1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <crypto/hash.h> 27 28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 29 #include <linux/fscrypt.h> 30 31 #ifdef CONFIG_F2FS_CHECK_FS 32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 33 #else 34 #define f2fs_bug_on(sbi, condition) \ 35 do { \ 36 if (unlikely(condition)) { \ 37 WARN_ON(1); \ 38 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 39 } \ 40 } while (0) 41 #endif 42 43 #ifdef CONFIG_F2FS_FAULT_INJECTION 44 enum { 45 FAULT_KMALLOC, 46 FAULT_PAGE_ALLOC, 47 FAULT_ALLOC_NID, 48 FAULT_ORPHAN, 49 FAULT_BLOCK, 50 FAULT_DIR_DEPTH, 51 FAULT_EVICT_INODE, 52 FAULT_TRUNCATE, 53 FAULT_IO, 54 FAULT_CHECKPOINT, 55 FAULT_MAX, 56 }; 57 58 struct f2fs_fault_info { 59 atomic_t inject_ops; 60 unsigned int inject_rate; 61 unsigned int inject_type; 62 }; 63 64 extern char *fault_name[FAULT_MAX]; 65 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 66 #endif 67 68 /* 69 * For mount options 70 */ 71 #define F2FS_MOUNT_BG_GC 0x00000001 72 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 73 #define F2FS_MOUNT_DISCARD 0x00000004 74 #define F2FS_MOUNT_NOHEAP 0x00000008 75 #define F2FS_MOUNT_XATTR_USER 0x00000010 76 #define F2FS_MOUNT_POSIX_ACL 0x00000020 77 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 78 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 79 #define F2FS_MOUNT_INLINE_DATA 0x00000100 80 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 81 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 82 #define F2FS_MOUNT_NOBARRIER 0x00000800 83 #define F2FS_MOUNT_FASTBOOT 0x00001000 84 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 85 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 86 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 87 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 88 #define F2FS_MOUNT_ADAPTIVE 0x00020000 89 #define F2FS_MOUNT_LFS 0x00040000 90 #define F2FS_MOUNT_USRQUOTA 0x00080000 91 #define F2FS_MOUNT_GRPQUOTA 0x00100000 92 #define F2FS_MOUNT_PRJQUOTA 0x00200000 93 #define F2FS_MOUNT_QUOTA 0x00400000 94 95 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) 96 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) 97 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) 98 99 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 100 typecheck(unsigned long long, b) && \ 101 ((long long)((a) - (b)) > 0)) 102 103 typedef u32 block_t; /* 104 * should not change u32, since it is the on-disk block 105 * address format, __le32. 106 */ 107 typedef u32 nid_t; 108 109 struct f2fs_mount_info { 110 unsigned int opt; 111 }; 112 113 #define F2FS_FEATURE_ENCRYPT 0x0001 114 #define F2FS_FEATURE_BLKZONED 0x0002 115 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 116 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 117 #define F2FS_FEATURE_PRJQUOTA 0x0010 118 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 119 120 #define F2FS_HAS_FEATURE(sb, mask) \ 121 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 122 #define F2FS_SET_FEATURE(sb, mask) \ 123 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 124 #define F2FS_CLEAR_FEATURE(sb, mask) \ 125 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 126 127 /* 128 * For checkpoint manager 129 */ 130 enum { 131 NAT_BITMAP, 132 SIT_BITMAP 133 }; 134 135 #define CP_UMOUNT 0x00000001 136 #define CP_FASTBOOT 0x00000002 137 #define CP_SYNC 0x00000004 138 #define CP_RECOVERY 0x00000008 139 #define CP_DISCARD 0x00000010 140 #define CP_TRIMMED 0x00000020 141 142 #define DEF_BATCHED_TRIM_SECTIONS 2048 143 #define BATCHED_TRIM_SEGMENTS(sbi) \ 144 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 145 #define BATCHED_TRIM_BLOCKS(sbi) \ 146 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 147 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 148 #define DISCARD_ISSUE_RATE 8 149 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 150 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 151 #define DEF_CP_INTERVAL 60 /* 60 secs */ 152 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 153 154 struct cp_control { 155 int reason; 156 __u64 trim_start; 157 __u64 trim_end; 158 __u64 trim_minlen; 159 __u64 trimmed; 160 }; 161 162 /* 163 * For CP/NAT/SIT/SSA readahead 164 */ 165 enum { 166 META_CP, 167 META_NAT, 168 META_SIT, 169 META_SSA, 170 META_POR, 171 }; 172 173 /* for the list of ino */ 174 enum { 175 ORPHAN_INO, /* for orphan ino list */ 176 APPEND_INO, /* for append ino list */ 177 UPDATE_INO, /* for update ino list */ 178 MAX_INO_ENTRY, /* max. list */ 179 }; 180 181 struct ino_entry { 182 struct list_head list; /* list head */ 183 nid_t ino; /* inode number */ 184 }; 185 186 /* for the list of inodes to be GCed */ 187 struct inode_entry { 188 struct list_head list; /* list head */ 189 struct inode *inode; /* vfs inode pointer */ 190 }; 191 192 /* for the bitmap indicate blocks to be discarded */ 193 struct discard_entry { 194 struct list_head list; /* list head */ 195 block_t start_blkaddr; /* start blockaddr of current segment */ 196 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 197 }; 198 199 /* default discard granularity of inner discard thread, unit: block count */ 200 #define DEFAULT_DISCARD_GRANULARITY 16 201 202 /* max discard pend list number */ 203 #define MAX_PLIST_NUM 512 204 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 205 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 206 207 #define P_ACTIVE 0x01 208 #define P_TRIM 0x02 209 #define plist_issue(tag) (((tag) & P_ACTIVE) || ((tag) & P_TRIM)) 210 211 enum { 212 D_PREP, 213 D_SUBMIT, 214 D_DONE, 215 }; 216 217 struct discard_info { 218 block_t lstart; /* logical start address */ 219 block_t len; /* length */ 220 block_t start; /* actual start address in dev */ 221 }; 222 223 struct discard_cmd { 224 struct rb_node rb_node; /* rb node located in rb-tree */ 225 union { 226 struct { 227 block_t lstart; /* logical start address */ 228 block_t len; /* length */ 229 block_t start; /* actual start address in dev */ 230 }; 231 struct discard_info di; /* discard info */ 232 233 }; 234 struct list_head list; /* command list */ 235 struct completion wait; /* compleation */ 236 struct block_device *bdev; /* bdev */ 237 unsigned short ref; /* reference count */ 238 unsigned char state; /* state */ 239 int error; /* bio error */ 240 }; 241 242 struct discard_cmd_control { 243 struct task_struct *f2fs_issue_discard; /* discard thread */ 244 struct list_head entry_list; /* 4KB discard entry list */ 245 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 246 unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */ 247 struct list_head wait_list; /* store on-flushing entries */ 248 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 249 unsigned int discard_wake; /* to wake up discard thread */ 250 struct mutex cmd_lock; 251 unsigned int nr_discards; /* # of discards in the list */ 252 unsigned int max_discards; /* max. discards to be issued */ 253 unsigned int discard_granularity; /* discard granularity */ 254 unsigned int undiscard_blks; /* # of undiscard blocks */ 255 atomic_t issued_discard; /* # of issued discard */ 256 atomic_t issing_discard; /* # of issing discard */ 257 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 258 struct rb_root root; /* root of discard rb-tree */ 259 }; 260 261 /* for the list of fsync inodes, used only during recovery */ 262 struct fsync_inode_entry { 263 struct list_head list; /* list head */ 264 struct inode *inode; /* vfs inode pointer */ 265 block_t blkaddr; /* block address locating the last fsync */ 266 block_t last_dentry; /* block address locating the last dentry */ 267 }; 268 269 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 270 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 271 272 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 273 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 274 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 275 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 276 277 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 278 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 279 280 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 281 { 282 int before = nats_in_cursum(journal); 283 284 journal->n_nats = cpu_to_le16(before + i); 285 return before; 286 } 287 288 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 289 { 290 int before = sits_in_cursum(journal); 291 292 journal->n_sits = cpu_to_le16(before + i); 293 return before; 294 } 295 296 static inline bool __has_cursum_space(struct f2fs_journal *journal, 297 int size, int type) 298 { 299 if (type == NAT_JOURNAL) 300 return size <= MAX_NAT_JENTRIES(journal); 301 return size <= MAX_SIT_JENTRIES(journal); 302 } 303 304 /* 305 * ioctl commands 306 */ 307 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 308 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 309 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 310 311 #define F2FS_IOCTL_MAGIC 0xf5 312 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 313 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 314 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 315 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 316 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 317 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 318 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 319 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 320 struct f2fs_defragment) 321 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 322 struct f2fs_move_range) 323 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 324 struct f2fs_flush_device) 325 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 326 struct f2fs_gc_range) 327 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 328 329 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 330 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 331 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 332 333 /* 334 * should be same as XFS_IOC_GOINGDOWN. 335 * Flags for going down operation used by FS_IOC_GOINGDOWN 336 */ 337 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 338 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 339 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 340 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 341 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 342 343 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 344 /* 345 * ioctl commands in 32 bit emulation 346 */ 347 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 348 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 349 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 350 #endif 351 352 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 353 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 354 355 struct f2fs_gc_range { 356 u32 sync; 357 u64 start; 358 u64 len; 359 }; 360 361 struct f2fs_defragment { 362 u64 start; 363 u64 len; 364 }; 365 366 struct f2fs_move_range { 367 u32 dst_fd; /* destination fd */ 368 u64 pos_in; /* start position in src_fd */ 369 u64 pos_out; /* start position in dst_fd */ 370 u64 len; /* size to move */ 371 }; 372 373 struct f2fs_flush_device { 374 u32 dev_num; /* device number to flush */ 375 u32 segments; /* # of segments to flush */ 376 }; 377 378 /* for inline stuff */ 379 #define DEF_INLINE_RESERVED_SIZE 1 380 static inline int get_extra_isize(struct inode *inode); 381 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 382 (CUR_ADDRS_PER_INODE(inode) - \ 383 DEF_INLINE_RESERVED_SIZE - \ 384 F2FS_INLINE_XATTR_ADDRS)) 385 386 /* for inline dir */ 387 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 388 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 389 BITS_PER_BYTE + 1)) 390 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 391 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 392 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 393 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 394 NR_INLINE_DENTRY(inode) + \ 395 INLINE_DENTRY_BITMAP_SIZE(inode))) 396 397 /* 398 * For INODE and NODE manager 399 */ 400 /* for directory operations */ 401 struct f2fs_dentry_ptr { 402 struct inode *inode; 403 void *bitmap; 404 struct f2fs_dir_entry *dentry; 405 __u8 (*filename)[F2FS_SLOT_LEN]; 406 int max; 407 int nr_bitmap; 408 }; 409 410 static inline void make_dentry_ptr_block(struct inode *inode, 411 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 412 { 413 d->inode = inode; 414 d->max = NR_DENTRY_IN_BLOCK; 415 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 416 d->bitmap = &t->dentry_bitmap; 417 d->dentry = t->dentry; 418 d->filename = t->filename; 419 } 420 421 static inline void make_dentry_ptr_inline(struct inode *inode, 422 struct f2fs_dentry_ptr *d, void *t) 423 { 424 int entry_cnt = NR_INLINE_DENTRY(inode); 425 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 426 int reserved_size = INLINE_RESERVED_SIZE(inode); 427 428 d->inode = inode; 429 d->max = entry_cnt; 430 d->nr_bitmap = bitmap_size; 431 d->bitmap = t; 432 d->dentry = t + bitmap_size + reserved_size; 433 d->filename = t + bitmap_size + reserved_size + 434 SIZE_OF_DIR_ENTRY * entry_cnt; 435 } 436 437 /* 438 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 439 * as its node offset to distinguish from index node blocks. 