xref: /linux/fs/inode.c (revision 36ca1195ad7f760a6af3814cb002bd3a3d4b4db1)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/dcache.h>
11 #include <linux/init.h>
12 #include <linux/quotaops.h>
13 #include <linux/slab.h>
14 #include <linux/writeback.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/hash.h>
19 #include <linux/swap.h>
20 #include <linux/security.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 
25 /*
26  * This is needed for the following functions:
27  *  - inode_has_buffers
28  *  - invalidate_inode_buffers
29  *  - invalidate_bdev
30  *
31  * FIXME: remove all knowledge of the buffer layer from this file
32  */
33 #include <linux/buffer_head.h>
34 
35 /*
36  * New inode.c implementation.
37  *
38  * This implementation has the basic premise of trying
39  * to be extremely low-overhead and SMP-safe, yet be
40  * simple enough to be "obviously correct".
41  *
42  * Famous last words.
43  */
44 
45 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
46 
47 /* #define INODE_PARANOIA 1 */
48 /* #define INODE_DEBUG 1 */
49 
50 /*
51  * Inode lookup is no longer as critical as it used to be:
52  * most of the lookups are going to be through the dcache.
53  */
54 #define I_HASHBITS	i_hash_shift
55 #define I_HASHMASK	i_hash_mask
56 
57 static unsigned int i_hash_mask;
58 static unsigned int i_hash_shift;
59 
60 /*
61  * Each inode can be on two separate lists. One is
62  * the hash list of the inode, used for lookups. The
63  * other linked list is the "type" list:
64  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
65  *  "dirty"  - as "in_use" but also dirty
66  *  "unused" - valid inode, i_count = 0
67  *
68  * A "dirty" list is maintained for each super block,
69  * allowing for low-overhead inode sync() operations.
70  */
71 
72 LIST_HEAD(inode_in_use);
73 LIST_HEAD(inode_unused);
74 static struct hlist_head *inode_hashtable;
75 
76 /*
77  * A simple spinlock to protect the list manipulations.
78  *
79  * NOTE! You also have to own the lock if you change
80  * the i_state of an inode while it is in use..
81  */
82 DEFINE_SPINLOCK(inode_lock);
83 
84 /*
85  * iprune_sem provides exclusion between the kswapd or try_to_free_pages
86  * icache shrinking path, and the umount path.  Without this exclusion,
87  * by the time prune_icache calls iput for the inode whose pages it has
88  * been invalidating, or by the time it calls clear_inode & destroy_inode
89  * from its final dispose_list, the struct super_block they refer to
90  * (for inode->i_sb->s_op) may already have been freed and reused.
91  */
92 DECLARE_MUTEX(iprune_sem);
93 
94 /*
95  * Statistics gathering..
96  */
97 struct inodes_stat_t inodes_stat;
98 
99 static kmem_cache_t * inode_cachep;
100 
101 static struct inode *alloc_inode(struct super_block *sb)
102 {
103 	static struct address_space_operations empty_aops;
104 	static struct inode_operations empty_iops;
105 	static struct file_operations empty_fops;
106 	struct inode *inode;
107 
108 	if (sb->s_op->alloc_inode)
109 		inode = sb->s_op->alloc_inode(sb);
110 	else
111 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL);
112 
113 	if (inode) {
114 		struct address_space * const mapping = &inode->i_data;
115 
116 		inode->i_sb = sb;
117 		inode->i_blkbits = sb->s_blocksize_bits;
118 		inode->i_flags = 0;
119 		atomic_set(&inode->i_count, 1);
120 		inode->i_op = &empty_iops;
121 		inode->i_fop = &empty_fops;
122 		inode->i_nlink = 1;
123 		atomic_set(&inode->i_writecount, 0);
124 		inode->i_size = 0;
125 		inode->i_blocks = 0;
126 		inode->i_bytes = 0;
127 		inode->i_generation = 0;
128 #ifdef CONFIG_QUOTA
129 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
130 #endif
131 		inode->i_pipe = NULL;
132 		inode->i_bdev = NULL;
133 		inode->i_cdev = NULL;
134 		inode->i_rdev = 0;
135 		inode->i_security = NULL;
136 		inode->dirtied_when = 0;
137 		if (security_inode_alloc(inode)) {
138 			if (inode->i_sb->s_op->destroy_inode)
139 				inode->i_sb->s_op->destroy_inode(inode);
140 			else
141 				kmem_cache_free(inode_cachep, (inode));
142 			return NULL;
143 		}
144 
145 		mapping->a_ops = &empty_aops;
146  		mapping->host = inode;
147 		mapping->flags = 0;
148 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
149 		mapping->assoc_mapping = NULL;
150 		mapping->backing_dev_info = &default_backing_dev_info;
151 
152 		/*
153 		 * If the block_device provides a backing_dev_info for client
154 		 * inodes then use that.  Otherwise the inode share the bdev's
155 		 * backing_dev_info.
156 		 */
157 		if (sb->s_bdev) {
158 			struct backing_dev_info *bdi;
159 
160 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
161 			if (!bdi)
162 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
163 			mapping->backing_dev_info = bdi;
164 		}
165 		memset(&inode->u, 0, sizeof(inode->u));
166 		inode->i_mapping = mapping;
167 	}
168 	return inode;
169 }
170 
171 void destroy_inode(struct inode *inode)
172 {
173 	if (inode_has_buffers(inode))
174 		BUG();
175 	security_inode_free(inode);
176 	if (inode->i_sb->s_op->destroy_inode)
177 		inode->i_sb->s_op->destroy_inode(inode);
178 	else
179 		kmem_cache_free(inode_cachep, (inode));
180 }
181 
182 
183 /*
184  * These are initializations that only need to be done
185  * once, because the fields are idempotent across use
186  * of the inode, so let the slab aware of that.
