1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include <linux/memcontrol.h> 31 #include "internal.h" 32 33 /* 34 * 4MB minimal write chunk size 35 */ 36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 37 38 struct wb_completion { 39 atomic_t cnt; 40 }; 41 42 /* 43 * Passed into wb_writeback(), essentially a subset of writeback_control 44 */ 45 struct wb_writeback_work { 46 long nr_pages; 47 struct super_block *sb; 48 unsigned long *older_than_this; 49 enum writeback_sync_modes sync_mode; 50 unsigned int tagged_writepages:1; 51 unsigned int for_kupdate:1; 52 unsigned int range_cyclic:1; 53 unsigned int for_background:1; 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 55 unsigned int auto_free:1; /* free on completion */ 56 enum wb_reason reason; /* why was writeback initiated? */ 57 58 struct list_head list; /* pending work list */ 59 struct wb_completion *done; /* set if the caller waits */ 60 }; 61 62 /* 63 * If one wants to wait for one or more wb_writeback_works, each work's 64 * ->done should be set to a wb_completion defined using the following 65 * macro. Once all work items are issued with wb_queue_work(), the caller 66 * can wait for the completion of all using wb_wait_for_completion(). Work 67 * items which are waited upon aren't freed automatically on completion. 68 */ 69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ 70 struct wb_completion cmpl = { \ 71 .cnt = ATOMIC_INIT(1), \ 72 } 73 74 75 /* 76 * If an inode is constantly having its pages dirtied, but then the 77 * updates stop dirtytime_expire_interval seconds in the past, it's 78 * possible for the worst case time between when an inode has its 79 * timestamps updated and when they finally get written out to be two 80 * dirtytime_expire_intervals. We set the default to 12 hours (in 81 * seconds), which means most of the time inodes will have their 82 * timestamps written to disk after 12 hours, but in the worst case a 83 * few inodes might not their timestamps updated for 24 hours. 84 */ 85 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 86 87 static inline struct inode *wb_inode(struct list_head *head) 88 { 89 return list_entry(head, struct inode, i_io_list); 90 } 91 92 /* 93 * Include the creation of the trace points after defining the 94 * wb_writeback_work structure and inline functions so that the definition 95 * remains local to this file. 96 */ 97 #define CREATE_TRACE_POINTS 98 #include <trace/events/writeback.h> 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 101 102 static bool wb_io_lists_populated(struct bdi_writeback *wb) 103 { 104 if (wb_has_dirty_io(wb)) { 105 return false; 106 } else { 107 set_bit(WB_has_dirty_io, &wb->state); 108 WARN_ON_ONCE(!wb->avg_write_bandwidth); 109 atomic_long_add(wb->avg_write_bandwidth, 110 &wb->bdi->tot_write_bandwidth); 111 return true; 112 } 113 } 114 115 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 116 { 117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 119 clear_bit(WB_has_dirty_io, &wb->state); 120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 121 &wb->bdi->tot_write_bandwidth) < 0); 122 } 123 } 124 125 /** 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 127 * @inode: inode to be moved 128 * @wb: target bdi_writeback 129 * @head: one of @wb->b_{dirty|io|more_io} 130 * 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 132 * Returns %true if @inode is the first occupant of the !dirty_time IO 133 * lists; otherwise, %false. 134 */ 135 static bool inode_io_list_move_locked(struct inode *inode, 136 struct bdi_writeback *wb, 137 struct list_head *head) 138 { 139 assert_spin_locked(&wb->list_lock); 140 141 list_move(&inode->i_io_list, head); 142 143 /* dirty_time doesn't count as dirty_io until expiration */ 144 if (head != &wb->b_dirty_time) 145 return wb_io_lists_populated(wb); 146 147 wb_io_lists_depopulated(wb); 148 return false; 149 } 150 151 /** 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 153 * @inode: inode to be removed 154 * @wb: bdi_writeback @inode is being removed from 155 * 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 157 * clear %WB_has_dirty_io if all are empty afterwards. 158 */ 159 static void inode_io_list_del_locked(struct inode *inode, 160 struct bdi_writeback *wb) 161 { 162 assert_spin_locked(&wb->list_lock); 163 164 list_del_init(&inode->i_io_list); 165 wb_io_lists_depopulated(wb); 166 } 167 168 static void wb_wakeup(struct bdi_writeback *wb) 169 { 170 spin_lock_bh(&wb->work_lock); 171 if (test_bit(WB_registered, &wb->state)) 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 spin_unlock_bh(&wb->work_lock); 174 } 175 176 static void wb_queue_work(struct bdi_writeback *wb, 177 struct wb_writeback_work *work) 178 { 179 trace_writeback_queue(wb, work); 180 181 spin_lock_bh(&wb->work_lock); 182 if (!test_bit(WB_registered, &wb->state)) 183 goto out_unlock; 184 if (work->done) 185 atomic_inc(&work->done->cnt); 186 list_add_tail(&work->list, &wb->work_list); 187 mod_delayed_work(bdi_wq, &wb->dwork, 0); 188 out_unlock: 189 spin_unlock_bh(&wb->work_lock); 190 } 191 192 /** 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works 194 * @bdi: bdi work items were issued to 195 * @done: target wb_completion 196 * 197 * Wait for one or more work items issued to @bdi with their ->done field 198 * set to @done, which should have been defined with 199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such 200 * work items are completed. Work items which are waited upon aren't freed 201 * automatically on completion. 202 */ 203 static void wb_wait_for_completion(struct backing_dev_info *bdi, 204 struct wb_completion *done) 205 { 206 atomic_dec(&done->cnt); /* put down the initial count */ 207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); 208 } 209 210 #ifdef CONFIG_CGROUP_WRITEBACK 211 212 /* parameters for foreign inode detection, see wb_detach_inode() */ 213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ 216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 217 218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 220 /* each slot's duration is 2s / 16 */ 221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 222 /* if foreign slots >= 8, switch */ 223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 224 /* one round can affect upto 5 slots */ 225 226 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 227 static struct workqueue_struct *isw_wq; 228 229 void __inode_attach_wb(struct inode *inode, struct page *page) 230 { 231 struct backing_dev_info *bdi = inode_to_bdi(inode); 232 struct bdi_writeback *wb = NULL; 233 234 if (inode_cgwb_enabled(inode)) { 235 struct cgroup_subsys_state *memcg_css; 236 237 if (page) { 238 memcg_css = mem_cgroup_css_from_page(page); 239 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 240 } else { 241 /* must pin memcg_css, see wb_get_create() */ 242 memcg_css = task_get_css(current, memory_cgrp_id); 243 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 244 css_put(memcg_css); 245 } 246 } 247 248 if (!wb) 249 wb = &bdi->wb; 250 251 /* 252 * There may be multiple instances of this function racing to 253 * update the same inode. Use cmpxchg() to tell the winner. 254 */ 255 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 256 wb_put(wb); 257 } 258 259 /** 260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 261 * @inode: inode of interest with i_lock held 262 * 263 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 264 * held on entry and is released on return. The returned wb is guaranteed 265 * to stay @inode's associated wb until its list_lock is released. 266 */ 267 static struct bdi_writeback * 268 locked_inode_to_wb_and_lock_list(struct inode *inode) 269 __releases(&inode->i_lock) 270 __acquires(&wb->list_lock) 271 { 272 while (true) { 273 struct bdi_writeback *wb = inode_to_wb(inode); 274 275 /* 276 * inode_to_wb() association is protected by both 277 * @inode->i_lock and @wb->list_lock but list_lock nests 278 * outside i_lock. Drop i_lock and verify that the 279 * association hasn't changed after acquiring list_lock. 280 */ 281 wb_get(wb); 282 spin_unlock(&inode->i_lock); 283 spin_lock(&wb->list_lock); 284 wb_put(wb); /* not gonna deref it anymore */ 285 286 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 287 if (likely(wb == inode->i_wb)) 288 return wb; /* @inode already has ref */ 289 290 spin_unlock(&wb->list_lock); 291 cpu_relax(); 292 spin_lock(&inode->i_lock); 293 } 294 } 295 296 /** 297 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 298 * @inode: inode of interest 299 * 300 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 301 * on entry. 302 */ 303 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 304 __acquires(&wb->list_lock) 305 { 306 spin_lock(&inode->i_lock); 307 return locked_inode_to_wb_and_lock_list(inode); 308 } 309 310 struct inode_switch_wbs_context { 311 struct inode *inode; 312 struct bdi_writeback *new_wb; 313 314 struct rcu_head rcu_head; 315 struct work_struct work; 316 }; 317 318 static void inode_switch_wbs_work_fn(struct work_struct *work) 319 { 320 struct inode_switch_wbs_context *isw = 321 container_of(work, struct inode_switch_wbs_context, work); 322 struct inode *inode = isw->inode; 323 struct address_space *mapping = inode->i_mapping; 324 struct bdi_writeback *old_wb = inode->i_wb; 325 struct bdi_writeback *new_wb = isw->new_wb; 326 struct radix_tree_iter iter; 327 bool switched = false; 328 void **slot; 329 330 /* 331 * By the time control reaches here, RCU grace period has passed 332 * since I_WB_SWITCH assertion and all wb stat update transactions 333 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 334 * synchronizing against mapping->tree_lock. 335 * 336 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock 337 * gives us exclusion against all wb related operations on @inode 338 * including IO list manipulations and stat updates. 