xref: /linux/fs/inode.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include "internal.h"
22 
23 /*
24  * Inode locking rules:
25  *
26  * inode->i_lock protects:
27  *   inode->i_state, inode->i_hash, __iget()
28  * Inode LRU list locks protect:
29  *   inode->i_sb->s_inode_lru, inode->i_lru
30  * inode_sb_list_lock protects:
31  *   sb->s_inodes, inode->i_sb_list
32  * bdi->wb.list_lock protects:
33  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34  * inode_hash_lock protects:
35  *   inode_hashtable, inode->i_hash
36  *
37  * Lock ordering:
38  *
39  * inode_sb_list_lock
40  *   inode->i_lock
41  *     Inode LRU list locks
42  *
43  * bdi->wb.list_lock
44  *   inode->i_lock
45  *
46  * inode_hash_lock
47  *   inode_sb_list_lock
48  *   inode->i_lock
49  *
50  * iunique_lock
51  *   inode_hash_lock
52  */
53 
54 static unsigned int i_hash_mask __read_mostly;
55 static unsigned int i_hash_shift __read_mostly;
56 static struct hlist_head *inode_hashtable __read_mostly;
57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58 
59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60 
61 /*
62  * Empty aops. Can be used for the cases where the user does not
63  * define any of the address_space operations.
64  */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68 
69 /*
70  * Statistics gathering..
71  */
72 struct inodes_stat_t inodes_stat;
73 
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 
77 static struct kmem_cache *inode_cachep __read_mostly;
78 
79 static long get_nr_inodes(void)
80 {
81 	int i;
82 	long sum = 0;
83 	for_each_possible_cpu(i)
84 		sum += per_cpu(nr_inodes, i);
85 	return sum < 0 ? 0 : sum;
86 }
87 
88 static inline long get_nr_inodes_unused(void)
89 {
90 	int i;
91 	long sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_unused, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 long get_nr_dirty_inodes(void)
98 {
99 	/* not actually dirty inodes, but a wild approximation */
100 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 	return nr_dirty > 0 ? nr_dirty : 0;
102 }
103 
104 /*
105  * Handle nr_inode sysctl
106  */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 		   void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 	inodes_stat.nr_inodes = get_nr_inodes();
112 	inodes_stat.nr_unused = get_nr_inodes_unused();
113 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116 
117 /**
118  * inode_init_always - perform inode structure intialisation
119  * @sb: superblock inode belongs to
120  * @inode: inode to initialise
121  *
122  * These are initializations that need to be done on every inode
123  * allocation as the fields are not initialised by slab allocation.
124  */
125 int inode_init_always(struct super_block *sb, struct inode *inode)
126 {
127 	static const struct inode_operations empty_iops;
128 	static const struct file_operations empty_fops;
129 	struct address_space *const mapping = &inode->i_data;
130 
131 	inode->i_sb = sb;
132 	inode->i_blkbits = sb->s_blocksize_bits;
133 	inode->i_flags = 0;
134 	atomic_set(&inode->i_count, 1);
135 	inode->i_op = &empty_iops;
136 	inode->i_fop = &empty_fops;
137 	inode->__i_nlink = 1;
138 	inode->i_opflags = 0;
139 	i_uid_write(inode, 0);
140 	i_gid_write(inode, 0);
141 	atomic_set(&inode->i_writecount, 0);
142 	inode->i_size = 0;
143 	inode->i_blocks = 0;
144 	inode->i_bytes = 0;
145 	inode->i_generation = 0;
146 	inode->i_pipe = NULL;
147 	inode->i_bdev = NULL;
148 	inode->i_cdev = NULL;
149 	inode->i_rdev = 0;
150 	inode->dirtied_when = 0;
151 
152 	if (security_inode_alloc(inode))
153 		goto out;
154 	spin_lock_init(&inode->i_lock);
155 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
156 
157 	mutex_init(&inode->i_mutex);
158 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
159 
160 	atomic_set(&inode->i_dio_count, 0);
161 
162 	mapping->a_ops = &empty_aops;
163 	mapping->host = inode;
164 	mapping->flags = 0;
165 	atomic_set(&mapping->i_mmap_writable, 0);
166 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
167 	mapping->private_data = NULL;
168 	mapping->backing_dev_info = &default_backing_dev_info;
169 	mapping->writeback_index = 0;
170 
171 	/*
172 	 * If the block_device provides a backing_dev_info for client
173 	 * inodes then use that.  Otherwise the inode share the bdev's
174 	 * backing_dev_info.
175 	 */
176 	if (sb->s_bdev) {
177 		struct backing_dev_info *bdi;
178 
179 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
180 		mapping->backing_dev_info = bdi;
181 	}
182 	inode->i_private = NULL;
183 	inode->i_mapping = mapping;
184 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
185 #ifdef CONFIG_FS_POSIX_ACL
186 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
187 #endif
188 
189 #ifdef CONFIG_FSNOTIFY
190 	inode->i_fsnotify_mask = 0;
191 #endif
192 
193 	this_cpu_inc(nr_inodes);
194 
195 	return 0;
196 out:
197 	return -ENOMEM;
198 }
199 EXPORT_SYMBOL(inode_init_always);
200 
201 static struct inode *alloc_inode(struct super_block *sb)
202 {
203 	struct inode *inode;
204 
205 	if (sb->s_op->alloc_inode)
206 		inode = sb->s_op->alloc_inode(sb);
207 	else
208 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
209 
210 	if (!inode)
211 		return NULL;
212 
213 	if (unlikely(inode_init_always(sb, inode))) {
214 		if (inode->i_sb->s_op->destroy_inode)
215 			inode->i_sb->s_op->destroy_inode(inode);
216 		else
217 			kmem_cache_free(inode_cachep, inode);
218 		return NULL;
219 	}
220 
221 	return inode;
222 }
223 
224 void free_inode_nonrcu(struct inode *inode)
225 {
226 	kmem_cache_free(inode_cachep, inode);
227 }
228 EXPORT_SYMBOL(free_inode_nonrcu);
229 
230 void __destroy_inode(struct inode *inode)
231 {
232 	BUG_ON(inode_has_buffers(inode));
233 	security_inode_free(inode);
234 	fsnotify_inode_delete(inode);
235 	if (!inode->i_nlink) {
236 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
237 		atomic_long_dec(&inode->i_sb->s_remove_count);
238 	}
239 
240 #ifdef CONFIG_FS_POSIX_ACL
241 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
242 		posix_acl_release(inode->i_acl);
243 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
244 		posix_acl_release(inode->i_default_acl);
245 #endif
246 	this_cpu_dec(nr_inodes);
247 }
248 EXPORT_SYMBOL(__destroy_inode);
249 
250 static void i_callback(struct rcu_head *head)
251 {
252 	struct inode *inode = container_of(head, struct inode, i_rcu);
253 	kmem_cache_free(inode_cachep, inode);
254 }
255 
256 static void destroy_inode(struct inode *inode)
257 {
258 	BUG_ON(!list_empty(&inode->i_lru));
259 	__destroy_inode(inode);
260 	if (inode->i_sb->s_op->destroy_inode)
261 		inode->i_sb->s_op->destroy_inode(inode);
262 	else
263 		call_rcu(&inode->i_rcu, i_callback);
264 }
265 
266 /**
267  * drop_nlink - directly drop an inode's link count
268  * @inode: inode
269  *
270  * This is a low-level filesystem helper to replace any
271  * direct filesystem manipulation of i_nlink.  In cases
272  * where we are attempting to track writes to the
273  * filesystem, a decrement to zero means an imminent
274  * write when the file is truncated and actually unlinked
275  * on the filesystem.
