xref: /linux/fs/kernfs/dir.c (revision 5e4e38446a62a4f50d77b0dd11d4b379dee08988)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46 
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 					      size_t buflen)
49 {
50 	char *p = buf + buflen;
51 	int len;
52 
53 	*--p = '\0';
54 
55 	do {
56 		len = strlen(kn->name);
57 		if (p - buf < len + 1) {
58 			buf[0] = '\0';
59 			p = NULL;
60 			break;
61 		}
62 		p -= len;
63 		memcpy(p, kn->name, len);
64 		*--p = '/';
65 		kn = kn->parent;
66 	} while (kn && kn->parent);
67 
68 	return p;
69 }
70 
71 /**
72  * kernfs_name - obtain the name of a given node
73  * @kn: kernfs_node of interest
74  * @buf: buffer to copy @kn's name into
75  * @buflen: size of @buf
76  *
77  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
78  * similar to strlcpy().  It returns the length of @kn's name and if @buf
79  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80  *
81  * This function can be called from any context.
82  */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 	unsigned long flags;
86 	int ret;
87 
88 	spin_lock_irqsave(&kernfs_rename_lock, flags);
89 	ret = kernfs_name_locked(kn, buf, buflen);
90 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 	return ret;
92 }
93 
94 /**
95  * kernfs_path_len - determine the length of the full path of a given node
96  * @kn: kernfs_node of interest
97  *
98  * The returned length doesn't include the space for the terminating '\0'.
99  */
100 size_t kernfs_path_len(struct kernfs_node *kn)
101 {
102 	size_t len = 0;
103 	unsigned long flags;
104 
105 	spin_lock_irqsave(&kernfs_rename_lock, flags);
106 
107 	do {
108 		len += strlen(kn->name) + 1;
109 		kn = kn->parent;
110 	} while (kn && kn->parent);
111 
112 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 
114 	return len;
115 }
116 
117 /**
118  * kernfs_path - build full path of a given node
119  * @kn: kernfs_node of interest
120  * @buf: buffer to copy @kn's name into
121  * @buflen: size of @buf
122  *
123  * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
124  * path is built from the end of @buf so the returned pointer usually
125  * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
126  * and %NULL is returned.
127  */
128 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
129 {
130 	unsigned long flags;
131 	char *p;
132 
133 	spin_lock_irqsave(&kernfs_rename_lock, flags);
134 	p = kernfs_path_locked(kn, buf, buflen);
135 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 	return p;
137 }
138 EXPORT_SYMBOL_GPL(kernfs_path);
139 
140 /**
141  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
142  * @kn: kernfs_node of interest
143  *
144  * This function can be called from any context.
145  */
146 void pr_cont_kernfs_name(struct kernfs_node *kn)
147 {
148 	unsigned long flags;
149 
150 	spin_lock_irqsave(&kernfs_rename_lock, flags);
151 
152 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
153 	pr_cont("%s", kernfs_pr_cont_buf);
154 
155 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157 
158 /**
159  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
160  * @kn: kernfs_node of interest
161  *
162  * This function can be called from any context.
163  */
164 void pr_cont_kernfs_path(struct kernfs_node *kn)
165 {
166 	unsigned long flags;
167 	char *p;
168 
169 	spin_lock_irqsave(&kernfs_rename_lock, flags);
170 
171 	p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
172 			       sizeof(kernfs_pr_cont_buf));
173 	if (p)
174 		pr_cont("%s", p);
175 	else
176 		pr_cont("<name too long>");
177 
178 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179 }
180 
181 /**
182  * kernfs_get_parent - determine the parent node and pin it
183  * @kn: kernfs_node of interest
184  *
185  * Determines @kn's parent, pins and returns it.  This function can be
186  * called from any context.
187  */
188 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
189 {
190 	struct kernfs_node *parent;
191 	unsigned long flags;
192 
193 	spin_lock_irqsave(&kernfs_rename_lock, flags);
194 	parent = kn->parent;
195 	kernfs_get(parent);
196 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
197 
198 	return parent;
199 }
200 
201 /**
202  *	kernfs_name_hash
203  *	@name: Null terminated string to hash
204  *	@ns:   Namespace tag to hash
205  *
206  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
207  */
208 static unsigned int kernfs_name_hash(const char *name, const void *ns)
209 {
210 	unsigned long hash = init_name_hash();
211 	unsigned int len = strlen(name);
212 	while (len--)
213 		hash = partial_name_hash(*name++, hash);
214 	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
215 	hash &= 0x7fffffffU;
216 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
217 	if (hash < 2)
218 		hash += 2;
219 	if (hash >= INT_MAX)
220 		hash = INT_MAX - 1;
221 	return hash;
222 }
223 
224 static int kernfs_name_compare(unsigned int hash, const char *name,
225 			       const void *ns, const struct kernfs_node *kn)
226 {
227 	if (hash < kn->hash)
228 		return -1;
229 	if (hash > kn->hash)
230 		return 1;
231 	if (ns < kn->ns)
232 		return -1;
233 	if (ns > kn->ns)
234 		return 1;
235 	return strcmp(name, kn->name);
236 }
237 
238 static int kernfs_sd_compare(const struct kernfs_node *left,
239 			     const struct kernfs_node *right)
240 {
241 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
242 }
243 
244 /**
245  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
246  *	@kn: kernfs_node of interest
247  *
248  *	Link @kn into its sibling rbtree which starts from
249  *	@kn->parent->dir.children.
250  *
251  *	Locking:
252  *	mutex_lock(kernfs_mutex)
253  *
254  *	RETURNS:
255  *	0 on susccess -EEXIST on failure.