339 */ 340 if (old_wb < new_wb) { 341 spin_lock(&old_wb->list_lock); 342 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 343 } else { 344 spin_lock(&new_wb->list_lock); 345 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 346 } 347 spin_lock(&inode->i_lock); 348 spin_lock_irq(&mapping->tree_lock); 349 350 /* 351 * Once I_FREEING is visible under i_lock, the eviction path owns 352 * the inode and we shouldn't modify ->i_io_list. 353 */ 354 if (unlikely(inode->i_state & I_FREEING)) 355 goto skip_switch; 356 357 /* 358 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 359 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 360 * pages actually under underwriteback. 361 */ 362 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0, 363 PAGECACHE_TAG_DIRTY) { 364 struct page *page = radix_tree_deref_slot_protected(slot, 365 &mapping->tree_lock); 366 if (likely(page) && PageDirty(page)) { 367 __dec_wb_stat(old_wb, WB_RECLAIMABLE); 368 __inc_wb_stat(new_wb, WB_RECLAIMABLE); 369 } 370 } 371 372 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0, 373 PAGECACHE_TAG_WRITEBACK) { 374 struct page *page = radix_tree_deref_slot_protected(slot, 375 &mapping->tree_lock); 376 if (likely(page)) { 377 WARN_ON_ONCE(!PageWriteback(page)); 378 __dec_wb_stat(old_wb, WB_WRITEBACK); 379 __inc_wb_stat(new_wb, WB_WRITEBACK); 380 } 381 } 382 383 wb_get(new_wb); 384 385 /* 386 * Transfer to @new_wb's IO list if necessary. The specific list 387 * @inode was on is ignored and the inode is put on ->b_dirty which 388 * is always correct including from ->b_dirty_time. The transfer 389 * preserves @inode->dirtied_when ordering. 390 */ 391 if (!list_empty(&inode->i_io_list)) { 392 struct inode *pos; 393 394 inode_io_list_del_locked(inode, old_wb); 395 inode->i_wb = new_wb; 396 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 397 if (time_after_eq(inode->dirtied_when, 398 pos->dirtied_when)) 399 break; 400 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 401 } else { 402 inode->i_wb = new_wb; 403 } 404 405 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 406 inode->i_wb_frn_winner = 0; 407 inode->i_wb_frn_avg_time = 0; 408 inode->i_wb_frn_history = 0; 409 switched = true; 410 skip_switch: 411 /* 412 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 413 * ensures that the new wb is visible if they see !I_WB_SWITCH. 414 */ 415 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 416 417 spin_unlock_irq(&mapping->tree_lock); 418 spin_unlock(&inode->i_lock); 419 spin_unlock(&new_wb->list_lock); 420 spin_unlock(&old_wb->list_lock); 421 422 if (switched) { 423 wb_wakeup(new_wb); 424 wb_put(old_wb); 425 } 426 wb_put(new_wb); 427 428 iput(inode); 429 kfree(isw); 430 431 atomic_dec(&isw_nr_in_flight); 432 } 433 434 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 435 { 436 struct inode_switch_wbs_context *isw = container_of(rcu_head, 437 struct inode_switch_wbs_context, rcu_head); 438 439 /* needs to grab bh-unsafe locks, bounce to work item */ 440 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 441 queue_work(isw_wq, &isw->work); 442 } 443 444 /** 445 * inode_switch_wbs - change the wb association of an inode 446 * @inode: target inode 447 * @new_wb_id: ID of the new wb 448 * 449 * Switch @inode's wb association to the wb identified by @new_wb_id. The 450 * switching is performed asynchronously and may fail silently. 451 */ 452 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 453 { 454 struct backing_dev_info *bdi = inode_to_bdi(inode); 455 struct cgroup_subsys_state *memcg_css; 456 struct inode_switch_wbs_context *isw; 457 458 /* noop if seems to be already in progress */ 459 if (inode->i_state & I_WB_SWITCH) 460 return; 461 462 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 463 if (!isw) 464 return; 465 466 /* find and pin the new wb */ 467 rcu_read_lock(); 468 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 469 if (memcg_css) 470 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 471 rcu_read_unlock(); 472 if (!isw->new_wb) 473 goto out_free; 474 475 /* while holding I_WB_SWITCH, no one else can update the association */ 476 spin_lock(&inode->i_lock); 477 if (!(inode->i_sb->s_flags & MS_ACTIVE) || 478 inode->i_state & (I_WB_SWITCH | I_FREEING) || 479 inode_to_wb(inode) == isw->new_wb) { 480 spin_unlock(&inode->i_lock); 481 goto out_free; 482 } 483 inode->i_state |= I_WB_SWITCH; 484 spin_unlock(&inode->i_lock); 485 486 ihold(inode); 487 isw->inode = inode; 488 489 atomic_inc(&isw_nr_in_flight); 490 491 /* 492 * In addition to synchronizing among switchers, I_WB_SWITCH tells 493 * the RCU protected stat update paths to grab the mapping's 494 * tree_lock so that stat transfer can synchronize against them. 495 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 496 */ 497 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 498 return; 499 500 out_free: 501 if (isw->new_wb) 502 wb_put(isw->new_wb); 503 kfree(isw); 504 } 505 506 /** 507 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 508 * @wbc: writeback_control of interest 509 * @inode: target inode 510 * 511 * @inode is locked and about to be written back under the control of @wbc. 512 * Record @inode's writeback context into @wbc and unlock the i_lock. On 513 * writeback completion, wbc_detach_inode() should be called. This is used 514 * to track the cgroup writeback context. 515 */ 516 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 517 struct inode *inode) 518 { 519 if (!inode_cgwb_enabled(inode)) { 520 spin_unlock(&inode->i_lock); 521 return; 522 } 523 524 wbc->wb = inode_to_wb(inode); 525 wbc->inode = inode; 526 527 wbc->wb_id = wbc->wb->memcg_css->id; 528 wbc->wb_lcand_id = inode->i_wb_frn_winner; 529 wbc->wb_tcand_id = 0; 530 wbc->wb_bytes = 0; 531 wbc->wb_lcand_bytes = 0; 532 wbc->wb_tcand_bytes = 0; 533 534 wb_get(wbc->wb); 535 spin_unlock(&inode->i_lock); 536 537 /* 538 * A dying wb indicates that the memcg-blkcg mapping has changed 539 * and a new wb is already serving the memcg. Switch immediately. 540 */ 541 if (unlikely(wb_dying(wbc->wb))) 542 inode_switch_wbs(inode, wbc->wb_id); 543 } 544 545 /** 546 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 547 * @wbc: writeback_control of the just finished writeback 548 * 549 * To be called after a writeback attempt of an inode finishes and undoes 550 * wbc_attach_and_unlock_inode(). Can be called under any context. 551 * 552 * As concurrent write sharing of an inode is expected to be very rare and 553 * memcg only tracks page ownership on first-use basis severely confining 554 * the usefulness of such sharing, cgroup writeback tracks ownership 555 * per-inode. While the support for concurrent write sharing of an inode 556 * is deemed unnecessary, an inode being written to by different cgroups at 557 * different points in time is a lot more common, and, more importantly, 558 * charging only by first-use can too readily lead to grossly incorrect 559 * behaviors (single foreign page can lead to gigabytes of writeback to be 560 * incorrectly attributed). 561 * 562 * To resolve this issue, cgroup writeback detects the majority dirtier of 563 * an inode and transfers the ownership to it. To avoid unnnecessary 564 * oscillation, the detection mechanism keeps track of history and gives 565 * out the switch verdict only if the foreign usage pattern is stable over 566 * a certain amount of time and/or writeback attempts. 567 * 568 * On each writeback attempt, @wbc tries to detect the majority writer 569 * using Boyer-Moore majority vote algorithm. In addition to the byte 570 * count from the majority voting, it also counts the bytes written for the 571 * current wb and the last round's winner wb (max of last round's current 572 * wb, the winner from two rounds ago, and the last round's majority 573 * candidate). Keeping track of the historical winner helps the algorithm 574 * to semi-reliably detect the most active writer even when it's not the 575 * absolute majority. 576 * 577 * Once the winner of the round is determined, whether the winner is 578 * foreign or not and how much IO time the round consumed is recorded in 579 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 580 * over a certain threshold, the switch verdict is given. 