1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/module.h> 16 #include <linux/compat.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 21 static const struct file_operations fuse_direct_io_file_operations; 22 23 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 24 int opcode, struct fuse_open_out *outargp) 25 { 26 struct fuse_open_in inarg; 27 FUSE_ARGS(args); 28 29 memset(&inarg, 0, sizeof(inarg)); 30 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 31 if (!fc->atomic_o_trunc) 32 inarg.flags &= ~O_TRUNC; 33 args.in.h.opcode = opcode; 34 args.in.h.nodeid = nodeid; 35 args.in.numargs = 1; 36 args.in.args[0].size = sizeof(inarg); 37 args.in.args[0].value = &inarg; 38 args.out.numargs = 1; 39 args.out.args[0].size = sizeof(*outargp); 40 args.out.args[0].value = outargp; 41 42 return fuse_simple_request(fc, &args); 43 } 44 45 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 46 { 47 struct fuse_file *ff; 48 49 ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL); 50 if (unlikely(!ff)) 51 return NULL; 52 53 ff->fc = fc; 54 ff->reserved_req = fuse_request_alloc(0); 55 if (unlikely(!ff->reserved_req)) { 56 kfree(ff); 57 return NULL; 58 } 59 60 INIT_LIST_HEAD(&ff->write_entry); 61 atomic_set(&ff->count, 0); 62 RB_CLEAR_NODE(&ff->polled_node); 63 init_waitqueue_head(&ff->poll_wait); 64 65 spin_lock(&fc->lock); 66 ff->kh = ++fc->khctr; 67 spin_unlock(&fc->lock); 68 69 return ff; 70 } 71 72 void fuse_file_free(struct fuse_file *ff) 73 { 74 fuse_request_free(ff->reserved_req); 75 kfree(ff); 76 } 77 78 struct fuse_file *fuse_file_get(struct fuse_file *ff) 79 { 80 atomic_inc(&ff->count); 81 return ff; 82 } 83 84 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req) 85 { 86 iput(req->misc.release.inode); 87 } 88 89 static void fuse_file_put(struct fuse_file *ff, bool sync) 90 { 91 if (atomic_dec_and_test(&ff->count)) { 92 struct fuse_req *req = ff->reserved_req; 93 94 if (ff->fc->no_open) { 95 /* 96 * Drop the release request when client does not 97 * implement 'open' 98 */ 99 req->background = 0; 100 iput(req->misc.release.inode); 101 fuse_put_request(ff->fc, req); 102 } else if (sync) { 103 req->background = 0; 104 fuse_request_send(ff->fc, req); 105 iput(req->misc.release.inode); 106 fuse_put_request(ff->fc, req); 107 } else { 108 req->end = fuse_release_end; 109 req->background = 1; 110 fuse_request_send_background(ff->fc, req); 111 } 112 kfree(ff); 113 } 114 } 115 116 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 117 bool isdir) 118 { 119 struct fuse_file *ff; 120 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 121 122 ff = fuse_file_alloc(fc); 123 if (!ff) 124 return -ENOMEM; 125 126 ff->fh = 0; 127 ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */ 128 if (!fc->no_open || isdir) { 129 struct fuse_open_out outarg; 130 int err; 131 132 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 133 if (!err) { 134 ff->fh = outarg.fh; 135 ff->open_flags = outarg.open_flags; 136 137 } else if (err != -ENOSYS || isdir) { 138 fuse_file_free(ff); 139 return err; 140 } else { 141 fc->no_open = 1; 142 } 143 } 144 145 if (isdir) 146 ff->open_flags &= ~FOPEN_DIRECT_IO; 147 148 ff->nodeid = nodeid; 149 file->private_data = fuse_file_get(ff); 150 151 return 0; 152 } 153 EXPORT_SYMBOL_GPL(fuse_do_open); 154 155 static void fuse_link_write_file(struct file *file) 156 { 157 struct inode *inode = file_inode(file); 158 struct fuse_conn *fc = get_fuse_conn(inode); 159 struct fuse_inode *fi = get_fuse_inode(inode); 160 struct fuse_file *ff = file->private_data; 161 /* 162 * file may be written through mmap, so chain it onto the 163 * inodes's write_file list 164 */ 165 spin_lock(&fc->lock); 166 if (list_empty(&ff->write_entry)) 167 list_add(&ff->write_entry, &fi->write_files); 168 spin_unlock(&fc->lock); 169 } 170 171 void fuse_finish_open(struct inode *inode, struct file *file) 172 { 173 struct fuse_file *ff = file->private_data; 174 struct fuse_conn *fc = get_fuse_conn(inode); 175 176 if (ff->open_flags & FOPEN_DIRECT_IO) 177 file->f_op = &fuse_direct_io_file_operations; 178 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 179 invalidate_inode_pages2(inode->i_mapping); 180 if (ff->open_flags & FOPEN_NONSEEKABLE) 181 nonseekable_open(inode, file); 182 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 183 struct fuse_inode *fi = get_fuse_inode(inode); 184 185 spin_lock(&fc->lock); 186 fi->attr_version = ++fc->attr_version; 187 i_size_write(inode, 0); 188 spin_unlock(&fc->lock); 189 fuse_invalidate_attr(inode); 190 if (fc->writeback_cache) 191 file_update_time(file); 192 } 193 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 194 fuse_link_write_file(file); 195 } 196 197 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 198 { 199 struct fuse_conn *fc = get_fuse_conn(inode); 200 int err; 201 bool lock_inode = (file->f_flags & O_TRUNC) && 202 fc->atomic_o_trunc && 203 fc->writeback_cache; 204 205 err = generic_file_open(inode, file); 206 if (err) 207 return err; 208 209 if (lock_inode) 210 mutex_lock(&inode->i_mutex); 211 212 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 213 214 if (!err) 215 fuse_finish_open(inode, file); 216 217 if (lock_inode) 218 mutex_unlock(&inode->i_mutex); 219 220 return err; 221 } 222 223 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode) 224 { 225 struct fuse_conn *fc = ff->fc; 226 struct fuse_req *req = ff->reserved_req; 227 struct fuse_release_in *inarg = &req->misc.release.in; 228 229 spin_lock(&fc->lock); 230 list_del(&ff->write_entry); 231 if (!RB_EMPTY_NODE(&ff->polled_node)) 232 rb_erase(&ff->polled_node, &fc->polled_files); 233 spin_unlock(&fc->lock); 234 235 wake_up_interruptible_all(&ff->poll_wait); 236 237 inarg->fh = ff->fh; 238 inarg->flags = flags; 239 req->in.h.opcode = opcode; 240 req->in.h.nodeid = ff->nodeid; 241 req->in.numargs = 1; 242 req->in.args[0].size = sizeof(struct fuse_release_in); 243 req->in.args[0].value = inarg; 244 } 245 246 void fuse_release_common(struct file *file, int opcode) 247 { 248 struct fuse_file *ff; 249 struct fuse_req *req; 250 251 ff = file->private_data; 252 if (unlikely(!ff)) 253 return; 254 255 req = ff->reserved_req; 256 fuse_prepare_release(ff, file->f_flags, opcode); 257 258 if (ff->flock) { 259 struct fuse_release_in *inarg = &req->misc.release.in; 260 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 261 inarg->lock_owner = fuse_lock_owner_id(ff->fc, 262 (fl_owner_t) file); 263 } 264 /* Hold inode until release is finished */ 265 req->misc.release.inode = igrab(file_inode(file)); 266 267 /* 268 * Normally this will send the RELEASE request, however if 269 * some asynchronous READ or WRITE requests are outstanding, 270 * the sending will be delayed. 271 * 272 * Make the release synchronous if this is a fuseblk mount, 273 * synchronous RELEASE is allowed (and desirable) in this case 274 * because the server can be trusted not to screw up. 275 */ 276 fuse_file_put(ff, ff->fc->destroy_req != NULL); 277 } 278 279 static int fuse_open(struct inode *inode, struct file *file) 280 { 281 return fuse_open_common(inode, file, false); 282 } 283 284 static int fuse_release(struct inode *inode, struct file *file) 285 { 286 struct fuse_conn *fc = get_fuse_conn(inode); 287 288 /* see fuse_vma_close() for !writeback_cache case */ 289 if (fc->writeback_cache) 290 write_inode_now(inode, 1); 291 292 fuse_release_common(file, FUSE_RELEASE); 293 294 /* return value is ignored by VFS */ 295 return 0; 296 } 297 298 void fuse_sync_release(struct fuse_file *ff, int flags) 299 { 300 WARN_ON(atomic_read(&ff->count) > 1); 301 fuse_prepare_release(ff, flags, FUSE_RELEASE); 302 ff->reserved_req->force = 1; 303 ff->reserved_req->background = 0; 304 fuse_request_send(ff->fc, ff->reserved_req); 305 fuse_put_request(ff->fc, ff->reserved_req); 306 kfree(ff); 307 } 308 EXPORT_SYMBOL_GPL(fuse_sync_release); 309 310 /* 311 * Scramble the ID space with XTEA, so that the value of the files_struct 312 * pointer is not exposed to userspace. 313 */ 314 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 315 { 316 u32 *k = fc->scramble_key; 317 u64 v = (unsigned long) id; 318 u32 v0 = v; 319 u32 v1 = v >> 32; 320 u32 sum = 0; 321 int i; 322 323 for (i = 0; i < 32; i++) { 324 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 325 sum += 0x9E3779B9; 326 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 327 } 328 329 return (u64) v0 + ((u64) v1 << 32); 330 } 331 332 /* 333 * Check if any page in a range is under writeback 334 * 335 * This is currently done by walking the list of writepage requests 336 * for the inode, which can be pretty inefficient. 337 */ 338 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 339 pgoff_t idx_to) 340 { 341 struct fuse_conn *fc = get_fuse_conn(inode); 342 struct fuse_inode *fi = get_fuse_inode(inode); 343 struct fuse_req *req; 344 bool found = false; 345 346 spin_lock(&fc->lock); 347 list_for_each_entry(req, &fi->writepages, writepages_entry) { 348 pgoff_t curr_index; 349 350 BUG_ON(req->inode != inode); 351 curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT; 352 if (idx_from < curr_index + req->num_pages && 353 curr_index <= idx_to) { 354 found = true; 355 break; 356 } 357 } 358 spin_unlock(&fc->lock); 359 360 return found; 361 } 362 363 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 364 { 365 return fuse_range_is_writeback(inode, index, index); 366 } 367 368 /* 369 * Wait for page writeback to be completed. 370 * 371 * Since fuse doesn't rely on the VM writeback tracking, this has to 372 * use some other means. 373 */ 374 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 375 { 376 struct fuse_inode *fi = get_fuse_inode(inode); 377 378 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 379 return 0; 380 } 381 382 /* 383 * Wait for all pending writepages on the inode to finish. 384 * 385 * This is currently done by blocking further writes with FUSE_NOWRITE 386 * and waiting for all sent writes to complete. 387 * 388 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 389 * could conflict with truncation. 