xref: /linux/fs/jbd2/journal.c (revision 43347d56c8d9dd732cee2f8efd384ad21dd1f6c4)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 #include <linux/sched/mm.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53 
54 #ifdef CONFIG_JBD2_DEBUG
55 ushort jbd2_journal_enable_debug __read_mostly;
56 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57 
58 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
59 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
60 #endif
61 
62 EXPORT_SYMBOL(jbd2_journal_extend);
63 EXPORT_SYMBOL(jbd2_journal_stop);
64 EXPORT_SYMBOL(jbd2_journal_lock_updates);
65 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
66 EXPORT_SYMBOL(jbd2_journal_get_write_access);
67 EXPORT_SYMBOL(jbd2_journal_get_create_access);
68 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
69 EXPORT_SYMBOL(jbd2_journal_set_triggers);
70 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
71 EXPORT_SYMBOL(jbd2_journal_forget);
72 #if 0
73 EXPORT_SYMBOL(journal_sync_buffer);
74 #endif
75 EXPORT_SYMBOL(jbd2_journal_flush);
76 EXPORT_SYMBOL(jbd2_journal_revoke);
77 
78 EXPORT_SYMBOL(jbd2_journal_init_dev);
79 EXPORT_SYMBOL(jbd2_journal_init_inode);
80 EXPORT_SYMBOL(jbd2_journal_check_used_features);
81 EXPORT_SYMBOL(jbd2_journal_check_available_features);
82 EXPORT_SYMBOL(jbd2_journal_set_features);
83 EXPORT_SYMBOL(jbd2_journal_load);
84 EXPORT_SYMBOL(jbd2_journal_destroy);
85 EXPORT_SYMBOL(jbd2_journal_abort);
86 EXPORT_SYMBOL(jbd2_journal_errno);
87 EXPORT_SYMBOL(jbd2_journal_ack_err);
88 EXPORT_SYMBOL(jbd2_journal_clear_err);
89 EXPORT_SYMBOL(jbd2_log_wait_commit);
90 EXPORT_SYMBOL(jbd2_log_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_start_commit);
92 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
93 EXPORT_SYMBOL(jbd2_journal_wipe);
94 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
95 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
96 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
97 EXPORT_SYMBOL(jbd2_journal_force_commit);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
99 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
100 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
102 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
103 EXPORT_SYMBOL(jbd2_inode_cache);
104 
105 static void __journal_abort_soft (journal_t *journal, int errno);
106 static int jbd2_journal_create_slab(size_t slab_size);
107 
108 #ifdef CONFIG_JBD2_DEBUG
109 void __jbd2_debug(int level, const char *file, const char *func,
110 		  unsigned int line, const char *fmt, ...)
111 {
112 	struct va_format vaf;
113 	va_list args;
114 
115 	if (level > jbd2_journal_enable_debug)
116 		return;
117 	va_start(args, fmt);
118 	vaf.fmt = fmt;
119 	vaf.va = &args;
120 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
121 	va_end(args);
122 }
123 EXPORT_SYMBOL(__jbd2_debug);
124 #endif
125 
126 /* Checksumming functions */
127 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
128 {
129 	if (!jbd2_journal_has_csum_v2or3_feature(j))
130 		return 1;
131 
132 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 }
134 
135 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
136 {
137 	__u32 csum;
138 	__be32 old_csum;
139 
140 	old_csum = sb->s_checksum;
141 	sb->s_checksum = 0;
142 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
143 	sb->s_checksum = old_csum;
144 
145 	return cpu_to_be32(csum);
146 }
147 
148 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
149 {
150 	if (!jbd2_journal_has_csum_v2or3(j))
151 		return 1;
152 
153 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
154 }
155 
156 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
157 {
158 	if (!jbd2_journal_has_csum_v2or3(j))
159 		return;
160 
161 	sb->s_checksum = jbd2_superblock_csum(j, sb);
162 }
163 
164 /*
165  * Helper function used to manage commit timeouts
166  */
167 
168 static void commit_timeout(struct timer_list *t)
169 {
170 	journal_t *journal = from_timer(journal, t, j_commit_timer);
171 
172 	wake_up_process(journal->j_task);
173 }
174 
175 /*
176  * kjournald2: The main thread function used to manage a logging device
177  * journal.
178  *
179  * This kernel thread is responsible for two things:
180  *
181  * 1) COMMIT:  Every so often we need to commit the current state of the
182  *    filesystem to disk.  The journal thread is responsible for writing
183  *    all of the metadata buffers to disk.
184  *
185  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
186  *    of the data in that part of the log has been rewritten elsewhere on
187  *    the disk.  Flushing these old buffers to reclaim space in the log is
188  *    known as checkpointing, and this thread is responsible for that job.
189  */
190 
191 static int kjournald2(void *arg)
192 {
193 	journal_t *journal = arg;
194 	transaction_t *transaction;
195 
196 	/*
197 	 * Set up an interval timer which can be used to trigger a commit wakeup
198 	 * after the commit interval expires
199 	 */
200 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
201 
202 	set_freezable();
203 
204 	/* Record that the journal thread is running */
205 	journal->j_task = current;
206 	wake_up(&journal->j_wait_done_commit);
207 
208 	/*
209 	 * Make sure that no allocations from this kernel thread will ever
210 	 * recurse to the fs layer because we are responsible for the
211 	 * transaction commit and any fs involvement might get stuck waiting for
212 	 * the trasn. commit.
213 	 */
214 	memalloc_nofs_save();
215 
216 	/*
217 	 * And now, wait forever for commit wakeup events.
218 	 */
219 	write_lock(&journal->j_state_lock);
220 
221 loop:
222 	if (journal->j_flags & JBD2_UNMOUNT)
223 		goto end_loop;
224 
225 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
226 		journal->j_commit_sequence, journal->j_commit_request);
227 
228 	if (journal->j_commit_sequence != journal->j_commit_request) {
229 		jbd_debug(1, "OK, requests differ\n");
230 		write_unlock(&journal->j_state_lock);
231 		del_timer_sync(&journal->j_commit_timer);
232 		jbd2_journal_commit_transaction(journal);
233 		write_lock(&journal->j_state_lock);
234 		goto loop;
235 	}
236 
237 	wake_up(&journal->j_wait_done_commit);
238 	if (freezing(current)) {
239 		/*
240 		 * The simpler the better. Flushing journal isn't a
241 		 * good idea, because that depends on threads that may
242 		 * be already stopped.
243 		 */
244 		jbd_debug(1, "Now suspending kjournald2\n");
245 		write_unlock(&journal->j_state_lock);
246 		try_to_freeze();
247 		write_lock(&journal->j_state_lock);
248 	} else {
249 		/*
250 		 * We assume on resume that commits are already there,
251 		 * so we don't sleep
252 		 */
253 		DEFINE_WAIT(wait);
254 		int should_sleep = 1;
255 
256 		prepare_to_wait(&journal->j_wait_commit, &wait,
257 				TASK_INTERRUPTIBLE);
258 		if (journal->j_commit_sequence != journal->j_commit_request)
259 			should_sleep = 0;
260 		transaction = journal->j_running_transaction;
261 		if (transaction && time_after_eq(jiffies,
262 						transaction->t_expires))
263 			should_sleep = 0;
264 		if (journal->j_flags & JBD2_UNMOUNT)
265 			should_sleep = 0;
266 		if (should_sleep) {
267 			write_unlock(&journal->j_state_lock);
268 			schedule();
269 			write_lock(&journal->j_state_lock);
270 		}
271 		finish_wait(&journal->j_wait_commit, &wait);
272 	}
273 
274 	jbd_debug(1, "kjournald2 wakes\n");
275 
276 	/*
277 	 * Were we woken up by a commit wakeup event?
278 	 */
279 	transaction = journal->j_running_transaction;
280 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
281 		journal->j_commit_request = transaction->t_tid;
282 		jbd_debug(1, "woke because of timeout\n");
283 	}
284 	goto loop;
285 
286 end_loop:
287 	del_timer_sync(&journal->j_commit_timer);
288 	journal->j_task = NULL;
289 	wake_up(&journal->j_wait_done_commit);
290 	jbd_debug(1, "Journal thread exiting.\n");
291 	write_unlock(&journal->j_state_lock);
292 	return 0;
293 }
294 
295 static int jbd2_journal_start_thread(journal_t *journal)
296 {
297 	struct task_struct *t;
298 
299 	t = kthread_run(kjournald2, journal, "jbd2/%s",
300 			journal->j_devname);
301 	if (IS_ERR(t))
302 		return PTR_ERR(t);
303 
304 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
305 	return 0;
306 }
307 
308 static void journal_kill_thread(journal_t *journal)
309 {
310 	write_lock(&journal->j_state_lock);
311 	journal->j_flags |= JBD2_UNMOUNT;
312 
313 	while (journal->j_task) {
314 		write_unlock(&journal->j_state_lock);
315 		wake_up(&journal->j_wait_commit);
316 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
317 		write_lock(&journal->j_state_lock);
318 	}
319 	write_unlock(&journal->j_state_lock);
320 }
321 
322 /*
323  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
324  *
325  * Writes a metadata buffer to a given disk block.  The actual IO is not
326  * performed but a new buffer_head is constructed which labels the data
327  * to be written with the correct destination disk block.
328  *
329  * Any magic-number escaping which needs to be done will cause a
330  * copy-out here.  If the buffer happens to start with the
331  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
332  * magic number is only written to the log for descripter blocks.  In
333  * this case, we copy the data and replace the first word with 0, and we
334  * return a result code which indicates that this buffer needs to be
335  * marked as an escaped buffer in the corresponding log descriptor
336  * block.  The missing word can then be restored when the block is read
337  * during recovery.
338  *
339  * If the source buffer has already been modified by a new transaction
340  * since we took the last commit snapshot, we use the frozen copy of
341  * that data for IO. If we end up using the existing buffer_head's data
342  * for the write, then we have to make sure nobody modifies it while the
343  * IO is in progress. do_get_write_access() handles this.
344  *
345  * The function returns a pointer to the buffer_head to be used for IO.
346  *
347  *
348  * Return value:
349  *  <0: Error
350  * >=0: Finished OK
351  *
352  * On success:
353  * Bit 0 set == escape performed on the data
354  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
355  */
356 
357 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
358 				  struct journal_head  *jh_in,
359 				  struct buffer_head **bh_out,
360 				  sector_t blocknr)
361 {
362 	int need_copy_out = 0;
363 	int done_copy_out = 0;
364 	int do_escape = 0;
365 	char *mapped_data;
366 	struct buffer_head *new_bh;
367 	struct page *new_page;
368 	unsigned int new_offset;
369 	struct buffer_head *bh_in = jh2bh(jh_in);
370 	journal_t *journal = transaction->t_journal;
371 
372 	/*
373 	 * The buffer really shouldn't be locked: only the current committing
374 	 * transaction is allowed to write it, so nobody else is allowed
375 	 * to do any IO.
