1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <linux/seq_file.h>
25 #include <linux/debugfs.h>
26 #include <trace/events/writeback.h>
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/timestamp.h>
29
30 #include "internal.h"
31
32 /*
33 * Inode locking rules:
34 *
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
37 * Inode LRU list locks protect:
38 * inode->i_sb->s_inode_lru, inode->i_lru
39 * inode->i_sb->s_inode_list_lock protects:
40 * inode->i_sb->s_inodes, inode->i_sb_list
41 * bdi->wb.list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
45 *
46 * Lock ordering:
47 *
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 * Inode LRU list locks
51 *
52 * bdi->wb.list_lock
53 * inode->i_lock
54 *
55 * inode_hash_lock
56 * inode->i_sb->s_inode_list_lock
57 * inode->i_lock
58 *
59 * iunique_lock
60 * inode_hash_lock
61 */
62
63 static unsigned int i_hash_mask __ro_after_init;
64 static unsigned int i_hash_shift __ro_after_init;
65 static struct hlist_head *inode_hashtable __ro_after_init;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67
68 /*
69 * Empty aops. Can be used for the cases where the user does not
70 * define any of the address_space operations.
71 */
72 const struct address_space_operations empty_aops = {
73 };
74 EXPORT_SYMBOL(empty_aops);
75
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78
79 static struct kmem_cache *inode_cachep __ro_after_init;
80
get_nr_inodes(void)81 static long get_nr_inodes(void)
82 {
83 int i;
84 long sum = 0;
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
88 }
89
get_nr_inodes_unused(void)90 static inline long get_nr_inodes_unused(void)
91 {
92 int i;
93 long sum = 0;
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
97 }
98
get_nr_dirty_inodes(void)99 long get_nr_dirty_inodes(void)
100 {
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
104 }
105
106 #ifdef CONFIG_DEBUG_FS
107 static DEFINE_PER_CPU(long, mg_ctime_updates);
108 static DEFINE_PER_CPU(long, mg_fine_stamps);
109 static DEFINE_PER_CPU(long, mg_ctime_swaps);
110
get_mg_ctime_updates(void)111 static unsigned long get_mg_ctime_updates(void)
112 {
113 unsigned long sum = 0;
114 int i;
115
116 for_each_possible_cpu(i)
117 sum += data_race(per_cpu(mg_ctime_updates, i));
118 return sum;
119 }
120
get_mg_fine_stamps(void)121 static unsigned long get_mg_fine_stamps(void)
122 {
123 unsigned long sum = 0;
124 int i;
125
126 for_each_possible_cpu(i)
127 sum += data_race(per_cpu(mg_fine_stamps, i));
128 return sum;
129 }
130
get_mg_ctime_swaps(void)131 static unsigned long get_mg_ctime_swaps(void)
132 {
133 unsigned long sum = 0;
134 int i;
135
136 for_each_possible_cpu(i)
137 sum += data_race(per_cpu(mg_ctime_swaps, i));
138 return sum;
139 }
140
141 #define mgtime_counter_inc(__var) this_cpu_inc(__var)
142
mgts_show(struct seq_file * s,void * p)143 static int mgts_show(struct seq_file *s, void *p)
144 {
145 unsigned long ctime_updates = get_mg_ctime_updates();
146 unsigned long ctime_swaps = get_mg_ctime_swaps();
147 unsigned long fine_stamps = get_mg_fine_stamps();
148 unsigned long floor_swaps = timekeeping_get_mg_floor_swaps();
149
150 seq_printf(s, "%lu %lu %lu %lu\n",
151 ctime_updates, ctime_swaps, fine_stamps, floor_swaps);
152 return 0;
153 }
154
155 DEFINE_SHOW_ATTRIBUTE(mgts);
156
mg_debugfs_init(void)157 static int __init mg_debugfs_init(void)
158 {
159 debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops);
160 return 0;
161 }
162 late_initcall(mg_debugfs_init);
163
164 #else /* ! CONFIG_DEBUG_FS */
165
166 #define mgtime_counter_inc(__var) do { } while (0)
167
168 #endif /* CONFIG_DEBUG_FS */
169
170 /*
171 * Handle nr_inode sysctl
172 */
173 #ifdef CONFIG_SYSCTL
174 /*
175 * Statistics gathering..
176 */
177 static struct inodes_stat_t inodes_stat;
178
proc_nr_inodes(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
180 size_t *lenp, loff_t *ppos)
181 {
182 inodes_stat.nr_inodes = get_nr_inodes();
183 inodes_stat.nr_unused = get_nr_inodes_unused();
184 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
185 }
186
187 static const struct ctl_table inodes_sysctls[] = {
188 {
189 .procname = "inode-nr",
190 .data = &inodes_stat,
191 .maxlen = 2*sizeof(long),
192 .mode = 0444,
193 .proc_handler = proc_nr_inodes,
194 },
195 {
196 .procname = "inode-state",
197 .data = &inodes_stat,
198 .maxlen = 7*sizeof(long),
199 .mode = 0444,
200 .proc_handler = proc_nr_inodes,
201 },
202 };
203
init_fs_inode_sysctls(void)204 static int __init init_fs_inode_sysctls(void)
205 {
206 register_sysctl_init("fs", inodes_sysctls);
207 return 0;
208 }
209 early_initcall(init_fs_inode_sysctls);
210 #endif
211
no_open(struct inode * inode,struct file * file)212 static int no_open(struct inode *inode, struct file *file)
213 {
214 return -ENXIO;
215 }
216
217 /**
218 * inode_init_always_gfp - perform inode structure initialisation
219 * @sb: superblock inode belongs to
220 * @inode: inode to initialise
221 * @gfp: allocation flags
222 *
223 * These are initializations that need to be done on every inode
224 * allocation as the fields are not initialised by slab allocation.
225 * If there are additional allocations required @gfp is used.
226 */
inode_init_always_gfp(struct super_block * sb,struct inode * inode,gfp_t gfp)227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp)
228 {
229 static const struct inode_operations empty_iops;
230 static const struct file_operations no_open_fops = {.open = no_open};
231 struct address_space *const mapping = &inode->i_data;
232
233 inode->i_sb = sb;
234 inode->i_blkbits = sb->s_blocksize_bits;
235 inode->i_flags = 0;
236 inode_state_assign_raw(inode, 0);
237 atomic64_set(&inode->i_sequence, 0);
238 atomic_set(&inode->i_count, 1);
239 inode->i_op = &empty_iops;
240 inode->i_fop = &no_open_fops;
241 inode->i_ino = 0;
242 inode->__i_nlink = 1;
243 inode->i_opflags = 0;
244 if (sb->s_xattr)
245 inode->i_opflags |= IOP_XATTR;
246 if (sb->s_type->fs_flags & FS_MGTIME)
247 inode->i_opflags |= IOP_MGTIME;
248 i_uid_write(inode, 0);
249 i_gid_write(inode, 0);
250 atomic_set(&inode->i_writecount, 0);
251 inode->i_size = 0;
252 inode->i_write_hint = WRITE_LIFE_NOT_SET;
253 inode->i_blocks = 0;
254 inode->i_bytes = 0;
255 inode->i_generation = 0;
256 inode->i_pipe = NULL;
257 inode->i_cdev = NULL;
258 inode->i_link = NULL;
259 inode->i_dir_seq = 0;
260 inode->i_rdev = 0;
261 inode->dirtied_when = 0;
262
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 inode->i_wb_frn_winner = 0;
265 inode->i_wb_frn_avg_time = 0;
266 inode->i_wb_frn_history = 0;
267 #endif
268
269 spin_lock_init(&inode->i_lock);
270 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
271
272 init_rwsem(&inode->i_rwsem);
273 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
274
275 atomic_set(&inode->i_dio_count, 0);
276
277 mapping->a_ops = &empty_aops;
278 mapping->host = inode;
279 mapping->flags = 0;
280 mapping->wb_err = 0;
281 atomic_set(&mapping->i_mmap_writable, 0);
282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
283 atomic_set(&mapping->nr_thps, 0);
284 #endif
285 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
286 mapping->i_private_data = NULL;
287 mapping->writeback_index = 0;
288 init_rwsem(&mapping->invalidate_lock);
289 lockdep_set_class_and_name(&mapping->invalidate_lock,
290 &sb->s_type->invalidate_lock_key,
291 "mapping.invalidate_lock");
292 if (sb->s_iflags & SB_I_STABLE_WRITES)
293 mapping_set_stable_writes(mapping);
294 inode->i_private = NULL;
295 inode->i_mapping = mapping;
296 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
297 #ifdef CONFIG_FS_POSIX_ACL
298 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
299 #endif
300
301 #ifdef CONFIG_FSNOTIFY
302 inode->i_fsnotify_mask = 0;
303 #endif
304 inode->i_flctx = NULL;
305
306 if (unlikely(security_inode_alloc(inode, gfp)))
307 return -ENOMEM;
308
309 this_cpu_inc(nr_inodes);
310
311 return 0;
312 }
313 EXPORT_SYMBOL(inode_init_always_gfp);
314
free_inode_nonrcu(struct inode * inode)315 void free_inode_nonrcu(struct inode *inode)
316 {
317 kmem_cache_free(inode_cachep, inode);
318 }
319 EXPORT_SYMBOL(free_inode_nonrcu);
320
i_callback(struct rcu_head * head)321 static void i_callback(struct rcu_head *head)
322 {
323 struct inode *inode = container_of(head, struct inode, i_rcu);
324 if (inode->free_inode)
325 inode->free_inode(inode);
326 else
327 free_inode_nonrcu(inode);
328 }
329
330 /**
331 * alloc_inode - obtain an inode
332 * @sb: superblock
333 *
334 * Allocates a new inode for given superblock.
335 * Inode wont be chained in superblock s_inodes list
336 * This means :
337 * - fs can't be unmount
338 * - quotas, fsnotify, writeback can't work
339 */
alloc_inode(struct super_block * sb)340 struct inode *alloc_inode(struct super_block *sb)
341 {
342 const struct super_operations *ops = sb->s_op;
343 struct inode *inode;
344
345 if (ops->alloc_inode)
346 inode = ops->alloc_inode(sb);
347 else
348 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
349
350 if (!inode)
351 return NULL;
352
353 if (unlikely(inode_init_always(sb, inode))) {
354 if (ops->destroy_inode) {
355 ops->destroy_inode(inode);
356 if (!ops->free_inode)
357 return NULL;
358 }
359 inode->free_inode = ops->free_inode;
360 i_callback(&inode->i_rcu);
361 return NULL;
362 }
363
364 return inode;
365 }
366
__destroy_inode(struct inode * inode)367 void __destroy_inode(struct inode *inode)
368 {
369 BUG_ON(inode_has_buffers(inode));
370 inode_detach_wb(inode);
371 security_inode_free(inode);
372 fsnotify_inode_delete(inode);
373 locks_free_lock_context(inode);
374 if (!inode->i_nlink) {
375 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
376 atomic_long_dec(&inode->i_sb->s_remove_count);
377 }
378
379 #ifdef CONFIG_FS_POSIX_ACL
380 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
381 posix_acl_release(inode->i_acl);
382 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
383 posix_acl_release(inode->i_default_acl);
384 #endif
385 this_cpu_dec(nr_inodes);
386 }
387 EXPORT_SYMBOL(__destroy_inode);
388
destroy_inode(struct inode * inode)389 static void destroy_inode(struct inode *inode)
390 {
391 const struct super_operations *ops = inode->i_sb->s_op;
392
393 BUG_ON(!list_empty(&inode->i_lru));
394 __destroy_inode(inode);
395 if (ops->destroy_inode) {
396 ops->destroy_inode(inode);
397 if (!ops->free_inode)
398 return;
399 }
400 inode->free_inode = ops->free_inode;
401 call_rcu(&inode->i_rcu, i_callback);
402 }
403
404 /**
405 * drop_nlink - directly drop an inode's link count
406 * @inode: inode
407 *
408 * This is a low-level filesystem helper to replace any
409 * direct filesystem manipulation of i_nlink. In cases
410 * where we are attempting to track writes to the
411 * filesystem, a decrement to zero means an imminent
412 * write when the file is truncated and actually unlinked
413 * on the filesystem.
414 */
drop_nlink(struct inode * inode)415 void drop_nlink(struct inode *inode)
416 {
417 WARN_ON(inode->i_nlink == 0);
418 inode->__i_nlink--;
419 if (!inode->i_nlink)
420 atomic_long_inc(&inode->i_sb->s_remove_count);
421 }
422 EXPORT_SYMBOL(drop_nlink);
423
424 /**
425 * clear_nlink - directly zero an inode's link count
426 * @inode: inode
427 *
428 * This is a low-level filesystem helper to replace any
429 * direct filesystem manipulation of i_nlink. See
430 * drop_nlink() for why we care about i_nlink hitting zero.