581 */ 582 void wbc_detach_inode(struct writeback_control *wbc) 583 { 584 struct bdi_writeback *wb = wbc->wb; 585 struct inode *inode = wbc->inode; 586 unsigned long avg_time, max_bytes, max_time; 587 u16 history; 588 int max_id; 589 590 if (!wb) 591 return; 592 593 history = inode->i_wb_frn_history; 594 avg_time = inode->i_wb_frn_avg_time; 595 596 /* pick the winner of this round */ 597 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 598 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 599 max_id = wbc->wb_id; 600 max_bytes = wbc->wb_bytes; 601 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 602 max_id = wbc->wb_lcand_id; 603 max_bytes = wbc->wb_lcand_bytes; 604 } else { 605 max_id = wbc->wb_tcand_id; 606 max_bytes = wbc->wb_tcand_bytes; 607 } 608 609 /* 610 * Calculate the amount of IO time the winner consumed and fold it 611 * into the running average kept per inode. If the consumed IO 612 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 613 * deciding whether to switch or not. This is to prevent one-off 614 * small dirtiers from skewing the verdict. 615 */ 616 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 617 wb->avg_write_bandwidth); 618 if (avg_time) 619 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 620 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 621 else 622 avg_time = max_time; /* immediate catch up on first run */ 623 624 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 625 int slots; 626 627 /* 628 * The switch verdict is reached if foreign wb's consume 629 * more than a certain proportion of IO time in a 630 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 631 * history mask where each bit represents one sixteenth of 632 * the period. Determine the number of slots to shift into 633 * history from @max_time. 634 */ 635 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 636 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 637 history <<= slots; 638 if (wbc->wb_id != max_id) 639 history |= (1U << slots) - 1; 640 641 /* 642 * Switch if the current wb isn't the consistent winner. 643 * If there are multiple closely competing dirtiers, the 644 * inode may switch across them repeatedly over time, which 645 * is okay. The main goal is avoiding keeping an inode on 646 * the wrong wb for an extended period of time. 647 */ 648 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 649 inode_switch_wbs(inode, max_id); 650 } 651 652 /* 653 * Multiple instances of this function may race to update the 654 * following fields but we don't mind occassional inaccuracies. 655 */ 656 inode->i_wb_frn_winner = max_id; 657 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 658 inode->i_wb_frn_history = history; 659 660 wb_put(wbc->wb); 661 wbc->wb = NULL; 662 } 663 664 /** 665 * wbc_account_io - account IO issued during writeback 666 * @wbc: writeback_control of the writeback in progress 667 * @page: page being written out 668 * @bytes: number of bytes being written out 669 * 670 * @bytes from @page are about to written out during the writeback 671 * controlled by @wbc. Keep the book for foreign inode detection. See 672 * wbc_detach_inode(). 673 */ 674 void wbc_account_io(struct writeback_control *wbc, struct page *page, 675 size_t bytes) 676 { 677 int id; 678 679 /* 680 * pageout() path doesn't attach @wbc to the inode being written 681 * out. This is intentional as we don't want the function to block 682 * behind a slow cgroup. Ultimately, we want pageout() to kick off 683 * regular writeback instead of writing things out itself. 684 */ 685 if (!wbc->wb) 686 return; 687 688 id = mem_cgroup_css_from_page(page)->id; 689 690 if (id == wbc->wb_id) { 691 wbc->wb_bytes += bytes; 692 return; 693 } 694 695 if (id == wbc->wb_lcand_id) 696 wbc->wb_lcand_bytes += bytes; 697 698 /* Boyer-Moore majority vote algorithm */ 699 if (!wbc->wb_tcand_bytes) 700 wbc->wb_tcand_id = id; 701 if (id == wbc->wb_tcand_id) 702 wbc->wb_tcand_bytes += bytes; 703 else 704 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 705 } 706 EXPORT_SYMBOL_GPL(wbc_account_io); 707 708 /** 709 * inode_congested - test whether an inode is congested 710 * @inode: inode to test for congestion (may be NULL) 711 * @cong_bits: mask of WB_[a]sync_congested bits to test 712 * 713 * Tests whether @inode is congested. @cong_bits is the mask of congestion 714 * bits to test and the return value is the mask of set bits. 715 * 716 * If cgroup writeback is enabled for @inode, the congestion state is 717 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 718 * associated with @inode is congested; otherwise, the root wb's congestion 719 * state is used. 720 * 721 * @inode is allowed to be NULL as this function is often called on 722 * mapping->host which is NULL for the swapper space. 723 */ 724 int inode_congested(struct inode *inode, int cong_bits) 725 { 726 /* 727 * Once set, ->i_wb never becomes NULL while the inode is alive. 728 * Start transaction iff ->i_wb is visible. 729 */ 730 if (inode && inode_to_wb_is_valid(inode)) { 731 struct bdi_writeback *wb; 732 bool locked, congested; 733 734 wb = unlocked_inode_to_wb_begin(inode, &locked); 735 congested = wb_congested(wb, cong_bits); 736 unlocked_inode_to_wb_end(inode, locked); 737 return congested; 738 } 739 740 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 741 } 742 EXPORT_SYMBOL_GPL(inode_congested); 743 744 /** 745 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 746 * @wb: target bdi_writeback to split @nr_pages to 747 * @nr_pages: number of pages to write for the whole bdi 748 * 749 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 750 * relation to the total write bandwidth of all wb's w/ dirty inodes on 751 * @wb->bdi. 752 */ 753 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 754 { 755 unsigned long this_bw = wb->avg_write_bandwidth; 756 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 757 758 if (nr_pages == LONG_MAX) 759 return LONG_MAX; 760 761 /* 762 * This may be called on clean wb's and proportional distribution 763 * may not make sense, just use the original @nr_pages in those 764 * cases. In general, we wanna err on the side of writing more. 765 */ 766 if (!tot_bw || this_bw >= tot_bw) 767 return nr_pages; 768 else 769 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 770 } 771 772 /** 773 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 774 * @bdi: target backing_dev_info 775 * @base_work: wb_writeback_work to issue 776 * @skip_if_busy: skip wb's which already have writeback in progress 777 * 778 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 779 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 780 * distributed to the busy wbs according to each wb's proportion in the 781 * total active write bandwidth of @bdi. 782 */ 783 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 784 struct wb_writeback_work *base_work, 785 bool skip_if_busy) 786 { 787 struct bdi_writeback *last_wb = NULL; 788 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 789 struct bdi_writeback, bdi_node); 790 791 might_sleep(); 792 restart: 793 rcu_read_lock(); 794 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 795 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); 796 struct wb_writeback_work fallback_work; 797 struct wb_writeback_work *work; 798 long nr_pages; 799 800 if (last_wb) { 801 wb_put(last_wb); 802 last_wb = NULL; 803 } 804 805 /* SYNC_ALL writes out I_DIRTY_TIME too */ 806 if (!wb_has_dirty_io(wb) && 807 (base_work->sync_mode == WB_SYNC_NONE || 808 list_empty(&wb->b_dirty_time))) 809 continue; 810 if (skip_if_busy && writeback_in_progress(wb)) 811 continue; 812 813 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 814 815 work = kmalloc(sizeof(*work), GFP_ATOMIC); 816 if (work) { 817 *work = *base_work; 818 work->nr_pages = nr_pages; 819 work->auto_free = 1; 820 wb_queue_work(wb, work); 821 continue; 822 } 823 824 /* alloc failed, execute synchronously using on-stack fallback */ 825 work = &fallback_work; 826 *work = *base_work; 827 work->nr_pages = nr_pages; 828 work->auto_free = 0; 829 work->done = &fallback_work_done; 830 831 wb_queue_work(wb, work); 832 833 /* 834 * Pin @wb so that it stays on @bdi->wb_list. This allows 835 * continuing iteration from @wb after dropping and 836 * regrabbing rcu read lock. 837 */ 838 wb_get(wb); 839 last_wb = wb; 840 841 rcu_read_unlock(); 842 wb_wait_for_completion(bdi, &fallback_work_done); 843 goto restart; 844 } 845 rcu_read_unlock(); 846 847 if (last_wb) 848 wb_put(last_wb); 849 } 850 851 /** 852 * cgroup_writeback_umount - flush inode wb switches for umount 853 * 854 * This function is called when a super_block is about to be destroyed and 855 * flushes in-flight inode wb switches. An inode wb switch goes through 856 * RCU and then workqueue, so the two need to be flushed in order to ensure 857 * that all previously scheduled switches are finished. As wb switches are 858 * rare occurrences and synchronize_rcu() can take a while, perform 859 * flushing iff wb switches are in flight. 