1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 akpm@zip.com.au 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/sched.h> 20 #include <linux/fs.h> 21 #include <linux/mm.h> 22 #include <linux/writeback.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/buffer_head.h> 26 #include "internal.h" 27 28 /** 29 * __mark_inode_dirty - internal function 30 * @inode: inode to mark 31 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 32 * Mark an inode as dirty. Callers should use mark_inode_dirty or 33 * mark_inode_dirty_sync. 34 * 35 * Put the inode on the super block's dirty list. 36 * 37 * CAREFUL! We mark it dirty unconditionally, but move it onto the 38 * dirty list only if it is hashed or if it refers to a blockdev. 39 * If it was not hashed, it will never be added to the dirty list 40 * even if it is later hashed, as it will have been marked dirty already. 41 * 42 * In short, make sure you hash any inodes _before_ you start marking 43 * them dirty. 44 * 45 * This function *must* be atomic for the I_DIRTY_PAGES case - 46 * set_page_dirty() is called under spinlock in several places. 47 * 48 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 49 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 50 * the kernel-internal blockdev inode represents the dirtying time of the 51 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 52 * page->mapping->host, so the page-dirtying time is recorded in the internal 53 * blockdev inode. 54 */ 55 void __mark_inode_dirty(struct inode *inode, int flags) 56 { 57 struct super_block *sb = inode->i_sb; 58 59 /* 60 * Don't do this for I_DIRTY_PAGES - that doesn't actually 61 * dirty the inode itself 62 */ 63 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 64 if (sb->s_op->dirty_inode) 65 sb->s_op->dirty_inode(inode); 66 } 67 68 /* 69 * make sure that changes are seen by all cpus before we test i_state 70 * -- mikulas 71 */ 72 smp_mb(); 73 74 /* avoid the locking if we can */ 75 if ((inode->i_state & flags) == flags) 76 return; 77 78 if (unlikely(block_dump)) { 79 struct dentry *dentry = NULL; 80 const char *name = "?"; 81 82 if (!list_empty(&inode->i_dentry)) { 83 dentry = list_entry(inode->i_dentry.next, 84 struct dentry, d_alias); 85 if (dentry && dentry->d_name.name) 86 name = (const char *) dentry->d_name.name; 87 } 88 89 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) 90 printk(KERN_DEBUG 91 "%s(%d): dirtied inode %lu (%s) on %s\n", 92 current->comm, current->pid, inode->i_ino, 93 name, inode->i_sb->s_id); 94 } 95 96 spin_lock(&inode_lock); 97 if ((inode->i_state & flags) != flags) { 98 const int was_dirty = inode->i_state & I_DIRTY; 99 100 inode->i_state |= flags; 101 102 /* 103 * If the inode is locked, just update its dirty state. 104 * The unlocker will place the inode on the appropriate 105 * superblock list, based upon its state. 106 */ 107 if (inode->i_state & I_LOCK) 108 goto out; 109 110 /* 111 * Only add valid (hashed) inodes to the superblock's 112 * dirty list. Add blockdev inodes as well. 113 */ 114 if (!S_ISBLK(inode->i_mode)) { 115 if (hlist_unhashed(&inode->i_hash)) 116 goto out; 117 } 118 if (inode->i_state & (I_FREEING|I_CLEAR)) 119 goto out; 120 121 /* 122 * If the inode was already on s_dirty or s_io, don't 123 * reposition it (that would break s_dirty time-ordering). 124 */ 125 if (!was_dirty) { 126 inode->dirtied_when = jiffies; 127 list_move(&inode->i_list, &sb->s_dirty); 128 } 129 } 130 out: 131 spin_unlock(&inode_lock); 132 } 133 134 EXPORT_SYMBOL(__mark_inode_dirty); 135 136 static int write_inode(struct inode *inode, int sync) 137 { 138 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 139 return inode->i_sb->s_op->write_inode(inode, sync); 140 return 0; 141 } 142 143 /* 144 * Write a single inode's dirty pages and inode data out to disk. 145 * If `wait' is set, wait on the writeout. 