431 */
clear_nlink(struct inode * inode)432 void clear_nlink(struct inode *inode)
433 {
434 if (inode->i_nlink) {
435 inode->__i_nlink = 0;
436 atomic_long_inc(&inode->i_sb->s_remove_count);
437 }
438 }
439 EXPORT_SYMBOL(clear_nlink);
440
441 /**
442 * set_nlink - directly set an inode's link count
443 * @inode: inode
444 * @nlink: new nlink (should be non-zero)
445 *
446 * This is a low-level filesystem helper to replace any
447 * direct filesystem manipulation of i_nlink.
448 */
set_nlink(struct inode * inode,unsigned int nlink)449 void set_nlink(struct inode *inode, unsigned int nlink)
450 {
451 if (!nlink) {
452 clear_nlink(inode);
453 } else {
454 /* Yes, some filesystems do change nlink from zero to one */
455 if (inode->i_nlink == 0)
456 atomic_long_dec(&inode->i_sb->s_remove_count);
457
458 inode->__i_nlink = nlink;
459 }
460 }
461 EXPORT_SYMBOL(set_nlink);
462
463 /**
464 * inc_nlink - directly increment an inode's link count
465 * @inode: inode
466 *
467 * This is a low-level filesystem helper to replace any
468 * direct filesystem manipulation of i_nlink. Currently,
469 * it is only here for parity with dec_nlink().
470 */
inc_nlink(struct inode * inode)471 void inc_nlink(struct inode *inode)
472 {
473 if (unlikely(inode->i_nlink == 0)) {
474 WARN_ON(!(inode_state_read_once(inode) & I_LINKABLE));
475 atomic_long_dec(&inode->i_sb->s_remove_count);
476 }
477
478 inode->__i_nlink++;
479 }
480 EXPORT_SYMBOL(inc_nlink);
481
__address_space_init_once(struct address_space * mapping)482 static void __address_space_init_once(struct address_space *mapping)
483 {
484 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
485 init_rwsem(&mapping->i_mmap_rwsem);
486 INIT_LIST_HEAD(&mapping->i_private_list);
487 spin_lock_init(&mapping->i_private_lock);
488 mapping->i_mmap = RB_ROOT_CACHED;
489 }
490
address_space_init_once(struct address_space * mapping)491 void address_space_init_once(struct address_space *mapping)
492 {
493 memset(mapping, 0, sizeof(*mapping));
494 __address_space_init_once(mapping);
495 }
496 EXPORT_SYMBOL(address_space_init_once);
497
498 /*
499 * These are initializations that only need to be done
500 * once, because the fields are idempotent across use
501 * of the inode, so let the slab aware of that.
502 */
inode_init_once(struct inode * inode)503 void inode_init_once(struct inode *inode)
504 {
505 memset(inode, 0, sizeof(*inode));
506 INIT_HLIST_NODE(&inode->i_hash);
507 INIT_LIST_HEAD(&inode->i_devices);
508 INIT_LIST_HEAD(&inode->i_io_list);
509 INIT_LIST_HEAD(&inode->i_wb_list);
510 INIT_LIST_HEAD(&inode->i_lru);
511 INIT_LIST_HEAD(&inode->i_sb_list);
512 __address_space_init_once(&inode->i_data);
513 i_size_ordered_init(inode);
514 }
515 EXPORT_SYMBOL(inode_init_once);
516
init_once(void * foo)517 static void init_once(void *foo)
518 {
519 struct inode *inode = (struct inode *) foo;
520
521 inode_init_once(inode);
522 }
523
524 /*
525 * get additional reference to inode; caller must already hold one.
526 */
ihold(struct inode * inode)527 void ihold(struct inode *inode)
528 {
529 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
530 }
531 EXPORT_SYMBOL(ihold);
532
inode_bit_waitqueue(struct wait_bit_queue_entry * wqe,struct inode * inode,u32 bit)533 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
534 struct inode *inode, u32 bit)
535 {
536 void *bit_address;
537
538 bit_address = inode_state_wait_address(inode, bit);
539 init_wait_var_entry(wqe, bit_address, 0);
540 return __var_waitqueue(bit_address);
541 }
542 EXPORT_SYMBOL(inode_bit_waitqueue);
543
wait_on_new_inode(struct inode * inode)544 void wait_on_new_inode(struct inode *inode)
545 {
546 struct wait_bit_queue_entry wqe;
547 struct wait_queue_head *wq_head;
548
549 spin_lock(&inode->i_lock);
550 if (!(inode_state_read(inode) & I_NEW)) {
551 spin_unlock(&inode->i_lock);
552 return;
553 }
554
555 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
556 for (;;) {
557 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
558 if (!(inode_state_read(inode) & I_NEW))
559 break;
560 spin_unlock(&inode->i_lock);
561 schedule();
562 spin_lock(&inode->i_lock);
563 }
564 finish_wait(wq_head, &wqe.wq_entry);
565 WARN_ON(inode_state_read(inode) & I_NEW);
566 spin_unlock(&inode->i_lock);
567 }
568 EXPORT_SYMBOL(wait_on_new_inode);
569
__inode_lru_list_add(struct inode * inode,bool rotate)570 static void __inode_lru_list_add(struct inode *inode, bool rotate)
571 {
572 lockdep_assert_held(&inode->i_lock);
573
574 if (inode_state_read(inode) & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
575 return;
576 if (icount_read(inode))
577 return;
578 if (!(inode->i_sb->s_flags & SB_ACTIVE))
579 return;
580 if (!mapping_shrinkable(&inode->i_data))
581 return;
582
583 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
584 this_cpu_inc(nr_unused);
585 else if (rotate)
586 inode_state_set(inode, I_REFERENCED);
587 }
588
589 /*
590 * Add inode to LRU if needed (inode is unused and clean).
591 */
inode_lru_list_add(struct inode * inode)592 void inode_lru_list_add(struct inode *inode)
593 {
594 __inode_lru_list_add(inode, false);
595 }
596
inode_lru_list_del(struct inode * inode)597 static void inode_lru_list_del(struct inode *inode)
598 {
599 if (list_empty(&inode->i_lru))
600 return;
601
602 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
603 this_cpu_dec(nr_unused);
604 }
605
inode_pin_lru_isolating(struct inode * inode)606 static void inode_pin_lru_isolating(struct inode *inode)
607 {
608 lockdep_assert_held(&inode->i_lock);
609 WARN_ON(inode_state_read(inode) & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
610 inode_state_set(inode, I_LRU_ISOLATING);
611 }
612
inode_unpin_lru_isolating(struct inode * inode)613 static void inode_unpin_lru_isolating(struct inode *inode)
614 {
615 spin_lock(&inode->i_lock);
616 WARN_ON(!(inode_state_read(inode) & I_LRU_ISOLATING));
617 inode_state_clear(inode, I_LRU_ISOLATING);
618 /* Called with inode->i_lock which ensures memory ordering. */
619 inode_wake_up_bit(inode, __I_LRU_ISOLATING);
620 spin_unlock(&inode->i_lock);
621 }
622
inode_wait_for_lru_isolating(struct inode * inode)623 static void inode_wait_for_lru_isolating(struct inode *inode)
624 {
625 struct wait_bit_queue_entry wqe;
626 struct wait_queue_head *wq_head;
627
628 lockdep_assert_held(&inode->i_lock);
629 if (!(inode_state_read(inode) & I_LRU_ISOLATING))
630 return;
631
632 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
633 for (;;) {
634 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
635 /*
636 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
637 * memory ordering.
638 */
639 if (!(inode_state_read(inode) & I_LRU_ISOLATING))
640 break;
641 spin_unlock(&inode->i_lock);
642 schedule();
643 spin_lock(&inode->i_lock);
644 }
645 finish_wait(wq_head, &wqe.wq_entry);
646 WARN_ON(inode_state_read(inode) & I_LRU_ISOLATING);
647 }
648
649 /**
650 * inode_sb_list_add - add inode to the superblock list of inodes
651 * @inode: inode to add
652 */
inode_sb_list_add(struct inode * inode)653 void inode_sb_list_add(struct inode *inode)
654 {
655 struct super_block *sb = inode->i_sb;
656
657 spin_lock(&sb->s_inode_list_lock);
658 list_add(&inode->i_sb_list, &sb->s_inodes);
659 spin_unlock(&sb->s_inode_list_lock);
660 }
661 EXPORT_SYMBOL_GPL(inode_sb_list_add);
662
inode_sb_list_del(struct inode * inode)663 static inline void inode_sb_list_del(struct inode *inode)
664 {
665 struct super_block *sb = inode->i_sb;
666
667 if (!list_empty(&inode->i_sb_list)) {
668 spin_lock(&sb->s_inode_list_lock);
669 list_del_init(&inode->i_sb_list);
670 spin_unlock(&sb->s_inode_list_lock);
671 }
672 }
673
hash(struct super_block * sb,unsigned long hashval)674 static unsigned long hash(struct super_block *sb, unsigned long hashval)
675 {
676 unsigned long tmp;
677
678 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
679 L1_CACHE_BYTES;
680 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
681 return tmp & i_hash_mask;
682 }
683
684 /**
685 * __insert_inode_hash - hash an inode
686 * @inode: unhashed inode
687 * @hashval: unsigned long value used to locate this object in the
688 * inode_hashtable.
689 *
690 * Add an inode to the inode hash for this superblock.
691 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)692 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
693 {
694 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
695
696 spin_lock(&inode_hash_lock);
697 spin_lock(&inode->i_lock);
698 hlist_add_head_rcu(&inode->i_hash, b);
699 spin_unlock(&inode->i_lock);
700 spin_unlock(&inode_hash_lock);
701 }
702 EXPORT_SYMBOL(__insert_inode_hash);
703
704 /**
705 * __remove_inode_hash - remove an inode from the hash
706 * @inode: inode to unhash
707 *
708 * Remove an inode from the superblock.
709 */
__remove_inode_hash(struct inode * inode)710 void __remove_inode_hash(struct inode *inode)
711 {
712 spin_lock(&inode_hash_lock);
713 spin_lock(&inode->i_lock);
714 hlist_del_init_rcu(&inode->i_hash);
715 spin_unlock(&inode->i_lock);
716 spin_unlock(&inode_hash_lock);
717 }
718 EXPORT_SYMBOL(__remove_inode_hash);
719
dump_mapping(const struct address_space * mapping)720 void dump_mapping(const struct address_space *mapping)
721 {
722 struct inode *host;
723 const struct address_space_operations *a_ops;
724 struct hlist_node *dentry_first;
725 struct dentry *dentry_ptr;
726 struct dentry dentry;
727 char fname[64] = {};
728 unsigned long ino;
729
730 /*
731 * If mapping is an invalid pointer, we don't want to crash
732 * accessing it, so probe everything depending on it carefully.
733 */
734 if (get_kernel_nofault(host, &mapping->host) ||
735 get_kernel_nofault(a_ops, &mapping->a_ops)) {
736 pr_warn("invalid mapping:%px\n", mapping);
737 return;
738 }
739
740 if (!host) {
741 pr_warn("aops:%ps\n", a_ops);
742 return;
743 }
744
745 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
746 get_kernel_nofault(ino, &host->i_ino)) {
747 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
748 return;
749 }
750
751 if (!dentry_first) {
752 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
753 return;
754 }
755
756 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
757 if (get_kernel_nofault(dentry, dentry_ptr) ||
758 !dentry.d_parent || !dentry.d_name.name) {
759 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
760 a_ops, ino, dentry_ptr);
761 return;
762 }
763
764 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
765 strscpy(fname, "<invalid>");
766 /*
767 * Even if strncpy_from_kernel_nofault() succeeded,
768 * the fname could be unreliable
769 */
770 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
771 a_ops, ino, fname);
772 }
773
clear_inode(struct inode * inode)774 void clear_inode(struct inode *inode)
775 {
776 /*
777 * We have to cycle the i_pages lock here because reclaim can be in the
778 * process of removing the last page (in __filemap_remove_folio())
779 * and we must not free the mapping under it.
780 */
781 xa_lock_irq(&inode->i_data.i_pages);
782 BUG_ON(inode->i_data.nrpages);
783 /*
784 * Almost always, mapping_empty(&inode->i_data) here; but there are
785 * two known and long-standing ways in which nodes may get left behind
786 * (when deep radix-tree node allocation failed partway; or when THP
787 * collapse_file() failed). Until those two known cases are cleaned up,
788 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
789 * nor even WARN_ON(!mapping_empty).