276  */
277 void drop_nlink(struct inode *inode)
278 {
279 	WARN_ON(inode->i_nlink == 0);
280 	inode->__i_nlink--;
281 	if (!inode->i_nlink)
282 		atomic_long_inc(&inode->i_sb->s_remove_count);
283 }
284 EXPORT_SYMBOL(drop_nlink);
285 
286 /**
287  * clear_nlink - directly zero an inode's link count
288  * @inode: inode
289  *
290  * This is a low-level filesystem helper to replace any
291  * direct filesystem manipulation of i_nlink.  See
292  * drop_nlink() for why we care about i_nlink hitting zero.
293  */
294 void clear_nlink(struct inode *inode)
295 {
296 	if (inode->i_nlink) {
297 		inode->__i_nlink = 0;
298 		atomic_long_inc(&inode->i_sb->s_remove_count);
299 	}
300 }
301 EXPORT_SYMBOL(clear_nlink);
302 
303 /**
304  * set_nlink - directly set an inode's link count
305  * @inode: inode
306  * @nlink: new nlink (should be non-zero)
307  *
308  * This is a low-level filesystem helper to replace any
309  * direct filesystem manipulation of i_nlink.
310  */
311 void set_nlink(struct inode *inode, unsigned int nlink)
312 {
313 	if (!nlink) {
314 		clear_nlink(inode);
315 	} else {
316 		/* Yes, some filesystems do change nlink from zero to one */
317 		if (inode->i_nlink == 0)
318 			atomic_long_dec(&inode->i_sb->s_remove_count);
319 
320 		inode->__i_nlink = nlink;
321 	}
322 }
323 EXPORT_SYMBOL(set_nlink);
324 
325 /**
326  * inc_nlink - directly increment an inode's link count
327  * @inode: inode
328  *
329  * This is a low-level filesystem helper to replace any
330  * direct filesystem manipulation of i_nlink.  Currently,
331  * it is only here for parity with dec_nlink().
332  */
333 void inc_nlink(struct inode *inode)
334 {
335 	if (unlikely(inode->i_nlink == 0)) {
336 		WARN_ON(!(inode->i_state & I_LINKABLE));
337 		atomic_long_dec(&inode->i_sb->s_remove_count);
338 	}
339 
340 	inode->__i_nlink++;
341 }
342 EXPORT_SYMBOL(inc_nlink);
343 
344 void address_space_init_once(struct address_space *mapping)
345 {
346 	memset(mapping, 0, sizeof(*mapping));
347 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
348 	spin_lock_init(&mapping->tree_lock);
349 	init_rwsem(&mapping->i_mmap_rwsem);
350 	INIT_LIST_HEAD(&mapping->private_list);
351 	spin_lock_init(&mapping->private_lock);
352 	mapping->i_mmap = RB_ROOT;
353 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
354 }
355 EXPORT_SYMBOL(address_space_init_once);
356 
357 /*
358  * These are initializations that only need to be done
359  * once, because the fields are idempotent across use
360  * of the inode, so let the slab aware of that.
361  */
362 void inode_init_once(struct inode *inode)
363 {
364 	memset(inode, 0, sizeof(*inode));
365 	INIT_HLIST_NODE(&inode->i_hash);
366 	INIT_LIST_HEAD(&inode->i_devices);
367 	INIT_LIST_HEAD(&inode->i_wb_list);
368 	INIT_LIST_HEAD(&inode->i_lru);
369 	address_space_init_once(&inode->i_data);
370 	i_size_ordered_init(inode);
371 #ifdef CONFIG_FSNOTIFY
372 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
373 #endif
374 }
375 EXPORT_SYMBOL(inode_init_once);
376 
377 static void init_once(void *foo)
378 {
379 	struct inode *inode = (struct inode *) foo;
380 
381 	inode_init_once(inode);
382 }
383 
384 /*
385  * inode->i_lock must be held
386  */
387 void __iget(struct inode *inode)
388 {
389 	atomic_inc(&inode->i_count);
390 }
391 
392 /*
393  * get additional reference to inode; caller must already hold one.
394  */
395 void ihold(struct inode *inode)
396 {
397 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
398 }
399 EXPORT_SYMBOL(ihold);
400 
401 static void inode_lru_list_add(struct inode *inode)
402 {
403 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
404 		this_cpu_inc(nr_unused);
405 }
406 
407 /*
408  * Add inode to LRU if needed (inode is unused and clean).
409  *
410  * Needs inode->i_lock held.
411  */
412 void inode_add_lru(struct inode *inode)
413 {
414 	if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
415 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
416 		inode_lru_list_add(inode);
417 }
418 
419 
420 static void inode_lru_list_del(struct inode *inode)
421 {
422 
423 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
424 		this_cpu_dec(nr_unused);
425 }
426 
427 /**
428  * inode_sb_list_add - add inode to the superblock list of inodes
429  * @inode: inode to add
430  */
431 void inode_sb_list_add(struct inode *inode)
432 {
433 	spin_lock(&inode_sb_list_lock);
434 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
435 	spin_unlock(&inode_sb_list_lock);
436 }
437 EXPORT_SYMBOL_GPL(inode_sb_list_add);
438 
439 static inline void inode_sb_list_del(struct inode *inode)
440 {
441 	if (!list_empty(&inode->i_sb_list)) {
442 		spin_lock(&inode_sb_list_lock);
443 		list_del_init(&inode->i_sb_list);
444 		spin_unlock(&inode_sb_list_lock);
445 	}
446 }
447 
448 static unsigned long hash(struct super_block *sb, unsigned long hashval)
449 {
450 	unsigned long tmp;
451 
452 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
453 			L1_CACHE_BYTES;
454 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
455 	return tmp & i_hash_mask;
456 }
457 
458 /**
459  *	__insert_inode_hash - hash an inode
460  *	@inode: unhashed inode
461  *	@hashval: unsigned long value used to locate this object in the
462  *		inode_hashtable.
463  *
464  *	Add an inode to the inode hash for this superblock.
465  */
466 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
467 {
468 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
469 
470 	spin_lock(&inode_hash_lock);
471 	spin_lock(&inode->i_lock);
472 	hlist_add_head(&inode->i_hash, b);
473 	spin_unlock(&inode->i_lock);
474 	spin_unlock(&inode_hash_lock);
475 }
476 EXPORT_SYMBOL(__insert_inode_hash);
477 
478 /**
479  *	__remove_inode_hash - remove an inode from the hash
480  *	@inode: inode to unhash
481  *
482  *	Remove an inode from the superblock.
483  */
484 void __remove_inode_hash(struct inode *inode)
485 {
486 	spin_lock(&inode_hash_lock);
487 	spin_lock(&inode->i_lock);
488 	hlist_del_init(&inode->i_hash);
489 	spin_unlock(&inode->i_lock);
490 	spin_unlock(&inode_hash_lock);
491 }
492 EXPORT_SYMBOL(__remove_inode_hash);
493 
494 void clear_inode(struct inode *inode)
495 {
496 	might_sleep();
497 	/*
498 	 * We have to cycle tree_lock here because reclaim can be still in the
499 	 * process of removing the last page (in __delete_from_page_cache())
500 	 * and we must not free mapping under it.
501 	 */
502 	spin_lock_irq(&inode->i_data.tree_lock);
503 	BUG_ON(inode->i_data.nrpages);
504 	BUG_ON(inode->i_data.nrshadows);
505 	spin_unlock_irq(&inode->i_data.tree_lock);
506 	BUG_ON(!list_empty(&inode->i_data.private_list));
507 	BUG_ON(!(inode->i_state & I_FREEING));
508 	BUG_ON(inode->i_state & I_CLEAR);
509 	/* don't need i_lock here, no concurrent mods to i_state */
510 	inode->i_state = I_FREEING | I_CLEAR;
511 }
512 EXPORT_SYMBOL(clear_inode);
513 
514 /*
515  * Free the inode passed in, removing it from the lists it is still connected
516  * to. We remove any pages still attached to the inode and wait for any IO that
517  * is still in progress before finally destroying the inode.
