xref: /linux/fs/fs-writeback.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	enum wb_reason reason;		/* why was writeback initiated? */
57 
58 	struct list_head list;		/* pending work list */
59 	struct wb_completion *done;	/* set if the caller waits */
60 };
61 
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
70 	struct wb_completion cmpl = {					\
71 		.cnt		= ATOMIC_INIT(1),			\
72 	}
73 
74 
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 	return list_entry(head, struct inode, i_io_list);
90 }
91 
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 	if (wb_has_dirty_io(wb)) {
105 		return false;
106 	} else {
107 		set_bit(WB_has_dirty_io, &wb->state);
108 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 		atomic_long_add(wb->avg_write_bandwidth,
110 				&wb->bdi->tot_write_bandwidth);
111 		return true;
112 	}
113 }
114 
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 		clear_bit(WB_has_dirty_io, &wb->state);
120 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 					&wb->bdi->tot_write_bandwidth) < 0);
122 	}
123 }
124 
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 				      struct bdi_writeback *wb,
137 				      struct list_head *head)
138 {
139 	assert_spin_locked(&wb->list_lock);
140 
141 	list_move(&inode->i_io_list, head);
142 
143 	/* dirty_time doesn't count as dirty_io until expiration */
144 	if (head != &wb->b_dirty_time)
145 		return wb_io_lists_populated(wb);
146 
147 	wb_io_lists_depopulated(wb);
148 	return false;
149 }
150 
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160 				     struct bdi_writeback *wb)
161 {
162 	assert_spin_locked(&wb->list_lock);
163 
164 	list_del_init(&inode->i_io_list);
165 	wb_io_lists_depopulated(wb);
166 }
167 
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 	spin_lock_bh(&wb->work_lock);
171 	if (test_bit(WB_registered, &wb->state))
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	spin_unlock_bh(&wb->work_lock);
174 }
175 
176 static void wb_queue_work(struct bdi_writeback *wb,
177 			  struct wb_writeback_work *work)
178 {
179 	trace_writeback_queue(wb, work);
180 
181 	spin_lock_bh(&wb->work_lock);
182 	if (!test_bit(WB_registered, &wb->state))
183 		goto out_unlock;
184 	if (work->done)
185 		atomic_inc(&work->done->cnt);
186 	list_add_tail(&work->list, &wb->work_list);
187 	mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 	spin_unlock_bh(&wb->work_lock);
190 }
191 
192 /**
193  * wb_wait_for_completion - wait for completion of bdi_writeback_works
194  * @bdi: bdi work items were issued to
195  * @done: target wb_completion
196  *
197  * Wait for one or more work items issued to @bdi with their ->done field
198  * set to @done, which should have been defined with
199  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
200  * work items are completed.  Work items which are waited upon aren't freed
201  * automatically on completion.
202  */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 				   struct wb_completion *done)
205 {
206 	atomic_dec(&done->cnt);		/* put down the initial count */
207 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209 
210 #ifdef CONFIG_CGROUP_WRITEBACK
211 
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
217 
218 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 					/* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
222 					/* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 					/* one round can affect upto 5 slots */
225 
226 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
227 static struct workqueue_struct *isw_wq;
228 
229 void __inode_attach_wb(struct inode *inode, struct page *page)
230 {
231 	struct backing_dev_info *bdi = inode_to_bdi(inode);
232 	struct bdi_writeback *wb = NULL;
233 
234 	if (inode_cgwb_enabled(inode)) {
235 		struct cgroup_subsys_state *memcg_css;
236 
237 		if (page) {
238 			memcg_css = mem_cgroup_css_from_page(page);
239 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
240 		} else {
241 			/* must pin memcg_css, see wb_get_create() */
242 			memcg_css = task_get_css(current, memory_cgrp_id);
243 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
244 			css_put(memcg_css);
245 		}
246 	}
247 
248 	if (!wb)
249 		wb = &bdi->wb;
250 
251 	/*
252 	 * There may be multiple instances of this function racing to
253 	 * update the same inode.  Use cmpxchg() to tell the winner.
254 	 */
255 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
256 		wb_put(wb);
257 }
258 
259 /**
260  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261  * @inode: inode of interest with i_lock held
262  *
263  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
264  * held on entry and is released on return.  The returned wb is guaranteed
265  * to stay @inode's associated wb until its list_lock is released.
266  */
267 static struct bdi_writeback *
268 locked_inode_to_wb_and_lock_list(struct inode *inode)
269 	__releases(&inode->i_lock)
270 	__acquires(&wb->list_lock)
271 {
272 	while (true) {
273 		struct bdi_writeback *wb = inode_to_wb(inode);
274 
275 		/*
276 		 * inode_to_wb() association is protected by both
277 		 * @inode->i_lock and @wb->list_lock but list_lock nests
278 		 * outside i_lock.  Drop i_lock and verify that the
279 		 * association hasn't changed after acquiring list_lock.
280 		 */
281 		wb_get(wb);
282 		spin_unlock(&inode->i_lock);
283 		spin_lock(&wb->list_lock);
284 		wb_put(wb);		/* not gonna deref it anymore */
285 
286 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
287 		if (likely(wb == inode->i_wb))
288 			return wb;	/* @inode already has ref */
289 
290 		spin_unlock(&wb->list_lock);
291 		cpu_relax();
292 		spin_lock(&inode->i_lock);
293 	}
294 }
295 
296 /**
297  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
298  * @inode: inode of interest
299  *
300  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
301  * on entry.
302  */
303 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
304 	__acquires(&wb->list_lock)
305 {
306 	spin_lock(&inode->i_lock);
307 	return locked_inode_to_wb_and_lock_list(inode);
308 }
309 
310 struct inode_switch_wbs_context {
311 	struct inode		*inode;
312 	struct bdi_writeback	*new_wb;
313 
314 	struct rcu_head		rcu_head;
315 	struct work_struct	work;
316 };
317 
318 static void inode_switch_wbs_work_fn(struct work_struct *work)
319 {
320 	struct inode_switch_wbs_context *isw =
321 		container_of(work, struct inode_switch_wbs_context, work);
322 	struct inode *inode = isw->inode;
323 	struct address_space *mapping = inode->i_mapping;
324 	struct bdi_writeback *old_wb = inode->i_wb;
325 	struct bdi_writeback *new_wb = isw->new_wb;
326 	struct radix_tree_iter iter;
327 	bool switched = false;
328 	void **slot;
329 
330 	/*
331 	 * By the time control reaches here, RCU grace period has passed
332 	 * since I_WB_SWITCH assertion and all wb stat update transactions
333 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
334 	 * synchronizing against mapping->tree_lock.
335 	 *
336 	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
337 	 * gives us exclusion against all wb related operations on @inode
338 	 * including IO list manipulations and stat updates.
339 	 */
340 	if (old_wb < new_wb) {
341 		spin_lock(&old_wb->list_lock);
342 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
343 	} else {
344 		spin_lock(&new_wb->list_lock);
345 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
346 	}
347 	spin_lock(&inode->i_lock);
348 	spin_lock_irq(&mapping->tree_lock);
349 
350 	/*
351 	 * Once I_FREEING is visible under i_lock, the eviction path owns
352 	 * the inode and we shouldn't modify ->i_io_list.
353 	 */
354 	if (unlikely(inode->i_state & I_FREEING))
355 		goto skip_switch;
356 
357 	/*
358 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
359 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
360 	 * pages actually under underwriteback.
361 	 */
362 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
363 				   PAGECACHE_TAG_DIRTY) {
364 		struct page *page = radix_tree_deref_slot_protected(slot,
365 							&mapping->tree_lock);
366 		if (likely(page) && PageDirty(page)) {
367 			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
368 			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
369 		}
370 	}
371 
372 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
373 				   PAGECACHE_TAG_WRITEBACK) {
374 		struct page *page = radix_tree_deref_slot_protected(slot,
375 							&mapping->tree_lock);
376 		if (likely(page)) {
377 			WARN_ON_ONCE(!PageWriteback(page));
378 			__dec_wb_stat(old_wb, WB_WRITEBACK);
379 			__inc_wb_stat(new_wb, WB_WRITEBACK);
380 		}
381 	}
382 
383 	wb_get(new_wb);
384 
385 	/*
386 	 * Transfer to @new_wb's IO list if necessary.  The specific list
387 	 * @inode was on is ignored and the inode is put on ->b_dirty which
388 	 * is always correct including from ->b_dirty_time.  The transfer
389 	 * preserves @inode->dirtied_when ordering.
