1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include "internal.h" 22 23 /* 24 * Inode locking rules: 25 * 26 * inode->i_lock protects: 27 * inode->i_state, inode->i_hash, __iget() 28 * Inode LRU list locks protect: 29 * inode->i_sb->s_inode_lru, inode->i_lru 30 * inode_sb_list_lock protects: 31 * sb->s_inodes, inode->i_sb_list 32 * bdi->wb.list_lock protects: 33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 34 * inode_hash_lock protects: 35 * inode_hashtable, inode->i_hash 36 * 37 * Lock ordering: 38 * 39 * inode_sb_list_lock 40 * inode->i_lock 41 * Inode LRU list locks 42 * 43 * bdi->wb.list_lock 44 * inode->i_lock 45 * 46 * inode_hash_lock 47 * inode_sb_list_lock 48 * inode->i_lock 49 * 50 * iunique_lock 51 * inode_hash_lock 52 */ 53 54 static unsigned int i_hash_mask __read_mostly; 55 static unsigned int i_hash_shift __read_mostly; 56 static struct hlist_head *inode_hashtable __read_mostly; 57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 58 59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 60 61 /* 62 * Empty aops. Can be used for the cases where the user does not 63 * define any of the address_space operations. 64 */ 65 const struct address_space_operations empty_aops = { 66 }; 67 EXPORT_SYMBOL(empty_aops); 68 69 /* 70 * Statistics gathering.. 71 */ 72 struct inodes_stat_t inodes_stat; 73 74 static DEFINE_PER_CPU(unsigned long, nr_inodes); 75 static DEFINE_PER_CPU(unsigned long, nr_unused); 76 77 static struct kmem_cache *inode_cachep __read_mostly; 78 79 static long get_nr_inodes(void) 80 { 81 int i; 82 long sum = 0; 83 for_each_possible_cpu(i) 84 sum += per_cpu(nr_inodes, i); 85 return sum < 0 ? 0 : sum; 86 } 87 88 static inline long get_nr_inodes_unused(void) 89 { 90 int i; 91 long sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_unused, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 long get_nr_dirty_inodes(void) 98 { 99 /* not actually dirty inodes, but a wild approximation */ 100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 101 return nr_dirty > 0 ? nr_dirty : 0; 102 } 103 104 /* 105 * Handle nr_inode sysctl 106 */ 107 #ifdef CONFIG_SYSCTL 108 int proc_nr_inodes(struct ctl_table *table, int write, 109 void __user *buffer, size_t *lenp, loff_t *ppos) 110 { 111 inodes_stat.nr_inodes = get_nr_inodes(); 112 inodes_stat.nr_unused = get_nr_inodes_unused(); 113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 114 } 115 #endif 116 117 /** 118 * inode_init_always - perform inode structure intialisation 119 * @sb: superblock inode belongs to 120 * @inode: inode to initialise 121 * 122 * These are initializations that need to be done on every inode 123 * allocation as the fields are not initialised by slab allocation. 124 */ 125 int inode_init_always(struct super_block *sb, struct inode *inode) 126 { 127 static const struct inode_operations empty_iops; 128 static const struct file_operations empty_fops; 129 struct address_space *const mapping = &inode->i_data; 130 131 inode->i_sb = sb; 132 inode->i_blkbits = sb->s_blocksize_bits; 133 inode->i_flags = 0; 134 atomic_set(&inode->i_count, 1); 135 inode->i_op = &empty_iops; 136 inode->i_fop = &empty_fops; 137 inode->__i_nlink = 1; 138 inode->i_opflags = 0; 139 i_uid_write(inode, 0); 140 i_gid_write(inode, 0); 141 atomic_set(&inode->i_writecount, 0); 142 inode->i_size = 0; 143 inode->i_blocks = 0; 144 inode->i_bytes = 0; 145 inode->i_generation = 0; 146 inode->i_pipe = NULL; 147 inode->i_bdev = NULL; 148 inode->i_cdev = NULL; 149 inode->i_rdev = 0; 150 inode->dirtied_when = 0; 151 152 if (security_inode_alloc(inode)) 153 goto out; 154 spin_lock_init(&inode->i_lock); 155 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 156 157 mutex_init(&inode->i_mutex); 158 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 159 160 atomic_set(&inode->i_dio_count, 0); 161 162 mapping->a_ops = &empty_aops; 163 mapping->host = inode; 164 mapping->flags = 0; 165 atomic_set(&mapping->i_mmap_writable, 0); 166 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 167 mapping->private_data = NULL; 168 mapping->backing_dev_info = &default_backing_dev_info; 169 mapping->writeback_index = 0; 170 171 /* 172 * If the block_device provides a backing_dev_info for client 173 * inodes then use that. Otherwise the inode share the bdev's 174 * backing_dev_info. 175 */ 176 if (sb->s_bdev) { 177 struct backing_dev_info *bdi; 178 179 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 180 mapping->backing_dev_info = bdi; 181 } 182 inode->i_private = NULL; 183 inode->i_mapping = mapping; 184 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 185 #ifdef CONFIG_FS_POSIX_ACL 186 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 187 #endif 188 189 #ifdef CONFIG_FSNOTIFY 190 inode->i_fsnotify_mask = 0; 191 #endif 192 193 this_cpu_inc(nr_inodes); 194 195 return 0; 196 out: 197 return -ENOMEM; 198 } 199 EXPORT_SYMBOL(inode_init_always); 200 201 static struct inode *alloc_inode(struct super_block *sb) 202 { 203 struct inode *inode; 204 205 if (sb->s_op->alloc_inode) 206 inode = sb->s_op->alloc_inode(sb); 207 else 208 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 209 210 if (!inode) 211 return NULL; 212 213 if (unlikely(inode_init_always(sb, inode))) { 214 if (inode->i_sb->s_op->destroy_inode) 215 inode->i_sb->s_op->destroy_inode(inode); 216 else 217 kmem_cache_free(inode_cachep, inode); 218 return NULL; 219 } 220 221 return inode; 222 } 223 224 void free_inode_nonrcu(struct inode *inode) 225 { 226 kmem_cache_free(inode_cachep, inode); 227 } 228 EXPORT_SYMBOL(free_inode_nonrcu); 229 230 void __destroy_inode(struct inode *inode) 231 { 232 BUG_ON(inode_has_buffers(inode)); 233 security_inode_free(inode); 234 fsnotify_inode_delete(inode); 235 if (!inode->i_nlink) { 236 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 237 atomic_long_dec(&inode->i_sb->s_remove_count); 238 } 239 240 #ifdef CONFIG_FS_POSIX_ACL 241 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 242 posix_acl_release(inode->i_acl); 243 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 244 posix_acl_release(inode->i_default_acl); 245 #endif 246 this_cpu_dec(nr_inodes); 247 } 248 EXPORT_SYMBOL(__destroy_inode); 249 250 static void i_callback(struct rcu_head *head) 251 { 252 struct inode *inode = container_of(head, struct inode, i_rcu); 253 kmem_cache_free(inode_cachep, inode); 254 } 255 256 static void destroy_inode(struct inode *inode) 257 { 258 BUG_ON(!list_empty(&inode->i_lru)); 259 __destroy_inode(inode); 260 if (inode->i_sb->s_op->destroy_inode) 261 inode->i_sb->s_op->destroy_inode(inode); 262 else 263 call_rcu(&inode->i_rcu, i_callback); 264 } 265 266 /** 267 * drop_nlink - directly drop an inode's link count 268 * @inode: inode 269 * 270 * This is a low-level filesystem helper to replace any 271 * direct filesystem manipulation of i_nlink. In cases 272 * where we are attempting to track writes to the 273 * filesystem, a decrement to zero means an imminent 274 * write when the file is truncated and actually unlinked 275 * on the filesystem. 