256  */
257 static int kernfs_link_sibling(struct kernfs_node *kn)
258 {
259 	struct rb_node **node = &kn->parent->dir.children.rb_node;
260 	struct rb_node *parent = NULL;
261 
262 	while (*node) {
263 		struct kernfs_node *pos;
264 		int result;
265 
266 		pos = rb_to_kn(*node);
267 		parent = *node;
268 		result = kernfs_sd_compare(kn, pos);
269 		if (result < 0)
270 			node = &pos->rb.rb_left;
271 		else if (result > 0)
272 			node = &pos->rb.rb_right;
273 		else
274 			return -EEXIST;
275 	}
276 
277 	/* add new node and rebalance the tree */
278 	rb_link_node(&kn->rb, parent, node);
279 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
280 
281 	/* successfully added, account subdir number */
282 	if (kernfs_type(kn) == KERNFS_DIR)
283 		kn->parent->dir.subdirs++;
284 
285 	return 0;
286 }
287 
288 /**
289  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
290  *	@kn: kernfs_node of interest
291  *
292  *	Try to unlink @kn from its sibling rbtree which starts from
293  *	kn->parent->dir.children.  Returns %true if @kn was actually
294  *	removed, %false if @kn wasn't on the rbtree.
295  *
296  *	Locking:
297  *	mutex_lock(kernfs_mutex)
298  */
299 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
300 {
301 	if (RB_EMPTY_NODE(&kn->rb))
302 		return false;
303 
304 	if (kernfs_type(kn) == KERNFS_DIR)
305 		kn->parent->dir.subdirs--;
306 
307 	rb_erase(&kn->rb, &kn->parent->dir.children);
308 	RB_CLEAR_NODE(&kn->rb);
309 	return true;
310 }
311 
312 /**
313  *	kernfs_get_active - get an active reference to kernfs_node
314  *	@kn: kernfs_node to get an active reference to
315  *
316  *	Get an active reference of @kn.  This function is noop if @kn
317  *	is NULL.
318  *
319  *	RETURNS:
320  *	Pointer to @kn on success, NULL on failure.
321  */
322 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
323 {
324 	if (unlikely(!kn))
325 		return NULL;
326 
327 	if (!atomic_inc_unless_negative(&kn->active))
328 		return NULL;
329 
330 	if (kernfs_lockdep(kn))
331 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
332 	return kn;
333 }
334 
335 /**
336  *	kernfs_put_active - put an active reference to kernfs_node
337  *	@kn: kernfs_node to put an active reference to
338  *
339  *	Put an active reference to @kn.  This function is noop if @kn
340  *	is NULL.
341  */
342 void kernfs_put_active(struct kernfs_node *kn)
343 {
344 	struct kernfs_root *root = kernfs_root(kn);
345 	int v;
346 
347 	if (unlikely(!kn))
348 		return;
349 
350 	if (kernfs_lockdep(kn))
351 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
352 	v = atomic_dec_return(&kn->active);
353 	if (likely(v != KN_DEACTIVATED_BIAS))
354 		return;
355 
356 	wake_up_all(&root->deactivate_waitq);
357 }
358 
359 /**
360  * kernfs_drain - drain kernfs_node
361  * @kn: kernfs_node to drain
362  *
363  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
364  * removers may invoke this function concurrently on @kn and all will
365  * return after draining is complete.
366  */
367 static void kernfs_drain(struct kernfs_node *kn)
368 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
369 {
370 	struct kernfs_root *root = kernfs_root(kn);
371 
372 	lockdep_assert_held(&kernfs_mutex);
373 	WARN_ON_ONCE(kernfs_active(kn));
374 
375 	mutex_unlock(&kernfs_mutex);
376 
377 	if (kernfs_lockdep(kn)) {
378 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
379 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
380 			lock_contended(&kn->dep_map, _RET_IP_);
381 	}
382 
383 	/* but everyone should wait for draining */
384 	wait_event(root->deactivate_waitq,
385 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
386 
387 	if (kernfs_lockdep(kn)) {
388 		lock_acquired(&kn->dep_map, _RET_IP_);
389 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
390 	}
391 
392 	kernfs_unmap_bin_file(kn);
393 
394 	mutex_lock(&kernfs_mutex);
395 }
396 
397 /**
398  * kernfs_get - get a reference count on a kernfs_node
399  * @kn: the target kernfs_node
400  */
401 void kernfs_get(struct kernfs_node *kn)
402 {
403 	if (kn) {
404 		WARN_ON(!atomic_read(&kn->count));
405 		atomic_inc(&kn->count);
406 	}
407 }
408 EXPORT_SYMBOL_GPL(kernfs_get);
409 
410 /**
411  * kernfs_put - put a reference count on a kernfs_node
412  * @kn: the target kernfs_node
413  *
414  * Put a reference count of @kn and destroy it if it reached zero.
415  */
416 void kernfs_put(struct kernfs_node *kn)
417 {
418 	struct kernfs_node *parent;
419 	struct kernfs_root *root;
420 
421 	if (!kn || !atomic_dec_and_test(&kn->count))
422 		return;
423 	root = kernfs_root(kn);
424  repeat:
425 	/*
426 	 * Moving/renaming is always done while holding reference.
427 	 * kn->parent won't change beneath us.