790 */
791 xa_unlock_irq(&inode->i_data.i_pages);
792 BUG_ON(!list_empty(&inode->i_data.i_private_list));
793 BUG_ON(!(inode_state_read_once(inode) & I_FREEING));
794 BUG_ON(inode_state_read_once(inode) & I_CLEAR);
795 BUG_ON(!list_empty(&inode->i_wb_list));
796 /* don't need i_lock here, no concurrent mods to i_state */
797 inode_state_assign_raw(inode, I_FREEING | I_CLEAR);
798 }
799 EXPORT_SYMBOL(clear_inode);
800
801 /*
802 * Free the inode passed in, removing it from the lists it is still connected
803 * to. We remove any pages still attached to the inode and wait for any IO that
804 * is still in progress before finally destroying the inode.
805 *
806 * An inode must already be marked I_FREEING so that we avoid the inode being
807 * moved back onto lists if we race with other code that manipulates the lists
808 * (e.g. writeback_single_inode). The caller is responsible for setting this.
809 *
810 * An inode must already be removed from the LRU list before being evicted from
811 * the cache. This should occur atomically with setting the I_FREEING state
812 * flag, so no inodes here should ever be on the LRU when being evicted.
813 */
evict(struct inode * inode)814 static void evict(struct inode *inode)
815 {
816 const struct super_operations *op = inode->i_sb->s_op;
817
818 BUG_ON(!(inode_state_read_once(inode) & I_FREEING));
819 BUG_ON(!list_empty(&inode->i_lru));
820
821 inode_io_list_del(inode);
822 inode_sb_list_del(inode);
823
824 spin_lock(&inode->i_lock);
825 inode_wait_for_lru_isolating(inode);
826
827 /*
828 * Wait for flusher thread to be done with the inode so that filesystem
829 * does not start destroying it while writeback is still running. Since
830 * the inode has I_FREEING set, flusher thread won't start new work on
831 * the inode. We just have to wait for running writeback to finish.
832 */
833 inode_wait_for_writeback(inode);
834 spin_unlock(&inode->i_lock);
835
836 if (op->evict_inode) {
837 op->evict_inode(inode);
838 } else {
839 truncate_inode_pages_final(&inode->i_data);
840 clear_inode(inode);
841 }
842 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
843 cd_forget(inode);
844
845 remove_inode_hash(inode);
846
847 /*
848 * Wake up waiters in __wait_on_freeing_inode().
849 *
850 * It is an invariant that any thread we need to wake up is already
851 * accounted for before remove_inode_hash() acquires ->i_lock -- both
852 * sides take the lock and sleep is aborted if the inode is found
853 * unhashed. Thus either the sleeper wins and goes off CPU, or removal
854 * wins and the sleeper aborts after testing with the lock.
855 *
856 * This also means we don't need any fences for the call below.
857 */
858 inode_wake_up_bit(inode, __I_NEW);
859 BUG_ON(inode_state_read_once(inode) != (I_FREEING | I_CLEAR));
860
861 destroy_inode(inode);
862 }
863
864 /*
865 * dispose_list - dispose of the contents of a local list
866 * @head: the head of the list to free
867 *
868 * Dispose-list gets a local list with local inodes in it, so it doesn't
869 * need to worry about list corruption and SMP locks.
870 */
dispose_list(struct list_head * head)871 static void dispose_list(struct list_head *head)
872 {
873 while (!list_empty(head)) {
874 struct inode *inode;
875
876 inode = list_first_entry(head, struct inode, i_lru);
877 list_del_init(&inode->i_lru);
878
879 evict(inode);
880 cond_resched();
881 }
882 }
883
884 /**
885 * evict_inodes - evict all evictable inodes for a superblock
886 * @sb: superblock to operate on
887 *
888 * Make sure that no inodes with zero refcount are retained. This is
889 * called by superblock shutdown after having SB_ACTIVE flag removed,
890 * so any inode reaching zero refcount during or after that call will
891 * be immediately evicted.
892 */
evict_inodes(struct super_block * sb)893 void evict_inodes(struct super_block *sb)
894 {
895 struct inode *inode;
896 LIST_HEAD(dispose);
897
898 again:
899 spin_lock(&sb->s_inode_list_lock);
900 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
901 if (icount_read(inode))
902 continue;
903
904 spin_lock(&inode->i_lock);
905 if (icount_read(inode)) {
906 spin_unlock(&inode->i_lock);
907 continue;
908 }
909 if (inode_state_read(inode) & (I_NEW | I_FREEING | I_WILL_FREE)) {
910 spin_unlock(&inode->i_lock);
911 continue;
912 }
913
914 inode_state_set(inode, I_FREEING);
915 inode_lru_list_del(inode);
916 spin_unlock(&inode->i_lock);
917 list_add(&inode->i_lru, &dispose);
918
919 /*
920 * We can have a ton of inodes to evict at unmount time given
921 * enough memory, check to see if we need to go to sleep for a
922 * bit so we don't livelock.
923 */
924 if (need_resched()) {
925 spin_unlock(&sb->s_inode_list_lock);
926 cond_resched();
927 dispose_list(&dispose);
928 goto again;
929 }
930 }
931 spin_unlock(&sb->s_inode_list_lock);
932
933 dispose_list(&dispose);
934 }
935 EXPORT_SYMBOL_GPL(evict_inodes);
936
937 /*
938 * Isolate the inode from the LRU in preparation for freeing it.
939 *
940 * If the inode has the I_REFERENCED flag set, then it means that it has been
941 * used recently - the flag is set in iput_final(). When we encounter such an
942 * inode, clear the flag and move it to the back of the LRU so it gets another
943 * pass through the LRU before it gets reclaimed. This is necessary because of
944 * the fact we are doing lazy LRU updates to minimise lock contention so the
945 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
946 * with this flag set because they are the inodes that are out of order.
947 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)948 static enum lru_status inode_lru_isolate(struct list_head *item,
949 struct list_lru_one *lru, void *arg)
950 {
951 struct list_head *freeable = arg;
952 struct inode *inode = container_of(item, struct inode, i_lru);
953
954 /*
955 * We are inverting the lru lock/inode->i_lock here, so use a
956 * trylock. If we fail to get the lock, just skip it.
957 */
958 if (!spin_trylock(&inode->i_lock))
959 return LRU_SKIP;
960
961 /*
962 * Inodes can get referenced, redirtied, or repopulated while
963 * they're already on the LRU, and this can make them
964 * unreclaimable for a while. Remove them lazily here; iput,
965 * sync, or the last page cache deletion will requeue them.
966 */
967 if (icount_read(inode) ||
968 (inode_state_read(inode) & ~I_REFERENCED) ||
969 !mapping_shrinkable(&inode->i_data)) {
970 list_lru_isolate(lru, &inode->i_lru);
971 spin_unlock(&inode->i_lock);
972 this_cpu_dec(nr_unused);
973 return LRU_REMOVED;
974 }
975
976 /* Recently referenced inodes get one more pass */
977 if (inode_state_read(inode) & I_REFERENCED) {
978 inode_state_clear(inode, I_REFERENCED);
979 spin_unlock(&inode->i_lock);
980 return LRU_ROTATE;
981 }
982
983 /*
984 * On highmem systems, mapping_shrinkable() permits dropping
985 * page cache in order to free up struct inodes: lowmem might
986 * be under pressure before the cache inside the highmem zone.
987 */
988 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
989 inode_pin_lru_isolating(inode);
990 spin_unlock(&inode->i_lock);
991 spin_unlock(&lru->lock);
992 if (remove_inode_buffers(inode)) {
993 unsigned long reap;
994 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
995 if (current_is_kswapd())
996 __count_vm_events(KSWAPD_INODESTEAL, reap);
997 else
998 __count_vm_events(PGINODESTEAL, reap);
999 mm_account_reclaimed_pages(reap);
1000 }
1001 inode_unpin_lru_isolating(inode);
1002 return LRU_RETRY;
1003 }
1004
1005 WARN_ON(inode_state_read(inode) & I_NEW);
1006 inode_state_set(inode, I_FREEING);
1007 list_lru_isolate_move(lru, &inode->i_lru, freeable);
1008 spin_unlock(&inode->i_lock);
1009
1010 this_cpu_dec(nr_unused);
1011 return LRU_REMOVED;
1012 }
1013
1014 /*
1015 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
1016 * This is called from the superblock shrinker function with a number of inodes
1017 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
1018 * then are freed outside inode_lock by dispose_list().
1019 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)1020 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
1021 {
1022 LIST_HEAD(freeable);
1023 long freed;
1024
1025 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
1026 inode_lru_isolate, &freeable);
1027 dispose_list(&freeable);
1028 return freed;
1029 }
1030
1031 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
1032 /*
1033 * Called with the inode lock held.
1034 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data,bool is_inode_hash_locked,bool * isnew)1035 static struct inode *find_inode(struct super_block *sb,
1036 struct hlist_head *head,
1037 int (*test)(struct inode *, void *),
1038 void *data, bool is_inode_hash_locked,
1039 bool *isnew)
1040 {
1041 struct inode *inode = NULL;
1042
1043 if (is_inode_hash_locked)
1044 lockdep_assert_held(&inode_hash_lock);
1045 else
1046 lockdep_assert_not_held(&inode_hash_lock);
1047
1048 rcu_read_lock();
1049 repeat:
1050 hlist_for_each_entry_rcu(inode, head, i_hash) {
1051 if (inode->i_sb != sb)
1052 continue;
1053 if (!test(inode, data))
1054 continue;
1055 spin_lock(&inode->i_lock);
1056 if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE)) {
1057 __wait_on_freeing_inode(inode, is_inode_hash_locked);
1058 goto repeat;
1059 }
1060 if (unlikely(inode_state_read(inode) & I_CREATING)) {
1061 spin_unlock(&inode->i_lock);
1062 rcu_read_unlock();
1063 return ERR_PTR(-ESTALE);
1064 }
1065 __iget(inode);
1066 *isnew = !!(inode_state_read(inode) & I_NEW);
1067 spin_unlock(&inode->i_lock);
1068 rcu_read_unlock();
1069 return inode;
1070 }
1071 rcu_read_unlock();
1072 return NULL;
1073 }
1074
1075 /*
1076 * find_inode_fast is the fast path version of find_inode, see the comment at
1077 * iget_locked for details.
1078 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino,bool is_inode_hash_locked,bool * isnew)1079 static struct inode *find_inode_fast(struct super_block *sb,
1080 struct hlist_head *head, unsigned long ino,
1081 bool is_inode_hash_locked, bool *isnew)
1082 {
1083 struct inode *inode = NULL;
1084
1085 if (is_inode_hash_locked)
1086 lockdep_assert_held(&inode_hash_lock);
1087 else
1088 lockdep_assert_not_held(&inode_hash_lock);
1089
1090 rcu_read_lock();
1091 repeat:
1092 hlist_for_each_entry_rcu(inode, head, i_hash) {
1093 if (inode->i_ino != ino)
1094 continue;
1095 if (inode->i_sb != sb)
1096 continue;
1097 spin_lock(&inode->i_lock);
1098 if (inode_state_read(inode) & (I_FREEING | I_WILL_FREE)) {
1099 __wait_on_freeing_inode(inode, is_inode_hash_locked);
1100 goto repeat;
1101 }
1102 if (unlikely(inode_state_read(inode) & I_CREATING)) {
1103 spin_unlock(&inode->i_lock);
1104 rcu_read_unlock();
1105 return ERR_PTR(-ESTALE);
1106 }
1107 __iget(inode);
1108 *isnew = !!(inode_state_read(inode) & I_NEW);
1109 spin_unlock(&inode->i_lock);
1110 rcu_read_unlock();
1111 return inode;
1112 }
1113 rcu_read_unlock();
1114 return NULL;
1115 }
1116
1117 /*
1118 * Each cpu owns a range of LAST_INO_BATCH numbers.
1119 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1120 * to renew the exhausted range.
1121 *
1122 * This does not significantly increase overflow rate because every CPU can
1123 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1124 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1125 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1126 * overflow rate by 2x, which does not seem too significant.
1127 *
1128 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1129 * error if st_ino won't fit in target struct field. Use 32bit counter
1130 * here to attempt to avoid that.