187  */
188 void inode_init_once(struct inode *inode)
189 {
190 	memset(inode, 0, sizeof(*inode));
191 	INIT_HLIST_NODE(&inode->i_hash);
192 	INIT_LIST_HEAD(&inode->i_dentry);
193 	INIT_LIST_HEAD(&inode->i_devices);
194 	sema_init(&inode->i_sem, 1);
195 	init_rwsem(&inode->i_alloc_sem);
196 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
197 	rwlock_init(&inode->i_data.tree_lock);
198 	spin_lock_init(&inode->i_data.i_mmap_lock);
199 	INIT_LIST_HEAD(&inode->i_data.private_list);
200 	spin_lock_init(&inode->i_data.private_lock);
201 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
202 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
203 	spin_lock_init(&inode->i_lock);
204 	i_size_ordered_init(inode);
205 }
206 
207 EXPORT_SYMBOL(inode_init_once);
208 
209 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
210 {
211 	struct inode * inode = (struct inode *) foo;
212 
213 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
214 	    SLAB_CTOR_CONSTRUCTOR)
215 		inode_init_once(inode);
216 }
217 
218 /*
219  * inode_lock must be held
220  */
221 void __iget(struct inode * inode)
222 {
223 	if (atomic_read(&inode->i_count)) {
224 		atomic_inc(&inode->i_count);
225 		return;
226 	}
227 	atomic_inc(&inode->i_count);
228 	if (!(inode->i_state & (I_DIRTY|I_LOCK)))
229 		list_move(&inode->i_list, &inode_in_use);
230 	inodes_stat.nr_unused--;
231 }
232 
233 /**
234  * clear_inode - clear an inode
235  * @inode: inode to clear
236  *
237  * This is called by the filesystem to tell us
238  * that the inode is no longer useful. We just
239  * terminate it with extreme prejudice.
240  */
241 void clear_inode(struct inode *inode)
242 {
243 	might_sleep();
244 	invalidate_inode_buffers(inode);
245 
246 	if (inode->i_data.nrpages)
247 		BUG();
248 	if (!(inode->i_state & I_FREEING))
249 		BUG();
250 	if (inode->i_state & I_CLEAR)
251 		BUG();
252 	wait_on_inode(inode);
253 	DQUOT_DROP(inode);
254 	if (inode->i_sb && inode->i_sb->s_op->clear_inode)
255 		inode->i_sb->s_op->clear_inode(inode);
256 	if (inode->i_bdev)
257 		bd_forget(inode);
258 	if (inode->i_cdev)
259 		cd_forget(inode);
260 	inode->i_state = I_CLEAR;
261 }
262 
263 EXPORT_SYMBOL(clear_inode);
264 
265 /*
266  * dispose_list - dispose of the contents of a local list
267  * @head: the head of the list to free
268  *
269  * Dispose-list gets a local list with local inodes in it, so it doesn't
270  * need to worry about list corruption and SMP locks.
271  */
272 static void dispose_list(struct list_head *head)
273 {
274 	int nr_disposed = 0;
275 
276 	while (!list_empty(head)) {
277 		struct inode *inode;
278 
279 		inode = list_entry(head->next, struct inode, i_list);
280 		list_del(&inode->i_list);
281 
282 		if (inode->i_data.nrpages)
283 			truncate_inode_pages(&inode->i_data, 0);
284 		clear_inode(inode);
285 		destroy_inode(inode);
286 		nr_disposed++;
287 	}
288 	spin_lock(&inode_lock);
289 	inodes_stat.nr_inodes -= nr_disposed;
290 	spin_unlock(&inode_lock);
291 }
292 
293 /*
294  * Invalidate all inodes for a device.
295  */
296 static int invalidate_list(struct list_head *head, struct list_head *dispose)
297 {
298 	struct list_head *next;
299 	int busy = 0, count = 0;
300 
301 	next = head->next;
302 	for (;;) {
303 		struct list_head * tmp = next;
304 		struct inode * inode;
305 
306 		/*
307 		 * We can reschedule here without worrying about the list's
308 		 * consistency because the per-sb list of inodes must not
309 		 * change during umount anymore, and because iprune_sem keeps
310 		 * shrink_icache_memory() away.
311 		 */
312 		cond_resched_lock(&inode_lock);
313 
314 		next = next->next;
315 		if (tmp == head)
316 			break;
317 		inode = list_entry(tmp, struct inode, i_sb_list);
318 		invalidate_inode_buffers(inode);
319 		if (!atomic_read(&inode->i_count)) {
320 			hlist_del_init(&inode->i_hash);
321 			list_del(&inode->i_sb_list);
322 			list_move(&inode->i_list, dispose);
323 			inode->i_state |= I_FREEING;
324 			count++;
325 			continue;
326 		}
327 		busy = 1;
328 	}
329 	/* only unused inodes may be cached with i_count zero */
330 	inodes_stat.nr_unused -= count;
331 	return busy;
332 }
333 
334 /**
335  *	invalidate_inodes	- discard the inodes on a device
336  *	@sb: superblock
337  *
338  *	Discard all of the inodes for a given superblock. If the discard
339  *	fails because there are busy inodes then a non zero value is returned.
340  *	If the discard is successful all the inodes have been discarded.
