xref: /linux/fs/fs-writeback.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	akpm@zip.com.au
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/writeback.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/buffer_head.h>
26 #include "internal.h"
27 
28 /**
29  *	__mark_inode_dirty -	internal function
30  *	@inode: inode to mark
31  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
32  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
33  *  	mark_inode_dirty_sync.
34  *
35  * Put the inode on the super block's dirty list.
36  *
37  * CAREFUL! We mark it dirty unconditionally, but move it onto the
38  * dirty list only if it is hashed or if it refers to a blockdev.
39  * If it was not hashed, it will never be added to the dirty list
40  * even if it is later hashed, as it will have been marked dirty already.
41  *
42  * In short, make sure you hash any inodes _before_ you start marking
43  * them dirty.
44  *
45  * This function *must* be atomic for the I_DIRTY_PAGES case -
46  * set_page_dirty() is called under spinlock in several places.
47  *
48  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
49  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
50  * the kernel-internal blockdev inode represents the dirtying time of the
51  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
52  * page->mapping->host, so the page-dirtying time is recorded in the internal
53  * blockdev inode.
54  */
55 void __mark_inode_dirty(struct inode *inode, int flags)
56 {
57 	struct super_block *sb = inode->i_sb;
58 
59 	/*
60 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
61 	 * dirty the inode itself
62 	 */
63 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
64 		if (sb->s_op->dirty_inode)
65 			sb->s_op->dirty_inode(inode);
66 	}
67 
68 	/*
69 	 * make sure that changes are seen by all cpus before we test i_state
70 	 * -- mikulas
71 	 */
72 	smp_mb();
73 
74 	/* avoid the locking if we can */
75 	if ((inode->i_state & flags) == flags)
76 		return;
77 
78 	if (unlikely(block_dump)) {
79 		struct dentry *dentry = NULL;
80 		const char *name = "?";
81 
82 		if (!list_empty(&inode->i_dentry)) {
83 			dentry = list_entry(inode->i_dentry.next,
84 					    struct dentry, d_alias);
85 			if (dentry && dentry->d_name.name)
86 				name = (const char *) dentry->d_name.name;
87 		}
88 
89 		if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
90 			printk(KERN_DEBUG
91 			       "%s(%d): dirtied inode %lu (%s) on %s\n",
92 			       current->comm, current->pid, inode->i_ino,
93 			       name, inode->i_sb->s_id);
94 	}
95 
96 	spin_lock(&inode_lock);
97 	if ((inode->i_state & flags) != flags) {
98 		const int was_dirty = inode->i_state & I_DIRTY;
99 
100 		inode->i_state |= flags;
101 
102 		/*
103 		 * If the inode is locked, just update its dirty state.
104 		 * The unlocker will place the inode on the appropriate
105 		 * superblock list, based upon its state.
106 		 */
107 		if (inode->i_state & I_LOCK)
108 			goto out;
109 
110 		/*
111 		 * Only add valid (hashed) inodes to the superblock's
112 		 * dirty list.  Add blockdev inodes as well.
113 		 */
114 		if (!S_ISBLK(inode->i_mode)) {
115 			if (hlist_unhashed(&inode->i_hash))
116 				goto out;
117 		}
118 		if (inode->i_state & (I_FREEING|I_CLEAR))
119 			goto out;
120 
121 		/*
122 		 * If the inode was already on s_dirty or s_io, don't
123 		 * reposition it (that would break s_dirty time-ordering).
124 		 */
125 		if (!was_dirty) {
126 			inode->dirtied_when = jiffies;
127 			list_move(&inode->i_list, &sb->s_dirty);
128 		}
129 	}
130 out:
131 	spin_unlock(&inode_lock);
132 }
133 
134 EXPORT_SYMBOL(__mark_inode_dirty);
135 
136 static int write_inode(struct inode *inode, int sync)
137 {
138 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
139 		return inode->i_sb->s_op->write_inode(inode, sync);
140 	return 0;
141 }
142 
143 /*
144  * Write a single inode's dirty pages and inode data out to disk.
145  * If `wait' is set, wait on the writeout.