428 	 */
429 	parent = kn->parent;
430 
431 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
432 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
433 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
434 
435 	if (kernfs_type(kn) == KERNFS_LINK)
436 		kernfs_put(kn->symlink.target_kn);
437 
438 	kfree_const(kn->name);
439 
440 	if (kn->iattr) {
441 		if (kn->iattr->ia_secdata)
442 			security_release_secctx(kn->iattr->ia_secdata,
443 						kn->iattr->ia_secdata_len);
444 		simple_xattrs_free(&kn->iattr->xattrs);
445 	}
446 	kfree(kn->iattr);
447 	ida_simple_remove(&root->ino_ida, kn->ino);
448 	kmem_cache_free(kernfs_node_cache, kn);
449 
450 	kn = parent;
451 	if (kn) {
452 		if (atomic_dec_and_test(&kn->count))
453 			goto repeat;
454 	} else {
455 		/* just released the root kn, free @root too */
456 		ida_destroy(&root->ino_ida);
457 		kfree(root);
458 	}
459 }
460 EXPORT_SYMBOL_GPL(kernfs_put);
461 
462 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
463 {
464 	struct kernfs_node *kn;
465 
466 	if (flags & LOOKUP_RCU)
467 		return -ECHILD;
468 
469 	/* Always perform fresh lookup for negatives */
470 	if (d_really_is_negative(dentry))
471 		goto out_bad_unlocked;
472 
473 	kn = dentry->d_fsdata;
474 	mutex_lock(&kernfs_mutex);
475 
476 	/* The kernfs node has been deactivated */
477 	if (!kernfs_active(kn))
478 		goto out_bad;
479 
480 	/* The kernfs node has been moved? */
481 	if (dentry->d_parent->d_fsdata != kn->parent)
482 		goto out_bad;
483 
484 	/* The kernfs node has been renamed */
485 	if (strcmp(dentry->d_name.name, kn->name) != 0)
486 		goto out_bad;
487 
488 	/* The kernfs node has been moved to a different namespace */
489 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
490 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
491 		goto out_bad;
492 
493 	mutex_unlock(&kernfs_mutex);
494 	return 1;
495 out_bad:
496 	mutex_unlock(&kernfs_mutex);
497 out_bad_unlocked:
498 	return 0;
499 }
500 
501 static void kernfs_dop_release(struct dentry *dentry)
502 {
503 	kernfs_put(dentry->d_fsdata);
504 }
505 
506 const struct dentry_operations kernfs_dops = {
507 	.d_revalidate	= kernfs_dop_revalidate,
508 	.d_release	= kernfs_dop_release,
509 };
510 
511 /**
512  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
513  * @dentry: the dentry in question
514  *
515  * Return the kernfs_node associated with @dentry.  If @dentry is not a
516  * kernfs one, %NULL is returned.
517  *
518  * While the returned kernfs_node will stay accessible as long as @dentry
519  * is accessible, the returned node can be in any state and the caller is
520  * fully responsible for determining what's accessible.
521  */
522 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
523 {
524 	if (dentry->d_sb->s_op == &kernfs_sops)
525 		return dentry->d_fsdata;
526 	return NULL;
527 }
528 
529 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
530 					     const char *name, umode_t mode,
531 					     unsigned flags)
532 {
533 	struct kernfs_node *kn;
534 	int ret;
535 
536 	name = kstrdup_const(name, GFP_KERNEL);
537 	if (!name)
538 		return NULL;
539 
540 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
541 	if (!kn)
542 		goto err_out1;
543 
544 	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
545 	if (ret < 0)
546 		goto err_out2;
547 	kn->ino = ret;
548 
549 	atomic_set(&kn->count, 1);
550 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
551 	RB_CLEAR_NODE(&kn->rb);
552 
553 	kn->name = name;
554 	kn->mode = mode;
555 	kn->flags = flags;
556 
557 	return kn;
558 
559  err_out2:
560 	kmem_cache_free(kernfs_node_cache, kn);
561  err_out1:
562 	kfree_const(name);
563 	return NULL;
564 }
565 
566 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
567 				    const char *name, umode_t mode,
568 				    unsigned flags)
569 {
570 	struct kernfs_node *kn;
571 
572 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
573 	if (kn) {
574 		kernfs_get(parent);
575 		kn->parent = parent;
576 	}
577 	return kn;
578 }
579 
580 /**
581  *	kernfs_add_one - add kernfs_node to parent without warning
582  *	@kn: kernfs_node to be added
583  *
584  *	The caller must already have initialized @kn->parent.  This
585  *	function increments nlink of the parent's inode if @kn is a
586  *	directory and link into the children list of the parent.
587  *
588  *	RETURNS:
589  *	0 on success, -EEXIST if entry with the given name already
590  *	exists.
591  */
592 int kernfs_add_one(struct kernfs_node *kn)
593 {
594 	struct kernfs_node *parent = kn->parent;
595 	struct kernfs_iattrs *ps_iattr;
596 	bool has_ns;
597 	int ret;
598 
599 	mutex_lock(&kernfs_mutex);
600 
601 	ret = -EINVAL;
602 	has_ns = kernfs_ns_enabled(parent);
603 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
604 		 has_ns ? "required" : "invalid", parent->name, kn->name))
605 		goto out_unlock;
606 
607 	if (kernfs_type(parent) != KERNFS_DIR)
608 		goto out_unlock;
609 
610 	ret = -ENOENT;
611 	if (parent->flags & KERNFS_EMPTY_DIR)
612 		goto out_unlock;
613 
614 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
615 		goto out_unlock;
616 
617 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
618 
619 	ret = kernfs_link_sibling(kn);
620 	if (ret)
621 		goto out_unlock;
622 
623 	/* Update timestamps on the parent */
624 	ps_iattr = parent->iattr;
625 	if (ps_iattr) {
626 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
627 		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
628 	}
629 
630 	mutex_unlock(&kernfs_mutex);
631 
632 	/*
633 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
634 	 * If not activated here, the kernfs user is responsible for
635 	 * activating the node with kernfs_activate().  A node which hasn't
636 	 * been activated is not visible to userland and its removal won't
637 	 * trigger deactivation.
