xref: /linux/fs/f2fs/f2fs.h (revision 43347d56c8d9dd732cee2f8efd384ad21dd1f6c4)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <crypto/hash.h>
27 
28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
29 #include <linux/fscrypt.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_MAX,
56 };
57 
58 struct f2fs_fault_info {
59 	atomic_t inject_ops;
60 	unsigned int inject_rate;
61 	unsigned int inject_type;
62 };
63 
64 extern char *fault_name[FAULT_MAX];
65 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
66 #endif
67 
68 /*
69  * For mount options
70  */
71 #define F2FS_MOUNT_BG_GC		0x00000001
72 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
73 #define F2FS_MOUNT_DISCARD		0x00000004
74 #define F2FS_MOUNT_NOHEAP		0x00000008
75 #define F2FS_MOUNT_XATTR_USER		0x00000010
76 #define F2FS_MOUNT_POSIX_ACL		0x00000020
77 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
78 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
79 #define F2FS_MOUNT_INLINE_DATA		0x00000100
80 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
81 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
82 #define F2FS_MOUNT_NOBARRIER		0x00000800
83 #define F2FS_MOUNT_FASTBOOT		0x00001000
84 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
85 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
86 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
87 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
88 #define F2FS_MOUNT_ADAPTIVE		0x00020000
89 #define F2FS_MOUNT_LFS			0x00040000
90 #define F2FS_MOUNT_USRQUOTA		0x00080000
91 #define F2FS_MOUNT_GRPQUOTA		0x00100000
92 #define F2FS_MOUNT_PRJQUOTA		0x00200000
93 #define F2FS_MOUNT_QUOTA		0x00400000
94 
95 #define clear_opt(sbi, option)	((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
96 #define set_opt(sbi, option)	((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
97 #define test_opt(sbi, option)	((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
98 
99 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
100 		typecheck(unsigned long long, b) &&			\
101 		((long long)((a) - (b)) > 0))
102 
103 typedef u32 block_t;	/*
104 			 * should not change u32, since it is the on-disk block
105 			 * address format, __le32.
106 			 */
107 typedef u32 nid_t;
108 
109 struct f2fs_mount_info {
110 	unsigned int	opt;
111 };
112 
113 #define F2FS_FEATURE_ENCRYPT		0x0001
114 #define F2FS_FEATURE_BLKZONED		0x0002
115 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
116 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
117 #define F2FS_FEATURE_PRJQUOTA		0x0010
118 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
119 
120 #define F2FS_HAS_FEATURE(sb, mask)					\
121 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
122 #define F2FS_SET_FEATURE(sb, mask)					\
123 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
124 #define F2FS_CLEAR_FEATURE(sb, mask)					\
125 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
126 
127 /*
128  * For checkpoint manager
129  */
130 enum {
131 	NAT_BITMAP,
132 	SIT_BITMAP
133 };
134 
135 #define	CP_UMOUNT	0x00000001
136 #define	CP_FASTBOOT	0x00000002
137 #define	CP_SYNC		0x00000004
138 #define	CP_RECOVERY	0x00000008
139 #define	CP_DISCARD	0x00000010
140 #define CP_TRIMMED	0x00000020
141 
142 #define DEF_BATCHED_TRIM_SECTIONS	2048
143 #define BATCHED_TRIM_SEGMENTS(sbi)	\
144 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
145 #define BATCHED_TRIM_BLOCKS(sbi)	\
146 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
147 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
148 #define DISCARD_ISSUE_RATE		8
149 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
150 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
151 #define DEF_CP_INTERVAL			60	/* 60 secs */
152 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
153 
154 struct cp_control {
155 	int reason;
156 	__u64 trim_start;
157 	__u64 trim_end;
158 	__u64 trim_minlen;
159 	__u64 trimmed;
160 };
161 
162 /*
163  * For CP/NAT/SIT/SSA readahead
164  */
165 enum {
166 	META_CP,
167 	META_NAT,
168 	META_SIT,
169 	META_SSA,
170 	META_POR,
171 };
172 
173 /* for the list of ino */
174 enum {
175 	ORPHAN_INO,		/* for orphan ino list */
176 	APPEND_INO,		/* for append ino list */
177 	UPDATE_INO,		/* for update ino list */
178 	MAX_INO_ENTRY,		/* max. list */
179 };
180 
181 struct ino_entry {
182 	struct list_head list;	/* list head */
183 	nid_t ino;		/* inode number */
184 };
185 
186 /* for the list of inodes to be GCed */
187 struct inode_entry {
188 	struct list_head list;	/* list head */
189 	struct inode *inode;	/* vfs inode pointer */
190 };
191 
192 /* for the bitmap indicate blocks to be discarded */
193 struct discard_entry {
194 	struct list_head list;	/* list head */
195 	block_t start_blkaddr;	/* start blockaddr of current segment */
196 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
197 };
198 
199 /* default discard granularity of inner discard thread, unit: block count */
200 #define DEFAULT_DISCARD_GRANULARITY		16
201 
202 /* max discard pend list number */
203 #define MAX_PLIST_NUM		512
204 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
205 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
206 
207 #define P_ACTIVE	0x01
208 #define P_TRIM		0x02
209 #define plist_issue(tag)	(((tag) & P_ACTIVE) || ((tag) & P_TRIM))
210 
211 enum {
212 	D_PREP,
213 	D_SUBMIT,
214 	D_DONE,
215 };
216 
217 struct discard_info {
218 	block_t lstart;			/* logical start address */
219 	block_t len;			/* length */
220 	block_t start;			/* actual start address in dev */
221 };
222 
223 struct discard_cmd {
224 	struct rb_node rb_node;		/* rb node located in rb-tree */
225 	union {
226 		struct {
227 			block_t lstart;	/* logical start address */
228 			block_t len;	/* length */
229 			block_t start;	/* actual start address in dev */
230 		};
231 		struct discard_info di;	/* discard info */
232 
233 	};
234 	struct list_head list;		/* command list */
235 	struct completion wait;		/* compleation */
236 	struct block_device *bdev;	/* bdev */
237 	unsigned short ref;		/* reference count */
238 	unsigned char state;		/* state */
239 	int error;			/* bio error */
240 };
241 
242 struct discard_cmd_control {
243 	struct task_struct *f2fs_issue_discard;	/* discard thread */
244 	struct list_head entry_list;		/* 4KB discard entry list */
245 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
246 	unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
247 	struct list_head wait_list;		/* store on-flushing entries */
248 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
249 	unsigned int discard_wake;		/* to wake up discard thread */
250 	struct mutex cmd_lock;
251 	unsigned int nr_discards;		/* # of discards in the list */
252 	unsigned int max_discards;		/* max. discards to be issued */
253 	unsigned int discard_granularity;	/* discard granularity */
254 	unsigned int undiscard_blks;		/* # of undiscard blocks */
255 	atomic_t issued_discard;		/* # of issued discard */
256 	atomic_t issing_discard;		/* # of issing discard */
257 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
258 	struct rb_root root;			/* root of discard rb-tree */
259 };
260 
261 /* for the list of fsync inodes, used only during recovery */
262 struct fsync_inode_entry {
263 	struct list_head list;	/* list head */
264 	struct inode *inode;	/* vfs inode pointer */
265 	block_t blkaddr;	/* block address locating the last fsync */
266 	block_t last_dentry;	/* block address locating the last dentry */
267 };
268 
269 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
270 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
271 
272 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
273 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
274 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
275 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
276 
277 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
278 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
279 
280 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
281 {
282 	int before = nats_in_cursum(journal);
283 
284 	journal->n_nats = cpu_to_le16(before + i);
285 	return before;
286 }
287 
288 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
289 {
290 	int before = sits_in_cursum(journal);
291 
292 	journal->n_sits = cpu_to_le16(before + i);
293 	return before;
294 }
295 
296 static inline bool __has_cursum_space(struct f2fs_journal *journal,
297 							int size, int type)
298 {
299 	if (type == NAT_JOURNAL)
300 		return size <= MAX_NAT_JENTRIES(journal);
301 	return size <= MAX_SIT_JENTRIES(journal);
302 }
303 
304 /*
305  * ioctl commands
306  */
307 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
308 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
309 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
310 
311 #define F2FS_IOCTL_MAGIC		0xf5
312 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
313 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
314 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
315 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
316 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
317 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
318 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
319 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
320 						struct f2fs_defragment)
321 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
322 						struct f2fs_move_range)
323 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
324 						struct f2fs_flush_device)
325 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
326 						struct f2fs_gc_range)
327 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
328 
329 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
330 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
331 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
332 
333 /*
334  * should be same as XFS_IOC_GOINGDOWN.
335  * Flags for going down operation used by FS_IOC_GOINGDOWN
336  */
337 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
338 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
339 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
340 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
341 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
342 
343 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
344 /*
345  * ioctl commands in 32 bit emulation
346  */
347 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
348 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
349 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
350 #endif
351 
352 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
353 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
354 
355 struct f2fs_gc_range {
356 	u32 sync;
357 	u64 start;
358 	u64 len;
359 };
360 
361 struct f2fs_defragment {
362 	u64 start;
363 	u64 len;
364 };
365 
366 struct f2fs_move_range {
367 	u32 dst_fd;		/* destination fd */
368 	u64 pos_in;		/* start position in src_fd */
369 	u64 pos_out;		/* start position in dst_fd */
370 	u64 len;		/* size to move */
371 };
372 
373 struct f2fs_flush_device {
374 	u32 dev_num;		/* device number to flush */
375 	u32 segments;		/* # of segments to flush */
376 };
377 
378 /* for inline stuff */
379 #define DEF_INLINE_RESERVED_SIZE	1
380 static inline int get_extra_isize(struct inode *inode);
381 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) * \
382 				(CUR_ADDRS_PER_INODE(inode) - \
383 				DEF_INLINE_RESERVED_SIZE - \
384 				F2FS_INLINE_XATTR_ADDRS))
385 
386 /* for inline dir */
387 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
388 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
389 				BITS_PER_BYTE + 1))
390 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
391 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
392 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
393 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
394 				NR_INLINE_DENTRY(inode) + \
395 				INLINE_DENTRY_BITMAP_SIZE(inode)))
396 
397 /*
398  * For INODE and NODE manager
399  */
400 /* for directory operations */
401 struct f2fs_dentry_ptr {
402 	struct inode *inode;
403 	void *bitmap;
404 	struct f2fs_dir_entry *dentry;
405 	__u8 (*filename)[F2FS_SLOT_LEN];
406 	int max;
407 	int nr_bitmap;
408 };
409 
410 static inline void make_dentry_ptr_block(struct inode *inode,
411 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
412 {
413 	d->inode = inode;
414 	d->max = NR_DENTRY_IN_BLOCK;
415 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
416 	d->bitmap = &t->dentry_bitmap;
417 	d->dentry = t->dentry;
418 	d->filename = t->filename;
419 }
420 
421 static inline void make_dentry_ptr_inline(struct inode *inode,
422 					struct f2fs_dentry_ptr *d, void *t)
423 {
424 	int entry_cnt = NR_INLINE_DENTRY(inode);
425 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
426 	int reserved_size = INLINE_RESERVED_SIZE(inode);
427 
428 	d->inode = inode;
429 	d->max = entry_cnt;
430 	d->nr_bitmap = bitmap_size;
431 	d->bitmap = t;
432 	d->dentry = t + bitmap_size + reserved_size;
433 	d->filename = t + bitmap_size + reserved_size +
434 					SIZE_OF_DIR_ENTRY * entry_cnt;
435 }
436 
437 /*
438  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
439  * as its node offset to distinguish from index node blocks.