518  *
519  * An inode must already be marked I_FREEING so that we avoid the inode being
520  * moved back onto lists if we race with other code that manipulates the lists
521  * (e.g. writeback_single_inode). The caller is responsible for setting this.
522  *
523  * An inode must already be removed from the LRU list before being evicted from
524  * the cache. This should occur atomically with setting the I_FREEING state
525  * flag, so no inodes here should ever be on the LRU when being evicted.
526  */
527 static void evict(struct inode *inode)
528 {
529 	const struct super_operations *op = inode->i_sb->s_op;
530 
531 	BUG_ON(!(inode->i_state & I_FREEING));
532 	BUG_ON(!list_empty(&inode->i_lru));
533 
534 	if (!list_empty(&inode->i_wb_list))
535 		inode_wb_list_del(inode);
536 
537 	inode_sb_list_del(inode);
538 
539 	/*
540 	 * Wait for flusher thread to be done with the inode so that filesystem
541 	 * does not start destroying it while writeback is still running. Since
542 	 * the inode has I_FREEING set, flusher thread won't start new work on
543 	 * the inode.  We just have to wait for running writeback to finish.
544 	 */
545 	inode_wait_for_writeback(inode);
546 
547 	if (op->evict_inode) {
548 		op->evict_inode(inode);
549 	} else {
550 		truncate_inode_pages_final(&inode->i_data);
551 		clear_inode(inode);
552 	}
553 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
554 		bd_forget(inode);
555 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
556 		cd_forget(inode);
557 
558 	remove_inode_hash(inode);
559 
560 	spin_lock(&inode->i_lock);
561 	wake_up_bit(&inode->i_state, __I_NEW);
562 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
563 	spin_unlock(&inode->i_lock);
564 
565 	destroy_inode(inode);
566 }
567 
568 /*
569  * dispose_list - dispose of the contents of a local list
570  * @head: the head of the list to free
571  *
572  * Dispose-list gets a local list with local inodes in it, so it doesn't
573  * need to worry about list corruption and SMP locks.
574  */
575 static void dispose_list(struct list_head *head)
576 {
577 	while (!list_empty(head)) {
578 		struct inode *inode;
579 
580 		inode = list_first_entry(head, struct inode, i_lru);
581 		list_del_init(&inode->i_lru);
582 
583 		evict(inode);
584 	}
585 }
586 
587 /**
588  * evict_inodes	- evict all evictable inodes for a superblock
589  * @sb:		superblock to operate on
590  *
591  * Make sure that no inodes with zero refcount are retained.  This is
592  * called by superblock shutdown after having MS_ACTIVE flag removed,
593  * so any inode reaching zero refcount during or after that call will
594  * be immediately evicted.
595  */
596 void evict_inodes(struct super_block *sb)
597 {
598 	struct inode *inode, *next;
599 	LIST_HEAD(dispose);
600 
601 	spin_lock(&inode_sb_list_lock);
602 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
603 		if (atomic_read(&inode->i_count))
604 			continue;
605 
606 		spin_lock(&inode->i_lock);
607 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
608 			spin_unlock(&inode->i_lock);
609 			continue;
610 		}
611 
612 		inode->i_state |= I_FREEING;
613 		inode_lru_list_del(inode);
614 		spin_unlock(&inode->i_lock);
615 		list_add(&inode->i_lru, &dispose);
616 	}
617 	spin_unlock(&inode_sb_list_lock);
618 
619 	dispose_list(&dispose);
620 }
621 
622 /**
623  * invalidate_inodes	- attempt to free all inodes on a superblock
624  * @sb:		superblock to operate on
625  * @kill_dirty: flag to guide handling of dirty inodes
626  *
627  * Attempts to free all inodes for a given superblock.  If there were any
628  * busy inodes return a non-zero value, else zero.
629  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
630  * them as busy.
631  */
632 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
633 {
634 	int busy = 0;
635 	struct inode *inode, *next;
636 	LIST_HEAD(dispose);
637 
638 	spin_lock(&inode_sb_list_lock);
639 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
640 		spin_lock(&inode->i_lock);
641 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
642 			spin_unlock(&inode->i_lock);
643 			continue;
644 		}
645 		if (inode->i_state & I_DIRTY && !kill_dirty) {
646 			spin_unlock(&inode->i_lock);
647 			busy = 1;
648 			continue;
649 		}
650 		if (atomic_read(&inode->i_count)) {
651 			spin_unlock(&inode->i_lock);
652 			busy = 1;
653 			continue;
654 		}
655 
656 		inode->i_state |= I_FREEING;
657 		inode_lru_list_del(inode);
658 		spin_unlock(&inode->i_lock);
659 		list_add(&inode->i_lru, &dispose);
660 	}
661 	spin_unlock(&inode_sb_list_lock);
662 
663 	dispose_list(&dispose);
664 
665 	return busy;
666 }
667 
668 /*
669  * Isolate the inode from the LRU in preparation for freeing it.
670  *
671  * Any inodes which are pinned purely because of attached pagecache have their
672  * pagecache removed.  If the inode has metadata buffers attached to
673  * mapping->private_list then try to remove them.
674  *
675  * If the inode has the I_REFERENCED flag set, then it means that it has been
676  * used recently - the flag is set in iput_final(). When we encounter such an
677  * inode, clear the flag and move it to the back of the LRU so it gets another
678  * pass through the LRU before it gets reclaimed. This is necessary because of
679  * the fact we are doing lazy LRU updates to minimise lock contention so the
680  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
681  * with this flag set because they are the inodes that are out of order.
682  */
683 static enum lru_status
684 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
685 {
686 	struct list_head *freeable = arg;
687 	struct inode	*inode = container_of(item, struct inode, i_lru);
688 
689 	/*
690 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
691 	 * If we fail to get the lock, just skip it.
692 	 */
693 	if (!spin_trylock(&inode->i_lock))
694 		return LRU_SKIP;
695 
696 	/*
697 	 * Referenced or dirty inodes are still in use. Give them another pass
698 	 * through the LRU as we canot reclaim them now.
699 	 */
700 	if (atomic_read(&inode->i_count) ||
701 	    (inode->i_state & ~I_REFERENCED)) {
702 		list_del_init(&inode->i_lru);
703 		spin_unlock(&inode->i_lock);
704 		this_cpu_dec(nr_unused);
705 		return LRU_REMOVED;
706 	}
707 
708 	/* recently referenced inodes get one more pass */
709 	if (inode->i_state & I_REFERENCED) {
710 		inode->i_state &= ~I_REFERENCED;
711 		spin_unlock(&inode->i_lock);
712 		return LRU_ROTATE;
713 	}
714 
715 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
716 		__iget(inode);
717 		spin_unlock(&inode->i_lock);
718 		spin_unlock(lru_lock);
719 		if (remove_inode_buffers(inode)) {
720 			unsigned long reap;
721 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
722 			if (current_is_kswapd())
723 				__count_vm_events(KSWAPD_INODESTEAL, reap);
724 			else
725 				__count_vm_events(PGINODESTEAL, reap);
726 			if (current->reclaim_state)
727 				current->reclaim_state->reclaimed_slab += reap;
728 		}
729 		iput(inode);
730 		spin_lock(lru_lock);
731 		return LRU_RETRY;
732 	}
733 
734 	WARN_ON(inode->i_state & I_NEW);
735 	inode->i_state |= I_FREEING;
736 	list_move(&inode->i_lru, freeable);
737 	spin_unlock(&inode->i_lock);
738 
739 	this_cpu_dec(nr_unused);
740 	return LRU_REMOVED;
741 }
742 
743 /*
744  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
745  * This is called from the superblock shrinker function with a number of inodes
746  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
747  * then are freed outside inode_lock by dispose_list().