390 	 */
391 	if (!list_empty(&inode->i_io_list)) {
392 		struct inode *pos;
393 
394 		inode_io_list_del_locked(inode, old_wb);
395 		inode->i_wb = new_wb;
396 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
397 			if (time_after_eq(inode->dirtied_when,
398 					  pos->dirtied_when))
399 				break;
400 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
401 	} else {
402 		inode->i_wb = new_wb;
403 	}
404 
405 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
406 	inode->i_wb_frn_winner = 0;
407 	inode->i_wb_frn_avg_time = 0;
408 	inode->i_wb_frn_history = 0;
409 	switched = true;
410 skip_switch:
411 	/*
412 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
413 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
414 	 */
415 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
416 
417 	spin_unlock_irq(&mapping->tree_lock);
418 	spin_unlock(&inode->i_lock);
419 	spin_unlock(&new_wb->list_lock);
420 	spin_unlock(&old_wb->list_lock);
421 
422 	if (switched) {
423 		wb_wakeup(new_wb);
424 		wb_put(old_wb);
425 	}
426 	wb_put(new_wb);
427 
428 	iput(inode);
429 	kfree(isw);
430 
431 	atomic_dec(&isw_nr_in_flight);
432 }
433 
434 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
435 {
436 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
437 				struct inode_switch_wbs_context, rcu_head);
438 
439 	/* needs to grab bh-unsafe locks, bounce to work item */
440 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
441 	queue_work(isw_wq, &isw->work);
442 }
443 
444 /**
445  * inode_switch_wbs - change the wb association of an inode
446  * @inode: target inode
447  * @new_wb_id: ID of the new wb
448  *
449  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
450  * switching is performed asynchronously and may fail silently.
451  */
452 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
453 {
454 	struct backing_dev_info *bdi = inode_to_bdi(inode);
455 	struct cgroup_subsys_state *memcg_css;
456 	struct inode_switch_wbs_context *isw;
457 
458 	/* noop if seems to be already in progress */
459 	if (inode->i_state & I_WB_SWITCH)
460 		return;
461 
462 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
463 	if (!isw)
464 		return;
465 
466 	/* find and pin the new wb */
467 	rcu_read_lock();
468 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
469 	if (memcg_css)
470 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
471 	rcu_read_unlock();
472 	if (!isw->new_wb)
473 		goto out_free;
474 
475 	/* while holding I_WB_SWITCH, no one else can update the association */
476 	spin_lock(&inode->i_lock);
477 	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
478 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
479 	    inode_to_wb(inode) == isw->new_wb) {
480 		spin_unlock(&inode->i_lock);
481 		goto out_free;
482 	}
483 	inode->i_state |= I_WB_SWITCH;
484 	spin_unlock(&inode->i_lock);
485 
486 	ihold(inode);
487 	isw->inode = inode;
488 
489 	atomic_inc(&isw_nr_in_flight);
490 
491 	/*
492 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
493 	 * the RCU protected stat update paths to grab the mapping's
494 	 * tree_lock so that stat transfer can synchronize against them.
495 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
496 	 */
497 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
498 	return;
499 
500 out_free:
501 	if (isw->new_wb)
502 		wb_put(isw->new_wb);
503 	kfree(isw);
504 }
505 
506 /**
507  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
508  * @wbc: writeback_control of interest
509  * @inode: target inode
510  *
511  * @inode is locked and about to be written back under the control of @wbc.
512  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
513  * writeback completion, wbc_detach_inode() should be called.  This is used
514  * to track the cgroup writeback context.
515  */
516 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
517 				 struct inode *inode)
518 {
519 	if (!inode_cgwb_enabled(inode)) {
520 		spin_unlock(&inode->i_lock);
521 		return;
522 	}
523 
524 	wbc->wb = inode_to_wb(inode);
525 	wbc->inode = inode;
526 
527 	wbc->wb_id = wbc->wb->memcg_css->id;
528 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
529 	wbc->wb_tcand_id = 0;
530 	wbc->wb_bytes = 0;
531 	wbc->wb_lcand_bytes = 0;
532 	wbc->wb_tcand_bytes = 0;
533 
534 	wb_get(wbc->wb);
535 	spin_unlock(&inode->i_lock);
536 
537 	/*
538 	 * A dying wb indicates that the memcg-blkcg mapping has changed
539 	 * and a new wb is already serving the memcg.  Switch immediately.
540 	 */
541 	if (unlikely(wb_dying(wbc->wb)))
542 		inode_switch_wbs(inode, wbc->wb_id);
543 }
544 
545 /**
546  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
547  * @wbc: writeback_control of the just finished writeback
548  *
549  * To be called after a writeback attempt of an inode finishes and undoes
550  * wbc_attach_and_unlock_inode().  Can be called under any context.
551  *
552  * As concurrent write sharing of an inode is expected to be very rare and
553  * memcg only tracks page ownership on first-use basis severely confining
554  * the usefulness of such sharing, cgroup writeback tracks ownership
555  * per-inode.  While the support for concurrent write sharing of an inode
556  * is deemed unnecessary, an inode being written to by different cgroups at
557  * different points in time is a lot more common, and, more importantly,
558  * charging only by first-use can too readily lead to grossly incorrect
559  * behaviors (single foreign page can lead to gigabytes of writeback to be
560  * incorrectly attributed).
561  *
562  * To resolve this issue, cgroup writeback detects the majority dirtier of
563  * an inode and transfers the ownership to it.  To avoid unnnecessary
564  * oscillation, the detection mechanism keeps track of history and gives
565  * out the switch verdict only if the foreign usage pattern is stable over
566  * a certain amount of time and/or writeback attempts.
567  *
568  * On each writeback attempt, @wbc tries to detect the majority writer
569  * using Boyer-Moore majority vote algorithm.  In addition to the byte
570  * count from the majority voting, it also counts the bytes written for the
571  * current wb and the last round's winner wb (max of last round's current
572  * wb, the winner from two rounds ago, and the last round's majority
573  * candidate).  Keeping track of the historical winner helps the algorithm
574  * to semi-reliably detect the most active writer even when it's not the
575  * absolute majority.
576  *
577  * Once the winner of the round is determined, whether the winner is
578  * foreign or not and how much IO time the round consumed is recorded in
579  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
580  * over a certain threshold, the switch verdict is given.
581  */
582 void wbc_detach_inode(struct writeback_control *wbc)
583 {
584 	struct bdi_writeback *wb = wbc->wb;
585 	struct inode *inode = wbc->inode;
586 	unsigned long avg_time, max_bytes, max_time;
587 	u16 history;
588 	int max_id;
589 
590 	if (!wb)
591 		return;
592 
593 	history = inode->i_wb_frn_history;
594 	avg_time = inode->i_wb_frn_avg_time;
595 
596 	/* pick the winner of this round */
597 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
598 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
599 		max_id = wbc->wb_id;
600 		max_bytes = wbc->wb_bytes;
601 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
602 		max_id = wbc->wb_lcand_id;
603 		max_bytes = wbc->wb_lcand_bytes;
604 	} else {
605 		max_id = wbc->wb_tcand_id;
606 		max_bytes = wbc->wb_tcand_bytes;
607 	}
608 
609 	/*
610 	 * Calculate the amount of IO time the winner consumed and fold it
611 	 * into the running average kept per inode.  If the consumed IO
612 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
613 	 * deciding whether to switch or not.  This is to prevent one-off
614 	 * small dirtiers from skewing the verdict.
615 	 */
616 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
617 				wb->avg_write_bandwidth);
618 	if (avg_time)
619 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
620 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
621 	else
622 		avg_time = max_time;	/* immediate catch up on first run */
623 
624 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
625 		int slots;
626 
627 		/*
628 		 * The switch verdict is reached if foreign wb's consume
629 		 * more than a certain proportion of IO time in a
630 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
631 		 * history mask where each bit represents one sixteenth of
632 		 * the period.  Determine the number of slots to shift into
633 		 * history from @max_time.
634 		 */
635 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
636 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
637 		history <<= slots;
638 		if (wbc->wb_id != max_id)
639 			history |= (1U << slots) - 1;
640 
641 		/*
642 		 * Switch if the current wb isn't the consistent winner.
643 		 * If there are multiple closely competing dirtiers, the
644 		 * inode may switch across them repeatedly over time, which
645 		 * is okay.  The main goal is avoiding keeping an inode on
646 		 * the wrong wb for an extended period of time.
647 		 */
648 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
649 			inode_switch_wbs(inode, max_id);
650 	}
651 
652 	/*
653 	 * Multiple instances of this function may race to update the
654 	 * following fields but we don't mind occassional inaccuracies.
655 	 */
656 	inode->i_wb_frn_winner = max_id;
657 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
658 	inode->i_wb_frn_history = history;
659 
660 	wb_put(wbc->wb);
661 	wbc->wb = NULL;
662 }
663 
664 /**
665  * wbc_account_io - account IO issued during writeback
666  * @wbc: writeback_control of the writeback in progress
667  * @page: page being written out
668  * @bytes: number of bytes being written out
669  *
670  * @bytes from @page are about to written out during the writeback
671  * controlled by @wbc.  Keep the book for foreign inode detection.  See
672  * wbc_detach_inode().
673  */
674 void wbc_account_io(struct writeback_control *wbc, struct page *page,
675 		    size_t bytes)
676 {
677 	int id;
678 
679 	/*
680 	 * pageout() path doesn't attach @wbc to the inode being written
681 	 * out.  This is intentional as we don't want the function to block
682 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
683 	 * regular writeback instead of writing things out itself.
684 	 */
685 	if (!wbc->wb)
686 		return;
687 
688 	id = mem_cgroup_css_from_page(page)->id;
689 
690 	if (id == wbc->wb_id) {
691 		wbc->wb_bytes += bytes;
692 		return;
693 	}
694 
695 	if (id == wbc->wb_lcand_id)
696 		wbc->wb_lcand_bytes += bytes;
697 
698 	/* Boyer-Moore majority vote algorithm */
699 	if (!wbc->wb_tcand_bytes)
700 		wbc->wb_tcand_id = id;
701 	if (id == wbc->wb_tcand_id)
702 		wbc->wb_tcand_bytes += bytes;
703 	else
704 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
705 }
706 EXPORT_SYMBOL_GPL(wbc_account_io);
707 
708 /**
709  * inode_congested - test whether an inode is congested
710  * @inode: inode to test for congestion (may be NULL)
711  * @cong_bits: mask of WB_[a]sync_congested bits to test
712  *
713  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
714  * bits to test and the return value is the mask of set bits.