341  */
342 int invalidate_inodes(struct super_block * sb)
343 {
344 	int busy;
345 	LIST_HEAD(throw_away);
346 
347 	down(&iprune_sem);
348 	spin_lock(&inode_lock);
349 	busy = invalidate_list(&sb->s_inodes, &throw_away);
350 	spin_unlock(&inode_lock);
351 
352 	dispose_list(&throw_away);
353 	up(&iprune_sem);
354 
355 	return busy;
356 }
357 
358 EXPORT_SYMBOL(invalidate_inodes);
359 
360 int __invalidate_device(struct block_device *bdev)
361 {
362 	struct super_block *sb = get_super(bdev);
363 	int res = 0;
364 
365 	if (sb) {
366 		/*
367 		 * no need to lock the super, get_super holds the
368 		 * read semaphore so the filesystem cannot go away
369 		 * under us (->put_super runs with the write lock
370 		 * hold).
371 		 */
372 		shrink_dcache_sb(sb);
373 		res = invalidate_inodes(sb);
374 		drop_super(sb);
375 	}
376 	invalidate_bdev(bdev, 0);
377 	return res;
378 }
379 EXPORT_SYMBOL(__invalidate_device);
380 
381 static int can_unuse(struct inode *inode)
382 {
383 	if (inode->i_state)
384 		return 0;
385 	if (inode_has_buffers(inode))
386 		return 0;
387 	if (atomic_read(&inode->i_count))
388 		return 0;
389 	if (inode->i_data.nrpages)
390 		return 0;
391 	return 1;
392 }
393 
394 /*
395  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
396  * a temporary list and then are freed outside inode_lock by dispose_list().
397  *
398  * Any inodes which are pinned purely because of attached pagecache have their
399  * pagecache removed.  We expect the final iput() on that inode to add it to
400  * the front of the inode_unused list.  So look for it there and if the
401  * inode is still freeable, proceed.  The right inode is found 99.9% of the
402  * time in testing on a 4-way.
403  *
404  * If the inode has metadata buffers attached to mapping->private_list then
405  * try to remove them.
406  */
407 static void prune_icache(int nr_to_scan)
408 {
409 	LIST_HEAD(freeable);
410 	int nr_pruned = 0;
411 	int nr_scanned;
412 	unsigned long reap = 0;
413 
414 	down(&iprune_sem);
415 	spin_lock(&inode_lock);
416 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
417 		struct inode *inode;
418 
419 		if (list_empty(&inode_unused))
420 			break;
421 
422 		inode = list_entry(inode_unused.prev, struct inode, i_list);
423 
424 		if (inode->i_state || atomic_read(&inode->i_count)) {
425 			list_move(&inode->i_list, &inode_unused);
426 			continue;
427 		}
428 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
429 			__iget(inode);
430 			spin_unlock(&inode_lock);
431 			if (remove_inode_buffers(inode))
432 				reap += invalidate_inode_pages(&inode->i_data);
433 			iput(inode);
434 			spin_lock(&inode_lock);
435 
436 			if (inode != list_entry(inode_unused.next,
437 						struct inode, i_list))
438 				continue;	/* wrong inode or list_empty */
439 			if (!can_unuse(inode))
440 				continue;
441 		}
442 		hlist_del_init(&inode->i_hash);
443 		list_del_init(&inode->i_sb_list);
444 		list_move(&inode->i_list, &freeable);
445 		inode->i_state |= I_FREEING;
446 		nr_pruned++;
447 	}
448 	inodes_stat.nr_unused -= nr_pruned;
449 	spin_unlock(&inode_lock);
450 
451 	dispose_list(&freeable);
452 	up(&iprune_sem);
453 
454 	if (current_is_kswapd())
455 		mod_page_state(kswapd_inodesteal, reap);
456 	else
457 		mod_page_state(pginodesteal, reap);
458 }
459 
460 /*
461  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
462  * "unused" means that no dentries are referring to the inodes: the files are
463  * not open and the dcache references to those inodes have already been
464  * reclaimed.
465  *
466  * This function is passed the number of inodes to scan, and it returns the
467  * total number of remaining possibly-reclaimable inodes.
468  */
469 static int shrink_icache_memory(int nr, unsigned int gfp_mask)
470 {
471 	if (nr) {
472 		/*
473 		 * Nasty deadlock avoidance.  We may hold various FS locks,
474 		 * and we don't want to recurse into the FS that called us
475 		 * in clear_inode() and friends..
476 	 	 */
477 		if (!(gfp_mask & __GFP_FS))
478 			return -1;
479 		prune_icache(nr);
480 	}
481 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
482 }
483 
484 static void __wait_on_freeing_inode(struct inode *inode);
485 /*
486  * Called with the inode lock held.
487  * NOTE: we are not increasing the inode-refcount, you must call __iget()
488  * by hand after calling find_inode now! This simplifies iunique and won't
489  * add any additional branch in the common code.
490  */
491 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
492 {
493 	struct hlist_node *node;
494 	struct inode * inode = NULL;
495 
496 repeat:
497 	hlist_for_each (node, head) {
498 		inode = hlist_entry(node, struct inode, i_hash);
499 		if (inode->i_sb != sb)
500 			continue;
501 		if (!test(inode, data))
502 			continue;
503 		if (inode->i_state & (I_FREEING|I_CLEAR)) {
504 			__wait_on_freeing_inode(inode);
505 			goto repeat;
506 		}
507 		break;
508 	}
509 	return node ? inode : NULL;
510 }
511 
512 /*
513  * find_inode_fast is the fast path version of find_inode, see the comment at
514  * iget_locked for details.