440  * But some bits are used to mark the node block.
441  */
442 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
443 				>> OFFSET_BIT_SHIFT)
444 enum {
445 	ALLOC_NODE,			/* allocate a new node page if needed */
446 	LOOKUP_NODE,			/* look up a node without readahead */
447 	LOOKUP_NODE_RA,			/*
448 					 * look up a node with readahead called
449 					 * by get_data_block.
450 					 */
451 };
452 
453 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
454 
455 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
456 
457 /* vector size for gang look-up from extent cache that consists of radix tree */
458 #define EXT_TREE_VEC_SIZE	64
459 
460 /* for in-memory extent cache entry */
461 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
462 
463 /* number of extent info in extent cache we try to shrink */
464 #define EXTENT_CACHE_SHRINK_NUMBER	128
465 
466 struct rb_entry {
467 	struct rb_node rb_node;		/* rb node located in rb-tree */
468 	unsigned int ofs;		/* start offset of the entry */
469 	unsigned int len;		/* length of the entry */
470 };
471 
472 struct extent_info {
473 	unsigned int fofs;		/* start offset in a file */
474 	unsigned int len;		/* length of the extent */
475 	u32 blk;			/* start block address of the extent */
476 };
477 
478 struct extent_node {
479 	struct rb_node rb_node;
480 	union {
481 		struct {
482 			unsigned int fofs;
483 			unsigned int len;
484 			u32 blk;
485 		};
486 		struct extent_info ei;	/* extent info */
487 
488 	};
489 	struct list_head list;		/* node in global extent list of sbi */
490 	struct extent_tree *et;		/* extent tree pointer */
491 };
492 
493 struct extent_tree {
494 	nid_t ino;			/* inode number */
495 	struct rb_root root;		/* root of extent info rb-tree */
496 	struct extent_node *cached_en;	/* recently accessed extent node */
497 	struct extent_info largest;	/* largested extent info */
498 	struct list_head list;		/* to be used by sbi->zombie_list */
499 	rwlock_t lock;			/* protect extent info rb-tree */
500 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
501 };
502 
503 /*
504  * This structure is taken from ext4_map_blocks.
505  *
506  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
507  */
508 #define F2FS_MAP_NEW		(1 << BH_New)
509 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
510 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
511 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
512 				F2FS_MAP_UNWRITTEN)
513 
514 struct f2fs_map_blocks {
515 	block_t m_pblk;
516 	block_t m_lblk;
517 	unsigned int m_len;
518 	unsigned int m_flags;
519 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
520 };
521 
522 /* for flag in get_data_block */
523 enum {
524 	F2FS_GET_BLOCK_DEFAULT,
525 	F2FS_GET_BLOCK_FIEMAP,
526 	F2FS_GET_BLOCK_BMAP,
527 	F2FS_GET_BLOCK_PRE_DIO,
528 	F2FS_GET_BLOCK_PRE_AIO,
529 };
530 
531 /*
532  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
533  */
534 #define FADVISE_COLD_BIT	0x01
535 #define FADVISE_LOST_PINO_BIT	0x02
536 #define FADVISE_ENCRYPT_BIT	0x04
537 #define FADVISE_ENC_NAME_BIT	0x08
538 #define FADVISE_KEEP_SIZE_BIT	0x10
539 
540 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
541 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
542 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
543 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
544 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
545 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
546 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
547 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
548 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
549 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
550 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
551 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
552 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
553 
554 #define DEF_DIR_LEVEL		0
555 
556 struct f2fs_inode_info {
557 	struct inode vfs_inode;		/* serve a vfs inode */
558 	unsigned long i_flags;		/* keep an inode flags for ioctl */
559 	unsigned char i_advise;		/* use to give file attribute hints */
560 	unsigned char i_dir_level;	/* use for dentry level for large dir */
561 	unsigned int i_current_depth;	/* use only in directory structure */
562 	unsigned int i_pino;		/* parent inode number */
563 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
564 
565 	/* Use below internally in f2fs*/
566 	unsigned long flags;		/* use to pass per-file flags */
567 	struct rw_semaphore i_sem;	/* protect fi info */
568 	atomic_t dirty_pages;		/* # of dirty pages */
569 	f2fs_hash_t chash;		/* hash value of given file name */
570 	unsigned int clevel;		/* maximum level of given file name */
571 	struct task_struct *task;	/* lookup and create consistency */
572 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
573 	nid_t i_xattr_nid;		/* node id that contains xattrs */
574 	loff_t	last_disk_size;		/* lastly written file size */
575 
576 #ifdef CONFIG_QUOTA
577 	struct dquot *i_dquot[MAXQUOTAS];
578 
579 	/* quota space reservation, managed internally by quota code */
580 	qsize_t i_reserved_quota;
581 #endif
582 	struct list_head dirty_list;	/* dirty list for dirs and files */
583 	struct list_head gdirty_list;	/* linked in global dirty list */
584 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
585 	struct task_struct *inmem_task;	/* store inmemory task */
586 	struct mutex inmem_lock;	/* lock for inmemory pages */
587 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
588 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
589 	struct rw_semaphore i_mmap_sem;
590 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
591 
592 	int i_extra_isize;		/* size of extra space located in i_addr */
593 	kprojid_t i_projid;		/* id for project quota */
594 };
595 
596 static inline void get_extent_info(struct extent_info *ext,
597 					struct f2fs_extent *i_ext)
598 {
599 	ext->fofs = le32_to_cpu(i_ext->fofs);
600 	ext->blk = le32_to_cpu(i_ext->blk);
601 	ext->len = le32_to_cpu(i_ext->len);
602 }
603 
604 static inline void set_raw_extent(struct extent_info *ext,
605 					struct f2fs_extent *i_ext)
606 {
607 	i_ext->fofs = cpu_to_le32(ext->fofs);
608 	i_ext->blk = cpu_to_le32(ext->blk);
609 	i_ext->len = cpu_to_le32(ext->len);
610 }
611 
612 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
613 						u32 blk, unsigned int len)
614 {
615 	ei->fofs = fofs;
616 	ei->blk = blk;
617 	ei->len = len;
618 }
619 
620 static inline bool __is_discard_mergeable(struct discard_info *back,
621 						struct discard_info *front)
622 {
623 	return back->lstart + back->len == front->lstart;
624 }
625 
626 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
627 						struct discard_info *back)
628 {
629 	return __is_discard_mergeable(back, cur);
630 }
631 
632 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
633 						struct discard_info *front)
634 {
635 	return __is_discard_mergeable(cur, front);
636 }
637 
638 static inline bool __is_extent_mergeable(struct extent_info *back,
639 						struct extent_info *front)
640 {
641 	return (back->fofs + back->len == front->fofs &&
642 			back->blk + back->len == front->blk);
643 }
644 
645 static inline bool __is_back_mergeable(struct extent_info *cur,
646 						struct extent_info *back)
647 {
648 	return __is_extent_mergeable(back, cur);
649 }
650 
651 static inline bool __is_front_mergeable(struct extent_info *cur,
652 						struct extent_info *front)
653 {
654 	return __is_extent_mergeable(cur, front);
655 }
656 
657 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
658 static inline void __try_update_largest_extent(struct inode *inode,
659 			struct extent_tree *et, struct extent_node *en)
660 {
661 	if (en->ei.len > et->largest.len) {
662 		et->largest = en->ei;
663 		f2fs_mark_inode_dirty_sync(inode, true);
664 	}
665 }
666 
667 enum nid_list {
668 	FREE_NID_LIST,
669 	ALLOC_NID_LIST,
670 	MAX_NID_LIST,
671 };
672 
673 struct f2fs_nm_info {
674 	block_t nat_blkaddr;		/* base disk address of NAT */
675 	nid_t max_nid;			/* maximum possible node ids */
676 	nid_t available_nids;		/* # of available node ids */
677 	nid_t next_scan_nid;		/* the next nid to be scanned */
678 	unsigned int ram_thresh;	/* control the memory footprint */
679 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
680 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
681 
682 	/* NAT cache management */
683 	struct radix_tree_root nat_root;/* root of the nat entry cache */
684 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
685 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
686 	struct list_head nat_entries;	/* cached nat entry list (clean) */
687 	unsigned int nat_cnt;		/* the # of cached nat entries */
688 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
689 	unsigned int nat_blocks;	/* # of nat blocks */
690 
691 	/* free node ids management */
692 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
693 	struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
694 	unsigned int nid_cnt[MAX_NID_LIST];	/* the number of free node id */
695 	spinlock_t nid_list_lock;	/* protect nid lists ops */
696 	struct mutex build_lock;	/* lock for build free nids */
697 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
698 	unsigned char *nat_block_bitmap;
699 	unsigned short *free_nid_count;	/* free nid count of NAT block */
700 
701 	/* for checkpoint */
702 	char *nat_bitmap;		/* NAT bitmap pointer */
703 
704 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
705 	unsigned char *nat_bits;	/* NAT bits blocks */
706 	unsigned char *full_nat_bits;	/* full NAT pages */
707 	unsigned char *empty_nat_bits;	/* empty NAT pages */
708 #ifdef CONFIG_F2FS_CHECK_FS
709 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
710 #endif
711 	int bitmap_size;		/* bitmap size */
712 };
713 
714 /*
715  * this structure is used as one of function parameters.
716  * all the information are dedicated to a given direct node block determined
717  * by the data offset in a file.
718  */
719 struct dnode_of_data {
720 	struct inode *inode;		/* vfs inode pointer */
721 	struct page *inode_page;	/* its inode page, NULL is possible */
722 	struct page *node_page;		/* cached direct node page */
723 	nid_t nid;			/* node id of the direct node block */
724 	unsigned int ofs_in_node;	/* data offset in the node page */
725 	bool inode_page_locked;		/* inode page is locked or not */
726 	bool node_changed;		/* is node block changed */
727 	char cur_level;			/* level of hole node page */
728 	char max_level;			/* level of current page located */
729 	block_t	data_blkaddr;		/* block address of the node block */
730 };
731 
732 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
733 		struct page *ipage, struct page *npage, nid_t nid)
734 {
735 	memset(dn, 0, sizeof(*dn));
736 	dn->inode = inode;
737 	dn->inode_page = ipage;
738 	dn->node_page = npage;
739 	dn->nid = nid;
740 }
741 
742 /*
743  * For SIT manager
744  *
745  * By default, there are 6 active log areas across the whole main area.
