xref: /linux/fs/fs-writeback.c (revision 54f5a57e266318d72f84fda95805099986a7e201)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
50 	enum wb_reason reason;		/* why was writeback initiated? */
51 
52 	struct list_head list;		/* pending work list */
53 	struct completion *done;	/* set if the caller waits */
54 };
55 
56 /**
57  * writeback_in_progress - determine whether there is writeback in progress
58  * @bdi: the device's backing_dev_info structure.
59  *
60  * Determine whether there is writeback waiting to be handled against a
61  * backing device.
62  */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65 	return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68 
69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71 	struct super_block *sb = inode->i_sb;
72 
73 	if (sb_is_blkdev_sb(sb))
74 		return inode->i_mapping->backing_dev_info;
75 
76 	return sb->s_bdi;
77 }
78 
79 static inline struct inode *wb_inode(struct list_head *head)
80 {
81 	return list_entry(head, struct inode, i_wb_list);
82 }
83 
84 /*
85  * Include the creation of the trace points after defining the
86  * wb_writeback_work structure and inline functions so that the definition
87  * remains local to this file.
88  */
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/writeback.h>
91 
92 static void bdi_queue_work(struct backing_dev_info *bdi,
93 			   struct wb_writeback_work *work)
94 {
95 	trace_writeback_queue(bdi, work);
96 
97 	spin_lock_bh(&bdi->wb_lock);
98 	list_add_tail(&work->list, &bdi->work_list);
99 	spin_unlock_bh(&bdi->wb_lock);
100 
101 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
102 }
103 
104 static void
105 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
106 		      bool range_cyclic, enum wb_reason reason)
107 {
108 	struct wb_writeback_work *work;
109 
110 	/*
111 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
112 	 * wakeup the thread for old dirty data writeback
113 	 */
114 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
115 	if (!work) {
116 		trace_writeback_nowork(bdi);
117 		mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
118 		return;
119 	}
120 
121 	work->sync_mode	= WB_SYNC_NONE;
122 	work->nr_pages	= nr_pages;
123 	work->range_cyclic = range_cyclic;
124 	work->reason	= reason;
125 
126 	bdi_queue_work(bdi, work);
127 }
128 
129 /**
130  * bdi_start_writeback - start writeback
131  * @bdi: the backing device to write from
132  * @nr_pages: the number of pages to write
133  * @reason: reason why some writeback work was initiated
134  *
135  * Description:
136  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
137  *   started when this function returns, we make no guarantees on
138  *   completion. Caller need not hold sb s_umount semaphore.
139  *
140  */
141 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
142 			enum wb_reason reason)
143 {
144 	__bdi_start_writeback(bdi, nr_pages, true, reason);
145 }
146 
147 /**
148  * bdi_start_background_writeback - start background writeback
149  * @bdi: the backing device to write from
150  *
151  * Description:
152  *   This makes sure WB_SYNC_NONE background writeback happens. When
153  *   this function returns, it is only guaranteed that for given BDI
154  *   some IO is happening if we are over background dirty threshold.
155  *   Caller need not hold sb s_umount semaphore.
156  */
157 void bdi_start_background_writeback(struct backing_dev_info *bdi)
158 {
159 	/*
160 	 * We just wake up the flusher thread. It will perform background
161 	 * writeback as soon as there is no other work to do.
162 	 */
163 	trace_writeback_wake_background(bdi);
164 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
165 }
166 
167 /*
168  * Remove the inode from the writeback list it is on.
169  */
170 void inode_wb_list_del(struct inode *inode)
171 {
172 	struct backing_dev_info *bdi = inode_to_bdi(inode);
173 
174 	spin_lock(&bdi->wb.list_lock);
175 	list_del_init(&inode->i_wb_list);
176 	spin_unlock(&bdi->wb.list_lock);
177 }
178 
179 /*
180  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
181  * furthest end of its superblock's dirty-inode list.
182  *
183  * Before stamping the inode's ->dirtied_when, we check to see whether it is
184  * already the most-recently-dirtied inode on the b_dirty list.  If that is
185  * the case then the inode must have been redirtied while it was being written
186  * out and we don't reset its dirtied_when.
187  */
188 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
189 {
190 	assert_spin_locked(&wb->list_lock);
191 	if (!list_empty(&wb->b_dirty)) {
192 		struct inode *tail;
193 
194 		tail = wb_inode(wb->b_dirty.next);
195 		if (time_before(inode->dirtied_when, tail->dirtied_when))
196 			inode->dirtied_when = jiffies;
197 	}
198 	list_move(&inode->i_wb_list, &wb->b_dirty);
199 }
200 
201 /*
202  * requeue inode for re-scanning after bdi->b_io list is exhausted.
203  */
204 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
205 {
206 	assert_spin_locked(&wb->list_lock);
207 	list_move(&inode->i_wb_list, &wb->b_more_io);
208 }
209 
210 static void inode_sync_complete(struct inode *inode)
211 {
212 	inode->i_state &= ~I_SYNC;
213 	/* If inode is clean an unused, put it into LRU now... */
214 	inode_add_lru(inode);
215 	/* Waiters must see I_SYNC cleared before being woken up */
216 	smp_mb();
217 	wake_up_bit(&inode->i_state, __I_SYNC);
218 }
219 
220 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
221 {
222 	bool ret = time_after(inode->dirtied_when, t);
223 #ifndef CONFIG_64BIT
224 	/*
225 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
226 	 * It _appears_ to be in the future, but is actually in distant past.
227 	 * This test is necessary to prevent such wrapped-around relative times
228 	 * from permanently stopping the whole bdi writeback.
229 	 */
230 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
231 #endif
232 	return ret;
233 }
234 
235 /*
236  * Move expired (dirtied before work->older_than_this) dirty inodes from
237  * @delaying_queue to @dispatch_queue.