515  */
516 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
517 {
518 	struct hlist_node *node;
519 	struct inode * inode = NULL;
520 
521 repeat:
522 	hlist_for_each (node, head) {
523 		inode = hlist_entry(node, struct inode, i_hash);
524 		if (inode->i_ino != ino)
525 			continue;
526 		if (inode->i_sb != sb)
527 			continue;
528 		if (inode->i_state & (I_FREEING|I_CLEAR)) {
529 			__wait_on_freeing_inode(inode);
530 			goto repeat;
531 		}
532 		break;
533 	}
534 	return node ? inode : NULL;
535 }
536 
537 /**
538  *	new_inode 	- obtain an inode
539  *	@sb: superblock
540  *
541  *	Allocates a new inode for given superblock.
542  */
543 struct inode *new_inode(struct super_block *sb)
544 {
545 	static unsigned long last_ino;
546 	struct inode * inode;
547 
548 	spin_lock_prefetch(&inode_lock);
549 
550 	inode = alloc_inode(sb);
551 	if (inode) {
552 		spin_lock(&inode_lock);
553 		inodes_stat.nr_inodes++;
554 		list_add(&inode->i_list, &inode_in_use);
555 		list_add(&inode->i_sb_list, &sb->s_inodes);
556 		inode->i_ino = ++last_ino;
557 		inode->i_state = 0;
558 		spin_unlock(&inode_lock);
559 	}
560 	return inode;
561 }
562 
563 EXPORT_SYMBOL(new_inode);
564 
565 void unlock_new_inode(struct inode *inode)
566 {
567 	/*
568 	 * This is special!  We do not need the spinlock
569 	 * when clearing I_LOCK, because we're guaranteed
570 	 * that nobody else tries to do anything about the
571 	 * state of the inode when it is locked, as we
572 	 * just created it (so there can be no old holders
573 	 * that haven't tested I_LOCK).
574 	 */
575 	inode->i_state &= ~(I_LOCK|I_NEW);
576 	wake_up_inode(inode);
577 }
578 
579 EXPORT_SYMBOL(unlock_new_inode);
580 
581 /*
582  * This is called without the inode lock held.. Be careful.
583  *
584  * We no longer cache the sb_flags in i_flags - see fs.h
585  *	-- rmk@arm.uk.linux.org
586  */
587 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
588 {
589 	struct inode * inode;
590 
591 	inode = alloc_inode(sb);
592 	if (inode) {
593 		struct inode * old;
594 
595 		spin_lock(&inode_lock);
596 		/* We released the lock, so.. */
597 		old = find_inode(sb, head, test, data);
598 		if (!old) {
599 			if (set(inode, data))
600 				goto set_failed;
601 
602 			inodes_stat.nr_inodes++;
603 			list_add(&inode->i_list, &inode_in_use);
604 			list_add(&inode->i_sb_list, &sb->s_inodes);
605 			hlist_add_head(&inode->i_hash, head);
606 			inode->i_state = I_LOCK|I_NEW;
607 			spin_unlock(&inode_lock);
608 
609 			/* Return the locked inode with I_NEW set, the
610 			 * caller is responsible for filling in the contents
611 			 */
612 			return inode;
613 		}
614 
615 		/*
616 		 * Uhhuh, somebody else created the same inode under
617 		 * us. Use the old inode instead of the one we just
618 		 * allocated.
619 		 */
620 		__iget(old);
621 		spin_unlock(&inode_lock);
622 		destroy_inode(inode);
623 		inode = old;
624 		wait_on_inode(inode);
625 	}
626 	return inode;
627 
628 set_failed:
629 	spin_unlock(&inode_lock);
630 	destroy_inode(inode);
631 	return NULL;
632 }
633 
634 /*
635  * get_new_inode_fast is the fast path version of get_new_inode, see the
636  * comment at iget_locked for details.
637  */
638 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
639 {
640 	struct inode * inode;
641 
642 	inode = alloc_inode(sb);
643 	if (inode) {
644 		struct inode * old;
645 
646 		spin_lock(&inode_lock);
647 		/* We released the lock, so.. */
648 		old = find_inode_fast(sb, head, ino);
649 		if (!old) {
650 			inode->i_ino = ino;
651 			inodes_stat.nr_inodes++;
652 			list_add(&inode->i_list, &inode_in_use);
653 			list_add(&inode->i_sb_list, &sb->s_inodes);
654 			hlist_add_head(&inode->i_hash, head);
655 			inode->i_state = I_LOCK|I_NEW;
656 			spin_unlock(&inode_lock);
657 
658 			/* Return the locked inode with I_NEW set, the
659 			 * caller is responsible for filling in the contents
660 			 */
661 			return inode;
662 		}
663 
664 		/*
665 		 * Uhhuh, somebody else created the same inode under
666 		 * us. Use the old inode instead of the one we just
667 		 * allocated.
668 		 */
669 		__iget(old);
670 		spin_unlock(&inode_lock);
671 		destroy_inode(inode);
672 		inode = old;
673 		wait_on_inode(inode);
674 	}
675 	return inode;
676 }
677 
678 static inline unsigned long hash(struct super_block *sb, unsigned long hashval)
679 {
680 	unsigned long tmp;
681 
682 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
683 			L1_CACHE_BYTES;
684 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
685 	return tmp & I_HASHMASK;
686 }
687 
688 /**
689  *	iunique - get a unique inode number
690  *	@sb: superblock
691  *	@max_reserved: highest reserved inode number
692  *
693  *	Obtain an inode number that is unique on the system for a given
694  *	superblock. This is used by file systems that have no natural
695  *	permanent inode numbering system. An inode number is returned that
696  *	is higher than the reserved limit but unique.
