xref: /linux/fs/inode.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/dcache.h>
11 #include <linux/init.h>
12 #include <linux/quotaops.h>
13 #include <linux/slab.h>
14 #include <linux/writeback.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/hash.h>
19 #include <linux/swap.h>
20 #include <linux/security.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/mount.h>
26 
27 /*
28  * This is needed for the following functions:
29  *  - inode_has_buffers
30  *  - invalidate_inode_buffers
31  *  - invalidate_bdev
32  *
33  * FIXME: remove all knowledge of the buffer layer from this file
34  */
35 #include <linux/buffer_head.h>
36 
37 /*
38  * New inode.c implementation.
39  *
40  * This implementation has the basic premise of trying
41  * to be extremely low-overhead and SMP-safe, yet be
42  * simple enough to be "obviously correct".
43  *
44  * Famous last words.
45  */
46 
47 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 
49 /* #define INODE_PARANOIA 1 */
50 /* #define INODE_DEBUG 1 */
51 
52 /*
53  * Inode lookup is no longer as critical as it used to be:
54  * most of the lookups are going to be through the dcache.
55  */
56 #define I_HASHBITS	i_hash_shift
57 #define I_HASHMASK	i_hash_mask
58 
59 static unsigned int i_hash_mask __read_mostly;
60 static unsigned int i_hash_shift __read_mostly;
61 
62 /*
63  * Each inode can be on two separate lists. One is
64  * the hash list of the inode, used for lookups. The
65  * other linked list is the "type" list:
66  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
67  *  "dirty"  - as "in_use" but also dirty
68  *  "unused" - valid inode, i_count = 0
69  *
70  * A "dirty" list is maintained for each super block,
71  * allowing for low-overhead inode sync() operations.
72  */
73 
74 LIST_HEAD(inode_in_use);
75 LIST_HEAD(inode_unused);
76 static struct hlist_head *inode_hashtable __read_mostly;
77 
78 /*
79  * A simple spinlock to protect the list manipulations.
80  *
81  * NOTE! You also have to own the lock if you change
82  * the i_state of an inode while it is in use..
83  */
84 DEFINE_SPINLOCK(inode_lock);
85 
86 /*
87  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
88  * icache shrinking path, and the umount path.  Without this exclusion,
89  * by the time prune_icache calls iput for the inode whose pages it has
90  * been invalidating, or by the time it calls clear_inode & destroy_inode
91  * from its final dispose_list, the struct super_block they refer to
92  * (for inode->i_sb->s_op) may already have been freed and reused.
93  */
94 static DEFINE_MUTEX(iprune_mutex);
95 
96 /*
97  * Statistics gathering..
98  */
99 struct inodes_stat_t inodes_stat;
100 
101 static kmem_cache_t * inode_cachep __read_mostly;
102 
103 static struct inode *alloc_inode(struct super_block *sb)
104 {
105 	static const struct address_space_operations empty_aops;
106 	static struct inode_operations empty_iops;
107 	static const struct file_operations empty_fops;
108 	struct inode *inode;
109 
110 	if (sb->s_op->alloc_inode)
111 		inode = sb->s_op->alloc_inode(sb);
112 	else
113 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL);
114 
115 	if (inode) {
116 		struct address_space * const mapping = &inode->i_data;
117 
118 		inode->i_sb = sb;
119 		inode->i_blkbits = sb->s_blocksize_bits;
120 		inode->i_flags = 0;
121 		atomic_set(&inode->i_count, 1);
122 		inode->i_op = &empty_iops;
123 		inode->i_fop = &empty_fops;
124 		inode->i_nlink = 1;
125 		atomic_set(&inode->i_writecount, 0);
126 		inode->i_size = 0;
127 		inode->i_blocks = 0;
128 		inode->i_bytes = 0;
129 		inode->i_generation = 0;
130 #ifdef CONFIG_QUOTA
131 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
132 #endif
133 		inode->i_pipe = NULL;
134 		inode->i_bdev = NULL;
135 		inode->i_cdev = NULL;
136 		inode->i_rdev = 0;
137 		inode->i_security = NULL;
138 		inode->dirtied_when = 0;
139 		if (security_inode_alloc(inode)) {
140 			if (inode->i_sb->s_op->destroy_inode)
141 				inode->i_sb->s_op->destroy_inode(inode);
142 			else
143 				kmem_cache_free(inode_cachep, (inode));
144 			return NULL;
145 		}
146 
147 		mapping->a_ops = &empty_aops;
148  		mapping->host = inode;
149 		mapping->flags = 0;
150 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
151 		mapping->assoc_mapping = NULL;
152 		mapping->backing_dev_info = &default_backing_dev_info;
153 
154 		/*
155 		 * If the block_device provides a backing_dev_info for client
156 		 * inodes then use that.  Otherwise the inode share the bdev's
157 		 * backing_dev_info.
158 		 */
159 		if (sb->s_bdev) {
160 			struct backing_dev_info *bdi;
161 
162 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
163 			if (!bdi)
164 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
165 			mapping->backing_dev_info = bdi;
166 		}
167 		memset(&inode->u, 0, sizeof(inode->u));
168 		inode->i_mapping = mapping;
169 	}
170 	return inode;
171 }
172 
173 void destroy_inode(struct inode *inode)
174 {
175 	BUG_ON(inode_has_buffers(inode));
176 	security_inode_free(inode);
177 	if (inode->i_sb->s_op->destroy_inode)
178 		inode->i_sb->s_op->destroy_inode(inode);
179 	else
180 		kmem_cache_free(inode_cachep, (inode));
181 }
182 
183 
184 /*
185  * These are initializations that only need to be done
186  * once, because the fields are idempotent across use
187  * of the inode, so let the slab aware of that.