1131 */
1132 #define LAST_INO_BATCH 1024
1133 static DEFINE_PER_CPU(unsigned int, last_ino);
1134
get_next_ino(void)1135 unsigned int get_next_ino(void)
1136 {
1137 unsigned int *p = &get_cpu_var(last_ino);
1138 unsigned int res = *p;
1139
1140 #ifdef CONFIG_SMP
1141 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1142 static atomic_t shared_last_ino;
1143 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1144
1145 res = next - LAST_INO_BATCH;
1146 }
1147 #endif
1148
1149 res++;
1150 /* get_next_ino should not provide a 0 inode number */
1151 if (unlikely(!res))
1152 res++;
1153 *p = res;
1154 put_cpu_var(last_ino);
1155 return res;
1156 }
1157 EXPORT_SYMBOL(get_next_ino);
1158
1159 /**
1160 * new_inode - obtain an inode
1161 * @sb: superblock
1162 *
1163 * Allocates a new inode for given superblock. The default gfp_mask
1164 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1165 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1166 * for the page cache are not reclaimable or migratable,
1167 * mapping_set_gfp_mask() must be called with suitable flags on the
1168 * newly created inode's mapping
1169 *
1170 */
new_inode(struct super_block * sb)1171 struct inode *new_inode(struct super_block *sb)
1172 {
1173 struct inode *inode;
1174
1175 inode = alloc_inode(sb);
1176 if (inode)
1177 inode_sb_list_add(inode);
1178 return inode;
1179 }
1180 EXPORT_SYMBOL(new_inode);
1181
1182 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1183 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1184 {
1185 if (S_ISDIR(inode->i_mode)) {
1186 struct file_system_type *type = inode->i_sb->s_type;
1187
1188 /* Set new key only if filesystem hasn't already changed it */
1189 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1190 /*
1191 * ensure nobody is actually holding i_rwsem
1192 */
1193 init_rwsem(&inode->i_rwsem);
1194 lockdep_set_class(&inode->i_rwsem,
1195 &type->i_mutex_dir_key);
1196 }
1197 }
1198 }
1199 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1200 #endif
1201
1202 /**
1203 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1204 * @inode: new inode to unlock
1205 *
1206 * Called when the inode is fully initialised to clear the new state of the
1207 * inode and wake up anyone waiting for the inode to finish initialisation.
1208 */
unlock_new_inode(struct inode * inode)1209 void unlock_new_inode(struct inode *inode)
1210 {
1211 lockdep_annotate_inode_mutex_key(inode);
1212 spin_lock(&inode->i_lock);
1213 WARN_ON(!(inode_state_read(inode) & I_NEW));
1214 inode_state_clear(inode, I_NEW | I_CREATING);
1215 inode_wake_up_bit(inode, __I_NEW);
1216 spin_unlock(&inode->i_lock);
1217 }
1218 EXPORT_SYMBOL(unlock_new_inode);
1219
discard_new_inode(struct inode * inode)1220 void discard_new_inode(struct inode *inode)
1221 {
1222 lockdep_annotate_inode_mutex_key(inode);
1223 spin_lock(&inode->i_lock);
1224 WARN_ON(!(inode_state_read(inode) & I_NEW));
1225 inode_state_clear(inode, I_NEW);
1226 inode_wake_up_bit(inode, __I_NEW);
1227 spin_unlock(&inode->i_lock);
1228 iput(inode);
1229 }
1230 EXPORT_SYMBOL(discard_new_inode);
1231
1232 /**
1233 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1234 *
1235 * Lock any non-NULL argument. Passed objects must not be directories.
1236 * Zero, one or two objects may be locked by this function.
1237 *
1238 * @inode1: first inode to lock
1239 * @inode2: second inode to lock
1240 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1241 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1242 {
1243 if (inode1)
1244 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1245 if (inode2)
1246 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1247 if (inode1 > inode2)
1248 swap(inode1, inode2);
1249 if (inode1)
1250 inode_lock(inode1);
1251 if (inode2 && inode2 != inode1)
1252 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1253 }
1254 EXPORT_SYMBOL(lock_two_nondirectories);
1255
1256 /**
1257 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1258 * @inode1: first inode to unlock
1259 * @inode2: second inode to unlock
1260 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1261 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1262 {
1263 if (inode1) {
1264 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1265 inode_unlock(inode1);
1266 }
1267 if (inode2 && inode2 != inode1) {
1268 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1269 inode_unlock(inode2);
1270 }
1271 }
1272 EXPORT_SYMBOL(unlock_two_nondirectories);
1273
1274 /**
1275 * inode_insert5 - obtain an inode from a mounted file system
1276 * @inode: pre-allocated inode to use for insert to cache
1277 * @hashval: hash value (usually inode number) to get
1278 * @test: callback used for comparisons between inodes
1279 * @set: callback used to initialize a new struct inode
1280 * @data: opaque data pointer to pass to @test and @set
1281 * @isnew: pointer to a bool which will indicate whether I_NEW is set
1282 *
1283 * Search for the inode specified by @hashval and @data in the inode cache,
1284 * and if present return it with an increased reference count. This is a
1285 * variant of iget5_locked() that doesn't allocate an inode.
1286 *
1287 * If the inode is not present in the cache, insert the pre-allocated inode and
1288 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1289 * to fill it in before unlocking it via unlock_new_inode().
1290 *
1291 * Note that both @test and @set are called with the inode_hash_lock held, so
1292 * they can't sleep.
1293 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1294 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1295 int (*test)(struct inode *, void *),
1296 int (*set)(struct inode *, void *), void *data)
1297 {
1298 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1299 struct inode *old;
1300 bool isnew;
1301
1302 might_sleep();
1303
1304 again:
1305 spin_lock(&inode_hash_lock);
1306 old = find_inode(inode->i_sb, head, test, data, true, &isnew);
1307 if (unlikely(old)) {
1308 /*
1309 * Uhhuh, somebody else created the same inode under us.
1310 * Use the old inode instead of the preallocated one.
1311 */
1312 spin_unlock(&inode_hash_lock);
1313 if (IS_ERR(old))
1314 return NULL;
1315 if (unlikely(isnew))
1316 wait_on_new_inode(old);
1317 if (unlikely(inode_unhashed(old))) {
1318 iput(old);
1319 goto again;
1320 }
1321 return old;
1322 }
1323
1324 if (set && unlikely(set(inode, data))) {
1325 spin_unlock(&inode_hash_lock);
1326 return NULL;
1327 }
1328
1329 /*
1330 * Return the locked inode with I_NEW set, the
1331 * caller is responsible for filling in the contents
1332 */
1333 spin_lock(&inode->i_lock);
1334 inode_state_set(inode, I_NEW);
1335 hlist_add_head_rcu(&inode->i_hash, head);
1336 spin_unlock(&inode->i_lock);
1337
1338 spin_unlock(&inode_hash_lock);
1339
1340 /*
1341 * Add inode to the sb list if it's not already. It has I_NEW at this
1342 * point, so it should be safe to test i_sb_list locklessly.
1343 */
1344 if (list_empty(&inode->i_sb_list))
1345 inode_sb_list_add(inode);
1346
1347 return inode;
1348 }
1349 EXPORT_SYMBOL(inode_insert5);
1350
1351 /**
1352 * iget5_locked - obtain an inode from a mounted file system
1353 * @sb: super block of file system
1354 * @hashval: hash value (usually inode number) to get
1355 * @test: callback used for comparisons between inodes
1356 * @set: callback used to initialize a new struct inode
1357 * @data: opaque data pointer to pass to @test and @set
1358 *
1359 * Search for the inode specified by @hashval and @data in the inode cache,
1360 * and if present return it with an increased reference count. This is a
1361 * generalized version of iget_locked() for file systems where the inode
1362 * number is not sufficient for unique identification of an inode.
1363 *
1364 * If the inode is not present in the cache, allocate and insert a new inode
1365 * and return it locked, hashed, and with the I_NEW flag set. The file system
1366 * gets to fill it in before unlocking it via unlock_new_inode().
1367 *
1368 * Note that both @test and @set are called with the inode_hash_lock held, so
1369 * they can't sleep.
1370 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1371 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1372 int (*test)(struct inode *, void *),
1373 int (*set)(struct inode *, void *), void *data)
1374 {
1375 struct inode *inode = ilookup5(sb, hashval, test, data);
1376
1377 if (!inode) {
1378 struct inode *new = alloc_inode(sb);
1379
1380 if (new) {
1381 inode = inode_insert5(new, hashval, test, set, data);
1382 if (unlikely(inode != new))
1383 destroy_inode(new);
1384 }
1385 }
1386 return inode;
1387 }
1388 EXPORT_SYMBOL(iget5_locked);
1389
1390 /**
1391 * iget5_locked_rcu - obtain an inode from a mounted file system
1392 * @sb: super block of file system
1393 * @hashval: hash value (usually inode number) to get
1394 * @test: callback used for comparisons between inodes
1395 * @set: callback used to initialize a new struct inode
1396 * @data: opaque data pointer to pass to @test and @set
1397 *
1398 * This is equivalent to iget5_locked, except the @test callback must
1399 * tolerate the inode not being stable, including being mid-teardown.
1400 */
iget5_locked_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1401 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1402 int (*test)(struct inode *, void *),
1403 int (*set)(struct inode *, void *), void *data)
1404 {
1405 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1406 struct inode *inode, *new;
1407 bool isnew;
1408
1409 might_sleep();
1410
1411 again:
1412 inode = find_inode(sb, head, test, data, false, &isnew);
1413 if (inode) {
1414 if (IS_ERR(inode))
1415 return NULL;
1416 if (unlikely(isnew))
1417 wait_on_new_inode(inode);
1418 if (unlikely(inode_unhashed(inode))) {
1419 iput(inode);
1420 goto again;
1421 }
1422 return inode;
1423 }
1424
1425 new = alloc_inode(sb);
1426 if (new) {
1427 inode = inode_insert5(new, hashval, test, set, data);
1428 if (unlikely(inode != new))
1429 destroy_inode(new);
1430 }
1431 return inode;
1432 }
1433 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1434
1435 /**
1436 * iget_locked - obtain an inode from a mounted file system
1437 * @sb: super block of file system
1438 * @ino: inode number to get
1439 *
1440 * Search for the inode specified by @ino in the inode cache and if present
1441 * return it with an increased reference count. This is for file systems
1442 * where the inode number is sufficient for unique identification of an inode.
1443 *
1444 * If the inode is not in cache, allocate a new inode and return it locked,
1445 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1446 * before unlocking it via unlock_new_inode().
1447 */
iget_locked(struct super_block * sb,unsigned long ino)1448 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1449 {
1450 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1451 struct inode *inode;
1452 bool isnew;
1453
1454 might_sleep();
1455
1456 again:
1457 inode = find_inode_fast(sb, head, ino, false, &isnew);
1458 if (inode) {
1459 if (IS_ERR(inode))
1460 return NULL;
1461 if (unlikely(isnew))
1462 wait_on_new_inode(inode);
1463 if (unlikely(inode_unhashed(inode))) {
1464 iput(inode);
1465 goto again;
1466 }
1467 return inode;
1468 }
1469
1470 inode = alloc_inode(sb);
1471 if (inode) {
1472 struct inode *old;
1473
1474 spin_lock(&inode_hash_lock);
1475 /* We released the lock, so.. */
1476 old = find_inode_fast(sb, head, ino, true, &isnew);
1477 if (!old) {
1478 inode->i_ino = ino;
1479 spin_lock(&inode->i_lock);
1480 inode_state_assign(inode, I_NEW);
1481 hlist_add_head_rcu(&inode->i_hash, head);
1482 spin_unlock(&inode->i_lock);
1483 spin_unlock(&inode_hash_lock);
1484 inode_sb_list_add(inode);
1485
1486 /* Return the locked inode with I_NEW set, the
1487 * caller is responsible for filling in the contents
1488 */
1489 return inode;
1490 }
1491
1492 /*
1493 * Uhhuh, somebody else created the same inode under
1494 * us. Use the old inode instead of the one we just
1495 * allocated.
1496 */
1497 spin_unlock(&inode_hash_lock);
1498 destroy_inode(inode);
1499 if (IS_ERR(old))
1500 return NULL;
1501 inode = old;
1502 if (unlikely(isnew))
1503 wait_on_new_inode(inode);
1504 if (unlikely(inode_unhashed(inode))) {
1505 iput(inode);
1506 goto again;
1507 }
1508 }
1509 return inode;
1510 }
1511 EXPORT_SYMBOL(iget_locked);
1512
1513 /*
1514 * search the inode cache for a matching inode number.
1515 * If we find one, then the inode number we are trying to
1516 * allocate is not unique and so we should not use it.
1517 *
1518 * Returns 1 if the inode number is unique, 0 if it is not.