440 * But some bits are used to mark the node block. 441 */ 442 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 443 >> OFFSET_BIT_SHIFT) 444 enum { 445 ALLOC_NODE, /* allocate a new node page if needed */ 446 LOOKUP_NODE, /* look up a node without readahead */ 447 LOOKUP_NODE_RA, /* 448 * look up a node with readahead called 449 * by get_data_block. 450 */ 451 }; 452 453 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 454 455 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 456 457 /* vector size for gang look-up from extent cache that consists of radix tree */ 458 #define EXT_TREE_VEC_SIZE 64 459 460 /* for in-memory extent cache entry */ 461 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 462 463 /* number of extent info in extent cache we try to shrink */ 464 #define EXTENT_CACHE_SHRINK_NUMBER 128 465 466 struct rb_entry { 467 struct rb_node rb_node; /* rb node located in rb-tree */ 468 unsigned int ofs; /* start offset of the entry */ 469 unsigned int len; /* length of the entry */ 470 }; 471 472 struct extent_info { 473 unsigned int fofs; /* start offset in a file */ 474 unsigned int len; /* length of the extent */ 475 u32 blk; /* start block address of the extent */ 476 }; 477 478 struct extent_node { 479 struct rb_node rb_node; 480 union { 481 struct { 482 unsigned int fofs; 483 unsigned int len; 484 u32 blk; 485 }; 486 struct extent_info ei; /* extent info */ 487 488 }; 489 struct list_head list; /* node in global extent list of sbi */ 490 struct extent_tree *et; /* extent tree pointer */ 491 }; 492 493 struct extent_tree { 494 nid_t ino; /* inode number */ 495 struct rb_root root; /* root of extent info rb-tree */ 496 struct extent_node *cached_en; /* recently accessed extent node */ 497 struct extent_info largest; /* largested extent info */ 498 struct list_head list; /* to be used by sbi->zombie_list */ 499 rwlock_t lock; /* protect extent info rb-tree */ 500 atomic_t node_cnt; /* # of extent node in rb-tree*/ 501 }; 502 503 /* 504 * This structure is taken from ext4_map_blocks. 505 * 506 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 507 */ 508 #define F2FS_MAP_NEW (1 << BH_New) 509 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 510 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 511 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 512 F2FS_MAP_UNWRITTEN) 513 514 struct f2fs_map_blocks { 515 block_t m_pblk; 516 block_t m_lblk; 517 unsigned int m_len; 518 unsigned int m_flags; 519 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 520 }; 521 522 /* for flag in get_data_block */ 523 enum { 524 F2FS_GET_BLOCK_DEFAULT, 525 F2FS_GET_BLOCK_FIEMAP, 526 F2FS_GET_BLOCK_BMAP, 527 F2FS_GET_BLOCK_PRE_DIO, 528 F2FS_GET_BLOCK_PRE_AIO, 529 }; 530 531 /* 532 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 533 */ 534 #define FADVISE_COLD_BIT 0x01 535 #define FADVISE_LOST_PINO_BIT 0x02 536 #define FADVISE_ENCRYPT_BIT 0x04 537 #define FADVISE_ENC_NAME_BIT 0x08 538 #define FADVISE_KEEP_SIZE_BIT 0x10 539 540 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 541 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 542 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 543 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 544 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 545 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 546 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 547 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 548 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 549 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 550 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 551 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 552 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 553 554 #define DEF_DIR_LEVEL 0 555 556 struct f2fs_inode_info { 557 struct inode vfs_inode; /* serve a vfs inode */ 558 unsigned long i_flags; /* keep an inode flags for ioctl */ 559 unsigned char i_advise; /* use to give file attribute hints */ 560 unsigned char i_dir_level; /* use for dentry level for large dir */ 561 unsigned int i_current_depth; /* use only in directory structure */ 562 unsigned int i_pino; /* parent inode number */ 563 umode_t i_acl_mode; /* keep file acl mode temporarily */ 564 565 /* Use below internally in f2fs*/ 566 unsigned long flags; /* use to pass per-file flags */ 567 struct rw_semaphore i_sem; /* protect fi info */ 568 atomic_t dirty_pages; /* # of dirty pages */ 569 f2fs_hash_t chash; /* hash value of given file name */ 570 unsigned int clevel; /* maximum level of given file name */ 571 struct task_struct *task; /* lookup and create consistency */ 572 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 573 nid_t i_xattr_nid; /* node id that contains xattrs */ 574 loff_t last_disk_size; /* lastly written file size */ 575 576 #ifdef CONFIG_QUOTA 577 struct dquot *i_dquot[MAXQUOTAS]; 578 579 /* quota space reservation, managed internally by quota code */ 580 qsize_t i_reserved_quota; 581 #endif 582 struct list_head dirty_list; /* dirty list for dirs and files */ 583 struct list_head gdirty_list; /* linked in global dirty list */ 584 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 585 struct task_struct *inmem_task; /* store inmemory task */ 586 struct mutex inmem_lock; /* lock for inmemory pages */ 587 struct extent_tree *extent_tree; /* cached extent_tree entry */ 588 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 589 struct rw_semaphore i_mmap_sem; 590 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 591 592 int i_extra_isize; /* size of extra space located in i_addr */ 593 kprojid_t i_projid; /* id for project quota */ 594 }; 595 596 static inline void get_extent_info(struct extent_info *ext, 597 struct f2fs_extent *i_ext) 598 { 599 ext->fofs = le32_to_cpu(i_ext->fofs); 600 ext->blk = le32_to_cpu(i_ext->blk); 601 ext->len = le32_to_cpu(i_ext->len); 602 } 603 604 static inline void set_raw_extent(struct extent_info *ext, 605 struct f2fs_extent *i_ext) 606 { 607 i_ext->fofs = cpu_to_le32(ext->fofs); 608 i_ext->blk = cpu_to_le32(ext->blk); 609 i_ext->len = cpu_to_le32(ext->len); 610 } 611 612 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 613 u32 blk, unsigned int len) 614 { 615 ei->fofs = fofs; 616 ei->blk = blk; 617 ei->len = len; 618 } 619 620 static inline bool __is_discard_mergeable(struct discard_info *back, 621 struct discard_info *front) 622 { 623 return back->lstart + back->len == front->lstart; 624 } 625 626 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 627 struct discard_info *back) 628 { 629 return __is_discard_mergeable(back, cur); 630 } 631 632 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 633 struct discard_info *front) 634 { 635 return __is_discard_mergeable(cur, front); 636 } 637 638 static inline bool __is_extent_mergeable(struct extent_info *back, 639 struct extent_info *front) 640 { 641 return (back->fofs + back->len == front->fofs && 642 back->blk + back->len == front->blk); 643 } 644 645 static inline bool __is_back_mergeable(struct extent_info *cur, 646 struct extent_info *back) 647 { 648 return __is_extent_mergeable(back, cur); 649 } 650 651 static inline bool __is_front_mergeable(struct extent_info *cur, 652 struct extent_info *front) 653 { 654 return __is_extent_mergeable(cur, front); 655 } 656 657 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 658 static inline void __try_update_largest_extent(struct inode *inode, 659 struct extent_tree *et, struct extent_node *en) 660 { 661 if (en->ei.len > et->largest.len) { 662 et->largest = en->ei; 663 f2fs_mark_inode_dirty_sync(inode, true); 664 } 665 } 666 667 enum nid_list { 668 FREE_NID_LIST, 669 ALLOC_NID_LIST, 670 MAX_NID_LIST, 671 }; 672 673 struct f2fs_nm_info { 674 block_t nat_blkaddr; /* base disk address of NAT */ 675 nid_t max_nid; /* maximum possible node ids */ 676 nid_t available_nids; /* # of available node ids */ 677 nid_t next_scan_nid; /* the next nid to be scanned */ 678 unsigned int ram_thresh; /* control the memory footprint */ 679 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 680 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 681 682 /* NAT cache management */ 683 struct radix_tree_root nat_root;/* root of the nat entry cache */ 684 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 685 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 686 struct list_head nat_entries; /* cached nat entry list (clean) */ 687 unsigned int nat_cnt; /* the # of cached nat entries */ 688 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 689 unsigned int nat_blocks; /* # of nat blocks */ 690 691 /* free node ids management */ 692 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 693 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ 694 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ 695 spinlock_t nid_list_lock; /* protect nid lists ops */ 696 struct mutex build_lock; /* lock for build free nids */ 697 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 698 unsigned char *nat_block_bitmap; 699 unsigned short *free_nid_count; /* free nid count of NAT block */ 700 701 /* for checkpoint */ 702 char *nat_bitmap; /* NAT bitmap pointer */ 703 704 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 705 unsigned char *nat_bits; /* NAT bits blocks */ 706 unsigned char *full_nat_bits; /* full NAT pages */ 707 unsigned char *empty_nat_bits; /* empty NAT pages */ 708 #ifdef CONFIG_F2FS_CHECK_FS 709 char *nat_bitmap_mir; /* NAT bitmap mirror */ 710 #endif 711 int bitmap_size; /* bitmap size */ 712 }; 713 714 /* 715 * this structure is used as one of function parameters. 716 * all the information are dedicated to a given direct node block determined 717 * by the data offset in a file. 718 */ 719 struct dnode_of_data { 720 struct inode *inode; /* vfs inode pointer */ 721 struct page *inode_page; /* its inode page, NULL is possible */ 722 struct page *node_page; /* cached direct node page */ 723 nid_t nid; /* node id of the direct node block */ 724 unsigned int ofs_in_node; /* data offset in the node page */ 725 bool inode_page_locked; /* inode page is locked or not */ 726 bool node_changed; /* is node block changed */ 727 char cur_level; /* level of hole node page */ 728 char max_level; /* level of current page located */ 729 block_t data_blkaddr; /* block address of the node block */ 730 }; 731 732 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 733 struct page *ipage, struct page *npage, nid_t nid) 734 { 735 memset(dn, 0, sizeof(*dn)); 736 dn->inode = inode; 737 dn->inode_page = ipage; 738 dn->node_page = npage; 739 dn->nid = nid; 740 } 741 742 /* 743 * For SIT manager 744 * 745 * By default, there are 6 active log areas across the whole main area. 746 * When considering hot and cold data separation to reduce cleaning overhead, 747 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 748 * respectively. 749 * In the current design, you should not change the numbers intentionally. 