146  *
147  * The whole writeout design is quite complex and fragile.  We want to avoid
148  * starvation of particular inodes when others are being redirtied, prevent
149  * livelocks, etc.
150  *
151  * Called under inode_lock.
152  */
153 static int
154 __sync_single_inode(struct inode *inode, struct writeback_control *wbc)
155 {
156 	unsigned dirty;
157 	struct address_space *mapping = inode->i_mapping;
158 	struct super_block *sb = inode->i_sb;
159 	int wait = wbc->sync_mode == WB_SYNC_ALL;
160 	int ret;
161 
162 	BUG_ON(inode->i_state & I_LOCK);
163 
164 	/* Set I_LOCK, reset I_DIRTY */
165 	dirty = inode->i_state & I_DIRTY;
166 	inode->i_state |= I_LOCK;
167 	inode->i_state &= ~I_DIRTY;
168 
169 	spin_unlock(&inode_lock);
170 
171 	ret = do_writepages(mapping, wbc);
172 
173 	/* Don't write the inode if only I_DIRTY_PAGES was set */
174 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
175 		int err = write_inode(inode, wait);
176 		if (ret == 0)
177 			ret = err;
178 	}
179 
180 	if (wait) {
181 		int err = filemap_fdatawait(mapping);
182 		if (ret == 0)
183 			ret = err;
184 	}
185 
186 	spin_lock(&inode_lock);
187 	inode->i_state &= ~I_LOCK;
188 	if (!(inode->i_state & I_FREEING)) {
189 		if (!(inode->i_state & I_DIRTY) &&
190 		    mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
191 			/*
192 			 * We didn't write back all the pages.  nfs_writepages()
193 			 * sometimes bales out without doing anything. Redirty
194 			 * the inode.  It is still on sb->s_io.
195 			 */
196 			if (wbc->for_kupdate) {
197 				/*
198 				 * For the kupdate function we leave the inode
199 				 * at the head of sb_dirty so it will get more
200 				 * writeout as soon as the queue becomes
201 				 * uncongested.
202 				 */
203 				inode->i_state |= I_DIRTY_PAGES;
204 				list_move_tail(&inode->i_list, &sb->s_dirty);
205 			} else {
206 				/*
207 				 * Otherwise fully redirty the inode so that
208 				 * other inodes on this superblock will get some
209 				 * writeout.  Otherwise heavy writing to one
210 				 * file would indefinitely suspend writeout of
211 				 * all the other files.
212 				 */
213 				inode->i_state |= I_DIRTY_PAGES;
214 				inode->dirtied_when = jiffies;
215 				list_move(&inode->i_list, &sb->s_dirty);
216 			}
217 		} else if (inode->i_state & I_DIRTY) {
218 			/*
219 			 * Someone redirtied the inode while were writing back
220 			 * the pages.
221 			 */
222 			list_move(&inode->i_list, &sb->s_dirty);
223 		} else if (atomic_read(&inode->i_count)) {
224 			/*
225 			 * The inode is clean, inuse
226 			 */
227 			list_move(&inode->i_list, &inode_in_use);
228 		} else {
229 			/*
230 			 * The inode is clean, unused
231 			 */
232 			list_move(&inode->i_list, &inode_unused);
233 		}
234 	}
235 	wake_up_inode(inode);
236 	return ret;
237 }
238 
239 /*
240  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
241  * caller has ref on the inode (either via __iget or via syscall against an fd)
242  * or the inode has I_WILL_FREE set (via generic_forget_inode)
243  */
244 static int
245 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
246 {
247 	wait_queue_head_t *wqh;
248 
249 	if (!atomic_read(&inode->i_count))
250 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
251 	else
252 		WARN_ON(inode->i_state & I_WILL_FREE);
253 
254 	if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_LOCK)) {
255 		struct address_space *mapping = inode->i_mapping;
256 		int ret;
257 
258 		list_move(&inode->i_list, &inode->i_sb->s_dirty);
259 
260 		/*
261 		 * Even if we don't actually write the inode itself here,
262 		 * we can at least start some of the data writeout..