1519 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1520 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1521 {
1522 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1523 struct inode *inode;
1524
1525 hlist_for_each_entry_rcu(inode, b, i_hash) {
1526 if (inode->i_ino == ino && inode->i_sb == sb)
1527 return 0;
1528 }
1529 return 1;
1530 }
1531
1532 /**
1533 * iunique - get a unique inode number
1534 * @sb: superblock
1535 * @max_reserved: highest reserved inode number
1536 *
1537 * Obtain an inode number that is unique on the system for a given
1538 * superblock. This is used by file systems that have no natural
1539 * permanent inode numbering system. An inode number is returned that
1540 * is higher than the reserved limit but unique.
1541 *
1542 * BUGS:
1543 * With a large number of inodes live on the file system this function
1544 * currently becomes quite slow.
1545 */
iunique(struct super_block * sb,ino_t max_reserved)1546 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1547 {
1548 /*
1549 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1550 * error if st_ino won't fit in target struct field. Use 32bit counter
1551 * here to attempt to avoid that.
1552 */
1553 static DEFINE_SPINLOCK(iunique_lock);
1554 static unsigned int counter;
1555 ino_t res;
1556
1557 rcu_read_lock();
1558 spin_lock(&iunique_lock);
1559 do {
1560 if (counter <= max_reserved)
1561 counter = max_reserved + 1;
1562 res = counter++;
1563 } while (!test_inode_iunique(sb, res));
1564 spin_unlock(&iunique_lock);
1565 rcu_read_unlock();
1566
1567 return res;
1568 }
1569 EXPORT_SYMBOL(iunique);
1570
igrab(struct inode * inode)1571 struct inode *igrab(struct inode *inode)
1572 {
1573 spin_lock(&inode->i_lock);
1574 if (!(inode_state_read(inode) & (I_FREEING | I_WILL_FREE))) {
1575 __iget(inode);
1576 spin_unlock(&inode->i_lock);
1577 } else {
1578 spin_unlock(&inode->i_lock);
1579 /*
1580 * Handle the case where s_op->clear_inode is not been
1581 * called yet, and somebody is calling igrab
1582 * while the inode is getting freed.
1583 */
1584 inode = NULL;
1585 }
1586 return inode;
1587 }
1588 EXPORT_SYMBOL(igrab);
1589
1590 /**
1591 * ilookup5_nowait - search for an inode in the inode cache
1592 * @sb: super block of file system to search
1593 * @hashval: hash value (usually inode number) to search for
1594 * @test: callback used for comparisons between inodes
1595 * @data: opaque data pointer to pass to @test
1596 *
1597 * Search for the inode specified by @hashval and @data in the inode cache.
1598 * If the inode is in the cache, the inode is returned with an incremented
1599 * reference count.
1600 *
1601 * Note: I_NEW is not waited upon so you have to be very careful what you do
1602 * with the returned inode. You probably should be using ilookup5() instead.
1603 *
1604 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1605 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data,bool * isnew)1606 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1607 int (*test)(struct inode *, void *), void *data, bool *isnew)
1608 {
1609 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1610 struct inode *inode;
1611
1612 spin_lock(&inode_hash_lock);
1613 inode = find_inode(sb, head, test, data, true, isnew);
1614 spin_unlock(&inode_hash_lock);
1615
1616 return IS_ERR(inode) ? NULL : inode;
1617 }
1618 EXPORT_SYMBOL(ilookup5_nowait);
1619
1620 /**
1621 * ilookup5 - search for an inode in the inode cache
1622 * @sb: super block of file system to search
1623 * @hashval: hash value (usually inode number) to search for
1624 * @test: callback used for comparisons between inodes
1625 * @data: opaque data pointer to pass to @test
1626 *
1627 * Search for the inode specified by @hashval and @data in the inode cache,
1628 * and if the inode is in the cache, return the inode with an incremented
1629 * reference count. Waits on I_NEW before returning the inode.
1630 * returned with an incremented reference count.
1631 *
1632 * This is a generalized version of ilookup() for file systems where the
1633 * inode number is not sufficient for unique identification of an inode.
1634 *
1635 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1636 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1637 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1638 int (*test)(struct inode *, void *), void *data)
1639 {
1640 struct inode *inode;
1641 bool isnew;
1642
1643 might_sleep();
1644
1645 again:
1646 inode = ilookup5_nowait(sb, hashval, test, data, &isnew);
1647 if (inode) {
1648 if (unlikely(isnew))
1649 wait_on_new_inode(inode);
1650 if (unlikely(inode_unhashed(inode))) {
1651 iput(inode);
1652 goto again;
1653 }
1654 }
1655 return inode;
1656 }
1657 EXPORT_SYMBOL(ilookup5);
1658
1659 /**
1660 * ilookup - search for an inode in the inode cache
1661 * @sb: super block of file system to search
1662 * @ino: inode number to search for
1663 *
1664 * Search for the inode @ino in the inode cache, and if the inode is in the
1665 * cache, the inode is returned with an incremented reference count.
1666 */
ilookup(struct super_block * sb,unsigned long ino)1667 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1668 {
1669 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1670 struct inode *inode;
1671 bool isnew;
1672
1673 might_sleep();
1674
1675 again:
1676 inode = find_inode_fast(sb, head, ino, false, &isnew);
1677
1678 if (inode) {
1679 if (IS_ERR(inode))
1680 return NULL;
1681 if (unlikely(isnew))
1682 wait_on_new_inode(inode);
1683 if (unlikely(inode_unhashed(inode))) {
1684 iput(inode);
1685 goto again;
1686 }
1687 }
1688 return inode;
1689 }
1690 EXPORT_SYMBOL(ilookup);
1691
1692 /**
1693 * find_inode_nowait - find an inode in the inode cache
1694 * @sb: super block of file system to search
1695 * @hashval: hash value (usually inode number) to search for
1696 * @match: callback used for comparisons between inodes
1697 * @data: opaque data pointer to pass to @match
1698 *
1699 * Search for the inode specified by @hashval and @data in the inode
1700 * cache, where the helper function @match will return 0 if the inode
1701 * does not match, 1 if the inode does match, and -1 if the search
1702 * should be stopped. The @match function must be responsible for
1703 * taking the i_lock spin_lock and checking i_state for an inode being
1704 * freed or being initialized, and incrementing the reference count
1705 * before returning 1. It also must not sleep, since it is called with
1706 * the inode_hash_lock spinlock held.
1707 *
1708 * This is a even more generalized version of ilookup5() when the
1709 * function must never block --- find_inode() can block in
1710 * __wait_on_freeing_inode() --- or when the caller can not increment
1711 * the reference count because the resulting iput() might cause an
1712 * inode eviction. The tradeoff is that the @match funtion must be
1713 * very carefully implemented.
1714 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1715 struct inode *find_inode_nowait(struct super_block *sb,
1716 unsigned long hashval,
1717 int (*match)(struct inode *, unsigned long,
1718 void *),
1719 void *data)
1720 {
1721 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1722 struct inode *inode, *ret_inode = NULL;
1723 int mval;
1724
1725 spin_lock(&inode_hash_lock);
1726 hlist_for_each_entry(inode, head, i_hash) {
1727 if (inode->i_sb != sb)
1728 continue;
1729 mval = match(inode, hashval, data);
1730 if (mval == 0)
1731 continue;
1732 if (mval == 1)
1733 ret_inode = inode;
1734 goto out;
1735 }
1736 out:
1737 spin_unlock(&inode_hash_lock);
1738 return ret_inode;
1739 }
1740 EXPORT_SYMBOL(find_inode_nowait);
1741
1742 /**
1743 * find_inode_rcu - find an inode in the inode cache
1744 * @sb: Super block of file system to search
1745 * @hashval: Key to hash
1746 * @test: Function to test match on an inode
1747 * @data: Data for test function
1748 *
1749 * Search for the inode specified by @hashval and @data in the inode cache,
1750 * where the helper function @test will return 0 if the inode does not match
1751 * and 1 if it does. The @test function must be responsible for taking the
1752 * i_lock spin_lock and checking i_state for an inode being freed or being
1753 * initialized.
1754 *
1755 * If successful, this will return the inode for which the @test function
1756 * returned 1 and NULL otherwise.
1757 *
1758 * The @test function is not permitted to take a ref on any inode presented.
1759 * It is also not permitted to sleep.
1760 *
1761 * The caller must hold the RCU read lock.
1762 */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1763 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1764 int (*test)(struct inode *, void *), void *data)
1765 {
1766 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1767 struct inode *inode;
1768
1769 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1770 "suspicious find_inode_rcu() usage");
1771
1772 hlist_for_each_entry_rcu(inode, head, i_hash) {
1773 if (inode->i_sb == sb &&
1774 !(inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE)) &&
1775 test(inode, data))
1776 return inode;
1777 }
1778 return NULL;
1779 }
1780 EXPORT_SYMBOL(find_inode_rcu);
1781
1782 /**
1783 * find_inode_by_ino_rcu - Find an inode in the inode cache
1784 * @sb: Super block of file system to search
1785 * @ino: The inode number to match
1786 *
1787 * Search for the inode specified by @hashval and @data in the inode cache,
1788 * where the helper function @test will return 0 if the inode does not match
1789 * and 1 if it does. The @test function must be responsible for taking the
1790 * i_lock spin_lock and checking i_state for an inode being freed or being
1791 * initialized.
1792 *
1793 * If successful, this will return the inode for which the @test function
1794 * returned 1 and NULL otherwise.
1795 *
1796 * The @test function is not permitted to take a ref on any inode presented.
1797 * It is also not permitted to sleep.
1798 *
1799 * The caller must hold the RCU read lock.
1800 */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1801 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1802 unsigned long ino)
1803 {
1804 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1805 struct inode *inode;
1806
1807 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1808 "suspicious find_inode_by_ino_rcu() usage");
1809
1810 hlist_for_each_entry_rcu(inode, head, i_hash) {
1811 if (inode->i_ino == ino &&
1812 inode->i_sb == sb &&
1813 !(inode_state_read_once(inode) & (I_FREEING | I_WILL_FREE)))
1814 return inode;
1815 }
1816 return NULL;
1817 }
1818 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1819
insert_inode_locked(struct inode * inode)1820 int insert_inode_locked(struct inode *inode)
1821 {
1822 struct super_block *sb = inode->i_sb;
1823 ino_t ino = inode->i_ino;
1824 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1825 bool isnew;
1826
1827 might_sleep();
1828
1829 while (1) {
1830 struct inode *old = NULL;
1831 spin_lock(&inode_hash_lock);
1832 hlist_for_each_entry(old, head, i_hash) {
1833 if (old->i_ino != ino)
1834 continue;
1835 if (old->i_sb != sb)
1836 continue;
1837 spin_lock(&old->i_lock);
1838 if (inode_state_read(old) & (I_FREEING | I_WILL_FREE)) {
1839 spin_unlock(&old->i_lock);
1840 continue;
1841 }
1842 break;
1843 }
1844 if (likely(!old)) {
1845 spin_lock(&inode->i_lock);
1846 inode_state_set(inode, I_NEW | I_CREATING);
1847 hlist_add_head_rcu(&inode->i_hash, head);
1848 spin_unlock(&inode->i_lock);
1849 spin_unlock(&inode_hash_lock);
1850 return 0;
1851 }
1852 if (unlikely(inode_state_read(old) & I_CREATING)) {
1853 spin_unlock(&old->i_lock);
1854 spin_unlock(&inode_hash_lock);
1855 return -EBUSY;
1856 }
1857 __iget(old);
1858 isnew = !!(inode_state_read(old) & I_NEW);
1859 spin_unlock(&old->i_lock);
1860 spin_unlock(&inode_hash_lock);
1861 if (isnew)
1862 wait_on_new_inode(old);
1863 if (unlikely(!inode_unhashed(old))) {
1864 iput(old);
1865 return -EBUSY;
1866 }
1867 iput(old);
1868 }
1869 }
1870 EXPORT_SYMBOL(insert_inode_locked);
1871
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1872 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1873 int (*test)(struct inode *, void *), void *data)
1874 {
1875 struct inode *old;
1876
1877 might_sleep();
1878
1879 inode_state_set_raw(inode, I_CREATING);
1880 old = inode_insert5(inode, hashval, test, NULL, data);
1881
1882 if (old != inode) {
1883 iput(old);
1884 return -EBUSY;
1885 }
1886 return 0;
1887 }
1888 EXPORT_SYMBOL(insert_inode_locked4);
1889
1890
inode_just_drop(struct inode * inode)1891 int inode_just_drop(struct inode *inode)
1892 {
1893 return 1;
1894 }
1895 EXPORT_SYMBOL(inode_just_drop);
1896
1897 /*
1898 * Called when we're dropping the last reference
1899 * to an inode.
1900 *
1901 * Call the FS "drop_inode()" function, defaulting to
1902 * the legacy UNIX filesystem behaviour. If it tells
1903 * us to evict inode, do so. Otherwise, retain inode
1904 * in cache if fs is alive, sync and evict if fs is
1905 * shutting down.