390 */ 391 static void fuse_sync_writes(struct inode *inode) 392 { 393 fuse_set_nowrite(inode); 394 fuse_release_nowrite(inode); 395 } 396 397 static int fuse_flush(struct file *file, fl_owner_t id) 398 { 399 struct inode *inode = file_inode(file); 400 struct fuse_conn *fc = get_fuse_conn(inode); 401 struct fuse_file *ff = file->private_data; 402 struct fuse_req *req; 403 struct fuse_flush_in inarg; 404 int err; 405 406 if (is_bad_inode(inode)) 407 return -EIO; 408 409 if (fc->no_flush) 410 return 0; 411 412 err = write_inode_now(inode, 1); 413 if (err) 414 return err; 415 416 mutex_lock(&inode->i_mutex); 417 fuse_sync_writes(inode); 418 mutex_unlock(&inode->i_mutex); 419 420 req = fuse_get_req_nofail_nopages(fc, file); 421 memset(&inarg, 0, sizeof(inarg)); 422 inarg.fh = ff->fh; 423 inarg.lock_owner = fuse_lock_owner_id(fc, id); 424 req->in.h.opcode = FUSE_FLUSH; 425 req->in.h.nodeid = get_node_id(inode); 426 req->in.numargs = 1; 427 req->in.args[0].size = sizeof(inarg); 428 req->in.args[0].value = &inarg; 429 req->force = 1; 430 fuse_request_send(fc, req); 431 err = req->out.h.error; 432 fuse_put_request(fc, req); 433 if (err == -ENOSYS) { 434 fc->no_flush = 1; 435 err = 0; 436 } 437 return err; 438 } 439 440 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 441 int datasync, int isdir) 442 { 443 struct inode *inode = file->f_mapping->host; 444 struct fuse_conn *fc = get_fuse_conn(inode); 445 struct fuse_file *ff = file->private_data; 446 FUSE_ARGS(args); 447 struct fuse_fsync_in inarg; 448 int err; 449 450 if (is_bad_inode(inode)) 451 return -EIO; 452 453 mutex_lock(&inode->i_mutex); 454 455 /* 456 * Start writeback against all dirty pages of the inode, then 457 * wait for all outstanding writes, before sending the FSYNC 458 * request. 459 */ 460 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 461 if (err) 462 goto out; 463 464 fuse_sync_writes(inode); 465 err = sync_inode_metadata(inode, 1); 466 if (err) 467 goto out; 468 469 if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir)) 470 goto out; 471 472 memset(&inarg, 0, sizeof(inarg)); 473 inarg.fh = ff->fh; 474 inarg.fsync_flags = datasync ? 1 : 0; 475 args.in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC; 476 args.in.h.nodeid = get_node_id(inode); 477 args.in.numargs = 1; 478 args.in.args[0].size = sizeof(inarg); 479 args.in.args[0].value = &inarg; 480 err = fuse_simple_request(fc, &args); 481 if (err == -ENOSYS) { 482 if (isdir) 483 fc->no_fsyncdir = 1; 484 else 485 fc->no_fsync = 1; 486 err = 0; 487 } 488 out: 489 mutex_unlock(&inode->i_mutex); 490 return err; 491 } 492 493 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 494 int datasync) 495 { 496 return fuse_fsync_common(file, start, end, datasync, 0); 497 } 498 499 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos, 500 size_t count, int opcode) 501 { 502 struct fuse_read_in *inarg = &req->misc.read.in; 503 struct fuse_file *ff = file->private_data; 504 505 inarg->fh = ff->fh; 506 inarg->offset = pos; 507 inarg->size = count; 508 inarg->flags = file->f_flags; 509 req->in.h.opcode = opcode; 510 req->in.h.nodeid = ff->nodeid; 511 req->in.numargs = 1; 512 req->in.args[0].size = sizeof(struct fuse_read_in); 513 req->in.args[0].value = inarg; 514 req->out.argvar = 1; 515 req->out.numargs = 1; 516 req->out.args[0].size = count; 517 } 518 519 static void fuse_release_user_pages(struct fuse_req *req, int write) 520 { 521 unsigned i; 522 523 for (i = 0; i < req->num_pages; i++) { 524 struct page *page = req->pages[i]; 525 if (write) 526 set_page_dirty_lock(page); 527 put_page(page); 528 } 529 } 530 531 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 532 { 533 if (io->err) 534 return io->err; 535 536 if (io->bytes >= 0 && io->write) 537 return -EIO; 538 539 return io->bytes < 0 ? io->size : io->bytes; 540 } 541 542 /** 543 * In case of short read, the caller sets 'pos' to the position of 544 * actual end of fuse request in IO request. Otherwise, if bytes_requested 545 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 546 * 547 * An example: 548 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 549 * both submitted asynchronously. The first of them was ACKed by userspace as 550 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 551 * second request was ACKed as short, e.g. only 1K was read, resulting in 552 * pos == 33K. 553 * 554 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 555 * will be equal to the length of the longest contiguous fragment of 556 * transferred data starting from the beginning of IO request. 557 */ 558 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 559 { 560 bool is_sync = is_sync_kiocb(io->iocb); 561 int left; 562 563 spin_lock(&io->lock); 564 if (err) 565 io->err = io->err ? : err; 566 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 567 io->bytes = pos; 568 569 left = --io->reqs; 570 if (!left && is_sync) 571 complete(io->done); 572 spin_unlock(&io->lock); 573 574 if (!left && !is_sync) { 575 ssize_t res = fuse_get_res_by_io(io); 576 577 if (res >= 0) { 578 struct inode *inode = file_inode(io->iocb->ki_filp); 579 struct fuse_conn *fc = get_fuse_conn(inode); 580 struct fuse_inode *fi = get_fuse_inode(inode); 581 582 spin_lock(&fc->lock); 583 fi->attr_version = ++fc->attr_version; 584 spin_unlock(&fc->lock); 585 } 586 587 io->iocb->ki_complete(io->iocb, res, 0); 588 kfree(io); 589 } 590 } 591 592 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req) 593 { 594 struct fuse_io_priv *io = req->io; 595 ssize_t pos = -1; 596 597 fuse_release_user_pages(req, !io->write); 598 599 if (io->write) { 600 if (req->misc.write.in.size != req->misc.write.out.size) 601 pos = req->misc.write.in.offset - io->offset + 602 req->misc.write.out.size; 603 } else { 604 if (req->misc.read.in.size != req->out.args[0].size) 605 pos = req->misc.read.in.offset - io->offset + 606 req->out.args[0].size; 607 } 608 609 fuse_aio_complete(io, req->out.h.error, pos); 610 } 611 612 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req, 613 size_t num_bytes, struct fuse_io_priv *io) 614 { 615 spin_lock(&io->lock); 616 io->size += num_bytes; 617 io->reqs++; 618 spin_unlock(&io->lock); 619 620 req->io = io; 621 req->end = fuse_aio_complete_req; 622 623 __fuse_get_request(req); 624 fuse_request_send_background(fc, req); 625 626 return num_bytes; 627 } 628 629 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io, 630 loff_t pos, size_t count, fl_owner_t owner) 631 { 632 struct file *file = io->file; 633 struct fuse_file *ff = file->private_data; 634 struct fuse_conn *fc = ff->fc; 635 636 fuse_read_fill(req, file, pos, count, FUSE_READ); 637 if (owner != NULL) { 638 struct fuse_read_in *inarg = &req->misc.read.in; 639 640 inarg->read_flags |= FUSE_READ_LOCKOWNER; 641 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 642 } 643 644 if (io->async) 645 return fuse_async_req_send(fc, req, count, io); 646 647 fuse_request_send(fc, req); 648 return req->out.args[0].size; 649 } 650 651 static void fuse_read_update_size(struct inode *inode, loff_t size, 652 u64 attr_ver) 653 { 654 struct fuse_conn *fc = get_fuse_conn(inode); 655 struct fuse_inode *fi = get_fuse_inode(inode); 656 657 spin_lock(&fc->lock); 658 if (attr_ver == fi->attr_version && size < inode->i_size && 659 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 660 fi->attr_version = ++fc->attr_version; 661 i_size_write(inode, size); 662 } 663 spin_unlock(&fc->lock); 664 } 665 666 static void fuse_short_read(struct fuse_req *req, struct inode *inode, 667 u64 attr_ver) 668 { 669 size_t num_read = req->out.args[0].size; 670 struct fuse_conn *fc = get_fuse_conn(inode); 671 672 if (fc->writeback_cache) { 673 /* 674 * A hole in a file. Some data after the hole are in page cache, 675 * but have not reached the client fs yet. So, the hole is not 676 * present there. 677 */ 678 int i; 679 int start_idx = num_read >> PAGE_CACHE_SHIFT; 680 size_t off = num_read & (PAGE_CACHE_SIZE - 1); 681 682 for (i = start_idx; i < req->num_pages; i++) { 683 zero_user_segment(req->pages[i], off, PAGE_CACHE_SIZE); 684 off = 0; 685 } 686 } else { 687 loff_t pos = page_offset(req->pages[0]) + num_read; 688 fuse_read_update_size(inode, pos, attr_ver); 689 } 690 } 691 692 static int fuse_do_readpage(struct file *file, struct page *page) 693 { 694 struct fuse_io_priv io = { .async = 0, .file = file }; 695 struct inode *inode = page->mapping->host; 696 struct fuse_conn *fc = get_fuse_conn(inode); 697 struct fuse_req *req; 698 size_t num_read; 699 loff_t pos = page_offset(page); 700 size_t count = PAGE_CACHE_SIZE; 701 u64 attr_ver; 702 int err; 703 704 /* 705 * Page writeback can extend beyond the lifetime of the 706 * page-cache page, so make sure we read a properly synced 707 * page. 708 */ 709 fuse_wait_on_page_writeback(inode, page->index); 710 711 req = fuse_get_req(fc, 1); 712 if (IS_ERR(req)) 713 return PTR_ERR(req); 714 715 attr_ver = fuse_get_attr_version(fc); 716 717 req->out.page_zeroing = 1; 718 req->out.argpages = 1; 719 req->num_pages = 1; 720 req->pages[0] = page; 721 req->page_descs[0].length = count; 722 num_read = fuse_send_read(req, &io, pos, count, NULL); 723 err = req->out.h.error; 724 725 if (!err) { 726 /* 727 * Short read means EOF. If file size is larger, truncate it 728 */ 729 if (num_read < count) 730 fuse_short_read(req, inode, attr_ver); 731 732 SetPageUptodate(page); 733 } 734 735 fuse_put_request(fc, req); 736 737 return err; 738 } 739 740 static int fuse_readpage(struct file *file, struct page *page) 741 { 742 struct inode *inode = page->mapping->host; 743 int err; 744 745 err = -EIO; 746 if (is_bad_inode(inode)) 747 goto out; 748 749 err = fuse_do_readpage(file, page); 750 fuse_invalidate_atime(inode); 751 out: 752 unlock_page(page); 753 return err; 754 } 755 756 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req) 757 { 758 int i; 759 size_t count = req->misc.read.in.size; 760 size_t num_read = req->out.args[0].size; 761 struct address_space *mapping = NULL; 762 763 for (i = 0; mapping == NULL && i < req->num_pages; i++) 764 mapping = req->pages[i]->mapping; 765 766 if (mapping) { 767 struct inode *inode = mapping->host; 768 769 /* 770 * Short read means EOF. If file size is larger, truncate it 771 */ 772 if (!req->out.h.error && num_read < count) 773 fuse_short_read(req, inode, req->misc.read.attr_ver); 774 775 fuse_invalidate_atime(inode); 776 } 777 778 for (i = 0; i < req->num_pages; i++) { 779 struct page *page = req->pages[i]; 780 if (!req->out.h.error) 781 SetPageUptodate(page); 782 else 783 SetPageError(page); 784 unlock_page(page); 785 page_cache_release(page); 786 } 787 if (req->ff) 788 fuse_file_put(req->ff, false); 789 } 790 791 static void fuse_send_readpages(struct fuse_req *req, struct file *file) 792 { 793 struct fuse_file *ff = file->private_data; 