746  * When considering hot and cold data separation to reduce cleaning overhead,
747  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
748  * respectively.
749  * In the current design, you should not change the numbers intentionally.
750  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
751  * logs individually according to the underlying devices. (default: 6)
752  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
753  * data and 8 for node logs.
754  */
755 #define	NR_CURSEG_DATA_TYPE	(3)
756 #define NR_CURSEG_NODE_TYPE	(3)
757 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
758 
759 enum {
760 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
761 	CURSEG_WARM_DATA,	/* data blocks */
762 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
763 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
764 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
765 	CURSEG_COLD_NODE,	/* indirect node blocks */
766 	NO_CHECK_TYPE,
767 };
768 
769 struct flush_cmd {
770 	struct completion wait;
771 	struct llist_node llnode;
772 	int ret;
773 };
774 
775 struct flush_cmd_control {
776 	struct task_struct *f2fs_issue_flush;	/* flush thread */
777 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
778 	atomic_t issued_flush;			/* # of issued flushes */
779 	atomic_t issing_flush;			/* # of issing flushes */
780 	struct llist_head issue_list;		/* list for command issue */
781 	struct llist_node *dispatch_list;	/* list for command dispatch */
782 };
783 
784 struct f2fs_sm_info {
785 	struct sit_info *sit_info;		/* whole segment information */
786 	struct free_segmap_info *free_info;	/* free segment information */
787 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
788 	struct curseg_info *curseg_array;	/* active segment information */
789 
790 	block_t seg0_blkaddr;		/* block address of 0'th segment */
791 	block_t main_blkaddr;		/* start block address of main area */
792 	block_t ssa_blkaddr;		/* start block address of SSA area */
793 
794 	unsigned int segment_count;	/* total # of segments */
795 	unsigned int main_segments;	/* # of segments in main area */
796 	unsigned int reserved_segments;	/* # of reserved segments */
797 	unsigned int ovp_segments;	/* # of overprovision segments */
798 
799 	/* a threshold to reclaim prefree segments */
800 	unsigned int rec_prefree_segments;
801 
802 	/* for batched trimming */
803 	unsigned int trim_sections;		/* # of sections to trim */
804 
805 	struct list_head sit_entry_set;	/* sit entry set list */
806 
807 	unsigned int ipu_policy;	/* in-place-update policy */
808 	unsigned int min_ipu_util;	/* in-place-update threshold */
809 	unsigned int min_fsync_blocks;	/* threshold for fsync */
810 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
811 
812 	/* for flush command control */
813 	struct flush_cmd_control *fcc_info;
814 
815 	/* for discard command control */
816 	struct discard_cmd_control *dcc_info;
817 };
818 
819 /*
820  * For superblock
821  */
822 /*
823  * COUNT_TYPE for monitoring
824  *
825  * f2fs monitors the number of several block types such as on-writeback,
826  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
827  */
828 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
829 enum count_type {
830 	F2FS_DIRTY_DENTS,
831 	F2FS_DIRTY_DATA,
832 	F2FS_DIRTY_NODES,
833 	F2FS_DIRTY_META,
834 	F2FS_INMEM_PAGES,
835 	F2FS_DIRTY_IMETA,
836 	F2FS_WB_CP_DATA,
837 	F2FS_WB_DATA,
838 	NR_COUNT_TYPE,
839 };
840 
841 /*
842  * The below are the page types of bios used in submit_bio().
843  * The available types are:
844  * DATA			User data pages. It operates as async mode.
845  * NODE			Node pages. It operates as async mode.
846  * META			FS metadata pages such as SIT, NAT, CP.
847  * NR_PAGE_TYPE		The number of page types.
848  * META_FLUSH		Make sure the previous pages are written
849  *			with waiting the bio's completion
850  * ...			Only can be used with META.
851  */
852 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
853 enum page_type {
854 	DATA,
855 	NODE,
856 	META,
857 	NR_PAGE_TYPE,
858 	META_FLUSH,
859 	INMEM,		/* the below types are used by tracepoints only. */
860 	INMEM_DROP,
861 	INMEM_INVALIDATE,
862 	INMEM_REVOKE,
863 	IPU,
864 	OPU,
865 };
866 
867 enum temp_type {
868 	HOT = 0,	/* must be zero for meta bio */
869 	WARM,
870 	COLD,
871 	NR_TEMP_TYPE,
872 };
873 
874 enum need_lock_type {
875 	LOCK_REQ = 0,
876 	LOCK_DONE,
877 	LOCK_RETRY,
878 };
879 
880 enum iostat_type {
881 	APP_DIRECT_IO,			/* app direct IOs */
882 	APP_BUFFERED_IO,		/* app buffered IOs */
883 	APP_WRITE_IO,			/* app write IOs */
884 	APP_MAPPED_IO,			/* app mapped IOs */
885 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
886 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
887 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
888 	FS_GC_DATA_IO,			/* data IOs from forground gc */
889 	FS_GC_NODE_IO,			/* node IOs from forground gc */
890 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
891 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
892 	FS_CP_META_IO,			/* meta IOs from checkpoint */
893 	FS_DISCARD,			/* discard */
894 	NR_IO_TYPE,
895 };
896 
897 struct f2fs_io_info {
898 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
899 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
900 	enum temp_type temp;	/* contains HOT/WARM/COLD */
901 	int op;			/* contains REQ_OP_ */
902 	int op_flags;		/* req_flag_bits */
903 	block_t new_blkaddr;	/* new block address to be written */
904 	block_t old_blkaddr;	/* old block address before Cow */
905 	struct page *page;	/* page to be written */
906 	struct page *encrypted_page;	/* encrypted page */
907 	struct list_head list;		/* serialize IOs */
908 	bool submitted;		/* indicate IO submission */
909 	int need_lock;		/* indicate we need to lock cp_rwsem */
910 	bool in_list;		/* indicate fio is in io_list */
911 	enum iostat_type io_type;	/* io type */
912 };
913 
914 #define is_read_io(rw) ((rw) == READ)
915 struct f2fs_bio_info {
916 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
917 	struct bio *bio;		/* bios to merge */
918 	sector_t last_block_in_bio;	/* last block number */
919 	struct f2fs_io_info fio;	/* store buffered io info. */
920 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
921 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
922 	struct list_head io_list;	/* track fios */
923 };
924 
925 #define FDEV(i)				(sbi->devs[i])
926 #define RDEV(i)				(raw_super->devs[i])
927 struct f2fs_dev_info {
928 	struct block_device *bdev;
929 	char path[MAX_PATH_LEN];
930 	unsigned int total_segments;
931 	block_t start_blk;
932 	block_t end_blk;
933 #ifdef CONFIG_BLK_DEV_ZONED
934 	unsigned int nr_blkz;			/* Total number of zones */
935 	u8 *blkz_type;				/* Array of zones type */
936 #endif
937 };
938 
939 enum inode_type {
940 	DIR_INODE,			/* for dirty dir inode */
941 	FILE_INODE,			/* for dirty regular/symlink inode */
942 	DIRTY_META,			/* for all dirtied inode metadata */
943 	NR_INODE_TYPE,
944 };
945 
946 /* for inner inode cache management */
947 struct inode_management {
948 	struct radix_tree_root ino_root;	/* ino entry array */
949 	spinlock_t ino_lock;			/* for ino entry lock */
950 	struct list_head ino_list;		/* inode list head */
951 	unsigned long ino_num;			/* number of entries */
952 };
953 
954 /* For s_flag in struct f2fs_sb_info */
955 enum {
956 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
957 	SBI_IS_CLOSE,				/* specify unmounting */
958 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
959 	SBI_POR_DOING,				/* recovery is doing or not */
960 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
961 	SBI_NEED_CP,				/* need to checkpoint */
962 };
963 
964 enum {
965 	CP_TIME,
966 	REQ_TIME,
967 	MAX_TIME,
968 };
969 
970 struct f2fs_sb_info {
971 	struct super_block *sb;			/* pointer to VFS super block */
972 	struct proc_dir_entry *s_proc;		/* proc entry */
973 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
974 	int valid_super_block;			/* valid super block no */
975 	unsigned long s_flag;				/* flags for sbi */
976 
977 #ifdef CONFIG_BLK_DEV_ZONED
978 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
979 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
980 #endif
981 
982 	/* for node-related operations */
983 	struct f2fs_nm_info *nm_info;		/* node manager */
984 	struct inode *node_inode;		/* cache node blocks */
985 
986 	/* for segment-related operations */
987 	struct f2fs_sm_info *sm_info;		/* segment manager */
988 
989 	/* for bio operations */
990 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
991 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
992 						/* bio ordering for NODE/DATA */
993 	int write_io_size_bits;			/* Write IO size bits */
994 	mempool_t *write_io_dummy;		/* Dummy pages */
995 
996 	/* for checkpoint */
997 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
998 	int cur_cp_pack;			/* remain current cp pack */
999 	spinlock_t cp_lock;			/* for flag in ckpt */
1000 	struct inode *meta_inode;		/* cache meta blocks */
1001 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1002 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1003 	struct rw_semaphore node_write;		/* locking node writes */
1004 	struct rw_semaphore node_change;	/* locking node change */
1005 	wait_queue_head_t cp_wait;
1006 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1007 	long interval_time[MAX_TIME];		/* to store thresholds */
1008 
1009 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1010 
1011 	/* for orphan inode, use 0'th array */
1012 	unsigned int max_orphans;		/* max orphan inodes */
1013 
1014 	/* for inode management */
1015 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1016 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1017 
1018 	/* for extent tree cache */
1019 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1020 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1021 	struct list_head extent_list;		/* lru list for shrinker */
1022 	spinlock_t extent_lock;			/* locking extent lru list */
1023 	atomic_t total_ext_tree;		/* extent tree count */
1024 	struct list_head zombie_list;		/* extent zombie tree list */
1025 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1026 	atomic_t total_ext_node;		/* extent info count */
1027 
1028 	/* basic filesystem units */
1029 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1030 	unsigned int log_blocksize;		/* log2 block size */
1031 	unsigned int blocksize;			/* block size */
1032 	unsigned int root_ino_num;		/* root inode number*/
1033 	unsigned int node_ino_num;		/* node inode number*/
1034 	unsigned int meta_ino_num;		/* meta inode number*/
1035 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1036 	unsigned int blocks_per_seg;		/* blocks per segment */
1037 	unsigned int segs_per_sec;		/* segments per section */
1038 	unsigned int secs_per_zone;		/* sections per zone */
1039 	unsigned int total_sections;		/* total section count */
1040 	unsigned int total_node_count;		/* total node block count */
1041 	unsigned int total_valid_node_count;	/* valid node block count */
1042 	loff_t max_file_blocks;			/* max block index of file */
1043 	int active_logs;			/* # of active logs */
1044 	int dir_level;				/* directory level */
1045 
1046 	block_t user_block_count;		/* # of user blocks */
1047 	block_t total_valid_block_count;	/* # of valid blocks */
1048 	block_t discard_blks;			/* discard command candidats */
1049 	block_t last_valid_block_count;		/* for recovery */
1050 	block_t reserved_blocks;		/* configurable reserved blocks */
1051 
1052 	u32 s_next_generation;			/* for NFS support */
1053 
1054 	/* # of pages, see count_type */
1055 	atomic_t nr_pages[NR_COUNT_TYPE];
1056 	/* # of allocated blocks */
1057 	struct percpu_counter alloc_valid_block_count;
1058 
1059 	/* writeback control */
1060 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1061 
1062 	/* valid inode count */
1063 	struct percpu_counter total_valid_inode_count;
1064 
1065 	struct f2fs_mount_info mount_opt;	/* mount options */
1066 
1067 	/* for cleaning operations */
1068 	struct mutex gc_mutex;			/* mutex for GC */
1069 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1070 	unsigned int cur_victim_sec;		/* current victim section num */
1071 
1072 	/* threshold for converting bg victims for fg */
1073 	u64 fggc_threshold;
1074 
1075 	/* maximum # of trials to find a victim segment for SSR and GC */
1076 	unsigned int max_victim_search;
1077 
1078 	/*
1079 	 * for stat information.