860 */ 861 void cgroup_writeback_umount(void) 862 { 863 if (atomic_read(&isw_nr_in_flight)) { 864 synchronize_rcu(); 865 flush_workqueue(isw_wq); 866 } 867 } 868 869 static int __init cgroup_writeback_init(void) 870 { 871 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 872 if (!isw_wq) 873 return -ENOMEM; 874 return 0; 875 } 876 fs_initcall(cgroup_writeback_init); 877 878 #else /* CONFIG_CGROUP_WRITEBACK */ 879 880 static struct bdi_writeback * 881 locked_inode_to_wb_and_lock_list(struct inode *inode) 882 __releases(&inode->i_lock) 883 __acquires(&wb->list_lock) 884 { 885 struct bdi_writeback *wb = inode_to_wb(inode); 886 887 spin_unlock(&inode->i_lock); 888 spin_lock(&wb->list_lock); 889 return wb; 890 } 891 892 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 893 __acquires(&wb->list_lock) 894 { 895 struct bdi_writeback *wb = inode_to_wb(inode); 896 897 spin_lock(&wb->list_lock); 898 return wb; 899 } 900 901 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 902 { 903 return nr_pages; 904 } 905 906 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 907 struct wb_writeback_work *base_work, 908 bool skip_if_busy) 909 { 910 might_sleep(); 911 912 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 913 base_work->auto_free = 0; 914 wb_queue_work(&bdi->wb, base_work); 915 } 916 } 917 918 #endif /* CONFIG_CGROUP_WRITEBACK */ 919 920 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages, 921 bool range_cyclic, enum wb_reason reason) 922 { 923 struct wb_writeback_work *work; 924 925 if (!wb_has_dirty_io(wb)) 926 return; 927 928 /* 929 * This is WB_SYNC_NONE writeback, so if allocation fails just 930 * wakeup the thread for old dirty data writeback 931 */ 932 work = kzalloc(sizeof(*work), GFP_ATOMIC); 933 if (!work) { 934 trace_writeback_nowork(wb); 935 wb_wakeup(wb); 936 return; 937 } 938 939 work->sync_mode = WB_SYNC_NONE; 940 work->nr_pages = nr_pages; 941 work->range_cyclic = range_cyclic; 942 work->reason = reason; 943 work->auto_free = 1; 944 945 wb_queue_work(wb, work); 946 } 947 948 /** 949 * wb_start_background_writeback - start background writeback 950 * @wb: bdi_writback to write from 951 * 952 * Description: 953 * This makes sure WB_SYNC_NONE background writeback happens. When 954 * this function returns, it is only guaranteed that for given wb 955 * some IO is happening if we are over background dirty threshold. 956 * Caller need not hold sb s_umount semaphore. 957 */ 958 void wb_start_background_writeback(struct bdi_writeback *wb) 959 { 960 /* 961 * We just wake up the flusher thread. It will perform background 962 * writeback as soon as there is no other work to do. 963 */ 964 trace_writeback_wake_background(wb); 965 wb_wakeup(wb); 966 } 967 968 /* 969 * Remove the inode from the writeback list it is on. 970 */ 971 void inode_io_list_del(struct inode *inode) 972 { 973 struct bdi_writeback *wb; 974 975 wb = inode_to_wb_and_lock_list(inode); 976 inode_io_list_del_locked(inode, wb); 977 spin_unlock(&wb->list_lock); 978 } 979 980 /* 981 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 982 * furthest end of its superblock's dirty-inode list. 983 * 984 * Before stamping the inode's ->dirtied_when, we check to see whether it is 985 * already the most-recently-dirtied inode on the b_dirty list. If that is 986 * the case then the inode must have been redirtied while it was being written 987 * out and we don't reset its dirtied_when. 988 */ 989 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 990 { 991 if (!list_empty(&wb->b_dirty)) { 992 struct inode *tail; 993 994 tail = wb_inode(wb->b_dirty.next); 995 if (time_before(inode->dirtied_when, tail->dirtied_when)) 996 inode->dirtied_when = jiffies; 997 } 998 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 999 } 1000 1001 /* 1002 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1003 */ 1004 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1005 { 1006 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1007 } 1008 1009 static void inode_sync_complete(struct inode *inode) 1010 { 1011 inode->i_state &= ~I_SYNC; 1012 /* If inode is clean an unused, put it into LRU now... */ 1013 inode_add_lru(inode); 1014 /* Waiters must see I_SYNC cleared before being woken up */ 1015 smp_mb(); 1016 wake_up_bit(&inode->i_state, __I_SYNC); 1017 } 1018 1019 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1020 { 1021 bool ret = time_after(inode->dirtied_when, t); 1022 #ifndef CONFIG_64BIT 1023 /* 1024 * For inodes being constantly redirtied, dirtied_when can get stuck. 1025 * It _appears_ to be in the future, but is actually in distant past. 1026 * This test is necessary to prevent such wrapped-around relative times 1027 * from permanently stopping the whole bdi writeback. 1028 */ 1029 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1030 #endif 1031 return ret; 1032 } 1033 1034 #define EXPIRE_DIRTY_ATIME 0x0001 1035 1036 /* 1037 * Move expired (dirtied before work->older_than_this) dirty inodes from 1038 * @delaying_queue to @dispatch_queue. 1039 */ 1040 static int move_expired_inodes(struct list_head *delaying_queue, 1041 struct list_head *dispatch_queue, 1042 int flags, 1043 struct wb_writeback_work *work) 1044 { 1045 unsigned long *older_than_this = NULL; 1046 unsigned long expire_time; 1047 LIST_HEAD(tmp); 1048 struct list_head *pos, *node; 1049 struct super_block *sb = NULL; 1050 struct inode *inode; 1051 int do_sb_sort = 0; 1052 int moved = 0; 1053 1054 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1055 older_than_this = work->older_than_this; 1056 else if (!work->for_sync) { 1057 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1058 older_than_this = &expire_time; 1059 } 1060 while (!list_empty(delaying_queue)) { 1061 inode = wb_inode(delaying_queue->prev); 1062 if (older_than_this && 1063 inode_dirtied_after(inode, *older_than_this)) 1064 break; 1065 list_move(&inode->i_io_list, &tmp); 1066 moved++; 1067 if (flags & EXPIRE_DIRTY_ATIME) 1068 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1069 if (sb_is_blkdev_sb(inode->i_sb)) 1070 continue; 1071 if (sb && sb != inode->i_sb) 1072 do_sb_sort = 1; 1073 sb = inode->i_sb; 1074 } 1075 1076 /* just one sb in list, splice to dispatch_queue and we're done */ 1077 if (!do_sb_sort) { 1078 list_splice(&tmp, dispatch_queue); 1079 goto out; 1080 } 1081 1082 /* Move inodes from one superblock together */ 1083 while (!list_empty(&tmp)) { 1084 sb = wb_inode(tmp.prev)->i_sb; 1085 list_for_each_prev_safe(pos, node, &tmp) { 1086 inode = wb_inode(pos); 1087 if (inode->i_sb == sb) 1088 list_move(&inode->i_io_list, dispatch_queue); 1089 } 1090 } 1091 out: 1092 return moved; 1093 } 1094 1095 /* 1096 * Queue all expired dirty inodes for io, eldest first. 1097 * Before 1098 * newly dirtied b_dirty b_io b_more_io 1099 * =============> gf edc BA 1100 * After 1101 * newly dirtied b_dirty b_io b_more_io 1102 * =============> g fBAedc 1103 * | 1104 * +--> dequeue for IO 1105 */ 1106 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1107 { 1108 int moved; 1109 1110 assert_spin_locked(&wb->list_lock); 1111 list_splice_init(&wb->b_more_io, &wb->b_io); 1112 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1113 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1114 EXPIRE_DIRTY_ATIME, work); 1115 if (moved) 1116 wb_io_lists_populated(wb); 1117 trace_writeback_queue_io(wb, work, moved); 1118 } 1119 1120 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1121 { 1122 int ret; 1123 1124 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1125 trace_writeback_write_inode_start(inode, wbc); 1126 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1127 trace_writeback_write_inode(inode, wbc); 1128 return ret; 1129 } 1130 return 0; 1131 } 1132 1133 /* 1134 * Wait for writeback on an inode to complete. Called with i_lock held. 1135 * Caller must make sure inode cannot go away when we drop i_lock. 1136 */ 1137 static void __inode_wait_for_writeback(struct inode *inode) 1138 __releases(inode->i_lock) 1139 __acquires(inode->i_lock) 1140 { 1141 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1142 wait_queue_head_t *wqh; 1143 1144 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1145 while (inode->i_state & I_SYNC) { 1146 spin_unlock(&inode->i_lock); 1147 __wait_on_bit(wqh, &wq, bit_wait, 1148 TASK_UNINTERRUPTIBLE); 1149 spin_lock(&inode->i_lock); 1150 } 1151 } 1152 1153 /* 1154 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1155 */ 1156 void inode_wait_for_writeback(struct inode *inode) 1157 { 1158 spin_lock(&inode->i_lock); 1159 __inode_wait_for_writeback(inode); 1160 spin_unlock(&inode->i_lock); 1161 } 1162 1163 /* 1164 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1165 * held and drops it. It is aimed for callers not holding any inode reference 1166 * so once i_lock is dropped, inode can go away. 1167 */ 1168 static void inode_sleep_on_writeback(struct inode *inode) 1169 __releases(inode->i_lock) 1170 { 1171 DEFINE_WAIT(wait); 1172 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1173 int sleep; 1174 1175 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1176 sleep = inode->i_state & I_SYNC; 1177 spin_unlock(&inode->i_lock); 1178 if (sleep) 1179 schedule(); 1180 finish_wait(wqh, &wait); 1181 } 1182 1183 /* 1184 * Find proper writeback list for the inode depending on its current state and 1185 * possibly also change of its state while we were doing writeback. Here we 1186 * handle things such as livelock prevention or fairness of writeback among 1187 * inodes. This function can be called only by flusher thread - noone else 1188 * processes all inodes in writeback lists and requeueing inodes behind flusher 1189 * thread's back can have unexpected consequences. 1190 */ 1191 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1192 struct writeback_control *wbc) 1193 { 1194 if (inode->i_state & I_FREEING) 1195 return; 1196 1197 /* 1198 * Sync livelock prevention. Each inode is tagged and synced in one 1199 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1200 * the dirty time to prevent enqueue and sync it again. 