697  *
698  *	BUGS:
699  *	With a large number of inodes live on the file system this function
700  *	currently becomes quite slow.
701  */
702 ino_t iunique(struct super_block *sb, ino_t max_reserved)
703 {
704 	static ino_t counter;
705 	struct inode *inode;
706 	struct hlist_head * head;
707 	ino_t res;
708 	spin_lock(&inode_lock);
709 retry:
710 	if (counter > max_reserved) {
711 		head = inode_hashtable + hash(sb,counter);
712 		res = counter++;
713 		inode = find_inode_fast(sb, head, res);
714 		if (!inode) {
715 			spin_unlock(&inode_lock);
716 			return res;
717 		}
718 	} else {
719 		counter = max_reserved + 1;
720 	}
721 	goto retry;
722 
723 }
724 
725 EXPORT_SYMBOL(iunique);
726 
727 struct inode *igrab(struct inode *inode)
728 {
729 	spin_lock(&inode_lock);
730 	if (!(inode->i_state & I_FREEING))
731 		__iget(inode);
732 	else
733 		/*
734 		 * Handle the case where s_op->clear_inode is not been
735 		 * called yet, and somebody is calling igrab
736 		 * while the inode is getting freed.
737 		 */
738 		inode = NULL;
739 	spin_unlock(&inode_lock);
740 	return inode;
741 }
742 
743 EXPORT_SYMBOL(igrab);
744 
745 /**
746  * ifind - internal function, you want ilookup5() or iget5().
747  * @sb:		super block of file system to search
748  * @head:       the head of the list to search
749  * @test:	callback used for comparisons between inodes
750  * @data:	opaque data pointer to pass to @test
751  *
752  * ifind() searches for the inode specified by @data in the inode
753  * cache. This is a generalized version of ifind_fast() for file systems where
754  * the inode number is not sufficient for unique identification of an inode.
755  *
756  * If the inode is in the cache, the inode is returned with an incremented
757  * reference count.
758  *
759  * Otherwise NULL is returned.
760  *
761  * Note, @test is called with the inode_lock held, so can't sleep.
762  */
763 static inline struct inode *ifind(struct super_block *sb,
764 		struct hlist_head *head, int (*test)(struct inode *, void *),
765 		void *data)
766 {
767 	struct inode *inode;
768 
769 	spin_lock(&inode_lock);
770 	inode = find_inode(sb, head, test, data);
771 	if (inode) {
772 		__iget(inode);
773 		spin_unlock(&inode_lock);
774 		wait_on_inode(inode);
775 		return inode;
776 	}
777 	spin_unlock(&inode_lock);
778 	return NULL;
779 }
780 
781 /**
782  * ifind_fast - internal function, you want ilookup() or iget().
783  * @sb:		super block of file system to search
784  * @head:       head of the list to search
785  * @ino:	inode number to search for
786  *
787  * ifind_fast() searches for the inode @ino in the inode cache. This is for
788  * file systems where the inode number is sufficient for unique identification
789  * of an inode.
790  *
791  * If the inode is in the cache, the inode is returned with an incremented
792  * reference count.
793  *
794  * Otherwise NULL is returned.
795  */
796 static inline struct inode *ifind_fast(struct super_block *sb,
797 		struct hlist_head *head, unsigned long ino)
798 {
799 	struct inode *inode;
800 
801 	spin_lock(&inode_lock);
802 	inode = find_inode_fast(sb, head, ino);
803 	if (inode) {
804 		__iget(inode);
805 		spin_unlock(&inode_lock);
806 		wait_on_inode(inode);
807 		return inode;
808 	}
809 	spin_unlock(&inode_lock);
810 	return NULL;
811 }
812 
813 /**
814  * ilookup5 - search for an inode in the inode cache
815  * @sb:		super block of file system to search
816  * @hashval:	hash value (usually inode number) to search for
817  * @test:	callback used for comparisons between inodes
818  * @data:	opaque data pointer to pass to @test
819  *
820  * ilookup5() uses ifind() to search for the inode specified by @hashval and
821  * @data in the inode cache. This is a generalized version of ilookup() for
822  * file systems where the inode number is not sufficient for unique
823  * identification of an inode.
824  *
825  * If the inode is in the cache, the inode is returned with an incremented
826  * reference count.
827  *
828  * Otherwise NULL is returned.
829  *
830  * Note, @test is called with the inode_lock held, so can't sleep.
831  */
832 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
833 		int (*test)(struct inode *, void *), void *data)
834 {
835 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
836 
837 	return ifind(sb, head, test, data);
838 }
839 
840 EXPORT_SYMBOL(ilookup5);
841 
842 /**
843  * ilookup - search for an inode in the inode cache
844  * @sb:		super block of file system to search
845  * @ino:	inode number to search for
846  *
847  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
848  * This is for file systems where the inode number is sufficient for unique
849  * identification of an inode.
850  *
851  * If the inode is in the cache, the inode is returned with an incremented
852  * reference count.
853  *
854  * Otherwise NULL is returned.