794 struct fuse_conn *fc = ff->fc; 795 loff_t pos = page_offset(req->pages[0]); 796 size_t count = req->num_pages << PAGE_CACHE_SHIFT; 797 798 req->out.argpages = 1; 799 req->out.page_zeroing = 1; 800 req->out.page_replace = 1; 801 fuse_read_fill(req, file, pos, count, FUSE_READ); 802 req->misc.read.attr_ver = fuse_get_attr_version(fc); 803 if (fc->async_read) { 804 req->ff = fuse_file_get(ff); 805 req->end = fuse_readpages_end; 806 fuse_request_send_background(fc, req); 807 } else { 808 fuse_request_send(fc, req); 809 fuse_readpages_end(fc, req); 810 fuse_put_request(fc, req); 811 } 812 } 813 814 struct fuse_fill_data { 815 struct fuse_req *req; 816 struct file *file; 817 struct inode *inode; 818 unsigned nr_pages; 819 }; 820 821 static int fuse_readpages_fill(void *_data, struct page *page) 822 { 823 struct fuse_fill_data *data = _data; 824 struct fuse_req *req = data->req; 825 struct inode *inode = data->inode; 826 struct fuse_conn *fc = get_fuse_conn(inode); 827 828 fuse_wait_on_page_writeback(inode, page->index); 829 830 if (req->num_pages && 831 (req->num_pages == FUSE_MAX_PAGES_PER_REQ || 832 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read || 833 req->pages[req->num_pages - 1]->index + 1 != page->index)) { 834 int nr_alloc = min_t(unsigned, data->nr_pages, 835 FUSE_MAX_PAGES_PER_REQ); 836 fuse_send_readpages(req, data->file); 837 if (fc->async_read) 838 req = fuse_get_req_for_background(fc, nr_alloc); 839 else 840 req = fuse_get_req(fc, nr_alloc); 841 842 data->req = req; 843 if (IS_ERR(req)) { 844 unlock_page(page); 845 return PTR_ERR(req); 846 } 847 } 848 849 if (WARN_ON(req->num_pages >= req->max_pages)) { 850 fuse_put_request(fc, req); 851 return -EIO; 852 } 853 854 page_cache_get(page); 855 req->pages[req->num_pages] = page; 856 req->page_descs[req->num_pages].length = PAGE_SIZE; 857 req->num_pages++; 858 data->nr_pages--; 859 return 0; 860 } 861 862 static int fuse_readpages(struct file *file, struct address_space *mapping, 863 struct list_head *pages, unsigned nr_pages) 864 { 865 struct inode *inode = mapping->host; 866 struct fuse_conn *fc = get_fuse_conn(inode); 867 struct fuse_fill_data data; 868 int err; 869 int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ); 870 871 err = -EIO; 872 if (is_bad_inode(inode)) 873 goto out; 874 875 data.file = file; 876 data.inode = inode; 877 if (fc->async_read) 878 data.req = fuse_get_req_for_background(fc, nr_alloc); 879 else 880 data.req = fuse_get_req(fc, nr_alloc); 881 data.nr_pages = nr_pages; 882 err = PTR_ERR(data.req); 883 if (IS_ERR(data.req)) 884 goto out; 885 886 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 887 if (!err) { 888 if (data.req->num_pages) 889 fuse_send_readpages(data.req, file); 890 else 891 fuse_put_request(fc, data.req); 892 } 893 out: 894 return err; 895 } 896 897 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 898 { 899 struct inode *inode = iocb->ki_filp->f_mapping->host; 900 struct fuse_conn *fc = get_fuse_conn(inode); 901 902 /* 903 * In auto invalidate mode, always update attributes on read. 904 * Otherwise, only update if we attempt to read past EOF (to ensure 905 * i_size is up to date). 906 */ 907 if (fc->auto_inval_data || 908 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 909 int err; 910 err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL); 911 if (err) 912 return err; 913 } 914 915 return generic_file_read_iter(iocb, to); 916 } 917 918 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff, 919 loff_t pos, size_t count) 920 { 921 struct fuse_write_in *inarg = &req->misc.write.in; 922 struct fuse_write_out *outarg = &req->misc.write.out; 923 924 inarg->fh = ff->fh; 925 inarg->offset = pos; 926 inarg->size = count; 927 req->in.h.opcode = FUSE_WRITE; 928 req->in.h.nodeid = ff->nodeid; 929 req->in.numargs = 2; 930 if (ff->fc->minor < 9) 931 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 932 else 933 req->in.args[0].size = sizeof(struct fuse_write_in); 934 req->in.args[0].value = inarg; 935 req->in.args[1].size = count; 936 req->out.numargs = 1; 937 req->out.args[0].size = sizeof(struct fuse_write_out); 938 req->out.args[0].value = outarg; 939 } 940 941 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io, 942 loff_t pos, size_t count, fl_owner_t owner) 943 { 944 struct file *file = io->file; 945 struct fuse_file *ff = file->private_data; 946 struct fuse_conn *fc = ff->fc; 947 struct fuse_write_in *inarg = &req->misc.write.in; 948 949 fuse_write_fill(req, ff, pos, count); 950 inarg->flags = file->f_flags; 951 if (owner != NULL) { 952 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 953 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 954 } 955 956 if (io->async) 957 return fuse_async_req_send(fc, req, count, io); 958 959 fuse_request_send(fc, req); 960 return req->misc.write.out.size; 961 } 962 963 bool fuse_write_update_size(struct inode *inode, loff_t pos) 964 { 965 struct fuse_conn *fc = get_fuse_conn(inode); 966 struct fuse_inode *fi = get_fuse_inode(inode); 967 bool ret = false; 968 969 spin_lock(&fc->lock); 970 fi->attr_version = ++fc->attr_version; 971 if (pos > inode->i_size) { 972 i_size_write(inode, pos); 973 ret = true; 974 } 975 spin_unlock(&fc->lock); 976 977 return ret; 978 } 979 980 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file, 981 struct inode *inode, loff_t pos, 982 size_t count) 983 { 984 size_t res; 985 unsigned offset; 986 unsigned i; 987 struct fuse_io_priv io = { .async = 0, .file = file }; 988 989 for (i = 0; i < req->num_pages; i++) 990 fuse_wait_on_page_writeback(inode, req->pages[i]->index); 991 992 res = fuse_send_write(req, &io, pos, count, NULL); 993 994 offset = req->page_descs[0].offset; 995 count = res; 996 for (i = 0; i < req->num_pages; i++) { 997 struct page *page = req->pages[i]; 998 999 if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE) 1000 SetPageUptodate(page); 1001 1002 if (count > PAGE_CACHE_SIZE - offset) 1003 count -= PAGE_CACHE_SIZE - offset; 1004 else 1005 count = 0; 1006 offset = 0; 1007 1008 unlock_page(page); 1009 page_cache_release(page); 1010 } 1011 1012 return res; 1013 } 1014 1015 static ssize_t fuse_fill_write_pages(struct fuse_req *req, 1016 struct address_space *mapping, 1017 struct iov_iter *ii, loff_t pos) 1018 { 1019 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1020 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 1021 size_t count = 0; 1022 int err; 1023 1024 req->in.argpages = 1; 1025 req->page_descs[0].offset = offset; 1026 1027 do { 1028 size_t tmp; 1029 struct page *page; 1030 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1031 size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset, 1032 iov_iter_count(ii)); 1033 1034 bytes = min_t(size_t, bytes, fc->max_write - count); 1035 1036 again: 1037 err = -EFAULT; 1038 if (iov_iter_fault_in_readable(ii, bytes)) 1039 break; 1040 1041 err = -ENOMEM; 1042 page = grab_cache_page_write_begin(mapping, index, 0); 1043 if (!page) 1044 break; 1045 1046 if (mapping_writably_mapped(mapping)) 1047 flush_dcache_page(page); 1048 1049 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1050 flush_dcache_page(page); 1051 1052 if (!tmp) { 1053 unlock_page(page); 1054 page_cache_release(page); 1055 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1056 goto again; 1057 } 1058 1059 err = 0; 1060 req->pages[req->num_pages] = page; 1061 req->page_descs[req->num_pages].length = tmp; 1062 req->num_pages++; 1063 1064 iov_iter_advance(ii, tmp); 1065 count += tmp; 1066 pos += tmp; 1067 offset += tmp; 1068 if (offset == PAGE_CACHE_SIZE) 1069 offset = 0; 1070 1071 if (!fc->big_writes) 1072 break; 1073 } while (iov_iter_count(ii) && count < fc->max_write && 1074 req->num_pages < req->max_pages && offset == 0); 1075 1076 return count > 0 ? count : err; 1077 } 1078 1079 static inline unsigned fuse_wr_pages(loff_t pos, size_t len) 1080 { 1081 return min_t(unsigned, 1082 ((pos + len - 1) >> PAGE_CACHE_SHIFT) - 1083 (pos >> PAGE_CACHE_SHIFT) + 1, 1084 FUSE_MAX_PAGES_PER_REQ); 1085 } 1086 1087 static ssize_t fuse_perform_write(struct file *file, 1088 struct address_space *mapping, 1089 struct iov_iter *ii, loff_t pos) 1090 { 1091 struct inode *inode = mapping->host; 1092 struct fuse_conn *fc = get_fuse_conn(inode); 1093 struct fuse_inode *fi = get_fuse_inode(inode); 1094 int err = 0; 1095 ssize_t res = 0; 1096 1097 if (is_bad_inode(inode)) 1098 return -EIO; 1099 1100 if (inode->i_size < pos + iov_iter_count(ii)) 1101 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1102 1103 do { 1104 struct fuse_req *req; 1105 ssize_t count; 1106 unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii)); 1107 1108 req = fuse_get_req(fc, nr_pages); 1109 if (IS_ERR(req)) { 1110 err = PTR_ERR(req); 1111 break; 1112 } 1113 1114 count = fuse_fill_write_pages(req, mapping, ii, pos); 1115 if (count <= 0) { 1116 err = count; 1117 } else { 1118 size_t num_written; 1119 1120 num_written = fuse_send_write_pages(req, file, inode, 1121 pos, count); 1122 err = req->out.h.error; 1123 if (!err) { 1124 res += num_written; 1125 pos += num_written; 1126 1127 /* break out of the loop on short write */ 1128 if (num_written != count) 1129 err = -EIO; 1130 } 1131 } 1132 fuse_put_request(fc, req); 1133 } while (!err && iov_iter_count(ii)); 1134 1135 if (res > 0) 1136 fuse_write_update_size(inode, pos); 1137 1138 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1139 fuse_invalidate_attr(inode); 1140 1141 return res > 0 ? res : err; 1142 } 1143 1144 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1145 { 1146 struct file *file = iocb->ki_filp; 1147 struct address_space *mapping = file->f_mapping; 1148 size_t count = iov_iter_count(from); 1149 ssize_t written = 0; 1150 ssize_t written_buffered = 0; 1151 struct inode *inode = mapping->host; 1152 ssize_t err; 1153 loff_t endbyte = 0; 1154 loff_t pos = iocb->ki_pos; 1155 1156 if (get_fuse_conn(inode)->writeback_cache) { 1157 /* Update size (EOF optimization) and mode (SUID clearing) */ 1158 err = fuse_update_attributes(mapping->host, NULL, file, NULL); 1159 if (err) 1160 return err; 1161 1162 return generic_file_write_iter(iocb, from); 1163 } 1164 1165 mutex_lock(&inode->i_mutex); 1166 1167 /* We can write back this queue in page reclaim */ 1168 current->backing_dev_info = inode_to_bdi(inode); 1169 1170 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1171 if (err) 1172 goto out; 1173 1174 if (count == 0) 1175 goto out; 