio = mpage_bio_submit(WRITE, bio);
572 
573 alloc_new:
574 	if (bio == NULL) {
575 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
576 				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
577 		if (bio == NULL)
578 			goto confused;
579 	}
580 
581 	/*
582 	 * Must try to add the page before marking the buffer clean or
583 	 * the confused fail path above (OOM) will be very confused when
584 	 * it finds all bh marked clean (i.e. it will not write anything)
585 	 */
586 	length = first_unmapped << blkbits;
587 	if (bio_add_page(bio, page, length, 0) < length) {
588 		bio = mpage_bio_submit(WRITE, bio);
589 		goto alloc_new;
590 	}
591 
592 	/*
593 	 * OK, we have our BIO, so we can now mark the buffers clean.  Make
594 	 * sure to only clean buffers which we know we'll be writing.
595 	 */
596 	if (page_has_buffers(page)) {
597 		struct buffer_head *head = page_buffers(page);
598 		struct buffer_head *bh = head;
599 		unsigned buffer_counter = 0;
600 
601 		do {
602 			if (buffer_counter++ == first_unmapped)
603 				break;
604 			clear_buffer_dirty(bh);
605 			bh = bh->b_this_page;
606 		} while (bh != head);
607 
608 		/*
609 		 * we cannot drop the bh if the page is not uptodate
610 		 * or a concurrent readpage would fail to serialize with the bh
611 		 * and it would read from disk before we reach the platter.
612 		 */
613 		if (buffer_heads_over_limit && PageUptodate(page))
614 			try_to_free_buffers(page);
615 	}
616 
617 	BUG_ON(PageWriteback(page));
618 	set_page_writeback(page);
619 	unlock_page(page);
620 	if (boundary || (first_unmapped != blocks_per_page)) {
621 		bio = mpage_bio_submit(WRITE, bio);
622 		if (boundary_block) {
623 			write_boundary_block(boundary_bdev,
624 					boundary_block, 1 << blkbits);
625 		}
626 	} else {
627 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
628 	}
629 	goto out;
630 
631 confused:
632 	if (bio)
633 		bio = mpage_bio_submit(WRITE, bio);
634 
635 	if (mpd->use_writepage) {
636 		ret = mapping->a_ops->writepage(page, wbc);
637 	} else {
638 		ret = -EAGAIN;
639 		goto out;
640 	}
641 	/*
642 	 * The caller has a ref on the inode, so *mapping is stable
643 	 */
644 	mapping_set_error(mapping, ret);
645 out:
646 	mpd->bio = bio;
647 	return ret;
648 }
649 EXPORT_SYMBOL(__mpage_writepage);
650 
651 /**
652  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
653  * @mapping: address space structure to write
654  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
655  * @get_block: the filesystem's block mapper function.
656  *             If this is NULL then use a_ops->writepage.  Otherwise, go
657  *             direct-to-BIO.
658  *
659  * This is a library function, which implements the writepages()
660  * address_space_operation.
661  *
662  * If a page is already under I/O, generic_writepages() skips it, even
663  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
664  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
665  * and msync() need to guarantee that all the data which was dirty at the time
666  * the call was made get new I/O started against them.  If wbc->sync_mode is
667  * WB_SYNC_ALL then we were called for data integrity and we must wait for
668  * existing IO to complete.
669  */
670 int
671 mpage_writepages(struct address_space *mapping,
672 		struct writeback_control *wbc, get_block_t get_block)
673 {
674 	int ret;
675 
676 	if (!get_block)
677 		ret = generic_writepages(mapping, wbc);
678 	else {
679 		struct mpage_data mpd = {
680 			.bio = NULL,
681 			.last_block_in_bio = 0,
682 			.get_block = get_block,
683 			.use_writepage = 1,
684 		};
685 
686 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
687 		if (mpd.bio)
688 			mpage_bio_submit(WRITE, mpd.bio);
689 	}
690 	return ret;
691 }
692 EXPORT_SYMBOL(mpage_writepages);
693 
694 int mpage_writepage(struct page *page, get_block_t get_block,
695 	struct writeback_control *wbc)
696 {
697 	struct mpage_data mpd = {
698 		.bio = NULL,
699 		.last_block_in_bio = 0,
700 		.get_block = get_block,
701 		.use_writepage = 0,
702 	};
703 	int ret = __mpage_writepage(page, wbc, &mpd);
704 	if (mpd.bio)
705 		mpage_bio_submit(WRITE, mpd.bio);
706 	return ret;
707 }
708 EXPORT_SYMBOL(mpage_writepage);
709