xref: /linux/fs/kernfs/dir.c (revision 80483c3abf8423e6ec4fb63647a8e2e1f5976801)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46 
47 /* kernfs_node_depth - compute depth from @from to @to */
48 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
49 {
50 	size_t depth = 0;
51 
52 	while (to->parent && to != from) {
53 		depth++;
54 		to = to->parent;
55 	}
56 	return depth;
57 }
58 
59 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
60 						  struct kernfs_node *b)
61 {
62 	size_t da, db;
63 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
64 
65 	if (ra != rb)
66 		return NULL;
67 
68 	da = kernfs_depth(ra->kn, a);
69 	db = kernfs_depth(rb->kn, b);
70 
71 	while (da > db) {
72 		a = a->parent;
73 		da--;
74 	}
75 	while (db > da) {
76 		b = b->parent;
77 		db--;
78 	}
79 
80 	/* worst case b and a will be the same at root */
81 	while (b != a) {
82 		b = b->parent;
83 		a = a->parent;
84 	}
85 
86 	return a;
87 }
88 
89 /**
90  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
91  * where kn_from is treated as root of the path.
92  * @kn_from: kernfs node which should be treated as root for the path
93  * @kn_to: kernfs node to which path is needed
94  * @buf: buffer to copy the path into
95  * @buflen: size of @buf
96  *
97  * We need to handle couple of scenarios here:
98  * [1] when @kn_from is an ancestor of @kn_to at some level
99  * kn_from: /n1/n2/n3
100  * kn_to:   /n1/n2/n3/n4/n5
101  * result:  /n4/n5
102  *
103  * [2] when @kn_from is on a different hierarchy and we need to find common
104  * ancestor between @kn_from and @kn_to.
105  * kn_from: /n1/n2/n3/n4
106  * kn_to:   /n1/n2/n5
107  * result:  /../../n5
108  * OR
109  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
110  * kn_to:   /n1/n2/n3         [depth=3]
111  * result:  /../..
112  *
113  * return value: length of the string.  If greater than buflen,
114  * then contents of buf are undefined.  On error, -1 is returned.
115  */
116 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
117 					struct kernfs_node *kn_from,
118 					char *buf, size_t buflen)
119 {
120 	struct kernfs_node *kn, *common;
121 	const char parent_str[] = "/..";
122 	size_t depth_from, depth_to, len = 0, nlen = 0;
123 	char *p;
124 	int i;
125 
126 	if (!kn_from)
127 		kn_from = kernfs_root(kn_to)->kn;
128 
129 	if (kn_from == kn_to)
130 		return strlcpy(buf, "/", buflen);
131 
132 	common = kernfs_common_ancestor(kn_from, kn_to);
133 	if (WARN_ON(!common))
134 		return -1;
135 
136 	depth_to = kernfs_depth(common, kn_to);
137 	depth_from = kernfs_depth(common, kn_from);
138 
139 	if (buf)
140 		buf[0] = '\0';
141 
142 	for (i = 0; i < depth_from; i++)
143 		len += strlcpy(buf + len, parent_str,
144 			       len < buflen ? buflen - len : 0);
145 
146 	/* Calculate how many bytes we need for the rest */
147 	for (kn = kn_to; kn != common; kn = kn->parent)
148 		nlen += strlen(kn->name) + 1;
149 
150 	if (len + nlen >= buflen)
151 		return len + nlen;
152 
153 	p = buf + len + nlen;
154 	*p = '\0';
155 	for (kn = kn_to; kn != common; kn = kn->parent) {
156 		size_t tmp = strlen(kn->name);
157 		p -= tmp;
158 		memcpy(p, kn->name, tmp);
159 		*(--p) = '/';
160 	}
161 
162 	return len + nlen;
163 }
164 
165 /**
166  * kernfs_name - obtain the name of a given node
167  * @kn: kernfs_node of interest
168  * @buf: buffer to copy @kn's name into
169  * @buflen: size of @buf
170  *
171  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
172  * similar to strlcpy().  It returns the length of @kn's name and if @buf
173  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
174  *
175  * This function can be called from any context.
176  */
177 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
178 {
179 	unsigned long flags;
180 	int ret;
181 
182 	spin_lock_irqsave(&kernfs_rename_lock, flags);
183 	ret = kernfs_name_locked(kn, buf, buflen);
184 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
185 	return ret;
186 }
187 
188 /**
189  * kernfs_path_len - determine the length of the full path of a given node
190  * @kn: kernfs_node of interest
191  *
192  * The returned length doesn't include the space for the terminating '\0'.
193  */
194 size_t kernfs_path_len(struct kernfs_node *kn)
195 {
196 	size_t len = 0;
197 	unsigned long flags;
198 
199 	spin_lock_irqsave(&kernfs_rename_lock, flags);
200 
201 	do {
202 		len += strlen(kn->name) + 1;
203 		kn = kn->parent;
204 	} while (kn && kn->parent);
205 
206 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
207 
208 	return len;
209 }
210 
211 /**
212  * kernfs_path_from_node - build path of node @to relative to @from.
213  * @from: parent kernfs_node relative to which we need to build the path
214  * @to: kernfs_node of interest
215  * @buf: buffer to copy @to's path into
216  * @buflen: size of @buf
217  *
218  * Builds @to's path relative to @from in @buf. @from and @to must
219  * be on the same kernfs-root. If @from is not parent of @to, then a relative
220  * path (which includes '..'s) as needed to reach from @from to @to is
221  * returned.
222  *
223  * If @buf isn't long enough, the return value will be greater than @buflen
224  * and @buf contents are undefined.
225  */
226 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
227 			  char *buf, size_t buflen)
228 {
229 	unsigned long flags;
230 	int ret;
231 
232 	spin_lock_irqsave(&kernfs_rename_lock, flags);
233 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
234 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
235 	return ret;
236 }
237 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
238 
239 /**
240  * kernfs_path - build full path of a given node
241  * @kn: kernfs_node of interest
242  * @buf: buffer to copy @kn's name into
243  * @buflen: size of @buf
244  *
245  * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
246  * path is built from the end of @buf so the returned pointer usually
247  * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
248  * and %NULL is returned.