146 * 147 * The whole writeout design is quite complex and fragile. We want to avoid 148 * starvation of particular inodes when others are being redirtied, prevent 149 * livelocks, etc. 150 * 151 * Called under inode_lock. 152 */ 153 static int 154 __sync_single_inode(struct inode *inode, struct writeback_control *wbc) 155 { 156 unsigned dirty; 157 struct address_space *mapping = inode->i_mapping; 158 struct super_block *sb = inode->i_sb; 159 int wait = wbc->sync_mode == WB_SYNC_ALL; 160 int ret; 161 162 BUG_ON(inode->i_state & I_LOCK); 163 164 /* Set I_LOCK, reset I_DIRTY */ 165 dirty = inode->i_state & I_DIRTY; 166 inode->i_state |= I_LOCK; 167 inode->i_state &= ~I_DIRTY; 168 169 spin_unlock(&inode_lock); 170 171 ret = do_writepages(mapping, wbc); 172 173 /* Don't write the inode if only I_DIRTY_PAGES was set */ 174 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 175 int err = write_inode(inode, wait); 176 if (ret == 0) 177 ret = err; 178 } 179 180 if (wait) { 181 int err = filemap_fdatawait(mapping); 182 if (ret == 0) 183 ret = err; 184 } 185 186 spin_lock(&inode_lock); 187 inode->i_state &= ~I_LOCK; 188 if (!(inode->i_state & I_FREEING)) { 189 if (!(inode->i_state & I_DIRTY) && 190 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 191 /* 192 * We didn't write back all the pages. nfs_writepages() 193 * sometimes bales out without doing anything. Redirty 194 * the inode. It is still on sb->s_io. 195 */ 196 if (wbc->for_kupdate) { 197 /* 198 * For the kupdate function we leave the inode 199 * at the head of sb_dirty so it will get more 200 * writeout as soon as the queue becomes 201 * uncongested. 202 */ 203 inode->i_state |= I_DIRTY_PAGES; 204 list_move_tail(&inode->i_list, &sb->s_dirty); 205 } else { 206 /* 207 * Otherwise fully redirty the inode so that 208 * other inodes on this superblock will get some 209 * writeout. Otherwise heavy writing to one 210 * file would indefinitely suspend writeout of 211 * all the other files. 212 */ 213 inode->i_state |= I_DIRTY_PAGES; 214 inode->dirtied_when = jiffies; 215 list_move(&inode->i_list, &sb->s_dirty); 216 } 217 } else if (inode->i_state & I_DIRTY) { 218 /* 219 * Someone redirtied the inode while were writing back 220 * the pages. 221 */ 222 list_move(&inode->i_list, &sb->s_dirty); 223 } else if (atomic_read(&inode->i_count)) { 224 /* 225 * The inode is clean, inuse 226 */ 227 list_move(&inode->i_list, &inode_in_use); 228 } else { 229 /* 230 * The inode is clean, unused 231 */ 232 list_move(&inode->i_list, &inode_unused); 233 } 234 } 235 wake_up_inode(inode); 236 return ret; 237 } 238 239 /* 240 * Write out an inode's dirty pages. Called under inode_lock. Either the 241 * caller has ref on the inode (either via __iget or via syscall against an fd) 242 * or the inode has I_WILL_FREE set (via generic_forget_inode) 243 */ 244 static int 245 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 246 { 247 wait_queue_head_t *wqh; 248 249 if (!atomic_read(&inode->i_count)) 250 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 251 else 252 WARN_ON(inode->i_state & I_WILL_FREE); 253 254 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_LOCK)) { 255 struct address_space *mapping = inode->i_mapping; 256 int ret; 257 258 list_move(&inode->i_list, &inode->i_sb->s_dirty); 259 260 /* 261 * Even if we don't actually write the inode itself here, 262 * we can at least start some of the data writeout.. 263 */ 264 spin_unlock(&inode_lock); 265 ret = do_writepages(mapping, wbc); 266 spin_lock(&inode_lock); 267 return ret; 268 } 269 270 /* 271 * It's a data-integrity sync. We must wait. 272 */ 273 if (inode->i_state & I_LOCK) { 274 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LOCK); 275 276 wqh = bit_waitqueue(&inode->i_state, __I_LOCK); 277 do { 278 spin_unlock(&inode_lock); 279 __wait_on_bit(wqh, &wq, inode_wait, 280 TASK_UNINTERRUPTIBLE); 281 spin_lock(&inode_lock); 282 } while (inode->i_state & I_LOCK); 283 } 284 return __sync_single_inode(inode, wbc); 285 } 286 287 /* 288 * Write out a superblock's list of dirty inodes. A wait will be performed 289 * upon no inodes, all inodes or the final one, depending upon sync_mode. 290 * 291 * If older_than_this is non-NULL, then only write out inodes which 292 * had their first dirtying at a time earlier than *older_than_this. 293 * 294 * If we're a pdlfush thread, then implement pdflush collision avoidance 295 * against the entire list. 296 * 297 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so 298 * that it can be located for waiting on in __writeback_single_inode(). 