376 	 *
377 	 * akpm: except if we're journalling data, and write() output is
378 	 * also part of a shared mapping, and another thread has
379 	 * decided to launch a writepage() against this buffer.
380 	 */
381 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
382 
383 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
384 
385 	/* keep subsequent assertions sane */
386 	atomic_set(&new_bh->b_count, 1);
387 
388 	jbd_lock_bh_state(bh_in);
389 repeat:
390 	/*
391 	 * If a new transaction has already done a buffer copy-out, then
392 	 * we use that version of the data for the commit.
393 	 */
394 	if (jh_in->b_frozen_data) {
395 		done_copy_out = 1;
396 		new_page = virt_to_page(jh_in->b_frozen_data);
397 		new_offset = offset_in_page(jh_in->b_frozen_data);
398 	} else {
399 		new_page = jh2bh(jh_in)->b_page;
400 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
401 	}
402 
403 	mapped_data = kmap_atomic(new_page);
404 	/*
405 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
406 	 * before checking for escaping, as the trigger may modify the magic
407 	 * offset.  If a copy-out happens afterwards, it will have the correct
408 	 * data in the buffer.
409 	 */
410 	if (!done_copy_out)
411 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412 					   jh_in->b_triggers);
413 
414 	/*
415 	 * Check for escaping
416 	 */
417 	if (*((__be32 *)(mapped_data + new_offset)) ==
418 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419 		need_copy_out = 1;
420 		do_escape = 1;
421 	}
422 	kunmap_atomic(mapped_data);
423 
424 	/*
425 	 * Do we need to do a data copy?
426 	 */
427 	if (need_copy_out && !done_copy_out) {
428 		char *tmp;
429 
430 		jbd_unlock_bh_state(bh_in);
431 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432 		if (!tmp) {
433 			brelse(new_bh);
434 			return -ENOMEM;
435 		}
436 		jbd_lock_bh_state(bh_in);
437 		if (jh_in->b_frozen_data) {
438 			jbd2_free(tmp, bh_in->b_size);
439 			goto repeat;
440 		}
441 
442 		jh_in->b_frozen_data = tmp;
443 		mapped_data = kmap_atomic(new_page);
444 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445 		kunmap_atomic(mapped_data);
446 
447 		new_page = virt_to_page(tmp);
448 		new_offset = offset_in_page(tmp);
449 		done_copy_out = 1;
450 
451 		/*
452 		 * This isn't strictly necessary, as we're using frozen
453 		 * data for the escaping, but it keeps consistency with
454 		 * b_frozen_data usage.
455 		 */
456 		jh_in->b_frozen_triggers = jh_in->b_triggers;
457 	}
458 
459 	/*
460 	 * Did we need to do an escaping?  Now we've done all the
461 	 * copying, we can finally do so.
462 	 */
463 	if (do_escape) {
464 		mapped_data = kmap_atomic(new_page);
465 		*((unsigned int *)(mapped_data + new_offset)) = 0;
466 		kunmap_atomic(mapped_data);
467 	}
468 
469 	set_bh_page(new_bh, new_page, new_offset);
470 	new_bh->b_size = bh_in->b_size;
471 	new_bh->b_bdev = journal->j_dev;
472 	new_bh->b_blocknr = blocknr;
473 	new_bh->b_private = bh_in;
474 	set_buffer_mapped(new_bh);
475 	set_buffer_dirty(new_bh);
476 
477 	*bh_out = new_bh;
478 
479 	/*
480 	 * The to-be-written buffer needs to get moved to the io queue,
481 	 * and the original buffer whose contents we are shadowing or
482 	 * copying is moved to the transaction's shadow queue.
483 	 */
484 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485 	spin_lock(&journal->j_list_lock);
486 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487 	spin_unlock(&journal->j_list_lock);
488 	set_buffer_shadow(bh_in);
489 	jbd_unlock_bh_state(bh_in);
490 
491 	return do_escape | (done_copy_out << 1);
492 }
493 
494 /*
495  * Allocation code for the journal file.  Manage the space left in the
496  * journal, so that we can begin checkpointing when appropriate.
497  */
498 
499 /*
500  * Called with j_state_lock locked for writing.
501  * Returns true if a transaction commit was started.
502  */
503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504 {
505 	/* Return if the txn has already requested to be committed */
506 	if (journal->j_commit_request == target)
507 		return 0;
508 
509 	/*
510 	 * The only transaction we can possibly wait upon is the
511 	 * currently running transaction (if it exists).  Otherwise,
512 	 * the target tid must be an old one.
513 	 */
514 	if (journal->j_running_transaction &&
515 	    journal->j_running_transaction->t_tid == target) {
516 		/*
517 		 * We want a new commit: OK, mark the request and wakeup the
518 		 * commit thread.  We do _not_ do the commit ourselves.
519 		 */
520 
521 		journal->j_commit_request = target;
522 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 			  journal->j_commit_request,
524 			  journal->j_commit_sequence);
525 		journal->j_running_transaction->t_requested = jiffies;
526 		wake_up(&journal->j_wait_commit);
527 		return 1;
528 	} else if (!tid_geq(journal->j_commit_request, target))
529 		/* This should never happen, but if it does, preserve
530 		   the evidence before kjournald goes into a loop and
531 		   increments j_commit_sequence beyond all recognition. */
532 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 			  journal->j_commit_request,
534 			  journal->j_commit_sequence,
535 			  target, journal->j_running_transaction ?
536 			  journal->j_running_transaction->t_tid : 0);
537 	return 0;
538 }
539 
540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541 {
542 	int ret;
543 
544 	write_lock(&journal->j_state_lock);
545 	ret = __jbd2_log_start_commit(journal, tid);
546 	write_unlock(&journal->j_state_lock);
547 	return ret;
548 }
549 
550 /*
551  * Force and wait any uncommitted transactions.  We can only force the running
552  * transaction if we don't have an active handle, otherwise, we will deadlock.
553  * Returns: <0 in case of error,
554  *           0 if nothing to commit,
555  *           1 if transaction was successfully committed.
556  */
557 static int __jbd2_journal_force_commit(journal_t *journal)
558 {
559 	transaction_t *transaction = NULL;
560 	tid_t tid;
561 	int need_to_start = 0, ret = 0;
562 
563 	read_lock(&journal->j_state_lock);
564 	if (journal->j_running_transaction && !current->journal_info) {
565 		transaction = journal->j_running_transaction;
566 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567 			need_to_start = 1;
568 	} else if (journal->j_committing_transaction)
569 		transaction = journal->j_committing_transaction;
570 
571 	if (!transaction) {
572 		/* Nothing to commit */
573 		read_unlock(&journal->j_state_lock);
574 		return 0;
575 	}
576 	tid = transaction->t_tid;
577 	read_unlock(&journal->j_state_lock);
578 	if (need_to_start)
579 		jbd2_log_start_commit(journal, tid);
580 	ret = jbd2_log_wait_commit(journal, tid);
581 	if (!ret)
582 		ret = 1;
583 
584 	return ret;
585 }
586 
587 /**
588  * Force and wait upon a commit if the calling process is not within
589  * transaction.  This is used for forcing out undo-protected data which contains
590  * bitmaps, when the fs is running out of space.
591  *
592  * @journal: journal to force
593  * Returns true if progress was made.
594  */
595 int jbd2_journal_force_commit_nested(journal_t *journal)
596 {
597 	int ret;
598 
599 	ret = __jbd2_journal_force_commit(journal);
600 	return ret > 0;
601 }
602 
603 /**
604  * int journal_force_commit() - force any uncommitted transactions
605  * @journal: journal to force
606  *
607  * Caller want unconditional commit. We can only force the running transaction
608  * if we don't have an active handle, otherwise, we will deadlock.
609  */
610 int jbd2_journal_force_commit(journal_t *journal)
611 {
612 	int ret;
613 
614 	J_ASSERT(!current->journal_info);
615 	ret = __jbd2_journal_force_commit(journal);
616 	if (ret > 0)
617 		ret = 0;
618 	return ret;
619 }
620 
621 /*
622  * Start a commit of the current running transaction (if any).  Returns true
623  * if a transaction is going to be committed (or is currently already
624  * committing), and fills its tid in at *ptid
625  */
626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627 {
628 	int ret = 0;
629 
630 	write_lock(&journal->j_state_lock);
631 	if (journal->j_running_transaction) {
632 		tid_t tid = journal->j_running_transaction->t_tid;
633 
634 		__jbd2_log_start_commit(journal, tid);
635 		/* There's a running transaction and we've just made sure
636 		 * it's commit has been scheduled. */
637 		if (ptid)
638 			*ptid = tid;
639 		ret = 1;
640 	} else if (journal->j_committing_transaction) {
641 		/*
642 		 * If commit has been started, then we have to wait for
643 		 * completion of that transaction.
644 		 */
645 		if (ptid)
646 			*ptid = journal->j_committing_transaction->t_tid;
647 		ret = 1;
648 	}
649 	write_unlock(&journal->j_state_lock);
650 	return ret;
651 }
652 
653 /*
654  * Return 1 if a given transaction has not yet sent barrier request
655  * connected with a transaction commit. If 0 is returned, transaction
656  * may or may not have sent the barrier. Used to avoid sending barrier
657  * twice in common cases.
658  */
659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660 {
661 	int ret = 0;
662 	transaction_t *commit_trans;
663 
664 	if (!(journal->j_flags & JBD2_BARRIER))
665 		return 0;
666 	read_lock(&journal->j_state_lock);
667 	/* Transaction already committed? */
668 	if (tid_geq(journal->j_commit_sequence, tid))
669 		goto out;
670 	commit_trans = journal->j_committing_transaction;
671 	if (!commit_trans || commit_trans->t_tid != tid) {
672 		ret = 1;
673 		goto out;
674 	}
675 	/*
676 	 * Transaction is being committed and we already proceeded to
677 	 * submitting a flush to fs partition?
678 	 */
679 	if (journal->j_fs_dev != journal->j_dev) {
680 		if (!commit_trans->t_need_data_flush ||
681 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
682 			goto out;
683 	} else {
684 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685 			goto out;
686 	}
687 	ret = 1;
688 out:
689 	read_unlock(&journal->j_state_lock);
690 	return ret;
691 }
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
693 
694 /*
695  * Wait for a specified commit to complete.
696  * The caller may not hold the journal lock.
697  */
698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699 {
700 	int err = 0;
701 
702 	read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_PROVE_LOCKING
704 	/*
705 	 * Some callers make sure transaction is already committing and in that
706 	 * case we cannot block on open handles anymore. So don't warn in that
707 	 * case.