715  *
716  * If cgroup writeback is enabled for @inode, the congestion state is
717  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
718  * associated with @inode is congested; otherwise, the root wb's congestion
719  * state is used.
720  *
721  * @inode is allowed to be NULL as this function is often called on
722  * mapping->host which is NULL for the swapper space.
723  */
724 int inode_congested(struct inode *inode, int cong_bits)
725 {
726 	/*
727 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
728 	 * Start transaction iff ->i_wb is visible.
729 	 */
730 	if (inode && inode_to_wb_is_valid(inode)) {
731 		struct bdi_writeback *wb;
732 		bool locked, congested;
733 
734 		wb = unlocked_inode_to_wb_begin(inode, &locked);
735 		congested = wb_congested(wb, cong_bits);
736 		unlocked_inode_to_wb_end(inode, locked);
737 		return congested;
738 	}
739 
740 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
741 }
742 EXPORT_SYMBOL_GPL(inode_congested);
743 
744 /**
745  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
746  * @wb: target bdi_writeback to split @nr_pages to
747  * @nr_pages: number of pages to write for the whole bdi
748  *
749  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
750  * relation to the total write bandwidth of all wb's w/ dirty inodes on
751  * @wb->bdi.
752  */
753 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
754 {
755 	unsigned long this_bw = wb->avg_write_bandwidth;
756 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
757 
758 	if (nr_pages == LONG_MAX)
759 		return LONG_MAX;
760 
761 	/*
762 	 * This may be called on clean wb's and proportional distribution
763 	 * may not make sense, just use the original @nr_pages in those
764 	 * cases.  In general, we wanna err on the side of writing more.
765 	 */
766 	if (!tot_bw || this_bw >= tot_bw)
767 		return nr_pages;
768 	else
769 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
770 }
771 
772 /**
773  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
774  * @bdi: target backing_dev_info
775  * @base_work: wb_writeback_work to issue
776  * @skip_if_busy: skip wb's which already have writeback in progress
777  *
778  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
779  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
780  * distributed to the busy wbs according to each wb's proportion in the
781  * total active write bandwidth of @bdi.
782  */
783 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
784 				  struct wb_writeback_work *base_work,
785 				  bool skip_if_busy)
786 {
787 	struct bdi_writeback *last_wb = NULL;
788 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
789 					      struct bdi_writeback, bdi_node);
790 
791 	might_sleep();
792 restart:
793 	rcu_read_lock();
794 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
795 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
796 		struct wb_writeback_work fallback_work;
797 		struct wb_writeback_work *work;
798 		long nr_pages;
799 
800 		if (last_wb) {
801 			wb_put(last_wb);
802 			last_wb = NULL;
803 		}
804 
805 		/* SYNC_ALL writes out I_DIRTY_TIME too */
806 		if (!wb_has_dirty_io(wb) &&
807 		    (base_work->sync_mode == WB_SYNC_NONE ||
808 		     list_empty(&wb->b_dirty_time)))
809 			continue;
810 		if (skip_if_busy && writeback_in_progress(wb))
811 			continue;
812 
813 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
814 
815 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
816 		if (work) {
817 			*work = *base_work;
818 			work->nr_pages = nr_pages;
819 			work->auto_free = 1;
820 			wb_queue_work(wb, work);
821 			continue;
822 		}
823 
824 		/* alloc failed, execute synchronously using on-stack fallback */
825 		work = &fallback_work;
826 		*work = *base_work;
827 		work->nr_pages = nr_pages;
828 		work->auto_free = 0;
829 		work->done = &fallback_work_done;
830 
831 		wb_queue_work(wb, work);
832 
833 		/*
834 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
835 		 * continuing iteration from @wb after dropping and
836 		 * regrabbing rcu read lock.
837 		 */
838 		wb_get(wb);
839 		last_wb = wb;
840 
841 		rcu_read_unlock();
842 		wb_wait_for_completion(bdi, &fallback_work_done);
843 		goto restart;
844 	}
845 	rcu_read_unlock();
846 
847 	if (last_wb)
848 		wb_put(last_wb);
849 }
850 
851 /**
852  * cgroup_writeback_umount - flush inode wb switches for umount
853  *
854  * This function is called when a super_block is about to be destroyed and
855  * flushes in-flight inode wb switches.  An inode wb switch goes through
856  * RCU and then workqueue, so the two need to be flushed in order to ensure
857  * that all previously scheduled switches are finished.  As wb switches are
858  * rare occurrences and synchronize_rcu() can take a while, perform
859  * flushing iff wb switches are in flight.
860  */
861 void cgroup_writeback_umount(void)
862 {
863 	if (atomic_read(&isw_nr_in_flight)) {
864 		synchronize_rcu();
865 		flush_workqueue(isw_wq);
866 	}
867 }
868 
869 static int __init cgroup_writeback_init(void)
870 {
871 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
872 	if (!isw_wq)
873 		return -ENOMEM;
874 	return 0;
875 }
876 fs_initcall(cgroup_writeback_init);
877 
878 #else	/* CONFIG_CGROUP_WRITEBACK */
879 
880 static struct bdi_writeback *
881 locked_inode_to_wb_and_lock_list(struct inode *inode)
882 	__releases(&inode->i_lock)
883 	__acquires(&wb->list_lock)
884 {
885 	struct bdi_writeback *wb = inode_to_wb(inode);
886 
887 	spin_unlock(&inode->i_lock);
888 	spin_lock(&wb->list_lock);
889 	return wb;
890 }
891 
892 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
893 	__acquires(&wb->list_lock)
894 {
895 	struct bdi_writeback *wb = inode_to_wb(inode);
896 
897 	spin_lock(&wb->list_lock);
898 	return wb;
899 }
900 
901 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
902 {
903 	return nr_pages;
904 }
905 
906 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
907 				  struct wb_writeback_work *base_work,
908 				  bool skip_if_busy)
909 {
910 	might_sleep();
911 
912 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
913 		base_work->auto_free = 0;
914 		wb_queue_work(&bdi->wb, base_work);
915 	}
916 }
917 
918 #endif	/* CONFIG_CGROUP_WRITEBACK */
919 
920 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
921 			bool range_cyclic, enum wb_reason reason)
922 {
923 	struct wb_writeback_work *work;
924 
925 	if (!wb_has_dirty_io(wb))
926 		return;
927 
928 	/*
929 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
930 	 * wakeup the thread for old dirty data writeback
931 	 */
932 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
933 	if (!work) {
934 		trace_writeback_nowork(wb);
935 		wb_wakeup(wb);
936 		return;
937 	}
938 
939 	work->sync_mode	= WB_SYNC_NONE;
940 	work->nr_pages	= nr_pages;
941 	work->range_cyclic = range_cyclic;
942 	work->reason	= reason;
943 	work->auto_free	= 1;
944 
945 	wb_queue_work(wb, work);
946 }
947 
948 /**
949  * wb_start_background_writeback - start background writeback
950  * @wb: bdi_writback to write from
951  *
952  * Description:
953  *   This makes sure WB_SYNC_NONE background writeback happens. When
954  *   this function returns, it is only guaranteed that for given wb
955  *   some IO is happening if we are over background dirty threshold.
956  *   Caller need not hold sb s_umount semaphore.
957  */
958 void wb_start_background_writeback(struct bdi_writeback *wb)
959 {
960 	/*
961 	 * We just wake up the flusher thread. It will perform background
962 	 * writeback as soon as there is no other work to do.
963 	 */
964 	trace_writeback_wake_background(wb);
965 	wb_wakeup(wb);
966 }
967 
968 /*
969  * Remove the inode from the writeback list it is on.
970  */
971 void inode_io_list_del(struct inode *inode)
972 {
973 	struct bdi_writeback *wb;
974 
975 	wb = inode_to_wb_and_lock_list(inode);
976 	inode_io_list_del_locked(inode, wb);
977 	spin_unlock(&wb->list_lock);
978 }
979 
980 /*
981  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
982  * furthest end of its superblock's dirty-inode list.
983  *
984  * Before stamping the inode's ->dirtied_when, we check to see whether it is
985  * already the most-recently-dirtied inode on the b_dirty list.  If that is
986  * the case then the inode must have been redirtied while it was being written
987  * out and we don't reset its dirtied_when.
988  */
989 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
990 {
991 	if (!list_empty(&wb->b_dirty)) {
992 		struct inode *tail;
993 
994 		tail = wb_inode(wb->b_dirty.next);
995 		if (time_before(inode->dirtied_when, tail->dirtied_when))
996 			inode->dirtied_when = jiffies;
997 	}
998 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
999 }
1000 
1001 /*
1002  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1003  */
1004 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1005 {
1006 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1007 }
1008 
1009 static void inode_sync_complete(struct inode *inode)
1010 {
1011 	inode->i_state &= ~I_SYNC;
1012 	/* If inode is clean an unused, put it into LRU now... */
1013 	inode_add_lru(inode);
1014 	/* Waiters must see I_SYNC cleared before being woken up */
1015 	smp_mb();
1016 	wake_up_bit(&inode->i_state, __I_SYNC);
1017 }
1018 
1019 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1020 {
1021 	bool ret = time_after(inode->dirtied_when, t);
1022 #ifndef CONFIG_64BIT
1023 	/*
1024 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1025 	 * It _appears_ to be in the future, but is actually in distant past.