299 * 300 * Called under inode_lock. 301 * 302 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 303 * This function assumes that the blockdev superblock's inodes are backed by 304 * a variety of queues, so all inodes are searched. For other superblocks, 305 * assume that all inodes are backed by the same queue. 306 * 307 * FIXME: this linear search could get expensive with many fileystems. But 308 * how to fix? We need to go from an address_space to all inodes which share 309 * a queue with that address_space. (Easy: have a global "dirty superblocks" 310 * list). 311 * 312 * The inodes to be written are parked on sb->s_io. They are moved back onto 313 * sb->s_dirty as they are selected for writing. This way, none can be missed 314 * on the writer throttling path, and we get decent balancing between many 315 * throttled threads: we don't want them all piling up on __wait_on_inode. 316 */ 317 static void 318 sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc) 319 { 320 const unsigned long start = jiffies; /* livelock avoidance */ 321 322 if (!wbc->for_kupdate || list_empty(&sb->s_io)) 323 list_splice_init(&sb->s_dirty, &sb->s_io); 324 325 while (!list_empty(&sb->s_io)) { 326 struct inode *inode = list_entry(sb->s_io.prev, 327 struct inode, i_list); 328 struct address_space *mapping = inode->i_mapping; 329 struct backing_dev_info *bdi = mapping->backing_dev_info; 330 long pages_skipped; 331 332 if (!bdi_cap_writeback_dirty(bdi)) { 333 list_move(&inode->i_list, &sb->s_dirty); 334 if (sb_is_blkdev_sb(sb)) { 335 /* 336 * Dirty memory-backed blockdev: the ramdisk 337 * driver does this. Skip just this inode 338 */ 339 continue; 340 } 341 /* 342 * Dirty memory-backed inode against a filesystem other 343 * than the kernel-internal bdev filesystem. Skip the 344 * entire superblock. 345 */ 346 break; 347 } 348 349 if (wbc->nonblocking && bdi_write_congested(bdi)) { 350 wbc->encountered_congestion = 1; 351 if (!sb_is_blkdev_sb(sb)) 352 break; /* Skip a congested fs */ 353 list_move(&inode->i_list, &sb->s_dirty); 354 continue; /* Skip a congested blockdev */ 355 } 356 357 if (wbc->bdi && bdi != wbc->bdi) { 358 if (!sb_is_blkdev_sb(sb)) 359 break; /* fs has the wrong queue */ 360 list_move(&inode->i_list, &sb->s_dirty); 361 continue; /* blockdev has wrong queue */ 362 } 363 364 /* Was this inode dirtied after sync_sb_inodes was called? */ 365 if (time_after(inode->dirtied_when, start)) 366 break; 367 368 /* Was this inode dirtied too recently? */ 369 if (wbc->older_than_this && time_after(inode->dirtied_when, 370 *wbc->older_than_this)) 371 break; 372 373 /* Is another pdflush already flushing this queue? */ 374 if (current_is_pdflush() && !writeback_acquire(bdi)) 375 break; 376 377 BUG_ON(inode->i_state & I_FREEING); 378 __iget(inode); 379 pages_skipped = wbc->pages_skipped; 380 __writeback_single_inode(inode, wbc); 381 if (wbc->sync_mode == WB_SYNC_HOLD) { 382 inode->dirtied_when = jiffies; 383 list_move(&inode->i_list, &sb->s_dirty); 384 } 385 if (current_is_pdflush()) 386 writeback_release(bdi); 387 if (wbc->pages_skipped != pages_skipped) { 388 /* 389 * writeback is not making progress due to locked 390 * buffers. Skip this inode for now. 391 */ 392 list_move(&inode->i_list, &sb->s_dirty); 393 } 394 spin_unlock(&inode_lock); 395 iput(inode); 396 cond_resched(); 397 spin_lock(&inode_lock); 398 if (wbc->nr_to_write <= 0) 399 break; 400 } 401 return; /* Leave any unwritten inodes on s_io */ 402 } 403 404 /* 405 * Start writeback of dirty pagecache data against all unlocked inodes. 406 * 407 * Note: 408 * We don't need to grab a reference to superblock here. If it has non-empty 409 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed 410 * past sync_inodes_sb() until both the ->s_dirty and ->s_io lists are 411 * empty. Since __sync_single_inode() regains inode_lock before it finally moves 412 * inode from superblock lists we are OK. 413 * 414 * If `older_than_this' is non-zero then only flush inodes which have a 415 * flushtime older than *older_than_this. 416 * 417 * If `bdi' is non-zero then we will scan the first inode against each 418 * superblock until we find the matching ones. One group will be the dirty 419 * inodes against a filesystem. Then when we hit the dummy blockdev superblock, 420 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not 421 * super-efficient but we're about to do a ton of I/O... 422 */ 423 void 424 writeback_inodes(struct writeback_control *wbc) 425 { 426 struct super_block *sb; 427 428 might_sleep(); 429 spin_lock(&sb_lock); 430 restart: 431 sb = sb_entry(super_blocks.prev); 432 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) { 433 if (!list_empty(&sb->s_dirty) || !list_empty(&sb->s_io)) { 434 /* we're making our own get_super here */ 435 sb->s_count++; 436 spin_unlock(&sb_lock); 437 /* 438 * If we can't get the readlock, there's no sense in 439 * waiting around, most of the time the FS is going to 440 * be unmounted by the time it is released. 