276 */ 277 void drop_nlink(struct inode *inode) 278 { 279 WARN_ON(inode->i_nlink == 0); 280 inode->__i_nlink--; 281 if (!inode->i_nlink) 282 atomic_long_inc(&inode->i_sb->s_remove_count); 283 } 284 EXPORT_SYMBOL(drop_nlink); 285 286 /** 287 * clear_nlink - directly zero an inode's link count 288 * @inode: inode 289 * 290 * This is a low-level filesystem helper to replace any 291 * direct filesystem manipulation of i_nlink. See 292 * drop_nlink() for why we care about i_nlink hitting zero. 293 */ 294 void clear_nlink(struct inode *inode) 295 { 296 if (inode->i_nlink) { 297 inode->__i_nlink = 0; 298 atomic_long_inc(&inode->i_sb->s_remove_count); 299 } 300 } 301 EXPORT_SYMBOL(clear_nlink); 302 303 /** 304 * set_nlink - directly set an inode's link count 305 * @inode: inode 306 * @nlink: new nlink (should be non-zero) 307 * 308 * This is a low-level filesystem helper to replace any 309 * direct filesystem manipulation of i_nlink. 310 */ 311 void set_nlink(struct inode *inode, unsigned int nlink) 312 { 313 if (!nlink) { 314 clear_nlink(inode); 315 } else { 316 /* Yes, some filesystems do change nlink from zero to one */ 317 if (inode->i_nlink == 0) 318 atomic_long_dec(&inode->i_sb->s_remove_count); 319 320 inode->__i_nlink = nlink; 321 } 322 } 323 EXPORT_SYMBOL(set_nlink); 324 325 /** 326 * inc_nlink - directly increment an inode's link count 327 * @inode: inode 328 * 329 * This is a low-level filesystem helper to replace any 330 * direct filesystem manipulation of i_nlink. Currently, 331 * it is only here for parity with dec_nlink(). 332 */ 333 void inc_nlink(struct inode *inode) 334 { 335 if (unlikely(inode->i_nlink == 0)) { 336 WARN_ON(!(inode->i_state & I_LINKABLE)); 337 atomic_long_dec(&inode->i_sb->s_remove_count); 338 } 339 340 inode->__i_nlink++; 341 } 342 EXPORT_SYMBOL(inc_nlink); 343 344 void address_space_init_once(struct address_space *mapping) 345 { 346 memset(mapping, 0, sizeof(*mapping)); 347 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 348 spin_lock_init(&mapping->tree_lock); 349 init_rwsem(&mapping->i_mmap_rwsem); 350 INIT_LIST_HEAD(&mapping->private_list); 351 spin_lock_init(&mapping->private_lock); 352 mapping->i_mmap = RB_ROOT; 353 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 354 } 355 EXPORT_SYMBOL(address_space_init_once); 356 357 /* 358 * These are initializations that only need to be done 359 * once, because the fields are idempotent across use 360 * of the inode, so let the slab aware of that. 361 */ 362 void inode_init_once(struct inode *inode) 363 { 364 memset(inode, 0, sizeof(*inode)); 365 INIT_HLIST_NODE(&inode->i_hash); 366 INIT_LIST_HEAD(&inode->i_devices); 367 INIT_LIST_HEAD(&inode->i_wb_list); 368 INIT_LIST_HEAD(&inode->i_lru); 369 address_space_init_once(&inode->i_data); 370 i_size_ordered_init(inode); 371 #ifdef CONFIG_FSNOTIFY 372 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 373 #endif 374 } 375 EXPORT_SYMBOL(inode_init_once); 376 377 static void init_once(void *foo) 378 { 379 struct inode *inode = (struct inode *) foo; 380 381 inode_init_once(inode); 382 } 383 384 /* 385 * inode->i_lock must be held 386 */ 387 void __iget(struct inode *inode) 388 { 389 atomic_inc(&inode->i_count); 390 } 391 392 /* 393 * get additional reference to inode; caller must already hold one. 394 */ 395 void ihold(struct inode *inode) 396 { 397 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 398 } 399 EXPORT_SYMBOL(ihold); 400 401 static void inode_lru_list_add(struct inode *inode) 402 { 403 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 404 this_cpu_inc(nr_unused); 405 } 406 407 /* 408 * Add inode to LRU if needed (inode is unused and clean). 409 * 410 * Needs inode->i_lock held. 411 */ 412 void inode_add_lru(struct inode *inode) 413 { 414 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) && 415 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE) 416 inode_lru_list_add(inode); 417 } 418 419 420 static void inode_lru_list_del(struct inode *inode) 421 { 422 423 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 424 this_cpu_dec(nr_unused); 425 } 426 427 /** 428 * inode_sb_list_add - add inode to the superblock list of inodes 429 * @inode: inode to add 430 */ 431 void inode_sb_list_add(struct inode *inode) 432 { 433 spin_lock(&inode_sb_list_lock); 434 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 435 spin_unlock(&inode_sb_list_lock); 436 } 437 EXPORT_SYMBOL_GPL(inode_sb_list_add); 438 439 static inline void inode_sb_list_del(struct inode *inode) 440 { 441 if (!list_empty(&inode->i_sb_list)) { 442 spin_lock(&inode_sb_list_lock); 443 list_del_init(&inode->i_sb_list); 444 spin_unlock(&inode_sb_list_lock); 445 } 446 } 447 448 static unsigned long hash(struct super_block *sb, unsigned long hashval) 449 { 450 unsigned long tmp; 451 452 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 453 L1_CACHE_BYTES; 454 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 455 return tmp & i_hash_mask; 456 } 457 458 /** 459 * __insert_inode_hash - hash an inode 460 * @inode: unhashed inode 461 * @hashval: unsigned long value used to locate this object in the 462 * inode_hashtable. 463 * 464 * Add an inode to the inode hash for this superblock. 465 */ 466 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 467 { 468 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 469 470 spin_lock(&inode_hash_lock); 471 spin_lock(&inode->i_lock); 472 hlist_add_head(&inode->i_hash, b); 473 spin_unlock(&inode->i_lock); 474 spin_unlock(&inode_hash_lock); 475 } 476 EXPORT_SYMBOL(__insert_inode_hash); 477 478 /** 479 * __remove_inode_hash - remove an inode from the hash 480 * @inode: inode to unhash 481 * 482 * Remove an inode from the superblock. 483 */ 484 void __remove_inode_hash(struct inode *inode) 485 { 486 spin_lock(&inode_hash_lock); 487 spin_lock(&inode->i_lock); 488 hlist_del_init(&inode->i_hash); 489 spin_unlock(&inode->i_lock); 490 spin_unlock(&inode_hash_lock); 491 } 492 EXPORT_SYMBOL(__remove_inode_hash); 493 494 void clear_inode(struct inode *inode) 495 { 496 might_sleep(); 497 /* 498 * We have to cycle tree_lock here because reclaim can be still in the 499 * process of removing the last page (in __delete_from_page_cache()) 500 * and we must not free mapping under it. 501 */ 502 spin_lock_irq(&inode->i_data.tree_lock); 503 BUG_ON(inode->i_data.nrpages); 504 BUG_ON(inode->i_data.nrshadows); 505 spin_unlock_irq(&inode->i_data.tree_lock); 506 BUG_ON(!list_empty(&inode->i_data.private_list)); 507 BUG_ON(!(inode->i_state & I_FREEING)); 508 BUG_ON(inode->i_state & I_CLEAR); 509 /* don't need i_lock here, no concurrent mods to i_state */ 510 inode->i_state = I_FREEING | I_CLEAR; 511 } 512 EXPORT_SYMBOL(clear_inode); 513 514 /* 515 * Free the inode passed in, removing it from the lists it is still connected 516 * to. We remove any pages still attached to the inode and wait for any IO that 517 * is still in progress before finally destroying the inode. 