1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 50 enum wb_reason reason; /* why was writeback initiated? */ 51 52 struct list_head list; /* pending work list */ 53 struct completion *done; /* set if the caller waits */ 54 }; 55 56 /** 57 * writeback_in_progress - determine whether there is writeback in progress 58 * @bdi: the device's backing_dev_info structure. 59 * 60 * Determine whether there is writeback waiting to be handled against a 61 * backing device. 62 */ 63 int writeback_in_progress(struct backing_dev_info *bdi) 64 { 65 return test_bit(BDI_writeback_running, &bdi->state); 66 } 67 EXPORT_SYMBOL(writeback_in_progress); 68 69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 70 { 71 struct super_block *sb = inode->i_sb; 72 73 if (sb_is_blkdev_sb(sb)) 74 return inode->i_mapping->backing_dev_info; 75 76 return sb->s_bdi; 77 } 78 79 static inline struct inode *wb_inode(struct list_head *head) 80 { 81 return list_entry(head, struct inode, i_wb_list); 82 } 83 84 /* 85 * Include the creation of the trace points after defining the 86 * wb_writeback_work structure and inline functions so that the definition 87 * remains local to this file. 88 */ 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/writeback.h> 91 92 static void bdi_queue_work(struct backing_dev_info *bdi, 93 struct wb_writeback_work *work) 94 { 95 trace_writeback_queue(bdi, work); 96 97 spin_lock_bh(&bdi->wb_lock); 98 list_add_tail(&work->list, &bdi->work_list); 99 spin_unlock_bh(&bdi->wb_lock); 100 101 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 102 } 103 104 static void 105 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 106 bool range_cyclic, enum wb_reason reason) 107 { 108 struct wb_writeback_work *work; 109 110 /* 111 * This is WB_SYNC_NONE writeback, so if allocation fails just 112 * wakeup the thread for old dirty data writeback 113 */ 114 work = kzalloc(sizeof(*work), GFP_ATOMIC); 115 if (!work) { 116 trace_writeback_nowork(bdi); 117 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 118 return; 119 } 120 121 work->sync_mode = WB_SYNC_NONE; 122 work->nr_pages = nr_pages; 123 work->range_cyclic = range_cyclic; 124 work->reason = reason; 125 126 bdi_queue_work(bdi, work); 127 } 128 129 /** 130 * bdi_start_writeback - start writeback 131 * @bdi: the backing device to write from 132 * @nr_pages: the number of pages to write 133 * @reason: reason why some writeback work was initiated 134 * 135 * Description: 136 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 137 * started when this function returns, we make no guarantees on 138 * completion. Caller need not hold sb s_umount semaphore. 139 * 140 */ 141 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 142 enum wb_reason reason) 143 { 144 __bdi_start_writeback(bdi, nr_pages, true, reason); 145 } 146 147 /** 148 * bdi_start_background_writeback - start background writeback 149 * @bdi: the backing device to write from 150 * 151 * Description: 152 * This makes sure WB_SYNC_NONE background writeback happens. When 153 * this function returns, it is only guaranteed that for given BDI 154 * some IO is happening if we are over background dirty threshold. 155 * Caller need not hold sb s_umount semaphore. 156 */ 157 void bdi_start_background_writeback(struct backing_dev_info *bdi) 158 { 159 /* 160 * We just wake up the flusher thread. It will perform background 161 * writeback as soon as there is no other work to do. 162 */ 163 trace_writeback_wake_background(bdi); 164 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 165 } 166 167 /* 168 * Remove the inode from the writeback list it is on. 169 */ 170 void inode_wb_list_del(struct inode *inode) 171 { 172 struct backing_dev_info *bdi = inode_to_bdi(inode); 173 174 spin_lock(&bdi->wb.list_lock); 175 list_del_init(&inode->i_wb_list); 176 spin_unlock(&bdi->wb.list_lock); 177 } 178 179 /* 180 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 181 * furthest end of its superblock's dirty-inode list. 182 * 183 * Before stamping the inode's ->dirtied_when, we check to see whether it is 184 * already the most-recently-dirtied inode on the b_dirty list. If that is 185 * the case then the inode must have been redirtied while it was being written 186 * out and we don't reset its dirtied_when. 187 */ 188 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 189 { 190 assert_spin_locked(&wb->list_lock); 191 if (!list_empty(&wb->b_dirty)) { 192 struct inode *tail; 193 194 tail = wb_inode(wb->b_dirty.next); 195 if (time_before(inode->dirtied_when, tail->dirtied_when)) 196 inode->dirtied_when = jiffies; 197 } 198 list_move(&inode->i_wb_list, &wb->b_dirty); 199 } 200 201 /* 202 * requeue inode for re-scanning after bdi->b_io list is exhausted. 203 */ 204 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 205 { 206 assert_spin_locked(&wb->list_lock); 207 list_move(&inode->i_wb_list, &wb->b_more_io); 208 } 209 210 static void inode_sync_complete(struct inode *inode) 211 { 212 inode->i_state &= ~I_SYNC; 213 /* If inode is clean an unused, put it into LRU now... */ 214 inode_add_lru(inode); 215 /* Waiters must see I_SYNC cleared before being woken up */ 216 smp_mb(); 217 wake_up_bit(&inode->i_state, __I_SYNC); 218 } 219 220 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 221 { 222 bool ret = time_after(inode->dirtied_when, t); 223 #ifndef CONFIG_64BIT 224 /* 225 * For inodes being constantly redirtied, dirtied_when can get stuck. 