238  */
239 static int move_expired_inodes(struct list_head *delaying_queue,
240 			       struct list_head *dispatch_queue,
241 			       struct wb_writeback_work *work)
242 {
243 	LIST_HEAD(tmp);
244 	struct list_head *pos, *node;
245 	struct super_block *sb = NULL;
246 	struct inode *inode;
247 	int do_sb_sort = 0;
248 	int moved = 0;
249 
250 	while (!list_empty(delaying_queue)) {
251 		inode = wb_inode(delaying_queue->prev);
252 		if (work->older_than_this &&
253 		    inode_dirtied_after(inode, *work->older_than_this))
254 			break;
255 		list_move(&inode->i_wb_list, &tmp);
256 		moved++;
257 		if (sb_is_blkdev_sb(inode->i_sb))
258 			continue;
259 		if (sb && sb != inode->i_sb)
260 			do_sb_sort = 1;
261 		sb = inode->i_sb;
262 	}
263 
264 	/* just one sb in list, splice to dispatch_queue and we're done */
265 	if (!do_sb_sort) {
266 		list_splice(&tmp, dispatch_queue);
267 		goto out;
268 	}
269 
270 	/* Move inodes from one superblock together */
271 	while (!list_empty(&tmp)) {
272 		sb = wb_inode(tmp.prev)->i_sb;
273 		list_for_each_prev_safe(pos, node, &tmp) {
274 			inode = wb_inode(pos);
275 			if (inode->i_sb == sb)
276 				list_move(&inode->i_wb_list, dispatch_queue);
277 		}
278 	}
279 out:
280 	return moved;
281 }
282 
283 /*
284  * Queue all expired dirty inodes for io, eldest first.
285  * Before
286  *         newly dirtied     b_dirty    b_io    b_more_io
287  *         =============>    gf         edc     BA
288  * After
289  *         newly dirtied     b_dirty    b_io    b_more_io
290  *         =============>    g          fBAedc
291  *                                           |
292  *                                           +--> dequeue for IO
293  */
294 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
295 {
296 	int moved;
297 	assert_spin_locked(&wb->list_lock);
298 	list_splice_init(&wb->b_more_io, &wb->b_io);
299 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
300 	trace_writeback_queue_io(wb, work, moved);
301 }
302 
303 static int write_inode(struct inode *inode, struct writeback_control *wbc)
304 {
305 	int ret;
306 
307 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
308 		trace_writeback_write_inode_start(inode, wbc);
309 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
310 		trace_writeback_write_inode(inode, wbc);
311 		return ret;
312 	}
313 	return 0;
314 }
315 
316 /*
317  * Wait for writeback on an inode to complete. Called with i_lock held.
318  * Caller must make sure inode cannot go away when we drop i_lock.
319  */
320 static void __inode_wait_for_writeback(struct inode *inode)
321 	__releases(inode->i_lock)
322 	__acquires(inode->i_lock)
323 {
324 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
325 	wait_queue_head_t *wqh;
326 
327 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
328 	while (inode->i_state & I_SYNC) {
329 		spin_unlock(&inode->i_lock);
330 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
331 		spin_lock(&inode->i_lock);
332 	}
333 }
334 
335 /*
336  * Wait for writeback on an inode to complete. Caller must have inode pinned.
337  */
338 void inode_wait_for_writeback(struct inode *inode)
339 {
340 	spin_lock(&inode->i_lock);
341 	__inode_wait_for_writeback(inode);
342 	spin_unlock(&inode->i_lock);
343 }
344 
345 /*
346  * Sleep until I_SYNC is cleared. This function must be called with i_lock
347  * held and drops it. It is aimed for callers not holding any inode reference
348  * so once i_lock is dropped, inode can go away.
349  */
350 static void inode_sleep_on_writeback(struct inode *inode)
351 	__releases(inode->i_lock)
352 {
353 	DEFINE_WAIT(wait);
354 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
355 	int sleep;
356 
357 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
358 	sleep = inode->i_state & I_SYNC;
359 	spin_unlock(&inode->i_lock);
360 	if (sleep)
361 		schedule();
362 	finish_wait(wqh, &wait);
363 }
364 
365 /*
366  * Find proper writeback list for the inode depending on its current state and
367  * possibly also change of its state while we were doing writeback.  Here we
368  * handle things such as livelock prevention or fairness of writeback among
369  * inodes. This function can be called only by flusher thread - noone else
370  * processes all inodes in writeback lists and requeueing inodes behind flusher
371  * thread's back can have unexpected consequences.
372  */
373 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
374 			  struct writeback_control *wbc)
375 {
376 	if (inode->i_state & I_FREEING)
377 		return;
378 
379 	/*
380 	 * Sync livelock prevention. Each inode is tagged and synced in one
381 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
382 	 * the dirty time to prevent enqueue and sync it again.
383 	 */
384 	if ((inode->i_state & I_DIRTY) &&
385 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
386 		inode->dirtied_when = jiffies;
387 
388 	if (wbc->pages_skipped) {
389 		/*
390 		 * writeback is not making progress due to locked
391 		 * buffers. Skip this inode for now.
392 		 */
393 		redirty_tail(inode, wb);
394 		return;
395 	}
396 
397 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
398 		/*
399 		 * We didn't write back all the pages.  nfs_writepages()
400 		 * sometimes bales out without doing anything.
401 		 */
402 		if (wbc->nr_to_write <= 0) {
403 			/* Slice used up. Queue for next turn. */
404 			requeue_io(inode, wb);
405 		} else {
406 			/*
407 			 * Writeback blocked by something other than
408 			 * congestion. Delay the inode for some time to
409 			 * avoid spinning on the CPU (100% iowait)
410 			 * retrying writeback of the dirty page/inode
411 			 * that cannot be performed immediately.