1026 	 * This test is necessary to prevent such wrapped-around relative times
1027 	 * from permanently stopping the whole bdi writeback.
1028 	 */
1029 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1030 #endif
1031 	return ret;
1032 }
1033 
1034 #define EXPIRE_DIRTY_ATIME 0x0001
1035 
1036 /*
1037  * Move expired (dirtied before work->older_than_this) dirty inodes from
1038  * @delaying_queue to @dispatch_queue.
1039  */
1040 static int move_expired_inodes(struct list_head *delaying_queue,
1041 			       struct list_head *dispatch_queue,
1042 			       int flags,
1043 			       struct wb_writeback_work *work)
1044 {
1045 	unsigned long *older_than_this = NULL;
1046 	unsigned long expire_time;
1047 	LIST_HEAD(tmp);
1048 	struct list_head *pos, *node;
1049 	struct super_block *sb = NULL;
1050 	struct inode *inode;
1051 	int do_sb_sort = 0;
1052 	int moved = 0;
1053 
1054 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1055 		older_than_this = work->older_than_this;
1056 	else if (!work->for_sync) {
1057 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1058 		older_than_this = &expire_time;
1059 	}
1060 	while (!list_empty(delaying_queue)) {
1061 		inode = wb_inode(delaying_queue->prev);
1062 		if (older_than_this &&
1063 		    inode_dirtied_after(inode, *older_than_this))
1064 			break;
1065 		list_move(&inode->i_io_list, &tmp);
1066 		moved++;
1067 		if (flags & EXPIRE_DIRTY_ATIME)
1068 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1069 		if (sb_is_blkdev_sb(inode->i_sb))
1070 			continue;
1071 		if (sb && sb != inode->i_sb)
1072 			do_sb_sort = 1;
1073 		sb = inode->i_sb;
1074 	}
1075 
1076 	/* just one sb in list, splice to dispatch_queue and we're done */
1077 	if (!do_sb_sort) {
1078 		list_splice(&tmp, dispatch_queue);
1079 		goto out;
1080 	}
1081 
1082 	/* Move inodes from one superblock together */
1083 	while (!list_empty(&tmp)) {
1084 		sb = wb_inode(tmp.prev)->i_sb;
1085 		list_for_each_prev_safe(pos, node, &tmp) {
1086 			inode = wb_inode(pos);
1087 			if (inode->i_sb == sb)
1088 				list_move(&inode->i_io_list, dispatch_queue);
1089 		}
1090 	}
1091 out:
1092 	return moved;
1093 }
1094 
1095 /*
1096  * Queue all expired dirty inodes for io, eldest first.
1097  * Before
1098  *         newly dirtied     b_dirty    b_io    b_more_io
1099  *         =============>    gf         edc     BA
1100  * After
1101  *         newly dirtied     b_dirty    b_io    b_more_io
1102  *         =============>    g          fBAedc
1103  *                                           |
1104  *                                           +--> dequeue for IO
1105  */
1106 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1107 {
1108 	int moved;
1109 
1110 	assert_spin_locked(&wb->list_lock);
1111 	list_splice_init(&wb->b_more_io, &wb->b_io);
1112 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1113 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1114 				     EXPIRE_DIRTY_ATIME, work);
1115 	if (moved)
1116 		wb_io_lists_populated(wb);
1117 	trace_writeback_queue_io(wb, work, moved);
1118 }
1119 
1120 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1121 {
1122 	int ret;
1123 
1124 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1125 		trace_writeback_write_inode_start(inode, wbc);
1126 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1127 		trace_writeback_write_inode(inode, wbc);
1128 		return ret;
1129 	}
1130 	return 0;
1131 }
1132 
1133 /*
1134  * Wait for writeback on an inode to complete. Called with i_lock held.
1135  * Caller must make sure inode cannot go away when we drop i_lock.
1136  */
1137 static void __inode_wait_for_writeback(struct inode *inode)
1138 	__releases(inode->i_lock)
1139 	__acquires(inode->i_lock)
1140 {
1141 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1142 	wait_queue_head_t *wqh;
1143 
1144 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1145 	while (inode->i_state & I_SYNC) {
1146 		spin_unlock(&inode->i_lock);
1147 		__wait_on_bit(wqh, &wq, bit_wait,
1148 			      TASK_UNINTERRUPTIBLE);
1149 		spin_lock(&inode->i_lock);
1150 	}
1151 }
1152 
1153 /*
1154  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1155  */
1156 void inode_wait_for_writeback(struct inode *inode)
1157 {
1158 	spin_lock(&inode->i_lock);
1159 	__inode_wait_for_writeback(inode);
1160 	spin_unlock(&inode->i_lock);
1161 }
1162 
1163 /*
1164  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1165  * held and drops it. It is aimed for callers not holding any inode reference
1166  * so once i_lock is dropped, inode can go away.
1167  */
1168 static void inode_sleep_on_writeback(struct inode *inode)
1169 	__releases(inode->i_lock)
1170 {
1171 	DEFINE_WAIT(wait);
1172 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1173 	int sleep;
1174 
1175 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1176 	sleep = inode->i_state & I_SYNC;
1177 	spin_unlock(&inode->i_lock);
1178 	if (sleep)
1179 		schedule();
1180 	finish_wait(wqh, &wait);
1181 }
1182 
1183 /*
1184  * Find proper writeback list for the inode depending on its current state and
1185  * possibly also change of its state while we were doing writeback.  Here we
1186  * handle things such as livelock prevention or fairness of writeback among
1187  * inodes. This function can be called only by flusher thread - noone else
1188  * processes all inodes in writeback lists and requeueing inodes behind flusher
1189  * thread's back can have unexpected consequences.
1190  */
1191 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1192 			  struct writeback_control *wbc)
1193 {
1194 	if (inode->i_state & I_FREEING)
1195 		return;
1196 
1197 	/*
1198 	 * Sync livelock prevention. Each inode is tagged and synced in one
1199 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1200 	 * the dirty time to prevent enqueue and sync it again.
1201 	 */
1202 	if ((inode->i_state & I_DIRTY) &&
1203 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1204 		inode->dirtied_when = jiffies;
1205 
1206 	if (wbc->pages_skipped) {
1207 		/*
1208 		 * writeback is not making progress due to locked
1209 		 * buffers. Skip this inode for now.
1210 		 */
1211 		redirty_tail(inode, wb);
1212 		return;
1213 	}
1214 
1215 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1216 		/*
1217 		 * We didn't write back all the pages.  nfs_writepages()
1218 		 * sometimes bales out without doing anything.
1219 		 */
1220 		if (wbc->nr_to_write <= 0) {
1221 			/* Slice used up. Queue for next turn. */
1222 			requeue_io(inode, wb);
1223 		} else {
1224 			/*
1225 			 * Writeback blocked by something other than
1226 			 * congestion. Delay the inode for some time to
1227 			 * avoid spinning on the CPU (100% iowait)
1228 			 * retrying writeback of the dirty page/inode
1229 			 * that cannot be performed immediately.
1230 			 */
1231 			redirty_tail(inode, wb);
1232 		}
1233 	} else if (inode->i_state & I_DIRTY) {
1234 		/*
1235 		 * Filesystems can dirty the inode during writeback operations,
1236 		 * such as delayed allocation during submission or metadata
1237 		 * updates after data IO completion.
1238 		 */
1239 		redirty_tail(inode, wb);
1240 	} else if (inode->i_state & I_DIRTY_TIME) {
1241 		inode->dirtied_when = jiffies;
1242 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1243 	} else {
1244 		/* The inode is clean. Remove from writeback lists. */
1245 		inode_io_list_del_locked(inode, wb);
1246 	}
1247 }
1248 
1249 /*
1250  * Write out an inode and its dirty pages. Do not update the writeback list
1251  * linkage. That is left to the caller. The caller is also responsible for
1252  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1253  */
1254 static int
1255 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1256 {
1257 	struct address_space *mapping = inode->i_mapping;
1258 	long nr_to_write = wbc->nr_to_write;
1259 	unsigned dirty;
1260 	int ret;
1261 
1262 	WARN_ON(!(inode->i_state & I_SYNC));
1263 
1264 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1265 
1266 	ret = do_writepages(mapping, wbc);
1267 
1268 	/*
1269 	 * Make sure to wait on the data before writing out the metadata.
1270 	 * This is important for filesystems that modify metadata on data
1271 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1272 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1273 	 * inode metadata is written back correctly.