226 * It _appears_ to be in the future, but is actually in distant past. 227 * This test is necessary to prevent such wrapped-around relative times 228 * from permanently stopping the whole bdi writeback. 229 */ 230 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 231 #endif 232 return ret; 233 } 234 235 /* 236 * Move expired (dirtied before work->older_than_this) dirty inodes from 237 * @delaying_queue to @dispatch_queue. 238 */ 239 static int move_expired_inodes(struct list_head *delaying_queue, 240 struct list_head *dispatch_queue, 241 struct wb_writeback_work *work) 242 { 243 LIST_HEAD(tmp); 244 struct list_head *pos, *node; 245 struct super_block *sb = NULL; 246 struct inode *inode; 247 int do_sb_sort = 0; 248 int moved = 0; 249 250 while (!list_empty(delaying_queue)) { 251 inode = wb_inode(delaying_queue->prev); 252 if (work->older_than_this && 253 inode_dirtied_after(inode, *work->older_than_this)) 254 break; 255 list_move(&inode->i_wb_list, &tmp); 256 moved++; 257 if (sb_is_blkdev_sb(inode->i_sb)) 258 continue; 259 if (sb && sb != inode->i_sb) 260 do_sb_sort = 1; 261 sb = inode->i_sb; 262 } 263 264 /* just one sb in list, splice to dispatch_queue and we're done */ 265 if (!do_sb_sort) { 266 list_splice(&tmp, dispatch_queue); 267 goto out; 268 } 269 270 /* Move inodes from one superblock together */ 271 while (!list_empty(&tmp)) { 272 sb = wb_inode(tmp.prev)->i_sb; 273 list_for_each_prev_safe(pos, node, &tmp) { 274 inode = wb_inode(pos); 275 if (inode->i_sb == sb) 276 list_move(&inode->i_wb_list, dispatch_queue); 277 } 278 } 279 out: 280 return moved; 281 } 282 283 /* 284 * Queue all expired dirty inodes for io, eldest first. 285 * Before 286 * newly dirtied b_dirty b_io b_more_io 287 * =============> gf edc BA 288 * After 289 * newly dirtied b_dirty b_io b_more_io 290 * =============> g fBAedc 291 * | 292 * +--> dequeue for IO 293 */ 294 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 295 { 296 int moved; 297 assert_spin_locked(&wb->list_lock); 298 list_splice_init(&wb->b_more_io, &wb->b_io); 299 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 300 trace_writeback_queue_io(wb, work, moved); 301 } 302 303 static int write_inode(struct inode *inode, struct writeback_control *wbc) 304 { 305 int ret; 306 307 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 308 trace_writeback_write_inode_start(inode, wbc); 309 ret = inode->i_sb->s_op->write_inode(inode, wbc); 310 trace_writeback_write_inode(inode, wbc); 311 return ret; 312 } 313 return 0; 314 } 315 316 /* 317 * Wait for writeback on an inode to complete. Called with i_lock held. 318 * Caller must make sure inode cannot go away when we drop i_lock. 319 */ 320 static void __inode_wait_for_writeback(struct inode *inode) 321 __releases(inode->i_lock) 322 __acquires(inode->i_lock) 323 { 324 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 325 wait_queue_head_t *wqh; 326 327 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 328 while (inode->i_state & I_SYNC) { 329 spin_unlock(&inode->i_lock); 330 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 331 spin_lock(&inode->i_lock); 332 } 333 } 334 335 /* 336 * Wait for writeback on an inode to complete. Caller must have inode pinned. 337 */ 338 void inode_wait_for_writeback(struct inode *inode) 339 { 340 spin_lock(&inode->i_lock); 341 __inode_wait_for_writeback(inode); 342 spin_unlock(&inode->i_lock); 343 } 344 345 /* 346 * Sleep until I_SYNC is cleared. This function must be called with i_lock 347 * held and drops it. It is aimed for callers not holding any inode reference 348 * so once i_lock is dropped, inode can go away. 349 */ 350 static void inode_sleep_on_writeback(struct inode *inode) 351 __releases(inode->i_lock) 352 { 353 DEFINE_WAIT(wait); 354 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 355 int sleep; 356 357 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 358 sleep = inode->i_state & I_SYNC; 359 spin_unlock(&inode->i_lock); 360 if (sleep) 361 schedule(); 362 finish_wait(wqh, &wait); 363 } 364 365 /* 366 * Find proper writeback list for the inode depending on its current state and 367 * possibly also change of its state while we were doing writeback. Here we 368 * handle things such as livelock prevention or fairness of writeback among 369 * inodes. This function can be called only by flusher thread - noone else 370 * processes all inodes in writeback lists and requeueing inodes behind flusher 371 * thread's back can have unexpected consequences. 372 */ 373 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 374 struct writeback_control *wbc) 375 { 376 if (inode->i_state & I_FREEING) 377 return; 378 379 /* 380 * Sync livelock prevention. Each inode is tagged and synced in one 381 * shot. If still dirty, it will be redirty_tail()'ed below. Update 382 * the dirty time to prevent enqueue and sync it again. 