249  */
250 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
251 {
252 	int ret;
253 
254 	ret = kernfs_path_from_node(kn, NULL, buf, buflen);
255 	if (ret < 0 || ret >= buflen)
256 		return NULL;
257 	return buf;
258 }
259 EXPORT_SYMBOL_GPL(kernfs_path);
260 
261 /**
262  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
263  * @kn: kernfs_node of interest
264  *
265  * This function can be called from any context.
266  */
267 void pr_cont_kernfs_name(struct kernfs_node *kn)
268 {
269 	unsigned long flags;
270 
271 	spin_lock_irqsave(&kernfs_rename_lock, flags);
272 
273 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
274 	pr_cont("%s", kernfs_pr_cont_buf);
275 
276 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
277 }
278 
279 /**
280  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
281  * @kn: kernfs_node of interest
282  *
283  * This function can be called from any context.
284  */
285 void pr_cont_kernfs_path(struct kernfs_node *kn)
286 {
287 	unsigned long flags;
288 	int sz;
289 
290 	spin_lock_irqsave(&kernfs_rename_lock, flags);
291 
292 	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
293 					  sizeof(kernfs_pr_cont_buf));
294 	if (sz < 0) {
295 		pr_cont("(error)");
296 		goto out;
297 	}
298 
299 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
300 		pr_cont("(name too long)");
301 		goto out;
302 	}
303 
304 	pr_cont("%s", kernfs_pr_cont_buf);
305 
306 out:
307 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
308 }
309 
310 /**
311  * kernfs_get_parent - determine the parent node and pin it
312  * @kn: kernfs_node of interest
313  *
314  * Determines @kn's parent, pins and returns it.  This function can be
315  * called from any context.
316  */
317 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
318 {
319 	struct kernfs_node *parent;
320 	unsigned long flags;
321 
322 	spin_lock_irqsave(&kernfs_rename_lock, flags);
323 	parent = kn->parent;
324 	kernfs_get(parent);
325 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
326 
327 	return parent;
328 }
329 
330 /**
331  *	kernfs_name_hash
332  *	@name: Null terminated string to hash
333  *	@ns:   Namespace tag to hash
334  *
335  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
336  */
337 static unsigned int kernfs_name_hash(const char *name, const void *ns)
338 {
339 	unsigned long hash = init_name_hash(ns);
340 	unsigned int len = strlen(name);
341 	while (len--)
342 		hash = partial_name_hash(*name++, hash);
343 	hash = end_name_hash(hash);
344 	hash &= 0x7fffffffU;
345 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
346 	if (hash < 2)
347 		hash += 2;
348 	if (hash >= INT_MAX)
349 		hash = INT_MAX - 1;
350 	return hash;
351 }
352 
353 static int kernfs_name_compare(unsigned int hash, const char *name,
354 			       const void *ns, const struct kernfs_node *kn)
355 {
356 	if (hash < kn->hash)
357 		return -1;
358 	if (hash > kn->hash)
359 		return 1;
360 	if (ns < kn->ns)
361 		return -1;
362 	if (ns > kn->ns)
363 		return 1;
364 	return strcmp(name, kn->name);
365 }
366 
367 static int kernfs_sd_compare(const struct kernfs_node *left,
368 			     const struct kernfs_node *right)
369 {
370 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
371 }
372 
373 /**
374  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
375  *	@kn: kernfs_node of interest
376  *
377  *	Link @kn into its sibling rbtree which starts from
378  *	@kn->parent->dir.children.
379  *
380  *	Locking:
381  *	mutex_lock(kernfs_mutex)
382  *
383  *	RETURNS:
384  *	0 on susccess -EEXIST on failure.
385  */
386 static int kernfs_link_sibling(struct kernfs_node *kn)
387 {
388 	struct rb_node **node = &kn->parent->dir.children.rb_node;
389 	struct rb_node *parent = NULL;
390 
391 	while (*node) {
392 		struct kernfs_node *pos;
393 		int result;
394 
395 		pos = rb_to_kn(*node);
396 		parent = *node;
397 		result = kernfs_sd_compare(kn, pos);
398 		if (result < 0)
399 			node = &pos->rb.rb_left;
400 		else if (result > 0)
401 			node = &pos->rb.rb_right;
402 		else
403 			return -EEXIST;
404 	}
405 
406 	/* add new node and rebalance the tree */
407 	rb_link_node(&kn->rb, parent, node);
408 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
409 
410 	/* successfully added, account subdir number */
411 	if (kernfs_type(kn) == KERNFS_DIR)
412 		kn->parent->dir.subdirs++;
413 
414 	return 0;
415 }
416 
417 /**
418  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
419  *	@kn: kernfs_node of interest
420  *
421  *	Try to unlink @kn from its sibling rbtree which starts from
422  *	kn->parent->dir.children.  Returns %true if @kn was actually
423  *	removed, %false if @kn wasn't on the rbtree.
424  *
425  *	Locking:
426  *	mutex_lock(kernfs_mutex)
427  */
428 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
429 {
430 	if (RB_EMPTY_NODE(&kn->rb))
431 		return false;
432 
433 	if (kernfs_type(kn) == KERNFS_DIR)
434 		kn->parent->dir.subdirs--;
435 
436 	rb_erase(&kn->rb, &kn->parent->dir.children);
437 	RB_CLEAR_NODE(&kn->rb);
438 	return true;
439 }
440 
441 /**
442  *	kernfs_get_active - get an active reference to kernfs_node
443  *	@kn: kernfs_node to get an active reference to
444  *
445  *	Get an active reference of @kn.  This function is noop if @kn
446  *	is NULL.
447  *
448  *	RETURNS:
449  *	Pointer to @kn on success, NULL on failure.
450  */
451 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
452 {
453 	if (unlikely(!kn))
454 		return NULL;
455 
456 	if (!atomic_inc_unless_negative(&kn->active))
457 		return NULL;
458 
459 	if (kernfs_lockdep(kn))
460 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
461 	return kn;
462 }
463 
464 /**
465  *	kernfs_put_active - put an active reference to kernfs_node
466  *	@kn: kernfs_node to put an active reference to
467  *
468  *	Put an active reference to @kn.  This function is noop if @kn
469  *	is NULL.