1201 */ 1202 if ((inode->i_state & I_DIRTY) && 1203 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1204 inode->dirtied_when = jiffies; 1205 1206 if (wbc->pages_skipped) { 1207 /* 1208 * writeback is not making progress due to locked 1209 * buffers. Skip this inode for now. 1210 */ 1211 redirty_tail(inode, wb); 1212 return; 1213 } 1214 1215 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1216 /* 1217 * We didn't write back all the pages. nfs_writepages() 1218 * sometimes bales out without doing anything. 1219 */ 1220 if (wbc->nr_to_write <= 0) { 1221 /* Slice used up. Queue for next turn. */ 1222 requeue_io(inode, wb); 1223 } else { 1224 /* 1225 * Writeback blocked by something other than 1226 * congestion. Delay the inode for some time to 1227 * avoid spinning on the CPU (100% iowait) 1228 * retrying writeback of the dirty page/inode 1229 * that cannot be performed immediately. 1230 */ 1231 redirty_tail(inode, wb); 1232 } 1233 } else if (inode->i_state & I_DIRTY) { 1234 /* 1235 * Filesystems can dirty the inode during writeback operations, 1236 * such as delayed allocation during submission or metadata 1237 * updates after data IO completion. 1238 */ 1239 redirty_tail(inode, wb); 1240 } else if (inode->i_state & I_DIRTY_TIME) { 1241 inode->dirtied_when = jiffies; 1242 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1243 } else { 1244 /* The inode is clean. Remove from writeback lists. */ 1245 inode_io_list_del_locked(inode, wb); 1246 } 1247 } 1248 1249 /* 1250 * Write out an inode and its dirty pages. Do not update the writeback list 1251 * linkage. That is left to the caller. The caller is also responsible for 1252 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1253 */ 1254 static int 1255 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1256 { 1257 struct address_space *mapping = inode->i_mapping; 1258 long nr_to_write = wbc->nr_to_write; 1259 unsigned dirty; 1260 int ret; 1261 1262 WARN_ON(!(inode->i_state & I_SYNC)); 1263 1264 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1265 1266 ret = do_writepages(mapping, wbc); 1267 1268 /* 1269 * Make sure to wait on the data before writing out the metadata. 1270 * This is important for filesystems that modify metadata on data 1271 * I/O completion. We don't do it for sync(2) writeback because it has a 1272 * separate, external IO completion path and ->sync_fs for guaranteeing 1273 * inode metadata is written back correctly. 1274 */ 1275 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1276 int err = filemap_fdatawait(mapping); 1277 if (ret == 0) 1278 ret = err; 1279 } 1280 1281 /* 1282 * Some filesystems may redirty the inode during the writeback 1283 * due to delalloc, clear dirty metadata flags right before 1284 * write_inode() 1285 */ 1286 spin_lock(&inode->i_lock); 1287 1288 dirty = inode->i_state & I_DIRTY; 1289 if (inode->i_state & I_DIRTY_TIME) { 1290 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 1291 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1292 unlikely(time_after(jiffies, 1293 (inode->dirtied_time_when + 1294 dirtytime_expire_interval * HZ)))) { 1295 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1296 trace_writeback_lazytime(inode); 1297 } 1298 } else 1299 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1300 inode->i_state &= ~dirty; 1301 1302 /* 1303 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1304 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1305 * either they see the I_DIRTY bits cleared or we see the dirtied 1306 * inode. 1307 * 1308 * I_DIRTY_PAGES is always cleared together above even if @mapping 1309 * still has dirty pages. The flag is reinstated after smp_mb() if 1310 * necessary. This guarantees that either __mark_inode_dirty() 1311 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1312 */ 1313 smp_mb(); 1314 1315 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1316 inode->i_state |= I_DIRTY_PAGES; 1317 1318 spin_unlock(&inode->i_lock); 1319 1320 if (dirty & I_DIRTY_TIME) 1321 mark_inode_dirty_sync(inode); 1322 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1323 if (dirty & ~I_DIRTY_PAGES) { 1324 int err = write_inode(inode, wbc); 1325 if (ret == 0) 1326 ret = err; 1327 } 1328 trace_writeback_single_inode(inode, wbc, nr_to_write); 1329 return ret; 1330 } 1331 1332 /* 1333 * Write out an inode's dirty pages. Either the caller has an active reference 1334 * on the inode or the inode has I_WILL_FREE set. 1335 * 1336 * This function is designed to be called for writing back one inode which 1337 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1338 * and does more profound writeback list handling in writeback_sb_inodes(). 1339 */ 1340 static int 1341 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 1342 struct writeback_control *wbc) 1343 { 1344 int ret = 0; 1345 1346 spin_lock(&inode->i_lock); 1347 if (!atomic_read(&inode->i_count)) 1348 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1349 else 1350 WARN_ON(inode->i_state & I_WILL_FREE); 1351 1352 if (inode->i_state & I_SYNC) { 1353 if (wbc->sync_mode != WB_SYNC_ALL) 1354 goto out; 1355 /* 1356 * It's a data-integrity sync. We must wait. Since callers hold 1357 * inode reference or inode has I_WILL_FREE set, it cannot go 1358 * away under us. 1359 */ 1360 __inode_wait_for_writeback(inode); 1361 } 1362 WARN_ON(inode->i_state & I_SYNC); 1363 /* 1364 * Skip inode if it is clean and we have no outstanding writeback in 1365 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1366 * function since flusher thread may be doing for example sync in 1367 * parallel and if we move the inode, it could get skipped. So here we 1368 * make sure inode is on some writeback list and leave it there unless 1369 * we have completely cleaned the inode. 1370 */ 1371 if (!(inode->i_state & I_DIRTY_ALL) && 1372 (wbc->sync_mode != WB_SYNC_ALL || 1373 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1374 goto out; 1375 inode->i_state |= I_SYNC; 1376 wbc_attach_and_unlock_inode(wbc, inode); 1377 1378 ret = __writeback_single_inode(inode, wbc); 1379 1380 wbc_detach_inode(wbc); 1381 spin_lock(&wb->list_lock); 1382 spin_lock(&inode->i_lock); 1383 /* 1384 * If inode is clean, remove it from writeback lists. Otherwise don't 1385 * touch it. See comment above for explanation. 1386 */ 1387 if (!(inode->i_state & I_DIRTY_ALL)) 1388 inode_io_list_del_locked(inode, wb); 1389 spin_unlock(&wb->list_lock); 1390 inode_sync_complete(inode); 1391 out: 1392 spin_unlock(&inode->i_lock); 1393 return ret; 1394 } 1395 1396 static long writeback_chunk_size(struct bdi_writeback *wb, 1397 struct wb_writeback_work *work) 1398 { 1399 long pages; 1400 1401 /* 1402 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1403 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1404 * here avoids calling into writeback_inodes_wb() more than once. 1405 * 1406 * The intended call sequence for WB_SYNC_ALL writeback is: 1407 * 1408 * wb_writeback() 1409 * writeback_sb_inodes() <== called only once 1410 * write_cache_pages() <== called once for each inode 1411 * (quickly) tag currently dirty pages 1412 * (maybe slowly) sync all tagged pages 1413 */ 1414 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1415 pages = LONG_MAX; 1416 else { 1417 pages = min(wb->avg_write_bandwidth / 2, 1418 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1419 pages = min(pages, work->nr_pages); 1420 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1421 MIN_WRITEBACK_PAGES); 1422 } 1423 1424 return pages; 1425 } 1426 1427 /* 1428 * Write a portion of b_io inodes which belong to @sb. 1429 * 1430 * Return the number of pages and/or inodes written. 1431 * 1432 * NOTE! This is called with wb->list_lock held, and will 1433 * unlock and relock that for each inode it ends up doing 1434 * IO for. 1435 */ 1436 static long writeback_sb_inodes(struct super_block *sb, 1437 struct bdi_writeback *wb, 1438 struct wb_writeback_work *work) 1439 { 1440 struct writeback_control wbc = { 1441 .sync_mode = work->sync_mode, 1442 .tagged_writepages = work->tagged_writepages, 1443 .for_kupdate = work->for_kupdate, 1444 .for_background = work->for_background, 1445 .for_sync = work->for_sync, 1446 .range_cyclic = work->range_cyclic, 1447 .range_start = 0, 1448 .range_end = LLONG_MAX, 1449 }; 1450 unsigned long start_time = jiffies; 1451 long write_chunk; 1452 long wrote = 0; /* count both pages and inodes */ 1453 1454 while (!list_empty(&wb->b_io)) { 1455 struct inode *inode = wb_inode(wb->b_io.prev); 1456 1457 if (inode->i_sb != sb) { 1458 if (work->sb) { 1459 /* 1460 * We only want to write back data for this 1461 * superblock, move all inodes not belonging 1462 * to it back onto the dirty list. 1463 */ 1464 redirty_tail(inode, wb); 1465 continue; 1466 } 1467 1468 /* 1469 * The inode belongs to a different superblock. 1470 * Bounce back to the caller to unpin this and 1471 * pin the next superblock. 1472 */ 1473 break; 1474 } 1475 1476 /* 1477 * Don't bother with new inodes or inodes being freed, first 1478 * kind does not need periodic writeout yet, and for the latter 1479 * kind writeout is handled by the freer. 