1080 	 * one is for the LFS mode, and the other is for the SSR mode.
1081 	 */
1082 #ifdef CONFIG_F2FS_STAT_FS
1083 	struct f2fs_stat_info *stat_info;	/* FS status information */
1084 	unsigned int segment_count[2];		/* # of allocated segments */
1085 	unsigned int block_count[2];		/* # of allocated blocks */
1086 	atomic_t inplace_count;		/* # of inplace update */
1087 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1088 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1089 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1090 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1091 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1092 	atomic_t inline_inode;			/* # of inline_data inodes */
1093 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1094 	atomic_t aw_cnt;			/* # of atomic writes */
1095 	atomic_t vw_cnt;			/* # of volatile writes */
1096 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1097 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1098 	int bg_gc;				/* background gc calls */
1099 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1100 #endif
1101 	spinlock_t stat_lock;			/* lock for stat operations */
1102 
1103 	/* For app/fs IO statistics */
1104 	spinlock_t iostat_lock;
1105 	unsigned long long write_iostat[NR_IO_TYPE];
1106 	bool iostat_enable;
1107 
1108 	/* For sysfs suppport */
1109 	struct kobject s_kobj;
1110 	struct completion s_kobj_unregister;
1111 
1112 	/* For shrinker support */
1113 	struct list_head s_list;
1114 	int s_ndevs;				/* number of devices */
1115 	struct f2fs_dev_info *devs;		/* for device list */
1116 	struct mutex umount_mutex;
1117 	unsigned int shrinker_run_no;
1118 
1119 	/* For write statistics */
1120 	u64 sectors_written_start;
1121 	u64 kbytes_written;
1122 
1123 	/* Reference to checksum algorithm driver via cryptoapi */
1124 	struct crypto_shash *s_chksum_driver;
1125 
1126 	/* Precomputed FS UUID checksum for seeding other checksums */
1127 	__u32 s_chksum_seed;
1128 
1129 	/* For fault injection */
1130 #ifdef CONFIG_F2FS_FAULT_INJECTION
1131 	struct f2fs_fault_info fault_info;
1132 #endif
1133 
1134 #ifdef CONFIG_QUOTA
1135 	/* Names of quota files with journalled quota */
1136 	char *s_qf_names[MAXQUOTAS];
1137 	int s_jquota_fmt;			/* Format of quota to use */
1138 #endif
1139 };
1140 
1141 #ifdef CONFIG_F2FS_FAULT_INJECTION
1142 #define f2fs_show_injection_info(type)				\
1143 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1144 		KERN_INFO, fault_name[type],			\
1145 		__func__, __builtin_return_address(0))
1146 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1147 {
1148 	struct f2fs_fault_info *ffi = &sbi->fault_info;
1149 
1150 	if (!ffi->inject_rate)
1151 		return false;
1152 
1153 	if (!IS_FAULT_SET(ffi, type))
1154 		return false;
1155 
1156 	atomic_inc(&ffi->inject_ops);
1157 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1158 		atomic_set(&ffi->inject_ops, 0);
1159 		return true;
1160 	}
1161 	return false;
1162 }
1163 #endif
1164 
1165 /* For write statistics. Suppose sector size is 512 bytes,
1166  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1167  */
1168 #define BD_PART_WRITTEN(s)						 \
1169 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1170 		(s)->sectors_written_start) >> 1)
1171 
1172 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1173 {
1174 	sbi->last_time[type] = jiffies;
1175 }
1176 
1177 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1178 {
1179 	struct timespec ts = {sbi->interval_time[type], 0};
1180 	unsigned long interval = timespec_to_jiffies(&ts);
1181 
1182 	return time_after(jiffies, sbi->last_time[type] + interval);
1183 }
1184 
1185 static inline bool is_idle(struct f2fs_sb_info *sbi)
1186 {
1187 	struct block_device *bdev = sbi->sb->s_bdev;
1188 	struct request_queue *q = bdev_get_queue(bdev);
1189 	struct request_list *rl = &q->root_rl;
1190 
1191 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1192 		return 0;
1193 
1194 	return f2fs_time_over(sbi, REQ_TIME);
1195 }
1196 
1197 /*
1198  * Inline functions
1199  */
1200 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1201 			   unsigned int length)
1202 {
1203 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1204 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
1205 	u32 retval;
1206 	int err;
1207 
1208 	shash->tfm = sbi->s_chksum_driver;
1209 	shash->flags = 0;
1210 	*ctx = F2FS_SUPER_MAGIC;
1211 
1212 	err = crypto_shash_update(shash, address, length);
1213 	BUG_ON(err);
1214 
1215 	retval = *ctx;
1216 	barrier_data(ctx);
1217 	return retval;
1218 }
1219 
1220 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1221 				  void *buf, size_t buf_size)
1222 {
1223 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1224 }
1225 
1226 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1227 			      const void *address, unsigned int length)
1228 {
1229 	struct {
1230 		struct shash_desc shash;
1231 		char ctx[4];
1232 	} desc;
1233 	int err;
1234 
1235 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1236 
1237 	desc.shash.tfm = sbi->s_chksum_driver;
1238 	desc.shash.flags = 0;
1239 	*(u32 *)desc.ctx = crc;
1240 
1241 	err = crypto_shash_update(&desc.shash, address, length);
1242 	BUG_ON(err);
1243 
1244 	return *(u32 *)desc.ctx;
1245 }
1246 
1247 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1248 {
1249 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1250 }
1251 
1252 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1253 {
1254 	return sb->s_fs_info;
1255 }
1256 
1257 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1258 {
1259 	return F2FS_SB(inode->i_sb);
1260 }
1261 
1262 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1263 {
1264 	return F2FS_I_SB(mapping->host);
1265 }
1266 
1267 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1268 {
1269 	return F2FS_M_SB(page->mapping);
1270 }
1271 
1272 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1273 {
1274 	return (struct f2fs_super_block *)(sbi->raw_super);
1275 }
1276 
1277 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1278 {
1279 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1280 }
1281 
1282 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1283 {
1284 	return (struct f2fs_node *)page_address(page);
1285 }
1286 
1287 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1288 {
1289 	return &((struct f2fs_node *)page_address(page))->i;
1290 }
1291 
1292 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1293 {
1294 	return (struct f2fs_nm_info *)(sbi->nm_info);
1295 }
1296 
1297 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1298 {
1299 	return (struct f2fs_sm_info *)(sbi->sm_info);
1300 }
1301 
1302 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1303 {
1304 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1305 }
1306 
1307 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1308 {
1309 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1310 }
1311 
1312 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1313 {
1314 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1315 }
1316 
1317 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1318 {
1319 	return sbi->meta_inode->i_mapping;
1320 }
1321 
1322 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1323 {
1324 	return sbi->node_inode->i_mapping;
1325 }
1326 
1327 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1328 {
1329 	return test_bit(type, &sbi->s_flag);
1330 }
1331 
1332 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1333 {
1334 	set_bit(type, &sbi->s_flag);
1335 }
1336 
1337 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1338 {
1339 	clear_bit(type, &sbi->s_flag);
1340 }
1341 
1342 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1343 {
1344 	return le64_to_cpu(cp->checkpoint_ver);
1345 }
1346 
1347 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1348 {
1349 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1350 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1351 }
1352 
1353 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1354 {
1355 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1356 
1357 	return ckpt_flags & f;
1358 }
1359 
1360 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1361 {
1362 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1363 }
1364 
1365 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1366 {
1367 	unsigned int ckpt_flags;
1368 
1369 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1370 	ckpt_flags |= f;
1371 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1372 }
1373 
1374 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1375 {
1376 	unsigned long flags;
1377 
1378 	spin_lock_irqsave(&sbi->cp_lock, flags);
1379 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1380 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1381 }
1382 
1383 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1384 {
1385 	unsigned int ckpt_flags;
1386 
1387 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1388 	ckpt_flags &= (~f);
1389 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1390 }
1391 
1392 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1393 {
1394 	unsigned long flags;
1395 
1396 	spin_lock_irqsave(&sbi->cp_lock, flags);
1397 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1398 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1399 }
1400 
1401 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1402 {
1403 	unsigned long flags;
1404 
1405 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1406 
1407 	if (lock)
1408 		spin_lock_irqsave(&sbi->cp_lock, flags);
1409 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1410 	kfree(NM_I(sbi)->nat_bits);
1411 	NM_I(sbi)->nat_bits = NULL;
1412 	if (lock)
1413 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1414 }
1415 
1416 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1417 					struct cp_control *cpc)
1418 {
1419 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1420 
1421 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1422 }
1423 
1424 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1425 {
1426 	down_read(&sbi->cp_rwsem);
1427 }
1428 
1429 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1430 {
1431 	return down_read_trylock(&sbi->cp_rwsem);
1432 }
1433 
1434 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1435 {
1436 	up_read(&sbi->cp_rwsem);
1437 }
1438 
1439 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1440 {
1441 	down_write(&sbi->cp_rwsem);
1442 }
1443 
1444 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1445 {
1446 	up_write(&sbi->cp_rwsem);
1447 }
1448 
1449 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1450 {
1451 	int reason = CP_SYNC;
1452 
1453 	if (test_opt(sbi, FASTBOOT))
1454 		reason = CP_FASTBOOT;
1455 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1456 		reason = CP_UMOUNT;
1457 	return reason;
1458 }
1459 
1460 static inline bool __remain_node_summaries(int reason)
1461 {
1462 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1463 }
1464 
1465 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1466 {
1467 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1468 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1469 }
1470 
1471 /*
1472  * Check whether the given nid is within node id range.