518 * 519 * An inode must already be marked I_FREEING so that we avoid the inode being 520 * moved back onto lists if we race with other code that manipulates the lists 521 * (e.g. writeback_single_inode). The caller is responsible for setting this. 522 * 523 * An inode must already be removed from the LRU list before being evicted from 524 * the cache. This should occur atomically with setting the I_FREEING state 525 * flag, so no inodes here should ever be on the LRU when being evicted. 526 */ 527 static void evict(struct inode *inode) 528 { 529 const struct super_operations *op = inode->i_sb->s_op; 530 531 BUG_ON(!(inode->i_state & I_FREEING)); 532 BUG_ON(!list_empty(&inode->i_lru)); 533 534 if (!list_empty(&inode->i_wb_list)) 535 inode_wb_list_del(inode); 536 537 inode_sb_list_del(inode); 538 539 /* 540 * Wait for flusher thread to be done with the inode so that filesystem 541 * does not start destroying it while writeback is still running. Since 542 * the inode has I_FREEING set, flusher thread won't start new work on 543 * the inode. We just have to wait for running writeback to finish. 544 */ 545 inode_wait_for_writeback(inode); 546 547 if (op->evict_inode) { 548 op->evict_inode(inode); 549 } else { 550 truncate_inode_pages_final(&inode->i_data); 551 clear_inode(inode); 552 } 553 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 554 bd_forget(inode); 555 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 556 cd_forget(inode); 557 558 remove_inode_hash(inode); 559 560 spin_lock(&inode->i_lock); 561 wake_up_bit(&inode->i_state, __I_NEW); 562 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 563 spin_unlock(&inode->i_lock); 564 565 destroy_inode(inode); 566 } 567 568 /* 569 * dispose_list - dispose of the contents of a local list 570 * @head: the head of the list to free 571 * 572 * Dispose-list gets a local list with local inodes in it, so it doesn't 573 * need to worry about list corruption and SMP locks. 574 */ 575 static void dispose_list(struct list_head *head) 576 { 577 while (!list_empty(head)) { 578 struct inode *inode; 579 580 inode = list_first_entry(head, struct inode, i_lru); 581 list_del_init(&inode->i_lru); 582 583 evict(inode); 584 } 585 } 586 587 /** 588 * evict_inodes - evict all evictable inodes for a superblock 589 * @sb: superblock to operate on 590 * 591 * Make sure that no inodes with zero refcount are retained. This is 592 * called by superblock shutdown after having MS_ACTIVE flag removed, 593 * so any inode reaching zero refcount during or after that call will 594 * be immediately evicted. 595 */ 596 void evict_inodes(struct super_block *sb) 597 { 598 struct inode *inode, *next; 599 LIST_HEAD(dispose); 600 601 spin_lock(&inode_sb_list_lock); 602 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 603 if (atomic_read(&inode->i_count)) 604 continue; 605 606 spin_lock(&inode->i_lock); 607 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 608 spin_unlock(&inode->i_lock); 609 continue; 610 } 611 612 inode->i_state |= I_FREEING; 613 inode_lru_list_del(inode); 614 spin_unlock(&inode->i_lock); 615 list_add(&inode->i_lru, &dispose); 616 } 617 spin_unlock(&inode_sb_list_lock); 618 619 dispose_list(&dispose); 620 } 621 622 /** 623 * invalidate_inodes - attempt to free all inodes on a superblock 624 * @sb: superblock to operate on 625 * @kill_dirty: flag to guide handling of dirty inodes 626 * 627 * Attempts to free all inodes for a given superblock. If there were any 628 * busy inodes return a non-zero value, else zero. 629 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 630 * them as busy. 631 */ 632 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 633 { 634 int busy = 0; 635 struct inode *inode, *next; 636 LIST_HEAD(dispose); 637 638 spin_lock(&inode_sb_list_lock); 639 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 640 spin_lock(&inode->i_lock); 641 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 642 spin_unlock(&inode->i_lock); 643 continue; 644 } 645 if (inode->i_state & I_DIRTY && !kill_dirty) { 646 spin_unlock(&inode->i_lock); 647 busy = 1; 648 continue; 649 } 650 if (atomic_read(&inode->i_count)) { 651 spin_unlock(&inode->i_lock); 652 busy = 1; 653 continue; 654 } 655 656 inode->i_state |= I_FREEING; 657 inode_lru_list_del(inode); 658 spin_unlock(&inode->i_lock); 659 list_add(&inode->i_lru, &dispose); 660 } 661 spin_unlock(&inode_sb_list_lock); 662 663 dispose_list(&dispose); 664 665 return busy; 666 } 667 668 /* 669 * Isolate the inode from the LRU in preparation for freeing it. 670 * 671 * Any inodes which are pinned purely because of attached pagecache have their 672 * pagecache removed. If the inode has metadata buffers attached to 673 * mapping->private_list then try to remove them. 674 * 675 * If the inode has the I_REFERENCED flag set, then it means that it has been 676 * used recently - the flag is set in iput_final(). When we encounter such an 677 * inode, clear the flag and move it to the back of the LRU so it gets another 678 * pass through the LRU before it gets reclaimed. This is necessary because of 679 * the fact we are doing lazy LRU updates to minimise lock contention so the 680 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 681 * with this flag set because they are the inodes that are out of order. 682 */ 683 static enum lru_status 684 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg) 685 { 686 struct list_head *freeable = arg; 687 struct inode *inode = container_of(item, struct inode, i_lru); 688 689 /* 690 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 691 * If we fail to get the lock, just skip it. 692 */ 693 if (!spin_trylock(&inode->i_lock)) 694 return LRU_SKIP; 695 696 /* 697 * Referenced or dirty inodes are still in use. Give them another pass 698 * through the LRU as we canot reclaim them now. 699 */ 700 if (atomic_read(&inode->i_count) || 701 (inode->i_state & ~I_REFERENCED)) { 702 list_del_init(&inode->i_lru); 703 spin_unlock(&inode->i_lock); 704 this_cpu_dec(nr_unused); 705 return LRU_REMOVED; 706 } 707 708 /* recently referenced inodes get one more pass */ 709 if (inode->i_state & I_REFERENCED) { 710 inode->i_state &= ~I_REFERENCED; 711 spin_unlock(&inode->i_lock); 712 return LRU_ROTATE; 713 } 714 715 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 716 __iget(inode); 717 spin_unlock(&inode->i_lock); 718 spin_unlock(lru_lock); 719 if (remove_inode_buffers(inode)) { 720 unsigned long reap; 721 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 722 if (current_is_kswapd()) 723 __count_vm_events(KSWAPD_INODESTEAL, reap); 724 else 725 __count_vm_events(PGINODESTEAL, reap); 726 if (current->reclaim_state) 727 current->reclaim_state->reclaimed_slab += reap; 728 } 729 iput(inode); 730 spin_lock(lru_lock); 731 return LRU_RETRY; 732 } 733 734 WARN_ON(inode->i_state & I_NEW); 735 inode->i_state |= I_FREEING; 736 list_move(&inode->i_lru, freeable); 737 spin_unlock(&inode->i_lock); 738 739 this_cpu_dec(nr_unused); 740 return LRU_REMOVED; 741 } 742 743 /* 744 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 745 * This is called from the superblock shrinker function with a number of inodes 746 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 747 * then are freed outside inode_lock by dispose_list(). 