412 			 */
413 			redirty_tail(inode, wb);
414 		}
415 	} else if (inode->i_state & I_DIRTY) {
416 		/*
417 		 * Filesystems can dirty the inode during writeback operations,
418 		 * such as delayed allocation during submission or metadata
419 		 * updates after data IO completion.
420 		 */
421 		redirty_tail(inode, wb);
422 	} else {
423 		/* The inode is clean. Remove from writeback lists. */
424 		list_del_init(&inode->i_wb_list);
425 	}
426 }
427 
428 /*
429  * Write out an inode and its dirty pages. Do not update the writeback list
430  * linkage. That is left to the caller. The caller is also responsible for
431  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
432  */
433 static int
434 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
435 {
436 	struct address_space *mapping = inode->i_mapping;
437 	long nr_to_write = wbc->nr_to_write;
438 	unsigned dirty;
439 	int ret;
440 
441 	WARN_ON(!(inode->i_state & I_SYNC));
442 
443 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
444 
445 	ret = do_writepages(mapping, wbc);
446 
447 	/*
448 	 * Make sure to wait on the data before writing out the metadata.
449 	 * This is important for filesystems that modify metadata on data
450 	 * I/O completion. We don't do it for sync(2) writeback because it has a
451 	 * separate, external IO completion path and ->sync_fs for guaranteeing
452 	 * inode metadata is written back correctly.
453 	 */
454 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
455 		int err = filemap_fdatawait(mapping);
456 		if (ret == 0)
457 			ret = err;
458 	}
459 
460 	/*
461 	 * Some filesystems may redirty the inode during the writeback
462 	 * due to delalloc, clear dirty metadata flags right before
463 	 * write_inode()
464 	 */
465 	spin_lock(&inode->i_lock);
466 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
467 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
468 		inode->i_state &= ~I_DIRTY_PAGES;
469 	dirty = inode->i_state & I_DIRTY;
470 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
471 	spin_unlock(&inode->i_lock);
472 	/* Don't write the inode if only I_DIRTY_PAGES was set */
473 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
474 		int err = write_inode(inode, wbc);
475 		if (ret == 0)
476 			ret = err;
477 	}
478 	trace_writeback_single_inode(inode, wbc, nr_to_write);
479 	return ret;
480 }
481 
482 /*
483  * Write out an inode's dirty pages. Either the caller has an active reference
484  * on the inode or the inode has I_WILL_FREE set.
485  *
486  * This function is designed to be called for writing back one inode which
487  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
488  * and does more profound writeback list handling in writeback_sb_inodes().
489  */
490 static int
491 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
492 		       struct writeback_control *wbc)
493 {
494 	int ret = 0;
495 
496 	spin_lock(&inode->i_lock);
497 	if (!atomic_read(&inode->i_count))
498 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
499 	else
500 		WARN_ON(inode->i_state & I_WILL_FREE);
501 
502 	if (inode->i_state & I_SYNC) {
503 		if (wbc->sync_mode != WB_SYNC_ALL)
504 			goto out;
505 		/*
506 		 * It's a data-integrity sync. We must wait. Since callers hold
507 		 * inode reference or inode has I_WILL_FREE set, it cannot go
508 		 * away under us.
509 		 */
510 		__inode_wait_for_writeback(inode);
511 	}
512 	WARN_ON(inode->i_state & I_SYNC);
513 	/*
514 	 * Skip inode if it is clean and we have no outstanding writeback in
515 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
516 	 * function since flusher thread may be doing for example sync in
517 	 * parallel and if we move the inode, it could get skipped. So here we
518 	 * make sure inode is on some writeback list and leave it there unless
519 	 * we have completely cleaned the inode.
520 	 */
521 	if (!(inode->i_state & I_DIRTY) &&
522 	    (wbc->sync_mode != WB_SYNC_ALL ||
523 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
524 		goto out;
525 	inode->i_state |= I_SYNC;
526 	spin_unlock(&inode->i_lock);
527 
528 	ret = __writeback_single_inode(inode, wbc);
529 
530 	spin_lock(&wb->list_lock);
531 	spin_lock(&inode->i_lock);
532 	/*
533 	 * If inode is clean, remove it from writeback lists. Otherwise don't
534 	 * touch it. See comment above for explanation.
535 	 */
536 	if (!(inode->i_state & I_DIRTY))
537 		list_del_init(&inode->i_wb_list);
538 	spin_unlock(&wb->list_lock);
539 	inode_sync_complete(inode);
540 out:
541 	spin_unlock(&inode->i_lock);
542 	return ret;
543 }
544 
545 static long writeback_chunk_size(struct backing_dev_info *bdi,
546 				 struct wb_writeback_work *work)
547 {
548 	long pages;
549 
550 	/*
551 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
552 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
553 	 * here avoids calling into writeback_inodes_wb() more than once.
554 	 *
555 	 * The intended call sequence for WB_SYNC_ALL writeback is:
556 	 *
557 	 *      wb_writeback()
558 	 *          writeback_sb_inodes()       <== called only once
559 	 *              write_cache_pages()     <== called once for each inode
560 	 *                   (quickly) tag currently dirty pages
561 	 *                   (maybe slowly) sync all tagged pages
562 	 */
563 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
564 		pages = LONG_MAX;
565 	else {
566 		pages = min(bdi->avg_write_bandwidth / 2,
567 			    global_dirty_limit / DIRTY_SCOPE);
568 		pages = min(pages, work->nr_pages);
569 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
570 				   MIN_WRITEBACK_PAGES);
571 	}
572 
573 	return pages;
574 }
575 
576 /*
577  * Write a portion of b_io inodes which belong to @sb.
578  *
579  * Return the number of pages and/or inodes written.