470  */
471 void kernfs_put_active(struct kernfs_node *kn)
472 {
473 	struct kernfs_root *root = kernfs_root(kn);
474 	int v;
475 
476 	if (unlikely(!kn))
477 		return;
478 
479 	if (kernfs_lockdep(kn))
480 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
481 	v = atomic_dec_return(&kn->active);
482 	if (likely(v != KN_DEACTIVATED_BIAS))
483 		return;
484 
485 	wake_up_all(&root->deactivate_waitq);
486 }
487 
488 /**
489  * kernfs_drain - drain kernfs_node
490  * @kn: kernfs_node to drain
491  *
492  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
493  * removers may invoke this function concurrently on @kn and all will
494  * return after draining is complete.
495  */
496 static void kernfs_drain(struct kernfs_node *kn)
497 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
498 {
499 	struct kernfs_root *root = kernfs_root(kn);
500 
501 	lockdep_assert_held(&kernfs_mutex);
502 	WARN_ON_ONCE(kernfs_active(kn));
503 
504 	mutex_unlock(&kernfs_mutex);
505 
506 	if (kernfs_lockdep(kn)) {
507 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
508 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
509 			lock_contended(&kn->dep_map, _RET_IP_);
510 	}
511 
512 	/* but everyone should wait for draining */
513 	wait_event(root->deactivate_waitq,
514 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
515 
516 	if (kernfs_lockdep(kn)) {
517 		lock_acquired(&kn->dep_map, _RET_IP_);
518 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
519 	}
520 
521 	kernfs_unmap_bin_file(kn);
522 
523 	mutex_lock(&kernfs_mutex);
524 }
525 
526 /**
527  * kernfs_get - get a reference count on a kernfs_node
528  * @kn: the target kernfs_node
529  */
530 void kernfs_get(struct kernfs_node *kn)
531 {
532 	if (kn) {
533 		WARN_ON(!atomic_read(&kn->count));
534 		atomic_inc(&kn->count);
535 	}
536 }
537 EXPORT_SYMBOL_GPL(kernfs_get);
538 
539 /**
540  * kernfs_put - put a reference count on a kernfs_node
541  * @kn: the target kernfs_node
542  *
543  * Put a reference count of @kn and destroy it if it reached zero.
544  */
545 void kernfs_put(struct kernfs_node *kn)
546 {
547 	struct kernfs_node *parent;
548 	struct kernfs_root *root;
549 
550 	if (!kn || !atomic_dec_and_test(&kn->count))
551 		return;
552 	root = kernfs_root(kn);
553  repeat:
554 	/*
555 	 * Moving/renaming is always done while holding reference.
556 	 * kn->parent won't change beneath us.
557 	 */
558 	parent = kn->parent;
559 
560 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
561 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
562 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
563 
564 	if (kernfs_type(kn) == KERNFS_LINK)
565 		kernfs_put(kn->symlink.target_kn);
566 
567 	kfree_const(kn->name);
568 
569 	if (kn->iattr) {
570 		if (kn->iattr->ia_secdata)
571 			security_release_secctx(kn->iattr->ia_secdata,
572 						kn->iattr->ia_secdata_len);
573 		simple_xattrs_free(&kn->iattr->xattrs);
574 	}
575 	kfree(kn->iattr);
576 	ida_simple_remove(&root->ino_ida, kn->ino);
577 	kmem_cache_free(kernfs_node_cache, kn);
578 
579 	kn = parent;
580 	if (kn) {
581 		if (atomic_dec_and_test(&kn->count))
582 			goto repeat;
583 	} else {
584 		/* just released the root kn, free @root too */
585 		ida_destroy(&root->ino_ida);
586 		kfree(root);
587 	}
588 }
589 EXPORT_SYMBOL_GPL(kernfs_put);
590 
591 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
592 {
593 	struct kernfs_node *kn;
594 
595 	if (flags & LOOKUP_RCU)
596 		return -ECHILD;
597 
598 	/* Always perform fresh lookup for negatives */
599 	if (d_really_is_negative(dentry))
600 		goto out_bad_unlocked;
601 
602 	kn = dentry->d_fsdata;
603 	mutex_lock(&kernfs_mutex);
604 
605 	/* The kernfs node has been deactivated */
606 	if (!kernfs_active(kn))
607 		goto out_bad;
608 
609 	/* The kernfs node has been moved? */
610 	if (dentry->d_parent->d_fsdata != kn->parent)
611 		goto out_bad;
612 
613 	/* The kernfs node has been renamed */
614 	if (strcmp(dentry->d_name.name, kn->name) != 0)
615 		goto out_bad;
616 
617 	/* The kernfs node has been moved to a different namespace */
618 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
619 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
620 		goto out_bad;
621 
622 	mutex_unlock(&kernfs_mutex);
623 	return 1;
624 out_bad:
625 	mutex_unlock(&kernfs_mutex);
626 out_bad_unlocked:
627 	return 0;
628 }
629 
630 static void kernfs_dop_release(struct dentry *dentry)
631 {
632 	kernfs_put(dentry->d_fsdata);
633 }
634 
635 const struct dentry_operations kernfs_dops = {
636 	.d_revalidate	= kernfs_dop_revalidate,
637 	.d_release	= kernfs_dop_release,
638 };
639 
640 /**
641  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
642  * @dentry: the dentry in question
643  *
644  * Return the kernfs_node associated with @dentry.  If @dentry is not a
645  * kernfs one, %NULL is returned.
646  *
647  * While the returned kernfs_node will stay accessible as long as @dentry
648  * is accessible, the returned node can be in any state and the caller is
649  * fully responsible for determining what's accessible.