188  */
189 void inode_init_once(struct inode *inode)
190 {
191 	memset(inode, 0, sizeof(*inode));
192 	INIT_HLIST_NODE(&inode->i_hash);
193 	INIT_LIST_HEAD(&inode->i_dentry);
194 	INIT_LIST_HEAD(&inode->i_devices);
195 	mutex_init(&inode->i_mutex);
196 	init_rwsem(&inode->i_alloc_sem);
197 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
198 	rwlock_init(&inode->i_data.tree_lock);
199 	spin_lock_init(&inode->i_data.i_mmap_lock);
200 	INIT_LIST_HEAD(&inode->i_data.private_list);
201 	spin_lock_init(&inode->i_data.private_lock);
202 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
203 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
204 	spin_lock_init(&inode->i_lock);
205 	i_size_ordered_init(inode);
206 #ifdef CONFIG_INOTIFY
207 	INIT_LIST_HEAD(&inode->inotify_watches);
208 	mutex_init(&inode->inotify_mutex);
209 #endif
210 }
211 
212 EXPORT_SYMBOL(inode_init_once);
213 
214 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
215 {
216 	struct inode * inode = (struct inode *) foo;
217 
218 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
219 	    SLAB_CTOR_CONSTRUCTOR)
220 		inode_init_once(inode);
221 }
222 
223 /*
224  * inode_lock must be held
225  */
226 void __iget(struct inode * inode)
227 {
228 	if (atomic_read(&inode->i_count)) {
229 		atomic_inc(&inode->i_count);
230 		return;
231 	}
232 	atomic_inc(&inode->i_count);
233 	if (!(inode->i_state & (I_DIRTY|I_LOCK)))
234 		list_move(&inode->i_list, &inode_in_use);
235 	inodes_stat.nr_unused--;
236 }
237 
238 /**
239  * clear_inode - clear an inode
240  * @inode: inode to clear
241  *
242  * This is called by the filesystem to tell us
243  * that the inode is no longer useful. We just
244  * terminate it with extreme prejudice.
245  */
246 void clear_inode(struct inode *inode)
247 {
248 	might_sleep();
249 	invalidate_inode_buffers(inode);
250 
251 	BUG_ON(inode->i_data.nrpages);
252 	BUG_ON(!(inode->i_state & I_FREEING));
253 	BUG_ON(inode->i_state & I_CLEAR);
254 	wait_on_inode(inode);
255 	DQUOT_DROP(inode);
256 	if (inode->i_sb && inode->i_sb->s_op->clear_inode)
257 		inode->i_sb->s_op->clear_inode(inode);
258 	if (inode->i_bdev)
259 		bd_forget(inode);
260 	if (inode->i_cdev)
261 		cd_forget(inode);
262 	inode->i_state = I_CLEAR;
263 }
264 
265 EXPORT_SYMBOL(clear_inode);
266 
267 /*
268  * dispose_list - dispose of the contents of a local list
269  * @head: the head of the list to free
270  *
271  * Dispose-list gets a local list with local inodes in it, so it doesn't
272  * need to worry about list corruption and SMP locks.
273  */
274 static void dispose_list(struct list_head *head)
275 {
276 	int nr_disposed = 0;
277 
278 	while (!list_empty(head)) {
279 		struct inode *inode;
280 
281 		inode = list_entry(head->next, struct inode, i_list);
282 		list_del(&inode->i_list);
283 
284 		if (inode->i_data.nrpages)
285 			truncate_inode_pages(&inode->i_data, 0);
286 		clear_inode(inode);
287 
288 		spin_lock(&inode_lock);
289 		hlist_del_init(&inode->i_hash);
290 		list_del_init(&inode->i_sb_list);
291 		spin_unlock(&inode_lock);
292 
293 		wake_up_inode(inode);
294 		destroy_inode(inode);
295 		nr_disposed++;
296 	}
297 	spin_lock(&inode_lock);
298 	inodes_stat.nr_inodes -= nr_disposed;
299 	spin_unlock(&inode_lock);
300 }
301 
302 /*
303  * Invalidate all inodes for a device.
304  */
305 static int invalidate_list(struct list_head *head, struct list_head *dispose)
306 {
307 	struct list_head *next;
308 	int busy = 0, count = 0;
309 
310 	next = head->next;
311 	for (;;) {
312 		struct list_head * tmp = next;
313 		struct inode * inode;
314 
315 		/*
316 		 * We can reschedule here without worrying about the list's
317 		 * consistency because the per-sb list of inodes must not
318 		 * change during umount anymore, and because iprune_mutex keeps
319 		 * shrink_icache_memory() away.
320 		 */
321 		cond_resched_lock(&inode_lock);
322 
323 		next = next->next;
324 		if (tmp == head)
325 			break;
326 		inode = list_entry(tmp, struct inode, i_sb_list);
327 		invalidate_inode_buffers(inode);
328 		if (!atomic_read(&inode->i_count)) {
329 			list_move(&inode->i_list, dispose);
330 			inode->i_state |= I_FREEING;
331 			count++;
332 			continue;
333 		}
334 		busy = 1;
335 	}
336 	/* only unused inodes may be cached with i_count zero */
337 	inodes_stat.nr_unused -= count;
338 	return busy;
339 }
340 
341 /**
342  *	invalidate_inodes	- discard the inodes on a device
343  *	@sb: superblock
344  *
345  *	Discard all of the inodes for a given superblock. If the discard
346  *	fails because there are busy inodes then a non zero value is returned.
347  *	If the discard is successful all the inodes have been discarded.