580  */
581 static long writeback_sb_inodes(struct super_block *sb,
582 				struct bdi_writeback *wb,
583 				struct wb_writeback_work *work)
584 {
585 	struct writeback_control wbc = {
586 		.sync_mode		= work->sync_mode,
587 		.tagged_writepages	= work->tagged_writepages,
588 		.for_kupdate		= work->for_kupdate,
589 		.for_background		= work->for_background,
590 		.for_sync		= work->for_sync,
591 		.range_cyclic		= work->range_cyclic,
592 		.range_start		= 0,
593 		.range_end		= LLONG_MAX,
594 	};
595 	unsigned long start_time = jiffies;
596 	long write_chunk;
597 	long wrote = 0;  /* count both pages and inodes */
598 
599 	while (!list_empty(&wb->b_io)) {
600 		struct inode *inode = wb_inode(wb->b_io.prev);
601 
602 		if (inode->i_sb != sb) {
603 			if (work->sb) {
604 				/*
605 				 * We only want to write back data for this
606 				 * superblock, move all inodes not belonging
607 				 * to it back onto the dirty list.
608 				 */
609 				redirty_tail(inode, wb);
610 				continue;
611 			}
612 
613 			/*
614 			 * The inode belongs to a different superblock.
615 			 * Bounce back to the caller to unpin this and
616 			 * pin the next superblock.
617 			 */
618 			break;
619 		}
620 
621 		/*
622 		 * Don't bother with new inodes or inodes being freed, first
623 		 * kind does not need periodic writeout yet, and for the latter
624 		 * kind writeout is handled by the freer.
625 		 */
626 		spin_lock(&inode->i_lock);
627 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
628 			spin_unlock(&inode->i_lock);
629 			redirty_tail(inode, wb);
630 			continue;
631 		}
632 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
633 			/*
634 			 * If this inode is locked for writeback and we are not
635 			 * doing writeback-for-data-integrity, move it to
636 			 * b_more_io so that writeback can proceed with the
637 			 * other inodes on s_io.
638 			 *
639 			 * We'll have another go at writing back this inode
640 			 * when we completed a full scan of b_io.
641 			 */
642 			spin_unlock(&inode->i_lock);
643 			requeue_io(inode, wb);
644 			trace_writeback_sb_inodes_requeue(inode);
645 			continue;
646 		}
647 		spin_unlock(&wb->list_lock);
648 
649 		/*
650 		 * We already requeued the inode if it had I_SYNC set and we
651 		 * are doing WB_SYNC_NONE writeback. So this catches only the
652 		 * WB_SYNC_ALL case.
653 		 */
654 		if (inode->i_state & I_SYNC) {
655 			/* Wait for I_SYNC. This function drops i_lock... */
656 			inode_sleep_on_writeback(inode);
657 			/* Inode may be gone, start again */
658 			spin_lock(&wb->list_lock);
659 			continue;
660 		}
661 		inode->i_state |= I_SYNC;
662 		spin_unlock(&inode->i_lock);
663 
664 		write_chunk = writeback_chunk_size(wb->bdi, work);
665 		wbc.nr_to_write = write_chunk;
666 		wbc.pages_skipped = 0;
667 
668 		/*
669 		 * We use I_SYNC to pin the inode in memory. While it is set
670 		 * evict_inode() will wait so the inode cannot be freed.
671 		 */
672 		__writeback_single_inode(inode, &wbc);
673 
674 		work->nr_pages -= write_chunk - wbc.nr_to_write;
675 		wrote += write_chunk - wbc.nr_to_write;
676 		spin_lock(&wb->list_lock);
677 		spin_lock(&inode->i_lock);
678 		if (!(inode->i_state & I_DIRTY))
679 			wrote++;
680 		requeue_inode(inode, wb, &wbc);
681 		inode_sync_complete(inode);
682 		spin_unlock(&inode->i_lock);
683 		cond_resched_lock(&wb->list_lock);
684 		/*
685 		 * bail out to wb_writeback() often enough to check
686 		 * background threshold and other termination conditions.
687 		 */
688 		if (wrote) {
689 			if (time_is_before_jiffies(start_time + HZ / 10UL))
690 				break;
691 			if (work->nr_pages <= 0)
692 				break;
693 		}
694 	}
695 	return wrote;
696 }
697 
698 static long __writeback_inodes_wb(struct bdi_writeback *wb,
699 				  struct wb_writeback_work *work)
700 {
701 	unsigned long start_time = jiffies;
702 	long wrote = 0;
703 
704 	while (!list_empty(&wb->b_io)) {
705 		struct inode *inode = wb_inode(wb->b_io.prev);
706 		struct super_block *sb = inode->i_sb;
707 
708 		if (!grab_super_passive(sb)) {
709 			/*
710 			 * grab_super_passive() may fail consistently due to
711 			 * s_umount being grabbed by someone else. Don't use
712 			 * requeue_io() to avoid busy retrying the inode/sb.
713 			 */
714 			redirty_tail(inode, wb);
715 			continue;
716 		}
717 		wrote += writeback_sb_inodes(sb, wb, work);
718 		drop_super(sb);
719 
720 		/* refer to the same tests at the end of writeback_sb_inodes */
721 		if (wrote) {
722 			if (time_is_before_jiffies(start_time + HZ / 10UL))
723 				break;
724 			if (work->nr_pages <= 0)
725 				break;
726 		}
727 	}
728 	/* Leave any unwritten inodes on b_io */
729 	return wrote;
730 }
731 
732 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
733 				enum wb_reason reason)
734 {
735 	struct wb_writeback_work work = {
736 		.nr_pages	= nr_pages,
737 		.sync_mode	= WB_SYNC_NONE,
738 		.range_cyclic	= 1,
739 		.reason		= reason,
740 	};
741 
742 	spin_lock(&wb->list_lock);
743 	if (list_empty(&wb->b_io))
744 		queue_io(wb, &work);
745 	__writeback_inodes_wb(wb, &work);
746 	spin_unlock(&wb->list_lock);
747 
748 	return nr_pages - work.nr_pages;
749 }
750 
751 static bool over_bground_thresh(struct backing_dev_info *bdi)
752 {
753 	unsigned long background_thresh, dirty_thresh;
754 
755 	global_dirty_limits(&background_thresh, &dirty_thresh);
756 
757 	if (global_page_state(NR_FILE_DIRTY) +
758 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
759 		return true;
760 
761 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
762 				bdi_dirty_limit(bdi, background_thresh))
763 		return true;
764 
765 	return false;
766 }
767 
768 /*
769  * Called under wb->list_lock. If there are multiple wb per bdi,
770  * only the flusher working on the first wb should do it.