1274 	 */
1275 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1276 		int err = filemap_fdatawait(mapping);
1277 		if (ret == 0)
1278 			ret = err;
1279 	}
1280 
1281 	/*
1282 	 * Some filesystems may redirty the inode during the writeback
1283 	 * due to delalloc, clear dirty metadata flags right before
1284 	 * write_inode()
1285 	 */
1286 	spin_lock(&inode->i_lock);
1287 
1288 	dirty = inode->i_state & I_DIRTY;
1289 	if (inode->i_state & I_DIRTY_TIME) {
1290 		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1291 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1292 		    unlikely(time_after(jiffies,
1293 					(inode->dirtied_time_when +
1294 					 dirtytime_expire_interval * HZ)))) {
1295 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1296 			trace_writeback_lazytime(inode);
1297 		}
1298 	} else
1299 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1300 	inode->i_state &= ~dirty;
1301 
1302 	/*
1303 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1304 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1305 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1306 	 * inode.
1307 	 *
1308 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1309 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1310 	 * necessary.  This guarantees that either __mark_inode_dirty()
1311 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1312 	 */
1313 	smp_mb();
1314 
1315 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1316 		inode->i_state |= I_DIRTY_PAGES;
1317 
1318 	spin_unlock(&inode->i_lock);
1319 
1320 	if (dirty & I_DIRTY_TIME)
1321 		mark_inode_dirty_sync(inode);
1322 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1323 	if (dirty & ~I_DIRTY_PAGES) {
1324 		int err = write_inode(inode, wbc);
1325 		if (ret == 0)
1326 			ret = err;
1327 	}
1328 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1329 	return ret;
1330 }
1331 
1332 /*
1333  * Write out an inode's dirty pages. Either the caller has an active reference
1334  * on the inode or the inode has I_WILL_FREE set.
1335  *
1336  * This function is designed to be called for writing back one inode which
1337  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1338  * and does more profound writeback list handling in writeback_sb_inodes().
1339  */
1340 static int
1341 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1342 		       struct writeback_control *wbc)
1343 {
1344 	int ret = 0;
1345 
1346 	spin_lock(&inode->i_lock);
1347 	if (!atomic_read(&inode->i_count))
1348 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1349 	else
1350 		WARN_ON(inode->i_state & I_WILL_FREE);
1351 
1352 	if (inode->i_state & I_SYNC) {
1353 		if (wbc->sync_mode != WB_SYNC_ALL)
1354 			goto out;
1355 		/*
1356 		 * It's a data-integrity sync. We must wait. Since callers hold
1357 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1358 		 * away under us.
1359 		 */
1360 		__inode_wait_for_writeback(inode);
1361 	}
1362 	WARN_ON(inode->i_state & I_SYNC);
1363 	/*
1364 	 * Skip inode if it is clean and we have no outstanding writeback in
1365 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1366 	 * function since flusher thread may be doing for example sync in
1367 	 * parallel and if we move the inode, it could get skipped. So here we
1368 	 * make sure inode is on some writeback list and leave it there unless
1369 	 * we have completely cleaned the inode.
1370 	 */
1371 	if (!(inode->i_state & I_DIRTY_ALL) &&
1372 	    (wbc->sync_mode != WB_SYNC_ALL ||
1373 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1374 		goto out;
1375 	inode->i_state |= I_SYNC;
1376 	wbc_attach_and_unlock_inode(wbc, inode);
1377 
1378 	ret = __writeback_single_inode(inode, wbc);
1379 
1380 	wbc_detach_inode(wbc);
1381 	spin_lock(&wb->list_lock);
1382 	spin_lock(&inode->i_lock);
1383 	/*
1384 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1385 	 * touch it. See comment above for explanation.
1386 	 */
1387 	if (!(inode->i_state & I_DIRTY_ALL))
1388 		inode_io_list_del_locked(inode, wb);
1389 	spin_unlock(&wb->list_lock);
1390 	inode_sync_complete(inode);
1391 out:
1392 	spin_unlock(&inode->i_lock);
1393 	return ret;
1394 }
1395 
1396 static long writeback_chunk_size(struct bdi_writeback *wb,
1397 				 struct wb_writeback_work *work)
1398 {
1399 	long pages;
1400 
1401 	/*
1402 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1403 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1404 	 * here avoids calling into writeback_inodes_wb() more than once.
1405 	 *
1406 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1407 	 *
1408 	 *      wb_writeback()
1409 	 *          writeback_sb_inodes()       <== called only once
1410 	 *              write_cache_pages()     <== called once for each inode
1411 	 *                   (quickly) tag currently dirty pages
1412 	 *                   (maybe slowly) sync all tagged pages
1413 	 */
1414 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1415 		pages = LONG_MAX;
1416 	else {
1417 		pages = min(wb->avg_write_bandwidth / 2,
1418 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1419 		pages = min(pages, work->nr_pages);
1420 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1421 				   MIN_WRITEBACK_PAGES);
1422 	}
1423 
1424 	return pages;
1425 }
1426 
1427 /*
1428  * Write a portion of b_io inodes which belong to @sb.
1429  *
1430  * Return the number of pages and/or inodes written.
1431  *
1432  * NOTE! This is called with wb->list_lock held, and will
1433  * unlock and relock that for each inode it ends up doing
1434  * IO for.
1435  */
1436 static long writeback_sb_inodes(struct super_block *sb,
1437 				struct bdi_writeback *wb,
1438 				struct wb_writeback_work *work)
1439 {
1440 	struct writeback_control wbc = {
1441 		.sync_mode		= work->sync_mode,
1442 		.tagged_writepages	= work->tagged_writepages,
1443 		.for_kupdate		= work->for_kupdate,
1444 		.for_background		= work->for_background,
1445 		.for_sync		= work->for_sync,
1446 		.range_cyclic		= work->range_cyclic,
1447 		.range_start		= 0,
1448 		.range_end		= LLONG_MAX,
1449 	};
1450 	unsigned long start_time = jiffies;
1451 	long write_chunk;
1452 	long wrote = 0;  /* count both pages and inodes */
1453 
1454 	while (!list_empty(&wb->b_io)) {
1455 		struct inode *inode = wb_inode(wb->b_io.prev);
1456 
1457 		if (inode->i_sb != sb) {
1458 			if (work->sb) {
1459 				/*
1460 				 * We only want to write back data for this
1461 				 * superblock, move all inodes not belonging
1462 				 * to it back onto the dirty list.
1463 				 */
1464 				redirty_tail(inode, wb);
1465 				continue;
1466 			}
1467 
1468 			/*
1469 			 * The inode belongs to a different superblock.
1470 			 * Bounce back to the caller to unpin this and
1471 			 * pin the next superblock.
1472 			 */
1473 			break;
1474 		}
1475 
1476 		/*
1477 		 * Don't bother with new inodes or inodes being freed, first
1478 		 * kind does not need periodic writeout yet, and for the latter
1479 		 * kind writeout is handled by the freer.
1480 		 */
1481 		spin_lock(&inode->i_lock);
1482 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1483 			spin_unlock(&inode->i_lock);
1484 			redirty_tail(inode, wb);
1485 			continue;
1486 		}
1487 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1488 			/*
1489 			 * If this inode is locked for writeback and we are not
1490 			 * doing writeback-for-data-integrity, move it to
1491 			 * b_more_io so that writeback can proceed with the
1492 			 * other inodes on s_io.
1493 			 *
1494 			 * We'll have another go at writing back this inode
1495 			 * when we completed a full scan of b_io.
1496 			 */
1497 			spin_unlock(&inode->i_lock);
1498 			requeue_io(inode, wb);
1499 			trace_writeback_sb_inodes_requeue(inode);
1500 			continue;
1501 		}
1502 		spin_unlock(&wb->list_lock);
1503 
1504 		/*
1505 		 * We already requeued the inode if it had I_SYNC set and we
1506 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1507 		 * WB_SYNC_ALL case.
1508 		 */
1509 		if (inode->i_state & I_SYNC) {
1510 			/* Wait for I_SYNC. This function drops i_lock... */
1511 			inode_sleep_on_writeback(inode);
1512 			/* Inode may be gone, start again */
1513 			spin_lock(&wb->list_lock);
1514 			continue;
1515 		}
1516 		inode->i_state |= I_SYNC;
1517 		wbc_attach_and_unlock_inode(&wbc, inode);
1518 
1519 		write_chunk = writeback_chunk_size(wb, work);
1520 		wbc.nr_to_write = write_chunk;
1521 		wbc.pages_skipped = 0;
1522 
1523 		/*
1524 		 * We use I_SYNC to pin the inode in memory. While it is set
1525 		 * evict_inode() will wait so the inode cannot be freed.
1526 		 */
1527 		__writeback_single_inode(inode, &wbc);
1528 
1529 		wbc_detach_inode(&wbc);
1530 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1531 		wrote += write_chunk - wbc.nr_to_write;
1532 
1533 		if (need_resched()) {
1534 			/*
1535 			 * We're trying to balance between building up a nice
1536 			 * long list of IOs to improve our merge rate, and
1537 			 * getting those IOs out quickly for anyone throttling
1538 			 * in balance_dirty_pages().  cond_resched() doesn't
1539 			 * unplug, so get our IOs out the door before we
1540 			 * give up the CPU.
1541 			 */
1542 			blk_flush_plug(current);
1543 			cond_resched();
1544 		}
1545 
1546 
1547 		spin_lock(&wb->list_lock);
1548 		spin_lock(&inode->i_lock);
1549 		if (!(inode->i_state & I_DIRTY_ALL))
1550 			wrote++;
1551 		requeue_inode(inode, wb, &wbc);
1552 		inode_sync_complete(inode);
1553 		spin_unlock(&inode->i_lock);
1554 
1555 		/*
1556 		 * bail out to wb_writeback() often enough to check
1557 		 * background threshold and other termination conditions.