348  */
349 int invalidate_inodes(struct super_block * sb)
350 {
351 	int busy;
352 	LIST_HEAD(throw_away);
353 
354 	mutex_lock(&iprune_mutex);
355 	spin_lock(&inode_lock);
356 	inotify_unmount_inodes(&sb->s_inodes);
357 	busy = invalidate_list(&sb->s_inodes, &throw_away);
358 	spin_unlock(&inode_lock);
359 
360 	dispose_list(&throw_away);
361 	mutex_unlock(&iprune_mutex);
362 
363 	return busy;
364 }
365 
366 EXPORT_SYMBOL(invalidate_inodes);
367 
368 int __invalidate_device(struct block_device *bdev)
369 {
370 	struct super_block *sb = get_super(bdev);
371 	int res = 0;
372 
373 	if (sb) {
374 		/*
375 		 * no need to lock the super, get_super holds the
376 		 * read mutex so the filesystem cannot go away
377 		 * under us (->put_super runs with the write lock
378 		 * hold).
379 		 */
380 		shrink_dcache_sb(sb);
381 		res = invalidate_inodes(sb);
382 		drop_super(sb);
383 	}
384 	invalidate_bdev(bdev, 0);
385 	return res;
386 }
387 EXPORT_SYMBOL(__invalidate_device);
388 
389 static int can_unuse(struct inode *inode)
390 {
391 	if (inode->i_state)
392 		return 0;
393 	if (inode_has_buffers(inode))
394 		return 0;
395 	if (atomic_read(&inode->i_count))
396 		return 0;
397 	if (inode->i_data.nrpages)
398 		return 0;
399 	return 1;
400 }
401 
402 /*
403  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
404  * a temporary list and then are freed outside inode_lock by dispose_list().
405  *
406  * Any inodes which are pinned purely because of attached pagecache have their
407  * pagecache removed.  We expect the final iput() on that inode to add it to
408  * the front of the inode_unused list.  So look for it there and if the
409  * inode is still freeable, proceed.  The right inode is found 99.9% of the
410  * time in testing on a 4-way.
411  *
412  * If the inode has metadata buffers attached to mapping->private_list then
413  * try to remove them.
414  */
415 static void prune_icache(int nr_to_scan)
416 {
417 	LIST_HEAD(freeable);
418 	int nr_pruned = 0;
419 	int nr_scanned;
420 	unsigned long reap = 0;
421 
422 	mutex_lock(&iprune_mutex);
423 	spin_lock(&inode_lock);
424 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
425 		struct inode *inode;
426 
427 		if (list_empty(&inode_unused))
428 			break;
429 
430 		inode = list_entry(inode_unused.prev, struct inode, i_list);
431 
432 		if (inode->i_state || atomic_read(&inode->i_count)) {
433 			list_move(&inode->i_list, &inode_unused);
434 			continue;
435 		}
436 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
437 			__iget(inode);
438 			spin_unlock(&inode_lock);
439 			if (remove_inode_buffers(inode))
440 				reap += invalidate_inode_pages(&inode->i_data);
441 			iput(inode);
442 			spin_lock(&inode_lock);
443 
444 			if (inode != list_entry(inode_unused.next,
445 						struct inode, i_list))
446 				continue;	/* wrong inode or list_empty */
447 			if (!can_unuse(inode))
448 				continue;
449 		}
450 		list_move(&inode->i_list, &freeable);
451 		inode->i_state |= I_FREEING;
452 		nr_pruned++;
453 	}
454 	inodes_stat.nr_unused -= nr_pruned;
455 	if (current_is_kswapd())
456 		__count_vm_events(KSWAPD_INODESTEAL, reap);
457 	else
458 		__count_vm_events(PGINODESTEAL, reap);
459 	spin_unlock(&inode_lock);
460 
461 	dispose_list(&freeable);
462 	mutex_unlock(&iprune_mutex);
463 }
464 
465 /*
466  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
467  * "unused" means that no dentries are referring to the inodes: the files are
468  * not open and the dcache references to those inodes have already been
469  * reclaimed.
470  *
471  * This function is passed the number of inodes to scan, and it returns the
472  * total number of remaining possibly-reclaimable inodes.
473  */
474 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
475 {
476 	if (nr) {
477 		/*
478 		 * Nasty deadlock avoidance.  We may hold various FS locks,
479 		 * and we don't want to recurse into the FS that called us
480 		 * in clear_inode() and friends..
481 	 	 */
482 		if (!(gfp_mask & __GFP_FS))
483 			return -1;
484 		prune_icache(nr);
485 	}
486 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
487 }
488 
489 static void __wait_on_freeing_inode(struct inode *inode);
490 /*
491  * Called with the inode lock held.
492  * NOTE: we are not increasing the inode-refcount, you must call __iget()
493  * by hand after calling find_inode now! This simplifies iunique and won't
494  * add any additional branch in the common code.
495  */
496 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
497 {
498 	struct hlist_node *node;
499 	struct inode * inode = NULL;
500 
501 repeat:
502 	hlist_for_each (node, head) {
503 		inode = hlist_entry(node, struct inode, i_hash);
504 		if (inode->i_sb != sb)
505 			continue;
506 		if (!test(inode, data))
507 			continue;
508 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
509 			__wait_on_freeing_inode(inode);
510 			goto repeat;
511 		}
512 		break;
513 	}
514 	return node ? inode : NULL;
515 }
516 
517 /*
518  * find_inode_fast is the fast path version of find_inode, see the comment at
519  * iget_locked for details.
520  */
521 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
522 {
523 	struct hlist_node *node;
524 	struct inode * inode = NULL;
525 
526 repeat:
527 	hlist_for_each (node, head) {
528 		inode = hlist_entry(node, struct inode, i_hash);
529 		if (inode->i_ino != ino)
530 			continue;
531 		if (inode->i_sb != sb)
532 			continue;
533 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
534 			__wait_on_freeing_inode(inode);
535 			goto repeat;
536 		}
537 		break;
538 	}
539 	return node ? inode : NULL;
540 }
541 
542 /**
543  *	new_inode 	- obtain an inode
544  *	@sb: superblock
545  *
546  *	Allocates a new inode for given superblock.