263 		 */
264 		spin_unlock(&inode_lock);
265 		ret = do_writepages(mapping, wbc);
266 		spin_lock(&inode_lock);
267 		return ret;
268 	}
269 
270 	/*
271 	 * It's a data-integrity sync.  We must wait.
272 	 */
273 	if (inode->i_state & I_LOCK) {
274 		DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LOCK);
275 
276 		wqh = bit_waitqueue(&inode->i_state, __I_LOCK);
277 		do {
278 			spin_unlock(&inode_lock);
279 			__wait_on_bit(wqh, &wq, inode_wait,
280 							TASK_UNINTERRUPTIBLE);
281 			spin_lock(&inode_lock);
282 		} while (inode->i_state & I_LOCK);
283 	}
284 	return __sync_single_inode(inode, wbc);
285 }
286 
287 /*
288  * Write out a superblock's list of dirty inodes.  A wait will be performed
289  * upon no inodes, all inodes or the final one, depending upon sync_mode.
290  *
291  * If older_than_this is non-NULL, then only write out inodes which
292  * had their first dirtying at a time earlier than *older_than_this.
293  *
294  * If we're a pdlfush thread, then implement pdflush collision avoidance
295  * against the entire list.
296  *
297  * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
298  * that it can be located for waiting on in __writeback_single_inode().
299  *
300  * Called under inode_lock.
301  *
302  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
303  * This function assumes that the blockdev superblock's inodes are backed by
304  * a variety of queues, so all inodes are searched.  For other superblocks,
305  * assume that all inodes are backed by the same queue.
306  *
307  * FIXME: this linear search could get expensive with many fileystems.  But
308  * how to fix?  We need to go from an address_space to all inodes which share
309  * a queue with that address_space.  (Easy: have a global "dirty superblocks"
310  * list).
311  *
312  * The inodes to be written are parked on sb->s_io.  They are moved back onto
313  * sb->s_dirty as they are selected for writing.  This way, none can be missed
314  * on the writer throttling path, and we get decent balancing between many
315  * throttled threads: we don't want them all piling up on __wait_on_inode.
316  */
317 static void
318 sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc)
319 {
320 	const unsigned long start = jiffies;	/* livelock avoidance */
321 
322 	if (!wbc->for_kupdate || list_empty(&sb->s_io))
323 		list_splice_init(&sb->s_dirty, &sb->s_io);
324 
325 	while (!list_empty(&sb->s_io)) {
326 		struct inode *inode = list_entry(sb->s_io.prev,
327 						struct inode, i_list);
328 		struct address_space *mapping = inode->i_mapping;
329 		struct backing_dev_info *bdi = mapping->backing_dev_info;
330 		long pages_skipped;
331 
332 		if (!bdi_cap_writeback_dirty(bdi)) {
333 			list_move(&inode->i_list, &sb->s_dirty);
334 			if (sb_is_blkdev_sb(sb)) {
335 				/*
336 				 * Dirty memory-backed blockdev: the ramdisk
337 				 * driver does this.  Skip just this inode
338 				 */
339 				continue;
340 			}
341 			/*
342 			 * Dirty memory-backed inode against a filesystem other
343 			 * than the kernel-internal bdev filesystem.  Skip the
344 			 * entire superblock.