441 */ 442 if (down_read_trylock(&sb->s_umount)) { 443 if (sb->s_root) { 444 spin_lock(&inode_lock); 445 sync_sb_inodes(sb, wbc); 446 spin_unlock(&inode_lock); 447 } 448 up_read(&sb->s_umount); 449 } 450 spin_lock(&sb_lock); 451 if (__put_super_and_need_restart(sb)) 452 goto restart; 453 } 454 if (wbc->nr_to_write <= 0) 455 break; 456 } 457 spin_unlock(&sb_lock); 458 } 459 460 /* 461 * writeback and wait upon the filesystem's dirty inodes. The caller will 462 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is 463 * used to park the written inodes on sb->s_dirty for the wait pass. 464 * 465 * A finite limit is set on the number of pages which will be written. 466 * To prevent infinite livelock of sys_sync(). 467 * 468 * We add in the number of potentially dirty inodes, because each inode write 469 * can dirty pagecache in the underlying blockdev. 470 */ 471 void sync_inodes_sb(struct super_block *sb, int wait) 472 { 473 struct writeback_control wbc = { 474 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD, 475 .range_start = 0, 476 .range_end = LLONG_MAX, 477 }; 478 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 479 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 480 481 wbc.nr_to_write = nr_dirty + nr_unstable + 482 (inodes_stat.nr_inodes - inodes_stat.nr_unused) + 483 nr_dirty + nr_unstable; 484 wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */ 485 spin_lock(&inode_lock); 486 sync_sb_inodes(sb, &wbc); 487 spin_unlock(&inode_lock); 488 } 489 490 /* 491 * Rather lame livelock avoidance. 492 */ 493 static void set_sb_syncing(int val) 494 { 495 struct super_block *sb; 496 spin_lock(&sb_lock); 497 sb = sb_entry(super_blocks.prev); 498 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) { 499 sb->s_syncing = val; 500 } 501 spin_unlock(&sb_lock); 502 } 503 504 /** 505 * sync_inodes - writes all inodes to disk 506 * @wait: wait for completion 507 * 508 * sync_inodes() goes through each super block's dirty inode list, writes the 509 * inodes out, waits on the writeout and puts the inodes back on the normal 510 * list. 511 * 512 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle 513 * part of the sync functions is that the blockdev "superblock" is processed 514 * last. This is because the write_inode() function of a typical fs will 515 * perform no I/O, but will mark buffers in the blockdev mapping as dirty. 516 * What we want to do is to perform all that dirtying first, and then write 517 * back all those inode blocks via the blockdev mapping in one sweep. So the 518 * additional (somewhat redundant) sync_blockdev() calls here are to make 519 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with 520 * outstanding dirty inodes, the writeback goes block-at-a-time within the 521 * filesystem's write_inode(). This is extremely slow. 522 */ 523 static void __sync_inodes(int wait) 524 { 525 struct super_block *sb; 526 527 spin_lock(&sb_lock); 528 restart: 529 list_for_each_entry(sb, &super_blocks, s_list) { 530 if (sb->s_syncing) 531 continue; 532 sb->s_syncing = 1; 533 sb->s_count++; 534 spin_unlock(&sb_lock); 535 down_read(&sb->s_umount); 536 if (sb->s_root) { 537 sync_inodes_sb(sb, wait); 538 sync_blockdev(sb->s_bdev); 539 } 540 up_read(&sb->s_umount); 541 spin_lock(&sb_lock); 542 if (__put_super_and_need_restart(sb)) 543 goto restart; 544 } 545 spin_unlock(&sb_lock); 546 } 547 548 void sync_inodes(int wait) 549 { 550 set_sb_syncing(0); 551 __sync_inodes(0); 552 553 if (wait) { 554 set_sb_syncing(0); 555 __sync_inodes(1); 556 } 557 } 558 559 /** 560 * write_inode_now - write an inode to disk 561 * @inode: inode to write to disk 562 * @sync: whether the write should be synchronous or not 563 * 564 * This function commits an inode to disk immediately if it is dirty. This is 565 * primarily needed by knfsd. 