1906 */
iput_final(struct inode * inode)1907 static void iput_final(struct inode *inode)
1908 {
1909 struct super_block *sb = inode->i_sb;
1910 const struct super_operations *op = inode->i_sb->s_op;
1911 int drop;
1912
1913 WARN_ON(inode_state_read(inode) & I_NEW);
1914 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) != 0, inode);
1915
1916 if (op->drop_inode)
1917 drop = op->drop_inode(inode);
1918 else
1919 drop = inode_generic_drop(inode);
1920
1921 if (!drop &&
1922 !(inode_state_read(inode) & I_DONTCACHE) &&
1923 (sb->s_flags & SB_ACTIVE)) {
1924 __inode_lru_list_add(inode, true);
1925 spin_unlock(&inode->i_lock);
1926 return;
1927 }
1928
1929 /*
1930 * Re-check ->i_count in case the ->drop_inode() hooks played games.
1931 * Note we only execute this if the verdict was to drop the inode.
1932 */
1933 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) != 0, inode);
1934
1935 if (drop) {
1936 inode_state_set(inode, I_FREEING);
1937 } else {
1938 inode_state_set(inode, I_WILL_FREE);
1939 spin_unlock(&inode->i_lock);
1940
1941 write_inode_now(inode, 1);
1942
1943 spin_lock(&inode->i_lock);
1944 WARN_ON(inode_state_read(inode) & I_NEW);
1945 inode_state_replace(inode, I_WILL_FREE, I_FREEING);
1946 }
1947
1948 inode_lru_list_del(inode);
1949 spin_unlock(&inode->i_lock);
1950
1951 evict(inode);
1952 }
1953
1954 /**
1955 * iput - put an inode
1956 * @inode: inode to put
1957 *
1958 * Puts an inode, dropping its usage count. If the inode use count hits
1959 * zero, the inode is then freed and may also be destroyed.
1960 *
1961 * Consequently, iput() can sleep.
1962 */
iput(struct inode * inode)1963 void iput(struct inode *inode)
1964 {
1965 might_sleep();
1966 if (unlikely(!inode))
1967 return;
1968
1969 retry:
1970 lockdep_assert_not_held(&inode->i_lock);
1971 VFS_BUG_ON_INODE(inode_state_read_once(inode) & I_CLEAR, inode);
1972 /*
1973 * Note this assert is technically racy as if the count is bogusly
1974 * equal to one, then two CPUs racing to further drop it can both
1975 * conclude it's fine.
1976 */
1977 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 1, inode);
1978
1979 if (atomic_add_unless(&inode->i_count, -1, 1))
1980 return;
1981
1982 if ((inode_state_read_once(inode) & I_DIRTY_TIME) && inode->i_nlink) {
1983 trace_writeback_lazytime_iput(inode);
1984 mark_inode_dirty_sync(inode);
1985 goto retry;
1986 }
1987
1988 spin_lock(&inode->i_lock);
1989 if (unlikely((inode_state_read(inode) & I_DIRTY_TIME) && inode->i_nlink)) {
1990 spin_unlock(&inode->i_lock);
1991 goto retry;
1992 }
1993
1994 if (!atomic_dec_and_test(&inode->i_count)) {
1995 spin_unlock(&inode->i_lock);
1996 return;
1997 }
1998
1999 /*
2000 * iput_final() drops ->i_lock, we can't assert on it as the inode may
2001 * be deallocated by the time the call returns.
2002 */
2003 iput_final(inode);
2004 }
2005 EXPORT_SYMBOL(iput);
2006
2007 /**
2008 * iput_not_last - put an inode assuming this is not the last reference
2009 * @inode: inode to put
2010 */
iput_not_last(struct inode * inode)2011 void iput_not_last(struct inode *inode)
2012 {
2013 VFS_BUG_ON_INODE(atomic_read(&inode->i_count) < 2, inode);
2014
2015 WARN_ON(atomic_sub_return(1, &inode->i_count) == 0);
2016 }
2017 EXPORT_SYMBOL(iput_not_last);
2018
2019 #ifdef CONFIG_BLOCK
2020 /**
2021 * bmap - find a block number in a file
2022 * @inode: inode owning the block number being requested
2023 * @block: pointer containing the block to find
2024 *
2025 * Replaces the value in ``*block`` with the block number on the device holding
2026 * corresponding to the requested block number in the file.
2027 * That is, asked for block 4 of inode 1 the function will replace the
2028 * 4 in ``*block``, with disk block relative to the disk start that holds that
2029 * block of the file.
2030 *
2031 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
2032 * hole, returns 0 and ``*block`` is also set to 0.
2033 */
bmap(struct inode * inode,sector_t * block)2034 int bmap(struct inode *inode, sector_t *block)
2035 {
2036 if (!inode->i_mapping->a_ops->bmap)
2037 return -EINVAL;
2038
2039 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
2040 return 0;
2041 }
2042 EXPORT_SYMBOL(bmap);
2043 #endif
2044
2045 /*
2046 * With relative atime, only update atime if the previous atime is
2047 * earlier than or equal to either the ctime or mtime,
2048 * or if at least a day has passed since the last atime update.
2049 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)2050 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
2051 struct timespec64 now)
2052 {
2053 struct timespec64 atime, mtime, ctime;
2054
2055 if (!(mnt->mnt_flags & MNT_RELATIME))
2056 return true;
2057 /*
2058 * Is mtime younger than or equal to atime? If yes, update atime:
2059 */
2060 atime = inode_get_atime(inode);
2061 mtime = inode_get_mtime(inode);
2062 if (timespec64_compare(&mtime, &atime) >= 0)
2063 return true;
2064 /*
2065 * Is ctime younger than or equal to atime? If yes, update atime:
2066 */
2067 ctime = inode_get_ctime(inode);
2068 if (timespec64_compare(&ctime, &atime) >= 0)
2069 return true;
2070
2071 /*
2072 * Is the previous atime value older than a day? If yes,
2073 * update atime:
2074 */
2075 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
2076 return true;
2077 /*
2078 * Good, we can skip the atime update:
2079 */
2080 return false;
2081 }
2082
2083 /**
2084 * inode_update_timestamps - update the timestamps on the inode
2085 * @inode: inode to be updated
2086 * @flags: S_* flags that needed to be updated
2087 *
2088 * The update_time function is called when an inode's timestamps need to be
2089 * updated for a read or write operation. This function handles updating the
2090 * actual timestamps. It's up to the caller to ensure that the inode is marked
2091 * dirty appropriately.
2092 *
2093 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
2094 * attempt to update all three of them. S_ATIME updates can be handled
2095 * independently of the rest.
2096 *
2097 * Returns a set of S_* flags indicating which values changed.
2098 */
inode_update_timestamps(struct inode * inode,int flags)2099 int inode_update_timestamps(struct inode *inode, int flags)
2100 {
2101 int updated = 0;
2102 struct timespec64 now;
2103
2104 if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
2105 struct timespec64 ctime = inode_get_ctime(inode);
2106 struct timespec64 mtime = inode_get_mtime(inode);
2107
2108 now = inode_set_ctime_current(inode);
2109 if (!timespec64_equal(&now, &ctime))
2110 updated |= S_CTIME;
2111 if (!timespec64_equal(&now, &mtime)) {
2112 inode_set_mtime_to_ts(inode, now);
2113 updated |= S_MTIME;
2114 }
2115 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
2116 updated |= S_VERSION;
2117 } else {
2118 now = current_time(inode);
2119 }
2120
2121 if (flags & S_ATIME) {
2122 struct timespec64 atime = inode_get_atime(inode);
2123
2124 if (!timespec64_equal(&now, &atime)) {
2125 inode_set_atime_to_ts(inode, now);
2126 updated |= S_ATIME;
2127 }
2128 }
2129 return updated;
2130 }
2131 EXPORT_SYMBOL(inode_update_timestamps);
2132
2133 /**
2134 * generic_update_time - update the timestamps on the inode
2135 * @inode: inode to be updated
2136 * @flags: S_* flags that needed to be updated
2137 *
2138 * The update_time function is called when an inode's timestamps need to be
2139 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2140 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2141 * updates can be handled done independently of the rest.
2142 *
2143 * Returns a S_* mask indicating which fields were updated.
2144 */
generic_update_time(struct inode * inode,int flags)2145 int generic_update_time(struct inode *inode, int flags)
2146 {
2147 int updated = inode_update_timestamps(inode, flags);
2148 int dirty_flags = 0;
2149
2150 if (updated & (S_ATIME|S_MTIME|S_CTIME))
2151 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2152 if (updated & S_VERSION)
2153 dirty_flags |= I_DIRTY_SYNC;
2154 __mark_inode_dirty(inode, dirty_flags);
2155 return updated;
2156 }
2157 EXPORT_SYMBOL(generic_update_time);
2158
2159 /*
2160 * This does the actual work of updating an inodes time or version. Must have
2161 * had called mnt_want_write() before calling this.
2162 */
inode_update_time(struct inode * inode,int flags)2163 int inode_update_time(struct inode *inode, int flags)
2164 {
2165 if (inode->i_op->update_time)
2166 return inode->i_op->update_time(inode, flags);
2167 generic_update_time(inode, flags);
2168 return 0;
2169 }
2170 EXPORT_SYMBOL(inode_update_time);
2171
2172 /**
2173 * atime_needs_update - update the access time
2174 * @path: the &struct path to update
2175 * @inode: inode to update
2176 *
2177 * Update the accessed time on an inode and mark it for writeback.
2178 * This function automatically handles read only file systems and media,
2179 * as well as the "noatime" flag and inode specific "noatime" markers.
2180 */
atime_needs_update(const struct path * path,struct inode * inode)2181 bool atime_needs_update(const struct path *path, struct inode *inode)
2182 {
2183 struct vfsmount *mnt = path->mnt;
2184 struct timespec64 now, atime;
2185
2186 if (inode->i_flags & S_NOATIME)
2187 return false;
2188
2189 /* Atime updates will likely cause i_uid and i_gid to be written
2190 * back improprely if their true value is unknown to the vfs.
2191 */
2192 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2193 return false;
2194
2195 if (IS_NOATIME(inode))
2196 return false;
2197 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2198 return false;
2199
2200 if (mnt->mnt_flags & MNT_NOATIME)
2201 return false;
2202 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2203 return false;
2204
2205 now = current_time(inode);
2206
2207 if (!relatime_need_update(mnt, inode, now))
2208 return false;
2209
2210 atime = inode_get_atime(inode);
2211 if (timespec64_equal(&atime, &now))
2212 return false;
2213
2214 return true;
2215 }
2216
touch_atime(const struct path * path)2217 void touch_atime(const struct path *path)
2218 {
2219 struct vfsmount *mnt = path->mnt;
2220 struct inode *inode = d_inode(path->dentry);
2221
2222 if (!atime_needs_update(path, inode))
2223 return;
2224
2225 if (!sb_start_write_trylock(inode->i_sb))
2226 return;
2227
2228 if (mnt_get_write_access(mnt) != 0)
2229 goto skip_update;
2230 /*
2231 * File systems can error out when updating inodes if they need to
2232 * allocate new space to modify an inode (such is the case for
2233 * Btrfs), but since we touch atime while walking down the path we
2234 * really don't care if we failed to update the atime of the file,
2235 * so just ignore the return value.
2236 * We may also fail on filesystems that have the ability to make parts
2237 * of the fs read only, e.g. subvolumes in Btrfs.
2238 */
2239 inode_update_time(inode, S_ATIME);
2240 mnt_put_write_access(mnt);
2241 skip_update:
2242 sb_end_write(inode->i_sb);
2243 }
2244 EXPORT_SYMBOL(touch_atime);
2245
2246 /*
2247 * Return mask of changes for notify_change() that need to be done as a
2248 * response to write or truncate. Return 0 if nothing has to be changed.
2249 * Negative value on error (change should be denied).