638 	 */
639 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
640 		kernfs_activate(kn);
641 	return 0;
642 
643 out_unlock:
644 	mutex_unlock(&kernfs_mutex);
645 	return ret;
646 }
647 
648 /**
649  * kernfs_find_ns - find kernfs_node with the given name
650  * @parent: kernfs_node to search under
651  * @name: name to look for
652  * @ns: the namespace tag to use
653  *
654  * Look for kernfs_node with name @name under @parent.  Returns pointer to
655  * the found kernfs_node on success, %NULL on failure.
656  */
657 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
658 					  const unsigned char *name,
659 					  const void *ns)
660 {
661 	struct rb_node *node = parent->dir.children.rb_node;
662 	bool has_ns = kernfs_ns_enabled(parent);
663 	unsigned int hash;
664 
665 	lockdep_assert_held(&kernfs_mutex);
666 
667 	if (has_ns != (bool)ns) {
668 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
669 		     has_ns ? "required" : "invalid", parent->name, name);
670 		return NULL;
671 	}
672 
673 	hash = kernfs_name_hash(name, ns);
674 	while (node) {
675 		struct kernfs_node *kn;
676 		int result;
677 
678 		kn = rb_to_kn(node);
679 		result = kernfs_name_compare(hash, name, ns, kn);
680 		if (result < 0)
681 			node = node->rb_left;
682 		else if (result > 0)
683 			node = node->rb_right;
684 		else
685 			return kn;
686 	}
687 	return NULL;
688 }
689 
690 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
691 					  const unsigned char *path,
692 					  const void *ns)
693 {
694 	size_t len;
695 	char *p, *name;
696 
697 	lockdep_assert_held(&kernfs_mutex);
698 
699 	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
700 	spin_lock_irq(&kernfs_rename_lock);
701 
702 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
703 
704 	if (len >= sizeof(kernfs_pr_cont_buf)) {
705 		spin_unlock_irq(&kernfs_rename_lock);
706 		return NULL;
707 	}
708 
709 	p = kernfs_pr_cont_buf;
710 
711 	while ((name = strsep(&p, "/")) && parent) {
712 		if (*name == '\0')
713 			continue;
714 		parent = kernfs_find_ns(parent, name, ns);
715 	}
716 
717 	spin_unlock_irq(&kernfs_rename_lock);
718 
719 	return parent;
720 }
721 
722 /**
723  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
724  * @parent: kernfs_node to search under
725  * @name: name to look for
726  * @ns: the namespace tag to use
727  *
728  * Look for kernfs_node with name @name under @parent and get a reference
729  * if found.  This function may sleep and returns pointer to the found
730  * kernfs_node on success, %NULL on failure.
731  */
732 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
733 					   const char *name, const void *ns)
734 {
735 	struct kernfs_node *kn;
736 
737 	mutex_lock(&kernfs_mutex);
738 	kn = kernfs_find_ns(parent, name, ns);
739 	kernfs_get(kn);
740 	mutex_unlock(&kernfs_mutex);
741 
742 	return kn;
743 }
744 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
745 
746 /**
747  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
748  * @parent: kernfs_node to search under
749  * @path: path to look for
750  * @ns: the namespace tag to use
751  *
752  * Look for kernfs_node with path @path under @parent and get a reference
753  * if found.  This function may sleep and returns pointer to the found
754  * kernfs_node on success, %NULL on failure.
755  */
756 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
757 					   const char *path, const void *ns)
758 {
759 	struct kernfs_node *kn;
760 
761 	mutex_lock(&kernfs_mutex);
762 	kn = kernfs_walk_ns(parent, path, ns);
763 	kernfs_get(kn);
764 	mutex_unlock(&kernfs_mutex);
765 
766 	return kn;
767 }
768 
769 /**
770  * kernfs_create_root - create a new kernfs hierarchy
771  * @scops: optional syscall operations for the hierarchy
772  * @flags: KERNFS_ROOT_* flags
773  * @priv: opaque data associated with the new directory
774  *
775  * Returns the root of the new hierarchy on success, ERR_PTR() value on
776  * failure.
777  */
778 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
779 				       unsigned int flags, void *priv)
780 {
781 	struct kernfs_root *root;
782 	struct kernfs_node *kn;
783 
784 	root = kzalloc(sizeof(*root), GFP_KERNEL);
785 	if (!root)
786 		return ERR_PTR(-ENOMEM);
787 
788 	ida_init(&root->ino_ida);
789 	INIT_LIST_HEAD(&root->supers);
790 
791 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
792 			       KERNFS_DIR);
793 	if (!kn) {
794 		ida_destroy(&root->ino_ida);
795 		kfree(root);
796 		return ERR_PTR(-ENOMEM);
797 	}
798 
799 	kn->priv = priv;
800 	kn->dir.root = root;
801 
802 	root->syscall_ops = scops;
803 	root->flags = flags;
804 	root->kn = kn;
805 	init_waitqueue_head(&root->deactivate_waitq);
806 
807 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
808 		kernfs_activate(kn);
809 
810 	return root;
811 }
812 
813 /**
814  * kernfs_destroy_root - destroy a kernfs hierarchy
815  * @root: root of the hierarchy to destroy
816  *
817  * Destroy the hierarchy anchored at @root by removing all existing
818  * directories and destroying @root.