1480 */ 1481 spin_lock(&inode->i_lock); 1482 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1483 spin_unlock(&inode->i_lock); 1484 redirty_tail(inode, wb); 1485 continue; 1486 } 1487 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1488 /* 1489 * If this inode is locked for writeback and we are not 1490 * doing writeback-for-data-integrity, move it to 1491 * b_more_io so that writeback can proceed with the 1492 * other inodes on s_io. 1493 * 1494 * We'll have another go at writing back this inode 1495 * when we completed a full scan of b_io. 1496 */ 1497 spin_unlock(&inode->i_lock); 1498 requeue_io(inode, wb); 1499 trace_writeback_sb_inodes_requeue(inode); 1500 continue; 1501 } 1502 spin_unlock(&wb->list_lock); 1503 1504 /* 1505 * We already requeued the inode if it had I_SYNC set and we 1506 * are doing WB_SYNC_NONE writeback. So this catches only the 1507 * WB_SYNC_ALL case. 1508 */ 1509 if (inode->i_state & I_SYNC) { 1510 /* Wait for I_SYNC. This function drops i_lock... */ 1511 inode_sleep_on_writeback(inode); 1512 /* Inode may be gone, start again */ 1513 spin_lock(&wb->list_lock); 1514 continue; 1515 } 1516 inode->i_state |= I_SYNC; 1517 wbc_attach_and_unlock_inode(&wbc, inode); 1518 1519 write_chunk = writeback_chunk_size(wb, work); 1520 wbc.nr_to_write = write_chunk; 1521 wbc.pages_skipped = 0; 1522 1523 /* 1524 * We use I_SYNC to pin the inode in memory. While it is set 1525 * evict_inode() will wait so the inode cannot be freed. 1526 */ 1527 __writeback_single_inode(inode, &wbc); 1528 1529 wbc_detach_inode(&wbc); 1530 work->nr_pages -= write_chunk - wbc.nr_to_write; 1531 wrote += write_chunk - wbc.nr_to_write; 1532 1533 if (need_resched()) { 1534 /* 1535 * We're trying to balance between building up a nice 1536 * long list of IOs to improve our merge rate, and 1537 * getting those IOs out quickly for anyone throttling 1538 * in balance_dirty_pages(). cond_resched() doesn't 1539 * unplug, so get our IOs out the door before we 1540 * give up the CPU. 1541 */ 1542 blk_flush_plug(current); 1543 cond_resched(); 1544 } 1545 1546 1547 spin_lock(&wb->list_lock); 1548 spin_lock(&inode->i_lock); 1549 if (!(inode->i_state & I_DIRTY_ALL)) 1550 wrote++; 1551 requeue_inode(inode, wb, &wbc); 1552 inode_sync_complete(inode); 1553 spin_unlock(&inode->i_lock); 1554 1555 /* 1556 * bail out to wb_writeback() often enough to check 1557 * background threshold and other termination conditions. 1558 */ 1559 if (wrote) { 1560 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1561 break; 1562 if (work->nr_pages <= 0) 1563 break; 1564 } 1565 } 1566 return wrote; 1567 } 1568 1569 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1570 struct wb_writeback_work *work) 1571 { 1572 unsigned long start_time = jiffies; 1573 long wrote = 0; 1574 1575 while (!list_empty(&wb->b_io)) { 1576 struct inode *inode = wb_inode(wb->b_io.prev); 1577 struct super_block *sb = inode->i_sb; 1578 1579 if (!trylock_super(sb)) { 1580 /* 1581 * trylock_super() may fail consistently due to 1582 * s_umount being grabbed by someone else. Don't use 1583 * requeue_io() to avoid busy retrying the inode/sb. 1584 */ 1585 redirty_tail(inode, wb); 1586 continue; 1587 } 1588 wrote += writeback_sb_inodes(sb, wb, work); 1589 up_read(&sb->s_umount); 1590 1591 /* refer to the same tests at the end of writeback_sb_inodes */ 1592 if (wrote) { 1593 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1594 break; 1595 if (work->nr_pages <= 0) 1596 break; 1597 } 1598 } 1599 /* Leave any unwritten inodes on b_io */ 1600 return wrote; 1601 } 1602 1603 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1604 enum wb_reason reason) 1605 { 1606 struct wb_writeback_work work = { 1607 .nr_pages = nr_pages, 1608 .sync_mode = WB_SYNC_NONE, 1609 .range_cyclic = 1, 1610 .reason = reason, 1611 }; 1612 struct blk_plug plug; 1613 1614 blk_start_plug(&plug); 1615 spin_lock(&wb->list_lock); 1616 if (list_empty(&wb->b_io)) 1617 queue_io(wb, &work); 1618 __writeback_inodes_wb(wb, &work); 1619 spin_unlock(&wb->list_lock); 1620 blk_finish_plug(&plug); 1621 1622 return nr_pages - work.nr_pages; 1623 } 1624 1625 /* 1626 * Explicit flushing or periodic writeback of "old" data. 1627 * 1628 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1629 * dirtying-time in the inode's address_space. So this periodic writeback code 1630 * just walks the superblock inode list, writing back any inodes which are 1631 * older than a specific point in time. 1632 * 1633 * Try to run once per dirty_writeback_interval. But if a writeback event 1634 * takes longer than a dirty_writeback_interval interval, then leave a 1635 * one-second gap. 1636 * 1637 * older_than_this takes precedence over nr_to_write. So we'll only write back 1638 * all dirty pages if they are all attached to "old" mappings. 1639 */ 1640 static long wb_writeback(struct bdi_writeback *wb, 1641 struct wb_writeback_work *work) 1642 { 1643 unsigned long wb_start = jiffies; 1644 long nr_pages = work->nr_pages; 1645 unsigned long oldest_jif; 1646 struct inode *inode; 1647 long progress; 1648 struct blk_plug plug; 1649 1650 oldest_jif = jiffies; 1651 work->older_than_this = &oldest_jif; 1652 1653 blk_start_plug(&plug); 1654 spin_lock(&wb->list_lock); 1655 for (;;) { 1656 /* 1657 * Stop writeback when nr_pages has been consumed 1658 */ 1659 if (work->nr_pages <= 0) 1660 break; 1661 1662 /* 1663 * Background writeout and kupdate-style writeback may 1664 * run forever. Stop them if there is other work to do 1665 * so that e.g. sync can proceed. They'll be restarted 1666 * after the other works are all done. 1667 */ 1668 if ((work->for_background || work->for_kupdate) && 1669 !list_empty(&wb->work_list)) 1670 break; 1671 1672 /* 1673 * For background writeout, stop when we are below the 1674 * background dirty threshold 1675 */ 1676 if (work->for_background && !wb_over_bg_thresh(wb)) 1677 break; 1678 1679 /* 1680 * Kupdate and background works are special and we want to 1681 * include all inodes that need writing. Livelock avoidance is 1682 * handled by these works yielding to any other work so we are 1683 * safe. 1684 */ 1685 if (work->for_kupdate) { 1686 oldest_jif = jiffies - 1687 msecs_to_jiffies(dirty_expire_interval * 10); 1688 } else if (work->for_background) 1689 oldest_jif = jiffies; 1690 1691 trace_writeback_start(wb, work); 1692 if (list_empty(&wb->b_io)) 1693 queue_io(wb, work); 1694 if (work->sb) 1695 progress = writeback_sb_inodes(work->sb, wb, work); 1696 else 1697 progress = __writeback_inodes_wb(wb, work); 1698 trace_writeback_written(wb, work); 1699 1700 wb_update_bandwidth(wb, wb_start); 1701 1702 /* 1703 * Did we write something? Try for more 1704 * 1705 * Dirty inodes are moved to b_io for writeback in batches. 1706 * The completion of the current batch does not necessarily 1707 * mean the overall work is done. So we keep looping as long 1708 * as made some progress on cleaning pages or inodes. 1709 */ 1710 if (progress) 1711 continue; 1712 /* 1713 * No more inodes for IO, bail 1714 */ 1715 if (list_empty(&wb->b_more_io)) 1716 break; 1717 /* 1718 * Nothing written. Wait for some inode to 1719 * become available for writeback. Otherwise 1720 * we'll just busyloop. 1721 */ 1722 if (!list_empty(&wb->b_more_io)) { 1723 trace_writeback_wait(wb, work); 1724 inode = wb_inode(wb->b_more_io.prev); 1725 spin_lock(&inode->i_lock); 1726 spin_unlock(&wb->list_lock); 1727 /* This function drops i_lock... */ 1728 inode_sleep_on_writeback(inode); 1729 spin_lock(&wb->list_lock); 1730 } 1731 } 1732 spin_unlock(&wb->list_lock); 1733 blk_finish_plug(&plug); 1734 1735 return nr_pages - work->nr_pages; 1736 } 1737 1738 /* 1739 * Return the next wb_writeback_work struct that hasn't been processed yet. 1740 */ 1741 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1742 { 1743 struct wb_writeback_work *work = NULL; 1744 1745 spin_lock_bh(&wb->work_lock); 1746 if (!list_empty(&wb->work_list)) { 1747 work = list_entry(wb->work_list.next, 1748 struct wb_writeback_work, list); 1749 list_del_init(&work->list); 1750 } 1751 spin_unlock_bh(&wb->work_lock); 1752 return work; 1753 } 1754 1755 /* 1756 * Add in the number of potentially dirty inodes, because each inode 1757 * write can dirty pagecache in the underlying blockdev. 