383 */ 384 if ((inode->i_state & I_DIRTY) && 385 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 386 inode->dirtied_when = jiffies; 387 388 if (wbc->pages_skipped) { 389 /* 390 * writeback is not making progress due to locked 391 * buffers. Skip this inode for now. 392 */ 393 redirty_tail(inode, wb); 394 return; 395 } 396 397 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 398 /* 399 * We didn't write back all the pages. nfs_writepages() 400 * sometimes bales out without doing anything. 401 */ 402 if (wbc->nr_to_write <= 0) { 403 /* Slice used up. Queue for next turn. */ 404 requeue_io(inode, wb); 405 } else { 406 /* 407 * Writeback blocked by something other than 408 * congestion. Delay the inode for some time to 409 * avoid spinning on the CPU (100% iowait) 410 * retrying writeback of the dirty page/inode 411 * that cannot be performed immediately. 412 */ 413 redirty_tail(inode, wb); 414 } 415 } else if (inode->i_state & I_DIRTY) { 416 /* 417 * Filesystems can dirty the inode during writeback operations, 418 * such as delayed allocation during submission or metadata 419 * updates after data IO completion. 420 */ 421 redirty_tail(inode, wb); 422 } else { 423 /* The inode is clean. Remove from writeback lists. */ 424 list_del_init(&inode->i_wb_list); 425 } 426 } 427 428 /* 429 * Write out an inode and its dirty pages. Do not update the writeback list 430 * linkage. That is left to the caller. The caller is also responsible for 431 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 432 */ 433 static int 434 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 435 { 436 struct address_space *mapping = inode->i_mapping; 437 long nr_to_write = wbc->nr_to_write; 438 unsigned dirty; 439 int ret; 440 441 WARN_ON(!(inode->i_state & I_SYNC)); 442 443 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 444 445 ret = do_writepages(mapping, wbc); 446 447 /* 448 * Make sure to wait on the data before writing out the metadata. 449 * This is important for filesystems that modify metadata on data 450 * I/O completion. We don't do it for sync(2) writeback because it has a 451 * separate, external IO completion path and ->sync_fs for guaranteeing 452 * inode metadata is written back correctly. 453 */ 454 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 455 int err = filemap_fdatawait(mapping); 456 if (ret == 0) 457 ret = err; 458 } 459 460 /* 461 * Some filesystems may redirty the inode during the writeback 462 * due to delalloc, clear dirty metadata flags right before 463 * write_inode() 464 */ 465 spin_lock(&inode->i_lock); 466 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */ 467 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 468 inode->i_state &= ~I_DIRTY_PAGES; 469 dirty = inode->i_state & I_DIRTY; 470 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 471 spin_unlock(&inode->i_lock); 472 /* Don't write the inode if only I_DIRTY_PAGES was set */ 473 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 474 int err = write_inode(inode, wbc); 475 if (ret == 0) 476 ret = err; 477 } 478 trace_writeback_single_inode(inode, wbc, nr_to_write); 479 return ret; 480 } 481 482 /* 483 * Write out an inode's dirty pages. Either the caller has an active reference 484 * on the inode or the inode has I_WILL_FREE set. 485 * 486 * This function is designed to be called for writing back one inode which 487 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 488 * and does more profound writeback list handling in writeback_sb_inodes(). 489 */ 490 static int 491 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 492 struct writeback_control *wbc) 493 { 494 int ret = 0; 495 496 spin_lock(&inode->i_lock); 497 if (!atomic_read(&inode->i_count)) 498 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 499 else 500 WARN_ON(inode->i_state & I_WILL_FREE); 501 502 if (inode->i_state & I_SYNC) { 503 if (wbc->sync_mode != WB_SYNC_ALL) 504 goto out; 505 /* 506 * It's a data-integrity sync. We must wait. Since callers hold 507 * inode reference or inode has I_WILL_FREE set, it cannot go 508 * away under us. 509 */ 510 __inode_wait_for_writeback(inode); 511 } 512 WARN_ON(inode->i_state & I_SYNC); 513 /* 514 * Skip inode if it is clean and we have no outstanding writeback in 515 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 516 * function since flusher thread may be doing for example sync in 517 * parallel and if we move the inode, it could get skipped. So here we 518 * make sure inode is on some writeback list and leave it there unless 519 * we have completely cleaned the inode. 520 */ 521 if (!(inode->i_state & I_DIRTY) && 522 (wbc->sync_mode != WB_SYNC_ALL || 523 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 524 goto out; 525 inode->i_state |= I_SYNC; 526 spin_unlock(&inode->i_lock); 527 528 ret = __writeback_single_inode(inode, wbc); 529 530 spin_lock(&wb->list_lock); 531 spin_lock(&inode->i_lock); 532 /* 533 * If inode is clean, remove it from writeback lists. Otherwise don't 534 * touch it. See comment above for explanation. 535 */ 536 if (!