708 	 */
709 	if (tid_gt(tid, journal->j_commit_sequence) &&
710 	    (!journal->j_committing_transaction ||
711 	     journal->j_committing_transaction->t_tid != tid)) {
712 		read_unlock(&journal->j_state_lock);
713 		jbd2_might_wait_for_commit(journal);
714 		read_lock(&journal->j_state_lock);
715 	}
716 #endif
717 #ifdef CONFIG_JBD2_DEBUG
718 	if (!tid_geq(journal->j_commit_request, tid)) {
719 		printk(KERN_ERR
720 		       "%s: error: j_commit_request=%d, tid=%d\n",
721 		       __func__, journal->j_commit_request, tid);
722 	}
723 #endif
724 	while (tid_gt(tid, journal->j_commit_sequence)) {
725 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
726 				  tid, journal->j_commit_sequence);
727 		read_unlock(&journal->j_state_lock);
728 		wake_up(&journal->j_wait_commit);
729 		wait_event(journal->j_wait_done_commit,
730 				!tid_gt(tid, journal->j_commit_sequence));
731 		read_lock(&journal->j_state_lock);
732 	}
733 	read_unlock(&journal->j_state_lock);
734 
735 	if (unlikely(is_journal_aborted(journal)))
736 		err = -EIO;
737 	return err;
738 }
739 
740 /*
741  * When this function returns the transaction corresponding to tid
742  * will be completed.  If the transaction has currently running, start
743  * committing that transaction before waiting for it to complete.  If
744  * the transaction id is stale, it is by definition already completed,
745  * so just return SUCCESS.
746  */
747 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
748 {
749 	int	need_to_wait = 1;
750 
751 	read_lock(&journal->j_state_lock);
752 	if (journal->j_running_transaction &&
753 	    journal->j_running_transaction->t_tid == tid) {
754 		if (journal->j_commit_request != tid) {
755 			/* transaction not yet started, so request it */
756 			read_unlock(&journal->j_state_lock);
757 			jbd2_log_start_commit(journal, tid);
758 			goto wait_commit;
759 		}
760 	} else if (!(journal->j_committing_transaction &&
761 		     journal->j_committing_transaction->t_tid == tid))
762 		need_to_wait = 0;
763 	read_unlock(&journal->j_state_lock);
764 	if (!need_to_wait)
765 		return 0;
766 wait_commit:
767 	return jbd2_log_wait_commit(journal, tid);
768 }
769 EXPORT_SYMBOL(jbd2_complete_transaction);
770 
771 /*
772  * Log buffer allocation routines:
773  */
774 
775 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
776 {
777 	unsigned long blocknr;
778 
779 	write_lock(&journal->j_state_lock);
780 	J_ASSERT(journal->j_free > 1);
781 
782 	blocknr = journal->j_head;
783 	journal->j_head++;
784 	journal->j_free--;
785 	if (journal->j_head == journal->j_last)
786 		journal->j_head = journal->j_first;
787 	write_unlock(&journal->j_state_lock);
788 	return jbd2_journal_bmap(journal, blocknr, retp);
789 }
790 
791 /*
792  * Conversion of logical to physical block numbers for the journal
793  *
794  * On external journals the journal blocks are identity-mapped, so
795  * this is a no-op.  If needed, we can use j_blk_offset - everything is
796  * ready.
797  */
798 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
799 		 unsigned long long *retp)
800 {
801 	int err = 0;
802 	unsigned long long ret;
803 
804 	if (journal->j_inode) {
805 		ret = bmap(journal->j_inode, blocknr);
806 		if (ret)
807 			*retp = ret;
808 		else {
809 			printk(KERN_ALERT "%s: journal block not found "
810 					"at offset %lu on %s\n",
811 			       __func__, blocknr, journal->j_devname);
812 			err = -EIO;
813 			__journal_abort_soft(journal, err);
814 		}
815 	} else {
816 		*retp = blocknr; /* +journal->j_blk_offset */
817 	}
818 	return err;
819 }
820 
821 /*
822  * We play buffer_head aliasing tricks to write data/metadata blocks to
823  * the journal without copying their contents, but for journal
824  * descriptor blocks we do need to generate bona fide buffers.
825  *
826  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
827  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
828  * But we don't bother doing that, so there will be coherency problems with
829  * mmaps of blockdevs which hold live JBD-controlled filesystems.
830  */
831 struct buffer_head *
832 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
833 {
834 	journal_t *journal = transaction->t_journal;
835 	struct buffer_head *bh;
836 	unsigned long long blocknr;
837 	journal_header_t *header;
838 	int err;
839 
840 	err = jbd2_journal_next_log_block(journal, &blocknr);
841 
842 	if (err)
843 		return NULL;
844 
845 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
846 	if (!bh)
847 		return NULL;
848 	lock_buffer(bh);
849 	memset(bh->b_data, 0, journal->j_blocksize);
850 	header = (journal_header_t *)bh->b_data;
851 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
852 	header->h_blocktype = cpu_to_be32(type);
853 	header->h_sequence = cpu_to_be32(transaction->t_tid);
854 	set_buffer_uptodate(bh);
855 	unlock_buffer(bh);
856 	BUFFER_TRACE(bh, "return this buffer");
857 	return bh;
858 }
859 
860 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
861 {
862 	struct jbd2_journal_block_tail *tail;
863 	__u32 csum;
864 
865 	if (!jbd2_journal_has_csum_v2or3(j))
866 		return;
867 
868 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
869 			sizeof(struct jbd2_journal_block_tail));
870 	tail->t_checksum = 0;
871 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
872 	tail->t_checksum = cpu_to_be32(csum);
873 }
874 
875 /*
876  * Return tid of the oldest transaction in the journal and block in the journal
877  * where the transaction starts.
878  *
879  * If the journal is now empty, return which will be the next transaction ID
880  * we will write and where will that transaction start.
881  *
882  * The return value is 0 if journal tail cannot be pushed any further, 1 if
883  * it can.
884  */
885 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
886 			      unsigned long *block)
887 {
888 	transaction_t *transaction;
889 	int ret;
890 
891 	read_lock(&journal->j_state_lock);
892 	spin_lock(&journal->j_list_lock);
893 	transaction = journal->j_checkpoint_transactions;
894 	if (transaction) {
895 		*tid = transaction->t_tid;
896 		*block = transaction->t_log_start;
897 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
898 		*tid = transaction->t_tid;
899 		*block = transaction->t_log_start;
900 	} else if ((transaction = journal->j_running_transaction) != NULL) {
901 		*tid = transaction->t_tid;
902 		*block = journal->j_head;
903 	} else {
904 		*tid = journal->j_transaction_sequence;
905 		*block = journal->j_head;
906 	}
907 	ret = tid_gt(*tid, journal->j_tail_sequence);
908 	spin_unlock(&journal->j_list_lock);
909 	read_unlock(&journal->j_state_lock);
910 
911 	return ret;
912 }
913 
914 /*
915  * Update information in journal structure and in on disk journal superblock
916  * about log tail. This function does not check whether information passed in
917  * really pushes log tail further. It's responsibility of the caller to make
918  * sure provided log tail information is valid (e.g. by holding
919  * j_checkpoint_mutex all the time between computing log tail and calling this
920  * function as is the case with jbd2_cleanup_journal_tail()).
921  *
922  * Requires j_checkpoint_mutex
923  */
924 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
925 {
926 	unsigned long freed;
927 	int ret;
928 
929 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
930 
931 	/*
932 	 * We cannot afford for write to remain in drive's caches since as
933 	 * soon as we update j_tail, next transaction can start reusing journal
934 	 * space and if we lose sb update during power failure we'd replay
935 	 * old transaction with possibly newly overwritten data.
936 	 */
937 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
938 					      REQ_SYNC | REQ_FUA);
939 	if (ret)
940 		goto out;
941 
942 	write_lock(&journal->j_state_lock);
943 	freed = block - journal->j_tail;
944 	if (block < journal->j_tail)
945 		freed += journal->j_last - journal->j_first;
946 
947 	trace_jbd2_update_log_tail(journal, tid, block, freed);
948 	jbd_debug(1,
949 		  "Cleaning journal tail from %d to %d (offset %lu), "
950 		  "freeing %lu\n",
951 		  journal->j_tail_sequence, tid, block, freed);
952 
953 	journal->j_free += freed;
954 	journal->j_tail_sequence = tid;
955 	journal->j_tail = block;
956 	write_unlock(&journal->j_state_lock);
957 
958 out:
959 	return ret;
960 }
961 
962 /*
963  * This is a variaon of __jbd2_update_log_tail which checks for validity of
964  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
965  * with other threads updating log tail.