2250 */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2251 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2252 struct dentry *dentry)
2253 {
2254 struct inode *inode = d_inode(dentry);
2255 int mask = 0;
2256 int ret;
2257
2258 if (IS_NOSEC(inode))
2259 return 0;
2260
2261 mask = setattr_should_drop_suidgid(idmap, inode);
2262 ret = security_inode_need_killpriv(dentry);
2263 if (ret < 0)
2264 return ret;
2265 if (ret)
2266 mask |= ATTR_KILL_PRIV;
2267 return mask;
2268 }
2269
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2270 static int __remove_privs(struct mnt_idmap *idmap,
2271 struct dentry *dentry, int kill)
2272 {
2273 struct iattr newattrs;
2274
2275 newattrs.ia_valid = ATTR_FORCE | kill;
2276 /*
2277 * Note we call this on write, so notify_change will not
2278 * encounter any conflicting delegations:
2279 */
2280 return notify_change(idmap, dentry, &newattrs, NULL);
2281 }
2282
file_remove_privs_flags(struct file * file,unsigned int flags)2283 static int file_remove_privs_flags(struct file *file, unsigned int flags)
2284 {
2285 struct dentry *dentry = file_dentry(file);
2286 struct inode *inode = file_inode(file);
2287 int error = 0;
2288 int kill;
2289
2290 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2291 return 0;
2292
2293 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2294 if (kill < 0)
2295 return kill;
2296
2297 if (kill) {
2298 if (flags & IOCB_NOWAIT)
2299 return -EAGAIN;
2300
2301 error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2302 }
2303
2304 if (!error)
2305 inode_has_no_xattr(inode);
2306 return error;
2307 }
2308
2309 /**
2310 * file_remove_privs - remove special file privileges (suid, capabilities)
2311 * @file: file to remove privileges from
2312 *
2313 * When file is modified by a write or truncation ensure that special
2314 * file privileges are removed.
2315 *
2316 * Return: 0 on success, negative errno on failure.
2317 */
file_remove_privs(struct file * file)2318 int file_remove_privs(struct file *file)
2319 {
2320 return file_remove_privs_flags(file, 0);
2321 }
2322 EXPORT_SYMBOL(file_remove_privs);
2323
2324 /**
2325 * current_time - Return FS time (possibly fine-grained)
2326 * @inode: inode.
2327 *
2328 * Return the current time truncated to the time granularity supported by
2329 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2330 * as having been QUERIED, get a fine-grained timestamp, but don't update
2331 * the floor.
2332 *
2333 * For a multigrain inode, this is effectively an estimate of the timestamp
2334 * that a file would receive. An actual update must go through
2335 * inode_set_ctime_current().
2336 */
current_time(struct inode * inode)2337 struct timespec64 current_time(struct inode *inode)
2338 {
2339 struct timespec64 now;
2340 u32 cns;
2341
2342 ktime_get_coarse_real_ts64_mg(&now);
2343
2344 if (!is_mgtime(inode))
2345 goto out;
2346
2347 /* If nothing has queried it, then coarse time is fine */
2348 cns = smp_load_acquire(&inode->i_ctime_nsec);
2349 if (cns & I_CTIME_QUERIED) {
2350 /*
2351 * If there is no apparent change, then get a fine-grained
2352 * timestamp.
2353 */
2354 if (now.tv_nsec == (cns & ~I_CTIME_QUERIED))
2355 ktime_get_real_ts64(&now);
2356 }
2357 out:
2358 return timestamp_truncate(now, inode);
2359 }
2360 EXPORT_SYMBOL(current_time);
2361
file_update_time_flags(struct file * file,unsigned int flags)2362 static int file_update_time_flags(struct file *file, unsigned int flags)
2363 {
2364 struct inode *inode = file_inode(file);
2365 struct timespec64 now, ts;
2366 int sync_mode = 0;
2367 int ret = 0;
2368
2369 /* First try to exhaust all avenues to not sync */
2370 if (IS_NOCMTIME(inode))
2371 return 0;
2372 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2373 return 0;
2374
2375 now = current_time(inode);
2376
2377 ts = inode_get_mtime(inode);
2378 if (!timespec64_equal(&ts, &now))
2379 sync_mode |= S_MTIME;
2380 ts = inode_get_ctime(inode);
2381 if (!timespec64_equal(&ts, &now))
2382 sync_mode |= S_CTIME;
2383 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2384 sync_mode |= S_VERSION;
2385
2386 if (!sync_mode)
2387 return 0;
2388
2389 if (flags & IOCB_NOWAIT)
2390 return -EAGAIN;
2391
2392 if (mnt_get_write_access_file(file))
2393 return 0;
2394 ret = inode_update_time(inode, sync_mode);
2395 mnt_put_write_access_file(file);
2396 return ret;
2397 }
2398
2399 /**
2400 * file_update_time - update mtime and ctime time
2401 * @file: file accessed
2402 *
2403 * Update the mtime and ctime members of an inode and mark the inode for
2404 * writeback. Note that this function is meant exclusively for usage in
2405 * the file write path of filesystems, and filesystems may choose to
2406 * explicitly ignore updates via this function with the _NOCMTIME inode
2407 * flag, e.g. for network filesystem where these imestamps are handled
2408 * by the server. This can return an error for file systems who need to
2409 * allocate space in order to update an inode.
2410 *
2411 * Return: 0 on success, negative errno on failure.
2412 */
file_update_time(struct file * file)2413 int file_update_time(struct file *file)
2414 {
2415 return file_update_time_flags(file, 0);
2416 }
2417 EXPORT_SYMBOL(file_update_time);
2418
2419 /**
2420 * file_modified_flags - handle mandated vfs changes when modifying a file
2421 * @file: file that was modified
2422 * @flags: kiocb flags
2423 *
2424 * When file has been modified ensure that special
2425 * file privileges are removed and time settings are updated.
2426 *
2427 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2428 * time settings will not be updated. It will return -EAGAIN.
2429 *
2430 * Context: Caller must hold the file's inode lock.
2431 *
2432 * Return: 0 on success, negative errno on failure.
2433 */
file_modified_flags(struct file * file,int flags)2434 static int file_modified_flags(struct file *file, int flags)
2435 {
2436 int ret;
2437
2438 /*
2439 * Clear the security bits if the process is not being run by root.
2440 * This keeps people from modifying setuid and setgid binaries.
2441 */
2442 ret = file_remove_privs_flags(file, flags);
2443 if (ret)
2444 return ret;
2445 return file_update_time_flags(file, flags);
2446 }
2447
2448 /**
2449 * file_modified - handle mandated vfs changes when modifying a file
2450 * @file: file that was modified
2451 *
2452 * When file has been modified ensure that special
2453 * file privileges are removed and time settings are updated.
2454 *
2455 * Context: Caller must hold the file's inode lock.
2456 *
2457 * Return: 0 on success, negative errno on failure.
2458 */
file_modified(struct file * file)2459 int file_modified(struct file *file)
2460 {
2461 return file_modified_flags(file, 0);
2462 }
2463 EXPORT_SYMBOL(file_modified);
2464
2465 /**
2466 * kiocb_modified - handle mandated vfs changes when modifying a file
2467 * @iocb: iocb that was modified
2468 *
2469 * When file has been modified ensure that special
2470 * file privileges are removed and time settings are updated.
2471 *
2472 * Context: Caller must hold the file's inode lock.
2473 *
2474 * Return: 0 on success, negative errno on failure.
2475 */
kiocb_modified(struct kiocb * iocb)2476 int kiocb_modified(struct kiocb *iocb)
2477 {
2478 return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2479 }
2480 EXPORT_SYMBOL_GPL(kiocb_modified);
2481
inode_needs_sync(struct inode * inode)2482 int inode_needs_sync(struct inode *inode)
2483 {
2484 if (IS_SYNC(inode))
2485 return 1;
2486 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2487 return 1;
2488 return 0;
2489 }
2490 EXPORT_SYMBOL(inode_needs_sync);
2491
2492 /*
2493 * If we try to find an inode in the inode hash while it is being
2494 * deleted, we have to wait until the filesystem completes its
2495 * deletion before reporting that it isn't found. This function waits
2496 * until the deletion _might_ have completed. Callers are responsible
2497 * to recheck inode state.
2498 *
2499 * It doesn't matter if I_NEW is not set initially, a call to
2500 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2501 * will DTRT.
2502 */
__wait_on_freeing_inode(struct inode * inode,bool is_inode_hash_locked)2503 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2504 {
2505 struct wait_bit_queue_entry wqe;
2506 struct wait_queue_head *wq_head;
2507
2508 /*
2509 * Handle racing against evict(), see that routine for more details.
2510 */
2511 if (unlikely(inode_unhashed(inode))) {
2512 WARN_ON(is_inode_hash_locked);
2513 spin_unlock(&inode->i_lock);
2514 return;
2515 }
2516
2517 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
2518 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
2519 spin_unlock(&inode->i_lock);
2520 rcu_read_unlock();
2521 if (is_inode_hash_locked)
2522 spin_unlock(&inode_hash_lock);
2523 schedule();
2524 finish_wait(wq_head, &wqe.wq_entry);
2525 if (is_inode_hash_locked)
2526 spin_lock(&inode_hash_lock);
2527 rcu_read_lock();
2528 }
2529
2530 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2531 static int __init set_ihash_entries(char *str)
2532 {
2533 if (!str)
2534 return 0;
2535 ihash_entries = simple_strtoul(str, &str, 0);
2536 return 1;
2537 }
2538 __setup("ihash_entries=", set_ihash_entries);
2539
2540 /*
2541 * Initialize the waitqueues and inode hash table.
2542 */
inode_init_early(void)2543 void __init inode_init_early(void)
2544 {
2545 /* If hashes are distributed across NUMA nodes, defer
2546 * hash allocation until vmalloc space is available.
2547 */
2548 if (hashdist)
2549 return;
2550
2551 inode_hashtable =
2552 alloc_large_system_hash("Inode-cache",
2553 sizeof(struct hlist_head),
2554 ihash_entries,
2555 14,
2556 HASH_EARLY | HASH_ZERO,
2557 &i_hash_shift,
2558 &i_hash_mask,
2559 0,
2560 0);
2561 }
2562
inode_init(void)2563 void __init inode_init(void)
2564 {
2565 /* inode slab cache */
2566 inode_cachep = kmem_cache_create("inode_cache",
2567 sizeof(struct inode),
2568 0,
2569 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2570 SLAB_ACCOUNT),
2571 init_once);
2572
2573 /* Hash may have been set up in inode_init_early */
2574 if (!hashdist)
2575 return;
2576
2577 inode_hashtable =
2578 alloc_large_system_hash("Inode-cache",
2579 sizeof(struct hlist_head),
2580 ihash_entries,
2581 14,
2582 HASH_ZERO,
2583 &i_hash_shift,
2584 &i_hash_mask,
2585 0,
2586 0);
2587 }
2588
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2589 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2590 {
2591 inode->i_mode = mode;
2592 switch (inode->i_mode & S_IFMT) {
2593 case S_IFCHR:
2594 inode->i_fop = &def_chr_fops;
2595 inode->i_rdev = rdev;
2596 break;
2597 case S_IFBLK:
2598 if (IS_ENABLED(CONFIG_BLOCK))
2599 inode->i_fop = &def_blk_fops;
2600 inode->i_rdev = rdev;
2601 break;
2602 case S_IFIFO:
2603 inode->i_fop = &pipefifo_fops;
2604 break;
2605 case S_IFSOCK:
2606 /* leave it no_open_fops */
2607 break;
2608 default:
2609 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2610 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2611 inode->i_ino);
2612 break;
2613 }
2614 }
2615 EXPORT_SYMBOL(init_special_inode);
2616
2617 /**
2618 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2619 * @idmap: idmap of the mount the inode was created from
2620 * @inode: New inode
2621 * @dir: Directory inode
2622 * @mode: mode of the new inode
2623 *
2624 * If the inode has been created through an idmapped mount the idmap of
2625 * the vfsmount must be passed through @idmap. This function will then take
2626 * care to map the inode according to @idmap before checking permissions
2627 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2628 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2629 */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2630 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2631 const struct inode *dir, umode_t mode)
2632 {
2633 inode_fsuid_set(inode, idmap);
2634 if (dir && dir->i_mode & S_ISGID) {
2635 inode->i_gid = dir->i_gid;
2636
2637 /* Directories are special, and always inherit S_ISGID */
2638 if (S_ISDIR(mode))
2639 mode |= S_ISGID;
2640 } else
2641 inode_fsgid_set(inode, idmap);
2642 inode->i_mode = mode;
2643 }
2644 EXPORT_SYMBOL(inode_init_owner);
2645
2646 /**
2647 * inode_owner_or_capable - check current task permissions to inode
2648 * @idmap: idmap of the mount the inode was found from
2649 * @inode: inode being checked
2650 *
2651 * Return true if current either has CAP_FOWNER in a namespace with the
2652 * inode owner uid mapped, or owns the file.
2653 *
2654 * If the inode has been found through an idmapped mount the idmap of
2655 * the vfsmount must be passed through @idmap. This function will then take
2656 * care to map the inode according to @idmap before checking permissions.
2657 * On non-idmapped mounts or if permission checking is to be performed on the
2658 * raw inode simply pass @nop_mnt_idmap.