855  */
856 struct inode *ilookup(struct super_block *sb, unsigned long ino)
857 {
858 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
859 
860 	return ifind_fast(sb, head, ino);
861 }
862 
863 EXPORT_SYMBOL(ilookup);
864 
865 /**
866  * iget5_locked - obtain an inode from a mounted file system
867  * @sb:		super block of file system
868  * @hashval:	hash value (usually inode number) to get
869  * @test:	callback used for comparisons between inodes
870  * @set:	callback used to initialize a new struct inode
871  * @data:	opaque data pointer to pass to @test and @set
872  *
873  * This is iget() without the read_inode() portion of get_new_inode().
874  *
875  * iget5_locked() uses ifind() to search for the inode specified by @hashval
876  * and @data in the inode cache and if present it is returned with an increased
877  * reference count. This is a generalized version of iget_locked() for file
878  * systems where the inode number is not sufficient for unique identification
879  * of an inode.
880  *
881  * If the inode is not in cache, get_new_inode() is called to allocate a new
882  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
883  * file system gets to fill it in before unlocking it via unlock_new_inode().
884  *
885  * Note both @test and @set are called with the inode_lock held, so can't sleep.
886  */
887 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
888 		int (*test)(struct inode *, void *),
889 		int (*set)(struct inode *, void *), void *data)
890 {
891 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
892 	struct inode *inode;
893 
894 	inode = ifind(sb, head, test, data);
895 	if (inode)
896 		return inode;
897 	/*
898 	 * get_new_inode() will do the right thing, re-trying the search
899 	 * in case it had to block at any point.
900 	 */
901 	return get_new_inode(sb, head, test, set, data);
902 }
903 
904 EXPORT_SYMBOL(iget5_locked);
905 
906 /**
907  * iget_locked - obtain an inode from a mounted file system
908  * @sb:		super block of file system
909  * @ino:	inode number to get
910  *
911  * This is iget() without the read_inode() portion of get_new_inode_fast().
912  *
913  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
914  * the inode cache and if present it is returned with an increased reference
915  * count. This is for file systems where the inode number is sufficient for
916  * unique identification of an inode.
917  *
918  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
919  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
920  * The file system gets to fill it in before unlocking it via
921  * unlock_new_inode().
922  */
923 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
924 {
925 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
926 	struct inode *inode;
927 
928 	inode = ifind_fast(sb, head, ino);
929 	if (inode)
930 		return inode;
931 	/*
932 	 * get_new_inode_fast() will do the right thing, re-trying the search
933 	 * in case it had to block at any point.
934 	 */
935 	return get_new_inode_fast(sb, head, ino);
936 }
937 
938 EXPORT_SYMBOL(iget_locked);
939 
940 /**
941  *	__insert_inode_hash - hash an inode
942  *	@inode: unhashed inode
943  *	@hashval: unsigned long value used to locate this object in the
944  *		inode_hashtable.
945  *
946  *	Add an inode to the inode hash for this superblock.
947  */
948 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
949 {
950 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
951 	spin_lock(&inode_lock);
952 	hlist_add_head(&inode->i_hash, head);
953 	spin_unlock(&inode_lock);
954 }
955 
956 EXPORT_SYMBOL(__insert_inode_hash);
957 
958 /**
959  *	remove_inode_hash - remove an inode from the hash
960  *	@inode: inode to unhash
961  *
962  *	Remove an inode from the superblock.
963  */
964 void remove_inode_hash(struct inode *inode)
965 {
966 	spin_lock(&inode_lock);
967 	hlist_del_init(&inode->i_hash);
968 	spin_unlock(&inode_lock);
969 }
970 
971 EXPORT_SYMBOL(remove_inode_hash);
972 
973 /*
974  * Tell the filesystem that this inode is no longer of any interest and should
975  * be completely destroyed.
976  *
977  * We leave the inode in the inode hash table until *after* the filesystem's
978  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
979  * instigate) will always find up-to-date information either in the hash or on
980  * disk.
981  *
982  * I_FREEING is set so that no-one will take a new reference to the inode while
983  * it is being deleted.
984  */
985 void generic_delete_inode(struct inode *inode)
986 {
987 	struct super_operations *op = inode->i_sb->s_op;
988 
989 	list_del_init(&inode->i_list);
990 	list_del_init(&inode->i_sb_list);
991 	inode->i_state|=I_FREEING;
992 	inodes_stat.nr_inodes--;
993 	spin_unlock(&inode_lock);
994 
995 	if (inode->i_data.nrpages)
996 		truncate_inode_pages(&inode->i_data, 0);
997 
998 	security_inode_delete(inode);
999 
1000 	if (op->delete_inode) {
1001 		void (*delete)(struct inode *) = op->delete_inode;
1002 		if (!is_bad_inode(inode))
1003 			DQUOT_INIT(inode);
1004 		/* s_op->delete_inode internally recalls clear_inode() */
1005 		delete(inode);
1006 	} else
1007 		clear_inode(inode);
1008 	spin_lock(&inode_lock);
1009 	hlist_del_init(&inode->i_hash);
1010 	spin_unlock(&inode_lock);
1011 	wake_up_inode(inode);
1012 	if (inode->i_state != I_CLEAR)
1013 		BUG();
1014 	destroy_inode(inode);
1015 }
1016 
1017 EXPORT_SYMBOL(generic_delete_inode);
1018 
1019 static void generic_forget_inode(struct inode *inode)
1020 {
1021 	struct super_block *sb = inode->i_sb;
1022 
1023 	if (!hlist_unhashed(&inode->i_hash)) {
1024 		if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1025 			list_move(&inode->i_list, &inode_unused);
1026 		inodes_stat.nr_unused++;
1027 		spin_unlock(&inode_lock);
1028 		if (!sb || (sb->s_flags & MS_ACTIVE))
1029 			return;
1030 		write_inode_now(inode, 1);
1031 		spin_lock(&inode_lock);
1032 		inodes_stat.nr_unused--;
1033 		hlist_del_init(&inode->i_hash);
1034 	}
1035 	list_del_init(&inode->i_list);
1036 	list_del_init(&inode->i_sb_list);
1037 	inode->i_state|=I_FREEING;
1038 	inodes_stat.nr_inodes--;
1039 	spin_unlock(&inode_lock);
1040 	if (inode->i_data.nrpages)
1041 		truncate_inode_pages(&inode->i_data, 0);
1042 	clear_inode(inode);
1043 	destroy_inode(inode);
1044 }
1045 
1046 /*
1047  * Normal UNIX filesystem behaviour: delete the
1048  * inode when the usage count drops to zero, and
1049  * i_nlink is zero.