345 			 */
346 			break;
347 		}
348 
349 		if (wbc->nonblocking && bdi_write_congested(bdi)) {
350 			wbc->encountered_congestion = 1;
351 			if (!sb_is_blkdev_sb(sb))
352 				break;		/* Skip a congested fs */
353 			list_move(&inode->i_list, &sb->s_dirty);
354 			continue;		/* Skip a congested blockdev */
355 		}
356 
357 		if (wbc->bdi && bdi != wbc->bdi) {
358 			if (!sb_is_blkdev_sb(sb))
359 				break;		/* fs has the wrong queue */
360 			list_move(&inode->i_list, &sb->s_dirty);
361 			continue;		/* blockdev has wrong queue */
362 		}
363 
364 		/* Was this inode dirtied after sync_sb_inodes was called? */
365 		if (time_after(inode->dirtied_when, start))
366 			break;
367 
368 		/* Was this inode dirtied too recently? */
369 		if (wbc->older_than_this && time_after(inode->dirtied_when,
370 						*wbc->older_than_this))
371 			break;
372 
373 		/* Is another pdflush already flushing this queue? */
374 		if (current_is_pdflush() && !writeback_acquire(bdi))
375 			break;
376 
377 		BUG_ON(inode->i_state & I_FREEING);
378 		__iget(inode);
379 		pages_skipped = wbc->pages_skipped;
380 		__writeback_single_inode(inode, wbc);
381 		if (wbc->sync_mode == WB_SYNC_HOLD) {
382 			inode->dirtied_when = jiffies;
383 			list_move(&inode->i_list, &sb->s_dirty);
384 		}
385 		if (current_is_pdflush())
386 			writeback_release(bdi);
387 		if (wbc->pages_skipped != pages_skipped) {
388 			/*
389 			 * writeback is not making progress due to locked
390 			 * buffers.  Skip this inode for now.
391 			 */
392 			list_move(&inode->i_list, &sb->s_dirty);
393 		}
394 		spin_unlock(&inode_lock);
395 		iput(inode);
396 		cond_resched();
397 		spin_lock(&inode_lock);
398 		if (wbc->nr_to_write <= 0)
399 			break;
400 	}
401 	return;		/* Leave any unwritten inodes on s_io */
402 }
403 
404 /*
405  * Start writeback of dirty pagecache data against all unlocked inodes.
406  *
407  * Note:
408  * We don't need to grab a reference to superblock here. If it has non-empty
409  * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
410  * past sync_inodes_sb() until both the ->s_dirty and ->s_io lists are
411  * empty. Since __sync_single_inode() regains inode_lock before it finally moves
412  * inode from superblock lists we are OK.
413  *
414  * If `older_than_this' is non-zero then only flush inodes which have a
415  * flushtime older than *older_than_this.
416  *
417  * If `bdi' is non-zero then we will scan the first inode against each
418  * superblock until we find the matching ones.  One group will be the dirty
419  * inodes against a filesystem.  Then when we hit the dummy blockdev superblock,
420  * sync_sb_inodes will seekout the blockdev which matches `bdi'.  Maybe not
421  * super-efficient but we're about to do a ton of I/O...
422  */
423 void
424 writeback_inodes(struct writeback_control *wbc)
425 {
426 	struct super_block *sb;
427 
428 	might_sleep();
429 	spin_lock(&sb_lock);
430 restart:
431 	sb = sb_entry(super_blocks.prev);
432 	for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
433 		if (!list_empty(&sb->s_dirty) || !list_empty(&sb->s_io)) {
434 			/* we're making our own get_super here */
435 			sb->s_count++;
436 			spin_unlock(&sb_lock);
437 			/*
438 			 * If we can't get the readlock, there's no sense in
439 			 * waiting around, most of the time the FS is going to
440 			 * be unmounted by the time it is released.
441 			 */
442 			if (down_read_trylock(&sb->s_umount)) {
443 				if (sb->s_root) {
444 					spin_lock(&inode_lock);
445 					sync_sb_inodes(sb, wbc);
446 					spin_unlock(&inode_lock);
447 				}
448 				up_read(&sb->s_umount);
449 			}
450 			spin_lock(&sb_lock);
451 			if (__put_super_and_need_restart(sb))
452 				goto restart;
453 		}
454 		if (wbc->nr_to_write <= 0)
455 			break;
456 	}
457 	spin_unlock(&sb_lock);
458 }
459 
460 /*
461  * writeback and wait upon the filesystem's dirty inodes.  The caller will
462  * do this in two passes - one to write, and one to wait.  WB_SYNC_HOLD is
463  * used to park the written inodes on sb->s_dirty for the wait pass.
464  *
465  * A finite limit is set on the number of pages which will be written.
466  * To prevent infinite livelock of sys_sync().
467  *
468  * We add in the number of potentially dirty inodes, because each inode write
469  * can dirty pagecache in the underlying blockdev.