750 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 751 * logs individually according to the underlying devices. (default: 6) 752 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 753 * data and 8 for node logs. 754 */ 755 #define NR_CURSEG_DATA_TYPE (3) 756 #define NR_CURSEG_NODE_TYPE (3) 757 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 758 759 enum { 760 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 761 CURSEG_WARM_DATA, /* data blocks */ 762 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 763 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 764 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 765 CURSEG_COLD_NODE, /* indirect node blocks */ 766 NO_CHECK_TYPE, 767 }; 768 769 struct flush_cmd { 770 struct completion wait; 771 struct llist_node llnode; 772 int ret; 773 }; 774 775 struct flush_cmd_control { 776 struct task_struct *f2fs_issue_flush; /* flush thread */ 777 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 778 atomic_t issued_flush; /* # of issued flushes */ 779 atomic_t issing_flush; /* # of issing flushes */ 780 struct llist_head issue_list; /* list for command issue */ 781 struct llist_node *dispatch_list; /* list for command dispatch */ 782 }; 783 784 struct f2fs_sm_info { 785 struct sit_info *sit_info; /* whole segment information */ 786 struct free_segmap_info *free_info; /* free segment information */ 787 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 788 struct curseg_info *curseg_array; /* active segment information */ 789 790 block_t seg0_blkaddr; /* block address of 0'th segment */ 791 block_t main_blkaddr; /* start block address of main area */ 792 block_t ssa_blkaddr; /* start block address of SSA area */ 793 794 unsigned int segment_count; /* total # of segments */ 795 unsigned int main_segments; /* # of segments in main area */ 796 unsigned int reserved_segments; /* # of reserved segments */ 797 unsigned int ovp_segments; /* # of overprovision segments */ 798 799 /* a threshold to reclaim prefree segments */ 800 unsigned int rec_prefree_segments; 801 802 /* for batched trimming */ 803 unsigned int trim_sections; /* # of sections to trim */ 804 805 struct list_head sit_entry_set; /* sit entry set list */ 806 807 unsigned int ipu_policy; /* in-place-update policy */ 808 unsigned int min_ipu_util; /* in-place-update threshold */ 809 unsigned int min_fsync_blocks; /* threshold for fsync */ 810 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 811 812 /* for flush command control */ 813 struct flush_cmd_control *fcc_info; 814 815 /* for discard command control */ 816 struct discard_cmd_control *dcc_info; 817 }; 818 819 /* 820 * For superblock 821 */ 822 /* 823 * COUNT_TYPE for monitoring 824 * 825 * f2fs monitors the number of several block types such as on-writeback, 826 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 827 */ 828 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 829 enum count_type { 830 F2FS_DIRTY_DENTS, 831 F2FS_DIRTY_DATA, 832 F2FS_DIRTY_NODES, 833 F2FS_DIRTY_META, 834 F2FS_INMEM_PAGES, 835 F2FS_DIRTY_IMETA, 836 F2FS_WB_CP_DATA, 837 F2FS_WB_DATA, 838 NR_COUNT_TYPE, 839 }; 840 841 /* 842 * The below are the page types of bios used in submit_bio(). 843 * The available types are: 844 * DATA User data pages. It operates as async mode. 845 * NODE Node pages. It operates as async mode. 846 * META FS metadata pages such as SIT, NAT, CP. 847 * NR_PAGE_TYPE The number of page types. 848 * META_FLUSH Make sure the previous pages are written 849 * with waiting the bio's completion 850 * ... Only can be used with META. 851 */ 852 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 853 enum page_type { 854 DATA, 855 NODE, 856 META, 857 NR_PAGE_TYPE, 858 META_FLUSH, 859 INMEM, /* the below types are used by tracepoints only. */ 860 INMEM_DROP, 861 INMEM_INVALIDATE, 862 INMEM_REVOKE, 863 IPU, 864 OPU, 865 }; 866 867 enum temp_type { 868 HOT = 0, /* must be zero for meta bio */ 869 WARM, 870 COLD, 871 NR_TEMP_TYPE, 872 }; 873 874 enum need_lock_type { 875 LOCK_REQ = 0, 876 LOCK_DONE, 877 LOCK_RETRY, 878 }; 879 880 enum iostat_type { 881 APP_DIRECT_IO, /* app direct IOs */ 882 APP_BUFFERED_IO, /* app buffered IOs */ 883 APP_WRITE_IO, /* app write IOs */ 884 APP_MAPPED_IO, /* app mapped IOs */ 885 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 886 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 887 FS_META_IO, /* meta IOs from kworker/reclaimer */ 888 FS_GC_DATA_IO, /* data IOs from forground gc */ 889 FS_GC_NODE_IO, /* node IOs from forground gc */ 890 FS_CP_DATA_IO, /* data IOs from checkpoint */ 891 FS_CP_NODE_IO, /* node IOs from checkpoint */ 892 FS_CP_META_IO, /* meta IOs from checkpoint */ 893 FS_DISCARD, /* discard */ 894 NR_IO_TYPE, 895 }; 896 897 struct f2fs_io_info { 898 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 899 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 900 enum temp_type temp; /* contains HOT/WARM/COLD */ 901 int op; /* contains REQ_OP_ */ 902 int op_flags; /* req_flag_bits */ 903 block_t new_blkaddr; /* new block address to be written */ 904 block_t old_blkaddr; /* old block address before Cow */ 905 struct page *page; /* page to be written */ 906 struct page *encrypted_page; /* encrypted page */ 907 struct list_head list; /* serialize IOs */ 908 bool submitted; /* indicate IO submission */ 909 int need_lock; /* indicate we need to lock cp_rwsem */ 910 bool in_list; /* indicate fio is in io_list */ 911 enum iostat_type io_type; /* io type */ 912 }; 913 914 #define is_read_io(rw) ((rw) == READ) 915 struct f2fs_bio_info { 916 struct f2fs_sb_info *sbi; /* f2fs superblock */ 917 struct bio *bio; /* bios to merge */ 918 sector_t last_block_in_bio; /* last block number */ 919 struct f2fs_io_info fio; /* store buffered io info. */ 920 struct rw_semaphore io_rwsem; /* blocking op for bio */ 921 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 922 struct list_head io_list; /* track fios */ 923 }; 924 925 #define FDEV(i) (sbi->devs[i]) 926 #define RDEV(i) (raw_super->devs[i]) 927 struct f2fs_dev_info { 928 struct block_device *bdev; 929 char path[MAX_PATH_LEN]; 930 unsigned int total_segments; 931 block_t start_blk; 932 block_t end_blk; 933 #ifdef CONFIG_BLK_DEV_ZONED 934 unsigned int nr_blkz; /* Total number of zones */ 935 u8 *blkz_type; /* Array of zones type */ 936 #endif 937 }; 938 939 enum inode_type { 940 DIR_INODE, /* for dirty dir inode */ 941 FILE_INODE, /* for dirty regular/symlink inode */ 942 DIRTY_META, /* for all dirtied inode metadata */ 943 NR_INODE_TYPE, 944 }; 945 946 /* for inner inode cache management */ 947 struct inode_management { 948 struct radix_tree_root ino_root; /* ino entry array */ 949 spinlock_t ino_lock; /* for ino entry lock */ 950 struct list_head ino_list; /* inode list head */ 951 unsigned long ino_num; /* number of entries */ 952 }; 953 954 /* For s_flag in struct f2fs_sb_info */ 955 enum { 956 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 957 SBI_IS_CLOSE, /* specify unmounting */ 958 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 959 SBI_POR_DOING, /* recovery is doing or not */ 960 SBI_NEED_SB_WRITE, /* need to recover superblock */ 961 SBI_NEED_CP, /* need to checkpoint */ 962 }; 963 964 enum { 965 CP_TIME, 966 REQ_TIME, 967 MAX_TIME, 968 }; 969 970 struct f2fs_sb_info { 971 struct super_block *sb; /* pointer to VFS super block */ 972 struct proc_dir_entry *s_proc; /* proc entry */ 973 struct f2fs_super_block *raw_super; /* raw super block pointer */ 974 int valid_super_block; /* valid super block no */ 975 unsigned long s_flag; /* flags for sbi */ 976 977 #ifdef CONFIG_BLK_DEV_ZONED 978 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 979 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 980 #endif 981 982 /* for node-related operations */ 983 struct f2fs_nm_info *nm_info; /* node manager */ 984 struct inode *node_inode; /* cache node blocks */ 985 986 /* for segment-related operations */ 987 struct f2fs_sm_info *sm_info; /* segment manager */ 988 989 /* for bio operations */ 990 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 991 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 992 /* bio ordering for NODE/DATA */ 993 int write_io_size_bits; /* Write IO size bits */ 994 mempool_t *write_io_dummy; /* Dummy pages */ 995 996 /* for checkpoint */ 997 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 998 int cur_cp_pack; /* remain current cp pack */ 999 spinlock_t cp_lock; /* for flag in ckpt */ 1000 struct inode *meta_inode; /* cache meta blocks */ 1001 struct mutex cp_mutex; /* checkpoint procedure lock */ 1002 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1003 struct rw_semaphore node_write; /* locking node writes */ 1004 struct rw_semaphore node_change; /* locking node change */ 1005 wait_queue_head_t cp_wait; 1006 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1007 long interval_time[MAX_TIME]; /* to store thresholds */ 1008 1009 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1010 1011 /* for orphan inode, use 0'th array */ 1012 unsigned int max_orphans; /* max orphan inodes */ 1013 1014 /* for inode management */ 1015 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1016 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1017 1018 /* for extent tree cache */ 1019 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1020 struct mutex extent_tree_lock; /* locking extent radix tree */ 1021 struct list_head extent_list; /* lru list for shrinker */ 1022 spinlock_t extent_lock; /* locking extent lru list */ 1023 atomic_t total_ext_tree; /* extent tree count */ 1024 struct list_head zombie_list; /* extent zombie tree list */ 1025 atomic_t total_zombie_tree; /* extent zombie tree count */ 1026 atomic_t total_ext_node; /* extent info count */ 1027 1028 /* basic filesystem units */ 1029 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1030 unsigned int log_blocksize; /* log2 block size */ 1031 unsigned int blocksize; /* block size */ 1032 unsigned int root_ino_num; /* root inode number*/ 1033 unsigned int node_ino_num; /* node inode number*/ 1034 unsigned int meta_ino_num; /* meta inode number*/ 1035 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1036 unsigned int blocks_per_seg; /* blocks per segment */ 1037 unsigned int segs_per_sec; /* segments per section */ 1038 unsigned int secs_per_zone; /* sections per zone */ 1039 unsigned int total_sections; /* total section count */ 1040 unsigned int total_node_count; /* total node block count */ 1041 unsigned int total_valid_node_count; /* valid node block count */ 1042 loff_t max_file_blocks; /* max block index of file */ 1043 int active_logs; /* # of active logs */ 1044 int dir_level; /* directory level */ 1045 1046 block_t user_block_count; /* # of user blocks */ 1047 block_t total_valid_block_count; /* # of valid blocks */ 1048 block_t discard_blks; /* discard command candidats */ 1049 block_t last_valid_block_count; /* for recovery */ 1050 block_t reserved_blocks; /* configurable reserved blocks */ 1051 1052 u32 s_next_generation; /* for NFS support */ 1053 1054 /* # of pages, see count_type */ 1055 atomic_t nr_pages[NR_COUNT_TYPE]; 1056 /* # of allocated blocks */ 1057 struct percpu_counter alloc_valid_block_count; 1058 1059 /* writeback control */ 1060 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1061 1062 /* valid inode count */ 1063 struct percpu_counter total_valid_inode_count; 1064 1065 struct f2fs_mount_info mount_opt; /* mount options */ 1066 1067 /* for cleaning operations */ 1068 struct mutex gc_mutex; /* mutex for GC */ 1069 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1070 unsigned int cur_victim_sec; /* current victim section num */ 1071 1072 /* threshold for converting bg victims for fg */ 1073 u64 fggc_threshold; 1074 1075 /* maximum # of trials to find a victim segment for SSR and GC */ 1076 unsigned int max_victim_search; 1077 1078 /* 1079 * for stat information. 