547  */
548 struct inode *new_inode(struct super_block *sb)
549 {
550 	static unsigned long last_ino;
551 	struct inode * inode;
552 
553 	spin_lock_prefetch(&inode_lock);
554 
555 	inode = alloc_inode(sb);
556 	if (inode) {
557 		spin_lock(&inode_lock);
558 		inodes_stat.nr_inodes++;
559 		list_add(&inode->i_list, &inode_in_use);
560 		list_add(&inode->i_sb_list, &sb->s_inodes);
561 		inode->i_ino = ++last_ino;
562 		inode->i_state = 0;
563 		spin_unlock(&inode_lock);
564 	}
565 	return inode;
566 }
567 
568 EXPORT_SYMBOL(new_inode);
569 
570 void unlock_new_inode(struct inode *inode)
571 {
572 	/*
573 	 * This is special!  We do not need the spinlock
574 	 * when clearing I_LOCK, because we're guaranteed
575 	 * that nobody else tries to do anything about the
576 	 * state of the inode when it is locked, as we
577 	 * just created it (so there can be no old holders
578 	 * that haven't tested I_LOCK).
579 	 */
580 	inode->i_state &= ~(I_LOCK|I_NEW);
581 	wake_up_inode(inode);
582 }
583 
584 EXPORT_SYMBOL(unlock_new_inode);
585 
586 /*
587  * This is called without the inode lock held.. Be careful.
588  *
589  * We no longer cache the sb_flags in i_flags - see fs.h
590  *	-- rmk@arm.uk.linux.org
591  */
592 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
593 {
594 	struct inode * inode;
595 
596 	inode = alloc_inode(sb);
597 	if (inode) {
598 		struct inode * old;
599 
600 		spin_lock(&inode_lock);
601 		/* We released the lock, so.. */
602 		old = find_inode(sb, head, test, data);
603 		if (!old) {
604 			if (set(inode, data))
605 				goto set_failed;
606 
607 			inodes_stat.nr_inodes++;
608 			list_add(&inode->i_list, &inode_in_use);
609 			list_add(&inode->i_sb_list, &sb->s_inodes);
610 			hlist_add_head(&inode->i_hash, head);
611 			inode->i_state = I_LOCK|I_NEW;
612 			spin_unlock(&inode_lock);
613 
614 			/* Return the locked inode with I_NEW set, the
615 			 * caller is responsible for filling in the contents
616 			 */
617 			return inode;
618 		}
619 
620 		/*
621 		 * Uhhuh, somebody else created the same inode under
622 		 * us. Use the old inode instead of the one we just
623 		 * allocated.
624 		 */
625 		__iget(old);
626 		spin_unlock(&inode_lock);
627 		destroy_inode(inode);
628 		inode = old;
629 		wait_on_inode(inode);
630 	}
631 	return inode;
632 
633 set_failed:
634 	spin_unlock(&inode_lock);
635 	destroy_inode(inode);
636 	return NULL;
637 }
638 
639 /*
640  * get_new_inode_fast is the fast path version of get_new_inode, see the
641  * comment at iget_locked for details.
642  */
643 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
644 {
645 	struct inode * inode;
646 
647 	inode = alloc_inode(sb);
648 	if (inode) {
649 		struct inode * old;
650 
651 		spin_lock(&inode_lock);
652 		/* We released the lock, so.. */
653 		old = find_inode_fast(sb, head, ino);
654 		if (!old) {
655 			inode->i_ino = ino;
656 			inodes_stat.nr_inodes++;
657 			list_add(&inode->i_list, &inode_in_use);
658 			list_add(&inode->i_sb_list, &sb->s_inodes);
659 			hlist_add_head(&inode->i_hash, head);
660 			inode->i_state = I_LOCK|I_NEW;
661 			spin_unlock(&inode_lock);
662 
663 			/* Return the locked inode with I_NEW set, the
664 			 * caller is responsible for filling in the contents
665 			 */
666 			return inode;
667 		}
668 
669 		/*
670 		 * Uhhuh, somebody else created the same inode under
671 		 * us. Use the old inode instead of the one we just
672 		 * allocated.
673 		 */
674 		__iget(old);
675 		spin_unlock(&inode_lock);
676 		destroy_inode(inode);
677 		inode = old;
678 		wait_on_inode(inode);
679 	}
680 	return inode;
681 }
682 
683 static inline unsigned long hash(struct super_block *sb, unsigned long hashval)
684 {
685 	unsigned long tmp;
686 
687 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
688 			L1_CACHE_BYTES;
689 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
690 	return tmp & I_HASHMASK;
691 }
692 
693 /**
694  *	iunique - get a unique inode number
695  *	@sb: superblock
696  *	@max_reserved: highest reserved inode number
697  *
698  *	Obtain an inode number that is unique on the system for a given
699  *	superblock. This is used by file systems that have no natural
700  *	permanent inode numbering system. An inode number is returned that
701  *	is higher than the reserved limit but unique.
702  *
703  *	BUGS:
704  *	With a large number of inodes live on the file system this function
705  *	currently becomes quite slow.