966  */
967 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
968 {
969 	mutex_lock_io(&journal->j_checkpoint_mutex);
970 	if (tid_gt(tid, journal->j_tail_sequence))
971 		__jbd2_update_log_tail(journal, tid, block);
972 	mutex_unlock(&journal->j_checkpoint_mutex);
973 }
974 
975 struct jbd2_stats_proc_session {
976 	journal_t *journal;
977 	struct transaction_stats_s *stats;
978 	int start;
979 	int max;
980 };
981 
982 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
983 {
984 	return *pos ? NULL : SEQ_START_TOKEN;
985 }
986 
987 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
988 {
989 	return NULL;
990 }
991 
992 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
993 {
994 	struct jbd2_stats_proc_session *s = seq->private;
995 
996 	if (v != SEQ_START_TOKEN)
997 		return 0;
998 	seq_printf(seq, "%lu transactions (%lu requested), "
999 		   "each up to %u blocks\n",
1000 		   s->stats->ts_tid, s->stats->ts_requested,
1001 		   s->journal->j_max_transaction_buffers);
1002 	if (s->stats->ts_tid == 0)
1003 		return 0;
1004 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1005 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1006 	seq_printf(seq, "  %ums request delay\n",
1007 	    (s->stats->ts_requested == 0) ? 0 :
1008 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1009 			     s->stats->ts_requested));
1010 	seq_printf(seq, "  %ums running transaction\n",
1011 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1012 	seq_printf(seq, "  %ums transaction was being locked\n",
1013 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1014 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1015 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1016 	seq_printf(seq, "  %ums logging transaction\n",
1017 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1018 	seq_printf(seq, "  %lluus average transaction commit time\n",
1019 		   div_u64(s->journal->j_average_commit_time, 1000));
1020 	seq_printf(seq, "  %lu handles per transaction\n",
1021 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1022 	seq_printf(seq, "  %lu blocks per transaction\n",
1023 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1024 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1025 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1026 	return 0;
1027 }
1028 
1029 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1030 {
1031 }
1032 
1033 static const struct seq_operations jbd2_seq_info_ops = {
1034 	.start  = jbd2_seq_info_start,
1035 	.next   = jbd2_seq_info_next,
1036 	.stop   = jbd2_seq_info_stop,
1037 	.show   = jbd2_seq_info_show,
1038 };
1039 
1040 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1041 {
1042 	journal_t *journal = PDE_DATA(inode);
1043 	struct jbd2_stats_proc_session *s;
1044 	int rc, size;
1045 
1046 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1047 	if (s == NULL)
1048 		return -ENOMEM;
1049 	size = sizeof(struct transaction_stats_s);
1050 	s->stats = kmalloc(size, GFP_KERNEL);
1051 	if (s->stats == NULL) {
1052 		kfree(s);
1053 		return -ENOMEM;
1054 	}
1055 	spin_lock(&journal->j_history_lock);
1056 	memcpy(s->stats, &journal->j_stats, size);
1057 	s->journal = journal;
1058 	spin_unlock(&journal->j_history_lock);
1059 
1060 	rc = seq_open(file, &jbd2_seq_info_ops);
1061 	if (rc == 0) {
1062 		struct seq_file *m = file->private_data;
1063 		m->private = s;
1064 	} else {
1065 		kfree(s->stats);
1066 		kfree(s);
1067 	}
1068 	return rc;
1069 
1070 }
1071 
1072 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1073 {
1074 	struct seq_file *seq = file->private_data;
1075 	struct jbd2_stats_proc_session *s = seq->private;
1076 	kfree(s->stats);
1077 	kfree(s);
1078 	return seq_release(inode, file);
1079 }
1080 
1081 static const struct file_operations jbd2_seq_info_fops = {
1082 	.owner		= THIS_MODULE,
1083 	.open           = jbd2_seq_info_open,
1084 	.read           = seq_read,
1085 	.llseek         = seq_lseek,
1086 	.release        = jbd2_seq_info_release,
1087 };
1088 
1089 static struct proc_dir_entry *proc_jbd2_stats;
1090 
1091 static void jbd2_stats_proc_init(journal_t *journal)
1092 {
1093 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1094 	if (journal->j_proc_entry) {
1095 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1096 				 &jbd2_seq_info_fops, journal);
1097 	}
1098 }
1099 
1100 static void jbd2_stats_proc_exit(journal_t *journal)
1101 {
1102 	remove_proc_entry("info", journal->j_proc_entry);
1103 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1104 }
1105 
1106 /*
1107  * Management for journal control blocks: functions to create and
1108  * destroy journal_t structures, and to initialise and read existing
1109  * journal blocks from disk.  */
1110 
1111 /* First: create and setup a journal_t object in memory.  We initialise
1112  * very few fields yet: that has to wait until we have created the
1113  * journal structures from from scratch, or loaded them from disk. */
1114 
1115 static journal_t *journal_init_common(struct block_device *bdev,
1116 			struct block_device *fs_dev,
1117 			unsigned long long start, int len, int blocksize)
1118 {
1119 	static struct lock_class_key jbd2_trans_commit_key;
1120 	journal_t *journal;
1121 	int err;
1122 	struct buffer_head *bh;
1123 	int n;
1124 
1125 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1126 	if (!journal)
1127 		return NULL;
1128 
1129 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1130 	init_waitqueue_head(&journal->j_wait_done_commit);
1131 	init_waitqueue_head(&journal->j_wait_commit);
1132 	init_waitqueue_head(&journal->j_wait_updates);
1133 	init_waitqueue_head(&journal->j_wait_reserved);
1134 	mutex_init(&journal->j_barrier);
1135 	mutex_init(&journal->j_checkpoint_mutex);
1136 	spin_lock_init(&journal->j_revoke_lock);
1137 	spin_lock_init(&journal->j_list_lock);
1138 	rwlock_init(&journal->j_state_lock);
1139 
1140 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1141 	journal->j_min_batch_time = 0;
1142 	journal->j_max_batch_time = 15000; /* 15ms */
1143 	atomic_set(&journal->j_reserved_credits, 0);
1144 
1145 	/* The journal is marked for error until we succeed with recovery! */
1146 	journal->j_flags = JBD2_ABORT;
1147 
1148 	/* Set up a default-sized revoke table for the new mount. */
1149 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1150 	if (err)
1151 		goto err_cleanup;
1152 
1153 	spin_lock_init(&journal->j_history_lock);
1154 
1155 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1156 			 &jbd2_trans_commit_key, 0);
1157 
1158 	/* journal descriptor can store up to n blocks -bzzz */
1159 	journal->j_blocksize = blocksize;
1160 	journal->j_dev = bdev;
1161 	journal->j_fs_dev = fs_dev;
1162 	journal->j_blk_offset = start;
1163 	journal->j_maxlen = len;
1164 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1165 	journal->j_wbufsize = n;
1166 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1167 					GFP_KERNEL);
1168 	if (!journal->j_wbuf)
1169 		goto err_cleanup;
1170 
1171 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1172 	if (!bh) {
1173 		pr_err("%s: Cannot get buffer for journal superblock\n",
1174 			__func__);
1175 		goto err_cleanup;
1176 	}
1177 	journal->j_sb_buffer = bh;
1178 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1179 
1180 	return journal;
1181 
1182 err_cleanup:
1183 	kfree(journal->j_wbuf);
1184 	jbd2_journal_destroy_revoke(journal);
1185 	kfree(journal);
1186 	return NULL;
1187 }
1188 
1189 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1190  *
1191  * Create a journal structure assigned some fixed set of disk blocks to
1192  * the journal.  We don't actually touch those disk blocks yet, but we
1193  * need to set up all of the mapping information to tell the journaling
1194  * system where the journal blocks are.
1195  *
1196  */
1197 
1198 /**
1199  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1200  *  @bdev: Block device on which to create the journal
1201  *  @fs_dev: Device which hold journalled filesystem for this journal.
1202  *  @start: Block nr Start of journal.
1203  *  @len:  Length of the journal in blocks.
1204  *  @blocksize: blocksize of journalling device
1205  *
1206  *  Returns: a newly created journal_t *
1207  *
1208  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1209  *  range of blocks on an arbitrary block device.
1210  *
1211  */
1212 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1213 			struct block_device *fs_dev,
1214 			unsigned long long start, int len, int blocksize)
1215 {
1216 	journal_t *journal;
1217 
1218 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1219 	if (!journal)
1220 		return NULL;
1221 
1222 	bdevname(journal->j_dev, journal->j_devname);
1223 	strreplace(journal->j_devname, '/', '!');
1224 	jbd2_stats_proc_init(journal);
1225 
1226 	return journal;
1227 }
1228 
1229 /**
1230  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1231  *  @inode: An inode to create the journal in
1232  *
1233  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1234  * the journal.  The inode must exist already, must support bmap() and
1235  * must have all data blocks preallocated.
1236  */
1237 journal_t *jbd2_journal_init_inode(struct inode *inode)
1238 {
1239 	journal_t *journal;
1240 	char *p;
1241 	unsigned long long blocknr;
1242 
1243 	blocknr = bmap(inode, 0);
1244 	if (!blocknr) {
1245 		pr_err("%s: Cannot locate journal superblock\n",
1246 			__func__);
1247 		return NULL;
1248 	}
1249 
1250 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1251 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1252 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1253 
1254 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1255 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1256 			inode->i_sb->s_blocksize);
1257 	if (!journal)
1258 		return NULL;
1259 
1260 	journal->j_inode = inode;
1261 	bdevname(journal->j_dev, journal->j_devname);
1262 	p = strreplace(journal->j_devname, '/', '!');
1263 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1264 	jbd2_stats_proc_init(journal);
1265 
1266 	return journal;
1267 }
1268 
1269 /*
1270  * If the journal init or create aborts, we need to mark the journal
1271  * superblock as being NULL to prevent the journal destroy from writing
1272  * back a bogus superblock.
1273  */
1274 static void journal_fail_superblock (journal_t *journal)
1275 {
1276 	struct buffer_head *bh = journal->j_sb_buffer;
1277 	brelse(bh);
1278 	journal->j_sb_buffer = NULL;
1279 }
1280 
1281 /*
1282  * Given a journal_t structure, initialise the various fields for
1283  * startup of a new journaling session.  We use this both when creating
1284  * a journal, and after recovering an old journal to reset it for
1285  * subsequent use.
1286  */
1287 
1288 static int journal_reset(journal_t *journal)
1289 {
1290 	journal_superblock_t *sb = journal->j_superblock;
1291 	unsigned long long first, last;
1292 
1293 	first = be32_to_cpu(sb->s_first);
1294 	last = be32_to_cpu(sb->s_maxlen);
1295 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1296 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1297 		       first, last);
1298 		journal_fail_superblock(journal);
1299 		return -EINVAL;
1300 	}
1301 
1302 	journal->j_first = first;
1303 	journal->j_last = last;
1304 
1305 	journal->j_head = first;
1306 	journal->j_tail = first;
1307 	journal->j_free = last - first;
1308 
1309 	journal->j_tail_sequence = journal->j_transaction_sequence;
1310 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1311 	journal->j_commit_request = journal->j_commit_sequence;
1312 
1313 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1314 
1315 	/*
1316 	 * As a special case, if the on-disk copy is already marked as needing
1317 	 * no recovery (s_start == 0), then we can safely defer the superblock
1318 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1319 	 * attempting a write to a potential-readonly device.
1320 	 */
1321 	if (sb->s_start == 0) {
1322 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1323 			"(start %ld, seq %d, errno %d)\n",
1324 			journal->j_tail, journal->j_tail_sequence,
1325 			journal->j_errno);
1326 		journal->j_flags |= JBD2_FLUSHED;
1327 	} else {
1328 		/* Lock here to make assertions happy... */
1329 		mutex_lock_io(&journal->j_checkpoint_mutex);
1330 		/*
1331 		 * Update log tail information. We use REQ_FUA since new
1332 		 * transaction will start reusing journal space and so we
1333 		 * must make sure information about current log tail is on
1334 		 * disk before that.
1335 		 */
1336 		jbd2_journal_update_sb_log_tail(journal,
1337 						journal->j_tail_sequence,
1338 						journal->j_tail,
1339 						REQ_SYNC | REQ_FUA);
1340 		mutex_unlock(&journal->j_checkpoint_mutex);
1341 	}
1342 	return jbd2_journal_start_thread(journal);
1343 }
1344 
1345 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1346 {
1347 	struct buffer_head *bh = journal->j_sb_buffer;
1348 	journal_superblock_t *sb = journal->j_superblock;
1349 	int ret;
1350 
1351 	trace_jbd2_write_superblock(journal, write_flags);
1352 	if (!(journal->j_flags & JBD2_BARRIER))
1353 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1354 	lock_buffer(bh);
1355 	if (buffer_write_io_error(bh)) {
1356 		/*
1357 		 * Oh, dear.  A previous attempt to write the journal
1358 		 * superblock failed.  This could happen because the
1359 		 * USB device was yanked out.  Or it could happen to
1360 		 * be a transient write error and maybe the block will
1361 		 * be remapped.  Nothing we can do but to retry the
1362 		 * write and hope for the best.