819  */
820 void kernfs_destroy_root(struct kernfs_root *root)
821 {
822 	kernfs_remove(root->kn);	/* will also free @root */
823 }
824 
825 /**
826  * kernfs_create_dir_ns - create a directory
827  * @parent: parent in which to create a new directory
828  * @name: name of the new directory
829  * @mode: mode of the new directory
830  * @priv: opaque data associated with the new directory
831  * @ns: optional namespace tag of the directory
832  *
833  * Returns the created node on success, ERR_PTR() value on failure.
834  */
835 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
836 					 const char *name, umode_t mode,
837 					 void *priv, const void *ns)
838 {
839 	struct kernfs_node *kn;
840 	int rc;
841 
842 	/* allocate */
843 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
844 	if (!kn)
845 		return ERR_PTR(-ENOMEM);
846 
847 	kn->dir.root = parent->dir.root;
848 	kn->ns = ns;
849 	kn->priv = priv;
850 
851 	/* link in */
852 	rc = kernfs_add_one(kn);
853 	if (!rc)
854 		return kn;
855 
856 	kernfs_put(kn);
857 	return ERR_PTR(rc);
858 }
859 
860 /**
861  * kernfs_create_empty_dir - create an always empty directory
862  * @parent: parent in which to create a new directory
863  * @name: name of the new directory
864  *
865  * Returns the created node on success, ERR_PTR() value on failure.
866  */
867 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
868 					    const char *name)
869 {
870 	struct kernfs_node *kn;
871 	int rc;
872 
873 	/* allocate */
874 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
875 	if (!kn)
876 		return ERR_PTR(-ENOMEM);
877 
878 	kn->flags |= KERNFS_EMPTY_DIR;
879 	kn->dir.root = parent->dir.root;
880 	kn->ns = NULL;
881 	kn->priv = NULL;
882 
883 	/* link in */
884 	rc = kernfs_add_one(kn);
885 	if (!rc)
886 		return kn;
887 
888 	kernfs_put(kn);
889 	return ERR_PTR(rc);
890 }
891 
892 static struct dentry *kernfs_iop_lookup(struct inode *dir,
893 					struct dentry *dentry,
894 					unsigned int flags)
895 {
896 	struct dentry *ret;
897 	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
898 	struct kernfs_node *kn;
899 	struct inode *inode;
900 	const void *ns = NULL;
901 
902 	mutex_lock(&kernfs_mutex);
903 
904 	if (kernfs_ns_enabled(parent))
905 		ns = kernfs_info(dir->i_sb)->ns;
906 
907 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
908 
909 	/* no such entry */
910 	if (!kn || !kernfs_active(kn)) {
911 		ret = NULL;
912 		goto out_unlock;
913 	}
914 	kernfs_get(kn);
915 	dentry->d_fsdata = kn;
916 
917 	/* attach dentry and inode */
918 	inode = kernfs_get_inode(dir->i_sb, kn);
919 	if (!inode) {
920 		ret = ERR_PTR(-ENOMEM);
921 		goto out_unlock;
922 	}
923 
924 	/* instantiate and hash dentry */
925 	ret = d_splice_alias(inode, dentry);
926  out_unlock:
927 	mutex_unlock(&kernfs_mutex);
928 	return ret;
929 }
930 
931 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
932 			    umode_t mode)
933 {
934 	struct kernfs_node *parent = dir->i_private;
935 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
936 	int ret;
937 
938 	if (!scops || !scops->mkdir)
939 		return -EPERM;
940 
941 	if (!kernfs_get_active(parent))
942 		return -ENODEV;
943 
944 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
945 
946 	kernfs_put_active(parent);
947 	return ret;
948 }
949 
950 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
951 {
952 	struct kernfs_node *kn  = dentry->d_fsdata;
953 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
954 	int ret;
955 
956 	if (!scops || !scops->rmdir)
957 		return -EPERM;
958 
959 	if (!kernfs_get_active(kn))
960 		return -ENODEV;
961 
962 	ret = scops->rmdir(kn);
963 
964 	kernfs_put_active(kn);
965 	return ret;
966 }
967 
968 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
969 			     struct inode *new_dir, struct dentry *new_dentry)
970 {
971 	struct kernfs_node *kn  = old_dentry->d_fsdata;
972 	struct kernfs_node *new_parent = new_dir->i_private;
973 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
974 	int ret;
975 
976 	if (!scops || !scops->rename)
977 		return -EPERM;
978 
979 	if (!kernfs_get_active(kn))
980 		return -ENODEV;
981 
982 	if (!kernfs_get_active(new_parent)) {
983 		kernfs_put_active(kn);
984 		return -ENODEV;
985 	}
986 
987 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
988 
989 	kernfs_put_active(new_parent);
990 	kernfs_put_active(kn);
991 	return ret;
992 }
993 
994 const struct inode_operations kernfs_dir_iops = {
995 	.lookup		= kernfs_iop_lookup,
996 	.permission	= kernfs_iop_permission,
997 	.setattr	= kernfs_iop_setattr,
998 	.getattr	= kernfs_iop_getattr,
999 	.setxattr	= kernfs_iop_setxattr,
1000 	.removexattr	= kernfs_iop_removexattr,
1001 	.getxattr	= kernfs_iop_getxattr,
1002 	.listxattr	= kernfs_iop_listxattr,
1003 
1004 	.mkdir		= kernfs_iop_mkdir,
1005 	.rmdir		= kernfs_iop_rmdir,
1006 	.rename		= kernfs_iop_rename,
1007 };
1008 
1009 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1010 {
1011 	struct kernfs_node *last;
1012 
1013 	while (true) {
1014 		struct rb_node *rbn;
1015 
1016 		last = pos;
1017 
1018 		if (kernfs_type(pos) != KERNFS_DIR)
1019 			break;
1020 
1021 		rbn = rb_first(&pos->dir.children);
1022 		if (!rbn)
1023 			break;
1024 
1025 		pos = rb_to_kn(rbn);
1026 	}
1027 
1028 	return last;
1029 }
1030 
1031 /**
1032  * kernfs_next_descendant_post - find the next descendant for post-order walk
1033  * @pos: the current position (%NULL to initiate traversal)
1034  * @root: kernfs_node whose descendants to walk
1035  *
1036  * Find the next descendant to visit for post-order traversal of @root's
1037  * descendants.  @root is included in the iteration and the last node to be
1038  * visited.