706  */
707 ino_t iunique(struct super_block *sb, ino_t max_reserved)
708 {
709 	static ino_t counter;
710 	struct inode *inode;
711 	struct hlist_head * head;
712 	ino_t res;
713 	spin_lock(&inode_lock);
714 retry:
715 	if (counter > max_reserved) {
716 		head = inode_hashtable + hash(sb,counter);
717 		res = counter++;
718 		inode = find_inode_fast(sb, head, res);
719 		if (!inode) {
720 			spin_unlock(&inode_lock);
721 			return res;
722 		}
723 	} else {
724 		counter = max_reserved + 1;
725 	}
726 	goto retry;
727 
728 }
729 
730 EXPORT_SYMBOL(iunique);
731 
732 struct inode *igrab(struct inode *inode)
733 {
734 	spin_lock(&inode_lock);
735 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
736 		__iget(inode);
737 	else
738 		/*
739 		 * Handle the case where s_op->clear_inode is not been
740 		 * called yet, and somebody is calling igrab
741 		 * while the inode is getting freed.
742 		 */
743 		inode = NULL;
744 	spin_unlock(&inode_lock);
745 	return inode;
746 }
747 
748 EXPORT_SYMBOL(igrab);
749 
750 /**
751  * ifind - internal function, you want ilookup5() or iget5().
752  * @sb:		super block of file system to search
753  * @head:       the head of the list to search
754  * @test:	callback used for comparisons between inodes
755  * @data:	opaque data pointer to pass to @test
756  * @wait:	if true wait for the inode to be unlocked, if false do not
757  *
758  * ifind() searches for the inode specified by @data in the inode
759  * cache. This is a generalized version of ifind_fast() for file systems where
760  * the inode number is not sufficient for unique identification of an inode.
761  *
762  * If the inode is in the cache, the inode is returned with an incremented
763  * reference count.
764  *
765  * Otherwise NULL is returned.
766  *
767  * Note, @test is called with the inode_lock held, so can't sleep.
768  */
769 static struct inode *ifind(struct super_block *sb,
770 		struct hlist_head *head, int (*test)(struct inode *, void *),
771 		void *data, const int wait)
772 {
773 	struct inode *inode;
774 
775 	spin_lock(&inode_lock);
776 	inode = find_inode(sb, head, test, data);
777 	if (inode) {
778 		__iget(inode);
779 		spin_unlock(&inode_lock);
780 		if (likely(wait))
781 			wait_on_inode(inode);
782 		return inode;
783 	}
784 	spin_unlock(&inode_lock);
785 	return NULL;
786 }
787 
788 /**
789  * ifind_fast - internal function, you want ilookup() or iget().
790  * @sb:		super block of file system to search
791  * @head:       head of the list to search
792  * @ino:	inode number to search for
793  *
794  * ifind_fast() searches for the inode @ino in the inode cache. This is for
795  * file systems where the inode number is sufficient for unique identification
796  * of an inode.
797  *
798  * If the inode is in the cache, the inode is returned with an incremented
799  * reference count.
800  *
801  * Otherwise NULL is returned.
802  */
803 static struct inode *ifind_fast(struct super_block *sb,
804 		struct hlist_head *head, unsigned long ino)
805 {
806 	struct inode *inode;
807 
808 	spin_lock(&inode_lock);
809 	inode = find_inode_fast(sb, head, ino);
810 	if (inode) {
811 		__iget(inode);
812 		spin_unlock(&inode_lock);
813 		wait_on_inode(inode);
814 		return inode;
815 	}
816 	spin_unlock(&inode_lock);
817 	return NULL;
818 }
819 
820 /**
821  * ilookup5_nowait - search for an inode in the inode cache
822  * @sb:		super block of file system to search
823  * @hashval:	hash value (usually inode number) to search for
824  * @test:	callback used for comparisons between inodes
825  * @data:	opaque data pointer to pass to @test
826  *
827  * ilookup5() uses ifind() to search for the inode specified by @hashval and
828  * @data in the inode cache. This is a generalized version of ilookup() for
829  * file systems where the inode number is not sufficient for unique
830  * identification of an inode.
831  *
832  * If the inode is in the cache, the inode is returned with an incremented
833  * reference count.  Note, the inode lock is not waited upon so you have to be
834  * very careful what you do with the returned inode.  You probably should be
835  * using ilookup5() instead.
836  *
837  * Otherwise NULL is returned.
838  *
839  * Note, @test is called with the inode_lock held, so can't sleep.
840  */
841 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
842 		int (*test)(struct inode *, void *), void *data)
843 {
844 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
845 
846 	return ifind(sb, head, test, data, 0);
847 }
848 
849 EXPORT_SYMBOL(ilookup5_nowait);
850 
851 /**
852  * ilookup5 - search for an inode in the inode cache
853  * @sb:		super block of file system to search
854  * @hashval:	hash value (usually inode number) to search for
855  * @test:	callback used for comparisons between inodes
856  * @data:	opaque data pointer to pass to @test
857  *
858  * ilookup5() uses ifind() to search for the inode specified by @hashval and
859  * @data in the inode cache. This is a generalized version of ilookup() for
860  * file systems where the inode number is not sufficient for unique
861  * identification of an inode.
862  *
863  * If the inode is in the cache, the inode lock is waited upon and the inode is
864  * returned with an incremented reference count.
865  *
866  * Otherwise NULL is returned.
867  *
868  * Note, @test is called with the inode_lock held, so can't sleep.
869  */
870 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
871 		int (*test)(struct inode *, void *), void *data)
872 {
873 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
874 
875 	return ifind(sb, head, test, data, 1);
876 }
877 
878 EXPORT_SYMBOL(ilookup5);
879 
880 /**
881  * ilookup - search for an inode in the inode cache
882  * @sb:		super block of file system to search
883  * @ino:	inode number to search for
884  *
885  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
886  * This is for file systems where the inode number is sufficient for unique
887  * identification of an inode.
888  *
889  * If the inode is in the cache, the inode is returned with an incremented
890  * reference count.
891  *
892  * Otherwise NULL is returned.