1080 * one is for the LFS mode, and the other is for the SSR mode. 1081 */ 1082 #ifdef CONFIG_F2FS_STAT_FS 1083 struct f2fs_stat_info *stat_info; /* FS status information */ 1084 unsigned int segment_count[2]; /* # of allocated segments */ 1085 unsigned int block_count[2]; /* # of allocated blocks */ 1086 atomic_t inplace_count; /* # of inplace update */ 1087 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1088 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1089 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1090 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1091 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1092 atomic_t inline_inode; /* # of inline_data inodes */ 1093 atomic_t inline_dir; /* # of inline_dentry inodes */ 1094 atomic_t aw_cnt; /* # of atomic writes */ 1095 atomic_t vw_cnt; /* # of volatile writes */ 1096 atomic_t max_aw_cnt; /* max # of atomic writes */ 1097 atomic_t max_vw_cnt; /* max # of volatile writes */ 1098 int bg_gc; /* background gc calls */ 1099 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1100 #endif 1101 spinlock_t stat_lock; /* lock for stat operations */ 1102 1103 /* For app/fs IO statistics */ 1104 spinlock_t iostat_lock; 1105 unsigned long long write_iostat[NR_IO_TYPE]; 1106 bool iostat_enable; 1107 1108 /* For sysfs suppport */ 1109 struct kobject s_kobj; 1110 struct completion s_kobj_unregister; 1111 1112 /* For shrinker support */ 1113 struct list_head s_list; 1114 int s_ndevs; /* number of devices */ 1115 struct f2fs_dev_info *devs; /* for device list */ 1116 struct mutex umount_mutex; 1117 unsigned int shrinker_run_no; 1118 1119 /* For write statistics */ 1120 u64 sectors_written_start; 1121 u64 kbytes_written; 1122 1123 /* Reference to checksum algorithm driver via cryptoapi */ 1124 struct crypto_shash *s_chksum_driver; 1125 1126 /* Precomputed FS UUID checksum for seeding other checksums */ 1127 __u32 s_chksum_seed; 1128 1129 /* For fault injection */ 1130 #ifdef CONFIG_F2FS_FAULT_INJECTION 1131 struct f2fs_fault_info fault_info; 1132 #endif 1133 1134 #ifdef CONFIG_QUOTA 1135 /* Names of quota files with journalled quota */ 1136 char *s_qf_names[MAXQUOTAS]; 1137 int s_jquota_fmt; /* Format of quota to use */ 1138 #endif 1139 }; 1140 1141 #ifdef CONFIG_F2FS_FAULT_INJECTION 1142 #define f2fs_show_injection_info(type) \ 1143 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1144 KERN_INFO, fault_name[type], \ 1145 __func__, __builtin_return_address(0)) 1146 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1147 { 1148 struct f2fs_fault_info *ffi = &sbi->fault_info; 1149 1150 if (!ffi->inject_rate) 1151 return false; 1152 1153 if (!IS_FAULT_SET(ffi, type)) 1154 return false; 1155 1156 atomic_inc(&ffi->inject_ops); 1157 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1158 atomic_set(&ffi->inject_ops, 0); 1159 return true; 1160 } 1161 return false; 1162 } 1163 #endif 1164 1165 /* For write statistics. Suppose sector size is 512 bytes, 1166 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1167 */ 1168 #define BD_PART_WRITTEN(s) \ 1169 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1170 (s)->sectors_written_start) >> 1) 1171 1172 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1173 { 1174 sbi->last_time[type] = jiffies; 1175 } 1176 1177 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1178 { 1179 struct timespec ts = {sbi->interval_time[type], 0}; 1180 unsigned long interval = timespec_to_jiffies(&ts); 1181 1182 return time_after(jiffies, sbi->last_time[type] + interval); 1183 } 1184 1185 static inline bool is_idle(struct f2fs_sb_info *sbi) 1186 { 1187 struct block_device *bdev = sbi->sb->s_bdev; 1188 struct request_queue *q = bdev_get_queue(bdev); 1189 struct request_list *rl = &q->root_rl; 1190 1191 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1192 return 0; 1193 1194 return f2fs_time_over(sbi, REQ_TIME); 1195 } 1196 1197 /* 1198 * Inline functions 1199 */ 1200 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1201 unsigned int length) 1202 { 1203 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 1204 u32 *ctx = (u32 *)shash_desc_ctx(shash); 1205 u32 retval; 1206 int err; 1207 1208 shash->tfm = sbi->s_chksum_driver; 1209 shash->flags = 0; 1210 *ctx = F2FS_SUPER_MAGIC; 1211 1212 err = crypto_shash_update(shash, address, length); 1213 BUG_ON(err); 1214 1215 retval = *ctx; 1216 barrier_data(ctx); 1217 return retval; 1218 } 1219 1220 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1221 void *buf, size_t buf_size) 1222 { 1223 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1224 } 1225 1226 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1227 const void *address, unsigned int length) 1228 { 1229 struct { 1230 struct shash_desc shash; 1231 char ctx[4]; 1232 } desc; 1233 int err; 1234 1235 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1236 1237 desc.shash.tfm = sbi->s_chksum_driver; 1238 desc.shash.flags = 0; 1239 *(u32 *)desc.ctx = crc; 1240 1241 err = crypto_shash_update(&desc.shash, address, length); 1242 BUG_ON(err); 1243 1244 return *(u32 *)desc.ctx; 1245 } 1246 1247 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1248 { 1249 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1250 } 1251 1252 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1253 { 1254 return sb->s_fs_info; 1255 } 1256 1257 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1258 { 1259 return F2FS_SB(inode->i_sb); 1260 } 1261 1262 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1263 { 1264 return F2FS_I_SB(mapping->host); 1265 } 1266 1267 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1268 { 1269 return F2FS_M_SB(page->mapping); 1270 } 1271 1272 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1273 { 1274 return (struct f2fs_super_block *)(sbi->raw_super); 1275 } 1276 1277 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1278 { 1279 return (struct f2fs_checkpoint *)(sbi->ckpt); 1280 } 1281 1282 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1283 { 1284 return (struct f2fs_node *)page_address(page); 1285 } 1286 1287 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1288 { 1289 return &((struct f2fs_node *)page_address(page))->i; 1290 } 1291 1292 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1293 { 1294 return (struct f2fs_nm_info *)(sbi->nm_info); 1295 } 1296 1297 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1298 { 1299 return (struct f2fs_sm_info *)(sbi->sm_info); 1300 } 1301 1302 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1303 { 1304 return (struct sit_info *)(SM_I(sbi)->sit_info); 1305 } 1306 1307 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1308 { 1309 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1310 } 1311 1312 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1313 { 1314 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1315 } 1316 1317 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1318 { 1319 return sbi->meta_inode->i_mapping; 1320 } 1321 1322 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1323 { 1324 return sbi->node_inode->i_mapping; 1325 } 1326 1327 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1328 { 1329 return test_bit(type, &sbi->s_flag); 1330 } 1331 1332 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1333 { 1334 set_bit(type, &sbi->s_flag); 1335 } 1336 1337 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1338 { 1339 clear_bit(type, &sbi->s_flag); 1340 } 1341 1342 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1343 { 1344 return le64_to_cpu(cp->checkpoint_ver); 1345 } 1346 1347 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1348 { 1349 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1350 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1351 } 1352 1353 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1354 { 1355 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1356 1357 return ckpt_flags & f; 1358 } 1359 1360 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1361 { 1362 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1363 } 1364 1365 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1366 { 1367 unsigned int ckpt_flags; 1368 1369 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1370 ckpt_flags |= f; 1371 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1372 } 1373 1374 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1375 { 1376 unsigned long flags; 1377 1378 spin_lock_irqsave(&sbi->cp_lock, flags); 1379 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1380 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1381 } 1382 1383 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1384 { 1385 unsigned int ckpt_flags; 1386 1387 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1388 ckpt_flags &= (~f); 1389 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1390 } 1391 1392 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1393 { 1394 unsigned long flags; 1395 1396 spin_lock_irqsave(&sbi->cp_lock, flags); 1397 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1398 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1399 } 1400 1401 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1402 { 1403 unsigned long flags; 1404 1405 set_sbi_flag(sbi, SBI_NEED_FSCK); 1406 1407 if (lock) 1408 spin_lock_irqsave(&sbi->cp_lock, flags); 1409 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1410 kfree(NM_I(sbi)->nat_bits); 1411 NM_I(sbi)->nat_bits = NULL; 1412 if (lock) 1413 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1414 } 1415 1416 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1417 struct cp_control *cpc) 1418 { 1419 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1420 1421 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1422 } 1423 1424 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1425 { 1426 down_read(&sbi->cp_rwsem); 1427 } 1428 1429 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1430 { 1431 return down_read_trylock(&sbi->cp_rwsem); 1432 } 1433 1434 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1435 { 1436 up_read(&sbi->cp_rwsem); 1437 } 1438 1439 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1440 { 1441 down_write(&sbi->cp_rwsem); 1442 } 1443 1444 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1445 { 1446 up_write(&sbi->cp_rwsem); 1447 } 1448 1449 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1450 { 1451 int reason = CP_SYNC; 1452 1453 if (test_opt(sbi, FASTBOOT)) 1454 reason = CP_FASTBOOT; 1455 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1456 reason = CP_UMOUNT; 1457 return reason; 1458 } 1459 1460 static inline bool __remain_node_summaries(int reason) 1461 { 1462 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1463 } 1464 1465 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1466 { 1467 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1468 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1469 } 1470 1471 /* 1472 * Check whether the given nid is within node id range. 1473 */ 1474 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1475 { 1476 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1477 return -EINVAL; 1478 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1479 return -EINVAL; 1480 return 0; 1481 } 1482 1483 /* 1484 * Check whether the inode has blocks or not 1485 */ 1486 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1487 { 1488 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1489 1490 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1491 } 1492 1493 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1494 { 1495 return ofs == XATTR_NODE_OFFSET; 1496 } 1497 1498 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1499 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1500 struct inode *inode, blkcnt_t *count) 1501 { 1502 blkcnt_t diff = 0, release = 0; 1503 block_t avail_user_block_count; 1504 int ret; 1505 1506 ret = dquot_reserve_block(inode, *count); 1507 if (ret) 1508 return ret; 1509 1510 #ifdef CONFIG_F2FS_FAULT_INJECTION 1511 if (time_to_inject(sbi, FAULT_BLOCK)) { 1512 f2fs_show_injection_info(FAULT_BLOCK); 1513 release = *count; 1514 goto enospc; 1515 } 1516 #endif 1517 /* 1518 * let's increase this in prior to actual block count change in order 1519 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1520 */ 1521 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1522 1523 spin_lock(&sbi->stat_lock); 1524 sbi->total_valid_block_count += (block_t)(*count); 1525 avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks; 1526 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1527 diff = sbi->total_valid_block_count - avail_user_block_count; 1528 *count -= diff; 1529 release = diff; 1530 sbi->total_valid_block_count = avail_user_block_count; 1531 if (!