748 */ 749 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan, 750 int nid) 751 { 752 LIST_HEAD(freeable); 753 long freed; 754 755 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate, 756 &freeable, &nr_to_scan); 757 dispose_list(&freeable); 758 return freed; 759 } 760 761 static void __wait_on_freeing_inode(struct inode *inode); 762 /* 763 * Called with the inode lock held. 764 */ 765 static struct inode *find_inode(struct super_block *sb, 766 struct hlist_head *head, 767 int (*test)(struct inode *, void *), 768 void *data) 769 { 770 struct inode *inode = NULL; 771 772 repeat: 773 hlist_for_each_entry(inode, head, i_hash) { 774 if (inode->i_sb != sb) 775 continue; 776 if (!test(inode, data)) 777 continue; 778 spin_lock(&inode->i_lock); 779 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 780 __wait_on_freeing_inode(inode); 781 goto repeat; 782 } 783 __iget(inode); 784 spin_unlock(&inode->i_lock); 785 return inode; 786 } 787 return NULL; 788 } 789 790 /* 791 * find_inode_fast is the fast path version of find_inode, see the comment at 792 * iget_locked for details. 793 */ 794 static struct inode *find_inode_fast(struct super_block *sb, 795 struct hlist_head *head, unsigned long ino) 796 { 797 struct inode *inode = NULL; 798 799 repeat: 800 hlist_for_each_entry(inode, head, i_hash) { 801 if (inode->i_ino != ino) 802 continue; 803 if (inode->i_sb != sb) 804 continue; 805 spin_lock(&inode->i_lock); 806 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 807 __wait_on_freeing_inode(inode); 808 goto repeat; 809 } 810 __iget(inode); 811 spin_unlock(&inode->i_lock); 812 return inode; 813 } 814 return NULL; 815 } 816 817 /* 818 * Each cpu owns a range of LAST_INO_BATCH numbers. 819 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 820 * to renew the exhausted range. 821 * 822 * This does not significantly increase overflow rate because every CPU can 823 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 824 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 825 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 826 * overflow rate by 2x, which does not seem too significant. 827 * 828 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 829 * error if st_ino won't fit in target struct field. Use 32bit counter 830 * here to attempt to avoid that. 831 */ 832 #define LAST_INO_BATCH 1024 833 static DEFINE_PER_CPU(unsigned int, last_ino); 834 835 unsigned int get_next_ino(void) 836 { 837 unsigned int *p = &get_cpu_var(last_ino); 838 unsigned int res = *p; 839 840 #ifdef CONFIG_SMP 841 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 842 static atomic_t shared_last_ino; 843 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 844 845 res = next - LAST_INO_BATCH; 846 } 847 #endif 848 849 *p = ++res; 850 put_cpu_var(last_ino); 851 return res; 852 } 853 EXPORT_SYMBOL(get_next_ino); 854 855 /** 856 * new_inode_pseudo - obtain an inode 857 * @sb: superblock 858 * 859 * Allocates a new inode for given superblock. 860 * Inode wont be chained in superblock s_inodes list 861 * This means : 862 * - fs can't be unmount 863 * - quotas, fsnotify, writeback can't work 864 */ 865 struct inode *new_inode_pseudo(struct super_block *sb) 866 { 867 struct inode *inode = alloc_inode(sb); 868 869 if (inode) { 870 spin_lock(&inode->i_lock); 871 inode->i_state = 0; 872 spin_unlock(&inode->i_lock); 873 INIT_LIST_HEAD(&inode->i_sb_list); 874 } 875 return inode; 876 } 877 878 /** 879 * new_inode - obtain an inode 880 * @sb: superblock 881 * 882 * Allocates a new inode for given superblock. The default gfp_mask 883 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 884 * If HIGHMEM pages are unsuitable or it is known that pages allocated 885 * for the page cache are not reclaimable or migratable, 886 * mapping_set_gfp_mask() must be called with suitable flags on the 887 * newly created inode's mapping 888 * 889 */ 890 struct inode *new_inode(struct super_block *sb) 891 { 892 struct inode *inode; 893 894 spin_lock_prefetch(&inode_sb_list_lock); 895 896 inode = new_inode_pseudo(sb); 897 if (inode) 898 inode_sb_list_add(inode); 899 return inode; 900 } 901 EXPORT_SYMBOL(new_inode); 902 903 #ifdef CONFIG_DEBUG_LOCK_ALLOC 904 void lockdep_annotate_inode_mutex_key(struct inode *inode) 905 { 906 if (S_ISDIR(inode->i_mode)) { 907 struct file_system_type *type = inode->i_sb->s_type; 908 909 /* Set new key only if filesystem hasn't already changed it */ 910 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) { 911 /* 912 * ensure nobody is actually holding i_mutex 913 */ 914 mutex_destroy(&inode->i_mutex); 915 mutex_init(&inode->i_mutex); 916 lockdep_set_class(&inode->i_mutex, 917 &type->i_mutex_dir_key); 918 } 919 } 920 } 921 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 922 #endif 923 924 /** 925 * unlock_new_inode - clear the I_NEW state and wake up any waiters 926 * @inode: new inode to unlock 927 * 928 * Called when the inode is fully initialised to clear the new state of the 929 * inode and wake up anyone waiting for the inode to finish initialisation. 930 */ 931 void unlock_new_inode(struct inode *inode) 932 { 933 lockdep_annotate_inode_mutex_key(inode); 934 spin_lock(&inode->i_lock); 935 WARN_ON(!(inode->i_state & I_NEW)); 936 inode->i_state &= ~I_NEW; 937 smp_mb(); 938 wake_up_bit(&inode->i_state, __I_NEW); 939 spin_unlock(&inode->i_lock); 940 } 941 EXPORT_SYMBOL(unlock_new_inode); 942 943 /** 944 * lock_two_nondirectories - take two i_mutexes on non-directory objects 945 * 946 * Lock any non-NULL argument that is not a directory. 947 * Zero, one or two objects may be locked by this function. 948 * 949 * @inode1: first inode to lock 950 * @inode2: second inode to lock 951 */ 952 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 953 { 954 if (inode1 > inode2) 955 swap(inode1, inode2); 956 957 if (inode1 && !S_ISDIR(inode1->i_mode)) 958 mutex_lock(&inode1->i_mutex); 959 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 960 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2); 961 } 962 EXPORT_SYMBOL(lock_two_nondirectories); 963 964 /** 965 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 966 * @inode1: first inode to unlock 967 * @inode2: second inode to unlock 968 */ 969 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 970 { 971 if (inode1 && !S_ISDIR(inode1->i_mode)) 972 mutex_unlock(&inode1->i_mutex); 973 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 974 mutex_unlock(&inode2->i_mutex); 975 } 976 EXPORT_SYMBOL(unlock_two_nondirectories); 977 978 /** 979 * iget5_locked - obtain an inode from a mounted file system 980 * @sb: super block of file system 981 * @hashval: hash value (usually inode number) to get 982 * @test: callback used for comparisons between inodes 983 * @set: callback used to initialize a new struct inode 984 * @data: opaque data pointer to pass to @test and @set 985 * 986 * Search for the inode specified by @hashval and @data in the inode cache, 987 * and if present it is return it with an increased reference count. This is 988 * a generalized version of iget_locked() for file systems where the inode 989 * number is not sufficient for unique identification of an inode. 