1363 		 */
1364 		printk(KERN_ERR "JBD2: previous I/O error detected "
1365 		       "for journal superblock update for %s.\n",
1366 		       journal->j_devname);
1367 		clear_buffer_write_io_error(bh);
1368 		set_buffer_uptodate(bh);
1369 	}
1370 	jbd2_superblock_csum_set(journal, sb);
1371 	get_bh(bh);
1372 	bh->b_end_io = end_buffer_write_sync;
1373 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1374 	wait_on_buffer(bh);
1375 	if (buffer_write_io_error(bh)) {
1376 		clear_buffer_write_io_error(bh);
1377 		set_buffer_uptodate(bh);
1378 		ret = -EIO;
1379 	}
1380 	if (ret) {
1381 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1382 		       "journal superblock for %s.\n", ret,
1383 		       journal->j_devname);
1384 		jbd2_journal_abort(journal, ret);
1385 	}
1386 
1387 	return ret;
1388 }
1389 
1390 /**
1391  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1392  * @journal: The journal to update.
1393  * @tail_tid: TID of the new transaction at the tail of the log
1394  * @tail_block: The first block of the transaction at the tail of the log
1395  * @write_op: With which operation should we write the journal sb
1396  *
1397  * Update a journal's superblock information about log tail and write it to
1398  * disk, waiting for the IO to complete.
1399  */
1400 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1401 				     unsigned long tail_block, int write_op)
1402 {
1403 	journal_superblock_t *sb = journal->j_superblock;
1404 	int ret;
1405 
1406 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1407 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1408 		  tail_block, tail_tid);
1409 
1410 	sb->s_sequence = cpu_to_be32(tail_tid);
1411 	sb->s_start    = cpu_to_be32(tail_block);
1412 
1413 	ret = jbd2_write_superblock(journal, write_op);
1414 	if (ret)
1415 		goto out;
1416 
1417 	/* Log is no longer empty */
1418 	write_lock(&journal->j_state_lock);
1419 	WARN_ON(!sb->s_sequence);
1420 	journal->j_flags &= ~JBD2_FLUSHED;
1421 	write_unlock(&journal->j_state_lock);
1422 
1423 out:
1424 	return ret;
1425 }
1426 
1427 /**
1428  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1429  * @journal: The journal to update.
1430  * @write_op: With which operation should we write the journal sb
1431  *
1432  * Update a journal's dynamic superblock fields to show that journal is empty.
1433  * Write updated superblock to disk waiting for IO to complete.
1434  */
1435 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1436 {
1437 	journal_superblock_t *sb = journal->j_superblock;
1438 
1439 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1440 	read_lock(&journal->j_state_lock);
1441 	/* Is it already empty? */
1442 	if (sb->s_start == 0) {
1443 		read_unlock(&journal->j_state_lock);
1444 		return;
1445 	}
1446 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1447 		  journal->j_tail_sequence);
1448 
1449 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1450 	sb->s_start    = cpu_to_be32(0);
1451 	read_unlock(&journal->j_state_lock);
1452 
1453 	jbd2_write_superblock(journal, write_op);
1454 
1455 	/* Log is no longer empty */
1456 	write_lock(&journal->j_state_lock);
1457 	journal->j_flags |= JBD2_FLUSHED;
1458 	write_unlock(&journal->j_state_lock);
1459 }
1460 
1461 
1462 /**
1463  * jbd2_journal_update_sb_errno() - Update error in the journal.
1464  * @journal: The journal to update.
1465  *
1466  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1467  * to complete.
1468  */
1469 void jbd2_journal_update_sb_errno(journal_t *journal)
1470 {
1471 	journal_superblock_t *sb = journal->j_superblock;
1472 
1473 	read_lock(&journal->j_state_lock);
1474 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1475 		  journal->j_errno);
1476 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1477 	read_unlock(&journal->j_state_lock);
1478 
1479 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1480 }
1481 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1482 
1483 /*
1484  * Read the superblock for a given journal, performing initial
1485  * validation of the format.
1486  */
1487 static int journal_get_superblock(journal_t *journal)
1488 {
1489 	struct buffer_head *bh;
1490 	journal_superblock_t *sb;
1491 	int err = -EIO;
1492 
1493 	bh = journal->j_sb_buffer;
1494 
1495 	J_ASSERT(bh != NULL);
1496 	if (!buffer_uptodate(bh)) {
1497 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1498 		wait_on_buffer(bh);
1499 		if (!buffer_uptodate(bh)) {
1500 			printk(KERN_ERR
1501 				"JBD2: IO error reading journal superblock\n");
1502 			goto out;
1503 		}
1504 	}
1505 
1506 	if (buffer_verified(bh))
1507 		return 0;
1508 
1509 	sb = journal->j_superblock;
1510 
1511 	err = -EINVAL;
1512 
1513 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1514 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1515 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1516 		goto out;
1517 	}
1518 
1519 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1520 	case JBD2_SUPERBLOCK_V1:
1521 		journal->j_format_version = 1;
1522 		break;
1523 	case JBD2_SUPERBLOCK_V2:
1524 		journal->j_format_version = 2;
1525 		break;
1526 	default:
1527 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1528 		goto out;
1529 	}
1530 
1531 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1532 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1533 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1534 		printk(KERN_WARNING "JBD2: journal file too short\n");
1535 		goto out;
1536 	}
1537 
1538 	if (be32_to_cpu(sb->s_first) == 0 ||
1539 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1540 		printk(KERN_WARNING
1541 			"JBD2: Invalid start block of journal: %u\n",
1542 			be32_to_cpu(sb->s_first));
1543 		goto out;
1544 	}
1545 
1546 	if (jbd2_has_feature_csum2(journal) &&
1547 	    jbd2_has_feature_csum3(journal)) {
1548 		/* Can't have checksum v2 and v3 at the same time! */
1549 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1550 		       "at the same time!\n");
1551 		goto out;
1552 	}
1553 
1554 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1555 	    jbd2_has_feature_checksum(journal)) {
1556 		/* Can't have checksum v1 and v2 on at the same time! */
1557 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1558 		       "at the same time!\n");
1559 		goto out;
1560 	}
1561 
1562 	if (!jbd2_verify_csum_type(journal, sb)) {
1563 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1564 		goto out;
1565 	}
1566 
1567 	/* Load the checksum driver */
1568 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1569 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1570 		if (IS_ERR(journal->j_chksum_driver)) {
1571 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1572 			err = PTR_ERR(journal->j_chksum_driver);
1573 			journal->j_chksum_driver = NULL;
1574 			goto out;
1575 		}
1576 	}
1577 
1578 	/* Check superblock checksum */
1579 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1580 		printk(KERN_ERR "JBD2: journal checksum error\n");
1581 		err = -EFSBADCRC;
1582 		goto out;
1583 	}
1584 
1585 	/* Precompute checksum seed for all metadata */
1586 	if (jbd2_journal_has_csum_v2or3(journal))
1587 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1588 						   sizeof(sb->s_uuid));
1589 
1590 	set_buffer_verified(bh);
1591 
1592 	return 0;
1593 
1594 out:
1595 	journal_fail_superblock(journal);
1596 	return err;
1597 }
1598 
1599 /*
1600  * Load the on-disk journal superblock and read the key fields into the
1601  * journal_t.
1602  */
1603 
1604 static int load_superblock(journal_t *journal)
1605 {
1606 	int err;
1607 	journal_superblock_t *sb;
1608 
1609 	err = journal_get_superblock(journal);
1610 	if (err)
1611 		return err;
1612 
1613 	sb = journal->j_superblock;
1614 
1615 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1616 	journal->j_tail = be32_to_cpu(sb->s_start);
1617 	journal->j_first = be32_to_cpu(sb->s_first);
1618 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1619 	journal->j_errno = be32_to_cpu(sb->s_errno);
1620 
1621 	return 0;
1622 }
1623 
1624 
1625 /**
1626  * int jbd2_journal_load() - Read journal from disk.
1627  * @journal: Journal to act on.
1628  *
1629  * Given a journal_t structure which tells us which disk blocks contain
1630  * a journal, read the journal from disk to initialise the in-memory
1631  * structures.
1632  */
1633 int jbd2_journal_load(journal_t *journal)
1634 {
1635 	int err;
1636 	journal_superblock_t *sb;
1637 
1638 	err = load_superblock(journal);
1639 	if (err)
1640 		return err;
1641 
1642 	sb = journal->j_superblock;
1643 	/* If this is a V2 superblock, then we have to check the
1644 	 * features flags on it. */
1645 
1646 	if (journal->j_format_version >= 2) {
1647 		if ((sb->s_feature_ro_compat &
1648 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1649 		    (sb->s_feature_incompat &
1650 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1651 			printk(KERN_WARNING
1652 				"JBD2: Unrecognised features on journal\n");
1653 			return -EINVAL;
1654 		}
1655 	}
1656 
1657 	/*
1658 	 * Create a slab for this blocksize
1659 	 */
1660 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1661 	if (err)
1662 		return err;
1663 
1664 	/* Let the recovery code check whether it needs to recover any
1665 	 * data from the journal. */
1666 	if (jbd2_journal_recover(journal))
1667 		goto recovery_error;
1668 
1669 	if (journal->j_failed_commit) {
1670 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1671 		       "is corrupt.\n", journal->j_failed_commit,
1672 		       journal->j_devname);
1673 		return -EFSCORRUPTED;
1674 	}
1675 
1676 	/* OK, we've finished with the dynamic journal bits:
1677 	 * reinitialise the dynamic contents of the superblock in memory
1678 	 * and reset them on disk. */
1679 	if (journal_reset(journal))
1680 		goto recovery_error;
1681 
1682 	journal->j_flags &= ~JBD2_ABORT;
1683 	journal->j_flags |= JBD2_LOADED;
1684 	return 0;
1685 
1686 recovery_error:
1687 	printk(KERN_WARNING "JBD2: recovery failed\n");
1688 	return -EIO;
1689 }
1690 
1691 /**
1692  * void jbd2_journal_destroy() - Release a journal_t structure.
1693  * @journal: Journal to act on.
1694  *
1695  * Release a journal_t structure once it is no longer in use by the
1696  * journaled object.
1697  * Return <0 if we couldn't clean up the journal.