650  */
651 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
652 {
653 	if (dentry->d_sb->s_op == &kernfs_sops)
654 		return dentry->d_fsdata;
655 	return NULL;
656 }
657 
658 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
659 					     const char *name, umode_t mode,
660 					     unsigned flags)
661 {
662 	struct kernfs_node *kn;
663 	int ret;
664 
665 	name = kstrdup_const(name, GFP_KERNEL);
666 	if (!name)
667 		return NULL;
668 
669 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
670 	if (!kn)
671 		goto err_out1;
672 
673 	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
674 	if (ret < 0)
675 		goto err_out2;
676 	kn->ino = ret;
677 
678 	atomic_set(&kn->count, 1);
679 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
680 	RB_CLEAR_NODE(&kn->rb);
681 
682 	kn->name = name;
683 	kn->mode = mode;
684 	kn->flags = flags;
685 
686 	return kn;
687 
688  err_out2:
689 	kmem_cache_free(kernfs_node_cache, kn);
690  err_out1:
691 	kfree_const(name);
692 	return NULL;
693 }
694 
695 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
696 				    const char *name, umode_t mode,
697 				    unsigned flags)
698 {
699 	struct kernfs_node *kn;
700 
701 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
702 	if (kn) {
703 		kernfs_get(parent);
704 		kn->parent = parent;
705 	}
706 	return kn;
707 }
708 
709 /**
710  *	kernfs_add_one - add kernfs_node to parent without warning
711  *	@kn: kernfs_node to be added
712  *
713  *	The caller must already have initialized @kn->parent.  This
714  *	function increments nlink of the parent's inode if @kn is a
715  *	directory and link into the children list of the parent.
716  *
717  *	RETURNS:
718  *	0 on success, -EEXIST if entry with the given name already
719  *	exists.
720  */
721 int kernfs_add_one(struct kernfs_node *kn)
722 {
723 	struct kernfs_node *parent = kn->parent;
724 	struct kernfs_iattrs *ps_iattr;
725 	bool has_ns;
726 	int ret;
727 
728 	mutex_lock(&kernfs_mutex);
729 
730 	ret = -EINVAL;
731 	has_ns = kernfs_ns_enabled(parent);
732 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
733 		 has_ns ? "required" : "invalid", parent->name, kn->name))
734 		goto out_unlock;
735 
736 	if (kernfs_type(parent) != KERNFS_DIR)
737 		goto out_unlock;
738 
739 	ret = -ENOENT;
740 	if (parent->flags & KERNFS_EMPTY_DIR)
741 		goto out_unlock;
742 
743 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
744 		goto out_unlock;
745 
746 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
747 
748 	ret = kernfs_link_sibling(kn);
749 	if (ret)
750 		goto out_unlock;
751 
752 	/* Update timestamps on the parent */
753 	ps_iattr = parent->iattr;
754 	if (ps_iattr) {
755 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
756 		ktime_get_real_ts(&ps_iattrs->ia_ctime);
757 		ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
758 	}
759 
760 	mutex_unlock(&kernfs_mutex);
761 
762 	/*
763 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
764 	 * If not activated here, the kernfs user is responsible for
765 	 * activating the node with kernfs_activate().  A node which hasn't
766 	 * been activated is not visible to userland and its removal won't
767 	 * trigger deactivation.
768 	 */
769 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
770 		kernfs_activate(kn);
771 	return 0;
772 
773 out_unlock:
774 	mutex_unlock(&kernfs_mutex);
775 	return ret;
776 }
777 
778 /**
779  * kernfs_find_ns - find kernfs_node with the given name
780  * @parent: kernfs_node to search under
781  * @name: name to look for
782  * @ns: the namespace tag to use
783  *
784  * Look for kernfs_node with name @name under @parent.  Returns pointer to
785  * the found kernfs_node on success, %NULL on failure.
786  */
787 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
788 					  const unsigned char *name,
789 					  const void *ns)
790 {
791 	struct rb_node *node = parent->dir.children.rb_node;
792 	bool has_ns = kernfs_ns_enabled(parent);
793 	unsigned int hash;
794 
795 	lockdep_assert_held(&kernfs_mutex);
796 
797 	if (has_ns != (bool)ns) {
798 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
799 		     has_ns ? "required" : "invalid", parent->name, name);
800 		return NULL;
801 	}
802 
803 	hash = kernfs_name_hash(name, ns);
804 	while (node) {
805 		struct kernfs_node *kn;
806 		int result;
807 
808 		kn = rb_to_kn(node);
809 		result = kernfs_name_compare(hash, name, ns, kn);
810 		if (result < 0)
811 			node = node->rb_left;
812 		else if (result > 0)
813 			node = node->rb_right;
814 		else
815 			return kn;
816 	}
817 	return NULL;
818 }
819 
820 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
821 					  const unsigned char *path,
822 					  const void *ns)
823 {
824 	size_t len;
825 	char *p, *name;
826 
827 	lockdep_assert_held(&kernfs_mutex);
828 
829 	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
830 	spin_lock_irq(&kernfs_rename_lock);
831 
832 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
833 
834 	if (len >= sizeof(kernfs_pr_cont_buf)) {
835 		spin_unlock_irq(&kernfs_rename_lock);
836 		return NULL;
837 	}
838 
839 	p = kernfs_pr_cont_buf;
840 
841 	while ((name = strsep(&p, "/")) && parent) {
842 		if (*name == '\0')
843 			continue;
844 		parent = kernfs_find_ns(parent, name, ns);
845 	}
846 
847 	spin_unlock_irq(&kernfs_rename_lock);
848 
849 	return parent;
850 }
851 
852 /**
853  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
854  * @parent: kernfs_node to search under
855  * @name: name to look for
856  * @ns: the namespace tag to use
857  *
858  * Look for kernfs_node with name @name under @parent and get a reference
859  * if found.  This function may sleep and returns pointer to the found
860  * kernfs_node on success, %NULL on failure.
861  */
862 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
863 					   const char *name, const void *ns)
864 {
865 	struct kernfs_node *kn;
866 
867 	mutex_lock(&kernfs_mutex);
868 	kn = kernfs_find_ns(parent, name, ns);
869 	kernfs_get(kn);
870 	mutex_unlock(&kernfs_mutex);
871 
872 	return kn;
873 }
874 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
875 
876 /**
877  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
878  * @parent: kernfs_node to search under
879  * @path: path to look for
880  * @ns: the namespace tag to use
881  *
882  * Look for kernfs_node with path @path under @parent and get a reference
883  * if found.  This function may sleep and returns pointer to the found
884  * kernfs_node on success, %NULL on failure.