990 * 991 * If the inode is not in cache, allocate a new inode and return it locked, 992 * hashed, and with the I_NEW flag set. The file system gets to fill it in 993 * before unlocking it via unlock_new_inode(). 994 * 995 * Note both @test and @set are called with the inode_hash_lock held, so can't 996 * sleep. 997 */ 998 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 999 int (*test)(struct inode *, void *), 1000 int (*set)(struct inode *, void *), void *data) 1001 { 1002 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1003 struct inode *inode; 1004 1005 spin_lock(&inode_hash_lock); 1006 inode = find_inode(sb, head, test, data); 1007 spin_unlock(&inode_hash_lock); 1008 1009 if (inode) { 1010 wait_on_inode(inode); 1011 return inode; 1012 } 1013 1014 inode = alloc_inode(sb); 1015 if (inode) { 1016 struct inode *old; 1017 1018 spin_lock(&inode_hash_lock); 1019 /* We released the lock, so.. */ 1020 old = find_inode(sb, head, test, data); 1021 if (!old) { 1022 if (set(inode, data)) 1023 goto set_failed; 1024 1025 spin_lock(&inode->i_lock); 1026 inode->i_state = I_NEW; 1027 hlist_add_head(&inode->i_hash, head); 1028 spin_unlock(&inode->i_lock); 1029 inode_sb_list_add(inode); 1030 spin_unlock(&inode_hash_lock); 1031 1032 /* Return the locked inode with I_NEW set, the 1033 * caller is responsible for filling in the contents 1034 */ 1035 return inode; 1036 } 1037 1038 /* 1039 * Uhhuh, somebody else created the same inode under 1040 * us. Use the old inode instead of the one we just 1041 * allocated. 1042 */ 1043 spin_unlock(&inode_hash_lock); 1044 destroy_inode(inode); 1045 inode = old; 1046 wait_on_inode(inode); 1047 } 1048 return inode; 1049 1050 set_failed: 1051 spin_unlock(&inode_hash_lock); 1052 destroy_inode(inode); 1053 return NULL; 1054 } 1055 EXPORT_SYMBOL(iget5_locked); 1056 1057 /** 1058 * iget_locked - obtain an inode from a mounted file system 1059 * @sb: super block of file system 1060 * @ino: inode number to get 1061 * 1062 * Search for the inode specified by @ino in the inode cache and if present 1063 * return it with an increased reference count. This is for file systems 1064 * where the inode number is sufficient for unique identification of an inode. 1065 * 1066 * If the inode is not in cache, allocate a new inode and return it locked, 1067 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1068 * before unlocking it via unlock_new_inode(). 1069 */ 1070 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1071 { 1072 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1073 struct inode *inode; 1074 1075 spin_lock(&inode_hash_lock); 1076 inode = find_inode_fast(sb, head, ino); 1077 spin_unlock(&inode_hash_lock); 1078 if (inode) { 1079 wait_on_inode(inode); 1080 return inode; 1081 } 1082 1083 inode = alloc_inode(sb); 1084 if (inode) { 1085 struct inode *old; 1086 1087 spin_lock(&inode_hash_lock); 1088 /* We released the lock, so.. */ 1089 old = find_inode_fast(sb, head, ino); 1090 if (!old) { 1091 inode->i_ino = ino; 1092 spin_lock(&inode->i_lock); 1093 inode->i_state = I_NEW; 1094 hlist_add_head(&inode->i_hash, head); 1095 spin_unlock(&inode->i_lock); 1096 inode_sb_list_add(inode); 1097 spin_unlock(&inode_hash_lock); 1098 1099 /* Return the locked inode with I_NEW set, the 1100 * caller is responsible for filling in the contents 1101 */ 1102 return inode; 1103 } 1104 1105 /* 1106 * Uhhuh, somebody else created the same inode under 1107 * us. Use the old inode instead of the one we just 1108 * allocated. 1109 */ 1110 spin_unlock(&inode_hash_lock); 1111 destroy_inode(inode); 1112 inode = old; 1113 wait_on_inode(inode); 1114 } 1115 return inode; 1116 } 1117 EXPORT_SYMBOL(iget_locked); 1118 1119 /* 1120 * search the inode cache for a matching inode number. 1121 * If we find one, then the inode number we are trying to 1122 * allocate is not unique and so we should not use it. 1123 * 1124 * Returns 1 if the inode number is unique, 0 if it is not. 1125 */ 1126 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1127 { 1128 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1129 struct inode *inode; 1130 1131 spin_lock(&inode_hash_lock); 1132 hlist_for_each_entry(inode, b, i_hash) { 1133 if (inode->i_ino == ino && inode->i_sb == sb) { 1134 spin_unlock(&inode_hash_lock); 1135 return 0; 1136 } 1137 } 1138 spin_unlock(&inode_hash_lock); 1139 1140 return 1; 1141 } 1142 1143 /** 1144 * iunique - get a unique inode number 1145 * @sb: superblock 1146 * @max_reserved: highest reserved inode number 1147 * 1148 * Obtain an inode number that is unique on the system for a given 1149 * superblock. This is used by file systems that have no natural 1150 * permanent inode numbering system. An inode number is returned that 1151 * is higher than the reserved limit but unique. 1152 * 1153 * BUGS: 1154 * With a large number of inodes live on the file system this function 1155 * currently becomes quite slow. 1156 */ 1157 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1158 { 1159 /* 1160 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1161 * error if st_ino won't fit in target struct field. Use 32bit counter 1162 * here to attempt to avoid that. 1163 */ 1164 static DEFINE_SPINLOCK(iunique_lock); 1165 static unsigned int counter; 1166 ino_t res; 1167 1168 spin_lock(&iunique_lock); 1169 do { 1170 if (counter <= max_reserved) 1171 counter = max_reserved + 1; 1172 res = counter++; 1173 } while (!test_inode_iunique(sb, res)); 1174 spin_unlock(&iunique_lock); 1175 1176 return res; 1177 } 1178 EXPORT_SYMBOL(iunique); 1179 1180 struct inode *igrab(struct inode *inode) 1181 { 1182 spin_lock(&inode->i_lock); 1183 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1184 __iget(inode); 1185 spin_unlock(&inode->i_lock); 1186 } else { 1187 spin_unlock(&inode->i_lock); 1188 /* 1189 * Handle the case where s_op->clear_inode is not been 1190 * called yet, and somebody is calling igrab 1191 * while the inode is getting freed. 1192 */ 1193 inode = NULL; 1194 } 1195 return inode; 1196 } 1197 EXPORT_SYMBOL(igrab); 1198 1199 /** 1200 * ilookup5_nowait - search for an inode in the inode cache 1201 * @sb: super block of file system to search 1202 * @hashval: hash value (usually inode number) to search for 1203 * @test: callback used for comparisons between inodes 1204 * @data: opaque data pointer to pass to @test 1205 * 1206 * Search for the inode specified by @hashval and @data in the inode cache. 1207 * If the inode is in the cache, the inode is returned with an incremented 1208 * reference count. 1209 * 1210 * Note: I_NEW is not waited upon so you have to be very careful what you do 1211 * with the returned inode. You probably should be using ilookup5() instead. 