470  */
471 void sync_inodes_sb(struct super_block *sb, int wait)
472 {
473 	struct writeback_control wbc = {
474 		.sync_mode	= wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
475 		.range_start	= 0,
476 		.range_end	= LLONG_MAX,
477 	};
478 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
479 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
480 
481 	wbc.nr_to_write = nr_dirty + nr_unstable +
482 			(inodes_stat.nr_inodes - inodes_stat.nr_unused) +
483 			nr_dirty + nr_unstable;
484 	wbc.nr_to_write += wbc.nr_to_write / 2;		/* Bit more for luck */
485 	spin_lock(&inode_lock);
486 	sync_sb_inodes(sb, &wbc);
487 	spin_unlock(&inode_lock);
488 }
489 
490 /*
491  * Rather lame livelock avoidance.
492  */
493 static void set_sb_syncing(int val)
494 {
495 	struct super_block *sb;
496 	spin_lock(&sb_lock);
497 	sb = sb_entry(super_blocks.prev);
498 	for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
499 		sb->s_syncing = val;
500 	}
501 	spin_unlock(&sb_lock);
502 }
503 
504 /**
505  * sync_inodes - writes all inodes to disk
506  * @wait: wait for completion
507  *
508  * sync_inodes() goes through each super block's dirty inode list, writes the
509  * inodes out, waits on the writeout and puts the inodes back on the normal
510  * list.
511  *
512  * This is for sys_sync().  fsync_dev() uses the same algorithm.  The subtle
513  * part of the sync functions is that the blockdev "superblock" is processed
514  * last.  This is because the write_inode() function of a typical fs will
515  * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
516  * What we want to do is to perform all that dirtying first, and then write
517  * back all those inode blocks via the blockdev mapping in one sweep.  So the
518  * additional (somewhat redundant) sync_blockdev() calls here are to make
519  * sure that really happens.  Because if we call sync_inodes_sb(wait=1) with
520  * outstanding dirty inodes, the writeback goes block-at-a-time within the
521  * filesystem's write_inode().  This is extremely slow.
522  */
523 static void __sync_inodes(int wait)
524 {
525 	struct super_block *sb;
526 
527 	spin_lock(&sb_lock);
528 restart:
529 	list_for_each_entry(sb, &super_blocks, s_list) {
530 		if (sb->s_syncing)
531 			continue;
532 		sb->s_syncing = 1;
533 		sb->s_count++;
534 		spin_unlock(&sb_lock);
535 		down_read(&sb->s_umount);
536 		if (sb->s_root) {
537 			sync_inodes_sb(sb, wait);
538 			sync_blockdev(sb->s_bdev);
539 		}
540 		up_read(&sb->s_umount);
541 		spin_lock(&sb_lock);
542 		if (__put_super_and_need_restart(sb))
543 			goto restart;
544 	}
545 	spin_unlock(&sb_lock);
546 }
547 
548 void sync_inodes(int wait)
549 {
550 	set_sb_syncing(0);
551 	__sync_inodes(0);
552 
553 	if (wait) {
554 		set_sb_syncing(0);
555 		__sync_inodes(1);
556 	}
557 }
558 
559 /**
560  * write_inode_now	-	write an inode to disk
561  * @inode: inode to write to disk
562  * @sync: whether the write should be synchronous or not
563  *
564  * This function commits an inode to disk immediately if it is dirty. This is
565  * primarily needed by knfsd.
566  *
567  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
568  */
569 int write_inode_now(struct inode *inode, int sync)
570 {
571 	int ret;
572 	struct writeback_control wbc = {
573 		.nr_to_write = LONG_MAX,
574 		.sync_mode = WB_SYNC_ALL,
575 		.range_start = 0,
576 		.range_end = LLONG_MAX,
577 	};
578 
579 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
580 		wbc.nr_to_write = 0;
581 
582 	might_sleep();
583 	spin_lock(&inode_lock);
584 	ret = __writeback_single_inode(inode, &wbc);
585 	spin_unlock(&inode_lock);
586 	if (sync)
587 		wait_on_inode(inode);
588 	return ret;
589 }
590 EXPORT_SYMBOL(write_inode_now);
591 
592 /**
593  * sync_inode - write an inode and its pages to disk.