885  */
886 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
887 					   const char *path, const void *ns)
888 {
889 	struct kernfs_node *kn;
890 
891 	mutex_lock(&kernfs_mutex);
892 	kn = kernfs_walk_ns(parent, path, ns);
893 	kernfs_get(kn);
894 	mutex_unlock(&kernfs_mutex);
895 
896 	return kn;
897 }
898 
899 /**
900  * kernfs_create_root - create a new kernfs hierarchy
901  * @scops: optional syscall operations for the hierarchy
902  * @flags: KERNFS_ROOT_* flags
903  * @priv: opaque data associated with the new directory
904  *
905  * Returns the root of the new hierarchy on success, ERR_PTR() value on
906  * failure.
907  */
908 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
909 				       unsigned int flags, void *priv)
910 {
911 	struct kernfs_root *root;
912 	struct kernfs_node *kn;
913 
914 	root = kzalloc(sizeof(*root), GFP_KERNEL);
915 	if (!root)
916 		return ERR_PTR(-ENOMEM);
917 
918 	ida_init(&root->ino_ida);
919 	INIT_LIST_HEAD(&root->supers);
920 
921 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
922 			       KERNFS_DIR);
923 	if (!kn) {
924 		ida_destroy(&root->ino_ida);
925 		kfree(root);
926 		return ERR_PTR(-ENOMEM);
927 	}
928 
929 	kn->priv = priv;
930 	kn->dir.root = root;
931 
932 	root->syscall_ops = scops;
933 	root->flags = flags;
934 	root->kn = kn;
935 	init_waitqueue_head(&root->deactivate_waitq);
936 
937 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
938 		kernfs_activate(kn);
939 
940 	return root;
941 }
942 
943 /**
944  * kernfs_destroy_root - destroy a kernfs hierarchy
945  * @root: root of the hierarchy to destroy
946  *
947  * Destroy the hierarchy anchored at @root by removing all existing
948  * directories and destroying @root.
949  */
950 void kernfs_destroy_root(struct kernfs_root *root)
951 {
952 	kernfs_remove(root->kn);	/* will also free @root */
953 }
954 
955 /**
956  * kernfs_create_dir_ns - create a directory
957  * @parent: parent in which to create a new directory
958  * @name: name of the new directory
959  * @mode: mode of the new directory
960  * @priv: opaque data associated with the new directory
961  * @ns: optional namespace tag of the directory
962  *
963  * Returns the created node on success, ERR_PTR() value on failure.
964  */
965 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
966 					 const char *name, umode_t mode,
967 					 void *priv, const void *ns)
968 {
969 	struct kernfs_node *kn;
970 	int rc;
971 
972 	/* allocate */
973 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
974 	if (!kn)
975 		return ERR_PTR(-ENOMEM);
976 
977 	kn->dir.root = parent->dir.root;
978 	kn->ns = ns;
979 	kn->priv = priv;
980 
981 	/* link in */
982 	rc = kernfs_add_one(kn);
983 	if (!rc)
984 		return kn;
985 
986 	kernfs_put(kn);
987 	return ERR_PTR(rc);
988 }
989 
990 /**
991  * kernfs_create_empty_dir - create an always empty directory
992  * @parent: parent in which to create a new directory
993  * @name: name of the new directory
994  *
995  * Returns the created node on success, ERR_PTR() value on failure.
996  */
997 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
998 					    const char *name)
999 {
1000 	struct kernfs_node *kn;
1001 	int rc;
1002 
1003 	/* allocate */
1004 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
1005 	if (!kn)
1006 		return ERR_PTR(-ENOMEM);
1007 
1008 	kn->flags |= KERNFS_EMPTY_DIR;
1009 	kn->dir.root = parent->dir.root;
1010 	kn->ns = NULL;
1011 	kn->priv = NULL;
1012 
1013 	/* link in */
1014 	rc = kernfs_add_one(kn);
1015 	if (!rc)
1016 		return kn;
1017 
1018 	kernfs_put(kn);
1019 	return ERR_PTR(rc);
1020 }
1021 
1022 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1023 					struct dentry *dentry,
1024 					unsigned int flags)
1025 {
1026 	struct dentry *ret;
1027 	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
1028 	struct kernfs_node *kn;
1029 	struct inode *inode;
1030 	const void *ns = NULL;
1031 
1032 	mutex_lock(&kernfs_mutex);
1033 
1034 	if (kernfs_ns_enabled(parent))
1035 		ns = kernfs_info(dir->i_sb)->ns;
1036 
1037 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1038 
1039 	/* no such entry */
1040 	if (!kn || !kernfs_active(kn)) {
1041 		ret = NULL;
1042 		goto out_unlock;
1043 	}
1044 	kernfs_get(kn);
1045 	dentry->d_fsdata = kn;
1046 
1047 	/* attach dentry and inode */
1048 	inode = kernfs_get_inode(dir->i_sb, kn);
1049 	if (!inode) {
1050 		ret = ERR_PTR(-ENOMEM);
1051 		goto out_unlock;
1052 	}
1053 
1054 	/* instantiate and hash dentry */
1055 	ret = d_splice_alias(inode, dentry);
1056  out_unlock:
1057 	mutex_unlock(&kernfs_mutex);
1058 	return ret;
1059 }
1060 
1061 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1062 			    umode_t mode)
1063 {
1064 	struct kernfs_node *parent = dir->i_private;
1065 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1066 	int ret;
1067 
1068 	if (!scops || !scops->mkdir)
1069 		return -EPERM;
1070 
1071 	if (!kernfs_get_active(parent))
1072 		return -ENODEV;
1073 
1074 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1075 
1076 	kernfs_put_active(parent);
1077 	return ret;
1078 }
1079 
1080 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1081 {
1082 	struct kernfs_node *kn  = dentry->d_fsdata;
1083 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1084 	int ret;
1085 
1086 	if (!scops || !scops->rmdir)
1087 		return -EPERM;
1088 
1089 	if (!kernfs_get_active(kn))
1090 		return -ENODEV;
1091 
1092 	ret = scops->rmdir(kn);
1093 
1094 	kernfs_put_active(kn);
1095 	return ret;
1096 }
1097 