(inode->i_state & I_DIRTY)) 537 list_del_init(&inode->i_wb_list); 538 spin_unlock(&wb->list_lock); 539 inode_sync_complete(inode); 540 out: 541 spin_unlock(&inode->i_lock); 542 return ret; 543 } 544 545 static long writeback_chunk_size(struct backing_dev_info *bdi, 546 struct wb_writeback_work *work) 547 { 548 long pages; 549 550 /* 551 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 552 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 553 * here avoids calling into writeback_inodes_wb() more than once. 554 * 555 * The intended call sequence for WB_SYNC_ALL writeback is: 556 * 557 * wb_writeback() 558 * writeback_sb_inodes() <== called only once 559 * write_cache_pages() <== called once for each inode 560 * (quickly) tag currently dirty pages 561 * (maybe slowly) sync all tagged pages 562 */ 563 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 564 pages = LONG_MAX; 565 else { 566 pages = min(bdi->avg_write_bandwidth / 2, 567 global_dirty_limit / DIRTY_SCOPE); 568 pages = min(pages, work->nr_pages); 569 pages = round_down(pages + MIN_WRITEBACK_PAGES, 570 MIN_WRITEBACK_PAGES); 571 } 572 573 return pages; 574 } 575 576 /* 577 * Write a portion of b_io inodes which belong to @sb. 578 * 579 * Return the number of pages and/or inodes written. 580 */ 581 static long writeback_sb_inodes(struct super_block *sb, 582 struct bdi_writeback *wb, 583 struct wb_writeback_work *work) 584 { 585 struct writeback_control wbc = { 586 .sync_mode = work->sync_mode, 587 .tagged_writepages = work->tagged_writepages, 588 .for_kupdate = work->for_kupdate, 589 .for_background = work->for_background, 590 .for_sync = work->for_sync, 591 .range_cyclic = work->range_cyclic, 592 .range_start = 0, 593 .range_end = LLONG_MAX, 594 }; 595 unsigned long start_time = jiffies; 596 long write_chunk; 597 long wrote = 0; /* count both pages and inodes */ 598 599 while (!list_empty(&wb->b_io)) { 600 struct inode *inode = wb_inode(wb->b_io.prev); 601 602 if (inode->i_sb != sb) { 603 if (work->sb) { 604 /* 605 * We only want to write back data for this 606 * superblock, move all inodes not belonging 607 * to it back onto the dirty list. 608 */ 609 redirty_tail(inode, wb); 610 continue; 611 } 612 613 /* 614 * The inode belongs to a different superblock. 615 * Bounce back to the caller to unpin this and 616 * pin the next superblock. 617 */ 618 break; 619 } 620 621 /* 622 * Don't bother with new inodes or inodes being freed, first 623 * kind does not need periodic writeout yet, and for the latter 624 * kind writeout is handled by the freer. 625 */ 626 spin_lock(&inode->i_lock); 627 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 628 spin_unlock(&inode->i_lock); 629 redirty_tail(inode, wb); 630 continue; 631 } 632 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 633 /* 634 * If this inode is locked for writeback and we are not 635 * doing writeback-for-data-integrity, move it to 636 * b_more_io so that writeback can proceed with the 637 * other inodes on s_io. 638 * 639 * We'll have another go at writing back this inode 640 * when we completed a full scan of b_io. 641 */ 642 spin_unlock(&inode->i_lock); 643 requeue_io(inode, wb); 644 trace_writeback_sb_inodes_requeue(inode); 645 continue; 646 } 647 spin_unlock(&wb->list_lock); 648 649 /* 650 * We already requeued the inode if it had I_SYNC set and we 651 * are doing WB_SYNC_NONE writeback. So this catches only the 652 * WB_SYNC_ALL case. 653 */ 654 if (inode->i_state & I_SYNC) { 655 /* Wait for I_SYNC. This function drops i_lock... */ 656 inode_sleep_on_writeback(inode); 657 /* Inode may be gone, start again */ 658 spin_lock(&wb->list_lock); 659 continue; 660 } 661 inode->i_state |= I_SYNC; 662 spin_unlock(&inode->i_lock); 663 664 write_chunk = writeback_chunk_size(wb->bdi, work); 665 wbc.nr_to_write = write_chunk; 666 wbc.pages_skipped = 0; 667 668 /* 669 * We use I_SYNC to pin the inode in memory. While it is set 670 * evict_inode() will wait so the inode cannot be freed. 671 */ 672 __writeback_single_inode(inode, &wbc); 673 674 work->nr_pages -= write_chunk - wbc.nr_to_write; 675 wrote += write_chunk - wbc.nr_to_write; 676 spin_lock(&wb->list_lock); 677 spin_lock(&inode->i_lock); 678 if (!(inode->i_state & I_DIRTY)) 679 wrote++; 680 requeue_inode(inode, wb, &wbc); 681 inode_sync_complete(inode); 682 spin_unlock(&inode->i_lock); 683 cond_resched_lock(&wb->list_lock); 684 /* 685 * bail out to wb_writeback() often enough to check 686 * background threshold and other termination conditions. 687 */ 688 if (wrote) { 689 if (time_is_before_jiffies(start_time + HZ / 10UL)) 690 break; 691 if (work->nr_pages <= 0) 692 break; 693 } 694 } 695 return wrote; 696 } 697 698 static long __writeback_inodes_wb(struct bdi_writeback *wb, 699 struct wb_writeback_work *work) 700 { 701 unsigned long start_time = jiffies; 702 long wrote = 0; 703 704 while (!list_empty(&wb->b_io)) { 705 struct inode *inode = wb_inode(wb->b_io.prev); 706 struct super_block *sb = inode->i_sb; 707 708 if (!grab_super_passive(sb)) { 709 /* 710 * grab_super_passive() may fail consistently due to 711 * s_umount being grabbed by someone else. Don't use 712 * requeue_io() to avoid busy retrying the inode/sb. 713 */ 714 redirty_tail(inode, wb); 715 continue; 716 } 717 wrote += writeback_sb_inodes(sb, wb, work); 718 drop_super(sb); 719 720 /* refer to the same tests at the end of writeback_sb_inodes */ 721 if (wrote) { 722 if (time_is_before_jiffies(start_time + HZ / 10UL)) 723 break; 724 if (work->nr_pages <= 0) 725 break; 726 } 727 } 728 /* Leave any unwritten inodes on b_io */ 729 return wrote; 730 } 731 732 