1698  */
1699 int jbd2_journal_destroy(journal_t *journal)
1700 {
1701 	int err = 0;
1702 
1703 	/* Wait for the commit thread to wake up and die. */
1704 	journal_kill_thread(journal);
1705 
1706 	/* Force a final log commit */
1707 	if (journal->j_running_transaction)
1708 		jbd2_journal_commit_transaction(journal);
1709 
1710 	/* Force any old transactions to disk */
1711 
1712 	/* Totally anal locking here... */
1713 	spin_lock(&journal->j_list_lock);
1714 	while (journal->j_checkpoint_transactions != NULL) {
1715 		spin_unlock(&journal->j_list_lock);
1716 		mutex_lock_io(&journal->j_checkpoint_mutex);
1717 		err = jbd2_log_do_checkpoint(journal);
1718 		mutex_unlock(&journal->j_checkpoint_mutex);
1719 		/*
1720 		 * If checkpointing failed, just free the buffers to avoid
1721 		 * looping forever
1722 		 */
1723 		if (err) {
1724 			jbd2_journal_destroy_checkpoint(journal);
1725 			spin_lock(&journal->j_list_lock);
1726 			break;
1727 		}
1728 		spin_lock(&journal->j_list_lock);
1729 	}
1730 
1731 	J_ASSERT(journal->j_running_transaction == NULL);
1732 	J_ASSERT(journal->j_committing_transaction == NULL);
1733 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1734 	spin_unlock(&journal->j_list_lock);
1735 
1736 	if (journal->j_sb_buffer) {
1737 		if (!is_journal_aborted(journal)) {
1738 			mutex_lock_io(&journal->j_checkpoint_mutex);
1739 
1740 			write_lock(&journal->j_state_lock);
1741 			journal->j_tail_sequence =
1742 				++journal->j_transaction_sequence;
1743 			write_unlock(&journal->j_state_lock);
1744 
1745 			jbd2_mark_journal_empty(journal,
1746 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1747 			mutex_unlock(&journal->j_checkpoint_mutex);
1748 		} else
1749 			err = -EIO;
1750 		brelse(journal->j_sb_buffer);
1751 	}
1752 
1753 	if (journal->j_proc_entry)
1754 		jbd2_stats_proc_exit(journal);
1755 	iput(journal->j_inode);
1756 	if (journal->j_revoke)
1757 		jbd2_journal_destroy_revoke(journal);
1758 	if (journal->j_chksum_driver)
1759 		crypto_free_shash(journal->j_chksum_driver);
1760 	kfree(journal->j_wbuf);
1761 	kfree(journal);
1762 
1763 	return err;
1764 }
1765 
1766 
1767 /**
1768  *int jbd2_journal_check_used_features () - Check if features specified are used.
1769  * @journal: Journal to check.
1770  * @compat: bitmask of compatible features
1771  * @ro: bitmask of features that force read-only mount
1772  * @incompat: bitmask of incompatible features
1773  *
1774  * Check whether the journal uses all of a given set of
1775  * features.  Return true (non-zero) if it does.
1776  **/
1777 
1778 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1779 				 unsigned long ro, unsigned long incompat)
1780 {
1781 	journal_superblock_t *sb;
1782 
1783 	if (!compat && !ro && !incompat)
1784 		return 1;
1785 	/* Load journal superblock if it is not loaded yet. */
1786 	if (journal->j_format_version == 0 &&
1787 	    journal_get_superblock(journal) != 0)
1788 		return 0;
1789 	if (journal->j_format_version == 1)
1790 		return 0;
1791 
1792 	sb = journal->j_superblock;
1793 
1794 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1795 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1796 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1797 		return 1;
1798 
1799 	return 0;
1800 }
1801 
1802 /**
1803  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1804  * @journal: Journal to check.
1805  * @compat: bitmask of compatible features
1806  * @ro: bitmask of features that force read-only mount
1807  * @incompat: bitmask of incompatible features
1808  *
1809  * Check whether the journaling code supports the use of
1810  * all of a given set of features on this journal.  Return true
1811  * (non-zero) if it can. */
1812 
1813 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1814 				      unsigned long ro, unsigned long incompat)
1815 {
1816 	if (!compat && !ro && !incompat)
1817 		return 1;
1818 
1819 	/* We can support any known requested features iff the
1820 	 * superblock is in version 2.  Otherwise we fail to support any
1821 	 * extended sb features. */
1822 
1823 	if (journal->j_format_version != 2)
1824 		return 0;
1825 
1826 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1827 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1828 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1829 		return 1;
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1836  * @journal: Journal to act on.
1837  * @compat: bitmask of compatible features
1838  * @ro: bitmask of features that force read-only mount
1839  * @incompat: bitmask of incompatible features
1840  *
1841  * Mark a given journal feature as present on the
1842  * superblock.  Returns true if the requested features could be set.
1843  *
1844  */
1845 
1846 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1847 			  unsigned long ro, unsigned long incompat)
1848 {
1849 #define INCOMPAT_FEATURE_ON(f) \
1850 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1851 #define COMPAT_FEATURE_ON(f) \
1852 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1853 	journal_superblock_t *sb;
1854 
1855 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1856 		return 1;
1857 
1858 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1859 		return 0;
1860 
1861 	/* If enabling v2 checksums, turn on v3 instead */
1862 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1863 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1864 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1865 	}
1866 
1867 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1868 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1869 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1870 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1871 
1872 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1873 		  compat, ro, incompat);
1874 
1875 	sb = journal->j_superblock;
1876 
1877 	/* If enabling v3 checksums, update superblock */
1878 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1879 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1880 		sb->s_feature_compat &=
1881 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1882 
1883 		/* Load the checksum driver */
1884 		if (journal->j_chksum_driver == NULL) {
1885 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1886 								      0, 0);
1887 			if (IS_ERR(journal->j_chksum_driver)) {
1888 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1889 				       "driver.\n");
1890 				journal->j_chksum_driver = NULL;
1891 				return 0;
1892 			}
1893 
1894 			/* Precompute checksum seed for all metadata */
1895 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1896 							   sb->s_uuid,
1897 							   sizeof(sb->s_uuid));
1898 		}
1899 	}
1900 
1901 	/* If enabling v1 checksums, downgrade superblock */
1902 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1903 		sb->s_feature_incompat &=
1904 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1905 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1906 
1907 	sb->s_feature_compat    |= cpu_to_be32(compat);
1908 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1909 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1910 
1911 	return 1;
1912 #undef COMPAT_FEATURE_ON
1913 #undef INCOMPAT_FEATURE_ON
1914 }
1915 
1916 /*
1917  * jbd2_journal_clear_features () - Clear a given journal feature in the
1918  * 				    superblock
1919  * @journal: Journal to act on.
1920  * @compat: bitmask of compatible features
1921  * @ro: bitmask of features that force read-only mount
1922  * @incompat: bitmask of incompatible features
1923  *
1924  * Clear a given journal feature as present on the
1925  * superblock.
1926  */
1927 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1928 				unsigned long ro, unsigned long incompat)
1929 {
1930 	journal_superblock_t *sb;
1931 
1932 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1933 		  compat, ro, incompat);
1934 
1935 	sb = journal->j_superblock;
1936 
1937 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1938 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1939 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1940 }
1941 EXPORT_SYMBOL(jbd2_journal_clear_features);
1942 
1943 /**
1944  * int jbd2_journal_flush () - Flush journal
1945  * @journal: Journal to act on.
1946  *
1947  * Flush all data for a given journal to disk and empty the journal.
1948  * Filesystems can use this when remounting readonly to ensure that
1949  * recovery does not need to happen on remount.
1950  */
1951 
1952 int jbd2_journal_flush(journal_t *journal)
1953 {
1954 	int err = 0;
1955 	transaction_t *transaction = NULL;
1956 
1957 	write_lock(&journal->j_state_lock);
1958 
1959 	/* Force everything buffered to the log... */
1960 	if (journal->j_running_transaction) {
1961 		transaction = journal->j_running_transaction;
1962 		__jbd2_log_start_commit(journal, transaction->t_tid);
1963 	} else if (journal->j_committing_transaction)
1964 		transaction = journal->j_committing_transaction;
1965 
1966 	/* Wait for the log commit to complete... */
1967 	if (transaction) {
1968 		tid_t tid = transaction->t_tid;
1969 
1970 		write_unlock(&journal->j_state_lock);
1971 		jbd2_log_wait_commit(journal, tid);
1972 	} else {
1973 		write_unlock(&journal->j_state_lock);
1974 	}
1975 
1976 	/* ...and flush everything in the log out to disk. */
1977 	spin_lock(&journal->j_list_lock);
1978 	while (!err && journal->j_checkpoint_transactions != NULL) {
1979 		spin_unlock(&journal->j_list_lock);
1980 		mutex_lock_io(&journal->j_checkpoint_mutex);
1981 		err = jbd2_log_do_checkpoint(journal);
1982 		mutex_unlock(&journal->j_checkpoint_mutex);
1983 		spin_lock(&journal->j_list_lock);
1984 	}
1985 	spin_unlock(&journal->j_list_lock);
1986 
1987 	if (is_journal_aborted(journal))
1988 		return -EIO;
1989 
1990 	mutex_lock_io(&journal->j_checkpoint_mutex);
1991 	if (!err) {
1992 		err = jbd2_cleanup_journal_tail(journal);
1993 		if (err < 0) {
1994 			mutex_unlock(&journal->j_checkpoint_mutex);
1995 			goto out;
1996 		}
1997 		err = 0;
1998 	}
1999 
2000 	/* Finally, mark the journal as really needing no recovery.
2001 	 * This sets s_start==0 in the underlying superblock, which is
2002 	 * the magic code for a fully-recovered superblock.  Any future
2003 	 * commits of data to the journal will restore the current
2004 	 * s_start value. */
2005 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2006 	mutex_unlock(&journal->j_checkpoint_mutex);
2007 	write_lock(&journal->j_state_lock);
2008 	J_ASSERT(!journal->j_running_transaction);
2009 	J_ASSERT(!journal->j_committing_transaction);
2010 	J_ASSERT(!journal->j_checkpoint_transactions);
2011 	J_ASSERT(journal->j_head == journal->j_tail);
2012 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2013 	write_unlock(&journal->j_state_lock);
2014 out:
2015 	return err;
2016 }
2017 
2018 /**
2019  * int jbd2_journal_wipe() - Wipe journal contents
2020  * @journal: Journal to act on.
2021  * @write: flag (see below)
2022  *
2023  * Wipe out all of the contents of a journal, safely.  This will produce
2024  * a warning if the journal contains any valid recovery information.
2025  * Must be called between journal_init_*() and jbd2_journal_load().
2026  *
2027  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2028  * we merely suppress recovery.