1098 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1099 			     struct inode *new_dir, struct dentry *new_dentry)
1100 {
1101 	struct kernfs_node *kn  = old_dentry->d_fsdata;
1102 	struct kernfs_node *new_parent = new_dir->i_private;
1103 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1104 	int ret;
1105 
1106 	if (!scops || !scops->rename)
1107 		return -EPERM;
1108 
1109 	if (!kernfs_get_active(kn))
1110 		return -ENODEV;
1111 
1112 	if (!kernfs_get_active(new_parent)) {
1113 		kernfs_put_active(kn);
1114 		return -ENODEV;
1115 	}
1116 
1117 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1118 
1119 	kernfs_put_active(new_parent);
1120 	kernfs_put_active(kn);
1121 	return ret;
1122 }
1123 
1124 const struct inode_operations kernfs_dir_iops = {
1125 	.lookup		= kernfs_iop_lookup,
1126 	.permission	= kernfs_iop_permission,
1127 	.setattr	= kernfs_iop_setattr,
1128 	.getattr	= kernfs_iop_getattr,
1129 	.setxattr	= kernfs_iop_setxattr,
1130 	.removexattr	= kernfs_iop_removexattr,
1131 	.getxattr	= kernfs_iop_getxattr,
1132 	.listxattr	= kernfs_iop_listxattr,
1133 
1134 	.mkdir		= kernfs_iop_mkdir,
1135 	.rmdir		= kernfs_iop_rmdir,
1136 	.rename		= kernfs_iop_rename,
1137 };
1138 
1139 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1140 {
1141 	struct kernfs_node *last;
1142 
1143 	while (true) {
1144 		struct rb_node *rbn;
1145 
1146 		last = pos;
1147 
1148 		if (kernfs_type(pos) != KERNFS_DIR)
1149 			break;
1150 
1151 		rbn = rb_first(&pos->dir.children);
1152 		if (!rbn)
1153 			break;
1154 
1155 		pos = rb_to_kn(rbn);
1156 	}
1157 
1158 	return last;
1159 }
1160 
1161 /**
1162  * kernfs_next_descendant_post - find the next descendant for post-order walk
1163  * @pos: the current position (%NULL to initiate traversal)
1164  * @root: kernfs_node whose descendants to walk
1165  *
1166  * Find the next descendant to visit for post-order traversal of @root's
1167  * descendants.  @root is included in the iteration and the last node to be
1168  * visited.
1169  */
1170 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1171 						       struct kernfs_node *root)
1172 {
1173 	struct rb_node *rbn;
1174 
1175 	lockdep_assert_held(&kernfs_mutex);
1176 
1177 	/* if first iteration, visit leftmost descendant which may be root */
1178 	if (!pos)
1179 		return kernfs_leftmost_descendant(root);
1180 
1181 	/* if we visited @root, we're done */
1182 	if (pos == root)
1183 		return NULL;
1184 
1185 	/* if there's an unvisited sibling, visit its leftmost descendant */
1186 	rbn = rb_next(&pos->rb);
1187 	if (rbn)
1188 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1189 
1190 	/* no sibling left, visit parent */
1191 	return pos->parent;
1192 }
1193 
1194 /**
1195  * kernfs_activate - activate a node which started deactivated
1196  * @kn: kernfs_node whose subtree is to be activated
1197  *
1198  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1199  * needs to be explicitly activated.  A node which hasn't been activated
1200  * isn't visible to userland and deactivation is skipped during its
1201  * removal.  This is useful to construct atomic init sequences where
1202  * creation of multiple nodes should either succeed or fail atomically.
1203  *
1204  * The caller is responsible for ensuring that this function is not called
1205  * after kernfs_remove*() is invoked on @kn.
1206  */
1207 void kernfs_activate(struct kernfs_node *kn)
1208 {
1209 	struct kernfs_node *pos;
1210 
1211 	mutex_lock(&kernfs_mutex);
1212 
1213 	pos = NULL;
1214 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1215 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1216 			continue;
1217 
1218 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1219 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1220 
1221 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1222 		pos->flags |= KERNFS_ACTIVATED;
1223 	}
1224 
1225 	mutex_unlock(&kernfs_mutex);
1226 }
1227 
1228 static void __kernfs_remove(struct kernfs_node *kn)
1229 {
1230 	struct kernfs_node *pos;
1231 
1232 	lockdep_assert_held(&kernfs_mutex);
1233 
1234 	/*
1235 	 * Short-circuit if non-root @kn has already finished removal.
1236 	 * This is for kernfs_remove_self() which plays with active ref
1237 	 * after removal.
1238 	 */
1239 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1240 		return;
1241 
1242 	pr_debug("kernfs %s: removing\n", kn->name);
1243 
1244 	/* prevent any new usage under @kn by deactivating all nodes */
1245 	pos = NULL;
1246 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1247 		if (kernfs_active(pos))
1248 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1249 
1250 	/* deactivate and unlink the subtree node-by-node */
1251 	do {
1252 		pos = kernfs_leftmost_descendant(kn);
1253 
1254 		/*
1255 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1256 		 * base ref could have been put by someone else by the time
1257 		 * the function returns.  Make sure it doesn't go away
1258 		 * underneath us.
1259 		 */
1260 		kernfs_get(pos);
1261 
1262 		/*
1263 		 * Drain iff @kn was activated.  This avoids draining and
1264 		 * its lockdep annotations for nodes which have never been
1265 		 * activated and allows embedding kernfs_remove() in create
1266 		 * error paths without worrying about draining.
1267 		 */
1268 		if (kn->flags & KERNFS_ACTIVATED)
1269 			kernfs_drain(pos);
1270 		else
1271 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1272 
1273 		/*
1274 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1275 		 * to decide who's responsible for cleanups.