1039  */
1040 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1041 						       struct kernfs_node *root)
1042 {
1043 	struct rb_node *rbn;
1044 
1045 	lockdep_assert_held(&kernfs_mutex);
1046 
1047 	/* if first iteration, visit leftmost descendant which may be root */
1048 	if (!pos)
1049 		return kernfs_leftmost_descendant(root);
1050 
1051 	/* if we visited @root, we're done */
1052 	if (pos == root)
1053 		return NULL;
1054 
1055 	/* if there's an unvisited sibling, visit its leftmost descendant */
1056 	rbn = rb_next(&pos->rb);
1057 	if (rbn)
1058 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1059 
1060 	/* no sibling left, visit parent */
1061 	return pos->parent;
1062 }
1063 
1064 /**
1065  * kernfs_activate - activate a node which started deactivated
1066  * @kn: kernfs_node whose subtree is to be activated
1067  *
1068  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1069  * needs to be explicitly activated.  A node which hasn't been activated
1070  * isn't visible to userland and deactivation is skipped during its
1071  * removal.  This is useful to construct atomic init sequences where
1072  * creation of multiple nodes should either succeed or fail atomically.
1073  *
1074  * The caller is responsible for ensuring that this function is not called
1075  * after kernfs_remove*() is invoked on @kn.
1076  */
1077 void kernfs_activate(struct kernfs_node *kn)
1078 {
1079 	struct kernfs_node *pos;
1080 
1081 	mutex_lock(&kernfs_mutex);
1082 
1083 	pos = NULL;
1084 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1085 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1086 			continue;
1087 
1088 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1089 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1090 
1091 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1092 		pos->flags |= KERNFS_ACTIVATED;
1093 	}
1094 
1095 	mutex_unlock(&kernfs_mutex);
1096 }
1097 
1098 static void __kernfs_remove(struct kernfs_node *kn)
1099 {
1100 	struct kernfs_node *pos;
1101 
1102 	lockdep_assert_held(&kernfs_mutex);
1103 
1104 	/*
1105 	 * Short-circuit if non-root @kn has already finished removal.
1106 	 * This is for kernfs_remove_self() which plays with active ref
1107 	 * after removal.
1108 	 */
1109 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1110 		return;
1111 
1112 	pr_debug("kernfs %s: removing\n", kn->name);
1113 
1114 	/* prevent any new usage under @kn by deactivating all nodes */
1115 	pos = NULL;
1116 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1117 		if (kernfs_active(pos))
1118 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1119 
1120 	/* deactivate and unlink the subtree node-by-node */
1121 	do {
1122 		pos = kernfs_leftmost_descendant(kn);
1123 
1124 		/*
1125 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1126 		 * base ref could have been put by someone else by the time
1127 		 * the function returns.  Make sure it doesn't go away
1128 		 * underneath us.
1129 		 */
1130 		kernfs_get(pos);
1131 
1132 		/*
1133 		 * Drain iff @kn was activated.  This avoids draining and
1134 		 * its lockdep annotations for nodes which have never been
1135 		 * activated and allows embedding kernfs_remove() in create
1136 		 * error paths without worrying about draining.
1137 		 */
1138 		if (kn->flags & KERNFS_ACTIVATED)
1139 			kernfs_drain(pos);
1140 		else
1141 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1142 
1143 		/*
1144 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1145 		 * to decide who's responsible for cleanups.
1146 		 */
1147 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1148 			struct kernfs_iattrs *ps_iattr =
1149 				pos->parent ? pos->parent->iattr : NULL;
1150 
1151 			/* update timestamps on the parent */
1152 			if (ps_iattr) {
1153 				ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1154 				ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1155 			}
1156 
1157 			kernfs_put(pos);
1158 		}
1159 
1160 		kernfs_put(pos);
1161 	} while (pos != kn);
1162 }
1163 
1164 /**
1165  * kernfs_remove - remove a kernfs_node recursively
1166  * @kn: the kernfs_node to remove
1167  *
1168  * Remove @kn along with all its subdirectories and files.
1169  */
1170 void kernfs_remove(struct kernfs_node *kn)
1171 {
1172 	mutex_lock(&kernfs_mutex);
1173 	__kernfs_remove(kn);
1174 	mutex_unlock(&kernfs_mutex);
1175 }
1176 
1177 /**
1178  * kernfs_break_active_protection - break out of active protection
1179  * @kn: the self kernfs_node
1180  *
1181  * The caller must be running off of a kernfs operation which is invoked
1182  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1183  * this function must also be matched with an invocation of
1184  * kernfs_unbreak_active_protection().
1185  *
1186  * This function releases the active reference of @kn the caller is
1187  * holding.  Once this function is called, @kn may be removed at any point
1188  * and the caller is solely responsible for ensuring that the objects it
1189  * dereferences are accessible.