748  */
749 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
750 		     int nid)
751 {
752 	LIST_HEAD(freeable);
753 	long freed;
754 
755 	freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
756 				       &freeable, &nr_to_scan);
757 	dispose_list(&freeable);
758 	return freed;
759 }
760 
761 static void __wait_on_freeing_inode(struct inode *inode);
762 /*
763  * Called with the inode lock held.
764  */
765 static struct inode *find_inode(struct super_block *sb,
766 				struct hlist_head *head,
767 				int (*test)(struct inode *, void *),
768 				void *data)
769 {
770 	struct inode *inode = NULL;
771 
772 repeat:
773 	hlist_for_each_entry(inode, head, i_hash) {
774 		if (inode->i_sb != sb)
775 			continue;
776 		if (!test(inode, data))
777 			continue;
778 		spin_lock(&inode->i_lock);
779 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
780 			__wait_on_freeing_inode(inode);
781 			goto repeat;
782 		}
783 		__iget(inode);
784 		spin_unlock(&inode->i_lock);
785 		return inode;
786 	}
787 	return NULL;
788 }
789 
790 /*
791  * find_inode_fast is the fast path version of find_inode, see the comment at
792  * iget_locked for details.
793  */
794 static struct inode *find_inode_fast(struct super_block *sb,
795 				struct hlist_head *head, unsigned long ino)
796 {
797 	struct inode *inode = NULL;
798 
799 repeat:
800 	hlist_for_each_entry(inode, head, i_hash) {
801 		if (inode->i_ino != ino)
802 			continue;
803 		if (inode->i_sb != sb)
804 			continue;
805 		spin_lock(&inode->i_lock);
806 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
807 			__wait_on_freeing_inode(inode);
808 			goto repeat;
809 		}
810 		__iget(inode);
811 		spin_unlock(&inode->i_lock);
812 		return inode;
813 	}
814 	return NULL;
815 }
816 
817 /*
818  * Each cpu owns a range of LAST_INO_BATCH numbers.
819  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
820  * to renew the exhausted range.
821  *
822  * This does not significantly increase overflow rate because every CPU can
823  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
824  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
825  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
826  * overflow rate by 2x, which does not seem too significant.
827  *
828  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
829  * error if st_ino won't fit in target struct field. Use 32bit counter
830  * here to attempt to avoid that.
831  */
832 #define LAST_INO_BATCH 1024
833 static DEFINE_PER_CPU(unsigned int, last_ino);
834 
835 unsigned int get_next_ino(void)
836 {
837 	unsigned int *p = &get_cpu_var(last_ino);
838 	unsigned int res = *p;
839 
840 #ifdef CONFIG_SMP
841 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
842 		static atomic_t shared_last_ino;
843 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
844 
845 		res = next - LAST_INO_BATCH;
846 	}
847 #endif
848 
849 	*p = ++res;
850 	put_cpu_var(last_ino);
851 	return res;
852 }
853 EXPORT_SYMBOL(get_next_ino);
854 
855 /**
856  *	new_inode_pseudo 	- obtain an inode
857  *	@sb: superblock
858  *
859  *	Allocates a new inode for given superblock.
860  *	Inode wont be chained in superblock s_inodes list
861  *	This means :
862  *	- fs can't be unmount
863  *	- quotas, fsnotify, writeback can't work
864  */
865 struct inode *new_inode_pseudo(struct super_block *sb)
866 {
867 	struct inode *inode = alloc_inode(sb);
868 
869 	if (inode) {
870 		spin_lock(&inode->i_lock);
871 		inode->i_state = 0;
872 		spin_unlock(&inode->i_lock);
873 		INIT_LIST_HEAD(&inode->i_sb_list);
874 	}
875 	return inode;
876 }
877 
878 /**
879  *	new_inode 	- obtain an inode
880  *	@sb: superblock
881  *
882  *	Allocates a new inode for given superblock. The default gfp_mask
883  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
884  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
885  *	for the page cache are not reclaimable or migratable,
886  *	mapping_set_gfp_mask() must be called with suitable flags on the
887  *	newly created inode's mapping
888  *
889  */
890 struct inode *new_inode(struct super_block *sb)
891 {
892 	struct inode *inode;
893 
894 	spin_lock_prefetch(&inode_sb_list_lock);
895 
896 	inode = new_inode_pseudo(sb);
897 	if (inode)
898 		inode_sb_list_add(inode);
899 	return inode;
900 }
901 EXPORT_SYMBOL(new_inode);
902 
903 #ifdef CONFIG_DEBUG_LOCK_ALLOC
904 void lockdep_annotate_inode_mutex_key(struct inode *inode)
905 {
906 	if (S_ISDIR(inode->i_mode)) {
907 		struct file_system_type *type = inode->i_sb->s_type;
908 
909 		/* Set new key only if filesystem hasn't already changed it */
910 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
911 			/*
912 			 * ensure nobody is actually holding i_mutex
913 			 */
914 			mutex_destroy(&inode->i_mutex);
915 			mutex_init(&inode->i_mutex);
916 			lockdep_set_class(&inode->i_mutex,
917 					  &type->i_mutex_dir_key);
918 		}
919 	}
920 }
921 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
922 #endif
923 
924 /**
925  * unlock_new_inode - clear the I_NEW state and wake up any waiters
926  * @inode:	new inode to unlock
927  *
928  * Called when the inode is fully initialised to clear the new state of the
929  * inode and wake up anyone waiting for the inode to finish initialisation.
930  */
931 void unlock_new_inode(struct inode *inode)
932 {
933 	lockdep_annotate_inode_mutex_key(inode);
934 	spin_lock(&inode->i_lock);
935 	WARN_ON(!(inode->i_state & I_NEW));
936 	inode->i_state &= ~I_NEW;
937 	smp_mb();
938 	wake_up_bit(&inode->i_state, __I_NEW);
939 	spin_unlock(&inode->i_lock);
940 }
941 EXPORT_SYMBOL(unlock_new_inode);
942 
943 /**
944  * lock_two_nondirectories - take two i_mutexes on non-directory objects
945  *
946  * Lock any non-NULL argument that is not a directory.
947  * Zero, one or two objects may be locked by this function.
948  *
949  * @inode1: first inode to lock
950  * @inode2: second inode to lock
951  */
952 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
953 {
954 	if (inode1 > inode2)
955 		swap(inode1, inode2);
956 
957 	if (inode1 && !S_ISDIR(inode1->i_mode))
958 		mutex_lock(&inode1->i_mutex);
959 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
960 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
961 }
962 EXPORT_SYMBOL(lock_two_nondirectories);
963 
964 /**
965  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
966  * @inode1: first inode to unlock
967  * @inode2: second inode to unlock
968  */
969 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
970 {
971 	if (inode1 && !S_ISDIR(inode1->i_mode))
972 		mutex_unlock(&inode1->i_mutex);
973 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
974 		mutex_unlock(&inode2->i_mutex);
975 }
976 EXPORT_SYMBOL(unlock_two_nondirectories);
977 
978 /**
979  * iget5_locked - obtain an inode from a mounted file system
980  * @sb:		super block of file system
981  * @hashval:	hash value (usually inode number) to get
982  * @test:	callback used for comparisons between inodes
983  * @set:	callback used to initialize a new struct inode
984  * @data:	opaque data pointer to pass to @test and @set
985  *
986  * Search for the inode specified by @hashval and @data in the inode cache,
987  * and if present it is return it with an increased reference count. This is
988  * a generalized version of iget_locked() for file systems where the inode
989  * number is not sufficient for unique identification of an inode.