566 * 567 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 568 */ 569 int write_inode_now(struct inode *inode, int sync) 570 { 571 int ret; 572 struct writeback_control wbc = { 573 .nr_to_write = LONG_MAX, 574 .sync_mode = WB_SYNC_ALL, 575 .range_start = 0, 576 .range_end = LLONG_MAX, 577 }; 578 579 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 580 wbc.nr_to_write = 0; 581 582 might_sleep(); 583 spin_lock(&inode_lock); 584 ret = __writeback_single_inode(inode, &wbc); 585 spin_unlock(&inode_lock); 586 if (sync) 587 wait_on_inode(inode); 588 return ret; 589 } 590 EXPORT_SYMBOL(write_inode_now); 591 592 /** 593 * sync_inode - write an inode and its pages to disk. 594 * @inode: the inode to sync 595 * @wbc: controls the writeback mode 596 * 597 * sync_inode() will write an inode and its pages to disk. It will also 598 * correctly update the inode on its superblock's dirty inode lists and will 599 * update inode->i_state. 600 * 601 * The caller must have a ref on the inode. 602 */ 603 int sync_inode(struct inode *inode, struct writeback_control *wbc) 604 { 605 int ret; 606 607 spin_lock(&inode_lock); 608 ret = __writeback_single_inode(inode, wbc); 609 spin_unlock(&inode_lock); 610 return ret; 611 } 612 EXPORT_SYMBOL(sync_inode); 613 614 /** 615 * generic_osync_inode - flush all dirty data for a given inode to disk 616 * @inode: inode to write 617 * @mapping: the address_space that should be flushed 618 * @what: what to write and wait upon 619 * 620 * This can be called by file_write functions for files which have the 621 * O_SYNC flag set, to flush dirty writes to disk. 622 * 623 * @what is a bitmask, specifying which part of the inode's data should be 624 * written and waited upon. 625 * 626 * OSYNC_DATA: i_mapping's dirty data 627 * OSYNC_METADATA: the buffers at i_mapping->private_list 628 * OSYNC_INODE: the inode itself 629 */ 630 631 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what) 632 { 633 int err = 0; 634 int need_write_inode_now = 0; 635 int err2; 636 637 if (what & OSYNC_DATA) 638 err = filemap_fdatawrite(mapping); 639 if (what & (OSYNC_METADATA|OSYNC_DATA)) { 640 err2 = sync_mapping_buffers(mapping); 641 if (!err) 642 err = err2; 643 } 644 if (what & OSYNC_DATA) { 645 err2 = filemap_fdatawait(mapping); 646 if (!err) 647 err = err2; 648 } 649 650 spin_lock(&inode_lock); 651 if ((inode->i_state & I_DIRTY) && 652 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC))) 653 need_write_inode_now = 1; 654 spin_unlock(&inode_lock); 655 656 if (need_write_inode_now) { 657 err2 = write_inode_now(inode, 1); 658 if (!err) 659 err = err2; 660 } 661 else 662 wait_on_inode(inode); 663 664 return err; 665 } 666 667 EXPORT_SYMBOL(generic_osync_inode); 668 669 /** 670 * writeback_acquire: attempt to get exclusive writeback access to a device 671 * @bdi: the device's backing_dev_info structure 672 * 673 * It is a waste of resources to have more than one pdflush thread blocked on 674 * a single request queue. Exclusion at the request_queue level is obtained 675 * via a flag in the request_queue's backing_dev_info.state. 676 * 677 * Non-request_queue-backed address_spaces will share default_backing_dev_info, 678 * unless they implement their own. Which is somewhat inefficient, as this 679 * may prevent concurrent writeback against multiple devices. 680 */ 681 int writeback_acquire(struct backing_dev_info *bdi) 682 { 683 return !test_and_set_bit(BDI_pdflush, &bdi->state); 684 } 685 686 /** 687 * writeback_in_progress: determine whether there is writeback in progress 688 * @bdi: the device's backing_dev_info structure. 689 * 690 * Determine whether there is writeback in progress against a backing device. 691 */ 692 int writeback_in_progress(struct backing_dev_info *bdi) 693 { 694 return test_bit(BDI_pdflush, &bdi->state); 695 } 696 697 /** 698 * writeback_release: relinquish exclusive writeback access against a device. 699 * @bdi: the device's backing_dev_info structure 700 */ 701 void writeback_release(struct backing_dev_info *bdi) 702 { 703 BUG_ON(!writeback_in_progress(bdi)); 704 clear_bit(BDI_pdflush, &bdi->state); 705 } 706