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 733 enum wb_reason reason) 734 { 735 struct wb_writeback_work work = { 736 .nr_pages = nr_pages, 737 .sync_mode = WB_SYNC_NONE, 738 .range_cyclic = 1, 739 .reason = reason, 740 }; 741 742 spin_lock(&wb->list_lock); 743 if (list_empty(&wb->b_io)) 744 queue_io(wb, &work); 745 __writeback_inodes_wb(wb, &work); 746 spin_unlock(&wb->list_lock); 747 748 return nr_pages - work.nr_pages; 749 } 750 751 static bool over_bground_thresh(struct backing_dev_info *bdi) 752 { 753 unsigned long background_thresh, dirty_thresh; 754 755 global_dirty_limits(&background_thresh, &dirty_thresh); 756 757 if (global_page_state(NR_FILE_DIRTY) + 758 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 759 return true; 760 761 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 762 bdi_dirty_limit(bdi, background_thresh)) 763 return true; 764 765 return false; 766 } 767 768 /* 769 * Called under wb->list_lock. If there are multiple wb per bdi, 770 * only the flusher working on the first wb should do it. 771 */ 772 static void wb_update_bandwidth(struct bdi_writeback *wb, 773 unsigned long start_time) 774 { 775 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 776 } 777 778 /* 779 * Explicit flushing or periodic writeback of "old" data. 780 * 781 * Define "old": the first time one of an inode's pages is dirtied, we mark the 782 * dirtying-time in the inode's address_space. So this periodic writeback code 783 * just walks the superblock inode list, writing back any inodes which are 784 * older than a specific point in time. 785 * 786 * Try to run once per dirty_writeback_interval. But if a writeback event 787 * takes longer than a dirty_writeback_interval interval, then leave a 788 * one-second gap. 789 * 790 * older_than_this takes precedence over nr_to_write. So we'll only write back 791 * all dirty pages if they are all attached to "old" mappings. 792 */ 793 static long wb_writeback(struct bdi_writeback *wb, 794 struct wb_writeback_work *work) 795 { 796 unsigned long wb_start = jiffies; 797 long nr_pages = work->nr_pages; 798 unsigned long oldest_jif; 799 struct inode *inode; 800 long progress; 801 802 oldest_jif = jiffies; 803 work->older_than_this = &oldest_jif; 804 805 spin_lock(&wb->list_lock); 806 for (;;) { 807 /* 808 * Stop writeback when nr_pages has been consumed 809 */ 810 if (work->nr_pages <= 0) 811 break; 812 813 /* 814 * Background writeout and kupdate-style writeback may 815 * run forever. Stop them if there is other work to do 816 * so that e.g. sync can proceed. They'll be restarted 817 * after the other works are all done. 818 */ 819 if ((work->for_background || work->for_kupdate) && 820 !list_empty(&wb->bdi->work_list)) 821 break; 822 823 /* 824 * For background writeout, stop when we are below the 825 * background dirty threshold 826 */ 827 if (work->for_background && !over_bground_thresh(wb->bdi)) 828 break; 829 830 /* 831 * Kupdate and background works are special and we want to 832 * include all inodes that need writing. Livelock avoidance is 833 * handled by these works yielding to any other work so we are 834 * safe. 835 */ 836 if (work->for_kupdate) { 837 oldest_jif = jiffies - 838 msecs_to_jiffies(dirty_expire_interval * 10); 839 } else if (work->for_background) 840 oldest_jif = jiffies; 841 842 trace_writeback_start(wb->bdi, work); 843 if (list_empty(&wb->b_io)) 844 queue_io(wb, work); 845 if (work->sb) 846 progress = writeback_sb_inodes(work->sb, wb, work); 847 else 848 progress = __writeback_inodes_wb(wb, work); 849 trace_writeback_written(wb->bdi, work); 850 851 wb_update_bandwidth(wb, wb_start); 852 853 /* 854 * Did we write something? Try for more 855 * 856 * Dirty inodes are moved to b_io for writeback in batches. 857 * The completion of the current batch does not necessarily 858 * mean the overall work is done. So we keep looping as long 859 * as made some progress on cleaning pages or inodes. 860 */ 861 if (progress) 862 continue; 863 /* 864 * No more inodes for IO, bail 865 */ 866 if (list_empty(&wb->b_more_io)) 867 break; 868 /* 869 * Nothing written. Wait for some inode to 870 * become available for writeback. Otherwise 871 * we'll just busyloop. 872 */ 873 if (!list_empty(&wb->b_more_io)) { 874 trace_writeback_wait(wb->bdi, work); 875 inode = wb_inode(wb->b_more_io.prev); 876 spin_lock(&inode->i_lock); 877 spin_unlock(&wb->list_lock); 878 /* This function drops i_lock... */ 879 inode_sleep_on_writeback(inode); 880 spin_lock(&wb->list_lock); 881 } 882 } 883 spin_unlock(&wb->list_lock); 884 885 return nr_pages - work->nr_pages; 886 } 887 888 /* 889 * Return the next wb_writeback_work struct that hasn't been processed yet. 890 */ 891 static struct wb_writeback_work * 892 get_next_work_item(struct backing_dev_info *bdi) 893 { 894 struct wb_writeback_work *work = NULL; 895 896 spin_lock_bh(&bdi->wb_lock); 897 if (!list_empty(&bdi->work_list)) { 898 work = list_entry(bdi->work_list.next, 899 struct wb_writeback_work, list); 900 list_del_init(&work->list); 901 } 902 spin_unlock_bh(&bdi->wb_lock); 903 return work; 904 } 905 906 /* 907 * Add in the number of potentially dirty inodes, because each inode 908 * write can dirty pagecache in the underlying blockdev. 