1473  */
1474 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1475 {
1476 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1477 		return -EINVAL;
1478 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1479 		return -EINVAL;
1480 	return 0;
1481 }
1482 
1483 /*
1484  * Check whether the inode has blocks or not
1485  */
1486 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1487 {
1488 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1489 
1490 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1491 }
1492 
1493 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1494 {
1495 	return ofs == XATTR_NODE_OFFSET;
1496 }
1497 
1498 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1499 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1500 				 struct inode *inode, blkcnt_t *count)
1501 {
1502 	blkcnt_t diff = 0, release = 0;
1503 	block_t avail_user_block_count;
1504 	int ret;
1505 
1506 	ret = dquot_reserve_block(inode, *count);
1507 	if (ret)
1508 		return ret;
1509 
1510 #ifdef CONFIG_F2FS_FAULT_INJECTION
1511 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1512 		f2fs_show_injection_info(FAULT_BLOCK);
1513 		release = *count;
1514 		goto enospc;
1515 	}
1516 #endif
1517 	/*
1518 	 * let's increase this in prior to actual block count change in order
1519 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1520 	 */
1521 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1522 
1523 	spin_lock(&sbi->stat_lock);
1524 	sbi->total_valid_block_count += (block_t)(*count);
1525 	avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks;
1526 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1527 		diff = sbi->total_valid_block_count - avail_user_block_count;
1528 		*count -= diff;
1529 		release = diff;
1530 		sbi->total_valid_block_count = avail_user_block_count;
1531 		if (!*count) {
1532 			spin_unlock(&sbi->stat_lock);
1533 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1534 			goto enospc;
1535 		}
1536 	}
1537 	spin_unlock(&sbi->stat_lock);
1538 
1539 	if (release)
1540 		dquot_release_reservation_block(inode, release);
1541 	f2fs_i_blocks_write(inode, *count, true, true);
1542 	return 0;
1543 
1544 enospc:
1545 	dquot_release_reservation_block(inode, release);
1546 	return -ENOSPC;
1547 }
1548 
1549 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1550 						struct inode *inode,
1551 						block_t count)
1552 {
1553 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1554 
1555 	spin_lock(&sbi->stat_lock);
1556 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1557 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1558 	sbi->total_valid_block_count -= (block_t)count;
1559 	spin_unlock(&sbi->stat_lock);
1560 	f2fs_i_blocks_write(inode, count, false, true);
1561 }
1562 
1563 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1564 {
1565 	atomic_inc(&sbi->nr_pages[count_type]);
1566 
1567 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1568 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1569 		return;
1570 
1571 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1572 }
1573 
1574 static inline void inode_inc_dirty_pages(struct inode *inode)
1575 {
1576 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1577 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1578 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1579 }
1580 
1581 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1582 {
1583 	atomic_dec(&sbi->nr_pages[count_type]);
1584 }
1585 
1586 static inline void inode_dec_dirty_pages(struct inode *inode)
1587 {
1588 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1589 			!S_ISLNK(inode->i_mode))
1590 		return;
1591 
1592 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1593 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1594 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1595 }
1596 
1597 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1598 {
1599 	return atomic_read(&sbi->nr_pages[count_type]);
1600 }
1601 
1602 static inline int get_dirty_pages(struct inode *inode)
1603 {
1604 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1605 }
1606 
1607 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1608 {
1609 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1610 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1611 						sbi->log_blocks_per_seg;
1612 
1613 	return segs / sbi->segs_per_sec;
1614 }
1615 
1616 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1617 {
1618 	return sbi->total_valid_block_count;
1619 }
1620 
1621 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1622 {
1623 	return sbi->discard_blks;
1624 }
1625 
1626 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1627 {
1628 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1629 
1630 	/* return NAT or SIT bitmap */
1631 	if (flag == NAT_BITMAP)
1632 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1633 	else if (flag == SIT_BITMAP)
1634 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1635 
1636 	return 0;
1637 }
1638 
1639 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1640 {
1641 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1642 }
1643 
1644 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1645 {
1646 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1647 	int offset;
1648 
1649 	if (__cp_payload(sbi) > 0) {
1650 		if (flag == NAT_BITMAP)
1651 			return &ckpt->sit_nat_version_bitmap;
1652 		else
1653 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1654 	} else {
1655 		offset = (flag == NAT_BITMAP) ?
1656 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1657 		return &ckpt->sit_nat_version_bitmap + offset;
1658 	}
1659 }
1660 
1661 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1662 {
1663 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1664 
1665 	if (sbi->cur_cp_pack == 2)
1666 		start_addr += sbi->blocks_per_seg;
1667 	return start_addr;
1668 }
1669 
1670 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1671 {
1672 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1673 
1674 	if (sbi->cur_cp_pack == 1)
1675 		start_addr += sbi->blocks_per_seg;
1676 	return start_addr;
1677 }
1678 
1679 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1680 {
1681 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1682 }
1683 
1684 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1685 {
1686 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1687 }
1688 
1689 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1690 					struct inode *inode, bool is_inode)
1691 {
1692 	block_t	valid_block_count;
1693 	unsigned int valid_node_count;
1694 	bool quota = inode && !is_inode;
1695 
1696 	if (quota) {
1697 		int ret = dquot_reserve_block(inode, 1);
1698 		if (ret)
1699 			return ret;
1700 	}
1701 
1702 	spin_lock(&sbi->stat_lock);
1703 
1704 	valid_block_count = sbi->total_valid_block_count + 1;
1705 	if (unlikely(valid_block_count + sbi->reserved_blocks >
1706 						sbi->user_block_count)) {
1707 		spin_unlock(&sbi->stat_lock);
1708 		goto enospc;
1709 	}
1710 
1711 	valid_node_count = sbi->total_valid_node_count + 1;
1712 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1713 		spin_unlock(&sbi->stat_lock);
1714 		goto enospc;
1715 	}
1716 
1717 	sbi->total_valid_node_count++;
1718 	sbi->total_valid_block_count++;
1719 	spin_unlock(&sbi->stat_lock);
1720 
1721 	if (inode) {
1722 		if (is_inode)
1723 			f2fs_mark_inode_dirty_sync(inode, true);
1724 		else
1725 			f2fs_i_blocks_write(inode, 1, true, true);
1726 	}
1727 
1728 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1729 	return 0;
1730 
1731 enospc:
1732 	if (quota)
1733 		dquot_release_reservation_block(inode, 1);
1734 	return -ENOSPC;
1735 }
1736 
1737 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1738 					struct inode *inode, bool is_inode)
1739 {
1740 	spin_lock(&sbi->stat_lock);
1741 
1742 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1743 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1744 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1745 
1746 	sbi->total_valid_node_count--;
1747 	sbi->total_valid_block_count--;
1748 
1749 	spin_unlock(&sbi->stat_lock);
1750 
1751 	if (!is_inode)
1752 		f2fs_i_blocks_write(inode, 1, false, true);
1753 }
1754 
1755 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1756 {
1757 	return sbi->total_valid_node_count;
1758 }
1759 
1760 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1761 {
1762 	percpu_counter_inc(&sbi->total_valid_inode_count);
1763 }
1764 
1765 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1766 {
1767 	percpu_counter_dec(&sbi->total_valid_inode_count);
1768 }
1769 
1770 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1771 {
1772 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1773 }
1774 
1775 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1776 						pgoff_t index, bool for_write)
1777 {
1778 #ifdef CONFIG_F2FS_FAULT_INJECTION
1779 	struct page *page = find_lock_page(mapping, index);
1780 
1781 	if (page)
1782 		return page;
1783 
1784 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1785 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1786 		return NULL;
1787 	}
1788 #endif
1789 	if (!for_write)
1790 		return grab_cache_page(mapping, index);
1791 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1792 }
1793 
1794 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1795 {
1796 	char *src_kaddr = kmap(src);
1797 	char *dst_kaddr = kmap(dst);
1798 
1799 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1800 	kunmap(dst);
1801 	kunmap(src);
1802 }
1803 
1804 static inline void f2fs_put_page(struct page *page, int unlock)
1805 {
1806 	if (!page)
1807 		return;
1808 
1809 	if (unlock) {
1810 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1811 		unlock_page(page);
1812 	}
1813 	put_page(page);
1814 }
1815 
1816 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1817 {
1818 	if (dn->node_page)
1819 		f2fs_put_page(dn->node_page, 1);
1820 	if (dn->inode_page && dn->node_page != dn->inode_page)
1821 		f2fs_put_page(dn->inode_page, 0);
1822 	dn->node_page = NULL;
1823 	dn->inode_page = NULL;
1824 }
1825 
1826 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1827 					size_t size)
1828 {
1829 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1830 }
1831 
1832 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1833 						gfp_t flags)
1834 {
1835 	void *entry;
1836 
1837 	entry = kmem_cache_alloc(cachep, flags);
1838 	if (!entry)
1839 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1840 	return entry;
1841 }
1842 
1843 static inline struct bio *f2fs_bio_alloc(int npages)
1844 {
1845 	struct bio *bio;
1846 
1847 	/* No failure on bio allocation */
1848 	bio = bio_alloc(GFP_NOIO, npages);
1849 	if (!bio)
1850 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1851 	return bio;
1852 }
1853 
1854 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1855 				unsigned long index, void *item)
1856 {
1857 	while (radix_tree_insert(root, index, item))
1858 		cond_resched();
1859 }
1860 
1861 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1862 
1863 static inline bool IS_INODE(struct page *page)
1864 {
1865 	struct f2fs_node *p = F2FS_NODE(page);
1866 
1867 	return RAW_IS_INODE(p);
1868 }
1869 
1870 static inline int offset_in_addr(struct f2fs_inode *i)
1871 {
1872 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
1873 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1874 }
1875 
1876 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1877 {
1878 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1879 }
1880 
1881 static inline int f2fs_has_extra_attr(struct inode *inode);
1882 static inline block_t datablock_addr(struct inode *inode,
1883 			struct page *node_page, unsigned int offset)
1884 {
1885 	struct f2fs_node *raw_node;
1886 	__le32 *addr_array;
1887 	int base = 0;
1888 	bool is_inode = IS_INODE(node_page);
1889 
1890 	raw_node = F2FS_NODE(node_page);
1891 
1892 	/* from GC path only */