893  */
894 struct inode *ilookup(struct super_block *sb, unsigned long ino)
895 {
896 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
897 
898 	return ifind_fast(sb, head, ino);
899 }
900 
901 EXPORT_SYMBOL(ilookup);
902 
903 /**
904  * iget5_locked - obtain an inode from a mounted file system
905  * @sb:		super block of file system
906  * @hashval:	hash value (usually inode number) to get
907  * @test:	callback used for comparisons between inodes
908  * @set:	callback used to initialize a new struct inode
909  * @data:	opaque data pointer to pass to @test and @set
910  *
911  * This is iget() without the read_inode() portion of get_new_inode().
912  *
913  * iget5_locked() uses ifind() to search for the inode specified by @hashval
914  * and @data in the inode cache and if present it is returned with an increased
915  * reference count. This is a generalized version of iget_locked() for file
916  * systems where the inode number is not sufficient for unique identification
917  * of an inode.
918  *
919  * If the inode is not in cache, get_new_inode() is called to allocate a new
920  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
921  * file system gets to fill it in before unlocking it via unlock_new_inode().
922  *
923  * Note both @test and @set are called with the inode_lock held, so can't sleep.
924  */
925 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
926 		int (*test)(struct inode *, void *),
927 		int (*set)(struct inode *, void *), void *data)
928 {
929 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
930 	struct inode *inode;
931 
932 	inode = ifind(sb, head, test, data, 1);
933 	if (inode)
934 		return inode;
935 	/*
936 	 * get_new_inode() will do the right thing, re-trying the search
937 	 * in case it had to block at any point.
938 	 */
939 	return get_new_inode(sb, head, test, set, data);
940 }
941 
942 EXPORT_SYMBOL(iget5_locked);
943 
944 /**
945  * iget_locked - obtain an inode from a mounted file system
946  * @sb:		super block of file system
947  * @ino:	inode number to get
948  *
949  * This is iget() without the read_inode() portion of get_new_inode_fast().
950  *
951  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
952  * the inode cache and if present it is returned with an increased reference
953  * count. This is for file systems where the inode number is sufficient for
954  * unique identification of an inode.
955  *
956  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
957  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
958  * The file system gets to fill it in before unlocking it via
959  * unlock_new_inode().
960  */
961 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
962 {
963 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
964 	struct inode *inode;
965 
966 	inode = ifind_fast(sb, head, ino);
967 	if (inode)
968 		return inode;
969 	/*
970 	 * get_new_inode_fast() will do the right thing, re-trying the search
971 	 * in case it had to block at any point.
972 	 */
973 	return get_new_inode_fast(sb, head, ino);
974 }
975 
976 EXPORT_SYMBOL(iget_locked);
977 
978 /**
979  *	__insert_inode_hash - hash an inode
980  *	@inode: unhashed inode
981  *	@hashval: unsigned long value used to locate this object in the
982  *		inode_hashtable.
983  *
984  *	Add an inode to the inode hash for this superblock.
985  */
986 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
987 {
988 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
989 	spin_lock(&inode_lock);
990 	hlist_add_head(&inode->i_hash, head);
991 	spin_unlock(&inode_lock);
992 }
993 
994 EXPORT_SYMBOL(__insert_inode_hash);
995 
996 /**
997  *	remove_inode_hash - remove an inode from the hash
998  *	@inode: inode to unhash
999  *
1000  *	Remove an inode from the superblock.
1001  */
1002 void remove_inode_hash(struct inode *inode)
1003 {
1004 	spin_lock(&inode_lock);
1005 	hlist_del_init(&inode->i_hash);
1006 	spin_unlock(&inode_lock);
1007 }
1008 
1009 EXPORT_SYMBOL(remove_inode_hash);
1010 
1011 /*
1012  * Tell the filesystem that this inode is no longer of any interest and should
1013  * be completely destroyed.
1014  *
1015  * We leave the inode in the inode hash table until *after* the filesystem's
1016  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1017  * instigate) will always find up-to-date information either in the hash or on
1018  * disk.
1019  *
1020  * I_FREEING is set so that no-one will take a new reference to the inode while
1021  * it is being deleted.
1022  */
1023 void generic_delete_inode(struct inode *inode)
1024 {
1025 	struct super_operations *op = inode->i_sb->s_op;
1026 
1027 	list_del_init(&inode->i_list);
1028 	list_del_init(&inode->i_sb_list);
1029 	inode->i_state|=I_FREEING;
1030 	inodes_stat.nr_inodes--;
1031 	spin_unlock(&inode_lock);
1032 
1033 	security_inode_delete(inode);
1034 
1035 	if (op->delete_inode) {
1036 		void (*delete)(struct inode *) = op->delete_inode;
1037 		if (!is_bad_inode(inode))
1038 			DQUOT_INIT(inode);
1039 		/* Filesystems implementing their own
1040 		 * s_op->delete_inode are required to call
1041 		 * truncate_inode_pages and clear_inode()
1042 		 * internally */
1043 		delete(inode);
1044 	} else {
1045 		truncate_inode_pages(&inode->i_data, 0);
1046 		clear_inode(inode);
1047 	}
1048 	spin_lock(&inode_lock);
1049 	hlist_del_init(&inode->i_hash);
1050 	spin_unlock(&inode_lock);
1051 	wake_up_inode(inode);
1052 	BUG_ON(inode->i_state != I_CLEAR);
1053 	destroy_inode(inode);
1054 }
1055 
1056 EXPORT_SYMBOL(generic_delete_inode);
1057 
1058 static void generic_forget_inode(struct inode *inode)
1059 {
1060 	struct super_block *sb = inode->i_sb;
1061 
1062 	if (!hlist_unhashed(&inode->i_hash)) {
1063 		if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1064 			list_move(&inode->i_list, &inode_unused);
1065 		inodes_stat.nr_unused++;
1066 		if (!sb || (sb->s_flags & MS_ACTIVE)) {
1067 			spin_unlock(&inode_lock);
1068 			return;
1069 		}
1070 		inode->i_state |= I_WILL_FREE;
1071 		spin_unlock(&inode_lock);
1072 		write_inode_now(inode, 1);
1073 		spin_lock(&inode_lock);
1074 		inode->i_state &= ~I_WILL_FREE;
1075 		inodes_stat.nr_unused--;
1076 		hlist_del_init(&inode->i_hash);
1077 	}
1078 	list_del_init(&inode->i_list);
1079 	list_del_init(&inode->i_sb_list);
1080 	inode->i_state |= I_FREEING;
1081 	inodes_stat.nr_inodes--;
1082 	spin_unlock(&inode_lock);
1083 	if (inode->i_data.nrpages)
1084 		truncate_inode_pages(&inode->i_data, 0);
1085 	clear_inode(inode);
1086 	wake_up_inode(inode);
1087 	destroy_inode(inode);
1088 }
1089 
1090 /*
1091  * Normal UNIX filesystem behaviour: delete the
1092  * inode when the usage count drops to zero, and
1093  * i_nlink is zero.