*count) { 1532 spin_unlock(&sbi->stat_lock); 1533 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1534 goto enospc; 1535 } 1536 } 1537 spin_unlock(&sbi->stat_lock); 1538 1539 if (release) 1540 dquot_release_reservation_block(inode, release); 1541 f2fs_i_blocks_write(inode, *count, true, true); 1542 return 0; 1543 1544 enospc: 1545 dquot_release_reservation_block(inode, release); 1546 return -ENOSPC; 1547 } 1548 1549 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1550 struct inode *inode, 1551 block_t count) 1552 { 1553 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1554 1555 spin_lock(&sbi->stat_lock); 1556 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1557 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1558 sbi->total_valid_block_count -= (block_t)count; 1559 spin_unlock(&sbi->stat_lock); 1560 f2fs_i_blocks_write(inode, count, false, true); 1561 } 1562 1563 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1564 { 1565 atomic_inc(&sbi->nr_pages[count_type]); 1566 1567 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1568 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1569 return; 1570 1571 set_sbi_flag(sbi, SBI_IS_DIRTY); 1572 } 1573 1574 static inline void inode_inc_dirty_pages(struct inode *inode) 1575 { 1576 atomic_inc(&F2FS_I(inode)->dirty_pages); 1577 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1578 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1579 } 1580 1581 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1582 { 1583 atomic_dec(&sbi->nr_pages[count_type]); 1584 } 1585 1586 static inline void inode_dec_dirty_pages(struct inode *inode) 1587 { 1588 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1589 !S_ISLNK(inode->i_mode)) 1590 return; 1591 1592 atomic_dec(&F2FS_I(inode)->dirty_pages); 1593 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1594 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1595 } 1596 1597 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1598 { 1599 return atomic_read(&sbi->nr_pages[count_type]); 1600 } 1601 1602 static inline int get_dirty_pages(struct inode *inode) 1603 { 1604 return atomic_read(&F2FS_I(inode)->dirty_pages); 1605 } 1606 1607 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1608 { 1609 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1610 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1611 sbi->log_blocks_per_seg; 1612 1613 return segs / sbi->segs_per_sec; 1614 } 1615 1616 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1617 { 1618 return sbi->total_valid_block_count; 1619 } 1620 1621 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1622 { 1623 return sbi->discard_blks; 1624 } 1625 1626 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1627 { 1628 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1629 1630 /* return NAT or SIT bitmap */ 1631 if (flag == NAT_BITMAP) 1632 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1633 else if (flag == SIT_BITMAP) 1634 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1635 1636 return 0; 1637 } 1638 1639 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1640 { 1641 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1642 } 1643 1644 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1645 { 1646 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1647 int offset; 1648 1649 if (__cp_payload(sbi) > 0) { 1650 if (flag == NAT_BITMAP) 1651 return &ckpt->sit_nat_version_bitmap; 1652 else 1653 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1654 } else { 1655 offset = (flag == NAT_BITMAP) ? 1656 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1657 return &ckpt->sit_nat_version_bitmap + offset; 1658 } 1659 } 1660 1661 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1662 { 1663 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1664 1665 if (sbi->cur_cp_pack == 2) 1666 start_addr += sbi->blocks_per_seg; 1667 return start_addr; 1668 } 1669 1670 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1671 { 1672 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1673 1674 if (sbi->cur_cp_pack == 1) 1675 start_addr += sbi->blocks_per_seg; 1676 return start_addr; 1677 } 1678 1679 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1680 { 1681 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1682 } 1683 1684 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1685 { 1686 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1687 } 1688 1689 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1690 struct inode *inode, bool is_inode) 1691 { 1692 block_t valid_block_count; 1693 unsigned int valid_node_count; 1694 bool quota = inode && !is_inode; 1695 1696 if (quota) { 1697 int ret = dquot_reserve_block(inode, 1); 1698 if (ret) 1699 return ret; 1700 } 1701 1702 spin_lock(&sbi->stat_lock); 1703 1704 valid_block_count = sbi->total_valid_block_count + 1; 1705 if (unlikely(valid_block_count + sbi->reserved_blocks > 1706 sbi->user_block_count)) { 1707 spin_unlock(&sbi->stat_lock); 1708 goto enospc; 1709 } 1710 1711 valid_node_count = sbi->total_valid_node_count + 1; 1712 if (unlikely(valid_node_count > sbi->total_node_count)) { 1713 spin_unlock(&sbi->stat_lock); 1714 goto enospc; 1715 } 1716 1717 sbi->total_valid_node_count++; 1718 sbi->total_valid_block_count++; 1719 spin_unlock(&sbi->stat_lock); 1720 1721 if (inode) { 1722 if (is_inode) 1723 f2fs_mark_inode_dirty_sync(inode, true); 1724 else 1725 f2fs_i_blocks_write(inode, 1, true, true); 1726 } 1727 1728 percpu_counter_inc(&sbi->alloc_valid_block_count); 1729 return 0; 1730 1731 enospc: 1732 if (quota) 1733 dquot_release_reservation_block(inode, 1); 1734 return -ENOSPC; 1735 } 1736 1737 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1738 struct inode *inode, bool is_inode) 1739 { 1740 spin_lock(&sbi->stat_lock); 1741 1742 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1743 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1744 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1745 1746 sbi->total_valid_node_count--; 1747 sbi->total_valid_block_count--; 1748 1749 spin_unlock(&sbi->stat_lock); 1750 1751 if (!is_inode) 1752 f2fs_i_blocks_write(inode, 1, false, true); 1753 } 1754 1755 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1756 { 1757 return sbi->total_valid_node_count; 1758 } 1759 1760 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1761 { 1762 percpu_counter_inc(&sbi->total_valid_inode_count); 1763 } 1764 1765 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1766 { 1767 percpu_counter_dec(&sbi->total_valid_inode_count); 1768 } 1769 1770 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1771 { 1772 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1773 } 1774 1775 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1776 pgoff_t index, bool for_write) 1777 { 1778 #ifdef CONFIG_F2FS_FAULT_INJECTION 1779 struct page *page = find_lock_page(mapping, index); 1780 1781 if (page) 1782 return page; 1783 1784 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1785 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1786 return NULL; 1787 } 1788 #endif 1789 if (!for_write) 1790 return grab_cache_page(mapping, index); 1791 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1792 } 1793 1794 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1795 { 1796 char *src_kaddr = kmap(src); 1797 char *dst_kaddr = kmap(dst); 1798 1799 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1800 kunmap(dst); 1801 kunmap(src); 1802 } 1803 1804 static inline void f2fs_put_page(struct page *page, int unlock) 1805 { 1806 if (!page) 1807 return; 1808 1809 if (unlock) { 1810 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1811 unlock_page(page); 1812 } 1813 put_page(page); 1814 } 1815 1816 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1817 { 1818 if (dn->node_page) 1819 f2fs_put_page(dn->node_page, 1); 1820 if (dn->inode_page && dn->node_page != dn->inode_page) 1821 f2fs_put_page(dn->inode_page, 0); 1822 dn->node_page = NULL; 1823 dn->inode_page = NULL; 1824 } 1825 1826 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1827 size_t size) 1828 { 1829 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1830 } 1831 1832 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1833 gfp_t flags) 1834 { 1835 void *entry; 1836 1837 entry = kmem_cache_alloc(cachep, flags); 1838 if (!entry) 1839 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1840 return entry; 1841 } 1842 1843 static inline struct bio *f2fs_bio_alloc(int npages) 1844 { 1845 struct bio *bio; 1846 1847 /* No failure on bio allocation */ 1848 bio = bio_alloc(GFP_NOIO, npages); 1849 if (!bio) 1850 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1851 return bio; 1852 } 1853 1854 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1855 unsigned long index, void *item) 1856 { 1857 while (radix_tree_insert(root, index, item)) 1858 cond_resched(); 1859 } 1860 1861 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1862 1863 static inline bool IS_INODE(struct page *page) 1864 { 1865 struct f2fs_node *p = F2FS_NODE(page); 1866 1867 return RAW_IS_INODE(p); 1868 } 1869 1870 static inline int offset_in_addr(struct f2fs_inode *i) 1871 { 1872 return (i->i_inline & F2FS_EXTRA_ATTR) ? 1873 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 1874 } 1875 1876 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1877 { 1878 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1879 } 1880 1881 static inline int f2fs_has_extra_attr(struct inode *inode); 1882 static inline block_t datablock_addr(struct inode *inode, 1883 struct page *node_page, unsigned int offset) 1884 { 1885 struct f2fs_node *raw_node; 1886 __le32 *addr_array; 1887 int base = 0; 1888 bool is_inode = IS_INODE(node_page); 1889 1890 raw_node = F2FS_NODE(node_page); 1891 1892 /* from GC path only */ 1893 if (!inode) { 1894 if (is_inode) 1895 base = offset_in_addr(&raw_node->i); 1896 } else if (f2fs_has_extra_attr(inode) && is_inode) { 1897 base = get_extra_isize(inode); 1898 } 1899 1900 addr_array = blkaddr_in_node(raw_node); 1901 return le32_to_cpu(addr_array[base + offset]); 1902 } 1903 1904 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1905 { 1906 int mask; 1907 1908 addr += (nr >> 3); 1909 mask = 1 << (7 - (nr & 0x07)); 1910 return mask & *addr; 1911 } 1912 1913 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1914 { 1915 int mask; 1916 1917 addr += (nr >> 3); 1918 mask = 1 << (7 - (nr & 0x07)); 1919 *addr |= mask; 1920 } 1921 1922 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1923 { 1924 int mask; 1925 1926 addr += (nr >> 3); 1927 mask = 1 << (7 - (nr & 0x07)); 1928 *addr &= ~mask; 1929 } 1930 1931 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1932 { 1933 int mask; 1934 int ret; 1935 1936 addr += (nr >> 3); 1937 mask = 1 << (7 - (nr & 0x07)); 1938 ret = mask & *addr; 1939 *addr |= mask; 1940 return ret; 1941 } 1942 1943 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1944 { 1945 int mask; 1946 int ret; 1947 1948 addr += (nr >> 3); 1949 mask = 1 << (7 - (nr & 0x07)); 1950 ret = mask & *addr; 1951 *addr &= ~mask; 1952 return ret; 1953 } 1954 1955 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1956 { 1957 int mask; 1958 1959 addr += (nr >> 3); 1960 mask = 1 << (7 - (nr & 0x07)); 1961 *addr ^= mask; 1962 } 1963 1964 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 1965 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 1966 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL) 1967 1968 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 1969 { 1970 if (S_ISDIR(mode)) 1971 return flags; 1972 else if (S_ISREG(mode)) 1973 return flags & F2FS_REG_FLMASK; 1974 else 1975 return flags & F2FS_OTHER_FLMASK; 1976 } 1977 1978 /* used for f2fs_inode_info->flags */ 1979 enum { 1980 FI_NEW_INODE, /* indicate newly allocated inode */ 1981 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1982 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1983 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1984 FI_INC_LINK, /* need to increment i_nlink */ 1985 FI_ACL_MODE, /* indicate acl mode */ 1986 FI_NO_ALLOC, /* should not allocate any blocks */ 1987 FI_FREE_NID, /* free allocated nide */ 1988 FI_NO_EXTENT, /* not to use the extent cache */ 1989 FI_INLINE_XATTR, /* used for inline xattr */ 1990 FI_INLINE_DATA, /* used for inline data*/ 1991 FI_INLINE_DENTRY, /* used for inline dentry */ 1992 FI_APPEND_WRITE, /* inode has appended data */ 1993 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1994 FI_NEED_IPU, /* used for ipu per file */ 1995 FI_ATOMIC_FILE, /* indicate atomic file */ 1996 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 1997 FI_VOLATILE_FILE, /* indicate volatile file */ 1998 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1999 FI_DROP_CACHE, /* drop dirty page cache */ 2000 FI_DATA_EXIST, /* indicate data exists */ 2001 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2002 FI_DO_DEFRAG, /* indicate defragment is running */ 2003 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2004 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2005 FI_HOT_DATA, /* indicate file is hot */ 2006 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2007 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2008 }; 2009 2010 static inline void __mark_inode_dirty_flag(struct inode *inode, 2011 int flag, bool set) 2012 { 2013 switch (flag) { 2014 case FI_INLINE_XATTR: 2015 case FI_INLINE_DATA: 2016 case FI_INLINE_DENTRY: 2017 if (set) 2018 return; 2019 case FI_DATA_EXIST: 2020 case FI_INLINE_DOTS: 2021 f2fs_mark_inode_dirty_sync(inode, true); 2022 } 2023 } 2024 2025 static inline void set_inode_flag(struct inode *inode, int flag) 2026 { 2027 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2028 