990  *
991  * If the inode is not in cache, allocate a new inode and return it locked,
992  * hashed, and with the I_NEW flag set. The file system gets to fill it in
993  * before unlocking it via unlock_new_inode().
994  *
995  * Note both @test and @set are called with the inode_hash_lock held, so can't
996  * sleep.
997  */
998 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
999 		int (*test)(struct inode *, void *),
1000 		int (*set)(struct inode *, void *), void *data)
1001 {
1002 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1003 	struct inode *inode;
1004 
1005 	spin_lock(&inode_hash_lock);
1006 	inode = find_inode(sb, head, test, data);
1007 	spin_unlock(&inode_hash_lock);
1008 
1009 	if (inode) {
1010 		wait_on_inode(inode);
1011 		return inode;
1012 	}
1013 
1014 	inode = alloc_inode(sb);
1015 	if (inode) {
1016 		struct inode *old;
1017 
1018 		spin_lock(&inode_hash_lock);
1019 		/* We released the lock, so.. */
1020 		old = find_inode(sb, head, test, data);
1021 		if (!old) {
1022 			if (set(inode, data))
1023 				goto set_failed;
1024 
1025 			spin_lock(&inode->i_lock);
1026 			inode->i_state = I_NEW;
1027 			hlist_add_head(&inode->i_hash, head);
1028 			spin_unlock(&inode->i_lock);
1029 			inode_sb_list_add(inode);
1030 			spin_unlock(&inode_hash_lock);
1031 
1032 			/* Return the locked inode with I_NEW set, the
1033 			 * caller is responsible for filling in the contents
1034 			 */
1035 			return inode;
1036 		}
1037 
1038 		/*
1039 		 * Uhhuh, somebody else created the same inode under
1040 		 * us. Use the old inode instead of the one we just
1041 		 * allocated.
1042 		 */
1043 		spin_unlock(&inode_hash_lock);
1044 		destroy_inode(inode);
1045 		inode = old;
1046 		wait_on_inode(inode);
1047 	}
1048 	return inode;
1049 
1050 set_failed:
1051 	spin_unlock(&inode_hash_lock);
1052 	destroy_inode(inode);
1053 	return NULL;
1054 }
1055 EXPORT_SYMBOL(iget5_locked);
1056 
1057 /**
1058  * iget_locked - obtain an inode from a mounted file system
1059  * @sb:		super block of file system
1060  * @ino:	inode number to get
1061  *
1062  * Search for the inode specified by @ino in the inode cache and if present
1063  * return it with an increased reference count. This is for file systems
1064  * where the inode number is sufficient for unique identification of an inode.
1065  *
1066  * If the inode is not in cache, allocate a new inode and return it locked,
1067  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1068  * before unlocking it via unlock_new_inode().
1069  */
1070 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1071 {
1072 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1073 	struct inode *inode;
1074 
1075 	spin_lock(&inode_hash_lock);
1076 	inode = find_inode_fast(sb, head, ino);
1077 	spin_unlock(&inode_hash_lock);
1078 	if (inode) {
1079 		wait_on_inode(inode);
1080 		return inode;
1081 	}
1082 
1083 	inode = alloc_inode(sb);
1084 	if (inode) {
1085 		struct inode *old;
1086 
1087 		spin_lock(&inode_hash_lock);
1088 		/* We released the lock, so.. */
1089 		old = find_inode_fast(sb, head, ino);
1090 		if (!old) {
1091 			inode->i_ino = ino;
1092 			spin_lock(&inode->i_lock);
1093 			inode->i_state = I_NEW;
1094 			hlist_add_head(&inode->i_hash, head);
1095 			spin_unlock(&inode->i_lock);
1096 			inode_sb_list_add(inode);
1097 			spin_unlock(&inode_hash_lock);
1098 
1099 			/* Return the locked inode with I_NEW set, the
1100 			 * caller is responsible for filling in the contents
1101 			 */
1102 			return inode;
1103 		}
1104 
1105 		/*
1106 		 * Uhhuh, somebody else created the same inode under
1107 		 * us. Use the old inode instead of the one we just
1108 		 * allocated.
1109 		 */
1110 		spin_unlock(&inode_hash_lock);
1111 		destroy_inode(inode);
1112 		inode = old;
1113 		wait_on_inode(inode);
1114 	}
1115 	return inode;
1116 }
1117 EXPORT_SYMBOL(iget_locked);
1118 
1119 /*
1120  * search the inode cache for a matching inode number.
1121  * If we find one, then the inode number we are trying to
1122  * allocate is not unique and so we should not use it.
1123  *
1124  * Returns 1 if the inode number is unique, 0 if it is not.
1125  */
1126 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1127 {
1128 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1129 	struct inode *inode;
1130 
1131 	spin_lock(&inode_hash_lock);
1132 	hlist_for_each_entry(inode, b, i_hash) {
1133 		if (inode->i_ino == ino && inode->i_sb == sb) {
1134 			spin_unlock(&inode_hash_lock);
1135 			return 0;
1136 		}
1137 	}
1138 	spin_unlock(&inode_hash_lock);
1139 
1140 	return 1;
1141 }
1142 
1143 /**
1144  *	iunique - get a unique inode number
1145  *	@sb: superblock
1146  *	@max_reserved: highest reserved inode number
1147  *
1148  *	Obtain an inode number that is unique on the system for a given
1149  *	superblock. This is used by file systems that have no natural
1150  *	permanent inode numbering system. An inode number is returned that
1151  *	is higher than the reserved limit but unique.
1152  *
1153  *	BUGS:
1154  *	With a large number of inodes live on the file system this function
1155  *	currently becomes quite slow.
1156  */
1157 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1158 {
1159 	/*
1160 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1161 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1162 	 * here to attempt to avoid that.
1163 	 */
1164 	static DEFINE_SPINLOCK(iunique_lock);
1165 	static unsigned int counter;
1166 	ino_t res;
1167 
1168 	spin_lock(&iunique_lock);
1169 	do {
1170 		if (counter <= max_reserved)
1171 			counter = max_reserved + 1;
1172 		res = counter++;
1173 	} while (!test_inode_iunique(sb, res));
1174 	spin_unlock(&iunique_lock);
1175 
1176 	return res;
1177 }
1178 EXPORT_SYMBOL(iunique);
1179 
1180 struct inode *igrab(struct inode *inode)
1181 {
1182 	spin_lock(&inode->i_lock);
1183 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1184 		__iget(inode);
1185 		spin_unlock(&inode->i_lock);
1186 	} else {
1187 		spin_unlock(&inode->i_lock);
1188 		/*
1189 		 * Handle the case where s_op->clear_inode is not been
1190 		 * called yet, and somebody is calling igrab
1191 		 * while the inode is getting freed.
1192 		 */
1193 		inode = NULL;
1194 	}
1195 	return inode;
1196 }
1197 EXPORT_SYMBOL(igrab);
1198 
1199 /**
1200  * ilookup5_nowait - search for an inode in the inode cache
1201  * @sb:		super block of file system to search
1202  * @hashval:	hash value (usually inode number) to search for
1203  * @test:	callback used for comparisons between inodes
1204  * @data:	opaque data pointer to pass to @test
1205  *
1206  * Search for the inode specified by @hashval and @data in the inode cache.
1207  * If the inode is in the cache, the inode is returned with an incremented
1208  * reference count.
1209  *
1210  * Note: I_NEW is not waited upon so you have to be very careful what you do
1211  * with the returned inode.  You probably should be using ilookup5() instead.