771  */
772 static void wb_update_bandwidth(struct bdi_writeback *wb,
773 				unsigned long start_time)
774 {
775 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
776 }
777 
778 /*
779  * Explicit flushing or periodic writeback of "old" data.
780  *
781  * Define "old": the first time one of an inode's pages is dirtied, we mark the
782  * dirtying-time in the inode's address_space.  So this periodic writeback code
783  * just walks the superblock inode list, writing back any inodes which are
784  * older than a specific point in time.
785  *
786  * Try to run once per dirty_writeback_interval.  But if a writeback event
787  * takes longer than a dirty_writeback_interval interval, then leave a
788  * one-second gap.
789  *
790  * older_than_this takes precedence over nr_to_write.  So we'll only write back
791  * all dirty pages if they are all attached to "old" mappings.
792  */
793 static long wb_writeback(struct bdi_writeback *wb,
794 			 struct wb_writeback_work *work)
795 {
796 	unsigned long wb_start = jiffies;
797 	long nr_pages = work->nr_pages;
798 	unsigned long oldest_jif;
799 	struct inode *inode;
800 	long progress;
801 
802 	oldest_jif = jiffies;
803 	work->older_than_this = &oldest_jif;
804 
805 	spin_lock(&wb->list_lock);
806 	for (;;) {
807 		/*
808 		 * Stop writeback when nr_pages has been consumed
809 		 */
810 		if (work->nr_pages <= 0)
811 			break;
812 
813 		/*
814 		 * Background writeout and kupdate-style writeback may
815 		 * run forever. Stop them if there is other work to do
816 		 * so that e.g. sync can proceed. They'll be restarted
817 		 * after the other works are all done.
818 		 */
819 		if ((work->for_background || work->for_kupdate) &&
820 		    !list_empty(&wb->bdi->work_list))
821 			break;
822 
823 		/*
824 		 * For background writeout, stop when we are below the
825 		 * background dirty threshold
826 		 */
827 		if (work->for_background && !over_bground_thresh(wb->bdi))
828 			break;
829 
830 		/*
831 		 * Kupdate and background works are special and we want to
832 		 * include all inodes that need writing. Livelock avoidance is
833 		 * handled by these works yielding to any other work so we are
834 		 * safe.
835 		 */
836 		if (work->for_kupdate) {
837 			oldest_jif = jiffies -
838 				msecs_to_jiffies(dirty_expire_interval * 10);
839 		} else if (work->for_background)
840 			oldest_jif = jiffies;
841 
842 		trace_writeback_start(wb->bdi, work);
843 		if (list_empty(&wb->b_io))
844 			queue_io(wb, work);
845 		if (work->sb)
846 			progress = writeback_sb_inodes(work->sb, wb, work);
847 		else
848 			progress = __writeback_inodes_wb(wb, work);
849 		trace_writeback_written(wb->bdi, work);
850 
851 		wb_update_bandwidth(wb, wb_start);
852 
853 		/*
854 		 * Did we write something? Try for more
855 		 *
856 		 * Dirty inodes are moved to b_io for writeback in batches.
857 		 * The completion of the current batch does not necessarily
858 		 * mean the overall work is done. So we keep looping as long
859 		 * as made some progress on cleaning pages or inodes.
860 		 */
861 		if (progress)
862 			continue;
863 		/*
864 		 * No more inodes for IO, bail
865 		 */
866 		if (list_empty(&wb->b_more_io))
867 			break;
868 		/*
869 		 * Nothing written. Wait for some inode to
870 		 * become available for writeback. Otherwise
871 		 * we'll just busyloop.
872 		 */
873 		if (!list_empty(&wb->b_more_io))  {
874 			trace_writeback_wait(wb->bdi, work);
875 			inode = wb_inode(wb->b_more_io.prev);
876 			spin_lock(&inode->i_lock);
877 			spin_unlock(&wb->list_lock);
878 			/* This function drops i_lock... */
879 			inode_sleep_on_writeback(inode);
880 			spin_lock(&wb->list_lock);
881 		}
882 	}
883 	spin_unlock(&wb->list_lock);
884 
885 	return nr_pages - work->nr_pages;
886 }
887 
888 /*
889  * Return the next wb_writeback_work struct that hasn't been processed yet.
890  */
891 static struct wb_writeback_work *
892 get_next_work_item(struct backing_dev_info *bdi)
893 {
894 	struct wb_writeback_work *work = NULL;
895 
896 	spin_lock_bh(&bdi->wb_lock);
897 	if (!list_empty(&bdi->work_list)) {
898 		work = list_entry(bdi->work_list.next,
899 				  struct wb_writeback_work, list);
900 		list_del_init(&work->list);
901 	}
902 	spin_unlock_bh(&bdi->wb_lock);
903 	return work;
904 }
905 
906 /*
907  * Add in the number of potentially dirty inodes, because each inode
908  * write can dirty pagecache in the underlying blockdev.