909 */ 910 static unsigned long get_nr_dirty_pages(void) 911 { 912 return global_page_state(NR_FILE_DIRTY) + 913 global_page_state(NR_UNSTABLE_NFS) + 914 get_nr_dirty_inodes(); 915 } 916 917 static long wb_check_background_flush(struct bdi_writeback *wb) 918 { 919 if (over_bground_thresh(wb->bdi)) { 920 921 struct wb_writeback_work work = { 922 .nr_pages = LONG_MAX, 923 .sync_mode = WB_SYNC_NONE, 924 .for_background = 1, 925 .range_cyclic = 1, 926 .reason = WB_REASON_BACKGROUND, 927 }; 928 929 return wb_writeback(wb, &work); 930 } 931 932 return 0; 933 } 934 935 static long wb_check_old_data_flush(struct bdi_writeback *wb) 936 { 937 unsigned long expired; 938 long nr_pages; 939 940 /* 941 * When set to zero, disable periodic writeback 942 */ 943 if (!dirty_writeback_interval) 944 return 0; 945 946 expired = wb->last_old_flush + 947 msecs_to_jiffies(dirty_writeback_interval * 10); 948 if (time_before(jiffies, expired)) 949 return 0; 950 951 wb->last_old_flush = jiffies; 952 nr_pages = get_nr_dirty_pages(); 953 954 if (nr_pages) { 955 struct wb_writeback_work work = { 956 .nr_pages = nr_pages, 957 .sync_mode = WB_SYNC_NONE, 958 .for_kupdate = 1, 959 .range_cyclic = 1, 960 .reason = WB_REASON_PERIODIC, 961 }; 962 963 return wb_writeback(wb, &work); 964 } 965 966 return 0; 967 } 968 969 /* 970 * Retrieve work items and do the writeback they describe 971 */ 972 static long wb_do_writeback(struct bdi_writeback *wb) 973 { 974 struct backing_dev_info *bdi = wb->bdi; 975 struct wb_writeback_work *work; 976 long wrote = 0; 977 978 set_bit(BDI_writeback_running, &wb->bdi->state); 979 while ((work = get_next_work_item(bdi)) != NULL) { 980 981 trace_writeback_exec(bdi, work); 982 983 wrote += wb_writeback(wb, work); 984 985 /* 986 * Notify the caller of completion if this is a synchronous 987 * work item, otherwise just free it. 988 */ 989 if (work->done) 990 complete(work->done); 991 else 992 kfree(work); 993 } 994 995 /* 996 * Check for periodic writeback, kupdated() style 997 */ 998 wrote += wb_check_old_data_flush(wb); 999 wrote += wb_check_background_flush(wb); 1000 clear_bit(BDI_writeback_running, &wb->bdi->state); 1001 1002 return wrote; 1003 } 1004 1005 /* 1006 * Handle writeback of dirty data for the device backed by this bdi. Also 1007 * reschedules periodically and does kupdated style flushing. 1008 */ 1009 void bdi_writeback_workfn(struct work_struct *work) 1010 { 1011 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1012 struct bdi_writeback, dwork); 1013 struct backing_dev_info *bdi = wb->bdi; 1014 long pages_written; 1015 1016 set_worker_desc("flush-%s", dev_name(bdi->dev)); 1017 current->flags |= PF_SWAPWRITE; 1018 1019 if (likely(!current_is_workqueue_rescuer() || 1020 list_empty(&bdi->bdi_list))) { 1021 /* 1022 * The normal path. Keep writing back @bdi until its 1023 * work_list is empty. Note that this path is also taken 1024 * if @bdi is shutting down even when we're running off the 1025 * rescuer as work_list needs to be drained. 1026 */ 1027 do { 1028 pages_written = wb_do_writeback(wb); 1029 trace_writeback_pages_written(pages_written); 1030 } while (!list_empty(&bdi->work_list)); 1031 } else { 1032 /* 1033 * bdi_wq can't get enough workers and we're running off 1034 * the emergency worker. Don't hog it. Hopefully, 1024 is 1035 * enough for efficient IO. 1036 */ 1037 pages_written = writeback_inodes_wb(&bdi->wb, 1024, 1038 WB_REASON_FORKER_THREAD); 1039 trace_writeback_pages_written(pages_written); 1040 } 1041 1042 if (!list_empty(&bdi->work_list) || 1043 (wb_has_dirty_io(wb) && dirty_writeback_interval)) 1044 queue_delayed_work(bdi_wq, &wb->dwork, 1045 msecs_to_jiffies(dirty_writeback_interval * 10)); 1046 1047 current->flags &= ~PF_SWAPWRITE; 1048 } 1049 1050 /* 1051 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1052 * the whole world. 1053 */ 1054 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1055 { 1056 struct backing_dev_info *bdi; 1057 1058 if (!nr_pages) 1059 nr_pages = get_nr_dirty_pages(); 1060 1061 rcu_read_lock(); 1062 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1063 if (!bdi_has_dirty_io(bdi)) 1064 continue; 1065 __bdi_start_writeback(bdi, nr_pages, false, reason); 1066 } 1067 rcu_read_unlock(); 1068 } 1069 1070 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1071 { 1072 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1073 struct dentry *dentry; 1074 const char *name = "?"; 1075 1076 dentry = d_find_alias(inode); 1077 if (dentry) { 1078 spin_lock(&dentry->d_lock); 1079 name = (const char *) dentry->d_name.name; 1080 } 1081 printk(KERN_DEBUG 1082 "%s(%d): dirtied inode %lu (%s) on %s\n", 1083 current->comm, task_pid_nr(current), inode->i_ino, 1084 name, inode->i_sb->s_id); 1085 if (dentry) { 1086 spin_unlock(&dentry->d_lock); 1087 dput(dentry); 1088 } 1089 } 1090 } 1091 1092 /** 1093 * __mark_inode_dirty - internal function 1094 * @inode: inode to mark 1095 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1096 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1097 * mark_inode_dirty_sync. 1098 * 1099 * Put the inode on the super block's dirty list. 1100 * 1101 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1102 * dirty list only if it is hashed or if it refers to a blockdev. 