1190  */
1191 void kernfs_break_active_protection(struct kernfs_node *kn)
1192 {
1193 	/*
1194 	 * Take out ourself out of the active ref dependency chain.  If
1195 	 * we're called without an active ref, lockdep will complain.
1196 	 */
1197 	kernfs_put_active(kn);
1198 }
1199 
1200 /**
1201  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1202  * @kn: the self kernfs_node
1203  *
1204  * If kernfs_break_active_protection() was called, this function must be
1205  * invoked before finishing the kernfs operation.  Note that while this
1206  * function restores the active reference, it doesn't and can't actually
1207  * restore the active protection - @kn may already or be in the process of
1208  * being removed.  Once kernfs_break_active_protection() is invoked, that
1209  * protection is irreversibly gone for the kernfs operation instance.
1210  *
1211  * While this function may be called at any point after
1212  * kernfs_break_active_protection() is invoked, its most useful location
1213  * would be right before the enclosing kernfs operation returns.
1214  */
1215 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1216 {
1217 	/*
1218 	 * @kn->active could be in any state; however, the increment we do
1219 	 * here will be undone as soon as the enclosing kernfs operation
1220 	 * finishes and this temporary bump can't break anything.  If @kn
1221 	 * is alive, nothing changes.  If @kn is being deactivated, the
1222 	 * soon-to-follow put will either finish deactivation or restore
1223 	 * deactivated state.  If @kn is already removed, the temporary
1224 	 * bump is guaranteed to be gone before @kn is released.
1225 	 */
1226 	atomic_inc(&kn->active);
1227 	if (kernfs_lockdep(kn))
1228 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1229 }
1230 
1231 /**
1232  * kernfs_remove_self - remove a kernfs_node from its own method
1233  * @kn: the self kernfs_node to remove
1234  *
1235  * The caller must be running off of a kernfs operation which is invoked
1236  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1237  * implement a file operation which deletes itself.
1238  *
1239  * For example, the "delete" file for a sysfs device directory can be
1240  * implemented by invoking kernfs_remove_self() on the "delete" file
1241  * itself.  This function breaks the circular dependency of trying to
1242  * deactivate self while holding an active ref itself.  It isn't necessary
1243  * to modify the usual removal path to use kernfs_remove_self().  The
1244  * "delete" implementation can simply invoke kernfs_remove_self() on self
1245  * before proceeding with the usual removal path.  kernfs will ignore later
1246  * kernfs_remove() on self.
1247  *
1248  * kernfs_remove_self() can be called multiple times concurrently on the
1249  * same kernfs_node.  Only the first one actually performs removal and
1250  * returns %true.  All others will wait until the kernfs operation which
1251  * won self-removal finishes and return %false.  Note that the losers wait
1252  * for the completion of not only the winning kernfs_remove_self() but also
1253  * the whole kernfs_ops which won the arbitration.  This can be used to
1254  * guarantee, for example, all concurrent writes to a "delete" file to
1255  * finish only after the whole operation is complete.
1256  */
1257 bool kernfs_remove_self(struct kernfs_node *kn)
1258 {
1259 	bool ret;
1260 
1261 	mutex_lock(&kernfs_mutex);
1262 	kernfs_break_active_protection(kn);
1263 
1264 	/*
1265 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1266 	 * the first one will actually perform removal.  When the removal
1267 	 * is complete, SUICIDED is set and the active ref is restored
1268 	 * while holding kernfs_mutex.  The ones which lost arbitration
1269 	 * waits for SUICDED && drained which can happen only after the
1270 	 * enclosing kernfs operation which executed the winning instance
1271 	 * of kernfs_remove_self() finished.
1272 	 */
1273 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1274 		kn->flags |= KERNFS_SUICIDAL;
1275 		__kernfs_remove(kn);
1276 		kn->flags |= KERNFS_SUICIDED;
1277 		ret = true;
1278 	} else {
1279 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1280 		DEFINE_WAIT(wait);
1281 
1282 		while (true) {
1283 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1284 
1285 			if ((kn->flags & KERNFS_SUICIDED) &&
1286 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1287 				break;
1288 
1289 			mutex_unlock(&kernfs_mutex);
1290 			schedule();
1291 			mutex_lock(&kernfs_mutex);
1292 		}
1293 		finish_wait(waitq, &wait);
1294 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1295 		ret = false;
1296 	}
1297 
1298 	/*
1299 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1300 	 * for SUICIDED && deactivated could finish prematurely.
1301 	 */
1302 	kernfs_unbreak_active_protection(kn);
1303 
1304 	mutex_unlock(&kernfs_mutex);
1305 	return ret;
1306 }
1307 
1308 /**
1309  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1310  * @parent: parent of the target
1311  * @name: name of the kernfs_node to remove
1312  * @ns: namespace tag of the kernfs_node to remove
1313  *
1314  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1315  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1316  */
1317 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1318 			     const void *ns)
1319 {
1320 	struct kernfs_node *kn;
1321 
1322 	if (!parent) {
1323 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1324 			name);
1325 		return -ENOENT;
1326 	}
1327 
1328 	mutex_lock(&kernfs_mutex);
1329 
1330 	kn = kernfs_find_ns(parent, name, ns);
1331 	if (kn)
1332 		__kernfs_remove(kn);
1333 
1334 	mutex_unlock(&kernfs_mutex);
1335 
1336 	if (kn)
1337 		return 0;
1338 	else
1339 		return -ENOENT;
1340 }
1341 
1342 /**
1343  * kernfs_rename_ns - move and rename a kernfs_node
1344  * @kn: target node
1345  * @new_parent: new parent to put @sd under
1346  * @new_name: new name
1347  * @new_ns: new namespace tag
1348  */
1349 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1350 		     const char *new_name, const void *new_ns)
1351 {
1352 	struct kernfs_node *old_parent;
1353 	const char *old_name = NULL;
1354 	int error;
1355 
1356 	/* can't move or rename root */
1357 	if (!kn->parent)
1358 		return -EINVAL;
1359 
1360 	mutex_lock(&kernfs_mutex);
1361 
1362 	error = -ENOENT;
1363 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1364 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1365 		goto out;
1366 
1367 	error = 0;
1368 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1369 	    (strcmp(kn->name, new_name) == 0))
1370 		goto out;	/* nothing to rename */
1371 
1372 	error = -EEXIST;
1373 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1374 		goto out;
1375 
1376 	/* rename kernfs_node */
1377 	if (strcmp(kn->name, new_name) != 0) {
1378 		error = -ENOMEM;
1379 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1380 		if (!new_name)
1381 			goto out;
1382 	} else {
1383 		new_name = NULL;
1384 	}
1385 
1386 	/*
1387 	 * Move to the appropriate place in the appropriate directories rbtree.