set_bit(flag, &F2FS_I(inode)->flags); 2029 __mark_inode_dirty_flag(inode, flag, true); 2030 } 2031 2032 static inline int is_inode_flag_set(struct inode *inode, int flag) 2033 { 2034 return test_bit(flag, &F2FS_I(inode)->flags); 2035 } 2036 2037 static inline void clear_inode_flag(struct inode *inode, int flag) 2038 { 2039 if (test_bit(flag, &F2FS_I(inode)->flags)) 2040 clear_bit(flag, &F2FS_I(inode)->flags); 2041 __mark_inode_dirty_flag(inode, flag, false); 2042 } 2043 2044 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2045 { 2046 F2FS_I(inode)->i_acl_mode = mode; 2047 set_inode_flag(inode, FI_ACL_MODE); 2048 f2fs_mark_inode_dirty_sync(inode, false); 2049 } 2050 2051 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2052 { 2053 if (inc) 2054 inc_nlink(inode); 2055 else 2056 drop_nlink(inode); 2057 f2fs_mark_inode_dirty_sync(inode, true); 2058 } 2059 2060 static inline void f2fs_i_blocks_write(struct inode *inode, 2061 block_t diff, bool add, bool claim) 2062 { 2063 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2064 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2065 2066 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2067 if (add) { 2068 if (claim) 2069 dquot_claim_block(inode, diff); 2070 else 2071 dquot_alloc_block_nofail(inode, diff); 2072 } else { 2073 dquot_free_block(inode, diff); 2074 } 2075 2076 f2fs_mark_inode_dirty_sync(inode, true); 2077 if (clean || recover) 2078 set_inode_flag(inode, FI_AUTO_RECOVER); 2079 } 2080 2081 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2082 { 2083 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2084 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2085 2086 if (i_size_read(inode) == i_size) 2087 return; 2088 2089 i_size_write(inode, i_size); 2090 f2fs_mark_inode_dirty_sync(inode, true); 2091 if (clean || recover) 2092 set_inode_flag(inode, FI_AUTO_RECOVER); 2093 } 2094 2095 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2096 { 2097 F2FS_I(inode)->i_current_depth = depth; 2098 f2fs_mark_inode_dirty_sync(inode, true); 2099 } 2100 2101 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2102 { 2103 F2FS_I(inode)->i_xattr_nid = xnid; 2104 f2fs_mark_inode_dirty_sync(inode, true); 2105 } 2106 2107 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2108 { 2109 F2FS_I(inode)->i_pino = pino; 2110 f2fs_mark_inode_dirty_sync(inode, true); 2111 } 2112 2113 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2114 { 2115 struct f2fs_inode_info *fi = F2FS_I(inode); 2116 2117 if (ri->i_inline & F2FS_INLINE_XATTR) 2118 set_bit(FI_INLINE_XATTR, &fi->flags); 2119 if (ri->i_inline & F2FS_INLINE_DATA) 2120 set_bit(FI_INLINE_DATA, &fi->flags); 2121 if (ri->i_inline & F2FS_INLINE_DENTRY) 2122 set_bit(FI_INLINE_DENTRY, &fi->flags); 2123 if (ri->i_inline & F2FS_DATA_EXIST) 2124 set_bit(FI_DATA_EXIST, &fi->flags); 2125 if (ri->i_inline & F2FS_INLINE_DOTS) 2126 set_bit(FI_INLINE_DOTS, &fi->flags); 2127 if (ri->i_inline & F2FS_EXTRA_ATTR) 2128 set_bit(FI_EXTRA_ATTR, &fi->flags); 2129 } 2130 2131 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2132 { 2133 ri->i_inline = 0; 2134 2135 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2136 ri->i_inline |= F2FS_INLINE_XATTR; 2137 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2138 ri->i_inline |= F2FS_INLINE_DATA; 2139 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2140 ri->i_inline |= F2FS_INLINE_DENTRY; 2141 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2142 ri->i_inline |= F2FS_DATA_EXIST; 2143 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2144 ri->i_inline |= F2FS_INLINE_DOTS; 2145 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2146 ri->i_inline |= F2FS_EXTRA_ATTR; 2147 } 2148 2149 static inline int f2fs_has_extra_attr(struct inode *inode) 2150 { 2151 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2152 } 2153 2154 static inline int f2fs_has_inline_xattr(struct inode *inode) 2155 { 2156 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2157 } 2158 2159 static inline unsigned int addrs_per_inode(struct inode *inode) 2160 { 2161 if (f2fs_has_inline_xattr(inode)) 2162 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS; 2163 return CUR_ADDRS_PER_INODE(inode); 2164 } 2165 2166 static inline void *inline_xattr_addr(struct page *page) 2167 { 2168 struct f2fs_inode *ri = F2FS_INODE(page); 2169 2170 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2171 F2FS_INLINE_XATTR_ADDRS]); 2172 } 2173 2174 static inline int inline_xattr_size(struct inode *inode) 2175 { 2176 if (f2fs_has_inline_xattr(inode)) 2177 return F2FS_INLINE_XATTR_ADDRS << 2; 2178 else 2179 return 0; 2180 } 2181 2182 static inline int f2fs_has_inline_data(struct inode *inode) 2183 { 2184 return is_inode_flag_set(inode, FI_INLINE_DATA); 2185 } 2186 2187 static inline int f2fs_exist_data(struct inode *inode) 2188 { 2189 return is_inode_flag_set(inode, FI_DATA_EXIST); 2190 } 2191 2192 static inline int f2fs_has_inline_dots(struct inode *inode) 2193 { 2194 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2195 } 2196 2197 static inline bool f2fs_is_atomic_file(struct inode *inode) 2198 { 2199 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2200 } 2201 2202 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2203 { 2204 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2205 } 2206 2207 static inline bool f2fs_is_volatile_file(struct inode *inode) 2208 { 2209 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2210 } 2211 2212 static inline bool f2fs_is_first_block_written(struct inode *inode) 2213 { 2214 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2215 } 2216 2217 static inline bool f2fs_is_drop_cache(struct inode *inode) 2218 { 2219 return is_inode_flag_set(inode, FI_DROP_CACHE); 2220 } 2221 2222 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2223 { 2224 struct f2fs_inode *ri = F2FS_INODE(page); 2225 int extra_size = get_extra_isize(inode); 2226 2227 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2228 } 2229 2230 static inline int f2fs_has_inline_dentry(struct inode *inode) 2231 { 2232 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2233 } 2234 2235 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 2236 { 2237 if (!f2fs_has_inline_dentry(dir)) 2238 kunmap(page); 2239 } 2240 2241 static inline int is_file(struct inode *inode, int type) 2242 { 2243 return F2FS_I(inode)->i_advise & type; 2244 } 2245 2246 static inline void set_file(struct inode *inode, int type) 2247 { 2248 F2FS_I(inode)->i_advise |= type; 2249 f2fs_mark_inode_dirty_sync(inode, true); 2250 } 2251 2252 static inline void clear_file(struct inode *inode, int type) 2253 { 2254 F2FS_I(inode)->i_advise &= ~type; 2255 f2fs_mark_inode_dirty_sync(inode, true); 2256 } 2257 2258 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2259 { 2260 if (dsync) { 2261 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2262 bool ret; 2263 2264 spin_lock(&sbi->inode_lock[DIRTY_META]); 2265 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2266 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2267 return ret; 2268 } 2269 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2270 file_keep_isize(inode) || 2271 i_size_read(inode) & PAGE_MASK) 2272 return false; 2273 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 2274 } 2275 2276 static inline int f2fs_readonly(struct super_block *sb) 2277 { 2278 return sb->s_flags & MS_RDONLY; 2279 } 2280 2281 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2282 { 2283 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2284 } 2285 2286 static inline bool is_dot_dotdot(const struct qstr *str) 2287 { 2288 if (str->len == 1 && str->name[0] == '.') 2289 return true; 2290 2291 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2292 return true; 2293 2294 return false; 2295 } 2296 2297 static inline bool f2fs_may_extent_tree(struct inode *inode) 2298 { 2299 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2300 is_inode_flag_set(inode, FI_NO_EXTENT)) 2301 return false; 2302 2303 return S_ISREG(inode->i_mode); 2304 } 2305 2306 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2307 size_t size, gfp_t flags) 2308 { 2309 #ifdef CONFIG_F2FS_FAULT_INJECTION 2310 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2311 f2fs_show_injection_info(FAULT_KMALLOC); 2312 return NULL; 2313 } 2314 #endif 2315 return kmalloc(size, flags); 2316 } 2317 2318 static inline int get_extra_isize(struct inode *inode) 2319 { 2320 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2321 } 2322 2323 #define get_inode_mode(i) \ 2324 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2325 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2326 2327 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2328 (offsetof(struct f2fs_inode, i_extra_end) - \ 2329 offsetof(struct f2fs_inode, i_extra_isize)) \ 2330 2331 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2332 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2333 ((offsetof(typeof(*f2fs_inode), field) + \ 2334 sizeof((f2fs_inode)->field)) \ 2335 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2336 2337 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2338 { 2339 int i; 2340 2341 spin_lock(&sbi->iostat_lock); 2342 for (i = 0; i < NR_IO_TYPE; i++) 2343 sbi->write_iostat[i] = 0; 2344 spin_unlock(&sbi->iostat_lock); 2345 } 2346 2347 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2348 enum iostat_type type, unsigned long long io_bytes) 2349 { 2350 if (!sbi->iostat_enable) 2351 return; 2352 spin_lock(&sbi->iostat_lock); 2353 sbi->write_iostat[type] += io_bytes; 2354 2355 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2356 sbi->write_iostat[APP_BUFFERED_IO] = 2357 sbi->write_iostat[APP_WRITE_IO] - 2358 sbi->write_iostat[APP_DIRECT_IO]; 2359 spin_unlock(&sbi->iostat_lock); 2360 } 2361 2362 /* 2363 * file.c 2364 */ 2365 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2366 void truncate_data_blocks(struct dnode_of_data *dn); 2367 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2368 int f2fs_truncate(struct inode *inode); 2369 int f2fs_getattr(const struct path *path, struct kstat *stat, 2370 u32 request_mask, unsigned int flags); 2371 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2372 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2373 int truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2374 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2375 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2376 2377 /* 2378 * inode.c 2379 */ 2380 void f2fs_set_inode_flags(struct inode *inode); 2381 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2382 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2383 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2384 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2385 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2386 int update_inode(struct inode *inode, struct page *node_page); 2387 int update_inode_page(struct inode *inode); 2388 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2389 void f2fs_evict_inode(struct inode *inode); 2390 void handle_failed_inode(struct inode *inode); 2391 2392 /* 2393 * namei.c 2394 */ 2395 struct dentry *f2fs_get_parent(struct dentry *child); 2396 2397 /* 2398 * dir.c 2399 */ 2400 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2401 unsigned char get_de_type(struct f2fs_dir_entry *de); 2402 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2403 f2fs_hash_t namehash, int *max_slots, 2404 struct f2fs_dentry_ptr *d); 2405 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2406 unsigned int start_pos, struct fscrypt_str *fstr); 2407 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2408 struct f2fs_dentry_ptr *d); 2409 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2410 const struct qstr *new_name, 2411 const struct qstr *orig_name, struct page *dpage); 2412 void update_parent_metadata(struct inode *dir, struct inode *inode, 2413 unsigned int current_depth); 2414 int room_for_filename(const void *bitmap, int slots, int max_slots); 2415 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2416 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2417 struct fscrypt_name *fname, struct page **res_page); 2418 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2419 const struct qstr *child, struct page **res_page); 2420 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2421 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2422 struct page **page); 2423 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2424 struct page *page, struct inode *inode); 2425 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2426 const struct qstr *name, f2fs_hash_t name_hash, 2427 unsigned int bit_pos); 2428 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2429 const struct qstr *orig_name, 2430 struct inode *inode, nid_t ino, umode_t mode); 2431 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2432 struct inode *inode, nid_t ino, umode_t mode); 2433 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2434 struct inode *inode, nid_t ino, umode_t mode); 2435 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2436 struct inode *dir, struct inode *inode); 2437 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2438 bool f2fs_empty_dir(struct inode *dir); 2439 2440 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2441 { 2442 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2443 inode, inode->i_ino, inode->i_mode); 2444 } 2445 2446 /* 2447 * super.c 2448 */ 2449 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2450 void f2fs_inode_synced(struct inode *inode); 2451 void f2fs_enable_quota_files(struct f2fs_sb_info *sbi); 2452 void f2fs_quota_off_umount(struct super_block *sb); 2453 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2454 int f2fs_sync_fs(struct super_block *sb, int sync); 2455 extern __printf(3, 4) 2456 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2457 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2458 2459 /* 2460 * hash.c 2461 */ 2462 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2463 struct fscrypt_name *fname); 2464 2465 /* 2466 * node.c 2467 */ 2468 struct dnode_of_data; 2469 struct node_info; 2470 2471 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2472 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2473 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2474 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2475 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2476 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2477 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2478 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2479 int truncate_xattr_node(struct inode *inode, struct page *page); 2480 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2481 int remove_inode_page(struct inode *inode); 2482 struct page *new_inode_page(struct inode *inode); 2483 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2484 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2485 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2486 struct page *get_node_page_ra(struct page *parent, int start); 2487 void move_node_page(struct page *node_page, int gc_type); 2488 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2489 struct writeback_control *wbc, bool atomic); 2490 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 2491 bool do_balance, enum iostat_type io_type); 2492 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2493 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2494 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2495 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2496 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2497 void recover_inline_xattr(struct inode *inode, struct page *page); 2498 int recover_xattr_data(struct inode *inode, struct page *page, 2499 block_t blkaddr); 2500 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2501 int restore_node_summary(struct f2fs_sb_info *sbi, 2502 unsigned int segno, struct f2fs_summary_block *sum); 2503 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2504 int build_node_manager(struct f2fs_sb_info *sbi); 2505 void destroy_node_manager(struct f2fs_sb_info *sbi); 2506 int __init create_node_manager_caches(void); 2507 void destroy_node_manager_caches(void); 2508 2509 /* 2510 * segment.c 2511 */ 2512 bool need_SSR(struct f2fs_sb_info *sbi); 2513 void register_inmem_page(struct inode *inode, struct page *page); 2514 void drop_inmem_pages(struct inode *inode); 2515 void drop_inmem_page(struct inode *inode, struct page *page); 2516 int commit_inmem_pages(struct inode *inode); 2517 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2518 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2519 int f2fs_issue_flush(struct f2fs_sb_info *sbi); 2520 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2521 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2522 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2523 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2524 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new); 2525 void stop_discard_thread(struct f2fs_sb_info *sbi); 2526 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi, bool umount); 2527 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2528 void release_discard_addrs(struct f2fs_sb_info *sbi); 2529 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2530 void allocate_new_segments(struct f2fs_sb_info *sbi); 2531 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2532 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2533 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2534 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2535 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2536 enum iostat_type io_type); 2537 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2538 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2539 int rewrite_data_page(struct f2fs_io_info *fio); 2540 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2541 block_t old_blkaddr, block_t new_blkaddr, 2542 bool recover_curseg, bool recover_newaddr); 2543 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2544 block_t old_addr, block_t new_addr, 2545 unsigned char version, bool recover_curseg, 2546 bool recover_newaddr); 2547 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2548 block_t old_blkaddr, block_t *new_blkaddr, 2549 struct f2fs_summary *sum, int type, 2550 struct f2fs_io_info *fio, bool add_list); 2551 void f2fs_wait_on_page_writeback(struct page *page, 2552 enum page_type type, bool ordered); 2553 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2554 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2555 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2556 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2557 unsigned int val, int alloc); 2558 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2559 int build_segment_manager(struct f2fs_sb_info *sbi); 2560 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2561 int __init create_segment_manager_caches(void); 2562 void destroy_segment_manager_caches(void); 2563 2564 /* 2565 * checkpoint.c 2566 */ 2567 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2568 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2569 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2570 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2571 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2572 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2573 int type, bool sync); 2574 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2575 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2576 long nr_to_write, enum iostat_type io_type); 2577 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2578 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2579 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2580 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2581 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2582 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2583 void release_orphan_inode(struct f2fs_sb_info *sbi); 2584 void add_orphan_inode(struct inode *inode); 2585 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2586 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2587 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2588 void update_dirty_page(struct inode *inode, struct page *page); 2589 void remove_dirty_inode(struct inode *inode); 2590 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2591 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2592 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2593 int __init create_checkpoint_caches(void); 2594 void destroy_checkpoint_caches(void); 2595 2596 /* 2597 * data.c 2598 */ 2599 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2600 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2601 struct inode *inode, nid_t ino, pgoff_t idx, 2602 enum page_type type); 2603 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2604 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2605 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2606 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2607 block_t blk_addr, struct bio *bio); 2608 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2609 void set_data_blkaddr(struct dnode_of_data *dn); 2610 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2611 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2612 int reserve_new_block(struct dnode_of_data *dn); 2613 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2614 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2615 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2616 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2617 int op_flags, bool for_write); 2618 struct page *find_data_page(struct inode *inode, pgoff_t index); 2619 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2620 bool for_write); 2621 struct page *get_new_data_page(struct inode *inode, 2622 struct page *ipage, pgoff_t index, bool new_i_size); 2623 int do_write_data_page(struct f2fs_io_info *fio); 2624 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2625 int create, int flag); 2626 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2627 u64 start, u64 len); 2628 void f2fs_set_page_dirty_nobuffers(struct page *page); 2629 int __f2fs_write_data_pages(struct address_space *mapping, 2630 struct writeback_control *wbc, 2631 enum iostat_type io_type); 2632 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2633 unsigned int length); 2634 int f2fs_release_page(struct page *page, gfp_t wait); 2635 #ifdef CONFIG_MIGRATION 2636 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2637 struct page *page, enum migrate_mode mode); 2638 #endif 2639 2640 /* 2641 * gc.c 2642 */ 2643 int start_gc_thread(struct f2fs_sb_info *sbi); 2644 void stop_gc_thread(struct f2fs_sb_info *sbi); 2645 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2646 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2647 unsigned int segno); 2648 void build_gc_manager(struct f2fs_sb_info *sbi); 2649 2650 /* 2651 * recovery.c 2652 */ 2653 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2654 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2655 2656 /* 2657 * debug.c 2658 */ 2659 #ifdef CONFIG_F2FS_STAT_FS 2660 struct f2fs_stat_info { 2661 struct list_head stat_list; 2662 struct f2fs_sb_info *sbi; 2663 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2664 int main_area_segs, main_area_sections, main_area_zones; 2665 unsigned long long hit_largest, hit_cached, hit_rbtree; 2666 unsigned long long hit_total, total_ext; 2667 int ext_tree, zombie_tree, ext_node; 2668 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2669 int inmem_pages; 2670 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2671 int nats, dirty_nats, sits, dirty_sits; 2672 int free_nids, avail_nids, alloc_nids; 2673 int total_count, utilization; 2674 int bg_gc, nr_wb_cp_data, nr_wb_data; 2675 int nr_flushing, nr_flushed, nr_discarding, nr_discarded; 2676 int nr_discard_cmd; 2677 unsigned int undiscard_blks; 2678 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2679 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2680 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2681 unsigned int bimodal, avg_vblocks; 2682 int util_free, util_valid, util_invalid; 2683 int rsvd_segs, overp_segs; 2684 int dirty_count, node_pages, meta_pages; 2685 int prefree_count, call_count, cp_count, bg_cp_count; 2686 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2687 int bg_node_segs, bg_data_segs; 2688 int tot_blks, data_blks, node_blks; 2689 int bg_data_blks, bg_node_blks; 2690 int curseg[NR_CURSEG_TYPE]; 2691 int cursec[NR_CURSEG_TYPE]; 2692 int curzone[NR_CURSEG_TYPE]; 2693 2694 unsigned int segment_count[2]; 2695 unsigned int block_count[2]; 2696 unsigned int inplace_count; 2697 unsigned long long base_mem, cache_mem, page_mem; 2698 }; 2699 2700 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2701 { 2702 return (struct f2fs_stat_info *)sbi->stat_info; 2703 } 2704 2705 #define