1176 1177 iov_iter_truncate(from, count); 1178 err = file_remove_suid(file); 1179 if (err) 1180 goto out; 1181 1182 err = file_update_time(file); 1183 if (err) 1184 goto out; 1185 1186 if (file->f_flags & O_DIRECT) { 1187 written = generic_file_direct_write(iocb, from, pos); 1188 if (written < 0 || !iov_iter_count(from)) 1189 goto out; 1190 1191 pos += written; 1192 1193 written_buffered = fuse_perform_write(file, mapping, from, pos); 1194 if (written_buffered < 0) { 1195 err = written_buffered; 1196 goto out; 1197 } 1198 endbyte = pos + written_buffered - 1; 1199 1200 err = filemap_write_and_wait_range(file->f_mapping, pos, 1201 endbyte); 1202 if (err) 1203 goto out; 1204 1205 invalidate_mapping_pages(file->f_mapping, 1206 pos >> PAGE_CACHE_SHIFT, 1207 endbyte >> PAGE_CACHE_SHIFT); 1208 1209 written += written_buffered; 1210 iocb->ki_pos = pos + written_buffered; 1211 } else { 1212 written = fuse_perform_write(file, mapping, from, pos); 1213 if (written >= 0) 1214 iocb->ki_pos = pos + written; 1215 } 1216 out: 1217 current->backing_dev_info = NULL; 1218 mutex_unlock(&inode->i_mutex); 1219 1220 return written ? written : err; 1221 } 1222 1223 static inline void fuse_page_descs_length_init(struct fuse_req *req, 1224 unsigned index, unsigned nr_pages) 1225 { 1226 int i; 1227 1228 for (i = index; i < index + nr_pages; i++) 1229 req->page_descs[i].length = PAGE_SIZE - 1230 req->page_descs[i].offset; 1231 } 1232 1233 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1234 { 1235 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1236 } 1237 1238 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1239 size_t max_size) 1240 { 1241 return min(iov_iter_single_seg_count(ii), max_size); 1242 } 1243 1244 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii, 1245 size_t *nbytesp, int write) 1246 { 1247 size_t nbytes = 0; /* # bytes already packed in req */ 1248 1249 /* Special case for kernel I/O: can copy directly into the buffer */ 1250 if (ii->type & ITER_KVEC) { 1251 unsigned long user_addr = fuse_get_user_addr(ii); 1252 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1253 1254 if (write) 1255 req->in.args[1].value = (void *) user_addr; 1256 else 1257 req->out.args[0].value = (void *) user_addr; 1258 1259 iov_iter_advance(ii, frag_size); 1260 *nbytesp = frag_size; 1261 return 0; 1262 } 1263 1264 while (nbytes < *nbytesp && req->num_pages < req->max_pages) { 1265 unsigned npages; 1266 size_t start; 1267 ssize_t ret = iov_iter_get_pages(ii, 1268 &req->pages[req->num_pages], 1269 *nbytesp - nbytes, 1270 req->max_pages - req->num_pages, 1271 &start); 1272 if (ret < 0) 1273 return ret; 1274 1275 iov_iter_advance(ii, ret); 1276 nbytes += ret; 1277 1278 ret += start; 1279 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1280 1281 req->page_descs[req->num_pages].offset = start; 1282 fuse_page_descs_length_init(req, req->num_pages, npages); 1283 1284 req->num_pages += npages; 1285 req->page_descs[req->num_pages - 1].length -= 1286 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1287 } 1288 1289 if (write) 1290 req->in.argpages = 1; 1291 else 1292 req->out.argpages = 1; 1293 1294 *nbytesp = nbytes; 1295 1296 return 0; 1297 } 1298 1299 static inline int fuse_iter_npages(const struct iov_iter *ii_p) 1300 { 1301 return iov_iter_npages(ii_p, FUSE_MAX_PAGES_PER_REQ); 1302 } 1303 1304 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1305 loff_t *ppos, int flags) 1306 { 1307 int write = flags & FUSE_DIO_WRITE; 1308 int cuse = flags & FUSE_DIO_CUSE; 1309 struct file *file = io->file; 1310 struct inode *inode = file->f_mapping->host; 1311 struct fuse_file *ff = file->private_data; 1312 struct fuse_conn *fc = ff->fc; 1313 size_t nmax = write ? fc->max_write : fc->max_read; 1314 loff_t pos = *ppos; 1315 size_t count = iov_iter_count(iter); 1316 pgoff_t idx_from = pos >> PAGE_CACHE_SHIFT; 1317 pgoff_t idx_to = (pos + count - 1) >> PAGE_CACHE_SHIFT; 1318 ssize_t res = 0; 1319 struct fuse_req *req; 1320 1321 if (io->async) 1322 req = fuse_get_req_for_background(fc, fuse_iter_npages(iter)); 1323 else 1324 req = fuse_get_req(fc, fuse_iter_npages(iter)); 1325 if (IS_ERR(req)) 1326 return PTR_ERR(req); 1327 1328 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1329 if (!write) 1330 mutex_lock(&inode->i_mutex); 1331 fuse_sync_writes(inode); 1332 if (!write) 1333 mutex_unlock(&inode->i_mutex); 1334 } 1335 1336 while (count) { 1337 size_t nres; 1338 fl_owner_t owner = current->files; 1339 size_t nbytes = min(count, nmax); 1340 int err = fuse_get_user_pages(req, iter, &nbytes, write); 1341 if (err) { 1342 res = err; 1343 break; 1344 } 1345 1346 if (write) 1347 nres = fuse_send_write(req, io, pos, nbytes, owner); 1348 else 1349 nres = fuse_send_read(req, io, pos, nbytes, owner); 1350 1351 if (!io->async) 1352 fuse_release_user_pages(req, !write); 1353 if (req->out.h.error) { 1354 if (!res) 1355 res = req->out.h.error; 1356 break; 1357 } else if (nres > nbytes) { 1358 res = -EIO; 1359 break; 1360 } 1361 count -= nres; 1362 res += nres; 1363 pos += nres; 1364 if (nres != nbytes) 1365 break; 1366 if (count) { 1367 fuse_put_request(fc, req); 1368 if (io->async) 1369 req = fuse_get_req_for_background(fc, 1370 fuse_iter_npages(iter)); 1371 else 1372 req = fuse_get_req(fc, fuse_iter_npages(iter)); 1373 if (IS_ERR(req)) 1374 break; 1375 } 1376 } 1377 if (!IS_ERR(req)) 1378 fuse_put_request(fc, req); 1379 if (res > 0) 1380 *ppos = pos; 1381 1382 return res; 1383 } 1384 EXPORT_SYMBOL_GPL(fuse_direct_io); 1385 1386 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1387 struct iov_iter *iter, 1388 loff_t *ppos) 1389 { 1390 ssize_t res; 1391 struct file *file = io->file; 1392 struct inode *inode = file_inode(file); 1393 1394 if (is_bad_inode(inode)) 1395 return -EIO; 1396 1397 res = fuse_direct_io(io, iter, ppos, 0); 1398 1399 fuse_invalidate_attr(inode); 1400 1401 return res; 1402 } 1403 1404 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1405 { 1406 struct fuse_io_priv io = { .async = 0, .file = iocb->ki_filp }; 1407 return __fuse_direct_read(&io, to, &iocb->ki_pos); 1408 } 1409 1410 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1411 { 1412 struct file *file = iocb->ki_filp; 1413 struct inode *inode = file_inode(file); 1414 struct fuse_io_priv io = { .async = 0, .file = file }; 1415 size_t count = iov_iter_count(from); 1416 ssize_t res; 1417 1418 if (is_bad_inode(inode)) 1419 return -EIO; 1420 1421 /* Don't allow parallel writes to the same file */ 1422 mutex_lock(&inode->i_mutex); 1423 res = generic_write_checks(file, &iocb->ki_pos, &count, 0); 1424 if (!res) { 1425 iov_iter_truncate(from, count); 1426 res = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE); 1427 } 1428 fuse_invalidate_attr(inode); 1429 if (res > 0) 1430 fuse_write_update_size(inode, iocb->ki_pos); 1431 mutex_unlock(&inode->i_mutex); 1432 1433 return res; 1434 } 1435 1436 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req) 1437 { 1438 int i; 1439 1440 for (i = 0; i < req->num_pages; i++) 1441 __free_page(req->pages[i]); 1442 1443 if (req->ff) 1444 fuse_file_put(req->ff, false); 1445 } 1446 1447 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req) 1448 { 1449 struct inode *inode = req->inode; 1450 struct fuse_inode *fi = get_fuse_inode(inode); 1451 struct backing_dev_info *bdi = inode_to_bdi(inode); 1452 int i; 1453 1454 list_del(&req->writepages_entry); 1455 for (i = 0; i < req->num_pages; i++) { 1456 dec_bdi_stat(bdi, BDI_WRITEBACK); 1457 dec_zone_page_state(req->pages[i], NR_WRITEBACK_TEMP); 1458 bdi_writeout_inc(bdi); 1459 } 1460 wake_up(&fi->page_waitq); 1461 } 1462 1463 /* Called under fc->lock, may release and reacquire it */ 1464 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req, 1465 loff_t size) 1466 __releases(fc->lock) 1467 __acquires(fc->lock) 1468 { 1469 struct fuse_inode *fi = get_fuse_inode(req->inode); 1470 struct fuse_write_in *inarg = &req->misc.write.in; 1471 __u64 data_size = req->num_pages * PAGE_CACHE_SIZE; 1472 1473 if (!fc->connected) 1474 goto out_free; 1475 1476 if (inarg->offset + data_size <= size) { 1477 inarg->size = data_size; 1478 } else if (inarg->offset < size) { 1479 inarg->size = size - inarg->offset; 1480 } else { 1481 /* Got truncated off completely */ 1482 goto out_free; 1483 } 1484 1485 req->in.args[1].size = inarg->size; 1486 fi->writectr++; 1487 fuse_request_send_background_locked(fc, req); 1488 return; 1489 1490 out_free: 1491 fuse_writepage_finish(fc, req); 1492 spin_unlock(&fc->lock); 1493 fuse_writepage_free(fc, req); 1494 fuse_put_request(fc, req); 1495 spin_lock(&fc->lock); 1496 } 1497 1498 /* 1499 * If fi->writectr is positive (no truncate or fsync going on) send 1500 * all queued writepage requests. 1501 * 1502 * Called with fc->lock 1503 */ 1504 void fuse_flush_writepages(struct inode *inode) 1505 __releases(fc->lock) 1506 __acquires(fc->lock) 1507 { 1508 struct fuse_conn *fc = get_fuse_conn(inode); 1509 struct fuse_inode *fi = get_fuse_inode(inode); 1510 size_t crop = i_size_read(inode); 1511 struct fuse_req *req; 1512 1513 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1514 req = list_entry(fi->queued_writes.next, struct fuse_req, list); 1515 list_del_init(&req->list); 1516 fuse_send_writepage(fc, req, crop); 1517 } 1518 } 1519 1520 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req) 1521 { 1522 struct inode *inode = req->inode; 1523 struct fuse_inode *fi = get_fuse_inode(inode); 1524 1525 mapping_set_error(inode->i_mapping, req->out.h.error); 1526 spin_lock(&fc->lock); 1527 while (req->misc.write.next) { 1528 struct fuse_conn *fc = get_fuse_conn(inode); 1529 struct fuse_write_in *inarg = &req->misc.write.in; 1530 struct fuse_req *next = req->misc.write.next; 1531 req->misc.write.next = next->misc.write.next; 1532 next->misc.write.next = NULL; 1533 next->ff = fuse_file_get(req->ff); 1534 list_add(&next->writepages_entry, &fi->writepages); 1535 1536 /* 1537 * Skip fuse_flush_writepages() to make it easy to crop requests 1538 * based on primary request size. 1539 * 1540 * 1st case (trivial): there are no concurrent activities using 1541 * fuse_set/release_nowrite. Then we're on safe side because 1542 * fuse_flush_writepages() would call fuse_send_writepage() 1543 * anyway. 