1094  */
1095 void generic_drop_inode(struct inode *inode)
1096 {
1097 	if (!inode->i_nlink)
1098 		generic_delete_inode(inode);
1099 	else
1100 		generic_forget_inode(inode);
1101 }
1102 
1103 EXPORT_SYMBOL_GPL(generic_drop_inode);
1104 
1105 /*
1106  * Called when we're dropping the last reference
1107  * to an inode.
1108  *
1109  * Call the FS "drop()" function, defaulting to
1110  * the legacy UNIX filesystem behaviour..
1111  *
1112  * NOTE! NOTE! NOTE! We're called with the inode lock
1113  * held, and the drop function is supposed to release
1114  * the lock!
1115  */
1116 static inline void iput_final(struct inode *inode)
1117 {
1118 	struct super_operations *op = inode->i_sb->s_op;
1119 	void (*drop)(struct inode *) = generic_drop_inode;
1120 
1121 	if (op && op->drop_inode)
1122 		drop = op->drop_inode;
1123 	drop(inode);
1124 }
1125 
1126 /**
1127  *	iput	- put an inode
1128  *	@inode: inode to put
1129  *
1130  *	Puts an inode, dropping its usage count. If the inode use count hits
1131  *	zero, the inode is then freed and may also be destroyed.
1132  *
1133  *	Consequently, iput() can sleep.
1134  */
1135 void iput(struct inode *inode)
1136 {
1137 	if (inode) {
1138 		struct super_operations *op = inode->i_sb->s_op;
1139 
1140 		BUG_ON(inode->i_state == I_CLEAR);
1141 
1142 		if (op && op->put_inode)
1143 			op->put_inode(inode);
1144 
1145 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1146 			iput_final(inode);
1147 	}
1148 }
1149 
1150 EXPORT_SYMBOL(iput);
1151 
1152 /**
1153  *	bmap	- find a block number in a file
1154  *	@inode: inode of file
1155  *	@block: block to find
1156  *
1157  *	Returns the block number on the device holding the inode that
1158  *	is the disk block number for the block of the file requested.
1159  *	That is, asked for block 4 of inode 1 the function will return the
1160  *	disk block relative to the disk start that holds that block of the
1161  *	file.
1162  */
1163 sector_t bmap(struct inode * inode, sector_t block)
1164 {
1165 	sector_t res = 0;
1166 	if (inode->i_mapping->a_ops->bmap)
1167 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1168 	return res;
1169 }
1170 
1171 EXPORT_SYMBOL(bmap);
1172 
1173 /**
1174  *	touch_atime	-	update the access time
1175  *	@mnt: mount the inode is accessed on
1176  *	@dentry: dentry accessed
1177  *
1178  *	Update the accessed time on an inode and mark it for writeback.
1179  *	This function automatically handles read only file systems and media,
1180  *	as well as the "noatime" flag and inode specific "noatime" markers.
1181  */
1182 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1183 {
1184 	struct inode *inode = dentry->d_inode;
1185 	struct timespec now;
1186 
1187 	if (IS_RDONLY(inode))
1188 		return;
1189 
1190 	if ((inode->i_flags & S_NOATIME) ||
1191 	    (inode->i_sb->s_flags & MS_NOATIME) ||
1192 	    ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
1193 		return;
1194 
1195 	/*
1196 	 * We may have a NULL vfsmount when coming from NFSD
1197 	 */
1198 	if (mnt &&
1199 	    ((mnt->mnt_flags & MNT_NOATIME) ||
1200 	     ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))))
1201 		return;
1202 
1203 	now = current_fs_time(inode->i_sb);
1204 	if (!timespec_equal(&inode->i_atime, &now)) {
1205 		inode->i_atime = now;
1206 		mark_inode_dirty_sync(inode);
1207 	}
1208 }
1209 
1210 EXPORT_SYMBOL(touch_atime);
1211 
1212 /**
1213  *	file_update_time	-	update mtime and ctime time
1214  *	@file: file accessed
1215  *
1216  *	Update the mtime and ctime members of an inode and mark the inode
1217  *	for writeback.  Note that this function is meant exclusively for
1218  *	usage in the file write path of filesystems, and filesystems may
1219  *	choose to explicitly ignore update via this function with the
1220  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1221  *	timestamps are handled by the server.