2659 */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2660 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2661 const struct inode *inode)
2662 {
2663 vfsuid_t vfsuid;
2664 struct user_namespace *ns;
2665
2666 vfsuid = i_uid_into_vfsuid(idmap, inode);
2667 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2668 return true;
2669
2670 ns = current_user_ns();
2671 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2672 return true;
2673 return false;
2674 }
2675 EXPORT_SYMBOL(inode_owner_or_capable);
2676
2677 /*
2678 * Direct i/o helper functions
2679 */
inode_dio_finished(const struct inode * inode)2680 bool inode_dio_finished(const struct inode *inode)
2681 {
2682 return atomic_read(&inode->i_dio_count) == 0;
2683 }
2684 EXPORT_SYMBOL(inode_dio_finished);
2685
2686 /**
2687 * inode_dio_wait - wait for outstanding DIO requests to finish
2688 * @inode: inode to wait for
2689 *
2690 * Waits for all pending direct I/O requests to finish so that we can
2691 * proceed with a truncate or equivalent operation.
2692 *
2693 * Must be called under a lock that serializes taking new references
2694 * to i_dio_count, usually by inode->i_rwsem.
2695 */
inode_dio_wait(struct inode * inode)2696 void inode_dio_wait(struct inode *inode)
2697 {
2698 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
2699 }
2700 EXPORT_SYMBOL(inode_dio_wait);
2701
inode_dio_wait_interruptible(struct inode * inode)2702 void inode_dio_wait_interruptible(struct inode *inode)
2703 {
2704 wait_var_event_interruptible(&inode->i_dio_count,
2705 inode_dio_finished(inode));
2706 }
2707 EXPORT_SYMBOL(inode_dio_wait_interruptible);
2708
2709 /*
2710 * inode_set_flags - atomically set some inode flags
2711 *
2712 * Note: the caller should be holding i_rwsem exclusively, or else be sure that
2713 * they have exclusive access to the inode structure (i.e., while the
2714 * inode is being instantiated). The reason for the cmpxchg() loop
2715 * --- which wouldn't be necessary if all code paths which modify
2716 * i_flags actually followed this rule, is that there is at least one
2717 * code path which doesn't today so we use cmpxchg() out of an abundance
2718 * of caution.
2719 *
2720 * In the long run, i_rwsem is overkill, and we should probably look
2721 * at using the i_lock spinlock to protect i_flags, and then make sure
2722 * it is so documented in include/linux/fs.h and that all code follows
2723 * the locking convention!!
2724 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2725 void inode_set_flags(struct inode *inode, unsigned int flags,
2726 unsigned int mask)
2727 {
2728 WARN_ON_ONCE(flags & ~mask);
2729 set_mask_bits(&inode->i_flags, mask, flags);
2730 }
2731 EXPORT_SYMBOL(inode_set_flags);
2732
inode_nohighmem(struct inode * inode)2733 void inode_nohighmem(struct inode *inode)
2734 {
2735 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2736 }
2737 EXPORT_SYMBOL(inode_nohighmem);
2738
inode_set_ctime_to_ts(struct inode * inode,struct timespec64 ts)2739 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts)
2740 {
2741 trace_inode_set_ctime_to_ts(inode, &ts);
2742 set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec);
2743 inode->i_ctime_sec = ts.tv_sec;
2744 inode->i_ctime_nsec = ts.tv_nsec;
2745 return ts;
2746 }
2747 EXPORT_SYMBOL(inode_set_ctime_to_ts);
2748
2749 /**
2750 * timestamp_truncate - Truncate timespec to a granularity
2751 * @t: Timespec
2752 * @inode: inode being updated
2753 *
2754 * Truncate a timespec to the granularity supported by the fs
2755 * containing the inode. Always rounds down. gran must
2756 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2757 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2758 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2759 {
2760 struct super_block *sb = inode->i_sb;
2761 unsigned int gran = sb->s_time_gran;
2762
2763 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2764 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2765 t.tv_nsec = 0;
2766
2767 /* Avoid division in the common cases 1 ns and 1 s. */
2768 if (gran == 1)
2769 ; /* nothing */
2770 else if (gran == NSEC_PER_SEC)
2771 t.tv_nsec = 0;
2772 else if (gran > 1 && gran < NSEC_PER_SEC)
2773 t.tv_nsec -= t.tv_nsec % gran;
2774 else
2775 WARN(1, "invalid file time granularity: %u", gran);
2776 return t;
2777 }
2778 EXPORT_SYMBOL(timestamp_truncate);
2779
2780 /**
2781 * inode_set_ctime_current - set the ctime to current_time
2782 * @inode: inode
2783 *
2784 * Set the inode's ctime to the current value for the inode. Returns the
2785 * current value that was assigned. If this is not a multigrain inode, then we
2786 * set it to the later of the coarse time and floor value.
2787 *
2788 * If it is multigrain, then we first see if the coarse-grained timestamp is
2789 * distinct from what is already there. If so, then use that. Otherwise, get a
2790 * fine-grained timestamp.
2791 *
2792 * After that, try to swap the new value into i_ctime_nsec. Accept the
2793 * resulting ctime, regardless of the outcome of the swap. If it has
2794 * already been replaced, then that timestamp is later than the earlier
2795 * unacceptable one, and is thus acceptable.
2796 */
inode_set_ctime_current(struct inode * inode)2797 struct timespec64 inode_set_ctime_current(struct inode *inode)
2798 {
2799 struct timespec64 now;
2800 u32 cns, cur;
2801
2802 ktime_get_coarse_real_ts64_mg(&now);
2803 now = timestamp_truncate(now, inode);
2804
2805 /* Just return that if this is not a multigrain fs */
2806 if (!is_mgtime(inode)) {
2807 inode_set_ctime_to_ts(inode, now);
2808 goto out;
2809 }
2810
2811 /*
2812 * A fine-grained time is only needed if someone has queried
2813 * for timestamps, and the current coarse grained time isn't
2814 * later than what's already there.
2815 */
2816 cns = smp_load_acquire(&inode->i_ctime_nsec);
2817 if (cns & I_CTIME_QUERIED) {
2818 struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec,
2819 .tv_nsec = cns & ~I_CTIME_QUERIED };
2820
2821 if (timespec64_compare(&now, &ctime) <= 0) {
2822 ktime_get_real_ts64_mg(&now);
2823 now = timestamp_truncate(now, inode);
2824 mgtime_counter_inc(mg_fine_stamps);
2825 }
2826 }
2827 mgtime_counter_inc(mg_ctime_updates);
2828
2829 /* No need to cmpxchg if it's exactly the same */
2830 if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) {
2831 trace_ctime_xchg_skip(inode, &now);
2832 goto out;
2833 }
2834 cur = cns;
2835 retry:
2836 /* Try to swap the nsec value into place. */
2837 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) {
2838 /* If swap occurred, then we're (mostly) done */
2839 inode->i_ctime_sec = now.tv_sec;
2840 trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur);
2841 mgtime_counter_inc(mg_ctime_swaps);
2842 } else {
2843 /*
2844 * Was the change due to someone marking the old ctime QUERIED?
2845 * If so then retry the swap. This can only happen once since
2846 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2847 * with a new ctime.
2848 */
2849 if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) {
2850 cns = cur;
2851 goto retry;
2852 }
2853 /* Otherwise, keep the existing ctime */
2854 now.tv_sec = inode->i_ctime_sec;
2855 now.tv_nsec = cur & ~I_CTIME_QUERIED;
2856 }
2857 out:
2858 return now;
2859 }
2860 EXPORT_SYMBOL(inode_set_ctime_current);
2861
2862 /**
2863 * inode_set_ctime_deleg - try to update the ctime on a delegated inode
2864 * @inode: inode to update
2865 * @update: timespec64 to set the ctime
2866 *
2867 * Attempt to atomically update the ctime on behalf of a delegation holder.
2868 *
2869 * The nfs server can call back the holder of a delegation to get updated
2870 * inode attributes, including the mtime. When updating the mtime, update
2871 * the ctime to a value at least equal to that.
2872 *
2873 * This can race with concurrent updates to the inode, in which
2874 * case the update is skipped.
2875 *
2876 * Note that this works even when multigrain timestamps are not enabled,
2877 * so it is used in either case.
2878 */
inode_set_ctime_deleg(struct inode * inode,struct timespec64 update)2879 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update)
2880 {
2881 struct timespec64 now, cur_ts;
2882 u32 cur, old;
2883
2884 /* pairs with try_cmpxchg below */
2885 cur = smp_load_acquire(&inode->i_ctime_nsec);
2886 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2887 cur_ts.tv_sec = inode->i_ctime_sec;
2888
2889 /* If the update is older than the existing value, skip it. */
2890 if (timespec64_compare(&update, &cur_ts) <= 0)
2891 return cur_ts;
2892
2893 ktime_get_coarse_real_ts64_mg(&now);
2894
2895 /* Clamp the update to "now" if it's in the future */
2896 if (timespec64_compare(&update, &now) > 0)
2897 update = now;
2898
2899 update = timestamp_truncate(update, inode);
2900
2901 /* No need to update if the values are already the same */
2902 if (timespec64_equal(&update, &cur_ts))
2903 return cur_ts;
2904
2905 /*
2906 * Try to swap the nsec value into place. If it fails, that means
2907 * it raced with an update due to a write or similar activity. That
2908 * stamp takes precedence, so just skip the update.
2909 */
2910 retry:
2911 old = cur;
2912 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) {
2913 inode->i_ctime_sec = update.tv_sec;
2914 mgtime_counter_inc(mg_ctime_swaps);
2915 return update;
2916 }
2917
2918 /*
2919 * Was the change due to another task marking the old ctime QUERIED?
2920 *
2921 * If so, then retry the swap. This can only happen once since
2922 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2923 * with a new ctime.
2924 */
2925 if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED)))
2926 goto retry;
2927
2928 /* Otherwise, it was a new timestamp. */
2929 cur_ts.tv_sec = inode->i_ctime_sec;
2930 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2931 return cur_ts;
2932 }
2933 EXPORT_SYMBOL(inode_set_ctime_deleg);
2934
2935 /**
2936 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2937 * @idmap: idmap of the mount @inode was found from
2938 * @inode: inode to check
2939 * @vfsgid: the new/current vfsgid of @inode
2940 *
2941 * Check whether @vfsgid is in the caller's group list or if the caller is
2942 * privileged with CAP_FSETID over @inode. This can be used to determine
2943 * whether the setgid bit can be kept or must be dropped.
2944 *
2945 * Return: true if the caller is sufficiently privileged, false if not.
2946 */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2947 bool in_group_or_capable(struct mnt_idmap *idmap,
2948 const struct inode *inode, vfsgid_t vfsgid)
2949 {
2950 if (vfsgid_in_group_p(vfsgid))
2951 return true;
2952 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2953 return true;
2954 return false;
2955 }
2956 EXPORT_SYMBOL(in_group_or_capable);
2957
2958 /**
2959 * mode_strip_sgid - handle the sgid bit for non-directories
2960 * @idmap: idmap of the mount the inode was created from
2961 * @dir: parent directory inode
2962 * @mode: mode of the file to be created in @dir
2963 *
2964 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2965 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2966 * either in the group of the parent directory or they have CAP_FSETID
2967 * in their user namespace and are privileged over the parent directory.
2968 * In all other cases, strip the S_ISGID bit from @mode.
2969 *
2970 * Return: the new mode to use for the file
2971 */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2972 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2973 const struct inode *dir, umode_t mode)
2974 {
2975 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2976 return mode;
2977 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2978 return mode;
2979 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2980 return mode;
2981 return mode & ~S_ISGID;
2982 }
2983 EXPORT_SYMBOL(mode_strip_sgid);
2984
2985 #ifdef CONFIG_DEBUG_VFS
2986 /*
2987 * Dump an inode.
2988 *
2989 * TODO: add a proper inode dumping routine, this is a stub to get debug off the
2990 * ground.
2991 *
2992 * TODO: handle getting to fs type with get_kernel_nofault()?
2993 * See dump_mapping() above.
2994 */
dump_inode(struct inode * inode,const char * reason)2995 void dump_inode(struct inode *inode, const char *reason)
2996 {
2997 struct super_block *sb = inode->i_sb;
2998
2999 pr_warn("%s encountered for inode %px\n"
3000 "fs %s mode %ho opflags 0x%hx flags 0x%x state 0x%x count %d\n",
3001 reason, inode, sb->s_type->name, inode->i_mode, inode->i_opflags,
3002 inode->i_flags, inode_state_read_once(inode), atomic_read(&inode->i_count));
3003 }
3004
3005 EXPORT_SYMBOL(dump_inode);
3006 #endif
3007