1544 * 1545 * 2nd case: someone called fuse_set_nowrite and it is waiting 1546 * now for completion of all in-flight requests. This happens 1547 * rarely and no more than once per page, so this should be 1548 * okay. 1549 * 1550 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1551 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1552 * that fuse_set_nowrite returned implies that all in-flight 1553 * requests were completed along with all of their secondary 1554 * requests. Further primary requests are blocked by negative 1555 * writectr. Hence there cannot be any in-flight requests and 1556 * no invocations of fuse_writepage_end() while we're in 1557 * fuse_set_nowrite..fuse_release_nowrite section. 1558 */ 1559 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1560 } 1561 fi->writectr--; 1562 fuse_writepage_finish(fc, req); 1563 spin_unlock(&fc->lock); 1564 fuse_writepage_free(fc, req); 1565 } 1566 1567 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1568 struct fuse_inode *fi) 1569 { 1570 struct fuse_file *ff = NULL; 1571 1572 spin_lock(&fc->lock); 1573 if (!list_empty(&fi->write_files)) { 1574 ff = list_entry(fi->write_files.next, struct fuse_file, 1575 write_entry); 1576 fuse_file_get(ff); 1577 } 1578 spin_unlock(&fc->lock); 1579 1580 return ff; 1581 } 1582 1583 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1584 struct fuse_inode *fi) 1585 { 1586 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1587 WARN_ON(!ff); 1588 return ff; 1589 } 1590 1591 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1592 { 1593 struct fuse_conn *fc = get_fuse_conn(inode); 1594 struct fuse_inode *fi = get_fuse_inode(inode); 1595 struct fuse_file *ff; 1596 int err; 1597 1598 ff = __fuse_write_file_get(fc, fi); 1599 err = fuse_flush_times(inode, ff); 1600 if (ff) 1601 fuse_file_put(ff, 0); 1602 1603 return err; 1604 } 1605 1606 static int fuse_writepage_locked(struct page *page) 1607 { 1608 struct address_space *mapping = page->mapping; 1609 struct inode *inode = mapping->host; 1610 struct fuse_conn *fc = get_fuse_conn(inode); 1611 struct fuse_inode *fi = get_fuse_inode(inode); 1612 struct fuse_req *req; 1613 struct page *tmp_page; 1614 int error = -ENOMEM; 1615 1616 set_page_writeback(page); 1617 1618 req = fuse_request_alloc_nofs(1); 1619 if (!req) 1620 goto err; 1621 1622 req->background = 1; /* writeback always goes to bg_queue */ 1623 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1624 if (!tmp_page) 1625 goto err_free; 1626 1627 error = -EIO; 1628 req->ff = fuse_write_file_get(fc, fi); 1629 if (!req->ff) 1630 goto err_nofile; 1631 1632 fuse_write_fill(req, req->ff, page_offset(page), 0); 1633 1634 copy_highpage(tmp_page, page); 1635 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1636 req->misc.write.next = NULL; 1637 req->in.argpages = 1; 1638 req->num_pages = 1; 1639 req->pages[0] = tmp_page; 1640 req->page_descs[0].offset = 0; 1641 req->page_descs[0].length = PAGE_SIZE; 1642 req->end = fuse_writepage_end; 1643 req->inode = inode; 1644 1645 inc_bdi_stat(inode_to_bdi(inode), BDI_WRITEBACK); 1646 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP); 1647 1648 spin_lock(&fc->lock); 1649 list_add(&req->writepages_entry, &fi->writepages); 1650 list_add_tail(&req->list, &fi->queued_writes); 1651 fuse_flush_writepages(inode); 1652 spin_unlock(&fc->lock); 1653 1654 end_page_writeback(page); 1655 1656 return 0; 1657 1658 err_nofile: 1659 __free_page(tmp_page); 1660 err_free: 1661 fuse_request_free(req); 1662 err: 1663 end_page_writeback(page); 1664 return error; 1665 } 1666 1667 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1668 { 1669 int err; 1670 1671 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1672 /* 1673 * ->writepages() should be called for sync() and friends. We 1674 * should only get here on direct reclaim and then we are 1675 * allowed to skip a page which is already in flight 1676 */ 1677 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1678 1679 redirty_page_for_writepage(wbc, page); 1680 return 0; 1681 } 1682 1683 err = fuse_writepage_locked(page); 1684 unlock_page(page); 1685 1686 return err; 1687 } 1688 1689 struct fuse_fill_wb_data { 1690 struct fuse_req *req; 1691 struct fuse_file *ff; 1692 struct inode *inode; 1693 struct page **orig_pages; 1694 }; 1695 1696 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1697 { 1698 struct fuse_req *req = data->req; 1699 struct inode *inode = data->inode; 1700 struct fuse_conn *fc = get_fuse_conn(inode); 1701 struct fuse_inode *fi = get_fuse_inode(inode); 1702 int num_pages = req->num_pages; 1703 int i; 1704 1705 req->ff = fuse_file_get(data->ff); 1706 spin_lock(&fc->lock); 1707 list_add_tail(&req->list, &fi->queued_writes); 1708 fuse_flush_writepages(inode); 1709 spin_unlock(&fc->lock); 1710 1711 for (i = 0; i < num_pages; i++) 1712 end_page_writeback(data->orig_pages[i]); 1713 } 1714 1715 static bool fuse_writepage_in_flight(struct fuse_req *new_req, 1716 struct page *page) 1717 { 1718 struct fuse_conn *fc = get_fuse_conn(new_req->inode); 1719 struct fuse_inode *fi = get_fuse_inode(new_req->inode); 1720 struct fuse_req *tmp; 1721 struct fuse_req *old_req; 1722 bool found = false; 1723 pgoff_t curr_index; 1724 1725 BUG_ON(new_req->num_pages != 0); 1726 1727 spin_lock(&fc->lock); 1728 list_del(&new_req->writepages_entry); 1729 list_for_each_entry(old_req, &fi->writepages, writepages_entry) { 1730 BUG_ON(old_req->inode != new_req->inode); 1731 curr_index = old_req->misc.write.in.offset >> PAGE_CACHE_SHIFT; 1732 if (curr_index <= page->index && 1733 page->index < curr_index + old_req->num_pages) { 1734 found = true; 1735 break; 1736 } 1737 } 1738 if (!found) { 1739 list_add(&new_req->writepages_entry, &fi->writepages); 1740 goto out_unlock; 1741 } 1742 1743 new_req->num_pages = 1; 1744 for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) { 1745 BUG_ON(tmp->inode != new_req->inode); 1746 curr_index = tmp->misc.write.in.offset >> PAGE_CACHE_SHIFT; 1747 if (tmp->num_pages == 1 && 1748 curr_index == page->index) { 1749 old_req = tmp; 1750 } 1751 } 1752 1753 if (old_req->num_pages == 1 && (old_req->state == FUSE_REQ_INIT || 1754 old_req->state == FUSE_REQ_PENDING)) { 1755 struct backing_dev_info *bdi = inode_to_bdi(page->mapping->host); 1756 1757 copy_highpage(old_req->pages[0], page); 1758 spin_unlock(&fc->lock); 1759 1760 dec_bdi_stat(bdi, BDI_WRITEBACK); 1761 dec_zone_page_state(page, NR_WRITEBACK_TEMP); 1762 bdi_writeout_inc(bdi); 1763 fuse_writepage_free(fc, new_req); 1764 fuse_request_free(new_req); 1765 goto out; 1766 } else { 1767 new_req->misc.write.next = old_req->misc.write.next; 1768 old_req->misc.write.next = new_req; 1769 } 1770 out_unlock: 1771 spin_unlock(&fc->lock); 1772 out: 1773 return found; 1774 } 1775 1776 static int fuse_writepages_fill(struct page *page, 1777 struct writeback_control *wbc, void *_data) 1778 { 1779 struct fuse_fill_wb_data *data = _data; 1780 struct fuse_req *req = data->req; 1781 struct inode *inode = data->inode; 1782 struct fuse_conn *fc = get_fuse_conn(inode); 1783 struct page *tmp_page; 1784 bool is_writeback; 1785 int err; 1786 1787 if (!data->ff) { 1788 err = -EIO; 1789 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode)); 1790 if (!data->ff) 1791 goto out_unlock; 1792 } 1793 1794 /* 1795 * Being under writeback is unlikely but possible. For example direct 1796 * read to an mmaped fuse file will set the page dirty twice; once when 1797 * the pages are faulted with get_user_pages(), and then after the read 1798 * completed. 1799 */ 1800 is_writeback = fuse_page_is_writeback(inode, page->index); 1801 1802 if (req && req->num_pages && 1803 (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ || 1804 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_write || 1805 data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) { 1806 fuse_writepages_send(data); 1807 data->req = NULL; 1808 } 1809 err = -ENOMEM; 1810 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1811 if (!tmp_page) 1812 goto out_unlock; 1813 1814 /* 1815 * The page must not be redirtied until the writeout is completed 1816 * (i.e. userspace has sent a reply to the write request). Otherwise 1817 * there could be more than one temporary page instance for each real 1818 * page. 1819 * 1820 * This is ensured by holding the page lock in page_mkwrite() while 1821 * checking fuse_page_is_writeback(). We already hold the page lock 1822 * since clear_page_dirty_for_io() and keep it held until we add the 1823 * request to the fi->writepages list and increment req->num_pages. 1824 * After this fuse_page_is_writeback() will indicate that the page is 1825 * under writeback, so we can release the page lock. 1826 */ 1827 if (data->req == NULL) { 1828 struct fuse_inode *fi = get_fuse_inode(inode); 1829 1830 err = -ENOMEM; 1831 req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ); 1832 if (!req) { 1833 __free_page(tmp_page); 1834 goto out_unlock; 1835 } 1836 1837 fuse_write_fill(req, data->ff, page_offset(page), 0); 1838 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1839 req->misc.write.next = NULL; 1840 req->in.argpages = 1; 1841 req->background = 1; 1842 req->num_pages = 0; 1843 req->end = fuse_writepage_end; 1844 req->inode = inode; 1845 1846 spin_lock(&fc->lock); 1847 list_add(&req->writepages_entry, &fi->writepages); 1848 spin_unlock(&fc->lock); 1849 1850 data->req = req; 1851 } 1852 set_page_writeback(page); 1853 1854 copy_highpage(tmp_page, page); 1855 req->pages[req->num_pages] = tmp_page; 1856 req->page_descs[req->num_pages].offset = 0; 1857 req->page_descs[req->num_pages].length = PAGE_SIZE; 1858 1859 inc_bdi_stat(inode_to_bdi(inode), BDI_WRITEBACK); 1860 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP); 1861 1862 err = 0; 1863 if (is_writeback && fuse_writepage_in_flight(req, page)) { 1864 end_page_writeback(page); 1865 data->req = NULL; 1866 goto out_unlock; 1867 } 1868 data->orig_pages[req->num_pages] = page; 1869 1870 /* 1871 * Protected by fc->lock against concurrent access by 1872 * fuse_page_is_writeback(). 