1212 * 1213 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1214 */ 1215 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1216 int (*test)(struct inode *, void *), void *data) 1217 { 1218 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1219 struct inode *inode; 1220 1221 spin_lock(&inode_hash_lock); 1222 inode = find_inode(sb, head, test, data); 1223 spin_unlock(&inode_hash_lock); 1224 1225 return inode; 1226 } 1227 EXPORT_SYMBOL(ilookup5_nowait); 1228 1229 /** 1230 * ilookup5 - search for an inode in the inode cache 1231 * @sb: super block of file system to search 1232 * @hashval: hash value (usually inode number) to search for 1233 * @test: callback used for comparisons between inodes 1234 * @data: opaque data pointer to pass to @test 1235 * 1236 * Search for the inode specified by @hashval and @data in the inode cache, 1237 * and if the inode is in the cache, return the inode with an incremented 1238 * reference count. Waits on I_NEW before returning the inode. 1239 * returned with an incremented reference count. 1240 * 1241 * This is a generalized version of ilookup() for file systems where the 1242 * inode number is not sufficient for unique identification of an inode. 1243 * 1244 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1245 */ 1246 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1247 int (*test)(struct inode *, void *), void *data) 1248 { 1249 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1250 1251 if (inode) 1252 wait_on_inode(inode); 1253 return inode; 1254 } 1255 EXPORT_SYMBOL(ilookup5); 1256 1257 /** 1258 * ilookup - search for an inode in the inode cache 1259 * @sb: super block of file system to search 1260 * @ino: inode number to search for 1261 * 1262 * Search for the inode @ino in the inode cache, and if the inode is in the 1263 * cache, the inode is returned with an incremented reference count. 1264 */ 1265 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1266 { 1267 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1268 struct inode *inode; 1269 1270 spin_lock(&inode_hash_lock); 1271 inode = find_inode_fast(sb, head, ino); 1272 spin_unlock(&inode_hash_lock); 1273 1274 if (inode) 1275 wait_on_inode(inode); 1276 return inode; 1277 } 1278 EXPORT_SYMBOL(ilookup); 1279 1280 int insert_inode_locked(struct inode *inode) 1281 { 1282 struct super_block *sb = inode->i_sb; 1283 ino_t ino = inode->i_ino; 1284 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1285 1286 while (1) { 1287 struct inode *old = NULL; 1288 spin_lock(&inode_hash_lock); 1289 hlist_for_each_entry(old, head, i_hash) { 1290 if (old->i_ino != ino) 1291 continue; 1292 if (old->i_sb != sb) 1293 continue; 1294 spin_lock(&old->i_lock); 1295 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1296 spin_unlock(&old->i_lock); 1297 continue; 1298 } 1299 break; 1300 } 1301 if (likely(!old)) { 1302 spin_lock(&inode->i_lock); 1303 inode->i_state |= I_NEW; 1304 hlist_add_head(&inode->i_hash, head); 1305 spin_unlock(&inode->i_lock); 1306 spin_unlock(&inode_hash_lock); 1307 return 0; 1308 } 1309 __iget(old); 1310 spin_unlock(&old->i_lock); 1311 spin_unlock(&inode_hash_lock); 1312 wait_on_inode(old); 1313 if (unlikely(!inode_unhashed(old))) { 1314 iput(old); 1315 return -EBUSY; 1316 } 1317 iput(old); 1318 } 1319 } 1320 EXPORT_SYMBOL(insert_inode_locked); 1321 1322 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1323 int (*test)(struct inode *, void *), void *data) 1324 { 1325 struct super_block *sb = inode->i_sb; 1326 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1327 1328 while (1) { 1329 struct inode *old = NULL; 1330 1331 spin_lock(&inode_hash_lock); 1332 hlist_for_each_entry(old, head, i_hash) { 1333 if (old->i_sb != sb) 1334 continue; 1335 if (!test(old, data)) 1336 continue; 1337 spin_lock(&old->i_lock); 1338 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1339 spin_unlock(&old->i_lock); 1340 continue; 1341 } 1342 break; 1343 } 1344 if (likely(!old)) { 1345 spin_lock(&inode->i_lock); 1346 inode->i_state |= I_NEW; 1347 hlist_add_head(&inode->i_hash, head); 1348 spin_unlock(&inode->i_lock); 1349 spin_unlock(&inode_hash_lock); 1350 return 0; 1351 } 1352 __iget(old); 1353 spin_unlock(&old->i_lock); 1354 spin_unlock(&inode_hash_lock); 1355 wait_on_inode(old); 1356 if (unlikely(!inode_unhashed(old))) { 1357 iput(old); 1358 return -EBUSY; 1359 } 1360 iput(old); 1361 } 1362 } 1363 EXPORT_SYMBOL(insert_inode_locked4); 1364 1365 1366 int generic_delete_inode(struct inode *inode) 1367 { 1368 return 1; 1369 } 1370 EXPORT_SYMBOL(generic_delete_inode); 1371 1372 /* 1373 * Called when we're dropping the last reference 1374 * to an inode. 1375 * 1376 * Call the FS "drop_inode()" function, defaulting to 1377 * the legacy UNIX filesystem behaviour. If it tells 1378 * us to evict inode, do so. Otherwise, retain inode 1379 * in cache if fs is alive, sync and evict if fs is 1380 * shutting down. 1381 */ 1382 static void iput_final(struct inode *inode) 1383 { 1384 struct super_block *sb = inode->i_sb; 1385 const struct super_operations *op = inode->i_sb->s_op; 1386 int drop; 1387 1388 WARN_ON(inode->i_state & I_NEW); 1389 1390 if (op->drop_inode) 1391 drop = op->drop_inode(inode); 1392 else 1393 drop = generic_drop_inode(inode); 1394 1395 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1396 inode->i_state |= I_REFERENCED; 1397 inode_add_lru(inode); 1398 spin_unlock(&inode->i_lock); 1399 return; 1400 } 1401 1402 if (!drop) { 1403 inode->i_state |= I_WILL_FREE; 1404 spin_unlock(&inode->i_lock); 1405 write_inode_now(inode, 1); 1406 spin_lock(&inode->i_lock); 1407 WARN_ON(inode->i_state & I_NEW); 1408 inode->i_state &= ~I_WILL_FREE; 1409 } 1410 1411 inode->i_state |= I_FREEING; 1412 if (!list_empty(&inode->i_lru)) 1413 inode_lru_list_del(inode); 1414 spin_unlock(&inode->i_lock); 1415 1416 evict(inode); 1417 } 1418 1419 /** 1420 * iput - put an inode 1421 * @inode: inode to put 1422 * 1423 * Puts an inode, dropping its usage count. If the inode use count hits 1424 * zero, the inode is then freed and may also be destroyed. 1425 * 1426 * Consequently, iput() can sleep. 1427 */ 1428 void iput(struct inode *inode) 1429 { 1430 if (inode) { 1431 BUG_ON(inode->i_state & I_CLEAR); 1432 1433 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1434 iput_final(inode); 1435 } 1436 } 1437 EXPORT_SYMBOL(iput); 1438 1439 /** 1440 * bmap - find a block number in a file 1441 * @inode: inode of file 1442 * @block: block to find 1443 * 1444 * Returns the block number on the device holding the inode that 1445 * is the disk block number for the block of the file requested. 1446 * That is, asked for block 4 of inode 1 the function will return the 1447 * disk block relative to the disk start that holds that block of the 1448 * file. 1449 */ 1450 sector_t bmap(struct inode *inode, sector_t block) 1451 { 1452 sector_t res = 0; 1453 if (inode->i_mapping->a_ops->bmap) 1454 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1455 return res; 1456 } 1457 EXPORT_SYMBOL(bmap); 1458 1459 /* 1460 * With relative atime, only update atime if the previous atime is 1461 * earlier than either the ctime or mtime or if at least a day has 1462 * passed since the last atime update. 