1893 	if (!inode) {
1894 		if (is_inode)
1895 			base = offset_in_addr(&raw_node->i);
1896 	} else if (f2fs_has_extra_attr(inode) && is_inode) {
1897 		base = get_extra_isize(inode);
1898 	}
1899 
1900 	addr_array = blkaddr_in_node(raw_node);
1901 	return le32_to_cpu(addr_array[base + offset]);
1902 }
1903 
1904 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1905 {
1906 	int mask;
1907 
1908 	addr += (nr >> 3);
1909 	mask = 1 << (7 - (nr & 0x07));
1910 	return mask & *addr;
1911 }
1912 
1913 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1914 {
1915 	int mask;
1916 
1917 	addr += (nr >> 3);
1918 	mask = 1 << (7 - (nr & 0x07));
1919 	*addr |= mask;
1920 }
1921 
1922 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1923 {
1924 	int mask;
1925 
1926 	addr += (nr >> 3);
1927 	mask = 1 << (7 - (nr & 0x07));
1928 	*addr &= ~mask;
1929 }
1930 
1931 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1932 {
1933 	int mask;
1934 	int ret;
1935 
1936 	addr += (nr >> 3);
1937 	mask = 1 << (7 - (nr & 0x07));
1938 	ret = mask & *addr;
1939 	*addr |= mask;
1940 	return ret;
1941 }
1942 
1943 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1944 {
1945 	int mask;
1946 	int ret;
1947 
1948 	addr += (nr >> 3);
1949 	mask = 1 << (7 - (nr & 0x07));
1950 	ret = mask & *addr;
1951 	*addr &= ~mask;
1952 	return ret;
1953 }
1954 
1955 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1956 {
1957 	int mask;
1958 
1959 	addr += (nr >> 3);
1960 	mask = 1 << (7 - (nr & 0x07));
1961 	*addr ^= mask;
1962 }
1963 
1964 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1965 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1966 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
1967 
1968 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1969 {
1970 	if (S_ISDIR(mode))
1971 		return flags;
1972 	else if (S_ISREG(mode))
1973 		return flags & F2FS_REG_FLMASK;
1974 	else
1975 		return flags & F2FS_OTHER_FLMASK;
1976 }
1977 
1978 /* used for f2fs_inode_info->flags */
1979 enum {
1980 	FI_NEW_INODE,		/* indicate newly allocated inode */
1981 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1982 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1983 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1984 	FI_INC_LINK,		/* need to increment i_nlink */
1985 	FI_ACL_MODE,		/* indicate acl mode */
1986 	FI_NO_ALLOC,		/* should not allocate any blocks */
1987 	FI_FREE_NID,		/* free allocated nide */
1988 	FI_NO_EXTENT,		/* not to use the extent cache */
1989 	FI_INLINE_XATTR,	/* used for inline xattr */
1990 	FI_INLINE_DATA,		/* used for inline data*/
1991 	FI_INLINE_DENTRY,	/* used for inline dentry */
1992 	FI_APPEND_WRITE,	/* inode has appended data */
1993 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1994 	FI_NEED_IPU,		/* used for ipu per file */
1995 	FI_ATOMIC_FILE,		/* indicate atomic file */
1996 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
1997 	FI_VOLATILE_FILE,	/* indicate volatile file */
1998 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1999 	FI_DROP_CACHE,		/* drop dirty page cache */
2000 	FI_DATA_EXIST,		/* indicate data exists */
2001 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2002 	FI_DO_DEFRAG,		/* indicate defragment is running */
2003 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2004 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2005 	FI_HOT_DATA,		/* indicate file is hot */
2006 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2007 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2008 };
2009 
2010 static inline void __mark_inode_dirty_flag(struct inode *inode,
2011 						int flag, bool set)
2012 {
2013 	switch (flag) {
2014 	case FI_INLINE_XATTR:
2015 	case FI_INLINE_DATA:
2016 	case FI_INLINE_DENTRY:
2017 		if (set)
2018 			return;
2019 	case FI_DATA_EXIST:
2020 	case FI_INLINE_DOTS:
2021 		f2fs_mark_inode_dirty_sync(inode, true);
2022 	}
2023 }
2024 
2025 static inline void set_inode_flag(struct inode *inode, int flag)
2026 {
2027 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2028 		set_bit(flag, &F2FS_I(inode)->flags);
2029 	__mark_inode_dirty_flag(inode, flag, true);
2030 }
2031 
2032 static inline int is_inode_flag_set(struct inode *inode, int flag)
2033 {
2034 	return test_bit(flag, &F2FS_I(inode)->flags);
2035 }
2036 
2037 static inline void clear_inode_flag(struct inode *inode, int flag)
2038 {
2039 	if (test_bit(flag, &F2FS_I(inode)->flags))
2040 		clear_bit(flag, &F2FS_I(inode)->flags);
2041 	__mark_inode_dirty_flag(inode, flag, false);
2042 }
2043 
2044 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2045 {
2046 	F2FS_I(inode)->i_acl_mode = mode;
2047 	set_inode_flag(inode, FI_ACL_MODE);
2048 	f2fs_mark_inode_dirty_sync(inode, false);
2049 }
2050 
2051 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2052 {
2053 	if (inc)
2054 		inc_nlink(inode);
2055 	else
2056 		drop_nlink(inode);
2057 	f2fs_mark_inode_dirty_sync(inode, true);
2058 }
2059 
2060 static inline void f2fs_i_blocks_write(struct inode *inode,
2061 					block_t diff, bool add, bool claim)
2062 {
2063 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2064 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2065 
2066 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2067 	if (add) {
2068 		if (claim)
2069 			dquot_claim_block(inode, diff);
2070 		else
2071 			dquot_alloc_block_nofail(inode, diff);
2072 	} else {
2073 		dquot_free_block(inode, diff);
2074 	}
2075 
2076 	f2fs_mark_inode_dirty_sync(inode, true);
2077 	if (clean || recover)
2078 		set_inode_flag(inode, FI_AUTO_RECOVER);
2079 }
2080 
2081 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2082 {
2083 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2084 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2085 
2086 	if (i_size_read(inode) == i_size)
2087 		return;
2088 
2089 	i_size_write(inode, i_size);
2090 	f2fs_mark_inode_dirty_sync(inode, true);
2091 	if (clean || recover)
2092 		set_inode_flag(inode, FI_AUTO_RECOVER);
2093 }
2094 
2095 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2096 {
2097 	F2FS_I(inode)->i_current_depth = depth;
2098 	f2fs_mark_inode_dirty_sync(inode, true);
2099 }
2100 
2101 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2102 {
2103 	F2FS_I(inode)->i_xattr_nid = xnid;
2104 	f2fs_mark_inode_dirty_sync(inode, true);
2105 }
2106 
2107 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2108 {
2109 	F2FS_I(inode)->i_pino = pino;
2110 	f2fs_mark_inode_dirty_sync(inode, true);
2111 }
2112 
2113 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2114 {
2115 	struct f2fs_inode_info *fi = F2FS_I(inode);
2116 
2117 	if (ri->i_inline & F2FS_INLINE_XATTR)
2118 		set_bit(FI_INLINE_XATTR, &fi->flags);
2119 	if (ri->i_inline & F2FS_INLINE_DATA)
2120 		set_bit(FI_INLINE_DATA, &fi->flags);
2121 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2122 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2123 	if (ri->i_inline & F2FS_DATA_EXIST)
2124 		set_bit(FI_DATA_EXIST, &fi->flags);
2125 	if (ri->i_inline & F2FS_INLINE_DOTS)
2126 		set_bit(FI_INLINE_DOTS, &fi->flags);
2127 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2128 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2129 }
2130 
2131 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2132 {
2133 	ri->i_inline = 0;
2134 
2135 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2136 		ri->i_inline |= F2FS_INLINE_XATTR;
2137 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2138 		ri->i_inline |= F2FS_INLINE_DATA;
2139 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2140 		ri->i_inline |= F2FS_INLINE_DENTRY;
2141 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2142 		ri->i_inline |= F2FS_DATA_EXIST;
2143 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2144 		ri->i_inline |= F2FS_INLINE_DOTS;
2145 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2146 		ri->i_inline |= F2FS_EXTRA_ATTR;
2147 }
2148 
2149 static inline int f2fs_has_extra_attr(struct inode *inode)
2150 {
2151 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2152 }
2153 
2154 static inline int f2fs_has_inline_xattr(struct inode *inode)
2155 {
2156 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2157 }
2158 
2159 static inline unsigned int addrs_per_inode(struct inode *inode)
2160 {
2161 	if (f2fs_has_inline_xattr(inode))
2162 		return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS;
2163 	return CUR_ADDRS_PER_INODE(inode);
2164 }
2165 
2166 static inline void *inline_xattr_addr(struct page *page)
2167 {
2168 	struct f2fs_inode *ri = F2FS_INODE(page);
2169 
2170 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2171 					F2FS_INLINE_XATTR_ADDRS]);
2172 }
2173 
2174 static inline int inline_xattr_size(struct inode *inode)
2175 {
2176 	if (f2fs_has_inline_xattr(inode))
2177 		return F2FS_INLINE_XATTR_ADDRS << 2;
2178 	else
2179 		return 0;
2180 }
2181 
2182 static inline int f2fs_has_inline_data(struct inode *inode)
2183 {
2184 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2185 }
2186 
2187 static inline int f2fs_exist_data(struct inode *inode)
2188 {
2189 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2190 }
2191 
2192 static inline int f2fs_has_inline_dots(struct inode *inode)
2193 {
2194 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2195 }
2196 
2197 static inline bool f2fs_is_atomic_file(struct inode *inode)
2198 {
2199 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2200 }
2201 
2202 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2203 {
2204 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2205 }
2206 
2207 static inline bool f2fs_is_volatile_file(struct inode *inode)
2208 {
2209 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2210 }
2211 
2212 static inline bool f2fs_is_first_block_written(struct inode *inode)
2213 {
2214 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2215 }
2216 
2217 static inline bool f2fs_is_drop_cache(struct inode *inode)
2218 {
2219 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2220 }
2221 
2222 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2223 {
2224 	struct f2fs_inode *ri = F2FS_INODE(page);
2225 	int extra_size = get_extra_isize(inode);
2226 
2227 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2228 }
2229 
2230 static inline int f2fs_has_inline_dentry(struct inode *inode)
2231 {
2232 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2233 }
2234 
2235 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2236 {
2237 	if (!f2fs_has_inline_dentry(dir))
2238 		kunmap(page);
2239 }
2240 
2241 static inline int is_file(struct inode *inode, int type)
2242 {
2243 	return F2FS_I(inode)->i_advise & type;
2244 }
2245 
2246 static inline void set_file(struct inode *inode, int type)
2247 {
2248 	F2FS_I(inode)->i_advise |= type;
2249 	f2fs_mark_inode_dirty_sync(inode, true);
2250 }
2251 
2252 static inline void clear_file(struct inode *inode, int type)
2253 {
2254 	F2FS_I(inode)->i_advise &= ~type;
2255 	f2fs_mark_inode_dirty_sync(inode, true);
2256 }
2257 
2258 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2259 {
2260 	if (dsync) {
2261 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2262 		bool ret;
2263 
2264 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2265 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2266 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2267 		return ret;
2268 	}
2269 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2270 			file_keep_isize(inode) ||
2271 			i_size_read(inode) & PAGE_MASK)
2272 		return false;
2273 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2274 }
2275 
2276 static inline int f2fs_readonly(struct super_block *sb)
2277 {
2278 	return sb->s_flags & MS_RDONLY;
2279 }
2280 
2281 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2282 {
2283 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2284 }
2285 
2286 static inline bool is_dot_dotdot(const struct qstr *str)
2287 {
2288 	if (str->len == 1 && str->name[0] == '.')