1276 		 */
1277 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1278 			struct kernfs_iattrs *ps_iattr =
1279 				pos->parent ? pos->parent->iattr : NULL;
1280 
1281 			/* update timestamps on the parent */
1282 			if (ps_iattr) {
1283 				ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1284 				ps_iattr->ia_iattr.ia_mtime =
1285 					ps_iattr->ia_iattr.ia_ctime;
1286 			}
1287 
1288 			kernfs_put(pos);
1289 		}
1290 
1291 		kernfs_put(pos);
1292 	} while (pos != kn);
1293 }
1294 
1295 /**
1296  * kernfs_remove - remove a kernfs_node recursively
1297  * @kn: the kernfs_node to remove
1298  *
1299  * Remove @kn along with all its subdirectories and files.
1300  */
1301 void kernfs_remove(struct kernfs_node *kn)
1302 {
1303 	mutex_lock(&kernfs_mutex);
1304 	__kernfs_remove(kn);
1305 	mutex_unlock(&kernfs_mutex);
1306 }
1307 
1308 /**
1309  * kernfs_break_active_protection - break out of active protection
1310  * @kn: the self kernfs_node
1311  *
1312  * The caller must be running off of a kernfs operation which is invoked
1313  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1314  * this function must also be matched with an invocation of
1315  * kernfs_unbreak_active_protection().
1316  *
1317  * This function releases the active reference of @kn the caller is
1318  * holding.  Once this function is called, @kn may be removed at any point
1319  * and the caller is solely responsible for ensuring that the objects it
1320  * dereferences are accessible.
1321  */
1322 void kernfs_break_active_protection(struct kernfs_node *kn)
1323 {
1324 	/*
1325 	 * Take out ourself out of the active ref dependency chain.  If
1326 	 * we're called without an active ref, lockdep will complain.
1327 	 */
1328 	kernfs_put_active(kn);
1329 }
1330 
1331 /**
1332  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1333  * @kn: the self kernfs_node
1334  *
1335  * If kernfs_break_active_protection() was called, this function must be
1336  * invoked before finishing the kernfs operation.  Note that while this
1337  * function restores the active reference, it doesn't and can't actually
1338  * restore the active protection - @kn may already or be in the process of
1339  * being removed.  Once kernfs_break_active_protection() is invoked, that
1340  * protection is irreversibly gone for the kernfs operation instance.
1341  *
1342  * While this function may be called at any point after
1343  * kernfs_break_active_protection() is invoked, its most useful location
1344  * would be right before the enclosing kernfs operation returns.
1345  */
1346 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1347 {
1348 	/*
1349 	 * @kn->active could be in any state; however, the increment we do
1350 	 * here will be undone as soon as the enclosing kernfs operation
1351 	 * finishes and this temporary bump can't break anything.  If @kn
1352 	 * is alive, nothing changes.  If @kn is being deactivated, the
1353 	 * soon-to-follow put will either finish deactivation or restore
1354 	 * deactivated state.  If @kn is already removed, the temporary
1355 	 * bump is guaranteed to be gone before @kn is released.
1356 	 */
1357 	atomic_inc(&kn->active);
1358 	if (kernfs_lockdep(kn))
1359 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1360 }
1361 
1362 /**
1363  * kernfs_remove_self - remove a kernfs_node from its own method
1364  * @kn: the self kernfs_node to remove
1365  *
1366  * The caller must be running off of a kernfs operation which is invoked
1367  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1368  * implement a file operation which deletes itself.
1369  *
1370  * For example, the "delete" file for a sysfs device directory can be
1371  * implemented by invoking kernfs_remove_self() on the "delete" file
1372  * itself.  This function breaks the circular dependency of trying to
1373  * deactivate self while holding an active ref itself.  It isn't necessary
1374  * to modify the usual removal path to use kernfs_remove_self().  The
1375  * "delete" implementation can simply invoke kernfs_remove_self() on self
1376  * before proceeding with the usual removal path.  kernfs will ignore later
1377  * kernfs_remove() on self.
1378  *
1379  * kernfs_remove_self() can be called multiple times concurrently on the
1380  * same kernfs_node.  Only the first one actually performs removal and
1381  * returns %true.  All others will wait until the kernfs operation which
1382  * won self-removal finishes and return %false.  Note that the losers wait
1383  * for the completion of not only the winning kernfs_remove_self() but also
1384  * the whole kernfs_ops which won the arbitration.  This can be used to
1385  * guarantee, for example, all concurrent writes to a "delete" file to
1386  * finish only after the whole operation is complete.
1387  */
1388 bool kernfs_remove_self(struct kernfs_node *kn)
1389 {
1390 	bool ret;
1391 
1392 	mutex_lock(&kernfs_mutex);
1393 	kernfs_break_active_protection(kn);
1394 
1395 	/*
1396 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1397 	 * the first one will actually perform removal.  When the removal
1398 	 * is complete, SUICIDED is set and the active ref is restored
1399 	 * while holding kernfs_mutex.  The ones which lost arbitration
1400 	 * waits for SUICDED && drained which can happen only after the
1401 	 * enclosing kernfs operation which executed the winning instance
1402 	 * of kernfs_remove_self() finished.
1403 	 */
1404 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1405 		kn->flags |= KERNFS_SUICIDAL;
1406 		__kernfs_remove(kn);
1407 		kn->flags |= KERNFS_SUICIDED;
1408 		ret = true;
1409 	} else {
1410 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1411 		DEFINE_WAIT(wait);
1412 
1413 		while (true) {
1414 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1415 
1416 			if ((kn->flags & KERNFS_SUICIDED) &&
1417 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1418 				break;
1419 
1420 			mutex_unlock(&kernfs_mutex);
1421 			schedule();
1422 			mutex_lock(&kernfs_mutex);
1423 		}
1424 		finish_wait(waitq, &wait);
1425 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1426 		ret = false;
1427 	}
1428 
1429 	/*
1430 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1431 	 * for SUICIDED && deactivated could finish prematurely.