1873 */ 1874 spin_lock(&fc->lock); 1875 req->num_pages++; 1876 spin_unlock(&fc->lock); 1877 1878 out_unlock: 1879 unlock_page(page); 1880 1881 return err; 1882 } 1883 1884 static int fuse_writepages(struct address_space *mapping, 1885 struct writeback_control *wbc) 1886 { 1887 struct inode *inode = mapping->host; 1888 struct fuse_fill_wb_data data; 1889 int err; 1890 1891 err = -EIO; 1892 if (is_bad_inode(inode)) 1893 goto out; 1894 1895 data.inode = inode; 1896 data.req = NULL; 1897 data.ff = NULL; 1898 1899 err = -ENOMEM; 1900 data.orig_pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, 1901 sizeof(struct page *), 1902 GFP_NOFS); 1903 if (!data.orig_pages) 1904 goto out; 1905 1906 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 1907 if (data.req) { 1908 /* Ignore errors if we can write at least one page */ 1909 BUG_ON(!data.req->num_pages); 1910 fuse_writepages_send(&data); 1911 err = 0; 1912 } 1913 if (data.ff) 1914 fuse_file_put(data.ff, false); 1915 1916 kfree(data.orig_pages); 1917 out: 1918 return err; 1919 } 1920 1921 /* 1922 * It's worthy to make sure that space is reserved on disk for the write, 1923 * but how to implement it without killing performance need more thinking. 1924 */ 1925 static int fuse_write_begin(struct file *file, struct address_space *mapping, 1926 loff_t pos, unsigned len, unsigned flags, 1927 struct page **pagep, void **fsdata) 1928 { 1929 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1930 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 1931 struct page *page; 1932 loff_t fsize; 1933 int err = -ENOMEM; 1934 1935 WARN_ON(!fc->writeback_cache); 1936 1937 page = grab_cache_page_write_begin(mapping, index, flags); 1938 if (!page) 1939 goto error; 1940 1941 fuse_wait_on_page_writeback(mapping->host, page->index); 1942 1943 if (PageUptodate(page) || len == PAGE_CACHE_SIZE) 1944 goto success; 1945 /* 1946 * Check if the start this page comes after the end of file, in which 1947 * case the readpage can be optimized away. 1948 */ 1949 fsize = i_size_read(mapping->host); 1950 if (fsize <= (pos & PAGE_CACHE_MASK)) { 1951 size_t off = pos & ~PAGE_CACHE_MASK; 1952 if (off) 1953 zero_user_segment(page, 0, off); 1954 goto success; 1955 } 1956 err = fuse_do_readpage(file, page); 1957 if (err) 1958 goto cleanup; 1959 success: 1960 *pagep = page; 1961 return 0; 1962 1963 cleanup: 1964 unlock_page(page); 1965 page_cache_release(page); 1966 error: 1967 return err; 1968 } 1969 1970 static int fuse_write_end(struct file *file, struct address_space *mapping, 1971 loff_t pos, unsigned len, unsigned copied, 1972 struct page *page, void *fsdata) 1973 { 1974 struct inode *inode = page->mapping->host; 1975 1976 if (!PageUptodate(page)) { 1977 /* Zero any unwritten bytes at the end of the page */ 1978 size_t endoff = (pos + copied) & ~PAGE_CACHE_MASK; 1979 if (endoff) 1980 zero_user_segment(page, endoff, PAGE_CACHE_SIZE); 1981 SetPageUptodate(page); 1982 } 1983 1984 fuse_write_update_size(inode, pos + copied); 1985 set_page_dirty(page); 1986 unlock_page(page); 1987 page_cache_release(page); 1988 1989 return copied; 1990 } 1991 1992 static int fuse_launder_page(struct page *page) 1993 { 1994 int err = 0; 1995 if (clear_page_dirty_for_io(page)) { 1996 struct inode *inode = page->mapping->host; 1997 err = fuse_writepage_locked(page); 1998 if (!err) 1999 fuse_wait_on_page_writeback(inode, page->index); 2000 } 2001 return err; 2002 } 2003 2004 /* 2005 * Write back dirty pages now, because there may not be any suitable 2006 * open files later 2007 */ 2008 static void fuse_vma_close(struct vm_area_struct *vma) 2009 { 2010 filemap_write_and_wait(vma->vm_file->f_mapping); 2011 } 2012 2013 /* 2014 * Wait for writeback against this page to complete before allowing it 2015 * to be marked dirty again, and hence written back again, possibly 2016 * before the previous writepage completed. 2017 * 2018 * Block here, instead of in ->writepage(), so that the userspace fs 2019 * can only block processes actually operating on the filesystem. 2020 * 2021 * Otherwise unprivileged userspace fs would be able to block 2022 * unrelated: 2023 * 2024 * - page migration 2025 * - sync(2) 2026 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2027 */ 2028 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2029 { 2030 struct page *page = vmf->page; 2031 struct inode *inode = file_inode(vma->vm_file); 2032 2033 file_update_time(vma->vm_file); 2034 lock_page(page); 2035 if (page->mapping != inode->i_mapping) { 2036 unlock_page(page); 2037 return VM_FAULT_NOPAGE; 2038 } 2039 2040 fuse_wait_on_page_writeback(inode, page->index); 2041 return VM_FAULT_LOCKED; 2042 } 2043 2044 static const struct vm_operations_struct fuse_file_vm_ops = { 2045 .close = fuse_vma_close, 2046 .fault = filemap_fault, 2047 .map_pages = filemap_map_pages, 2048 .page_mkwrite = fuse_page_mkwrite, 2049 }; 2050 2051 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2052 { 2053 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2054 fuse_link_write_file(file); 2055 2056 file_accessed(file); 2057 vma->vm_ops = &fuse_file_vm_ops; 2058 return 0; 2059 } 2060 2061 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma) 2062 { 2063 /* Can't provide the coherency needed for MAP_SHARED */ 2064 if (vma->vm_flags & VM_MAYSHARE) 2065 return -ENODEV; 2066 2067 invalidate_inode_pages2(file->f_mapping); 2068 2069 return generic_file_mmap(file, vma); 2070 } 2071 2072 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl, 2073 struct file_lock *fl) 2074 { 2075 switch (ffl->type) { 2076 case F_UNLCK: 2077 break; 2078 2079 case F_RDLCK: 2080 case F_WRLCK: 2081 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2082 ffl->end < ffl->start) 2083 return -EIO; 2084 2085 fl->fl_start = ffl->start; 2086 fl->fl_end = ffl->end; 2087 fl->fl_pid = ffl->pid; 2088 break; 2089 2090 default: 2091 return -EIO; 2092 } 2093 fl->fl_type = ffl->type; 2094 return 0; 2095 } 2096 2097 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2098 const struct file_lock *fl, int opcode, pid_t pid, 2099 int flock, struct fuse_lk_in *inarg) 2100 { 2101 struct inode *inode = file_inode(file); 2102 struct fuse_conn *fc = get_fuse_conn(inode); 2103 struct fuse_file *ff = file->private_data; 2104 2105 memset(inarg, 0, sizeof(*inarg)); 2106 inarg->fh = ff->fh; 2107 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2108 inarg->lk.start = fl->fl_start; 2109 inarg->lk.end = fl->fl_end; 2110 inarg->lk.type = fl->fl_type; 2111 inarg->lk.pid = pid; 2112 if (flock) 2113 inarg->lk_flags |= FUSE_LK_FLOCK; 2114 args->in.h.opcode = opcode; 2115 args->in.h.nodeid = get_node_id(inode); 2116 args->in.numargs = 1; 2117 args->in.args[0].size = sizeof(*inarg); 2118 args->in.args[0].value = inarg; 2119 } 2120 2121 static int fuse_getlk(struct file *file, struct file_lock *fl) 2122 { 2123 struct inode *inode = file_inode(file); 2124 struct fuse_conn *fc = get_fuse_conn(inode); 2125 FUSE_ARGS(args); 2126 struct fuse_lk_in inarg; 2127 struct fuse_lk_out outarg; 2128 int err; 2129 2130 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2131 args.out.numargs = 1; 2132 args.out.args[0].size = sizeof(outarg); 2133 args.out.args[0].value = &outarg; 2134 err = fuse_simple_request(fc, &args); 2135 if (!err) 2136 err = convert_fuse_file_lock(&outarg.lk, fl); 2137 2138 return err; 2139 } 2140 2141 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2142 { 2143 struct inode *inode = file_inode(file); 2144 struct fuse_conn *fc = get_fuse_conn(inode); 2145 FUSE_ARGS(args); 2146 struct fuse_lk_in inarg; 2147 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2148 pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0; 2149 int err; 2150 2151 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2152 /* NLM needs asynchronous locks, which we don't support yet */ 2153 return -ENOLCK; 2154 } 2155 2156 /* Unlock on close is handled by the flush method */ 2157 if (fl->fl_flags & FL_CLOSE) 2158 return 0; 2159 2160 fuse_lk_fill(&args, file, fl, opcode, pid, flock, &inarg); 2161 err = fuse_simple_request(fc, &args); 2162 2163 /* locking is restartable */ 2164 if (err == -EINTR) 2165 err = -ERESTARTSYS; 2166 2167 return err; 2168 } 2169 2170 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2171 { 2172 struct inode *inode = file_inode(file); 2173 struct fuse_conn *fc = get_fuse_conn(inode); 2174 int err; 2175 2176 if (cmd == F_CANCELLK) { 2177 err = 0; 2178 } else if (cmd == F_GETLK) { 2179 if (fc->no_lock) { 2180 posix_test_lock(file, fl); 2181 err = 0; 2182 } else 2183 err = fuse_getlk(file, fl); 2184 } else { 2185 if (fc->no_lock) 2186 err = posix_lock_file(file, fl, NULL); 2187 else 2188 err = fuse_setlk(file, fl, 0); 2189 } 2190 return err; 2191 } 2192 2193 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2194 { 2195 struct inode *inode = file_inode(file); 2196 struct fuse_conn *fc = get_fuse_conn(inode); 2197 int err; 2198 2199 if (fc->no_flock) { 2200 err = flock_lock_file_wait(file, fl); 2201 } else { 2202 struct fuse_file *ff = file->private_data; 2203 2204 /* emulate flock with POSIX locks */ 2205 ff->flock = true; 2206 err = fuse_setlk(file, fl, 1); 2207 } 2208 2209 return err; 2210 } 2211 2212 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2213 { 2214 struct inode *inode = mapping->host; 2215 struct fuse_conn *fc = get_fuse_conn(inode); 2216 FUSE_ARGS(args); 2217 struct fuse_bmap_in inarg; 2218 struct fuse_bmap_out outarg; 2219 int err; 2220 2221 if (!inode->i_sb->s_bdev || fc->no_bmap) 2222 return 0; 2223 2224 memset(&inarg, 0, sizeof(inarg)); 2225 inarg.block = block; 2226 inarg.blocksize = inode->i_sb->s_blocksize; 2227 args.in.h.opcode = FUSE_BMAP; 2228 args.in.h.nodeid = get_node_id(inode); 2229 args.in.numargs = 1; 2230 args.in.args[0].size = sizeof(inarg); 2231 args.in.args[0].value = &inarg; 2232 args.out.numargs = 1; 2233 args.out.args[0].size = sizeof(outarg); 2234 args.out.args[0].value = &outarg; 2235 err = fuse_simple_request(fc, &args); 2236 if (err == -ENOSYS) 2237 fc->no_bmap = 1; 2238 2239 return err ? 0 : outarg.block; 2240 } 2241 2242 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2243 { 2244 loff_t retval; 2245 struct inode *inode = file_inode(file); 2246 2247 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2248 if (whence == SEEK_CUR || whence == SEEK_SET) 2249 return generic_file_llseek(file, offset, whence); 2250 2251 mutex_lock(&inode->i_mutex); 2252 retval = fuse_update_attributes(inode, NULL, file, NULL); 2253 if (!retval) 2254 retval = generic_file_llseek(file, offset, whence); 2255 mutex_unlock(&inode->i_mutex); 2256 2257 return retval; 2258 } 2259 2260 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov, 2261 unsigned int nr_segs, size_t bytes, bool to_user) 2262 { 2263 struct iov_iter ii; 2264 int page_idx = 0; 2265 2266 if (!bytes) 2267 return 0; 2268 2269 iov_iter_init(&ii, to_user ? READ : WRITE, iov, nr_segs, bytes); 2270 2271 while (iov_iter_count(&ii)) { 2272 struct page *page = pages[page_idx++]; 2273 size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii)); 2274 void *kaddr; 2275 2276 kaddr = kmap(page); 2277 2278 while (todo) { 2279 char __user *uaddr = ii.iov->iov_base + ii.iov_offset; 2280 size_t iov_len = ii.iov->iov_len - ii.iov_offset; 2281 size_t copy = min(todo, iov_len); 2282 size_t left; 2283 2284 if (!to_user) 2285 left = copy_from_user(kaddr, uaddr, copy); 2286 else 2287 left = copy_to_user(uaddr, kaddr, copy); 2288 2289 if (unlikely(left)) 2290 return -EFAULT; 2291 2292 iov_iter_advance(&ii, copy); 2293 todo -= copy; 2294 kaddr += copy; 2295 } 2296 2297 kunmap(page); 2298 } 2299 2300 return 0; 2301 } 2302 2303 /* 2304 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2305 * ABI was defined to be 'struct iovec' which is different on 32bit 2306 * and 64bit. Fortunately we can determine which structure the server 2307 * used from the size of the reply. 