1388 	 */
1389 	kernfs_unlink_sibling(kn);
1390 	kernfs_get(new_parent);
1391 
1392 	/* rename_lock protects ->parent and ->name accessors */
1393 	spin_lock_irq(&kernfs_rename_lock);
1394 
1395 	old_parent = kn->parent;
1396 	kn->parent = new_parent;
1397 
1398 	kn->ns = new_ns;
1399 	if (new_name) {
1400 		old_name = kn->name;
1401 		kn->name = new_name;
1402 	}
1403 
1404 	spin_unlock_irq(&kernfs_rename_lock);
1405 
1406 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1407 	kernfs_link_sibling(kn);
1408 
1409 	kernfs_put(old_parent);
1410 	kfree_const(old_name);
1411 
1412 	error = 0;
1413  out:
1414 	mutex_unlock(&kernfs_mutex);
1415 	return error;
1416 }
1417 
1418 /* Relationship between s_mode and the DT_xxx types */
1419 static inline unsigned char dt_type(struct kernfs_node *kn)
1420 {
1421 	return (kn->mode >> 12) & 15;
1422 }
1423 
1424 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1425 {
1426 	kernfs_put(filp->private_data);
1427 	return 0;
1428 }
1429 
1430 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1431 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1432 {
1433 	if (pos) {
1434 		int valid = kernfs_active(pos) &&
1435 			pos->parent == parent && hash == pos->hash;
1436 		kernfs_put(pos);
1437 		if (!valid)
1438 			pos = NULL;
1439 	}
1440 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1441 		struct rb_node *node = parent->dir.children.rb_node;
1442 		while (node) {
1443 			pos = rb_to_kn(node);
1444 
1445 			if (hash < pos->hash)
1446 				node = node->rb_left;
1447 			else if (hash > pos->hash)
1448 				node = node->rb_right;
1449 			else
1450 				break;
1451 		}
1452 	}
1453 	/* Skip over entries which are dying/dead or in the wrong namespace */
1454 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1455 		struct rb_node *node = rb_next(&pos->rb);
1456 		if (!node)
1457 			pos = NULL;
1458 		else
1459 			pos = rb_to_kn(node);
1460 	}
1461 	return pos;
1462 }
1463 
1464 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1465 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1466 {
1467 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1468 	if (pos) {
1469 		do {
1470 			struct rb_node *node = rb_next(&pos->rb);
1471 			if (!node)
1472 				pos = NULL;
1473 			else
1474 				pos = rb_to_kn(node);
1475 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1476 	}
1477 	return pos;
1478 }
1479 
1480 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1481 {
1482 	struct dentry *dentry = file->f_path.dentry;
1483 	struct kernfs_node *parent = dentry->d_fsdata;
1484 	struct kernfs_node *pos = file->private_data;
1485 	const void *ns = NULL;
1486 
1487 	if (!dir_emit_dots(file, ctx))
1488 		return 0;
1489 	mutex_lock(&kernfs_mutex);
1490 
1491 	if (kernfs_ns_enabled(parent))
1492 		ns = kernfs_info(dentry->d_sb)->ns;
1493 
1494 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1495 	     pos;
1496 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1497 		const char *name = pos->name;
1498 		unsigned int type = dt_type(pos);
1499 		int len = strlen(name);
1500 		ino_t ino = pos->ino;
1501 
1502 		ctx->pos = pos->hash;
1503 		file->private_data = pos;
1504 		kernfs_get(pos);
1505 
1506 		mutex_unlock(&kernfs_mutex);
1507 		if (!dir_emit(ctx, name, len, ino, type))
1508 			return 0;
1509 		mutex_lock(&kernfs_mutex);
1510 	}
1511 	mutex_unlock(&kernfs_mutex);
1512 	file->private_data = NULL;
1513 	ctx->pos = INT_MAX;
1514 	return 0;
1515 }
1516 
1517 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1518 				    int whence)
1519 {
1520 	struct inode *inode = file_inode(file);
1521 	loff_t ret;
1522 
1523 	inode_lock(inode);
1524 	ret = generic_file_llseek(file, offset, whence);
1525 	inode_unlock(inode);
1526 
1527 	return ret;
1528 }
1529 
1530 const struct file_operations kernfs_dir_fops = {
1531 	.read		= generic_read_dir,
1532 	.iterate	= kernfs_fop_readdir,
1533 	.release	= kernfs_dir_fop_release,
1534 	.llseek		= kernfs_dir_fop_llseek,
1535 };
1536