1432 	 */
1433 	kernfs_unbreak_active_protection(kn);
1434 
1435 	mutex_unlock(&kernfs_mutex);
1436 	return ret;
1437 }
1438 
1439 /**
1440  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1441  * @parent: parent of the target
1442  * @name: name of the kernfs_node to remove
1443  * @ns: namespace tag of the kernfs_node to remove
1444  *
1445  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1446  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1447  */
1448 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1449 			     const void *ns)
1450 {
1451 	struct kernfs_node *kn;
1452 
1453 	if (!parent) {
1454 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1455 			name);
1456 		return -ENOENT;
1457 	}
1458 
1459 	mutex_lock(&kernfs_mutex);
1460 
1461 	kn = kernfs_find_ns(parent, name, ns);
1462 	if (kn)
1463 		__kernfs_remove(kn);
1464 
1465 	mutex_unlock(&kernfs_mutex);
1466 
1467 	if (kn)
1468 		return 0;
1469 	else
1470 		return -ENOENT;
1471 }
1472 
1473 /**
1474  * kernfs_rename_ns - move and rename a kernfs_node
1475  * @kn: target node
1476  * @new_parent: new parent to put @sd under
1477  * @new_name: new name
1478  * @new_ns: new namespace tag
1479  */
1480 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1481 		     const char *new_name, const void *new_ns)
1482 {
1483 	struct kernfs_node *old_parent;
1484 	const char *old_name = NULL;
1485 	int error;
1486 
1487 	/* can't move or rename root */
1488 	if (!kn->parent)
1489 		return -EINVAL;
1490 
1491 	mutex_lock(&kernfs_mutex);
1492 
1493 	error = -ENOENT;
1494 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1495 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1496 		goto out;
1497 
1498 	error = 0;
1499 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1500 	    (strcmp(kn->name, new_name) == 0))
1501 		goto out;	/* nothing to rename */
1502 
1503 	error = -EEXIST;
1504 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1505 		goto out;
1506 
1507 	/* rename kernfs_node */
1508 	if (strcmp(kn->name, new_name) != 0) {
1509 		error = -ENOMEM;
1510 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1511 		if (!new_name)
1512 			goto out;
1513 	} else {
1514 		new_name = NULL;
1515 	}
1516 
1517 	/*
1518 	 * Move to the appropriate place in the appropriate directories rbtree.
1519 	 */
1520 	kernfs_unlink_sibling(kn);
1521 	kernfs_get(new_parent);
1522 
1523 	/* rename_lock protects ->parent and ->name accessors */
1524 	spin_lock_irq(&kernfs_rename_lock);
1525 
1526 	old_parent = kn->parent;
1527 	kn->parent = new_parent;
1528 
1529 	kn->ns = new_ns;
1530 	if (new_name) {
1531 		old_name = kn->name;
1532 		kn->name = new_name;
1533 	}
1534 
1535 	spin_unlock_irq(&kernfs_rename_lock);
1536 
1537 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1538 	kernfs_link_sibling(kn);
1539 
1540 	kernfs_put(old_parent);
1541 	kfree_const(old_name);
1542 
1543 	error = 0;
1544  out:
1545 	mutex_unlock(&kernfs_mutex);
1546 	return error;
1547 }
1548 
1549 /* Relationship between s_mode and the DT_xxx types */
1550 static inline unsigned char dt_type(struct kernfs_node *kn)
1551 {
1552 	return (kn->mode >> 12) & 15;
1553 }
1554 
1555 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1556 {
1557 	kernfs_put(filp->private_data);
1558 	return 0;
1559 }
1560 
1561 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1562 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1563 {
1564 	if (pos) {
1565 		int valid = kernfs_active(pos) &&
1566 			pos->parent == parent && hash == pos->hash;
1567 		kernfs_put(pos);
1568 		if (!valid)
1569 			pos = NULL;
1570 	}
1571 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1572 		struct rb_node *node = parent->dir.children.rb_node;
1573 		while (node) {
1574 			pos = rb_to_kn(node);
1575 
1576 			if (hash < pos->hash)
1577 				node = node->rb_left;
1578 			else if (hash > pos->hash)
1579 				node = node->rb_right;
1580 			else
1581 				break;
1582 		}
1583 	}
1584 	/* Skip over entries which are dying/dead or in the wrong namespace */
1585 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1586 		struct rb_node *node = rb_next(&pos->rb);
1587 		if (!node)
1588 			pos = NULL;
1589 		else
1590 			pos = rb_to_kn(node);
1591 	}
1592 	return pos;
1593 }
1594 
1595 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1596 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1597 {
1598 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1599 	if (pos) {
1600 		do {
1601 			struct rb_node *node = rb_next(&pos->rb);
1602 			if (!node)
1603 				pos = NULL;
1604 			else
1605 				pos = rb_to_kn(node);
1606 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1607 	}
1608 	return pos;
1609 }
1610 
1611 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1612 {
1613 	struct dentry *dentry = file->f_path.dentry;
1614 	struct kernfs_node *parent = dentry->d_fsdata;
1615 	struct kernfs_node *pos = file->private_data;
1616 	const void *ns = NULL;
1617 
1618 	if (!dir_emit_dots(file, ctx))
1619 		return 0;
1620 	mutex_lock(&kernfs_mutex);
1621 
1622 	if (kernfs_ns_enabled(parent))
1623 		ns = kernfs_info(dentry->d_sb)->ns;
1624 
1625 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1626 	     pos;
1627 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1628 		const char *name = pos->name;
1629 		unsigned int type = dt_type(pos);
1630 		int len = strlen(name);
1631 		ino_t ino = pos->ino;
1632 
1633 		ctx->pos = pos->hash;
1634 		file->private_data = pos;
1635 		kernfs_get(pos);
1636 
1637 		mutex_unlock(&kernfs_mutex);
1638 		if (!dir_emit(ctx, name, len, ino, type))
1639 			return 0;
1640 		mutex_lock(&kernfs_mutex);
1641 	}
1642 	mutex_unlock(&kernfs_mutex);
1643 	file->private_data = NULL;
1644 	ctx->pos = INT_MAX;
1645 	return 0;
1646 }
1647 
1648 const struct file_operations kernfs_dir_fops = {
1649 	.read		= generic_read_dir,
1650 	.iterate_shared	= kernfs_fop_readdir,
1651 	.release	= kernfs_dir_fop_release,
1652 	.llseek		= generic_file_llseek,
1653 };
1654