2308 */ 2309 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2310 size_t transferred, unsigned count, 2311 bool is_compat) 2312 { 2313 #ifdef CONFIG_COMPAT 2314 if (count * sizeof(struct compat_iovec) == transferred) { 2315 struct compat_iovec *ciov = src; 2316 unsigned i; 2317 2318 /* 2319 * With this interface a 32bit server cannot support 2320 * non-compat (i.e. ones coming from 64bit apps) ioctl 2321 * requests 2322 */ 2323 if (!is_compat) 2324 return -EINVAL; 2325 2326 for (i = 0; i < count; i++) { 2327 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2328 dst[i].iov_len = ciov[i].iov_len; 2329 } 2330 return 0; 2331 } 2332 #endif 2333 2334 if (count * sizeof(struct iovec) != transferred) 2335 return -EIO; 2336 2337 memcpy(dst, src, transferred); 2338 return 0; 2339 } 2340 2341 /* Make sure iov_length() won't overflow */ 2342 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count) 2343 { 2344 size_t n; 2345 u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT; 2346 2347 for (n = 0; n < count; n++, iov++) { 2348 if (iov->iov_len > (size_t) max) 2349 return -ENOMEM; 2350 max -= iov->iov_len; 2351 } 2352 return 0; 2353 } 2354 2355 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2356 void *src, size_t transferred, unsigned count, 2357 bool is_compat) 2358 { 2359 unsigned i; 2360 struct fuse_ioctl_iovec *fiov = src; 2361 2362 if (fc->minor < 16) { 2363 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2364 count, is_compat); 2365 } 2366 2367 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2368 return -EIO; 2369 2370 for (i = 0; i < count; i++) { 2371 /* Did the server supply an inappropriate value? */ 2372 if (fiov[i].base != (unsigned long) fiov[i].base || 2373 fiov[i].len != (unsigned long) fiov[i].len) 2374 return -EIO; 2375 2376 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2377 dst[i].iov_len = (size_t) fiov[i].len; 2378 2379 #ifdef CONFIG_COMPAT 2380 if (is_compat && 2381 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2382 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2383 return -EIO; 2384 #endif 2385 } 2386 2387 return 0; 2388 } 2389 2390 2391 /* 2392 * For ioctls, there is no generic way to determine how much memory 2393 * needs to be read and/or written. Furthermore, ioctls are allowed 2394 * to dereference the passed pointer, so the parameter requires deep 2395 * copying but FUSE has no idea whatsoever about what to copy in or 2396 * out. 2397 * 2398 * This is solved by allowing FUSE server to retry ioctl with 2399 * necessary in/out iovecs. Let's assume the ioctl implementation 2400 * needs to read in the following structure. 2401 * 2402 * struct a { 2403 * char *buf; 2404 * size_t buflen; 2405 * } 2406 * 2407 * On the first callout to FUSE server, inarg->in_size and 2408 * inarg->out_size will be NULL; then, the server completes the ioctl 2409 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2410 * the actual iov array to 2411 * 2412 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2413 * 2414 * which tells FUSE to copy in the requested area and retry the ioctl. 2415 * On the second round, the server has access to the structure and 2416 * from that it can tell what to look for next, so on the invocation, 2417 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2418 * 2419 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2420 * { .iov_base = a.buf, .iov_len = a.buflen } } 2421 * 2422 * FUSE will copy both struct a and the pointed buffer from the 2423 * process doing the ioctl and retry ioctl with both struct a and the 2424 * buffer. 2425 * 2426 * This time, FUSE server has everything it needs and completes ioctl 2427 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2428 * 2429 * Copying data out works the same way. 2430 * 2431 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2432 * automatically initializes in and out iovs by decoding @cmd with 2433 * _IOC_* macros and the server is not allowed to request RETRY. This 2434 * limits ioctl data transfers to well-formed ioctls and is the forced 2435 * behavior for all FUSE servers. 2436 */ 2437 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2438 unsigned int flags) 2439 { 2440 struct fuse_file *ff = file->private_data; 2441 struct fuse_conn *fc = ff->fc; 2442 struct fuse_ioctl_in inarg = { 2443 .fh = ff->fh, 2444 .cmd = cmd, 2445 .arg = arg, 2446 .flags = flags 2447 }; 2448 struct fuse_ioctl_out outarg; 2449 struct fuse_req *req = NULL; 2450 struct page **pages = NULL; 2451 struct iovec *iov_page = NULL; 2452 struct iovec *in_iov = NULL, *out_iov = NULL; 2453 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages; 2454 size_t in_size, out_size, transferred; 2455 int err; 2456 2457 #if BITS_PER_LONG == 32 2458 inarg.flags |= FUSE_IOCTL_32BIT; 2459 #else 2460 if (flags & FUSE_IOCTL_COMPAT) 2461 inarg.flags |= FUSE_IOCTL_32BIT; 2462 #endif 2463 2464 /* assume all the iovs returned by client always fits in a page */ 2465 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2466 2467 err = -ENOMEM; 2468 pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL); 2469 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2470 if (!pages || !iov_page) 2471 goto out; 2472 2473 /* 2474 * If restricted, initialize IO parameters as encoded in @cmd. 2475 * RETRY from server is not allowed. 2476 */ 2477 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2478 struct iovec *iov = iov_page; 2479 2480 iov->iov_base = (void __user *)arg; 2481 iov->iov_len = _IOC_SIZE(cmd); 2482 2483 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2484 in_iov = iov; 2485 in_iovs = 1; 2486 } 2487 2488 if (_IOC_DIR(cmd) & _IOC_READ) { 2489 out_iov = iov; 2490 out_iovs = 1; 2491 } 2492 } 2493 2494 retry: 2495 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2496 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2497 2498 /* 2499 * Out data can be used either for actual out data or iovs, 2500 * make sure there always is at least one page. 2501 */ 2502 out_size = max_t(size_t, out_size, PAGE_SIZE); 2503 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2504 2505 /* make sure there are enough buffer pages and init request with them */ 2506 err = -ENOMEM; 2507 if (max_pages > FUSE_MAX_PAGES_PER_REQ) 2508 goto out; 2509 while (num_pages < max_pages) { 2510 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2511 if (!pages[num_pages]) 2512 goto out; 2513 num_pages++; 2514 } 2515 2516 req = fuse_get_req(fc, num_pages); 2517 if (IS_ERR(req)) { 2518 err = PTR_ERR(req); 2519 req = NULL; 2520 goto out; 2521 } 2522 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages); 2523 req->num_pages = num_pages; 2524 fuse_page_descs_length_init(req, 0, req->num_pages); 2525 2526 /* okay, let's send it to the client */ 2527 req->in.h.opcode = FUSE_IOCTL; 2528 req->in.h.nodeid = ff->nodeid; 2529 req->in.numargs = 1; 2530 req->in.args[0].size = sizeof(inarg); 2531 req->in.args[0].value = &inarg; 2532 if (in_size) { 2533 req->in.numargs++; 2534 req->in.args[1].size = in_size; 2535 req->in.argpages = 1; 2536 2537 err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size, 2538 false); 2539 if (err) 2540 goto out; 2541 } 2542 2543 req->out.numargs = 2; 2544 req->out.args[0].size = sizeof(outarg); 2545 req->out.args[0].value = &outarg; 2546 req->out.args[1].size = out_size; 2547 req->out.argpages = 1; 2548 req->out.argvar = 1; 2549 2550 fuse_request_send(fc, req); 2551 err = req->out.h.error; 2552 transferred = req->out.args[1].size; 2553 fuse_put_request(fc, req); 2554 req = NULL; 2555 if (err) 2556 goto out; 2557 2558 /* did it ask for retry? */ 2559 if (outarg.flags & FUSE_IOCTL_RETRY) { 2560 void *vaddr; 2561 2562 /* no retry if in restricted mode */ 2563 err = -EIO; 2564 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2565 goto out; 2566 2567 in_iovs = outarg.in_iovs; 2568 out_iovs = outarg.out_iovs; 2569 2570 /* 2571 * Make sure things are in boundary, separate checks 2572 * are to protect against overflow. 2573 */ 2574 err = -ENOMEM; 2575 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2576 out_iovs > FUSE_IOCTL_MAX_IOV || 2577 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2578 goto out; 2579 2580 vaddr = kmap_atomic(pages[0]); 2581 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2582 transferred, in_iovs + out_iovs, 2583 (flags & FUSE_IOCTL_COMPAT) != 0); 2584 kunmap_atomic(vaddr); 2585 if (err) 2586 goto out; 2587 2588 in_iov = iov_page; 2589 out_iov = in_iov + in_iovs; 2590 2591 err = fuse_verify_ioctl_iov(in_iov, in_iovs); 2592 if (err) 2593 goto out; 2594 2595 err = fuse_verify_ioctl_iov(out_iov, out_iovs); 2596 if (err) 2597 goto out; 2598 2599 goto retry; 2600 } 2601 2602 err = -EIO; 2603 if (transferred > inarg.out_size) 2604 goto out; 2605 2606 err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true); 2607 out: 2608 if (req) 2609 fuse_put_request(fc, req); 2610 free_page((unsigned long) iov_page); 2611 while (num_pages) 2612 __free_page(pages[--num_pages]); 2613 kfree(pages); 2614 2615 return err ? err : outarg.result; 2616 } 2617 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2618 2619 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2620 unsigned long arg, unsigned int flags) 2621 { 2622 struct inode *inode = file_inode(file); 2623 struct fuse_conn *fc = get_fuse_conn(inode); 2624 2625 if (!fuse_allow_current_process(fc)) 2626 return -EACCES; 2627 2628 if (is_bad_inode(inode)) 2629 return -EIO; 2630 2631 return fuse_do_ioctl(file, cmd, arg, flags); 2632 } 2633 2634 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2635 unsigned long arg) 2636 { 2637 return fuse_ioctl_common(file, cmd, arg, 0); 2638 } 2639 2640 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2641 unsigned long arg) 2642 { 2643 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2644 } 2645 2646 /* 2647 * All files which have been polled are linked to RB tree 2648 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2649 * find the matching one. 2650 */ 2651 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2652 struct rb_node **parent_out) 2653 { 2654 struct rb_node **link = &fc->polled_files.rb_node; 2655 struct rb_node *last = NULL; 2656 2657 while (*link) { 2658 struct fuse_file *ff; 2659 2660 last = *link; 2661 ff = rb_entry(last, struct fuse_file, polled_node); 2662 2663 if (kh < ff->kh) 2664 link = &last->rb_left; 2665 else if (kh > ff->kh) 2666 link = &last->rb_right; 2667 else 2668 return link; 2669 } 2670 2671 if (parent_out) 2672 *parent_out = last; 2673 return link; 2674 } 2675 2676 /* 2677 * The file is about to be polled. Make sure it's on the polled_files 2678 * RB tree. Note that files once added to the polled_files tree are 2679 * not removed before the file is released. This is because a file 2680 * polled once is likely to be polled again. 