1758 */ 1759 static unsigned long get_nr_dirty_pages(void) 1760 { 1761 return global_page_state(NR_FILE_DIRTY) + 1762 global_page_state(NR_UNSTABLE_NFS) + 1763 get_nr_dirty_inodes(); 1764 } 1765 1766 static long wb_check_background_flush(struct bdi_writeback *wb) 1767 { 1768 if (wb_over_bg_thresh(wb)) { 1769 1770 struct wb_writeback_work work = { 1771 .nr_pages = LONG_MAX, 1772 .sync_mode = WB_SYNC_NONE, 1773 .for_background = 1, 1774 .range_cyclic = 1, 1775 .reason = WB_REASON_BACKGROUND, 1776 }; 1777 1778 return wb_writeback(wb, &work); 1779 } 1780 1781 return 0; 1782 } 1783 1784 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1785 { 1786 unsigned long expired; 1787 long nr_pages; 1788 1789 /* 1790 * When set to zero, disable periodic writeback 1791 */ 1792 if (!dirty_writeback_interval) 1793 return 0; 1794 1795 expired = wb->last_old_flush + 1796 msecs_to_jiffies(dirty_writeback_interval * 10); 1797 if (time_before(jiffies, expired)) 1798 return 0; 1799 1800 wb->last_old_flush = jiffies; 1801 nr_pages = get_nr_dirty_pages(); 1802 1803 if (nr_pages) { 1804 struct wb_writeback_work work = { 1805 .nr_pages = nr_pages, 1806 .sync_mode = WB_SYNC_NONE, 1807 .for_kupdate = 1, 1808 .range_cyclic = 1, 1809 .reason = WB_REASON_PERIODIC, 1810 }; 1811 1812 return wb_writeback(wb, &work); 1813 } 1814 1815 return 0; 1816 } 1817 1818 /* 1819 * Retrieve work items and do the writeback they describe 1820 */ 1821 static long wb_do_writeback(struct bdi_writeback *wb) 1822 { 1823 struct wb_writeback_work *work; 1824 long wrote = 0; 1825 1826 set_bit(WB_writeback_running, &wb->state); 1827 while ((work = get_next_work_item(wb)) != NULL) { 1828 struct wb_completion *done = work->done; 1829 1830 trace_writeback_exec(wb, work); 1831 1832 wrote += wb_writeback(wb, work); 1833 1834 if (work->auto_free) 1835 kfree(work); 1836 if (done && atomic_dec_and_test(&done->cnt)) 1837 wake_up_all(&wb->bdi->wb_waitq); 1838 } 1839 1840 /* 1841 * Check for periodic writeback, kupdated() style 1842 */ 1843 wrote += wb_check_old_data_flush(wb); 1844 wrote += wb_check_background_flush(wb); 1845 clear_bit(WB_writeback_running, &wb->state); 1846 1847 return wrote; 1848 } 1849 1850 /* 1851 * Handle writeback of dirty data for the device backed by this bdi. Also 1852 * reschedules periodically and does kupdated style flushing. 1853 */ 1854 void wb_workfn(struct work_struct *work) 1855 { 1856 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1857 struct bdi_writeback, dwork); 1858 long pages_written; 1859 1860 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 1861 current->flags |= PF_SWAPWRITE; 1862 1863 if (likely(!current_is_workqueue_rescuer() || 1864 !test_bit(WB_registered, &wb->state))) { 1865 /* 1866 * The normal path. Keep writing back @wb until its 1867 * work_list is empty. Note that this path is also taken 1868 * if @wb is shutting down even when we're running off the 1869 * rescuer as work_list needs to be drained. 1870 */ 1871 do { 1872 pages_written = wb_do_writeback(wb); 1873 trace_writeback_pages_written(pages_written); 1874 } while (!list_empty(&wb->work_list)); 1875 } else { 1876 /* 1877 * bdi_wq can't get enough workers and we're running off 1878 * the emergency worker. Don't hog it. Hopefully, 1024 is 1879 * enough for efficient IO. 1880 */ 1881 pages_written = writeback_inodes_wb(wb, 1024, 1882 WB_REASON_FORKER_THREAD); 1883 trace_writeback_pages_written(pages_written); 1884 } 1885 1886 if (!list_empty(&wb->work_list)) 1887 mod_delayed_work(bdi_wq, &wb->dwork, 0); 1888 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1889 wb_wakeup_delayed(wb); 1890 1891 current->flags &= ~PF_SWAPWRITE; 1892 } 1893 1894 /* 1895 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1896 * the whole world. 1897 */ 1898 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1899 { 1900 struct backing_dev_info *bdi; 1901 1902 if (!nr_pages) 1903 nr_pages = get_nr_dirty_pages(); 1904 1905 rcu_read_lock(); 1906 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1907 struct bdi_writeback *wb; 1908 1909 if (!bdi_has_dirty_io(bdi)) 1910 continue; 1911 1912 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 1913 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages), 1914 false, reason); 1915 } 1916 rcu_read_unlock(); 1917 } 1918 1919 /* 1920 * Wake up bdi's periodically to make sure dirtytime inodes gets 1921 * written back periodically. We deliberately do *not* check the 1922 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 1923 * kernel to be constantly waking up once there are any dirtytime 1924 * inodes on the system. So instead we define a separate delayed work 1925 * function which gets called much more rarely. (By default, only 1926 * once every 12 hours.) 1927 * 1928 * If there is any other write activity going on in the file system, 1929 * this function won't be necessary. But if the only thing that has 1930 * happened on the file system is a dirtytime inode caused by an atime 1931 * update, we need this infrastructure below to make sure that inode 1932 * eventually gets pushed out to disk. 1933 */ 1934 static void wakeup_dirtytime_writeback(struct work_struct *w); 1935 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 1936 1937 static void wakeup_dirtytime_writeback(struct work_struct *w) 1938 { 1939 struct backing_dev_info *bdi; 1940 1941 rcu_read_lock(); 1942 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1943 struct bdi_writeback *wb; 1944 1945 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 1946 if (!list_empty(&wb->b_dirty_time)) 1947 wb_wakeup(wb); 1948 } 1949 rcu_read_unlock(); 1950 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 1951 } 1952 1953 static int __init start_dirtytime_writeback(void) 1954 { 1955 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 1956 return 0; 1957 } 1958 __initcall(start_dirtytime_writeback); 1959 1960 int dirtytime_interval_handler(struct ctl_table *table, int write, 1961 void __user *buffer, size_t *lenp, loff_t *ppos) 1962 { 1963 int ret; 1964 1965 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 1966 if (ret == 0 && write) 1967 mod_delayed_work(system_wq, &dirtytime_work, 0); 1968 return ret; 1969 } 1970 1971 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1972 { 1973 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1974 struct dentry *dentry; 1975 const char *name = "?"; 1976 1977 dentry = d_find_alias(inode); 1978 if (dentry) { 1979 spin_lock(&dentry->d_lock); 1980 name = (const char *) dentry->d_name.name; 1981 } 1982 printk(KERN_DEBUG 1983 "%s(%d): dirtied inode %lu (%s) on %s\n", 1984 current->comm, task_pid_nr(current), inode->i_ino, 1985 name, inode->i_sb->s_id); 1986 if (dentry) { 1987 spin_unlock(&dentry->d_lock); 1988 dput(dentry); 1989 } 1990 } 1991 } 1992 1993 /** 1994 * __mark_inode_dirty - internal function 1995 * @inode: inode to mark 1996 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1997 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1998 * mark_inode_dirty_sync. 1999 * 2000 * Put the inode on the super block's dirty list. 2001 * 2002 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2003 * dirty list only if it is hashed or if it refers to a blockdev. 2004 * If it was not hashed, it will never be added to the dirty list 2005 * even if it is later hashed, as it will have been marked dirty already. 2006 * 2007 * In short, make sure you hash any inodes _before_ you start marking 2008 * them dirty. 2009 * 2010 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2011 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2012 * the kernel-internal blockdev inode represents the dirtying time of the 2013 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2014 * page->mapping->host, so the page-dirtying time is recorded in the internal 2015 * blockdev inode. 2016 */ 2017 void __mark_inode_dirty(struct inode *inode, int flags) 2018 { 2019 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2020 struct super_block *sb = inode->i_sb; 2021 int dirtytime; 2022 2023 trace_writeback_mark_inode_dirty(inode, flags); 2024 2025 /* 2026 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2027 * dirty the inode itself 2028 */ 2029 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) { 2030 trace_writeback_dirty_inode_start(inode, flags); 2031 2032 if (sb->s_op->dirty_inode) 2033 sb->s_op->dirty_inode(inode, flags); 2034 2035 trace_writeback_dirty_inode(inode, flags); 2036 } 2037 if (flags & I_DIRTY_INODE) 2038 flags &= ~I_DIRTY_TIME; 2039 dirtytime = flags & I_DIRTY_TIME; 2040 2041 /* 2042 * Paired with smp_mb() in __writeback_single_inode() for the 2043 * following lockless i_state test. See there for details. 2044 */ 2045 smp_mb(); 2046 2047 if (((inode->i_state & flags) == flags) || 2048 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2049 return; 2050 2051 if (unlikely(block_dump)) 2052 block_dump___mark_inode_dirty(inode); 2053 2054 spin_lock(&inode->i_lock); 2055 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2056 goto out_unlock_inode; 2057 if ((inode->i_state & flags) != flags) { 2058 const int was_dirty = inode->i_state & I_DIRTY; 2059 2060 inode_attach_wb(inode, NULL); 2061 2062 if (flags & I_DIRTY_INODE) 2063 inode->i_state &= ~I_DIRTY_TIME; 2064 inode->i_state |= flags; 2065 2066 /* 2067 * If the inode is being synced, just update its dirty state. 2068 * The unlocker will place the inode on the appropriate 2069 * superblock list, based upon its state. 2070 */ 2071 if (inode->i_state & I_SYNC) 2072 goto out_unlock_inode; 2073 2074 /* 2075 * Only add valid (hashed) inodes to the superblock's 2076 * dirty list. Add blockdev inodes as well. 2077 */ 2078 if (!S_ISBLK(inode->i_mode)) { 2079 if (inode_unhashed(inode)) 2080 goto out_unlock_inode; 2081 } 2082 if (inode->i_state & I_FREEING) 2083 goto out_unlock_inode; 2084 2085 /* 2086 * If the inode was already on b_dirty/b_io/b_more_io, don't 2087 * reposition it (that would break b_dirty time-ordering). 