2029  */
2030 
2031 int jbd2_journal_wipe(journal_t *journal, int write)
2032 {
2033 	int err = 0;
2034 
2035 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2036 
2037 	err = load_superblock(journal);
2038 	if (err)
2039 		return err;
2040 
2041 	if (!journal->j_tail)
2042 		goto no_recovery;
2043 
2044 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2045 		write ? "Clearing" : "Ignoring");
2046 
2047 	err = jbd2_journal_skip_recovery(journal);
2048 	if (write) {
2049 		/* Lock to make assertions happy... */
2050 		mutex_lock(&journal->j_checkpoint_mutex);
2051 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2052 		mutex_unlock(&journal->j_checkpoint_mutex);
2053 	}
2054 
2055  no_recovery:
2056 	return err;
2057 }
2058 
2059 /*
2060  * Journal abort has very specific semantics, which we describe
2061  * for journal abort.
2062  *
2063  * Two internal functions, which provide abort to the jbd layer
2064  * itself are here.
2065  */
2066 
2067 /*
2068  * Quick version for internal journal use (doesn't lock the journal).
2069  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2070  * and don't attempt to make any other journal updates.
2071  */
2072 void __jbd2_journal_abort_hard(journal_t *journal)
2073 {
2074 	transaction_t *transaction;
2075 
2076 	if (journal->j_flags & JBD2_ABORT)
2077 		return;
2078 
2079 	printk(KERN_ERR "Aborting journal on device %s.\n",
2080 	       journal->j_devname);
2081 
2082 	write_lock(&journal->j_state_lock);
2083 	journal->j_flags |= JBD2_ABORT;
2084 	transaction = journal->j_running_transaction;
2085 	if (transaction)
2086 		__jbd2_log_start_commit(journal, transaction->t_tid);
2087 	write_unlock(&journal->j_state_lock);
2088 }
2089 
2090 /* Soft abort: record the abort error status in the journal superblock,
2091  * but don't do any other IO. */
2092 static void __journal_abort_soft (journal_t *journal, int errno)
2093 {
2094 	if (journal->j_flags & JBD2_ABORT)
2095 		return;
2096 
2097 	if (!journal->j_errno)
2098 		journal->j_errno = errno;
2099 
2100 	__jbd2_journal_abort_hard(journal);
2101 
2102 	if (errno) {
2103 		jbd2_journal_update_sb_errno(journal);
2104 		write_lock(&journal->j_state_lock);
2105 		journal->j_flags |= JBD2_REC_ERR;
2106 		write_unlock(&journal->j_state_lock);
2107 	}
2108 }
2109 
2110 /**
2111  * void jbd2_journal_abort () - Shutdown the journal immediately.
2112  * @journal: the journal to shutdown.
2113  * @errno:   an error number to record in the journal indicating
2114  *           the reason for the shutdown.
2115  *
2116  * Perform a complete, immediate shutdown of the ENTIRE
2117  * journal (not of a single transaction).  This operation cannot be
2118  * undone without closing and reopening the journal.
2119  *
2120  * The jbd2_journal_abort function is intended to support higher level error
2121  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2122  * mode.
2123  *
2124  * Journal abort has very specific semantics.  Any existing dirty,
2125  * unjournaled buffers in the main filesystem will still be written to
2126  * disk by bdflush, but the journaling mechanism will be suspended
2127  * immediately and no further transaction commits will be honoured.
2128  *
2129  * Any dirty, journaled buffers will be written back to disk without
2130  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2131  * filesystem, but we _do_ attempt to leave as much data as possible
2132  * behind for fsck to use for cleanup.
2133  *
2134  * Any attempt to get a new transaction handle on a journal which is in
2135  * ABORT state will just result in an -EROFS error return.  A
2136  * jbd2_journal_stop on an existing handle will return -EIO if we have
2137  * entered abort state during the update.
2138  *
2139  * Recursive transactions are not disturbed by journal abort until the
2140  * final jbd2_journal_stop, which will receive the -EIO error.
2141  *
2142  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2143  * which will be recorded (if possible) in the journal superblock.  This
2144  * allows a client to record failure conditions in the middle of a
2145  * transaction without having to complete the transaction to record the
2146  * failure to disk.  ext3_error, for example, now uses this
2147  * functionality.
2148  *
2149  * Errors which originate from within the journaling layer will NOT
2150  * supply an errno; a null errno implies that absolutely no further
2151  * writes are done to the journal (unless there are any already in
2152  * progress).
2153  *
2154  */
2155 
2156 void jbd2_journal_abort(journal_t *journal, int errno)
2157 {
2158 	__journal_abort_soft(journal, errno);
2159 }
2160 
2161 /**
2162  * int jbd2_journal_errno () - returns the journal's error state.
2163  * @journal: journal to examine.
2164  *
2165  * This is the errno number set with jbd2_journal_abort(), the last
2166  * time the journal was mounted - if the journal was stopped
2167  * without calling abort this will be 0.
2168  *
2169  * If the journal has been aborted on this mount time -EROFS will
2170  * be returned.
2171  */
2172 int jbd2_journal_errno(journal_t *journal)
2173 {
2174 	int err;
2175 
2176 	read_lock(&journal->j_state_lock);
2177 	if (journal->j_flags & JBD2_ABORT)
2178 		err = -EROFS;
2179 	else
2180 		err = journal->j_errno;
2181 	read_unlock(&journal->j_state_lock);
2182 	return err;
2183 }
2184 
2185 /**
2186  * int jbd2_journal_clear_err () - clears the journal's error state
2187  * @journal: journal to act on.
2188  *
2189  * An error must be cleared or acked to take a FS out of readonly
2190  * mode.
2191  */
2192 int jbd2_journal_clear_err(journal_t *journal)
2193 {
2194 	int err = 0;
2195 
2196 	write_lock(&journal->j_state_lock);
2197 	if (journal->j_flags & JBD2_ABORT)
2198 		err = -EROFS;
2199 	else
2200 		journal->j_errno = 0;
2201 	write_unlock(&journal->j_state_lock);
2202 	return err;
2203 }
2204 
2205 /**
2206  * void jbd2_journal_ack_err() - Ack journal err.
2207  * @journal: journal to act on.
2208  *
2209  * An error must be cleared or acked to take a FS out of readonly
2210  * mode.
2211  */
2212 void jbd2_journal_ack_err(journal_t *journal)
2213 {
2214 	write_lock(&journal->j_state_lock);
2215 	if (journal->j_errno)
2216 		journal->j_flags |= JBD2_ACK_ERR;
2217 	write_unlock(&journal->j_state_lock);
2218 }
2219 
2220 int jbd2_journal_blocks_per_page(struct inode *inode)
2221 {
2222 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2223 }
2224 
2225 /*
2226  * helper functions to deal with 32 or 64bit block numbers.
2227  */
2228 size_t journal_tag_bytes(journal_t *journal)
2229 {
2230 	size_t sz;
2231 
2232 	if (jbd2_has_feature_csum3(journal))
2233 		return sizeof(journal_block_tag3_t);
2234 
2235 	sz = sizeof(journal_block_tag_t);
2236 
2237 	if (jbd2_has_feature_csum2(journal))
2238 		sz += sizeof(__u16);
2239 
2240 	if (jbd2_has_feature_64bit(journal))
2241 		return sz;
2242 	else
2243 		return sz - sizeof(__u32);
2244 }
2245 
2246 /*
2247  * JBD memory management
2248  *
2249  * These functions are used to allocate block-sized chunks of memory
2250  * used for making copies of buffer_head data.  Very often it will be
2251  * page-sized chunks of data, but sometimes it will be in
2252  * sub-page-size chunks.  (For example, 16k pages on Power systems
2253  * with a 4k block file system.)  For blocks smaller than a page, we
2254  * use a SLAB allocator.  There are slab caches for each block size,
2255  * which are allocated at mount time, if necessary, and we only free
2256  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2257  * this reason we don't need to a mutex to protect access to
2258  * jbd2_slab[] allocating or releasing memory; only in
2259  * jbd2_journal_create_slab().
2260  */
2261 #define JBD2_MAX_SLABS 8
2262 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2263 
2264 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2265 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2266 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2267 };
2268 
2269 
2270 static void jbd2_journal_destroy_slabs(void)
2271 {
2272 	int i;
2273 
2274 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2275 		if (jbd2_slab[i])
2276 			kmem_cache_destroy(jbd2_slab[i]);
2277 		jbd2_slab[i] = NULL;
2278 	}
2279 }
2280 
2281 static int jbd2_journal_create_slab(size_t size)
2282 {
2283 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2284 	int i = order_base_2(size) - 10;
2285 	size_t slab_size;
2286 
2287 	if (size == PAGE_SIZE)
2288 		return 0;
2289 
2290 	if (i >= JBD2_MAX_SLABS)
2291 		return -EINVAL;
2292 
2293 	if (unlikely(i < 0))
2294 		i = 0;
2295 	mutex_lock(&jbd2_slab_create_mutex);
2296 	if (jbd2_slab[i]) {
2297 		mutex_unlock(&jbd2_slab_create_mutex);
2298 		return 0;	/* Already created */
2299 	}
2300 
2301 	slab_size = 1 << (i+10);
2302 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2303 					 slab_size, 0, NULL);
2304 	mutex_unlock(&jbd2_slab_create_mutex);
2305 	if (!jbd2_slab[i]) {
2306 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2307 		return -ENOMEM;
2308 	}
2309 	return 0;
2310 }
2311 
2312 static struct kmem_cache *get_slab(size_t size)
2313 {
2314 	int i = order_base_2(size) - 10;
2315 
2316 	BUG_ON(i >= JBD2_MAX_SLABS);
2317 	if (unlikely(i < 0))
2318 		i = 0;
2319 	BUG_ON(jbd2_slab[i] == NULL);
2320 	return jbd2_slab[i];
2321 }
2322 
2323 void *jbd2_alloc(size_t size, gfp_t flags)
2324 {
2325 	void *ptr;
2326 
2327 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2328 
2329 	if (size < PAGE_SIZE)
2330 		ptr = kmem_cache_alloc(get_slab(size), flags);
2331 	else
2332 		ptr = (void *)__get_free_pages(flags, get_order(size));
2333 
2334 	/* Check alignment; SLUB has gotten this wrong in the past,
2335 	 * and this can lead to user data corruption! */
2336 	BUG_ON(((unsigned long) ptr) & (size-1));
2337 
2338 	return ptr;
2339 }
2340 
2341 void jbd2_free(void *ptr, size_t size)
2342 {
2343 	if (size < PAGE_SIZE)
2344 		kmem_cache_free(get_slab(size), ptr);
2345 	else
2346 		free_pages((unsigned long)ptr, get_order(size));
2347 };
2348 
2349 /*
2350  * Journal_head storage management
2351  */
2352 static struct kmem_cache *jbd2_journal_head_cache;
2353 #ifdef CONFIG_JBD2_DEBUG
2354 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2355 #endif
2356 
2357 static int jbd2_journal_init_journal_head_cache(void)
2358 {
2359 	int retval;
2360 
2361 	J_ASSERT(jbd2_journal_head_cache == NULL);
2362 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2363 				sizeof(struct journal_head),
2364 				0,		/* offset */
2365 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2366 				NULL);		/* ctor */
2367 	retval = 0;
2368 	if (!jbd2_journal_head_cache) {
2369 		retval = -ENOMEM;
2370 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2371 	}
2372 	return retval;
2373 }
2374 
2375 static void jbd2_journal_destroy_journal_head_cache(void)
2376 {
2377 	if (jbd2_journal_head_cache) {
2378 		kmem_cache_destroy(jbd2_journal_head_cache);
2379 		jbd2_journal_head_cache = NULL;
2380 	}
2381 }
2382 
2383 /*
2384  * journal_head splicing and dicing
2385  */
2386 static struct journal_head *journal_alloc_journal_head(void)
2387 {
2388 	struct journal_head *ret;
2389 
2390 #ifdef CONFIG_JBD2_DEBUG
2391 	atomic_inc(&nr_journal_heads);
2392 #endif
2393 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2394 	if (!ret) {
2395 		jbd_debug(1, "out of memory for journal_head\n");
2396 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2397 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2398 				GFP_NOFS | __GFP_NOFAIL);
2399 	}
2400 	return ret;
2401 }
2402 
2403 static void journal_free_journal_head(struct journal_head *jh)
2404 {
2405 #ifdef CONFIG_JBD2_DEBUG
2406 	atomic_dec(&nr_journal_heads);
2407 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2408 #endif
2409 	kmem_cache_free(jbd2_journal_head_cache, jh);
2410 }
2411 
2412 /*
2413  * A journal_head is attached to a buffer_head whenever JBD has an
2414  * interest in the buffer.