1103 * If it was not hashed, it will never be added to the dirty list 1104 * even if it is later hashed, as it will have been marked dirty already. 1105 * 1106 * In short, make sure you hash any inodes _before_ you start marking 1107 * them dirty. 1108 * 1109 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1110 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1111 * the kernel-internal blockdev inode represents the dirtying time of the 1112 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1113 * page->mapping->host, so the page-dirtying time is recorded in the internal 1114 * blockdev inode. 1115 */ 1116 void __mark_inode_dirty(struct inode *inode, int flags) 1117 { 1118 struct super_block *sb = inode->i_sb; 1119 struct backing_dev_info *bdi = NULL; 1120 1121 /* 1122 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1123 * dirty the inode itself 1124 */ 1125 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1126 trace_writeback_dirty_inode_start(inode, flags); 1127 1128 if (sb->s_op->dirty_inode) 1129 sb->s_op->dirty_inode(inode, flags); 1130 1131 trace_writeback_dirty_inode(inode, flags); 1132 } 1133 1134 /* 1135 * make sure that changes are seen by all cpus before we test i_state 1136 * -- mikulas 1137 */ 1138 smp_mb(); 1139 1140 /* avoid the locking if we can */ 1141 if ((inode->i_state & flags) == flags) 1142 return; 1143 1144 if (unlikely(block_dump)) 1145 block_dump___mark_inode_dirty(inode); 1146 1147 spin_lock(&inode->i_lock); 1148 if ((inode->i_state & flags) != flags) { 1149 const int was_dirty = inode->i_state & I_DIRTY; 1150 1151 inode->i_state |= flags; 1152 1153 /* 1154 * If the inode is being synced, just update its dirty state. 1155 * The unlocker will place the inode on the appropriate 1156 * superblock list, based upon its state. 1157 */ 1158 if (inode->i_state & I_SYNC) 1159 goto out_unlock_inode; 1160 1161 /* 1162 * Only add valid (hashed) inodes to the superblock's 1163 * dirty list. Add blockdev inodes as well. 1164 */ 1165 if (!S_ISBLK(inode->i_mode)) { 1166 if (inode_unhashed(inode)) 1167 goto out_unlock_inode; 1168 } 1169 if (inode->i_state & I_FREEING) 1170 goto out_unlock_inode; 1171 1172 /* 1173 * If the inode was already on b_dirty/b_io/b_more_io, don't 1174 * reposition it (that would break b_dirty time-ordering). 1175 */ 1176 if (!was_dirty) { 1177 bool wakeup_bdi = false; 1178 bdi = inode_to_bdi(inode); 1179 1180 spin_unlock(&inode->i_lock); 1181 spin_lock(&bdi->wb.list_lock); 1182 if (bdi_cap_writeback_dirty(bdi)) { 1183 WARN(!test_bit(BDI_registered, &bdi->state), 1184 "bdi-%s not registered\n", bdi->name); 1185 1186 /* 1187 * If this is the first dirty inode for this 1188 * bdi, we have to wake-up the corresponding 1189 * bdi thread to make sure background 1190 * write-back happens later. 1191 */ 1192 if (!wb_has_dirty_io(&bdi->wb)) 1193 wakeup_bdi = true; 1194 } 1195 1196 inode->dirtied_when = jiffies; 1197 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1198 spin_unlock(&bdi->wb.list_lock); 1199 1200 if (wakeup_bdi) 1201 bdi_wakeup_thread_delayed(bdi); 1202 return; 1203 } 1204 } 1205 out_unlock_inode: 1206 spin_unlock(&inode->i_lock); 1207 1208 } 1209 EXPORT_SYMBOL(__mark_inode_dirty); 1210 1211 static void wait_sb_inodes(struct super_block *sb) 1212 { 1213 struct inode *inode, *old_inode = NULL; 1214 1215 /* 1216 * We need to be protected against the filesystem going from 1217 * r/o to r/w or vice versa. 1218 */ 1219 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1220 1221 spin_lock(&inode_sb_list_lock); 1222 1223 /* 1224 * Data integrity sync. Must wait for all pages under writeback, 1225 * because there may have been pages dirtied before our sync 1226 * call, but which had writeout started before we write it out. 1227 * In which case, the inode may not be on the dirty list, but 1228 * we still have to wait for that writeout. 1229 */ 1230 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1231 struct address_space *mapping = inode->i_mapping; 1232 1233 spin_lock(&inode->i_lock); 1234 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1235 (mapping->nrpages == 0)) { 1236 spin_unlock(&inode->i_lock); 1237 continue; 1238 } 1239 __iget(inode); 1240 spin_unlock(&inode->i_lock); 1241 spin_unlock(&inode_sb_list_lock); 1242 1243 /* 1244 * We hold a reference to 'inode' so it couldn't have been 1245 * removed from s_inodes list while we dropped the 1246 * inode_sb_list_lock. We cannot iput the inode now as we can 1247 * be holding the last reference and we cannot iput it under 1248 * inode_sb_list_lock. So we keep the reference and iput it 1249 * later. 