1558 		 */
1559 		if (wrote) {
1560 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1561 				break;
1562 			if (work->nr_pages <= 0)
1563 				break;
1564 		}
1565 	}
1566 	return wrote;
1567 }
1568 
1569 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1570 				  struct wb_writeback_work *work)
1571 {
1572 	unsigned long start_time = jiffies;
1573 	long wrote = 0;
1574 
1575 	while (!list_empty(&wb->b_io)) {
1576 		struct inode *inode = wb_inode(wb->b_io.prev);
1577 		struct super_block *sb = inode->i_sb;
1578 
1579 		if (!trylock_super(sb)) {
1580 			/*
1581 			 * trylock_super() may fail consistently due to
1582 			 * s_umount being grabbed by someone else. Don't use
1583 			 * requeue_io() to avoid busy retrying the inode/sb.
1584 			 */
1585 			redirty_tail(inode, wb);
1586 			continue;
1587 		}
1588 		wrote += writeback_sb_inodes(sb, wb, work);
1589 		up_read(&sb->s_umount);
1590 
1591 		/* refer to the same tests at the end of writeback_sb_inodes */
1592 		if (wrote) {
1593 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1594 				break;
1595 			if (work->nr_pages <= 0)
1596 				break;
1597 		}
1598 	}
1599 	/* Leave any unwritten inodes on b_io */
1600 	return wrote;
1601 }
1602 
1603 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1604 				enum wb_reason reason)
1605 {
1606 	struct wb_writeback_work work = {
1607 		.nr_pages	= nr_pages,
1608 		.sync_mode	= WB_SYNC_NONE,
1609 		.range_cyclic	= 1,
1610 		.reason		= reason,
1611 	};
1612 	struct blk_plug plug;
1613 
1614 	blk_start_plug(&plug);
1615 	spin_lock(&wb->list_lock);
1616 	if (list_empty(&wb->b_io))
1617 		queue_io(wb, &work);
1618 	__writeback_inodes_wb(wb, &work);
1619 	spin_unlock(&wb->list_lock);
1620 	blk_finish_plug(&plug);
1621 
1622 	return nr_pages - work.nr_pages;
1623 }
1624 
1625 /*
1626  * Explicit flushing or periodic writeback of "old" data.
1627  *
1628  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1629  * dirtying-time in the inode's address_space.  So this periodic writeback code
1630  * just walks the superblock inode list, writing back any inodes which are
1631  * older than a specific point in time.
1632  *
1633  * Try to run once per dirty_writeback_interval.  But if a writeback event
1634  * takes longer than a dirty_writeback_interval interval, then leave a
1635  * one-second gap.
1636  *
1637  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1638  * all dirty pages if they are all attached to "old" mappings.
1639  */
1640 static long wb_writeback(struct bdi_writeback *wb,
1641 			 struct wb_writeback_work *work)
1642 {
1643 	unsigned long wb_start = jiffies;
1644 	long nr_pages = work->nr_pages;
1645 	unsigned long oldest_jif;
1646 	struct inode *inode;
1647 	long progress;
1648 	struct blk_plug plug;
1649 
1650 	oldest_jif = jiffies;
1651 	work->older_than_this = &oldest_jif;
1652 
1653 	blk_start_plug(&plug);
1654 	spin_lock(&wb->list_lock);
1655 	for (;;) {
1656 		/*
1657 		 * Stop writeback when nr_pages has been consumed
1658 		 */
1659 		if (work->nr_pages <= 0)
1660 			break;
1661 
1662 		/*
1663 		 * Background writeout and kupdate-style writeback may
1664 		 * run forever. Stop them if there is other work to do
1665 		 * so that e.g. sync can proceed. They'll be restarted
1666 		 * after the other works are all done.
1667 		 */
1668 		if ((work->for_background || work->for_kupdate) &&
1669 		    !list_empty(&wb->work_list))
1670 			break;
1671 
1672 		/*
1673 		 * For background writeout, stop when we are below the
1674 		 * background dirty threshold
1675 		 */
1676 		if (work->for_background && !wb_over_bg_thresh(wb))
1677 			break;
1678 
1679 		/*
1680 		 * Kupdate and background works are special and we want to
1681 		 * include all inodes that need writing. Livelock avoidance is
1682 		 * handled by these works yielding to any other work so we are
1683 		 * safe.
1684 		 */
1685 		if (work->for_kupdate) {
1686 			oldest_jif = jiffies -
1687 				msecs_to_jiffies(dirty_expire_interval * 10);
1688 		} else if (work->for_background)
1689 			oldest_jif = jiffies;
1690 
1691 		trace_writeback_start(wb, work);
1692 		if (list_empty(&wb->b_io))
1693 			queue_io(wb, work);
1694 		if (work->sb)
1695 			progress = writeback_sb_inodes(work->sb, wb, work);
1696 		else
1697 			progress = __writeback_inodes_wb(wb, work);
1698 		trace_writeback_written(wb, work);
1699 
1700 		wb_update_bandwidth(wb, wb_start);
1701 
1702 		/*
1703 		 * Did we write something? Try for more
1704 		 *
1705 		 * Dirty inodes are moved to b_io for writeback in batches.
1706 		 * The completion of the current batch does not necessarily
1707 		 * mean the overall work is done. So we keep looping as long
1708 		 * as made some progress on cleaning pages or inodes.
1709 		 */
1710 		if (progress)
1711 			continue;
1712 		/*
1713 		 * No more inodes for IO, bail
1714 		 */
1715 		if (list_empty(&wb->b_more_io))
1716 			break;
1717 		/*
1718 		 * Nothing written. Wait for some inode to
1719 		 * become available for writeback. Otherwise
1720 		 * we'll just busyloop.
1721 		 */
1722 		if (!list_empty(&wb->b_more_io))  {
1723 			trace_writeback_wait(wb, work);
1724 			inode = wb_inode(wb->b_more_io.prev);
1725 			spin_lock(&inode->i_lock);
1726 			spin_unlock(&wb->list_lock);
1727 			/* This function drops i_lock... */
1728 			inode_sleep_on_writeback(inode);
1729 			spin_lock(&wb->list_lock);
1730 		}
1731 	}
1732 	spin_unlock(&wb->list_lock);
1733 	blk_finish_plug(&plug);
1734 
1735 	return nr_pages - work->nr_pages;
1736 }
1737 
1738 /*
1739  * Return the next wb_writeback_work struct that hasn't been processed yet.
1740  */
1741 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1742 {
1743 	struct wb_writeback_work *work = NULL;
1744 
1745 	spin_lock_bh(&wb->work_lock);
1746 	if (!list_empty(&wb->work_list)) {
1747 		work = list_entry(wb->work_list.next,
1748 				  struct wb_writeback_work, list);
1749 		list_del_init(&work->list);
1750 	}
1751 	spin_unlock_bh(&wb->work_lock);
1752 	return work;
1753 }
1754 
1755 /*
1756  * Add in the number of potentially dirty inodes, because each inode
1757  * write can dirty pagecache in the underlying blockdev.
1758  */
1759 static unsigned long get_nr_dirty_pages(void)
1760 {
1761 	return global_page_state(NR_FILE_DIRTY) +
1762 		global_page_state(NR_UNSTABLE_NFS) +
1763 		get_nr_dirty_inodes();
1764 }
1765 
1766 static long wb_check_background_flush(struct bdi_writeback *wb)
1767 {
1768 	if (wb_over_bg_thresh(wb)) {
1769 
1770 		struct wb_writeback_work work = {
1771 			.nr_pages	= LONG_MAX,
1772 			.sync_mode	= WB_SYNC_NONE,
1773 			.for_background	= 1,
1774 			.range_cyclic	= 1,
1775 			.reason		= WB_REASON_BACKGROUND,
1776 		};
1777 
1778 		return wb_writeback(wb, &work);
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1785 {
1786 	unsigned long expired;
1787 	long nr_pages;
1788 
1789 	/*
1790 	 * When set to zero, disable periodic writeback
1791 	 */
1792 	if (!dirty_writeback_interval)
1793 		return 0;
1794 
1795 	expired = wb->last_old_flush +
1796 			msecs_to_jiffies(dirty_writeback_interval * 10);
1797 	if (time_before(jiffies, expired))
1798 		return 0;
1799 
1800 	wb->last_old_flush = jiffies;
1801 	nr_pages = get_nr_dirty_pages();
1802 
1803 	if (nr_pages) {
1804 		struct wb_writeback_work work = {
1805 			.nr_pages	= nr_pages,
1806 			.sync_mode	= WB_SYNC_NONE,
1807 			.for_kupdate	= 1,
1808 			.range_cyclic	= 1,
1809 			.reason		= WB_REASON_PERIODIC,
1810 		};
1811 
1812 		return wb_writeback(wb, &work);
1813 	}
1814 
1815 	return 0;
1816 }
1817 
1818 /*
1819  * Retrieve work items and do the writeback they describe
1820  */
1821 static long wb_do_writeback(struct bdi_writeback *wb)
1822 {
1823 	struct wb_writeback_work *work;
1824 	long wrote = 0;
1825 
1826 	set_bit(WB_writeback_running, &wb->state);
1827 	while ((work = get_next_work_item(wb)) != NULL) {
1828 		struct wb_completion *done = work->done;
1829 
1830 		trace_writeback_exec(wb, work);
1831 
1832 		wrote += wb_writeback(wb, work);
1833 
1834 		if (work->auto_free)
1835 			kfree(work);
1836 		if (done && atomic_dec_and_test(&done->cnt))
1837 			wake_up_all(&wb->bdi->wb_waitq);
1838 	}
1839 
1840 	/*
1841 	 * Check for periodic writeback, kupdated() style
1842 	 */
1843 	wrote += wb_check_old_data_flush(wb);
1844 	wrote += wb_check_background_flush(wb);
1845 	clear_bit(WB_writeback_running, &wb->state);
1846 
1847 	return wrote;
1848 }
1849 
1850 /*
1851  * Handle writeback of dirty data for the device backed by this bdi. Also
1852  * reschedules periodically and does kupdated style flushing.