2415  *
2416  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2417  * is set.  This bit is tested in core kernel code where we need to take
2418  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2419  * there.
2420  *
2421  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2422  *
2423  * When a buffer has its BH_JBD bit set it is immune from being released by
2424  * core kernel code, mainly via ->b_count.
2425  *
2426  * A journal_head is detached from its buffer_head when the journal_head's
2427  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2428  * transaction (b_cp_transaction) hold their references to b_jcount.
2429  *
2430  * Various places in the kernel want to attach a journal_head to a buffer_head
2431  * _before_ attaching the journal_head to a transaction.  To protect the
2432  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2433  * journal_head's b_jcount refcount by one.  The caller must call
2434  * jbd2_journal_put_journal_head() to undo this.
2435  *
2436  * So the typical usage would be:
2437  *
2438  *	(Attach a journal_head if needed.  Increments b_jcount)
2439  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2440  *	...
2441  *      (Get another reference for transaction)
2442  *	jbd2_journal_grab_journal_head(bh);
2443  *	jh->b_transaction = xxx;
2444  *	(Put original reference)
2445  *	jbd2_journal_put_journal_head(jh);
2446  */
2447 
2448 /*
2449  * Give a buffer_head a journal_head.
2450  *
2451  * May sleep.
2452  */
2453 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2454 {
2455 	struct journal_head *jh;
2456 	struct journal_head *new_jh = NULL;
2457 
2458 repeat:
2459 	if (!buffer_jbd(bh))
2460 		new_jh = journal_alloc_journal_head();
2461 
2462 	jbd_lock_bh_journal_head(bh);
2463 	if (buffer_jbd(bh)) {
2464 		jh = bh2jh(bh);
2465 	} else {
2466 		J_ASSERT_BH(bh,
2467 			(atomic_read(&bh->b_count) > 0) ||
2468 			(bh->b_page && bh->b_page->mapping));
2469 
2470 		if (!new_jh) {
2471 			jbd_unlock_bh_journal_head(bh);
2472 			goto repeat;
2473 		}
2474 
2475 		jh = new_jh;
2476 		new_jh = NULL;		/* We consumed it */
2477 		set_buffer_jbd(bh);
2478 		bh->b_private = jh;
2479 		jh->b_bh = bh;
2480 		get_bh(bh);
2481 		BUFFER_TRACE(bh, "added journal_head");
2482 	}
2483 	jh->b_jcount++;
2484 	jbd_unlock_bh_journal_head(bh);
2485 	if (new_jh)
2486 		journal_free_journal_head(new_jh);
2487 	return bh->b_private;
2488 }
2489 
2490 /*
2491  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2492  * having a journal_head, return NULL
2493  */
2494 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2495 {
2496 	struct journal_head *jh = NULL;
2497 
2498 	jbd_lock_bh_journal_head(bh);
2499 	if (buffer_jbd(bh)) {
2500 		jh = bh2jh(bh);
2501 		jh->b_jcount++;
2502 	}
2503 	jbd_unlock_bh_journal_head(bh);
2504 	return jh;
2505 }
2506 
2507 static void __journal_remove_journal_head(struct buffer_head *bh)
2508 {
2509 	struct journal_head *jh = bh2jh(bh);
2510 
2511 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2512 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2513 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2514 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2515 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2516 	J_ASSERT_BH(bh, buffer_jbd(bh));
2517 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2518 	BUFFER_TRACE(bh, "remove journal_head");
2519 	if (jh->b_frozen_data) {
2520 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2521 		jbd2_free(jh->b_frozen_data, bh->b_size);
2522 	}
2523 	if (jh->b_committed_data) {
2524 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2525 		jbd2_free(jh->b_committed_data, bh->b_size);
2526 	}
2527 	bh->b_private = NULL;
2528 	jh->b_bh = NULL;	/* debug, really */
2529 	clear_buffer_jbd(bh);
2530 	journal_free_journal_head(jh);
2531 }
2532 
2533 /*
2534  * Drop a reference on the passed journal_head.  If it fell to zero then
2535  * release the journal_head from the buffer_head.
2536  */
2537 void jbd2_journal_put_journal_head(struct journal_head *jh)
2538 {
2539 	struct buffer_head *bh = jh2bh(jh);
2540 
2541 	jbd_lock_bh_journal_head(bh);
2542 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2543 	--jh->b_jcount;
2544 	if (!jh->b_jcount) {
2545 		__journal_remove_journal_head(bh);
2546 		jbd_unlock_bh_journal_head(bh);
2547 		__brelse(bh);
2548 	} else
2549 		jbd_unlock_bh_journal_head(bh);
2550 }
2551 
2552 /*
2553  * Initialize jbd inode head
2554  */
2555 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2556 {
2557 	jinode->i_transaction = NULL;
2558 	jinode->i_next_transaction = NULL;
2559 	jinode->i_vfs_inode = inode;
2560 	jinode->i_flags = 0;
2561 	INIT_LIST_HEAD(&jinode->i_list);
2562 }
2563 
2564 /*
2565  * Function to be called before we start removing inode from memory (i.e.,
2566  * clear_inode() is a fine place to be called from). It removes inode from
2567  * transaction's lists.
2568  */
2569 void jbd2_journal_release_jbd_inode(journal_t *journal,
2570 				    struct jbd2_inode *jinode)
2571 {
2572 	if (!journal)
2573 		return;
2574 restart:
2575 	spin_lock(&journal->j_list_lock);
2576 	/* Is commit writing out inode - we have to wait */
2577 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2578 		wait_queue_head_t *wq;
2579 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2580 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2581 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2582 		spin_unlock(&journal->j_list_lock);
2583 		schedule();
2584 		finish_wait(wq, &wait.wq_entry);
2585 		goto restart;
2586 	}
2587 
2588 	if (jinode->i_transaction) {
2589 		list_del(&jinode->i_list);
2590 		jinode->i_transaction = NULL;
2591 	}
2592 	spin_unlock(&journal->j_list_lock);
2593 }
2594 
2595 
2596 #ifdef CONFIG_PROC_FS
2597 
2598 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2599 
2600 static void __init jbd2_create_jbd_stats_proc_entry(void)
2601 {
2602 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2603 }
2604 
2605 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2606 {
2607 	if (proc_jbd2_stats)
2608 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2609 }
2610 
2611 #else
2612 
2613 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2614 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2615 
2616 #endif
2617 
2618 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2619 
2620 static int __init jbd2_journal_init_handle_cache(void)
2621 {
2622 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2623 	if (jbd2_handle_cache == NULL) {
2624 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2625 		return -ENOMEM;
2626 	}
2627 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2628 	if (jbd2_inode_cache == NULL) {
2629 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2630 		kmem_cache_destroy(jbd2_handle_cache);
2631 		return -ENOMEM;
2632 	}
2633 	return 0;
2634 }
2635 
2636 static void jbd2_journal_destroy_handle_cache(void)
2637 {
2638 	if (jbd2_handle_cache)
2639 		kmem_cache_destroy(jbd2_handle_cache);
2640 	if (jbd2_inode_cache)
2641 		kmem_cache_destroy(jbd2_inode_cache);
2642 
2643 }
2644 
2645 /*
2646  * Module startup and shutdown
2647  */
2648 
2649 static int __init journal_init_caches(void)
2650 {
2651 	int ret;
2652 
2653 	ret = jbd2_journal_init_revoke_caches();
2654 	if (ret == 0)
2655 		ret = jbd2_journal_init_journal_head_cache();
2656 	if (ret == 0)
2657 		ret = jbd2_journal_init_handle_cache();
2658 	if (ret == 0)
2659 		ret = jbd2_journal_init_transaction_cache();
2660 	return ret;
2661 }
2662 
2663 static void jbd2_journal_destroy_caches(void)
2664 {
2665 	jbd2_journal_destroy_revoke_caches();
2666 	jbd2_journal_destroy_journal_head_cache();
2667 	jbd2_journal_destroy_handle_cache();
2668 	jbd2_journal_destroy_transaction_cache();
2669 	jbd2_journal_destroy_slabs();
2670 }
2671 
2672 static int __init journal_init(void)
2673 {
2674 	int ret;
2675 
2676 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2677 
2678 	ret = journal_init_caches();
2679 	if (ret == 0) {
2680 		jbd2_create_jbd_stats_proc_entry();
2681 	} else {
2682 		jbd2_journal_destroy_caches();
2683 	}
2684 	return ret;
2685 }
2686 
2687 static void __exit journal_exit(void)
2688 {
2689 #ifdef CONFIG_JBD2_DEBUG
2690 	int n = atomic_read(&nr_journal_heads);
2691 	if (n)
2692 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2693 #endif
2694 	jbd2_remove_jbd_stats_proc_entry();
2695 	jbd2_journal_destroy_caches();
2696 }
2697 
2698 MODULE_LICENSE("GPL");
2699 module_init(journal_init);
2700 module_exit(journal_exit);
2701 
2702