594  * @inode: the inode to sync
595  * @wbc: controls the writeback mode
596  *
597  * sync_inode() will write an inode and its pages to disk.  It will also
598  * correctly update the inode on its superblock's dirty inode lists and will
599  * update inode->i_state.
600  *
601  * The caller must have a ref on the inode.
602  */
603 int sync_inode(struct inode *inode, struct writeback_control *wbc)
604 {
605 	int ret;
606 
607 	spin_lock(&inode_lock);
608 	ret = __writeback_single_inode(inode, wbc);
609 	spin_unlock(&inode_lock);
610 	return ret;
611 }
612 EXPORT_SYMBOL(sync_inode);
613 
614 /**
615  * generic_osync_inode - flush all dirty data for a given inode to disk
616  * @inode: inode to write
617  * @mapping: the address_space that should be flushed
618  * @what:  what to write and wait upon
619  *
620  * This can be called by file_write functions for files which have the
621  * O_SYNC flag set, to flush dirty writes to disk.
622  *
623  * @what is a bitmask, specifying which part of the inode's data should be
624  * written and waited upon.
625  *
626  *    OSYNC_DATA:     i_mapping's dirty data
627  *    OSYNC_METADATA: the buffers at i_mapping->private_list
628  *    OSYNC_INODE:    the inode itself
629  */
630 
631 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
632 {
633 	int err = 0;
634 	int need_write_inode_now = 0;
635 	int err2;
636 
637 	if (what & OSYNC_DATA)
638 		err = filemap_fdatawrite(mapping);
639 	if (what & (OSYNC_METADATA|OSYNC_DATA)) {
640 		err2 = sync_mapping_buffers(mapping);
641 		if (!err)
642 			err = err2;
643 	}
644 	if (what & OSYNC_DATA) {
645 		err2 = filemap_fdatawait(mapping);
646 		if (!err)
647 			err = err2;
648 	}
649 
650 	spin_lock(&inode_lock);
651 	if ((inode->i_state & I_DIRTY) &&
652 	    ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
653 		need_write_inode_now = 1;
654 	spin_unlock(&inode_lock);
655 
656 	if (need_write_inode_now) {
657 		err2 = write_inode_now(inode, 1);
658 		if (!err)
659 			err = err2;
660 	}
661 	else
662 		wait_on_inode(inode);
663 
664 	return err;
665 }
666 
667 EXPORT_SYMBOL(generic_osync_inode);
668 
669 /**
670  * writeback_acquire: attempt to get exclusive writeback access to a device
671  * @bdi: the device's backing_dev_info structure
672  *
673  * It is a waste of resources to have more than one pdflush thread blocked on
674  * a single request queue.  Exclusion at the request_queue level is obtained
675  * via a flag in the request_queue's backing_dev_info.state.
676  *
677  * Non-request_queue-backed address_spaces will share default_backing_dev_info,
678  * unless they implement their own.  Which is somewhat inefficient, as this
679  * may prevent concurrent writeback against multiple devices.
680  */
681 int writeback_acquire(struct backing_dev_info *bdi)
682 {
683 	return !test_and_set_bit(BDI_pdflush, &bdi->state);
684 }
685 
686 /**
687  * writeback_in_progress: determine whether there is writeback in progress
688  * @bdi: the device's backing_dev_info structure.
689  *
690  * Determine whether there is writeback in progress against a backing device.
691  */
692 int writeback_in_progress(struct backing_dev_info *bdi)
693 {
694 	return test_bit(BDI_pdflush, &bdi->state);
695 }
696 
697 /**
698  * writeback_release: relinquish exclusive writeback access against a device.
699  * @bdi: the device's backing_dev_info structure
700  */
701 void writeback_release(struct backing_dev_info *bdi)
702 {
703 	BUG_ON(!writeback_in_progress(bdi));
704 	clear_bit(BDI_pdflush, &bdi->state);
705 }
706