1463 */ 1464 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1465 struct timespec now) 1466 { 1467 1468 if (!(mnt->mnt_flags & MNT_RELATIME)) 1469 return 1; 1470 /* 1471 * Is mtime younger than atime? If yes, update atime: 1472 */ 1473 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1474 return 1; 1475 /* 1476 * Is ctime younger than atime? If yes, update atime: 1477 */ 1478 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1479 return 1; 1480 1481 /* 1482 * Is the previous atime value older than a day? If yes, 1483 * update atime: 1484 */ 1485 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1486 return 1; 1487 /* 1488 * Good, we can skip the atime update: 1489 */ 1490 return 0; 1491 } 1492 1493 /* 1494 * This does the actual work of updating an inodes time or version. Must have 1495 * had called mnt_want_write() before calling this. 1496 */ 1497 static int update_time(struct inode *inode, struct timespec *time, int flags) 1498 { 1499 if (inode->i_op->update_time) 1500 return inode->i_op->update_time(inode, time, flags); 1501 1502 if (flags & S_ATIME) 1503 inode->i_atime = *time; 1504 if (flags & S_VERSION) 1505 inode_inc_iversion(inode); 1506 if (flags & S_CTIME) 1507 inode->i_ctime = *time; 1508 if (flags & S_MTIME) 1509 inode->i_mtime = *time; 1510 mark_inode_dirty_sync(inode); 1511 return 0; 1512 } 1513 1514 /** 1515 * touch_atime - update the access time 1516 * @path: the &struct path to update 1517 * 1518 * Update the accessed time on an inode and mark it for writeback. 1519 * This function automatically handles read only file systems and media, 1520 * as well as the "noatime" flag and inode specific "noatime" markers. 1521 */ 1522 void touch_atime(const struct path *path) 1523 { 1524 struct vfsmount *mnt = path->mnt; 1525 struct inode *inode = path->dentry->d_inode; 1526 struct timespec now; 1527 1528 if (inode->i_flags & S_NOATIME) 1529 return; 1530 if (IS_NOATIME(inode)) 1531 return; 1532 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1533 return; 1534 1535 if (mnt->mnt_flags & MNT_NOATIME) 1536 return; 1537 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1538 return; 1539 1540 now = current_fs_time(inode->i_sb); 1541 1542 if (!relatime_need_update(mnt, inode, now)) 1543 return; 1544 1545 if (timespec_equal(&inode->i_atime, &now)) 1546 return; 1547 1548 if (!sb_start_write_trylock(inode->i_sb)) 1549 return; 1550 1551 if (__mnt_want_write(mnt)) 1552 goto skip_update; 1553 /* 1554 * File systems can error out when updating inodes if they need to 1555 * allocate new space to modify an inode (such is the case for 1556 * Btrfs), but since we touch atime while walking down the path we 1557 * really don't care if we failed to update the atime of the file, 1558 * so just ignore the return value. 1559 * We may also fail on filesystems that have the ability to make parts 1560 * of the fs read only, e.g. subvolumes in Btrfs. 1561 */ 1562 update_time(inode, &now, S_ATIME); 1563 __mnt_drop_write(mnt); 1564 skip_update: 1565 sb_end_write(inode->i_sb); 1566 } 1567 EXPORT_SYMBOL(touch_atime); 1568 1569 /* 1570 * The logic we want is 1571 * 1572 * if suid or (sgid and xgrp) 1573 * remove privs 1574 */ 1575 int should_remove_suid(struct dentry *dentry) 1576 { 1577 umode_t mode = dentry->d_inode->i_mode; 1578 int kill = 0; 1579 1580 /* suid always must be killed */ 1581 if (unlikely(mode & S_ISUID)) 1582 kill = ATTR_KILL_SUID; 1583 1584 /* 1585 * sgid without any exec bits is just a mandatory locking mark; leave 1586 * it alone. If some exec bits are set, it's a real sgid; kill it. 1587 */ 1588 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1589 kill |= ATTR_KILL_SGID; 1590 1591 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1592 return kill; 1593 1594 return 0; 1595 } 1596 EXPORT_SYMBOL(should_remove_suid); 1597 1598 static int __remove_suid(struct dentry *dentry, int kill) 1599 { 1600 struct iattr newattrs; 1601 1602 newattrs.ia_valid = ATTR_FORCE | kill; 1603 /* 1604 * Note we call this on write, so notify_change will not 1605 * encounter any conflicting delegations: 1606 */ 1607 return notify_change(dentry, &newattrs, NULL); 1608 } 1609 1610 int file_remove_suid(struct file *file) 1611 { 1612 struct dentry *dentry = file->f_path.dentry; 1613 struct inode *inode = dentry->d_inode; 1614 int killsuid; 1615 int killpriv; 1616 int error = 0; 1617 1618 /* Fast path for nothing security related */ 1619 if (IS_NOSEC(inode)) 1620 return 0; 1621 1622 killsuid = should_remove_suid(dentry); 1623 killpriv = security_inode_need_killpriv(dentry); 1624 1625 if (killpriv < 0) 1626 return killpriv; 1627 if (killpriv) 1628 error = security_inode_killpriv(dentry); 1629 if (!error && killsuid) 1630 error = __remove_suid(dentry, killsuid); 1631 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 1632 inode->i_flags |= S_NOSEC; 1633 1634 return error; 1635 } 1636 EXPORT_SYMBOL(file_remove_suid); 1637 1638 /** 1639 * file_update_time - update mtime and ctime time 1640 * @file: file accessed 1641 * 1642 * Update the mtime and ctime members of an inode and mark the inode 1643 * for writeback. Note that this function is meant exclusively for 1644 * usage in the file write path of filesystems, and filesystems may 1645 * choose to explicitly ignore update via this function with the 1646 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1647 * timestamps are handled by the server. This can return an error for 1648 * file systems who need to allocate space in order to update an inode. 1649 */ 1650 1651 int file_update_time(struct file *file) 1652 { 1653 struct inode *inode = file_inode(file); 1654 struct timespec now; 1655 int sync_it = 0; 1656 int ret; 1657 1658 /* First try to exhaust all avenues to not sync */ 1659 if (IS_NOCMTIME(inode)) 1660 return 0; 1661 1662 now = current_fs_time(inode->i_sb); 1663 if (!timespec_equal(&inode->i_mtime, &now)) 1664 sync_it = S_MTIME; 1665 1666 if (!timespec_equal(&inode->i_ctime, &now)) 1667 sync_it |= S_CTIME; 1668 1669 if (IS_I_VERSION(inode)) 1670 sync_it |= S_VERSION; 1671 1672 if (!sync_it) 1673 return 0; 1674 1675 /* Finally allowed to write? Takes lock. */ 1676 if (__mnt_want_write_file(file)) 1677 return 0; 1678 1679 ret = update_time(inode, &now, sync_it); 1680 __mnt_drop_write_file(file); 1681 1682 return ret; 1683 } 1684 EXPORT_SYMBOL(file_update_time); 1685 1686 int inode_needs_sync(struct inode *inode) 1687 { 1688 if (IS_SYNC(inode)) 1689 return 1; 1690 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1691 return 1; 1692 return 0; 1693 } 1694 EXPORT_SYMBOL(inode_needs_sync); 1695 1696 /* 1697 * If we try to find an inode in the inode hash while it is being 1698 * deleted, we have to wait until the filesystem completes its 1699 * deletion before reporting that it isn't found. This function waits 1700 * until the deletion _might_ have completed. Callers are responsible 1701 * to recheck inode state. 