1222  */
1223 
1224 void file_update_time(struct file *file)
1225 {
1226 	struct inode *inode = file->f_dentry->d_inode;
1227 	struct timespec now;
1228 	int sync_it = 0;
1229 
1230 	if (IS_NOCMTIME(inode))
1231 		return;
1232 	if (IS_RDONLY(inode))
1233 		return;
1234 
1235 	now = current_fs_time(inode->i_sb);
1236 	if (!timespec_equal(&inode->i_mtime, &now))
1237 		sync_it = 1;
1238 	inode->i_mtime = now;
1239 
1240 	if (!timespec_equal(&inode->i_ctime, &now))
1241 		sync_it = 1;
1242 	inode->i_ctime = now;
1243 
1244 	if (sync_it)
1245 		mark_inode_dirty_sync(inode);
1246 }
1247 
1248 EXPORT_SYMBOL(file_update_time);
1249 
1250 int inode_needs_sync(struct inode *inode)
1251 {
1252 	if (IS_SYNC(inode))
1253 		return 1;
1254 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1255 		return 1;
1256 	return 0;
1257 }
1258 
1259 EXPORT_SYMBOL(inode_needs_sync);
1260 
1261 /*
1262  *	Quota functions that want to walk the inode lists..
1263  */
1264 #ifdef CONFIG_QUOTA
1265 
1266 /* Function back in dquot.c */
1267 int remove_inode_dquot_ref(struct inode *, int, struct list_head *);
1268 
1269 void remove_dquot_ref(struct super_block *sb, int type,
1270 			struct list_head *tofree_head)
1271 {
1272 	struct inode *inode;
1273 
1274 	if (!sb->dq_op)
1275 		return;	/* nothing to do */
1276 	spin_lock(&inode_lock);	/* This lock is for inodes code */
1277 
1278 	/*
1279 	 * We don't have to lock against quota code - test IS_QUOTAINIT is
1280 	 * just for speedup...
1281 	 */
1282 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list)
1283 		if (!IS_NOQUOTA(inode))
1284 			remove_inode_dquot_ref(inode, type, tofree_head);
1285 
1286 	spin_unlock(&inode_lock);
1287 }
1288 
1289 #endif
1290 
1291 int inode_wait(void *word)
1292 {
1293 	schedule();
1294 	return 0;
1295 }
1296 
1297 /*
1298  * If we try to find an inode in the inode hash while it is being
1299  * deleted, we have to wait until the filesystem completes its
1300  * deletion before reporting that it isn't found.  This function waits
1301  * until the deletion _might_ have completed.  Callers are responsible
1302  * to recheck inode state.
1303  *
1304  * It doesn't matter if I_LOCK is not set initially, a call to
1305  * wake_up_inode() after removing from the hash list will DTRT.
1306  *
1307  * This is called with inode_lock held.
1308  */
1309 static void __wait_on_freeing_inode(struct inode *inode)
1310 {
1311 	wait_queue_head_t *wq;
1312 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1313 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1314 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1315 	spin_unlock(&inode_lock);
1316 	schedule();
1317 	finish_wait(wq, &wait.wait);
1318 	spin_lock(&inode_lock);
1319 }
1320 
1321 void wake_up_inode(struct inode *inode)
1322 {
1323 	/*
1324 	 * Prevent speculative execution through spin_unlock(&inode_lock);
1325 	 */
1326 	smp_mb();
1327 	wake_up_bit(&inode->i_state, __I_LOCK);
1328 }
1329 
1330 static __initdata unsigned long ihash_entries;
1331 static int __init set_ihash_entries(char *str)
1332 {
1333 	if (!str)
1334 		return 0;
1335 	ihash_entries = simple_strtoul(str, &str, 0);
1336 	return 1;
1337 }
1338 __setup("ihash_entries=", set_ihash_entries);
1339 
1340 /*
1341  * Initialize the waitqueues and inode hash table.
1342  */
1343 void __init inode_init_early(void)
1344 {
1345 	int loop;
1346 
1347 	/* If hashes are distributed across NUMA nodes, defer
1348 	 * hash allocation until vmalloc space is available.
1349 	 */
1350 	if (hashdist)
1351 		return;
1352 
1353 	inode_hashtable =
1354 		alloc_large_system_hash("Inode-cache",
1355 					sizeof(struct hlist_head),
1356 					ihash_entries,
1357 					14,
1358 					HASH_EARLY,
1359 					&i_hash_shift,
1360 					&i_hash_mask,
1361 					0);
1362 
1363 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1364 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1365 }
1366 
1367 void __init inode_init(unsigned long mempages)
1368 {
1369 	int loop;
1370 
1371 	/* inode slab cache */
1372 	inode_cachep = kmem_cache_create("inode_cache",
1373 					 sizeof(struct inode),
1374 					 0,
1375 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1376 					 SLAB_MEM_SPREAD),
1377 					 init_once,
1378 					 NULL);
1379 	set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1380 
1381 	/* Hash may have been set up in inode_init_early */
1382 	if (!hashdist)
1383 		return;
1384 
1385 	inode_hashtable =
1386 		alloc_large_system_hash("Inode-cache",
1387 					sizeof(struct hlist_head),
1388 					ihash_entries,
1389 					14,
1390 					0,
1391 					&i_hash_shift,
1392 					&i_hash_mask,
1393 					0);
1394 
1395 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1396 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1397 }
1398 
1399 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1400 {
1401 	inode->i_mode = mode;
1402 	if (S_ISCHR(mode)) {
1403 		inode->i_fop = &def_chr_fops;
1404 		inode->i_rdev = rdev;
1405 	} else if (S_ISBLK(mode)) {
1406 		inode->i_fop = &def_blk_fops;
1407 		inode->i_rdev = rdev;
1408 	} else if (S_ISFIFO(mode))
1409 		inode->i_fop = &def_fifo_fops;
1410 	else if (S_ISSOCK(mode))
1411 		inode->i_fop = &bad_sock_fops;
1412 	else
1413 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1414 		       mode);
1415 }
1416 EXPORT_SYMBOL(init_special_inode);
1417