909  */
910 static unsigned long get_nr_dirty_pages(void)
911 {
912 	return global_page_state(NR_FILE_DIRTY) +
913 		global_page_state(NR_UNSTABLE_NFS) +
914 		get_nr_dirty_inodes();
915 }
916 
917 static long wb_check_background_flush(struct bdi_writeback *wb)
918 {
919 	if (over_bground_thresh(wb->bdi)) {
920 
921 		struct wb_writeback_work work = {
922 			.nr_pages	= LONG_MAX,
923 			.sync_mode	= WB_SYNC_NONE,
924 			.for_background	= 1,
925 			.range_cyclic	= 1,
926 			.reason		= WB_REASON_BACKGROUND,
927 		};
928 
929 		return wb_writeback(wb, &work);
930 	}
931 
932 	return 0;
933 }
934 
935 static long wb_check_old_data_flush(struct bdi_writeback *wb)
936 {
937 	unsigned long expired;
938 	long nr_pages;
939 
940 	/*
941 	 * When set to zero, disable periodic writeback
942 	 */
943 	if (!dirty_writeback_interval)
944 		return 0;
945 
946 	expired = wb->last_old_flush +
947 			msecs_to_jiffies(dirty_writeback_interval * 10);
948 	if (time_before(jiffies, expired))
949 		return 0;
950 
951 	wb->last_old_flush = jiffies;
952 	nr_pages = get_nr_dirty_pages();
953 
954 	if (nr_pages) {
955 		struct wb_writeback_work work = {
956 			.nr_pages	= nr_pages,
957 			.sync_mode	= WB_SYNC_NONE,
958 			.for_kupdate	= 1,
959 			.range_cyclic	= 1,
960 			.reason		= WB_REASON_PERIODIC,
961 		};
962 
963 		return wb_writeback(wb, &work);
964 	}
965 
966 	return 0;
967 }
968 
969 /*
970  * Retrieve work items and do the writeback they describe
971  */
972 static long wb_do_writeback(struct bdi_writeback *wb)
973 {
974 	struct backing_dev_info *bdi = wb->bdi;
975 	struct wb_writeback_work *work;
976 	long wrote = 0;
977 
978 	set_bit(BDI_writeback_running, &wb->bdi->state);
979 	while ((work = get_next_work_item(bdi)) != NULL) {
980 
981 		trace_writeback_exec(bdi, work);
982 
983 		wrote += wb_writeback(wb, work);
984 
985 		/*
986 		 * Notify the caller of completion if this is a synchronous
987 		 * work item, otherwise just free it.
988 		 */
989 		if (work->done)
990 			complete(work->done);
991 		else
992 			kfree(work);
993 	}
994 
995 	/*
996 	 * Check for periodic writeback, kupdated() style
997 	 */
998 	wrote += wb_check_old_data_flush(wb);
999 	wrote += wb_check_background_flush(wb);
1000 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1001 
1002 	return wrote;
1003 }
1004 
1005 /*
1006  * Handle writeback of dirty data for the device backed by this bdi. Also
1007  * reschedules periodically and does kupdated style flushing.
1008  */
1009 void bdi_writeback_workfn(struct work_struct *work)
1010 {
1011 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1012 						struct bdi_writeback, dwork);
1013 	struct backing_dev_info *bdi = wb->bdi;
1014 	long pages_written;
1015 
1016 	set_worker_desc("flush-%s", dev_name(bdi->dev));
1017 	current->flags |= PF_SWAPWRITE;
1018 
1019 	if (likely(!current_is_workqueue_rescuer() ||
1020 		   list_empty(&bdi->bdi_list))) {
1021 		/*
1022 		 * The normal path.  Keep writing back @bdi until its
1023 		 * work_list is empty.  Note that this path is also taken
1024 		 * if @bdi is shutting down even when we're running off the
1025 		 * rescuer as work_list needs to be drained.
1026 		 */
1027 		do {
1028 			pages_written = wb_do_writeback(wb);
1029 			trace_writeback_pages_written(pages_written);
1030 		} while (!list_empty(&bdi->work_list));
1031 	} else {
1032 		/*
1033 		 * bdi_wq can't get enough workers and we're running off
1034 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1035 		 * enough for efficient IO.
1036 		 */
1037 		pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1038 						    WB_REASON_FORKER_THREAD);
1039 		trace_writeback_pages_written(pages_written);
1040 	}
1041 
1042 	if (!list_empty(&bdi->work_list) ||
1043 	    (wb_has_dirty_io(wb) && dirty_writeback_interval))
1044 		queue_delayed_work(bdi_wq, &wb->dwork,
1045 			msecs_to_jiffies(dirty_writeback_interval * 10));
1046 
1047 	current->flags &= ~PF_SWAPWRITE;
1048 }
1049 
1050 /*
1051  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1052  * the whole world.
1053  */
1054 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1055 {
1056 	struct backing_dev_info *bdi;
1057 
1058 	if (!nr_pages)
1059 		nr_pages = get_nr_dirty_pages();
1060 
1061 	rcu_read_lock();
1062 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1063 		if (!bdi_has_dirty_io(bdi))
1064 			continue;
1065 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1066 	}
1067 	rcu_read_unlock();
1068 }
1069 
1070 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1071 {
1072 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1073 		struct dentry *dentry;
1074 		const char *name = "?";
1075 
1076 		dentry = d_find_alias(inode);
1077 		if (dentry) {
1078 			spin_lock(&dentry->d_lock);
1079 			name = (const char *) dentry->d_name.name;
1080 		}
1081 		printk(KERN_DEBUG
1082 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1083 		       current->comm, task_pid_nr(current), inode->i_ino,
1084 		       name, inode->i_sb->s_id);
1085 		if (dentry) {
1086 			spin_unlock(&dentry->d_lock);
1087 			dput(dentry);
1088 		}
1089 	}
1090 }
1091 
1092 /**
1093  *	__mark_inode_dirty -	internal function
1094  *	@inode: inode to mark
1095  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1096  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1097  *  	mark_inode_dirty_sync.