1853  */
1854 void wb_workfn(struct work_struct *work)
1855 {
1856 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1857 						struct bdi_writeback, dwork);
1858 	long pages_written;
1859 
1860 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1861 	current->flags |= PF_SWAPWRITE;
1862 
1863 	if (likely(!current_is_workqueue_rescuer() ||
1864 		   !test_bit(WB_registered, &wb->state))) {
1865 		/*
1866 		 * The normal path.  Keep writing back @wb until its
1867 		 * work_list is empty.  Note that this path is also taken
1868 		 * if @wb is shutting down even when we're running off the
1869 		 * rescuer as work_list needs to be drained.
1870 		 */
1871 		do {
1872 			pages_written = wb_do_writeback(wb);
1873 			trace_writeback_pages_written(pages_written);
1874 		} while (!list_empty(&wb->work_list));
1875 	} else {
1876 		/*
1877 		 * bdi_wq can't get enough workers and we're running off
1878 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1879 		 * enough for efficient IO.
1880 		 */
1881 		pages_written = writeback_inodes_wb(wb, 1024,
1882 						    WB_REASON_FORKER_THREAD);
1883 		trace_writeback_pages_written(pages_written);
1884 	}
1885 
1886 	if (!list_empty(&wb->work_list))
1887 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1888 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1889 		wb_wakeup_delayed(wb);
1890 
1891 	current->flags &= ~PF_SWAPWRITE;
1892 }
1893 
1894 /*
1895  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1896  * the whole world.
1897  */
1898 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1899 {
1900 	struct backing_dev_info *bdi;
1901 
1902 	if (!nr_pages)
1903 		nr_pages = get_nr_dirty_pages();
1904 
1905 	rcu_read_lock();
1906 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1907 		struct bdi_writeback *wb;
1908 
1909 		if (!bdi_has_dirty_io(bdi))
1910 			continue;
1911 
1912 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1913 			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1914 					   false, reason);
1915 	}
1916 	rcu_read_unlock();
1917 }
1918 
1919 /*
1920  * Wake up bdi's periodically to make sure dirtytime inodes gets
1921  * written back periodically.  We deliberately do *not* check the
1922  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1923  * kernel to be constantly waking up once there are any dirtytime
1924  * inodes on the system.  So instead we define a separate delayed work
1925  * function which gets called much more rarely.  (By default, only
1926  * once every 12 hours.)
1927  *
1928  * If there is any other write activity going on in the file system,
1929  * this function won't be necessary.  But if the only thing that has
1930  * happened on the file system is a dirtytime inode caused by an atime
1931  * update, we need this infrastructure below to make sure that inode
1932  * eventually gets pushed out to disk.
1933  */
1934 static void wakeup_dirtytime_writeback(struct work_struct *w);
1935 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1936 
1937 static void wakeup_dirtytime_writeback(struct work_struct *w)
1938 {
1939 	struct backing_dev_info *bdi;
1940 
1941 	rcu_read_lock();
1942 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1943 		struct bdi_writeback *wb;
1944 
1945 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1946 			if (!list_empty(&wb->b_dirty_time))
1947 				wb_wakeup(wb);
1948 	}
1949 	rcu_read_unlock();
1950 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1951 }
1952 
1953 static int __init start_dirtytime_writeback(void)
1954 {
1955 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1956 	return 0;
1957 }
1958 __initcall(start_dirtytime_writeback);
1959 
1960 int dirtytime_interval_handler(struct ctl_table *table, int write,
1961 			       void __user *buffer, size_t *lenp, loff_t *ppos)
1962 {
1963 	int ret;
1964 
1965 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1966 	if (ret == 0 && write)
1967 		mod_delayed_work(system_wq, &dirtytime_work, 0);
1968 	return ret;
1969 }
1970 
1971 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1972 {
1973 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1974 		struct dentry *dentry;
1975 		const char *name = "?";
1976 
1977 		dentry = d_find_alias(inode);
1978 		if (dentry) {
1979 			spin_lock(&dentry->d_lock);
1980 			name = (const char *) dentry->d_name.name;
1981 		}
1982 		printk(KERN_DEBUG
1983 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1984 		       current->comm, task_pid_nr(current), inode->i_ino,
1985 		       name, inode->i_sb->s_id);
1986 		if (dentry) {
1987 			spin_unlock(&dentry->d_lock);
1988 			dput(dentry);
1989 		}
1990 	}
1991 }
1992 
1993 /**
1994  *	__mark_inode_dirty -	internal function
1995  *	@inode: inode to mark
1996  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1997  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1998  *  	mark_inode_dirty_sync.
1999  *
2000  * Put the inode on the super block's dirty list.
2001  *
2002  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2003  * dirty list only if it is hashed or if it refers to a blockdev.
2004  * If it was not hashed, it will never be added to the dirty list
2005  * even if it is later hashed, as it will have been marked dirty already.
2006  *
2007  * In short, make sure you hash any inodes _before_ you start marking
2008  * them dirty.
2009  *
2010  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2011  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2012  * the kernel-internal blockdev inode represents the dirtying time of the
2013  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2014  * page->mapping->host, so the page-dirtying time is recorded in the internal
2015  * blockdev inode.
2016  */
2017 void __mark_inode_dirty(struct inode *inode, int flags)
2018 {
2019 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2020 	struct super_block *sb = inode->i_sb;
2021 	int dirtytime;
2022 
2023 	trace_writeback_mark_inode_dirty(inode, flags);
2024 
2025 	/*
2026 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2027 	 * dirty the inode itself
2028 	 */
2029 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2030 		trace_writeback_dirty_inode_start(inode, flags);
2031 
2032 		if (sb->s_op->dirty_inode)
2033 			sb->s_op->dirty_inode(inode, flags);
2034 
2035 		trace_writeback_dirty_inode(inode, flags);
2036 	}
2037 	if (flags & I_DIRTY_INODE)
2038 		flags &= ~I_DIRTY_TIME;
2039 	dirtytime = flags & I_DIRTY_TIME;
2040 
2041 	/*
2042 	 * Paired with smp_mb() in __writeback_single_inode() for the
2043 	 * following lockless i_state test.  See there for details.
2044 	 */
2045 	smp_mb();
2046 
2047 	if (((inode->i_state & flags) == flags) ||
2048 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2049 		return;
2050 
2051 	if (unlikely(block_dump))
2052 		block_dump___mark_inode_dirty(inode);
2053 
2054 	spin_lock(&inode->i_lock);
2055 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2056 		goto out_unlock_inode;
2057 	if ((inode->i_state & flags) != flags) {
2058 		const int was_dirty = inode->i_state & I_DIRTY;
2059 
2060 		inode_attach_wb(inode, NULL);
2061 
2062 		if (flags & I_DIRTY_INODE)
2063 			inode->i_state &= ~I_DIRTY_TIME;
2064 		inode->i_state |= flags;
2065 
2066 		/*
2067 		 * If the inode is being synced, just update its dirty state.
2068 		 * The unlocker will place the inode on the appropriate
2069 		 * superblock list, based upon its state.
2070 		 */
2071 		if (inode->i_state & I_SYNC)
2072 			goto out_unlock_inode;
2073 
2074 		/*
2075 		 * Only add valid (hashed) inodes to the superblock's
2076 		 * dirty list.  Add blockdev inodes as well.
2077 		 */
2078 		if (!S_ISBLK(inode->i_mode)) {
2079 			if (inode_unhashed(inode))
2080 				goto out_unlock_inode;
2081 		}
2082 		if (inode->i_state & I_FREEING)
2083 			goto out_unlock_inode;
2084 
2085 		/*
2086 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2087 		 * reposition it (that would break b_dirty time-ordering).
2088 		 */
2089 		if (!was_dirty) {
2090 			struct bdi_writeback *wb;
2091 			struct list_head *dirty_list;
2092 			bool wakeup_bdi = false;
2093 
2094 			wb = locked_inode_to_wb_and_lock_list(inode);
2095 
2096 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2097 			     !test_bit(WB_registered, &wb->state),
2098 			     "bdi-%s not registered\n", wb->bdi->name);
2099 
2100 			inode->dirtied_when = jiffies;
2101 			if (dirtytime)
2102 				inode->dirtied_time_when = jiffies;
2103 
2104 			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2105 				dirty_list = &wb->b_dirty;
2106 			else
2107 				dirty_list = &wb->b_dirty_time;
2108 
2109 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2110 							       dirty_list);
2111 
2112 			spin_unlock(&wb->list_lock);
2113 			trace_writeback_dirty_inode_enqueue(inode);
2114 
2115 			/*
2116 			 * If this is the first dirty inode for this bdi,
2117 			 * we have to wake-up the corresponding bdi thread
2118 			 * to make sure background write-back happens
2119 			 * later.