2088 */ 2089 if (!was_dirty) { 2090 struct bdi_writeback *wb; 2091 struct list_head *dirty_list; 2092 bool wakeup_bdi = false; 2093 2094 wb = locked_inode_to_wb_and_lock_list(inode); 2095 2096 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2097 !test_bit(WB_registered, &wb->state), 2098 "bdi-%s not registered\n", wb->bdi->name); 2099 2100 inode->dirtied_when = jiffies; 2101 if (dirtytime) 2102 inode->dirtied_time_when = jiffies; 2103 2104 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES)) 2105 dirty_list = &wb->b_dirty; 2106 else 2107 dirty_list = &wb->b_dirty_time; 2108 2109 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2110 dirty_list); 2111 2112 spin_unlock(&wb->list_lock); 2113 trace_writeback_dirty_inode_enqueue(inode); 2114 2115 /* 2116 * If this is the first dirty inode for this bdi, 2117 * we have to wake-up the corresponding bdi thread 2118 * to make sure background write-back happens 2119 * later. 2120 */ 2121 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2122 wb_wakeup_delayed(wb); 2123 return; 2124 } 2125 } 2126 out_unlock_inode: 2127 spin_unlock(&inode->i_lock); 2128 2129 #undef I_DIRTY_INODE 2130 } 2131 EXPORT_SYMBOL(__mark_inode_dirty); 2132 2133 /* 2134 * The @s_sync_lock is used to serialise concurrent sync operations 2135 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2136 * Concurrent callers will block on the s_sync_lock rather than doing contending 2137 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2138 * has been issued up to the time this function is enter is guaranteed to be 2139 * completed by the time we have gained the lock and waited for all IO that is 2140 * in progress regardless of the order callers are granted the lock. 2141 */ 2142 static void wait_sb_inodes(struct super_block *sb) 2143 { 2144 struct inode *inode, *old_inode = NULL; 2145 2146 /* 2147 * We need to be protected against the filesystem going from 2148 * r/o to r/w or vice versa. 2149 */ 2150 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2151 2152 mutex_lock(&sb->s_sync_lock); 2153 spin_lock(&sb->s_inode_list_lock); 2154 2155 /* 2156 * Data integrity sync. Must wait for all pages under writeback, 2157 * because there may have been pages dirtied before our sync 2158 * call, but which had writeout started before we write it out. 2159 * In which case, the inode may not be on the dirty list, but 2160 * we still have to wait for that writeout. 2161 */ 2162 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 2163 struct address_space *mapping = inode->i_mapping; 2164 2165 spin_lock(&inode->i_lock); 2166 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 2167 (mapping->nrpages == 0)) { 2168 spin_unlock(&inode->i_lock); 2169 continue; 2170 } 2171 __iget(inode); 2172 spin_unlock(&inode->i_lock); 2173 spin_unlock(&sb->s_inode_list_lock); 2174 2175 /* 2176 * We hold a reference to 'inode' so it couldn't have been 2177 * removed from s_inodes list while we dropped the 2178 * s_inode_list_lock. We cannot iput the inode now as we can 2179 * be holding the last reference and we cannot iput it under 2180 * s_inode_list_lock. So we keep the reference and iput it 2181 * later. 2182 */ 2183 iput(old_inode); 2184 old_inode = inode; 2185 2186 /* 2187 * We keep the error status of individual mapping so that 2188 * applications can catch the writeback error using fsync(2). 2189 * See filemap_fdatawait_keep_errors() for details. 2190 */ 2191 filemap_fdatawait_keep_errors(mapping); 2192 2193 cond_resched(); 2194 2195 spin_lock(&sb->s_inode_list_lock); 2196 } 2197 spin_unlock(&sb->s_inode_list_lock); 2198 iput(old_inode); 2199 mutex_unlock(&sb->s_sync_lock); 2200 } 2201 2202 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2203 enum wb_reason reason, bool skip_if_busy) 2204 { 2205 DEFINE_WB_COMPLETION_ONSTACK(done); 2206 struct wb_writeback_work work = { 2207 .sb = sb, 2208 .sync_mode = WB_SYNC_NONE, 2209 .tagged_writepages = 1, 2210 .done = &done, 2211 .nr_pages = nr, 2212 .reason = reason, 2213 }; 2214 struct backing_dev_info *bdi = sb->s_bdi; 2215 2216 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2217 return; 2218 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2219 2220 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2221 wb_wait_for_completion(bdi, &done); 2222 } 2223 2224 /** 2225 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2226 * @sb: the superblock 2227 * @nr: the number of pages to write 2228 * @reason: reason why some writeback work initiated 2229 * 2230 * Start writeback on some inodes on this super_block. No guarantees are made 2231 * on how many (if any) will be written, and this function does not wait 2232 * for IO completion of submitted IO. 2233 */ 2234 void writeback_inodes_sb_nr(struct super_block *sb, 2235 unsigned long nr, 2236 enum wb_reason reason) 2237 { 2238 __writeback_inodes_sb_nr(sb, nr, reason, false); 2239 } 2240 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2241 2242 /** 2243 * writeback_inodes_sb - writeback dirty inodes from given super_block 2244 * @sb: the superblock 2245 * @reason: reason why some writeback work was initiated 2246 * 2247 * Start writeback on some inodes on this super_block. No guarantees are made 2248 * on how many (if any) will be written, and this function does not wait 2249 * for IO completion of submitted IO. 2250 */ 2251 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2252 { 2253 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2254 } 2255 EXPORT_SYMBOL(writeback_inodes_sb); 2256 2257 /** 2258 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 2259 * @sb: the superblock 2260 * @nr: the number of pages to write 2261 * @reason: the reason of writeback 2262 * 2263 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 2264 * Returns 1 if writeback was started, 0 if not. 2265 */ 2266 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2267 enum wb_reason reason) 2268 { 2269 if (!down_read_trylock(&sb->s_umount)) 2270 return false; 2271 2272 __writeback_inodes_sb_nr(sb, nr, reason, true); 2273 up_read(&sb->s_umount); 2274 return true; 2275 } 2276 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 2277 2278 /** 2279 * try_to_writeback_inodes_sb - try to start writeback if none underway 2280 * @sb: the superblock 2281 * @reason: reason why some writeback work was initiated 2282 * 2283 * Implement by try_to_writeback_inodes_sb_nr() 2284 * Returns 1 if writeback was started, 0 if not. 2285 */ 2286 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2287 { 2288 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2289 } 2290 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2291 2292 /** 2293 * sync_inodes_sb - sync sb inode pages 2294 * @sb: the superblock 2295 * 2296 * This function writes and waits on any dirty inode belonging to this 2297 * super_block. 2298 */ 2299 void sync_inodes_sb(struct super_block *sb) 2300 { 2301 DEFINE_WB_COMPLETION_ONSTACK(done); 2302 struct wb_writeback_work work = { 2303 .sb = sb, 2304 .sync_mode = WB_SYNC_ALL, 2305 .nr_pages = LONG_MAX, 2306 .range_cyclic = 0, 2307 .done = &done, 2308 .reason = WB_REASON_SYNC, 2309 .for_sync = 1, 2310 }; 2311 struct backing_dev_info *bdi = sb->s_bdi; 2312 2313 /* 2314 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2315 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2316 * bdi_has_dirty() need to be written out too. 2317 */ 2318 if (bdi == &noop_backing_dev_info) 2319 return; 2320 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2321 2322 bdi_split_work_to_wbs(bdi, &work, false); 2323 wb_wait_for_completion(bdi, &done); 2324 2325 wait_sb_inodes(sb); 2326 } 2327 EXPORT_SYMBOL(sync_inodes_sb); 2328 2329 /** 2330 * write_inode_now - write an inode to disk 2331 * @inode: inode to write to disk 2332 * @sync: whether the write should be synchronous or not 2333 * 2334 * This function commits an inode to disk immediately if it is dirty. This is 2335 * primarily needed by knfsd. 2336 * 2337 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2338 */ 2339 int write_inode_now(struct inode *inode, int sync) 2340 { 2341 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 2342 struct writeback_control wbc = { 2343 .nr_to_write = LONG_MAX, 2344 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2345 .range_start = 0, 2346 .range_end = LLONG_MAX, 2347 }; 2348 2349 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2350 wbc.nr_to_write = 0; 2351 2352 might_sleep(); 2353 return writeback_single_inode(inode, wb, &wbc); 2354 } 2355 EXPORT_SYMBOL(write_inode_now); 2356 2357 /** 2358 * sync_inode - write an inode and its pages to disk. 2359 * @inode: the inode to sync 2360 * @wbc: controls the writeback mode 2361 * 2362 * sync_inode() will write an inode and its pages to disk. It will also 2363 * correctly update the inode on its superblock's dirty inode lists and will 2364 * update inode->i_state. 2365 * 2366 * The caller must have a ref on the inode. 2367 */ 2368 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2369 { 2370 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 2371 } 2372 EXPORT_SYMBOL(sync_inode); 2373 2374 /** 2375 * sync_inode_metadata - write an inode to disk 2376 * @inode: the inode to sync 2377 * @wait: wait for I/O to complete. 2378 * 2379 * Write an inode to disk and adjust its dirty state after completion. 2380 * 2381 * Note: only writes the actual inode, no associated data or other metadata. 2382 */ 2383 int sync_inode_metadata(struct inode *inode, int wait) 2384 { 2385 struct writeback_control wbc = { 2386 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2387 .nr_to_write = 0, /* metadata-only */ 2388 }; 2389 2390 return sync_inode(inode, &wbc); 2391 } 2392 EXPORT_SYMBOL(sync_inode_metadata); 2393