1212  *
1213  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1214  */
1215 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1216 		int (*test)(struct inode *, void *), void *data)
1217 {
1218 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1219 	struct inode *inode;
1220 
1221 	spin_lock(&inode_hash_lock);
1222 	inode = find_inode(sb, head, test, data);
1223 	spin_unlock(&inode_hash_lock);
1224 
1225 	return inode;
1226 }
1227 EXPORT_SYMBOL(ilookup5_nowait);
1228 
1229 /**
1230  * ilookup5 - search for an inode in the inode cache
1231  * @sb:		super block of file system to search
1232  * @hashval:	hash value (usually inode number) to search for
1233  * @test:	callback used for comparisons between inodes
1234  * @data:	opaque data pointer to pass to @test
1235  *
1236  * Search for the inode specified by @hashval and @data in the inode cache,
1237  * and if the inode is in the cache, return the inode with an incremented
1238  * reference count.  Waits on I_NEW before returning the inode.
1239  * returned with an incremented reference count.
1240  *
1241  * This is a generalized version of ilookup() for file systems where the
1242  * inode number is not sufficient for unique identification of an inode.
1243  *
1244  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1245  */
1246 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1247 		int (*test)(struct inode *, void *), void *data)
1248 {
1249 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1250 
1251 	if (inode)
1252 		wait_on_inode(inode);
1253 	return inode;
1254 }
1255 EXPORT_SYMBOL(ilookup5);
1256 
1257 /**
1258  * ilookup - search for an inode in the inode cache
1259  * @sb:		super block of file system to search
1260  * @ino:	inode number to search for
1261  *
1262  * Search for the inode @ino in the inode cache, and if the inode is in the
1263  * cache, the inode is returned with an incremented reference count.
1264  */
1265 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1266 {
1267 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1268 	struct inode *inode;
1269 
1270 	spin_lock(&inode_hash_lock);
1271 	inode = find_inode_fast(sb, head, ino);
1272 	spin_unlock(&inode_hash_lock);
1273 
1274 	if (inode)
1275 		wait_on_inode(inode);
1276 	return inode;
1277 }
1278 EXPORT_SYMBOL(ilookup);
1279 
1280 int insert_inode_locked(struct inode *inode)
1281 {
1282 	struct super_block *sb = inode->i_sb;
1283 	ino_t ino = inode->i_ino;
1284 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1285 
1286 	while (1) {
1287 		struct inode *old = NULL;
1288 		spin_lock(&inode_hash_lock);
1289 		hlist_for_each_entry(old, head, i_hash) {
1290 			if (old->i_ino != ino)
1291 				continue;
1292 			if (old->i_sb != sb)
1293 				continue;
1294 			spin_lock(&old->i_lock);
1295 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1296 				spin_unlock(&old->i_lock);
1297 				continue;
1298 			}
1299 			break;
1300 		}
1301 		if (likely(!old)) {
1302 			spin_lock(&inode->i_lock);
1303 			inode->i_state |= I_NEW;
1304 			hlist_add_head(&inode->i_hash, head);
1305 			spin_unlock(&inode->i_lock);
1306 			spin_unlock(&inode_hash_lock);
1307 			return 0;
1308 		}
1309 		__iget(old);
1310 		spin_unlock(&old->i_lock);
1311 		spin_unlock(&inode_hash_lock);
1312 		wait_on_inode(old);
1313 		if (unlikely(!inode_unhashed(old))) {
1314 			iput(old);
1315 			return -EBUSY;
1316 		}
1317 		iput(old);
1318 	}
1319 }
1320 EXPORT_SYMBOL(insert_inode_locked);
1321 
1322 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1323 		int (*test)(struct inode *, void *), void *data)
1324 {
1325 	struct super_block *sb = inode->i_sb;
1326 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1327 
1328 	while (1) {
1329 		struct inode *old = NULL;
1330 
1331 		spin_lock(&inode_hash_lock);
1332 		hlist_for_each_entry(old, head, i_hash) {
1333 			if (old->i_sb != sb)
1334 				continue;
1335 			if (!test(old, data))
1336 				continue;
1337 			spin_lock(&old->i_lock);
1338 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1339 				spin_unlock(&old->i_lock);
1340 				continue;
1341 			}
1342 			break;
1343 		}
1344 		if (likely(!old)) {
1345 			spin_lock(&inode->i_lock);
1346 			inode->i_state |= I_NEW;
1347 			hlist_add_head(&inode->i_hash, head);
1348 			spin_unlock(&inode->i_lock);
1349 			spin_unlock(&inode_hash_lock);
1350 			return 0;
1351 		}
1352 		__iget(old);
1353 		spin_unlock(&old->i_lock);
1354 		spin_unlock(&inode_hash_lock);
1355 		wait_on_inode(old);
1356 		if (unlikely(!inode_unhashed(old))) {
1357 			iput(old);
1358 			return -EBUSY;
1359 		}
1360 		iput(old);
1361 	}
1362 }
1363 EXPORT_SYMBOL(insert_inode_locked4);
1364 
1365 
1366 int generic_delete_inode(struct inode *inode)
1367 {
1368 	return 1;
1369 }
1370 EXPORT_SYMBOL(generic_delete_inode);
1371 
1372 /*
1373  * Called when we're dropping the last reference
1374  * to an inode.
1375  *
1376  * Call the FS "drop_inode()" function, defaulting to
1377  * the legacy UNIX filesystem behaviour.  If it tells
1378  * us to evict inode, do so.  Otherwise, retain inode
1379  * in cache if fs is alive, sync and evict if fs is
1380  * shutting down.
1381  */
1382 static void iput_final(struct inode *inode)
1383 {
1384 	struct super_block *sb = inode->i_sb;
1385 	const struct super_operations *op = inode->i_sb->s_op;
1386 	int drop;
1387 
1388 	WARN_ON(inode->i_state & I_NEW);
1389 
1390 	if (op->drop_inode)
1391 		drop = op->drop_inode(inode);
1392 	else
1393 		drop = generic_drop_inode(inode);
1394 
1395 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1396 		inode->i_state |= I_REFERENCED;
1397 		inode_add_lru(inode);
1398 		spin_unlock(&inode->i_lock);
1399 		return;
1400 	}
1401 
1402 	if (!drop) {
1403 		inode->i_state |= I_WILL_FREE;
1404 		spin_unlock(&inode->i_lock);
1405 		write_inode_now(inode, 1);
1406 		spin_lock(&inode->i_lock);
1407 		WARN_ON(inode->i_state & I_NEW);
1408 		inode->i_state &= ~I_WILL_FREE;
1409 	}
1410 
1411 	inode->i_state |= I_FREEING;
1412 	if (!list_empty(&inode->i_lru))
1413 		inode_lru_list_del(inode);
1414 	spin_unlock(&inode->i_lock);
1415 
1416 	evict(inode);
1417 }
1418 
1419 /**
1420  *	iput	- put an inode
1421  *	@inode: inode to put
1422  *
1423  *	Puts an inode, dropping its usage count. If the inode use count hits
1424  *	zero, the inode is then freed and may also be destroyed.
1425  *
1426  *	Consequently, iput() can sleep.
1427  */
1428 void iput(struct inode *inode)
1429 {
1430 	if (inode) {
1431 		BUG_ON(inode->i_state & I_CLEAR);
1432 
1433 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1434 			iput_final(inode);
1435 	}
1436 }
1437 EXPORT_SYMBOL(iput);
1438 
1439 /**
1440  *	bmap	- find a block number in a file
1441  *	@inode: inode of file
1442  *	@block: block to find
1443  *
1444  *	Returns the block number on the device holding the inode that
1445  *	is the disk block number for the block of the file requested.
1446  *	That is, asked for block 4 of inode 1 the function will return the
1447  *	disk block relative to the disk start that holds that block of the
1448  *	file.