1098  *
1099  * Put the inode on the super block's dirty list.
1100  *
1101  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1102  * dirty list only if it is hashed or if it refers to a blockdev.
1103  * If it was not hashed, it will never be added to the dirty list
1104  * even if it is later hashed, as it will have been marked dirty already.
1105  *
1106  * In short, make sure you hash any inodes _before_ you start marking
1107  * them dirty.
1108  *
1109  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1110  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1111  * the kernel-internal blockdev inode represents the dirtying time of the
1112  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1113  * page->mapping->host, so the page-dirtying time is recorded in the internal
1114  * blockdev inode.
1115  */
1116 void __mark_inode_dirty(struct inode *inode, int flags)
1117 {
1118 	struct super_block *sb = inode->i_sb;
1119 	struct backing_dev_info *bdi = NULL;
1120 
1121 	/*
1122 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1123 	 * dirty the inode itself
1124 	 */
1125 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1126 		trace_writeback_dirty_inode_start(inode, flags);
1127 
1128 		if (sb->s_op->dirty_inode)
1129 			sb->s_op->dirty_inode(inode, flags);
1130 
1131 		trace_writeback_dirty_inode(inode, flags);
1132 	}
1133 
1134 	/*
1135 	 * make sure that changes are seen by all cpus before we test i_state
1136 	 * -- mikulas
1137 	 */
1138 	smp_mb();
1139 
1140 	/* avoid the locking if we can */
1141 	if ((inode->i_state & flags) == flags)
1142 		return;
1143 
1144 	if (unlikely(block_dump))
1145 		block_dump___mark_inode_dirty(inode);
1146 
1147 	spin_lock(&inode->i_lock);
1148 	if ((inode->i_state & flags) != flags) {
1149 		const int was_dirty = inode->i_state & I_DIRTY;
1150 
1151 		inode->i_state |= flags;
1152 
1153 		/*
1154 		 * If the inode is being synced, just update its dirty state.
1155 		 * The unlocker will place the inode on the appropriate
1156 		 * superblock list, based upon its state.
1157 		 */
1158 		if (inode->i_state & I_SYNC)
1159 			goto out_unlock_inode;
1160 
1161 		/*
1162 		 * Only add valid (hashed) inodes to the superblock's
1163 		 * dirty list.  Add blockdev inodes as well.
1164 		 */
1165 		if (!S_ISBLK(inode->i_mode)) {
1166 			if (inode_unhashed(inode))
1167 				goto out_unlock_inode;
1168 		}
1169 		if (inode->i_state & I_FREEING)
1170 			goto out_unlock_inode;
1171 
1172 		/*
1173 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1174 		 * reposition it (that would break b_dirty time-ordering).
1175 		 */
1176 		if (!was_dirty) {
1177 			bool wakeup_bdi = false;
1178 			bdi = inode_to_bdi(inode);
1179 
1180 			spin_unlock(&inode->i_lock);
1181 			spin_lock(&bdi->wb.list_lock);
1182 			if (bdi_cap_writeback_dirty(bdi)) {
1183 				WARN(!test_bit(BDI_registered, &bdi->state),
1184 				     "bdi-%s not registered\n", bdi->name);
1185 
1186 				/*
1187 				 * If this is the first dirty inode for this
1188 				 * bdi, we have to wake-up the corresponding
1189 				 * bdi thread to make sure background
1190 				 * write-back happens later.
1191 				 */
1192 				if (!wb_has_dirty_io(&bdi->wb))
1193 					wakeup_bdi = true;
1194 			}
1195 
1196 			inode->dirtied_when = jiffies;
1197 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1198 			spin_unlock(&bdi->wb.list_lock);
1199 
1200 			if (wakeup_bdi)
1201 				bdi_wakeup_thread_delayed(bdi);
1202 			return;
1203 		}
1204 	}
1205 out_unlock_inode:
1206 	spin_unlock(&inode->i_lock);
1207 
1208 }
1209 EXPORT_SYMBOL(__mark_inode_dirty);
1210 
1211 static void wait_sb_inodes(struct super_block *sb)
1212 {
1213 	struct inode *inode, *old_inode = NULL;
1214 
1215 	/*
1216 	 * We need to be protected against the filesystem going from
1217 	 * r/o to r/w or vice versa.
1218 	 */
1219 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1220 
1221 	spin_lock(&inode_sb_list_lock);
1222 
1223 	/*
1224 	 * Data integrity sync. Must wait for all pages under writeback,
1225 	 * because there may have been pages dirtied before our sync
1226 	 * call, but which had writeout started before we write it out.
1227 	 * In which case, the inode may not be on the dirty list, but
1228 	 * we still have to wait for that writeout.
1229 	 */
1230 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1231 		struct address_space *mapping = inode->i_mapping;
1232 
1233 		spin_lock(&inode->i_lock);
1234 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1235 		    (mapping->nrpages == 0)) {
1236 			spin_unlock(&inode->i_lock);
1237 			continue;
1238 		}
1239 		__iget(inode);
1240 		spin_unlock(&inode->i_lock);
1241 		spin_unlock(&inode_sb_list_lock);
1242 
1243 		/*
1244 		 * We hold a reference to 'inode' so it couldn't have been
1245 		 * removed from s_inodes list while we dropped the
1246 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1247 		 * be holding the last reference and we cannot iput it under
1248 		 * inode_sb_list_lock. So we keep the reference and iput it
1249 		 * later.
1250 		 */
1251 		iput(old_inode);
1252 		old_inode = inode;
1253 
1254 		filemap_fdatawait(mapping);
1255 
1256 		cond_resched();
1257 
1258 		spin_lock(&inode_sb_list_lock);
1259 	}
1260 	spin_unlock(&inode_sb_list_lock);
1261 	iput(old_inode);
1262 }
1263 
1264 /**
1265  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1266  * @sb: the superblock
1267  * @nr: the number of pages to write
1268  * @reason: reason why some writeback work initiated
1269  *
1270  * Start writeback on some inodes on this super_block. No guarantees are made
1271  * on how many (if any) will be written, and this function does not wait
1272  * for IO completion of submitted IO.