2289 		return true;
2290 
2291 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2292 		return true;
2293 
2294 	return false;
2295 }
2296 
2297 static inline bool f2fs_may_extent_tree(struct inode *inode)
2298 {
2299 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2300 			is_inode_flag_set(inode, FI_NO_EXTENT))
2301 		return false;
2302 
2303 	return S_ISREG(inode->i_mode);
2304 }
2305 
2306 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2307 					size_t size, gfp_t flags)
2308 {
2309 #ifdef CONFIG_F2FS_FAULT_INJECTION
2310 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2311 		f2fs_show_injection_info(FAULT_KMALLOC);
2312 		return NULL;
2313 	}
2314 #endif
2315 	return kmalloc(size, flags);
2316 }
2317 
2318 static inline int get_extra_isize(struct inode *inode)
2319 {
2320 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2321 }
2322 
2323 #define get_inode_mode(i) \
2324 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2325 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2326 
2327 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2328 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2329 	offsetof(struct f2fs_inode, i_extra_isize))	\
2330 
2331 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2332 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2333 		((offsetof(typeof(*f2fs_inode), field) +	\
2334 		sizeof((f2fs_inode)->field))			\
2335 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2336 
2337 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2338 {
2339 	int i;
2340 
2341 	spin_lock(&sbi->iostat_lock);
2342 	for (i = 0; i < NR_IO_TYPE; i++)
2343 		sbi->write_iostat[i] = 0;
2344 	spin_unlock(&sbi->iostat_lock);
2345 }
2346 
2347 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2348 			enum iostat_type type, unsigned long long io_bytes)
2349 {
2350 	if (!sbi->iostat_enable)
2351 		return;
2352 	spin_lock(&sbi->iostat_lock);
2353 	sbi->write_iostat[type] += io_bytes;
2354 
2355 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2356 		sbi->write_iostat[APP_BUFFERED_IO] =
2357 			sbi->write_iostat[APP_WRITE_IO] -
2358 			sbi->write_iostat[APP_DIRECT_IO];
2359 	spin_unlock(&sbi->iostat_lock);
2360 }
2361 
2362 /*
2363  * file.c
2364  */
2365 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2366 void truncate_data_blocks(struct dnode_of_data *dn);
2367 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2368 int f2fs_truncate(struct inode *inode);
2369 int f2fs_getattr(const struct path *path, struct kstat *stat,
2370 			u32 request_mask, unsigned int flags);
2371 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2372 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2373 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2374 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2375 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2376 
2377 /*
2378  * inode.c
2379  */
2380 void f2fs_set_inode_flags(struct inode *inode);
2381 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2382 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2383 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2384 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2385 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2386 int update_inode(struct inode *inode, struct page *node_page);
2387 int update_inode_page(struct inode *inode);
2388 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2389 void f2fs_evict_inode(struct inode *inode);
2390 void handle_failed_inode(struct inode *inode);
2391 
2392 /*
2393  * namei.c
2394  */
2395 struct dentry *f2fs_get_parent(struct dentry *child);
2396 
2397 /*
2398  * dir.c
2399  */
2400 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2401 unsigned char get_de_type(struct f2fs_dir_entry *de);
2402 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2403 			f2fs_hash_t namehash, int *max_slots,
2404 			struct f2fs_dentry_ptr *d);
2405 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2406 			unsigned int start_pos, struct fscrypt_str *fstr);
2407 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2408 			struct f2fs_dentry_ptr *d);
2409 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2410 			const struct qstr *new_name,
2411 			const struct qstr *orig_name, struct page *dpage);
2412 void update_parent_metadata(struct inode *dir, struct inode *inode,
2413 			unsigned int current_depth);
2414 int room_for_filename(const void *bitmap, int slots, int max_slots);
2415 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2416 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2417 			struct fscrypt_name *fname, struct page **res_page);
2418 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2419 			const struct qstr *child, struct page **res_page);
2420 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2421 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2422 			struct page **page);
2423 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2424 			struct page *page, struct inode *inode);
2425 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2426 			const struct qstr *name, f2fs_hash_t name_hash,
2427 			unsigned int bit_pos);
2428 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2429 			const struct qstr *orig_name,
2430 			struct inode *inode, nid_t ino, umode_t mode);
2431 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2432 			struct inode *inode, nid_t ino, umode_t mode);
2433 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2434 			struct inode *inode, nid_t ino, umode_t mode);
2435 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2436 			struct inode *dir, struct inode *inode);
2437 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2438 bool f2fs_empty_dir(struct inode *dir);
2439 
2440 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2441 {
2442 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2443 				inode, inode->i_ino, inode->i_mode);
2444 }
2445 
2446 /*
2447  * super.c
2448  */
2449 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2450 void f2fs_inode_synced(struct inode *inode);
2451 void f2fs_enable_quota_files(struct f2fs_sb_info *sbi);
2452 void f2fs_quota_off_umount(struct super_block *sb);
2453 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2454 int f2fs_sync_fs(struct super_block *sb, int sync);
2455 extern __printf(3, 4)
2456 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2457 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2458 
2459 /*
2460  * hash.c
2461  */
2462 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2463 				struct fscrypt_name *fname);
2464 
2465 /*
2466  * node.c
2467  */
2468 struct dnode_of_data;
2469 struct node_info;
2470 
2471 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2472 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2473 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2474 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2475 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2476 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2477 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2478 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2479 int truncate_xattr_node(struct inode *inode, struct page *page);
2480 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2481 int remove_inode_page(struct inode *inode);
2482 struct page *new_inode_page(struct inode *inode);
2483 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2484 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2485 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2486 struct page *get_node_page_ra(struct page *parent, int start);
2487 void move_node_page(struct page *node_page, int gc_type);
2488 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2489 			struct writeback_control *wbc, bool atomic);
2490 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2491 			bool do_balance, enum iostat_type io_type);
2492 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2493 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2494 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2495 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2496 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2497 void recover_inline_xattr(struct inode *inode, struct page *page);
2498 int recover_xattr_data(struct inode *inode, struct page *page,
2499 			block_t blkaddr);
2500 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2501 int restore_node_summary(struct f2fs_sb_info *sbi,
2502 			unsigned int segno, struct f2fs_summary_block *sum);
2503 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2504 int build_node_manager(struct f2fs_sb_info *sbi);
2505 void destroy_node_manager(struct f2fs_sb_info *sbi);
2506 int __init create_node_manager_caches(void);
2507 void destroy_node_manager_caches(void);
2508 
2509 /*
2510  * segment.c
2511  */
2512 bool need_SSR(struct f2fs_sb_info *sbi);
2513 void register_inmem_page(struct inode *inode, struct page *page);
2514 void drop_inmem_pages(struct inode *inode);
2515 void drop_inmem_page(struct inode *inode, struct page *page);
2516 int commit_inmem_pages(struct inode *inode);
2517 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2518 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2519 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2520 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2521 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2522 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2523 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2524 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2525 void stop_discard_thread(struct f2fs_sb_info *sbi);
2526 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi, bool umount);
2527 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2528 void release_discard_addrs(struct f2fs_sb_info *sbi);
2529 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2530 void allocate_new_segments(struct f2fs_sb_info *sbi);
2531 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2532 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2533 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2534 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2535 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2536 						enum iostat_type io_type);
2537 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2538 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2539 int rewrite_data_page(struct f2fs_io_info *fio);
2540 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2541 			block_t old_blkaddr, block_t new_blkaddr,
2542 			bool recover_curseg, bool recover_newaddr);
2543 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2544 			block_t old_addr, block_t new_addr,
2545 			unsigned char version, bool recover_curseg,
2546 			bool recover_newaddr);
2547 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2548 			block_t old_blkaddr, block_t *new_blkaddr,
2549 			struct f2fs_summary *sum, int type,
2550 			struct f2fs_io_info *fio, bool add_list);
2551 void f2fs_wait_on_page_writeback(struct page *page,
2552 			enum page_type type, bool ordered);
2553 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2554 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2555 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2556 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2557 			unsigned int val, int alloc);
2558 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2559 int build_segment_manager(struct f2fs_sb_info *sbi);
2560 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2561 int __init create_segment_manager_caches(void);
2562 void destroy_segment_manager_caches(void);
2563 
2564 /*
2565  * checkpoint.c
2566  */
2567 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2568 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2569 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2570 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2571 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2572 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2573 			int type, bool sync);
2574 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2575 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2576 			long nr_to_write, enum iostat_type io_type);
2577 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2578 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2579 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2580 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2581 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2582 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2583 void release_orphan_inode(struct f2fs_sb_info *sbi);
2584 void add_orphan_inode(struct inode *inode);
2585 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2586 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2587 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2588 void update_dirty_page(struct inode *inode, struct page *page);
2589 void remove_dirty_inode(struct inode *inode);
2590 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2591 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2592 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2593 int __init create_checkpoint_caches(void);
2594 void destroy_checkpoint_caches(void);
2595 
2596 /*
2597  * data.c
2598  */
2599 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2600 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2601 				struct inode *inode, nid_t ino, pgoff_t idx,
2602 				enum page_type type);
2603 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2604 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2605 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2606 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2607 			block_t blk_addr, struct bio *bio);
2608 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2609 void set_data_blkaddr(struct dnode_of_data *dn);
2610 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2611 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2612 int reserve_new_block(struct dnode_of_data *dn);
2613 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2614 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2615 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2616 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2617 			int op_flags, bool for_write);
2618 struct page *find_data_page(struct inode *inode, pgoff_t index);
2619 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2620 			bool for_write);
2621 struct page *get_new_data_page(struct inode *inode,
2622 			struct page *ipage, pgoff_t index, bool new_i_size);
2623 int do_write_data_page(struct f2fs_io_info *fio);
2624 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2625 			int create, int flag);
2626 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2627 			u64 start, u64 len);
2628 void f2fs_set_page_dirty_nobuffers(struct page *page);
2629 int __f2fs_write_data_pages(struct address_space *mapping,
2630 						struct writeback_control *wbc,
2631 						enum iostat_type io_type);
2632 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2633 			unsigned int length);
2634 int f2fs_release_page(struct page *page, gfp_t wait);
2635 #ifdef CONFIG_MIGRATION
2636 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2637 			struct page *page, enum migrate_mode mode);