1050  */
1051 static void generic_drop_inode(struct inode *inode)
1052 {
1053 	if (!inode->i_nlink)
1054 		generic_delete_inode(inode);
1055 	else
1056 		generic_forget_inode(inode);
1057 }
1058 
1059 /*
1060  * Called when we're dropping the last reference
1061  * to an inode.
1062  *
1063  * Call the FS "drop()" function, defaulting to
1064  * the legacy UNIX filesystem behaviour..
1065  *
1066  * NOTE! NOTE! NOTE! We're called with the inode lock
1067  * held, and the drop function is supposed to release
1068  * the lock!
1069  */
1070 static inline void iput_final(struct inode *inode)
1071 {
1072 	struct super_operations *op = inode->i_sb->s_op;
1073 	void (*drop)(struct inode *) = generic_drop_inode;
1074 
1075 	if (op && op->drop_inode)
1076 		drop = op->drop_inode;
1077 	drop(inode);
1078 }
1079 
1080 /**
1081  *	iput	- put an inode
1082  *	@inode: inode to put
1083  *
1084  *	Puts an inode, dropping its usage count. If the inode use count hits
1085  *	zero, the inode is then freed and may also be destroyed.
1086  *
1087  *	Consequently, iput() can sleep.
1088  */
1089 void iput(struct inode *inode)
1090 {
1091 	if (inode) {
1092 		struct super_operations *op = inode->i_sb->s_op;
1093 
1094 		BUG_ON(inode->i_state == I_CLEAR);
1095 
1096 		if (op && op->put_inode)
1097 			op->put_inode(inode);
1098 
1099 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1100 			iput_final(inode);
1101 	}
1102 }
1103 
1104 EXPORT_SYMBOL(iput);
1105 
1106 /**
1107  *	bmap	- find a block number in a file
1108  *	@inode: inode of file
1109  *	@block: block to find
1110  *
1111  *	Returns the block number on the device holding the inode that
1112  *	is the disk block number for the block of the file requested.
1113  *	That is, asked for block 4 of inode 1 the function will return the
1114  *	disk block relative to the disk start that holds that block of the
1115  *	file.
1116  */
1117 sector_t bmap(struct inode * inode, sector_t block)
1118 {
1119 	sector_t res = 0;
1120 	if (inode->i_mapping->a_ops->bmap)
1121 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1122 	return res;
1123 }
1124 
1125 EXPORT_SYMBOL(bmap);
1126 
1127 /**
1128  *	update_atime	-	update the access time
1129  *	@inode: inode accessed
1130  *
1131  *	Update the accessed time on an inode and mark it for writeback.
1132  *	This function automatically handles read only file systems and media,
1133  *	as well as the "noatime" flag and inode specific "noatime" markers.
1134  */
1135 void update_atime(struct inode *inode)
1136 {
1137 	struct timespec now;
1138 
1139 	if (IS_NOATIME(inode))
1140 		return;
1141 	if (IS_NODIRATIME(inode) && S_ISDIR(inode->i_mode))
1142 		return;
1143 	if (IS_RDONLY(inode))
1144 		return;
1145 
1146 	now = current_fs_time(inode->i_sb);
1147 	if (!timespec_equal(&inode->i_atime, &now)) {
1148 		inode->i_atime = now;
1149 		mark_inode_dirty_sync(inode);
1150 	} else {
1151 		if (!timespec_equal(&inode->i_atime, &now))
1152 			inode->i_atime = now;
1153 	}
1154 }
1155 
1156 EXPORT_SYMBOL(update_atime);
1157 
1158 /**
1159  *	inode_update_time	-	update mtime and ctime time
1160  *	@inode: inode accessed
1161  *	@ctime_too: update ctime too
1162  *
1163  *	Update the mtime time on an inode and mark it for writeback.
1164  *	When ctime_too is specified update the ctime too.
1165  */
1166 
1167 void inode_update_time(struct inode *inode, int ctime_too)
1168 {
1169 	struct timespec now;
1170 	int sync_it = 0;
1171 
1172 	if (IS_NOCMTIME(inode))
1173 		return;
1174 	if (IS_RDONLY(inode))
1175 		return;
1176 
1177 	now = current_fs_time(inode->i_sb);
1178 	if (!timespec_equal(&inode->i_mtime, &now))
1179 		sync_it = 1;
1180 	inode->i_mtime = now;
1181 
1182 	if (ctime_too) {
1183 		if (!timespec_equal(&inode->i_ctime, &now))
1184 			sync_it = 1;
1185 		inode->i_ctime = now;
1186 	}
1187 	if (sync_it)
1188 		mark_inode_dirty_sync(inode);
1189 }
1190 
1191 EXPORT_SYMBOL(inode_update_time);
1192 
1193 int inode_needs_sync(struct inode *inode)
1194 {
1195 	if (IS_SYNC(inode))
1196 		return 1;
1197 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1198 		return 1;
1199 	return 0;
1200 }
1201 
1202 EXPORT_SYMBOL(inode_needs_sync);
1203 
1204 /*
1205  *	Quota functions that want to walk the inode lists..