1273  */
1274 void writeback_inodes_sb_nr(struct super_block *sb,
1275 			    unsigned long nr,
1276 			    enum wb_reason reason)
1277 {
1278 	DECLARE_COMPLETION_ONSTACK(done);
1279 	struct wb_writeback_work work = {
1280 		.sb			= sb,
1281 		.sync_mode		= WB_SYNC_NONE,
1282 		.tagged_writepages	= 1,
1283 		.done			= &done,
1284 		.nr_pages		= nr,
1285 		.reason			= reason,
1286 	};
1287 
1288 	if (sb->s_bdi == &noop_backing_dev_info)
1289 		return;
1290 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1291 	bdi_queue_work(sb->s_bdi, &work);
1292 	wait_for_completion(&done);
1293 }
1294 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1295 
1296 /**
1297  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1298  * @sb: the superblock
1299  * @reason: reason why some writeback work was initiated
1300  *
1301  * Start writeback on some inodes on this super_block. No guarantees are made
1302  * on how many (if any) will be written, and this function does not wait
1303  * for IO completion of submitted IO.
1304  */
1305 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1306 {
1307 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1308 }
1309 EXPORT_SYMBOL(writeback_inodes_sb);
1310 
1311 /**
1312  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1313  * @sb: the superblock
1314  * @nr: the number of pages to write
1315  * @reason: the reason of writeback
1316  *
1317  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1318  * Returns 1 if writeback was started, 0 if not.
1319  */
1320 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1321 				  unsigned long nr,
1322 				  enum wb_reason reason)
1323 {
1324 	if (writeback_in_progress(sb->s_bdi))
1325 		return 1;
1326 
1327 	if (!down_read_trylock(&sb->s_umount))
1328 		return 0;
1329 
1330 	writeback_inodes_sb_nr(sb, nr, reason);
1331 	up_read(&sb->s_umount);
1332 	return 1;
1333 }
1334 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1335 
1336 /**
1337  * try_to_writeback_inodes_sb - try to start writeback if none underway
1338  * @sb: the superblock
1339  * @reason: reason why some writeback work was initiated
1340  *
1341  * Implement by try_to_writeback_inodes_sb_nr()
1342  * Returns 1 if writeback was started, 0 if not.
1343  */
1344 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1345 {
1346 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1347 }
1348 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1349 
1350 /**
1351  * sync_inodes_sb	-	sync sb inode pages
1352  * @sb: the superblock
1353  *
1354  * This function writes and waits on any dirty inode belonging to this
1355  * super_block.
1356  */
1357 void sync_inodes_sb(struct super_block *sb)
1358 {
1359 	DECLARE_COMPLETION_ONSTACK(done);
1360 	struct wb_writeback_work work = {
1361 		.sb		= sb,
1362 		.sync_mode	= WB_SYNC_ALL,
1363 		.nr_pages	= LONG_MAX,
1364 		.range_cyclic	= 0,
1365 		.done		= &done,
1366 		.reason		= WB_REASON_SYNC,
1367 		.for_sync	= 1,
1368 	};
1369 
1370 	/* Nothing to do? */
1371 	if (sb->s_bdi == &noop_backing_dev_info)
1372 		return;
1373 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1374 
1375 	bdi_queue_work(sb->s_bdi, &work);
1376 	wait_for_completion(&done);
1377 
1378 	wait_sb_inodes(sb);
1379 }
1380 EXPORT_SYMBOL(sync_inodes_sb);
1381 
1382 /**
1383  * write_inode_now	-	write an inode to disk
1384  * @inode: inode to write to disk
1385  * @sync: whether the write should be synchronous or not
1386  *
1387  * This function commits an inode to disk immediately if it is dirty. This is
1388  * primarily needed by knfsd.
1389  *
1390  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1391  */
1392 int write_inode_now(struct inode *inode, int sync)
1393 {
1394 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1395 	struct writeback_control wbc = {
1396 		.nr_to_write = LONG_MAX,
1397 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1398 		.range_start = 0,
1399 		.range_end = LLONG_MAX,
1400 	};
1401 
1402 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1403 		wbc.nr_to_write = 0;
1404 
1405 	might_sleep();
1406 	return writeback_single_inode(inode, wb, &wbc);
1407 }
1408 EXPORT_SYMBOL(write_inode_now);
1409 
1410 /**
1411  * sync_inode - write an inode and its pages to disk.
1412  * @inode: the inode to sync
1413  * @wbc: controls the writeback mode
1414  *
1415  * sync_inode() will write an inode and its pages to disk.  It will also
1416  * correctly update the inode on its superblock's dirty inode lists and will
1417  * update inode->i_state.
1418  *
1419  * The caller must have a ref on the inode.
1420  */
1421 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1422 {
1423 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1424 }
1425 EXPORT_SYMBOL(sync_inode);
1426 
1427 /**
1428  * sync_inode_metadata - write an inode to disk
1429  * @inode: the inode to sync
1430  * @wait: wait for I/O to complete.
1431  *
1432  * Write an inode to disk and adjust its dirty state after completion.
1433  *
1434  * Note: only writes the actual inode, no associated data or other metadata.
1435  */
1436 int sync_inode_metadata(struct inode *inode, int wait)
1437 {
1438 	struct writeback_control wbc = {
1439 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1440 		.nr_to_write = 0, /* metadata-only */
1441 	};
1442 
1443 	return sync_inode(inode, &wbc);
1444 }
1445 EXPORT_SYMBOL(sync_inode_metadata);
1446