1449  */
1450 sector_t bmap(struct inode *inode, sector_t block)
1451 {
1452 	sector_t res = 0;
1453 	if (inode->i_mapping->a_ops->bmap)
1454 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1455 	return res;
1456 }
1457 EXPORT_SYMBOL(bmap);
1458 
1459 /*
1460  * With relative atime, only update atime if the previous atime is
1461  * earlier than either the ctime or mtime or if at least a day has
1462  * passed since the last atime update.
1463  */
1464 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1465 			     struct timespec now)
1466 {
1467 
1468 	if (!(mnt->mnt_flags & MNT_RELATIME))
1469 		return 1;
1470 	/*
1471 	 * Is mtime younger than atime? If yes, update atime:
1472 	 */
1473 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1474 		return 1;
1475 	/*
1476 	 * Is ctime younger than atime? If yes, update atime:
1477 	 */
1478 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1479 		return 1;
1480 
1481 	/*
1482 	 * Is the previous atime value older than a day? If yes,
1483 	 * update atime:
1484 	 */
1485 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1486 		return 1;
1487 	/*
1488 	 * Good, we can skip the atime update:
1489 	 */
1490 	return 0;
1491 }
1492 
1493 /*
1494  * This does the actual work of updating an inodes time or version.  Must have
1495  * had called mnt_want_write() before calling this.
1496  */
1497 static int update_time(struct inode *inode, struct timespec *time, int flags)
1498 {
1499 	if (inode->i_op->update_time)
1500 		return inode->i_op->update_time(inode, time, flags);
1501 
1502 	if (flags & S_ATIME)
1503 		inode->i_atime = *time;
1504 	if (flags & S_VERSION)
1505 		inode_inc_iversion(inode);
1506 	if (flags & S_CTIME)
1507 		inode->i_ctime = *time;
1508 	if (flags & S_MTIME)
1509 		inode->i_mtime = *time;
1510 	mark_inode_dirty_sync(inode);
1511 	return 0;
1512 }
1513 
1514 /**
1515  *	touch_atime	-	update the access time
1516  *	@path: the &struct path to update
1517  *
1518  *	Update the accessed time on an inode and mark it for writeback.
1519  *	This function automatically handles read only file systems and media,
1520  *	as well as the "noatime" flag and inode specific "noatime" markers.
1521  */
1522 void touch_atime(const struct path *path)
1523 {
1524 	struct vfsmount *mnt = path->mnt;
1525 	struct inode *inode = path->dentry->d_inode;
1526 	struct timespec now;
1527 
1528 	if (inode->i_flags & S_NOATIME)
1529 		return;
1530 	if (IS_NOATIME(inode))
1531 		return;
1532 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1533 		return;
1534 
1535 	if (mnt->mnt_flags & MNT_NOATIME)
1536 		return;
1537 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1538 		return;
1539 
1540 	now = current_fs_time(inode->i_sb);
1541 
1542 	if (!relatime_need_update(mnt, inode, now))
1543 		return;
1544 
1545 	if (timespec_equal(&inode->i_atime, &now))
1546 		return;
1547 
1548 	if (!sb_start_write_trylock(inode->i_sb))
1549 		return;
1550 
1551 	if (__mnt_want_write(mnt))
1552 		goto skip_update;
1553 	/*
1554 	 * File systems can error out when updating inodes if they need to
1555 	 * allocate new space to modify an inode (such is the case for
1556 	 * Btrfs), but since we touch atime while walking down the path we
1557 	 * really don't care if we failed to update the atime of the file,
1558 	 * so just ignore the return value.
1559 	 * We may also fail on filesystems that have the ability to make parts
1560 	 * of the fs read only, e.g. subvolumes in Btrfs.
1561 	 */
1562 	update_time(inode, &now, S_ATIME);
1563 	__mnt_drop_write(mnt);
1564 skip_update:
1565 	sb_end_write(inode->i_sb);
1566 }
1567 EXPORT_SYMBOL(touch_atime);
1568 
1569 /*
1570  * The logic we want is
1571  *
1572  *	if suid or (sgid and xgrp)
1573  *		remove privs
1574  */
1575 int should_remove_suid(struct dentry *dentry)
1576 {
1577 	umode_t mode = dentry->d_inode->i_mode;
1578 	int kill = 0;
1579 
1580 	/* suid always must be killed */
1581 	if (unlikely(mode & S_ISUID))
1582 		kill = ATTR_KILL_SUID;
1583 
1584 	/*
1585 	 * sgid without any exec bits is just a mandatory locking mark; leave
1586 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1587 	 */
1588 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1589 		kill |= ATTR_KILL_SGID;
1590 
1591 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1592 		return kill;
1593 
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL(should_remove_suid);
1597 
1598 static int __remove_suid(struct dentry *dentry, int kill)
1599 {
1600 	struct iattr newattrs;
1601 
1602 	newattrs.ia_valid = ATTR_FORCE | kill;
1603 	/*
1604 	 * Note we call this on write, so notify_change will not
1605 	 * encounter any conflicting delegations:
1606 	 */
1607 	return notify_change(dentry, &newattrs, NULL);
1608 }
1609 
1610 int file_remove_suid(struct file *file)
1611 {
1612 	struct dentry *dentry = file->f_path.dentry;
1613 	struct inode *inode = dentry->d_inode;
1614 	int killsuid;
1615 	int killpriv;
1616 	int error = 0;
1617 
1618 	/* Fast path for nothing security related */
1619 	if (IS_NOSEC(inode))
1620 		return 0;
1621 
1622 	killsuid = should_remove_suid(dentry);
1623 	killpriv = security_inode_need_killpriv(dentry);
1624 
1625 	if (killpriv < 0)
1626 		return killpriv;
1627 	if (killpriv)
1628 		error = security_inode_killpriv(dentry);
1629 	if (!error && killsuid)
1630 		error = __remove_suid(dentry, killsuid);
1631 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1632 		inode->i_flags |= S_NOSEC;
1633 
1634 	return error;
1635 }
1636 EXPORT_SYMBOL(file_remove_suid);
1637 
1638 /**
1639  *	file_update_time	-	update mtime and ctime time
1640  *	@file: file accessed
1641  *
1642  *	Update the mtime and ctime members of an inode and mark the inode
1643  *	for writeback.  Note that this function is meant exclusively for
1644  *	usage in the file write path of filesystems, and filesystems may
1645  *	choose to explicitly ignore update via this function with the
1646  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1647  *	timestamps are handled by the server.  This can return an error for
1648  *	file systems who need to allocate space in order to update an inode.
1649  */
1650 
1651 int file_update_time(struct file *file)
1652 {
1653 	struct inode *inode = file_inode(file);
1654 	struct timespec now;
1655 	int sync_it = 0;
1656 	int ret;
1657 
1658 	/* First try to exhaust all avenues to not sync */
1659 	if (IS_NOCMTIME(inode))
1660 		return 0;
1661 
1662 	now = current_fs_time(inode->i_sb);
1663 	if (!timespec_equal(&inode->i_mtime, &now))
1664 		sync_it = S_MTIME;
1665 
1666 	if (!timespec_equal(&inode->i_ctime, &now))
1667 		sync_it |= S_CTIME;
1668 
1669 	if (IS_I_VERSION(inode))
1670 		sync_it |= S_VERSION;
1671 
1672 	if (!sync_it)
1673 		return 0;
1674 
1675 	/* Finally allowed to write? Takes lock. */
1676 	if (__mnt_want_write_file(file))
1677 		return 0;
1678 
1679 	ret = update_time(inode, &now, sync_it);
1680 	__mnt_drop_write_file(file);
1681 
1682 	return ret;
1683 }
1684 EXPORT_SYMBOL(file_update_time);
1685 
1686 int inode_needs_sync(struct inode *inode)
1687 {
1688 	if (IS_SYNC(inode))
1689 		return 1;
1690 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1691 		return 1;
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL(inode_needs_sync);
1695 
1696 /*
1697  * If we try to find an inode in the inode hash while it is being
1698  * deleted, we have to wait until the filesystem completes its
1699  * deletion before reporting that it isn't found.  This function waits
1700  * until the deletion _might_ have completed.  Callers are responsible
1701  * to recheck inode state.