stat_inc_cp_count(si) ((si)->cp_count++) 2706 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2707 #define stat_inc_call_count(si) ((si)->call_count++) 2708 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2709 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2710 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2711 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2712 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2713 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2714 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2715 #define stat_inc_inline_xattr(inode) \ 2716 do { \ 2717 if (f2fs_has_inline_xattr(inode)) \ 2718 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2719 } while (0) 2720 #define stat_dec_inline_xattr(inode) \ 2721 do { \ 2722 if (f2fs_has_inline_xattr(inode)) \ 2723 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2724 } while (0) 2725 #define stat_inc_inline_inode(inode) \ 2726 do { \ 2727 if (f2fs_has_inline_data(inode)) \ 2728 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2729 } while (0) 2730 #define stat_dec_inline_inode(inode) \ 2731 do { \ 2732 if (f2fs_has_inline_data(inode)) \ 2733 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2734 } while (0) 2735 #define stat_inc_inline_dir(inode) \ 2736 do { \ 2737 if (f2fs_has_inline_dentry(inode)) \ 2738 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2739 } while (0) 2740 #define stat_dec_inline_dir(inode) \ 2741 do { \ 2742 if (f2fs_has_inline_dentry(inode)) \ 2743 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2744 } while (0) 2745 #define stat_inc_seg_type(sbi, curseg) \ 2746 ((sbi)->segment_count[(curseg)->alloc_type]++) 2747 #define stat_inc_block_count(sbi, curseg) \ 2748 ((sbi)->block_count[(curseg)->alloc_type]++) 2749 #define stat_inc_inplace_blocks(sbi) \ 2750 (atomic_inc(&(sbi)->inplace_count)) 2751 #define stat_inc_atomic_write(inode) \ 2752 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2753 #define stat_dec_atomic_write(inode) \ 2754 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2755 #define stat_update_max_atomic_write(inode) \ 2756 do { \ 2757 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2758 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2759 if (cur > max) \ 2760 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2761 } while (0) 2762 #define stat_inc_volatile_write(inode) \ 2763 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 2764 #define stat_dec_volatile_write(inode) \ 2765 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 2766 #define stat_update_max_volatile_write(inode) \ 2767 do { \ 2768 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 2769 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 2770 if (cur > max) \ 2771 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 2772 } while (0) 2773 #define stat_inc_seg_count(sbi, type, gc_type) \ 2774 do { \ 2775 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2776 si->tot_segs++; \ 2777 if ((type) == SUM_TYPE_DATA) { \ 2778 si->data_segs++; \ 2779 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2780 } else { \ 2781 si->node_segs++; \ 2782 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2783 } \ 2784 } while (0) 2785 2786 #define stat_inc_tot_blk_count(si, blks) \ 2787 ((si)->tot_blks += (blks)) 2788 2789 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2790 do { \ 2791 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2792 stat_inc_tot_blk_count(si, blks); \ 2793 si->data_blks += (blks); \ 2794 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2795 } while (0) 2796 2797 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2798 do { \ 2799 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2800 stat_inc_tot_blk_count(si, blks); \ 2801 si->node_blks += (blks); \ 2802 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2803 } while (0) 2804 2805 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2806 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2807 int __init f2fs_create_root_stats(void); 2808 void f2fs_destroy_root_stats(void); 2809 #else 2810 #define stat_inc_cp_count(si) do { } while (0) 2811 #define stat_inc_bg_cp_count(si) do { } while (0) 2812 #define stat_inc_call_count(si) do { } while (0) 2813 #define stat_inc_bggc_count(si) do { } while (0) 2814 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 2815 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 2816 #define stat_inc_total_hit(sb) do { } while (0) 2817 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 2818 #define stat_inc_largest_node_hit(sbi) do { } while (0) 2819 #define stat_inc_cached_node_hit(sbi) do { } while (0) 2820 #define stat_inc_inline_xattr(inode) do { } while (0) 2821 #define stat_dec_inline_xattr(inode) do { } while (0) 2822 #define stat_inc_inline_inode(inode) do { } while (0) 2823 #define stat_dec_inline_inode(inode) do { } while (0) 2824 #define stat_inc_inline_dir(inode) do { } while (0) 2825 #define stat_dec_inline_dir(inode) do { } while (0) 2826 #define stat_inc_atomic_write(inode) do { } while (0) 2827 #define stat_dec_atomic_write(inode) do { } while (0) 2828 #define stat_update_max_atomic_write(inode) do { } while (0) 2829 #define stat_inc_volatile_write(inode) do { } while (0) 2830 #define stat_dec_volatile_write(inode) do { } while (0) 2831 #define stat_update_max_volatile_write(inode) do { } while (0) 2832 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 2833 #define stat_inc_block_count(sbi, curseg) do { } while (0) 2834 #define stat_inc_inplace_blocks(sbi) do { } while (0) 2835 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 2836 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 2837 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 2838 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 2839 2840 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2841 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2842 static inline int __init f2fs_create_root_stats(void) { return 0; } 2843 static inline void f2fs_destroy_root_stats(void) { } 2844 #endif 2845 2846 extern const struct file_operations f2fs_dir_operations; 2847 extern const struct file_operations f2fs_file_operations; 2848 extern const struct inode_operations f2fs_file_inode_operations; 2849 extern const struct address_space_operations f2fs_dblock_aops; 2850 extern const struct address_space_operations f2fs_node_aops; 2851 extern const struct address_space_operations f2fs_meta_aops; 2852 extern const struct inode_operations f2fs_dir_inode_operations; 2853 extern const struct inode_operations f2fs_symlink_inode_operations; 2854 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2855 extern const struct inode_operations f2fs_special_inode_operations; 2856 extern struct kmem_cache *inode_entry_slab; 2857 2858 /* 2859 * inline.c 2860 */ 2861 bool f2fs_may_inline_data(struct inode *inode); 2862 bool f2fs_may_inline_dentry(struct inode *inode); 2863 void read_inline_data(struct page *page, struct page *ipage); 2864 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 2865 int f2fs_read_inline_data(struct inode *inode, struct page *page); 2866 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 2867 int f2fs_convert_inline_inode(struct inode *inode); 2868 int f2fs_write_inline_data(struct inode *inode, struct page *page); 2869 bool recover_inline_data(struct inode *inode, struct page *npage); 2870 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 2871 struct fscrypt_name *fname, struct page **res_page); 2872 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 2873 struct page *ipage); 2874 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 2875 const struct qstr *orig_name, 2876 struct inode *inode, nid_t ino, umode_t mode); 2877 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 2878 struct inode *dir, struct inode *inode); 2879 bool f2fs_empty_inline_dir(struct inode *dir); 2880 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 2881 struct fscrypt_str *fstr); 2882 int f2fs_inline_data_fiemap(struct inode *inode, 2883 struct fiemap_extent_info *fieinfo, 2884 __u64 start, __u64 len); 2885 2886 /* 2887 * shrinker.c 2888 */ 2889 unsigned long f2fs_shrink_count(struct shrinker *shrink, 2890 struct shrink_control *sc); 2891 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 2892 struct shrink_control *sc); 2893 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 2894 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 2895 2896 /* 2897 * extent_cache.c 2898 */ 2899 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 2900 struct rb_entry *cached_re, unsigned int ofs); 2901 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 2902 struct rb_root *root, struct rb_node **parent, 2903 unsigned int ofs); 2904 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 2905 struct rb_entry *cached_re, unsigned int ofs, 2906 struct rb_entry **prev_entry, struct rb_entry **next_entry, 2907 struct rb_node ***insert_p, struct rb_node **insert_parent, 2908 bool force); 2909 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 2910 struct rb_root *root); 2911 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 2912 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 2913 void f2fs_drop_extent_tree(struct inode *inode); 2914 unsigned int f2fs_destroy_extent_node(struct inode *inode); 2915 void f2fs_destroy_extent_tree(struct inode *inode); 2916 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 2917 struct extent_info *ei); 2918 void f2fs_update_extent_cache(struct dnode_of_data *dn); 2919 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2920 pgoff_t fofs, block_t blkaddr, unsigned int len); 2921 void init_extent_cache_info(struct f2fs_sb_info *sbi); 2922 int __init create_extent_cache(void); 2923 void destroy_extent_cache(void); 2924 2925 /* 2926 * sysfs.c 2927 */ 2928 int __init f2fs_init_sysfs(void); 2929 void f2fs_exit_sysfs(void); 2930 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 2931 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 2932 2933 /* 2934 * crypto support 2935 */ 2936 static inline bool f2fs_encrypted_inode(struct inode *inode) 2937 { 2938 return file_is_encrypt(inode); 2939 } 2940 2941 static inline bool f2fs_encrypted_file(struct inode *inode) 2942 { 2943 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 2944 } 2945 2946 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2947 { 2948 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2949 file_set_encrypt(inode); 2950 inode->i_flags |= S_ENCRYPTED; 2951 #endif 2952 } 2953 2954 static inline bool f2fs_bio_encrypted(struct bio *bio) 2955 { 2956 return bio->bi_private != NULL; 2957 } 2958 2959 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2960 { 2961 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2962 } 2963 2964 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 2965 { 2966 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 2967 } 2968 2969 static inline int f2fs_sb_has_extra_attr(struct super_block *sb) 2970 { 2971 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR); 2972 } 2973 2974 static inline int f2fs_sb_has_project_quota(struct super_block *sb) 2975 { 2976 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA); 2977 } 2978 2979 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb) 2980 { 2981 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM); 2982 } 2983 2984 #ifdef CONFIG_BLK_DEV_ZONED 2985 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 2986 struct block_device *bdev, block_t blkaddr) 2987 { 2988 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 2989 int i; 2990 2991 for (i = 0; i < sbi->s_ndevs; i++) 2992 if (FDEV(i).bdev == bdev) 2993 return FDEV(i).blkz_type[zno]; 2994 return -EINVAL; 2995 } 2996 #endif 2997 2998 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 2999 { 3000 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3001 3002 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 3003 } 3004 3005 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3006 { 3007 clear_opt(sbi, ADAPTIVE); 3008 clear_opt(sbi, LFS); 3009 3010 switch (mt) { 3011 case F2FS_MOUNT_ADAPTIVE: 3012 set_opt(sbi, ADAPTIVE); 3013 break; 3014 case F2FS_MOUNT_LFS: 3015 set_opt(sbi, LFS); 3016 break; 3017 } 3018 } 3019 3020 static inline bool f2fs_may_encrypt(struct inode *inode) 3021 { 3022 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3023 umode_t mode = inode->i_mode; 3024 3025 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3026 #else 3027 return 0; 3028 #endif 3029 } 3030 3031 #endif 3032