1702 * 1703 * It doesn't matter if I_NEW is not set initially, a call to 1704 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1705 * will DTRT. 1706 */ 1707 static void __wait_on_freeing_inode(struct inode *inode) 1708 { 1709 wait_queue_head_t *wq; 1710 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1711 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1712 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1713 spin_unlock(&inode->i_lock); 1714 spin_unlock(&inode_hash_lock); 1715 schedule(); 1716 finish_wait(wq, &wait.wait); 1717 spin_lock(&inode_hash_lock); 1718 } 1719 1720 static __initdata unsigned long ihash_entries; 1721 static int __init set_ihash_entries(char *str) 1722 { 1723 if (!str) 1724 return 0; 1725 ihash_entries = simple_strtoul(str, &str, 0); 1726 return 1; 1727 } 1728 __setup("ihash_entries=", set_ihash_entries); 1729 1730 /* 1731 * Initialize the waitqueues and inode hash table. 1732 */ 1733 void __init inode_init_early(void) 1734 { 1735 unsigned int loop; 1736 1737 /* If hashes are distributed across NUMA nodes, defer 1738 * hash allocation until vmalloc space is available. 1739 */ 1740 if (hashdist) 1741 return; 1742 1743 inode_hashtable = 1744 alloc_large_system_hash("Inode-cache", 1745 sizeof(struct hlist_head), 1746 ihash_entries, 1747 14, 1748 HASH_EARLY, 1749 &i_hash_shift, 1750 &i_hash_mask, 1751 0, 1752 0); 1753 1754 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1755 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1756 } 1757 1758 void __init inode_init(void) 1759 { 1760 unsigned int loop; 1761 1762 /* inode slab cache */ 1763 inode_cachep = kmem_cache_create("inode_cache", 1764 sizeof(struct inode), 1765 0, 1766 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1767 SLAB_MEM_SPREAD), 1768 init_once); 1769 1770 /* Hash may have been set up in inode_init_early */ 1771 if (!hashdist) 1772 return; 1773 1774 inode_hashtable = 1775 alloc_large_system_hash("Inode-cache", 1776 sizeof(struct hlist_head), 1777 ihash_entries, 1778 14, 1779 0, 1780 &i_hash_shift, 1781 &i_hash_mask, 1782 0, 1783 0); 1784 1785 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1786 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1787 } 1788 1789 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1790 { 1791 inode->i_mode = mode; 1792 if (S_ISCHR(mode)) { 1793 inode->i_fop = &def_chr_fops; 1794 inode->i_rdev = rdev; 1795 } else if (S_ISBLK(mode)) { 1796 inode->i_fop = &def_blk_fops; 1797 inode->i_rdev = rdev; 1798 } else if (S_ISFIFO(mode)) 1799 inode->i_fop = &pipefifo_fops; 1800 else if (S_ISSOCK(mode)) 1801 inode->i_fop = &bad_sock_fops; 1802 else 1803 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1804 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1805 inode->i_ino); 1806 } 1807 EXPORT_SYMBOL(init_special_inode); 1808 1809 /** 1810 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1811 * @inode: New inode 1812 * @dir: Directory inode 1813 * @mode: mode of the new inode 1814 */ 1815 void inode_init_owner(struct inode *inode, const struct inode *dir, 1816 umode_t mode) 1817 { 1818 inode->i_uid = current_fsuid(); 1819 if (dir && dir->i_mode & S_ISGID) { 1820 inode->i_gid = dir->i_gid; 1821 if (S_ISDIR(mode)) 1822 mode |= S_ISGID; 1823 } else 1824 inode->i_gid = current_fsgid(); 1825 inode->i_mode = mode; 1826 } 1827 EXPORT_SYMBOL(inode_init_owner); 1828 1829 /** 1830 * inode_owner_or_capable - check current task permissions to inode 1831 * @inode: inode being checked 1832 * 1833 * Return true if current either has CAP_FOWNER in a namespace with the 1834 * inode owner uid mapped, or owns the file. 1835 */ 1836 bool inode_owner_or_capable(const struct inode *inode) 1837 { 1838 struct user_namespace *ns; 1839 1840 if (uid_eq(current_fsuid(), inode->i_uid)) 1841 return true; 1842 1843 ns = current_user_ns(); 1844 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid)) 1845 return true; 1846 return false; 1847 } 1848 EXPORT_SYMBOL(inode_owner_or_capable); 1849 1850 /* 1851 * Direct i/o helper functions 1852 */ 1853 static void __inode_dio_wait(struct inode *inode) 1854 { 1855 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 1856 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 1857 1858 do { 1859 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); 1860 if (atomic_read(&inode->i_dio_count)) 1861 schedule(); 1862 } while (atomic_read(&inode->i_dio_count)); 1863 finish_wait(wq, &q.wait); 1864 } 1865 1866 /** 1867 * inode_dio_wait - wait for outstanding DIO requests to finish 1868 * @inode: inode to wait for 1869 * 1870 * Waits for all pending direct I/O requests to finish so that we can 1871 * proceed with a truncate or equivalent operation. 1872 * 1873 * Must be called under a lock that serializes taking new references 1874 * to i_dio_count, usually by inode->i_mutex. 1875 */ 1876 void inode_dio_wait(struct inode *inode) 1877 { 1878 if (atomic_read(&inode->i_dio_count)) 1879 __inode_dio_wait(inode); 1880 } 1881 EXPORT_SYMBOL(inode_dio_wait); 1882 1883 /* 1884 * inode_dio_done - signal finish of a direct I/O requests 1885 * @inode: inode the direct I/O happens on 1886 * 1887 * This is called once we've finished processing a direct I/O request, 1888 * and is used to wake up callers waiting for direct I/O to be quiesced. 1889 */ 1890 void inode_dio_done(struct inode *inode) 1891 { 1892 if (atomic_dec_and_test(&inode->i_dio_count)) 1893 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 1894 } 1895 EXPORT_SYMBOL(inode_dio_done); 1896 1897 /* 1898 * inode_set_flags - atomically set some inode flags 1899 * 1900 * Note: the caller should be holding i_mutex, or else be sure that 1901 * they have exclusive access to the inode structure (i.e., while the 1902 * inode is being instantiated). The reason for the cmpxchg() loop 1903 * --- which wouldn't be necessary if all code paths which modify 1904 * i_flags actually followed this rule, is that there is at least one 1905 * code path which doesn't today --- for example, 1906 * __generic_file_aio_write() calls file_remove_suid() without holding 1907 * i_mutex --- so we use cmpxchg() out of an abundance of caution. 1908 * 1909 * In the long run, i_mutex is overkill, and we should probably look 1910 * at using the i_lock spinlock to protect i_flags, and then make sure 1911 * it is so documented in include/linux/fs.h and that all code follows 1912 * the locking convention!! 1913 */ 1914 void inode_set_flags(struct inode *inode, unsigned int flags, 1915 unsigned int mask) 1916 { 1917 unsigned int old_flags, new_flags; 1918 1919 WARN_ON_ONCE(flags & ~mask); 1920 do { 1921 old_flags = ACCESS_ONCE(inode->i_flags); 1922 new_flags = (old_flags & ~mask) | flags; 1923 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 1924 new_flags) != old_flags)); 1925 } 1926 EXPORT_SYMBOL(inode_set_flags); 1927