2638 #endif
2639 
2640 /*
2641  * gc.c
2642  */
2643 int start_gc_thread(struct f2fs_sb_info *sbi);
2644 void stop_gc_thread(struct f2fs_sb_info *sbi);
2645 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2646 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2647 			unsigned int segno);
2648 void build_gc_manager(struct f2fs_sb_info *sbi);
2649 
2650 /*
2651  * recovery.c
2652  */
2653 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2654 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2655 
2656 /*
2657  * debug.c
2658  */
2659 #ifdef CONFIG_F2FS_STAT_FS
2660 struct f2fs_stat_info {
2661 	struct list_head stat_list;
2662 	struct f2fs_sb_info *sbi;
2663 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2664 	int main_area_segs, main_area_sections, main_area_zones;
2665 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2666 	unsigned long long hit_total, total_ext;
2667 	int ext_tree, zombie_tree, ext_node;
2668 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2669 	int inmem_pages;
2670 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2671 	int nats, dirty_nats, sits, dirty_sits;
2672 	int free_nids, avail_nids, alloc_nids;
2673 	int total_count, utilization;
2674 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2675 	int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2676 	int nr_discard_cmd;
2677 	unsigned int undiscard_blks;
2678 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2679 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2680 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2681 	unsigned int bimodal, avg_vblocks;
2682 	int util_free, util_valid, util_invalid;
2683 	int rsvd_segs, overp_segs;
2684 	int dirty_count, node_pages, meta_pages;
2685 	int prefree_count, call_count, cp_count, bg_cp_count;
2686 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2687 	int bg_node_segs, bg_data_segs;
2688 	int tot_blks, data_blks, node_blks;
2689 	int bg_data_blks, bg_node_blks;
2690 	int curseg[NR_CURSEG_TYPE];
2691 	int cursec[NR_CURSEG_TYPE];
2692 	int curzone[NR_CURSEG_TYPE];
2693 
2694 	unsigned int segment_count[2];
2695 	unsigned int block_count[2];
2696 	unsigned int inplace_count;
2697 	unsigned long long base_mem, cache_mem, page_mem;
2698 };
2699 
2700 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2701 {
2702 	return (struct f2fs_stat_info *)sbi->stat_info;
2703 }
2704 
2705 #define stat_inc_cp_count(si)		((si)->cp_count++)
2706 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2707 #define stat_inc_call_count(si)		((si)->call_count++)
2708 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2709 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2710 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2711 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2712 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2713 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2714 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2715 #define stat_inc_inline_xattr(inode)					\
2716 	do {								\
2717 		if (f2fs_has_inline_xattr(inode))			\
2718 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2719 	} while (0)
2720 #define stat_dec_inline_xattr(inode)					\
2721 	do {								\
2722 		if (f2fs_has_inline_xattr(inode))			\
2723 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2724 	} while (0)
2725 #define stat_inc_inline_inode(inode)					\
2726 	do {								\
2727 		if (f2fs_has_inline_data(inode))			\
2728 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2729 	} while (0)
2730 #define stat_dec_inline_inode(inode)					\
2731 	do {								\
2732 		if (f2fs_has_inline_data(inode))			\
2733 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2734 	} while (0)
2735 #define stat_inc_inline_dir(inode)					\
2736 	do {								\
2737 		if (f2fs_has_inline_dentry(inode))			\
2738 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2739 	} while (0)
2740 #define stat_dec_inline_dir(inode)					\
2741 	do {								\
2742 		if (f2fs_has_inline_dentry(inode))			\
2743 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2744 	} while (0)
2745 #define stat_inc_seg_type(sbi, curseg)					\
2746 		((sbi)->segment_count[(curseg)->alloc_type]++)
2747 #define stat_inc_block_count(sbi, curseg)				\
2748 		((sbi)->block_count[(curseg)->alloc_type]++)
2749 #define stat_inc_inplace_blocks(sbi)					\
2750 		(atomic_inc(&(sbi)->inplace_count))
2751 #define stat_inc_atomic_write(inode)					\
2752 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2753 #define stat_dec_atomic_write(inode)					\
2754 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2755 #define stat_update_max_atomic_write(inode)				\
2756 	do {								\
2757 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2758 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2759 		if (cur > max)						\
2760 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2761 	} while (0)
2762 #define stat_inc_volatile_write(inode)					\
2763 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2764 #define stat_dec_volatile_write(inode)					\
2765 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2766 #define stat_update_max_volatile_write(inode)				\
2767 	do {								\
2768 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
2769 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
2770 		if (cur > max)						\
2771 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
2772 	} while (0)
2773 #define stat_inc_seg_count(sbi, type, gc_type)				\
2774 	do {								\
2775 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2776 		si->tot_segs++;						\
2777 		if ((type) == SUM_TYPE_DATA) {				\
2778 			si->data_segs++;				\
2779 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2780 		} else {						\
2781 			si->node_segs++;				\
2782 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2783 		}							\
2784 	} while (0)
2785 
2786 #define stat_inc_tot_blk_count(si, blks)				\
2787 	((si)->tot_blks += (blks))
2788 
2789 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2790 	do {								\
2791 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2792 		stat_inc_tot_blk_count(si, blks);			\
2793 		si->data_blks += (blks);				\
2794 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2795 	} while (0)
2796 
2797 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2798 	do {								\
2799 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2800 		stat_inc_tot_blk_count(si, blks);			\
2801 		si->node_blks += (blks);				\
2802 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2803 	} while (0)
2804 
2805 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2806 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2807 int __init f2fs_create_root_stats(void);
2808 void f2fs_destroy_root_stats(void);
2809 #else
2810 #define stat_inc_cp_count(si)				do { } while (0)
2811 #define stat_inc_bg_cp_count(si)			do { } while (0)
2812 #define stat_inc_call_count(si)				do { } while (0)
2813 #define stat_inc_bggc_count(si)				do { } while (0)
2814 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
2815 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
2816 #define stat_inc_total_hit(sb)				do { } while (0)
2817 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
2818 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
2819 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
2820 #define stat_inc_inline_xattr(inode)			do { } while (0)
2821 #define stat_dec_inline_xattr(inode)			do { } while (0)
2822 #define stat_inc_inline_inode(inode)			do { } while (0)
2823 #define stat_dec_inline_inode(inode)			do { } while (0)
2824 #define stat_inc_inline_dir(inode)			do { } while (0)
2825 #define stat_dec_inline_dir(inode)			do { } while (0)
2826 #define stat_inc_atomic_write(inode)			do { } while (0)
2827 #define stat_dec_atomic_write(inode)			do { } while (0)
2828 #define stat_update_max_atomic_write(inode)		do { } while (0)
2829 #define stat_inc_volatile_write(inode)			do { } while (0)
2830 #define stat_dec_volatile_write(inode)			do { } while (0)
2831 #define stat_update_max_volatile_write(inode)		do { } while (0)
2832 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
2833 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
2834 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
2835 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
2836 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
2837 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
2838 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
2839 
2840 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2841 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2842 static inline int __init f2fs_create_root_stats(void) { return 0; }
2843 static inline void f2fs_destroy_root_stats(void) { }
2844 #endif
2845 
2846 extern const struct file_operations f2fs_dir_operations;
2847 extern const struct file_operations f2fs_file_operations;
2848 extern const struct inode_operations f2fs_file_inode_operations;
2849 extern const struct address_space_operations f2fs_dblock_aops;
2850 extern const struct address_space_operations f2fs_node_aops;
2851 extern const struct address_space_operations f2fs_meta_aops;
2852 extern const struct inode_operations f2fs_dir_inode_operations;
2853 extern const struct inode_operations f2fs_symlink_inode_operations;
2854 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2855 extern const struct inode_operations f2fs_special_inode_operations;
2856 extern struct kmem_cache *inode_entry_slab;
2857 
2858 /*
2859  * inline.c
2860  */
2861 bool f2fs_may_inline_data(struct inode *inode);
2862 bool f2fs_may_inline_dentry(struct inode *inode);
2863 void read_inline_data(struct page *page, struct page *ipage);
2864 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2865 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2866 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2867 int f2fs_convert_inline_inode(struct inode *inode);
2868 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2869 bool recover_inline_data(struct inode *inode, struct page *npage);
2870 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2871 			struct fscrypt_name *fname, struct page **res_page);
2872 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2873 			struct page *ipage);
2874 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2875 			const struct qstr *orig_name,
2876 			struct inode *inode, nid_t ino, umode_t mode);
2877 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2878 			struct inode *dir, struct inode *inode);
2879 bool f2fs_empty_inline_dir(struct inode *dir);
2880 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2881 			struct fscrypt_str *fstr);
2882 int f2fs_inline_data_fiemap(struct inode *inode,
2883 			struct fiemap_extent_info *fieinfo,
2884 			__u64 start, __u64 len);
2885 
2886 /*
2887  * shrinker.c
2888  */
2889 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2890 			struct shrink_control *sc);
2891 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2892 			struct shrink_control *sc);
2893 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2894 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2895 
2896 /*
2897  * extent_cache.c
2898  */
2899 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2900 				struct rb_entry *cached_re, unsigned int ofs);
2901 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2902 				struct rb_root *root, struct rb_node **parent,
2903 				unsigned int ofs);
2904 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2905 		struct rb_entry *cached_re, unsigned int ofs,
2906 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
2907 		struct rb_node ***insert_p, struct rb_node **insert_parent,
2908 		bool force);
2909 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2910 						struct rb_root *root);
2911 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2912 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2913 void f2fs_drop_extent_tree(struct inode *inode);
2914 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2915 void f2fs_destroy_extent_tree(struct inode *inode);
2916 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2917 			struct extent_info *ei);
2918 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2919 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2920 			pgoff_t fofs, block_t blkaddr, unsigned int len);
2921 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2922 int __init create_extent_cache(void);
2923 void destroy_extent_cache(void);
2924 
2925 /*
2926  * sysfs.c
2927  */
2928 int __init f2fs_init_sysfs(void);
2929 void f2fs_exit_sysfs(void);
2930 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
2931 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
2932 
2933 /*
2934  * crypto support
2935  */
2936 static inline bool f2fs_encrypted_inode(struct inode *inode)
2937 {
2938 	return file_is_encrypt(inode);
2939 }
2940 
2941 static inline bool f2fs_encrypted_file(struct inode *inode)
2942 {
2943 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
2944 }
2945 
2946 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2947 {
2948 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2949 	file_set_encrypt(inode);
2950 	inode->i_flags |= S_ENCRYPTED;
2951 #endif
2952 }
2953 
2954 static inline bool f2fs_bio_encrypted(struct bio *bio)
2955 {
2956 	return bio->bi_private != NULL;
2957 }
2958 
2959 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2960 {
2961 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2962 }
2963 
2964 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2965 {
2966 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2967 }
2968 
2969 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
2970 {
2971 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
2972 }
2973 
2974 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
2975 {
2976 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
2977 }
2978 
2979 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
2980 {
2981 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
2982 }
2983 
2984 #ifdef CONFIG_BLK_DEV_ZONED
2985 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2986 			struct block_device *bdev, block_t blkaddr)
2987 {
2988 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2989 	int i;
2990 
2991 	for (i = 0; i < sbi->s_ndevs; i++)
2992 		if (FDEV(i).bdev == bdev)
2993 			return FDEV(i).blkz_type[zno];
2994 	return -EINVAL;
2995 }
2996 #endif
2997 
2998 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2999 {
3000 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3001 
3002 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3003 }
3004 
3005 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3006 {
3007 	clear_opt(sbi, ADAPTIVE);
3008 	clear_opt(sbi, LFS);
3009 
3010 	switch (mt) {
3011 	case F2FS_MOUNT_ADAPTIVE:
3012 		set_opt(sbi, ADAPTIVE);
3013 		break;
3014 	case F2FS_MOUNT_LFS:
3015 		set_opt(sbi, LFS);
3016 		break;
3017 	}
3018 }
3019 
3020 static inline bool f2fs_may_encrypt(struct inode *inode)
3021 {
3022 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3023 	umode_t mode = inode->i_mode;
3024 
3025 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3026 #else
3027 	return 0;
3028 #endif
3029 }
3030 
3031 #endif
3032