2120 			 */
2121 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2122 				wb_wakeup_delayed(wb);
2123 			return;
2124 		}
2125 	}
2126 out_unlock_inode:
2127 	spin_unlock(&inode->i_lock);
2128 
2129 #undef I_DIRTY_INODE
2130 }
2131 EXPORT_SYMBOL(__mark_inode_dirty);
2132 
2133 /*
2134  * The @s_sync_lock is used to serialise concurrent sync operations
2135  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2136  * Concurrent callers will block on the s_sync_lock rather than doing contending
2137  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2138  * has been issued up to the time this function is enter is guaranteed to be
2139  * completed by the time we have gained the lock and waited for all IO that is
2140  * in progress regardless of the order callers are granted the lock.
2141  */
2142 static void wait_sb_inodes(struct super_block *sb)
2143 {
2144 	struct inode *inode, *old_inode = NULL;
2145 
2146 	/*
2147 	 * We need to be protected against the filesystem going from
2148 	 * r/o to r/w or vice versa.
2149 	 */
2150 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2151 
2152 	mutex_lock(&sb->s_sync_lock);
2153 	spin_lock(&sb->s_inode_list_lock);
2154 
2155 	/*
2156 	 * Data integrity sync. Must wait for all pages under writeback,
2157 	 * because there may have been pages dirtied before our sync
2158 	 * call, but which had writeout started before we write it out.
2159 	 * In which case, the inode may not be on the dirty list, but
2160 	 * we still have to wait for that writeout.
2161 	 */
2162 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2163 		struct address_space *mapping = inode->i_mapping;
2164 
2165 		spin_lock(&inode->i_lock);
2166 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2167 		    (mapping->nrpages == 0)) {
2168 			spin_unlock(&inode->i_lock);
2169 			continue;
2170 		}
2171 		__iget(inode);
2172 		spin_unlock(&inode->i_lock);
2173 		spin_unlock(&sb->s_inode_list_lock);
2174 
2175 		/*
2176 		 * We hold a reference to 'inode' so it couldn't have been
2177 		 * removed from s_inodes list while we dropped the
2178 		 * s_inode_list_lock.  We cannot iput the inode now as we can
2179 		 * be holding the last reference and we cannot iput it under
2180 		 * s_inode_list_lock. So we keep the reference and iput it
2181 		 * later.
2182 		 */
2183 		iput(old_inode);
2184 		old_inode = inode;
2185 
2186 		/*
2187 		 * We keep the error status of individual mapping so that
2188 		 * applications can catch the writeback error using fsync(2).
2189 		 * See filemap_fdatawait_keep_errors() for details.
2190 		 */
2191 		filemap_fdatawait_keep_errors(mapping);
2192 
2193 		cond_resched();
2194 
2195 		spin_lock(&sb->s_inode_list_lock);
2196 	}
2197 	spin_unlock(&sb->s_inode_list_lock);
2198 	iput(old_inode);
2199 	mutex_unlock(&sb->s_sync_lock);
2200 }
2201 
2202 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2203 				     enum wb_reason reason, bool skip_if_busy)
2204 {
2205 	DEFINE_WB_COMPLETION_ONSTACK(done);
2206 	struct wb_writeback_work work = {
2207 		.sb			= sb,
2208 		.sync_mode		= WB_SYNC_NONE,
2209 		.tagged_writepages	= 1,
2210 		.done			= &done,
2211 		.nr_pages		= nr,
2212 		.reason			= reason,
2213 	};
2214 	struct backing_dev_info *bdi = sb->s_bdi;
2215 
2216 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2217 		return;
2218 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2219 
2220 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2221 	wb_wait_for_completion(bdi, &done);
2222 }
2223 
2224 /**
2225  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2226  * @sb: the superblock
2227  * @nr: the number of pages to write
2228  * @reason: reason why some writeback work initiated
2229  *
2230  * Start writeback on some inodes on this super_block. No guarantees are made
2231  * on how many (if any) will be written, and this function does not wait
2232  * for IO completion of submitted IO.
2233  */
2234 void writeback_inodes_sb_nr(struct super_block *sb,
2235 			    unsigned long nr,
2236 			    enum wb_reason reason)
2237 {
2238 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2239 }
2240 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2241 
2242 /**
2243  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2244  * @sb: the superblock
2245  * @reason: reason why some writeback work was initiated
2246  *
2247  * Start writeback on some inodes on this super_block. No guarantees are made
2248  * on how many (if any) will be written, and this function does not wait
2249  * for IO completion of submitted IO.
2250  */
2251 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2252 {
2253 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2254 }
2255 EXPORT_SYMBOL(writeback_inodes_sb);
2256 
2257 /**
2258  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2259  * @sb: the superblock
2260  * @nr: the number of pages to write
2261  * @reason: the reason of writeback
2262  *
2263  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2264  * Returns 1 if writeback was started, 0 if not.
2265  */
2266 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2267 				   enum wb_reason reason)
2268 {
2269 	if (!down_read_trylock(&sb->s_umount))
2270 		return false;
2271 
2272 	__writeback_inodes_sb_nr(sb, nr, reason, true);
2273 	up_read(&sb->s_umount);
2274 	return true;
2275 }
2276 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2277 
2278 /**
2279  * try_to_writeback_inodes_sb - try to start writeback if none underway
2280  * @sb: the superblock
2281  * @reason: reason why some writeback work was initiated
2282  *
2283  * Implement by try_to_writeback_inodes_sb_nr()
2284  * Returns 1 if writeback was started, 0 if not.
2285  */
2286 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2287 {
2288 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2289 }
2290 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2291 
2292 /**
2293  * sync_inodes_sb	-	sync sb inode pages
2294  * @sb: the superblock
2295  *
2296  * This function writes and waits on any dirty inode belonging to this
2297  * super_block.
2298  */
2299 void sync_inodes_sb(struct super_block *sb)
2300 {
2301 	DEFINE_WB_COMPLETION_ONSTACK(done);
2302 	struct wb_writeback_work work = {
2303 		.sb		= sb,
2304 		.sync_mode	= WB_SYNC_ALL,
2305 		.nr_pages	= LONG_MAX,
2306 		.range_cyclic	= 0,
2307 		.done		= &done,
2308 		.reason		= WB_REASON_SYNC,
2309 		.for_sync	= 1,
2310 	};
2311 	struct backing_dev_info *bdi = sb->s_bdi;
2312 
2313 	/*
2314 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2315 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2316 	 * bdi_has_dirty() need to be written out too.
2317 	 */
2318 	if (bdi == &noop_backing_dev_info)
2319 		return;
2320 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2321 
2322 	bdi_split_work_to_wbs(bdi, &work, false);
2323 	wb_wait_for_completion(bdi, &done);
2324 
2325 	wait_sb_inodes(sb);
2326 }
2327 EXPORT_SYMBOL(sync_inodes_sb);
2328 
2329 /**
2330  * write_inode_now	-	write an inode to disk
2331  * @inode: inode to write to disk
2332  * @sync: whether the write should be synchronous or not
2333  *
2334  * This function commits an inode to disk immediately if it is dirty. This is
2335  * primarily needed by knfsd.
2336  *
2337  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2338  */
2339 int write_inode_now(struct inode *inode, int sync)
2340 {
2341 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2342 	struct writeback_control wbc = {
2343 		.nr_to_write = LONG_MAX,
2344 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2345 		.range_start = 0,
2346 		.range_end = LLONG_MAX,
2347 	};
2348 
2349 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2350 		wbc.nr_to_write = 0;
2351 
2352 	might_sleep();
2353 	return writeback_single_inode(inode, wb, &wbc);
2354 }
2355 EXPORT_SYMBOL(write_inode_now);
2356 
2357 /**
2358  * sync_inode - write an inode and its pages to disk.
2359  * @inode: the inode to sync
2360  * @wbc: controls the writeback mode
2361  *
2362  * sync_inode() will write an inode and its pages to disk.  It will also
2363  * correctly update the inode on its superblock's dirty inode lists and will
2364  * update inode->i_state.
2365  *
2366  * The caller must have a ref on the inode.
2367  */
2368 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2369 {
2370 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2371 }
2372 EXPORT_SYMBOL(sync_inode);
2373 
2374 /**
2375  * sync_inode_metadata - write an inode to disk
2376  * @inode: the inode to sync
2377  * @wait: wait for I/O to complete.
2378  *
2379  * Write an inode to disk and adjust its dirty state after completion.
2380  *
2381  * Note: only writes the actual inode, no associated data or other metadata.
2382  */
2383 int sync_inode_metadata(struct inode *inode, int wait)
2384 {
2385 	struct writeback_control wbc = {
2386 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2387 		.nr_to_write = 0, /* metadata-only */
2388 	};
2389 
2390 	return sync_inode(inode, &wbc);
2391 }
2392 EXPORT_SYMBOL(sync_inode_metadata);
2393