1702  *
1703  * It doesn't matter if I_NEW is not set initially, a call to
1704  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1705  * will DTRT.
1706  */
1707 static void __wait_on_freeing_inode(struct inode *inode)
1708 {
1709 	wait_queue_head_t *wq;
1710 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1711 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1712 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1713 	spin_unlock(&inode->i_lock);
1714 	spin_unlock(&inode_hash_lock);
1715 	schedule();
1716 	finish_wait(wq, &wait.wait);
1717 	spin_lock(&inode_hash_lock);
1718 }
1719 
1720 static __initdata unsigned long ihash_entries;
1721 static int __init set_ihash_entries(char *str)
1722 {
1723 	if (!str)
1724 		return 0;
1725 	ihash_entries = simple_strtoul(str, &str, 0);
1726 	return 1;
1727 }
1728 __setup("ihash_entries=", set_ihash_entries);
1729 
1730 /*
1731  * Initialize the waitqueues and inode hash table.
1732  */
1733 void __init inode_init_early(void)
1734 {
1735 	unsigned int loop;
1736 
1737 	/* If hashes are distributed across NUMA nodes, defer
1738 	 * hash allocation until vmalloc space is available.
1739 	 */
1740 	if (hashdist)
1741 		return;
1742 
1743 	inode_hashtable =
1744 		alloc_large_system_hash("Inode-cache",
1745 					sizeof(struct hlist_head),
1746 					ihash_entries,
1747 					14,
1748 					HASH_EARLY,
1749 					&i_hash_shift,
1750 					&i_hash_mask,
1751 					0,
1752 					0);
1753 
1754 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1755 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1756 }
1757 
1758 void __init inode_init(void)
1759 {
1760 	unsigned int loop;
1761 
1762 	/* inode slab cache */
1763 	inode_cachep = kmem_cache_create("inode_cache",
1764 					 sizeof(struct inode),
1765 					 0,
1766 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1767 					 SLAB_MEM_SPREAD),
1768 					 init_once);
1769 
1770 	/* Hash may have been set up in inode_init_early */
1771 	if (!hashdist)
1772 		return;
1773 
1774 	inode_hashtable =
1775 		alloc_large_system_hash("Inode-cache",
1776 					sizeof(struct hlist_head),
1777 					ihash_entries,
1778 					14,
1779 					0,
1780 					&i_hash_shift,
1781 					&i_hash_mask,
1782 					0,
1783 					0);
1784 
1785 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1786 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1787 }
1788 
1789 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1790 {
1791 	inode->i_mode = mode;
1792 	if (S_ISCHR(mode)) {
1793 		inode->i_fop = &def_chr_fops;
1794 		inode->i_rdev = rdev;
1795 	} else if (S_ISBLK(mode)) {
1796 		inode->i_fop = &def_blk_fops;
1797 		inode->i_rdev = rdev;
1798 	} else if (S_ISFIFO(mode))
1799 		inode->i_fop = &pipefifo_fops;
1800 	else if (S_ISSOCK(mode))
1801 		inode->i_fop = &bad_sock_fops;
1802 	else
1803 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1804 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1805 				  inode->i_ino);
1806 }
1807 EXPORT_SYMBOL(init_special_inode);
1808 
1809 /**
1810  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1811  * @inode: New inode
1812  * @dir: Directory inode
1813  * @mode: mode of the new inode
1814  */
1815 void inode_init_owner(struct inode *inode, const struct inode *dir,
1816 			umode_t mode)
1817 {
1818 	inode->i_uid = current_fsuid();
1819 	if (dir && dir->i_mode & S_ISGID) {
1820 		inode->i_gid = dir->i_gid;
1821 		if (S_ISDIR(mode))
1822 			mode |= S_ISGID;
1823 	} else
1824 		inode->i_gid = current_fsgid();
1825 	inode->i_mode = mode;
1826 }
1827 EXPORT_SYMBOL(inode_init_owner);
1828 
1829 /**
1830  * inode_owner_or_capable - check current task permissions to inode
1831  * @inode: inode being checked
1832  *
1833  * Return true if current either has CAP_FOWNER in a namespace with the
1834  * inode owner uid mapped, or owns the file.
1835  */
1836 bool inode_owner_or_capable(const struct inode *inode)
1837 {
1838 	struct user_namespace *ns;
1839 
1840 	if (uid_eq(current_fsuid(), inode->i_uid))
1841 		return true;
1842 
1843 	ns = current_user_ns();
1844 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1845 		return true;
1846 	return false;
1847 }
1848 EXPORT_SYMBOL(inode_owner_or_capable);
1849 
1850 /*
1851  * Direct i/o helper functions
1852  */
1853 static void __inode_dio_wait(struct inode *inode)
1854 {
1855 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1856 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1857 
1858 	do {
1859 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1860 		if (atomic_read(&inode->i_dio_count))
1861 			schedule();
1862 	} while (atomic_read(&inode->i_dio_count));
1863 	finish_wait(wq, &q.wait);
1864 }
1865 
1866 /**
1867  * inode_dio_wait - wait for outstanding DIO requests to finish
1868  * @inode: inode to wait for
1869  *
1870  * Waits for all pending direct I/O requests to finish so that we can
1871  * proceed with a truncate or equivalent operation.
1872  *
1873  * Must be called under a lock that serializes taking new references
1874  * to i_dio_count, usually by inode->i_mutex.
1875  */
1876 void inode_dio_wait(struct inode *inode)
1877 {
1878 	if (atomic_read(&inode->i_dio_count))
1879 		__inode_dio_wait(inode);
1880 }
1881 EXPORT_SYMBOL(inode_dio_wait);
1882 
1883 /*
1884  * inode_dio_done - signal finish of a direct I/O requests
1885  * @inode: inode the direct I/O happens on
1886  *
1887  * This is called once we've finished processing a direct I/O request,
1888  * and is used to wake up callers waiting for direct I/O to be quiesced.
1889  */
1890 void inode_dio_done(struct inode *inode)
1891 {
1892 	if (atomic_dec_and_test(&inode->i_dio_count))
1893 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1894 }
1895 EXPORT_SYMBOL(inode_dio_done);
1896 
1897 /*
1898  * inode_set_flags - atomically set some inode flags
1899  *
1900  * Note: the caller should be holding i_mutex, or else be sure that
1901  * they have exclusive access to the inode structure (i.e., while the
1902  * inode is being instantiated).  The reason for the cmpxchg() loop
1903  * --- which wouldn't be necessary if all code paths which modify
1904  * i_flags actually followed this rule, is that there is at least one
1905  * code path which doesn't today --- for example,
1906  * __generic_file_aio_write() calls file_remove_suid() without holding
1907  * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1908  *
1909  * In the long run, i_mutex is overkill, and we should probably look
1910  * at using the i_lock spinlock to protect i_flags, and then make sure
1911  * it is so documented in include/linux/fs.h and that all code follows
1912  * the locking convention!!
1913  */
1914 void inode_set_flags(struct inode *inode, unsigned int flags,
1915 		     unsigned int mask)
1916 {
1917 	unsigned int old_flags, new_flags;
1918 
1919 	WARN_ON_ONCE(flags & ~mask);
1920 	do {
1921 		old_flags = ACCESS_ONCE(inode->i_flags);
1922 		new_flags = (old_flags & ~mask) | flags;
1923 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1924 				  new_flags) != old_flags));
1925 }
1926 EXPORT_SYMBOL(inode_set_flags);
1927