1206  */
1207 #ifdef CONFIG_QUOTA
1208 
1209 /* Function back in dquot.c */
1210 int remove_inode_dquot_ref(struct inode *, int, struct list_head *);
1211 
1212 void remove_dquot_ref(struct super_block *sb, int type,
1213 			struct list_head *tofree_head)
1214 {
1215 	struct inode *inode;
1216 
1217 	if (!sb->dq_op)
1218 		return;	/* nothing to do */
1219 	spin_lock(&inode_lock);	/* This lock is for inodes code */
1220 
1221 	/*
1222 	 * We don't have to lock against quota code - test IS_QUOTAINIT is
1223 	 * just for speedup...
1224 	 */
1225 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list)
1226 		if (!IS_NOQUOTA(inode))
1227 			remove_inode_dquot_ref(inode, type, tofree_head);
1228 
1229 	spin_unlock(&inode_lock);
1230 }
1231 
1232 #endif
1233 
1234 int inode_wait(void *word)
1235 {
1236 	schedule();
1237 	return 0;
1238 }
1239 
1240 /*
1241  * If we try to find an inode in the inode hash while it is being deleted, we
1242  * have to wait until the filesystem completes its deletion before reporting
1243  * that it isn't found.  This is because iget will immediately call
1244  * ->read_inode, and we want to be sure that evidence of the deletion is found
1245  * by ->read_inode.
1246  * This is called with inode_lock held.
1247  */
1248 static void __wait_on_freeing_inode(struct inode *inode)
1249 {
1250 	wait_queue_head_t *wq;
1251 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1252 
1253 	/*
1254 	 * I_FREEING and I_CLEAR are cleared in process context under
1255 	 * inode_lock, so we have to give the tasks who would clear them
1256 	 * a chance to run and acquire inode_lock.
1257 	 */
1258 	if (!(inode->i_state & I_LOCK)) {
1259 		spin_unlock(&inode_lock);
1260 		yield();
1261 		spin_lock(&inode_lock);
1262 		return;
1263 	}
1264 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1265 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1266 	spin_unlock(&inode_lock);
1267 	schedule();
1268 	finish_wait(wq, &wait.wait);
1269 	spin_lock(&inode_lock);
1270 }
1271 
1272 void wake_up_inode(struct inode *inode)
1273 {
1274 	/*
1275 	 * Prevent speculative execution through spin_unlock(&inode_lock);
1276 	 */
1277 	smp_mb();
1278 	wake_up_bit(&inode->i_state, __I_LOCK);
1279 }
1280 
1281 static __initdata unsigned long ihash_entries;
1282 static int __init set_ihash_entries(char *str)
1283 {
1284 	if (!str)
1285 		return 0;
1286 	ihash_entries = simple_strtoul(str, &str, 0);
1287 	return 1;
1288 }
1289 __setup("ihash_entries=", set_ihash_entries);
1290 
1291 /*
1292  * Initialize the waitqueues and inode hash table.
1293  */
1294 void __init inode_init_early(void)
1295 {
1296 	int loop;
1297 
1298 	/* If hashes are distributed across NUMA nodes, defer
1299 	 * hash allocation until vmalloc space is available.
1300 	 */
1301 	if (hashdist)
1302 		return;
1303 
1304 	inode_hashtable =
1305 		alloc_large_system_hash("Inode-cache",
1306 					sizeof(struct hlist_head),
1307 					ihash_entries,
1308 					14,
1309 					HASH_EARLY,
1310 					&i_hash_shift,
1311 					&i_hash_mask,
1312 					0);
1313 
1314 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1315 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1316 }
1317 
1318 void __init inode_init(unsigned long mempages)
1319 {
1320 	int loop;
1321 
1322 	/* inode slab cache */
1323 	inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode),
1324 				0, SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_once, NULL);
1325 	set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1326 
1327 	/* Hash may have been set up in inode_init_early */
1328 	if (!hashdist)
1329 		return;
1330 
1331 	inode_hashtable =
1332 		alloc_large_system_hash("Inode-cache",
1333 					sizeof(struct hlist_head),
1334 					ihash_entries,
1335 					14,
1336 					0,
1337 					&i_hash_shift,
1338 					&i_hash_mask,
1339 					0);
1340 
1341 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1342 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1343 }
1344 
1345 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1346 {
1347 	inode->i_mode = mode;
1348 	if (S_ISCHR(mode)) {
1349 		inode->i_fop = &def_chr_fops;
1350 		inode->i_rdev = rdev;
1351 	} else if (S_ISBLK(mode)) {
1352 		inode->i_fop = &def_blk_fops;
1353 		inode->i_rdev = rdev;
1354 	} else if (S_ISFIFO(mode))
1355 		inode->i_fop = &def_fifo_fops;
1356 	else if (S_ISSOCK(mode))
1357 		inode->i_fop = &bad_sock_fops;
1358 	else
1359 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1360 		       mode);
1361 }
1362 EXPORT_SYMBOL(init_special_inode);
1363