1250 */ 1251 iput(old_inode); 1252 old_inode = inode; 1253 1254 filemap_fdatawait(mapping); 1255 1256 cond_resched(); 1257 1258 spin_lock(&inode_sb_list_lock); 1259 } 1260 spin_unlock(&inode_sb_list_lock); 1261 iput(old_inode); 1262 } 1263 1264 /** 1265 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1266 * @sb: the superblock 1267 * @nr: the number of pages to write 1268 * @reason: reason why some writeback work initiated 1269 * 1270 * Start writeback on some inodes on this super_block. No guarantees are made 1271 * on how many (if any) will be written, and this function does not wait 1272 * for IO completion of submitted IO. 1273 */ 1274 void writeback_inodes_sb_nr(struct super_block *sb, 1275 unsigned long nr, 1276 enum wb_reason reason) 1277 { 1278 DECLARE_COMPLETION_ONSTACK(done); 1279 struct wb_writeback_work work = { 1280 .sb = sb, 1281 .sync_mode = WB_SYNC_NONE, 1282 .tagged_writepages = 1, 1283 .done = &done, 1284 .nr_pages = nr, 1285 .reason = reason, 1286 }; 1287 1288 if (sb->s_bdi == &noop_backing_dev_info) 1289 return; 1290 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1291 bdi_queue_work(sb->s_bdi, &work); 1292 wait_for_completion(&done); 1293 } 1294 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1295 1296 /** 1297 * writeback_inodes_sb - writeback dirty inodes from given super_block 1298 * @sb: the superblock 1299 * @reason: reason why some writeback work was initiated 1300 * 1301 * Start writeback on some inodes on this super_block. No guarantees are made 1302 * on how many (if any) will be written, and this function does not wait 1303 * for IO completion of submitted IO. 1304 */ 1305 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1306 { 1307 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1308 } 1309 EXPORT_SYMBOL(writeback_inodes_sb); 1310 1311 /** 1312 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 1313 * @sb: the superblock 1314 * @nr: the number of pages to write 1315 * @reason: the reason of writeback 1316 * 1317 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 1318 * Returns 1 if writeback was started, 0 if not. 1319 */ 1320 int try_to_writeback_inodes_sb_nr(struct super_block *sb, 1321 unsigned long nr, 1322 enum wb_reason reason) 1323 { 1324 if (writeback_in_progress(sb->s_bdi)) 1325 return 1; 1326 1327 if (!down_read_trylock(&sb->s_umount)) 1328 return 0; 1329 1330 writeback_inodes_sb_nr(sb, nr, reason); 1331 up_read(&sb->s_umount); 1332 return 1; 1333 } 1334 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 1335 1336 /** 1337 * try_to_writeback_inodes_sb - try to start writeback if none underway 1338 * @sb: the superblock 1339 * @reason: reason why some writeback work was initiated 1340 * 1341 * Implement by try_to_writeback_inodes_sb_nr() 1342 * Returns 1 if writeback was started, 0 if not. 1343 */ 1344 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1345 { 1346 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1347 } 1348 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 1349 1350 /** 1351 * sync_inodes_sb - sync sb inode pages 1352 * @sb: the superblock 1353 * 1354 * This function writes and waits on any dirty inode belonging to this 1355 * super_block. 1356 */ 1357 void sync_inodes_sb(struct super_block *sb) 1358 { 1359 DECLARE_COMPLETION_ONSTACK(done); 1360 struct wb_writeback_work work = { 1361 .sb = sb, 1362 .sync_mode = WB_SYNC_ALL, 1363 .nr_pages = LONG_MAX, 1364 .range_cyclic = 0, 1365 .done = &done, 1366 .reason = WB_REASON_SYNC, 1367 .for_sync = 1, 1368 }; 1369 1370 /* Nothing to do? */ 1371 if (sb->s_bdi == &noop_backing_dev_info) 1372 return; 1373 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1374 1375 bdi_queue_work(sb->s_bdi, &work); 1376 wait_for_completion(&done); 1377 1378 wait_sb_inodes(sb); 1379 } 1380 EXPORT_SYMBOL(sync_inodes_sb); 1381 1382 /** 1383 * write_inode_now - write an inode to disk 1384 * @inode: inode to write to disk 1385 * @sync: whether the write should be synchronous or not 1386 * 1387 * This function commits an inode to disk immediately if it is dirty. This is 1388 * primarily needed by knfsd. 1389 * 1390 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1391 */ 1392 int write_inode_now(struct inode *inode, int sync) 1393 { 1394 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1395 struct writeback_control wbc = { 1396 .nr_to_write = LONG_MAX, 1397 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1398 .range_start = 0, 1399 .range_end = LLONG_MAX, 1400 }; 1401 1402 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1403 wbc.nr_to_write = 0; 1404 1405 might_sleep(); 1406 return writeback_single_inode(inode, wb, &wbc); 1407 } 1408 EXPORT_SYMBOL(write_inode_now); 1409 1410 /** 1411 * sync_inode - write an inode and its pages to disk. 1412 * @inode: the inode to sync 1413 * @wbc: controls the writeback mode 1414 * 1415 * sync_inode() will write an inode and its pages to disk. It will also 1416 * correctly update the inode on its superblock's dirty inode lists and will 1417 * update inode->i_state. 1418 * 1419 * The caller must have a ref on the inode. 1420 */ 1421 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1422 { 1423 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 1424 } 1425 EXPORT_SYMBOL(sync_inode); 1426 1427 /** 1428 * sync_inode_metadata - write an inode to disk 1429 * @inode: the inode to sync 1430 * @wait: wait for I/O to complete. 1431 * 1432 * Write an inode to disk and adjust its dirty state after completion. 1433 * 1434 * Note: only writes the actual inode, no associated data or other metadata. 1435 */ 1436 int sync_inode_metadata(struct inode *inode, int wait) 1437 { 1438 struct writeback_control wbc = { 1439 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1440 .nr_to_write = 0, /* metadata-only */ 1441 }; 1442 1443 return sync_inode(inode, &wbc); 1444 } 1445 EXPORT_SYMBOL(sync_inode_metadata); 1446