2681 */ 2682 static void fuse_register_polled_file(struct fuse_conn *fc, 2683 struct fuse_file *ff) 2684 { 2685 spin_lock(&fc->lock); 2686 if (RB_EMPTY_NODE(&ff->polled_node)) { 2687 struct rb_node **link, *uninitialized_var(parent); 2688 2689 link = fuse_find_polled_node(fc, ff->kh, &parent); 2690 BUG_ON(*link); 2691 rb_link_node(&ff->polled_node, parent, link); 2692 rb_insert_color(&ff->polled_node, &fc->polled_files); 2693 } 2694 spin_unlock(&fc->lock); 2695 } 2696 2697 unsigned fuse_file_poll(struct file *file, poll_table *wait) 2698 { 2699 struct fuse_file *ff = file->private_data; 2700 struct fuse_conn *fc = ff->fc; 2701 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2702 struct fuse_poll_out outarg; 2703 FUSE_ARGS(args); 2704 int err; 2705 2706 if (fc->no_poll) 2707 return DEFAULT_POLLMASK; 2708 2709 poll_wait(file, &ff->poll_wait, wait); 2710 inarg.events = (__u32)poll_requested_events(wait); 2711 2712 /* 2713 * Ask for notification iff there's someone waiting for it. 2714 * The client may ignore the flag and always notify. 2715 */ 2716 if (waitqueue_active(&ff->poll_wait)) { 2717 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2718 fuse_register_polled_file(fc, ff); 2719 } 2720 2721 args.in.h.opcode = FUSE_POLL; 2722 args.in.h.nodeid = ff->nodeid; 2723 args.in.numargs = 1; 2724 args.in.args[0].size = sizeof(inarg); 2725 args.in.args[0].value = &inarg; 2726 args.out.numargs = 1; 2727 args.out.args[0].size = sizeof(outarg); 2728 args.out.args[0].value = &outarg; 2729 err = fuse_simple_request(fc, &args); 2730 2731 if (!err) 2732 return outarg.revents; 2733 if (err == -ENOSYS) { 2734 fc->no_poll = 1; 2735 return DEFAULT_POLLMASK; 2736 } 2737 return POLLERR; 2738 } 2739 EXPORT_SYMBOL_GPL(fuse_file_poll); 2740 2741 /* 2742 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2743 * wakes up the poll waiters. 2744 */ 2745 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2746 struct fuse_notify_poll_wakeup_out *outarg) 2747 { 2748 u64 kh = outarg->kh; 2749 struct rb_node **link; 2750 2751 spin_lock(&fc->lock); 2752 2753 link = fuse_find_polled_node(fc, kh, NULL); 2754 if (*link) { 2755 struct fuse_file *ff; 2756 2757 ff = rb_entry(*link, struct fuse_file, polled_node); 2758 wake_up_interruptible_sync(&ff->poll_wait); 2759 } 2760 2761 spin_unlock(&fc->lock); 2762 return 0; 2763 } 2764 2765 static void fuse_do_truncate(struct file *file) 2766 { 2767 struct inode *inode = file->f_mapping->host; 2768 struct iattr attr; 2769 2770 attr.ia_valid = ATTR_SIZE; 2771 attr.ia_size = i_size_read(inode); 2772 2773 attr.ia_file = file; 2774 attr.ia_valid |= ATTR_FILE; 2775 2776 fuse_do_setattr(inode, &attr, file); 2777 } 2778 2779 static inline loff_t fuse_round_up(loff_t off) 2780 { 2781 return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT); 2782 } 2783 2784 static ssize_t 2785 fuse_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, 2786 loff_t offset) 2787 { 2788 DECLARE_COMPLETION_ONSTACK(wait); 2789 ssize_t ret = 0; 2790 struct file *file = iocb->ki_filp; 2791 struct fuse_file *ff = file->private_data; 2792 bool async_dio = ff->fc->async_dio; 2793 loff_t pos = 0; 2794 struct inode *inode; 2795 loff_t i_size; 2796 size_t count = iov_iter_count(iter); 2797 struct fuse_io_priv *io; 2798 2799 pos = offset; 2800 inode = file->f_mapping->host; 2801 i_size = i_size_read(inode); 2802 2803 if ((rw == READ) && (offset > i_size)) 2804 return 0; 2805 2806 /* optimization for short read */ 2807 if (async_dio && rw != WRITE && offset + count > i_size) { 2808 if (offset >= i_size) 2809 return 0; 2810 count = min_t(loff_t, count, fuse_round_up(i_size - offset)); 2811 iov_iter_truncate(iter, count); 2812 } 2813 2814 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2815 if (!io) 2816 return -ENOMEM; 2817 spin_lock_init(&io->lock); 2818 io->reqs = 1; 2819 io->bytes = -1; 2820 io->size = 0; 2821 io->offset = offset; 2822 io->write = (rw == WRITE); 2823 io->err = 0; 2824 io->file = file; 2825 /* 2826 * By default, we want to optimize all I/Os with async request 2827 * submission to the client filesystem if supported. 2828 */ 2829 io->async = async_dio; 2830 io->iocb = iocb; 2831 2832 /* 2833 * We cannot asynchronously extend the size of a file. We have no method 2834 * to wait on real async I/O requests, so we must submit this request 2835 * synchronously. 2836 */ 2837 if (!is_sync_kiocb(iocb) && (offset + count > i_size) && rw == WRITE) 2838 io->async = false; 2839 2840 if (io->async && is_sync_kiocb(iocb)) 2841 io->done = &wait; 2842 2843 if (rw == WRITE) { 2844 ret = generic_write_checks(file, &pos, &count, 0); 2845 if (!ret) { 2846 iov_iter_truncate(iter, count); 2847 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 2848 } 2849 2850 fuse_invalidate_attr(inode); 2851 } else { 2852 ret = __fuse_direct_read(io, iter, &pos); 2853 } 2854 2855 if (io->async) { 2856 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2857 2858 /* we have a non-extending, async request, so return */ 2859 if (!is_sync_kiocb(iocb)) 2860 return -EIOCBQUEUED; 2861 2862 wait_for_completion(&wait); 2863 ret = fuse_get_res_by_io(io); 2864 } 2865 2866 kfree(io); 2867 2868 if (rw == WRITE) { 2869 if (ret > 0) 2870 fuse_write_update_size(inode, pos); 2871 else if (ret < 0 && offset + count > i_size) 2872 fuse_do_truncate(file); 2873 } 2874 2875 return ret; 2876 } 2877 2878 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2879 loff_t length) 2880 { 2881 struct fuse_file *ff = file->private_data; 2882 struct inode *inode = file_inode(file); 2883 struct fuse_inode *fi = get_fuse_inode(inode); 2884 struct fuse_conn *fc = ff->fc; 2885 FUSE_ARGS(args); 2886 struct fuse_fallocate_in inarg = { 2887 .fh = ff->fh, 2888 .offset = offset, 2889 .length = length, 2890 .mode = mode 2891 }; 2892 int err; 2893 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 2894 (mode & FALLOC_FL_PUNCH_HOLE); 2895 2896 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2897 return -EOPNOTSUPP; 2898 2899 if (fc->no_fallocate) 2900 return -EOPNOTSUPP; 2901 2902 if (lock_inode) { 2903 mutex_lock(&inode->i_mutex); 2904 if (mode & FALLOC_FL_PUNCH_HOLE) { 2905 loff_t endbyte = offset + length - 1; 2906 err = filemap_write_and_wait_range(inode->i_mapping, 2907 offset, endbyte); 2908 if (err) 2909 goto out; 2910 2911 fuse_sync_writes(inode); 2912 } 2913 } 2914 2915 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2916 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2917 2918 args.in.h.opcode = FUSE_FALLOCATE; 2919 args.in.h.nodeid = ff->nodeid; 2920 args.in.numargs = 1; 2921 args.in.args[0].size = sizeof(inarg); 2922 args.in.args[0].value = &inarg; 2923 err = fuse_simple_request(fc, &args); 2924 if (err == -ENOSYS) { 2925 fc->no_fallocate = 1; 2926 err = -EOPNOTSUPP; 2927 } 2928 if (err) 2929 goto out; 2930 2931 /* we could have extended the file */ 2932 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 2933 bool changed = fuse_write_update_size(inode, offset + length); 2934 2935 if (changed && fc->writeback_cache) 2936 file_update_time(file); 2937 } 2938 2939 if (mode & FALLOC_FL_PUNCH_HOLE) 2940 truncate_pagecache_range(inode, offset, offset + length - 1); 2941 2942 fuse_invalidate_attr(inode); 2943 2944 out: 2945 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2946 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2947 2948 if (lock_inode) 2949 mutex_unlock(&inode->i_mutex); 2950 2951 return err; 2952 } 2953 2954 static const struct file_operations fuse_file_operations = { 2955 .llseek = fuse_file_llseek, 2956 .read_iter = fuse_file_read_iter, 2957 .write_iter = fuse_file_write_iter, 2958 .mmap = fuse_file_mmap, 2959 .open = fuse_open, 2960 .flush = fuse_flush, 2961 .release = fuse_release, 2962 .fsync = fuse_fsync, 2963 .lock = fuse_file_lock, 2964 .flock = fuse_file_flock, 2965 .splice_read = generic_file_splice_read, 2966 .unlocked_ioctl = fuse_file_ioctl, 2967 .compat_ioctl = fuse_file_compat_ioctl, 2968 .poll = fuse_file_poll, 2969 .fallocate = fuse_file_fallocate, 2970 }; 2971 2972 static const struct file_operations fuse_direct_io_file_operations = { 2973 .llseek = fuse_file_llseek, 2974 .read_iter = fuse_direct_read_iter, 2975 .write_iter = fuse_direct_write_iter, 2976 .mmap = fuse_direct_mmap, 2977 .open = fuse_open, 2978 .flush = fuse_flush, 2979 .release = fuse_release, 2980 .fsync = fuse_fsync, 2981 .lock = fuse_file_lock, 2982 .flock = fuse_file_flock, 2983 .unlocked_ioctl = fuse_file_ioctl, 2984 .compat_ioctl = fuse_file_compat_ioctl, 2985 .poll = fuse_file_poll, 2986 .fallocate = fuse_file_fallocate, 2987 /* no splice_read */ 2988 }; 2989 2990 static const struct address_space_operations fuse_file_aops = { 2991 .readpage = fuse_readpage, 2992 .writepage = fuse_writepage, 2993 .writepages = fuse_writepages, 2994 .launder_page = fuse_launder_page, 2995 .readpages = fuse_readpages, 2996 .set_page_dirty = __set_page_dirty_nobuffers, 2997 .bmap = fuse_bmap, 2998 .direct_IO = fuse_direct_IO, 2999 .write_begin = fuse_write_begin, 3000 .write_end = fuse_write_end, 3001 }; 3002 3003 void fuse_init_file_inode(struct inode *inode) 3004 { 3005 inode->i_fop = &fuse_file_operations; 3006 inode->i_data.a_ops = &fuse_file_aops; 3007 } 3008