1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static struct ratelimit_state ext4_mount_msg_ratelimit; 59 60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 61 unsigned long journal_devnum); 62 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 63 static int ext4_commit_super(struct super_block *sb, int sync); 64 static void ext4_mark_recovery_complete(struct super_block *sb, 65 struct ext4_super_block *es); 66 static void ext4_clear_journal_err(struct super_block *sb, 67 struct ext4_super_block *es); 68 static int ext4_sync_fs(struct super_block *sb, int wait); 69 static int ext4_remount(struct super_block *sb, int *flags, char *data); 70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 71 static int ext4_unfreeze(struct super_block *sb); 72 static int ext4_freeze(struct super_block *sb); 73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 74 const char *dev_name, void *data); 75 static inline int ext2_feature_set_ok(struct super_block *sb); 76 static inline int ext3_feature_set_ok(struct super_block *sb); 77 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 78 static void ext4_destroy_lazyinit_thread(void); 79 static void ext4_unregister_li_request(struct super_block *sb); 80 static void ext4_clear_request_list(void); 81 82 /* 83 * Lock ordering 84 * 85 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 86 * i_mmap_rwsem (inode->i_mmap_rwsem)! 87 * 88 * page fault path: 89 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 90 * page lock -> i_data_sem (rw) 91 * 92 * buffered write path: 93 * sb_start_write -> i_mutex -> mmap_sem 94 * sb_start_write -> i_mutex -> transaction start -> page lock -> 95 * i_data_sem (rw) 96 * 97 * truncate: 98 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 99 * i_mmap_rwsem (w) -> page lock 100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 101 * transaction start -> i_data_sem (rw) 102 * 103 * direct IO: 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 106 * transaction start -> i_data_sem (rw) 107 * 108 * writepages: 109 * transaction start -> page lock(s) -> i_data_sem (rw) 110 */ 111 112 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 113 static struct file_system_type ext2_fs_type = { 114 .owner = THIS_MODULE, 115 .name = "ext2", 116 .mount = ext4_mount, 117 .kill_sb = kill_block_super, 118 .fs_flags = FS_REQUIRES_DEV, 119 }; 120 MODULE_ALIAS_FS("ext2"); 121 MODULE_ALIAS("ext2"); 122 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 123 #else 124 #define IS_EXT2_SB(sb) (0) 125 #endif 126 127 128 static struct file_system_type ext3_fs_type = { 129 .owner = THIS_MODULE, 130 .name = "ext3", 131 .mount = ext4_mount, 132 .kill_sb = kill_block_super, 133 .fs_flags = FS_REQUIRES_DEV, 134 }; 135 MODULE_ALIAS_FS("ext3"); 136 MODULE_ALIAS("ext3"); 137 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 138 139 static int ext4_verify_csum_type(struct super_block *sb, 140 struct ext4_super_block *es) 141 { 142 if (!ext4_has_feature_metadata_csum(sb)) 143 return 1; 144 145 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 146 } 147 148 static __le32 ext4_superblock_csum(struct super_block *sb, 149 struct ext4_super_block *es) 150 { 151 struct ext4_sb_info *sbi = EXT4_SB(sb); 152 int offset = offsetof(struct ext4_super_block, s_checksum); 153 __u32 csum; 154 155 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 156 157 return cpu_to_le32(csum); 158 } 159 160 static int ext4_superblock_csum_verify(struct super_block *sb, 161 struct ext4_super_block *es) 162 { 163 if (!ext4_has_metadata_csum(sb)) 164 return 1; 165 166 return es->s_checksum == ext4_superblock_csum(sb, es); 167 } 168 169 void ext4_superblock_csum_set(struct super_block *sb) 170 { 171 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 172 173 if (!ext4_has_metadata_csum(sb)) 174 return; 175 176 es->s_checksum = ext4_superblock_csum(sb, es); 177 } 178 179 void *ext4_kvmalloc(size_t size, gfp_t flags) 180 { 181 void *ret; 182 183 ret = kmalloc(size, flags | __GFP_NOWARN); 184 if (!ret) 185 ret = __vmalloc(size, flags, PAGE_KERNEL); 186 return ret; 187 } 188 189 void *ext4_kvzalloc(size_t size, gfp_t flags) 190 { 191 void *ret; 192 193 ret = kzalloc(size, flags | __GFP_NOWARN); 194 if (!ret) 195 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 196 return ret; 197 } 198 199 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 200 struct ext4_group_desc *bg) 201 { 202 return le32_to_cpu(bg->bg_block_bitmap_lo) | 203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 204 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 205 } 206 207 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_table_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 221 } 222 223 __u32 ext4_free_group_clusters(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 229 } 230 231 __u32 ext4_free_inodes_count(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_used_dirs_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_itable_unused_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_itable_unused_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 253 } 254 255 void ext4_block_bitmap_set(struct super_block *sb, 256 struct ext4_group_desc *bg, ext4_fsblk_t blk) 257 { 258 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 260 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 261 } 262 263 void ext4_inode_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_table_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_free_group_clusters_set(struct super_block *sb, 280 struct ext4_group_desc *bg, __u32 count) 281 { 282 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 285 } 286 287 void ext4_free_inodes_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_used_dirs_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_itable_unused_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 309 } 310 311 312 static void __save_error_info(struct super_block *sb, const char *func, 313 unsigned int line) 314 { 315 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 316 317 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 318 if (bdev_read_only(sb->s_bdev)) 319 return; 320 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 321 es->s_last_error_time = cpu_to_le32(get_seconds()); 322 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 323 es->s_last_error_line = cpu_to_le32(line); 324 if (!es->s_first_error_time) { 325 es->s_first_error_time = es->s_last_error_time; 326 strncpy(es->s_first_error_func, func, 327 sizeof(es->s_first_error_func)); 328 es->s_first_error_line = cpu_to_le32(line); 329 es->s_first_error_ino = es->s_last_error_ino; 330 es->s_first_error_block = es->s_last_error_block; 331 } 332 /* 333 * Start the daily error reporting function if it hasn't been 334 * started already 335 */ 336 if (!es->s_error_count) 337 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 338 le32_add_cpu(&es->s_error_count, 1); 339 } 340 341 static void save_error_info(struct super_block *sb, const char *func, 342 unsigned int line) 343 { 344 __save_error_info(sb, func, line); 345 ext4_commit_super(sb, 1); 346 } 347 348 /* 349 * The del_gendisk() function uninitializes the disk-specific data 350 * structures, including the bdi structure, without telling anyone 351 * else. Once this happens, any attempt to call mark_buffer_dirty() 352 * (for example, by ext4_commit_super), will cause a kernel OOPS. 353 * This is a kludge to prevent these oops until we can put in a proper 354 * hook in del_gendisk() to inform the VFS and file system layers. 355 */ 356 static int block_device_ejected(struct super_block *sb) 357 { 358 struct inode *bd_inode = sb->s_bdev->bd_inode; 359 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 360 361 return bdi->dev == NULL; 362 } 363 364 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 365 { 366 struct super_block *sb = journal->j_private; 367 struct ext4_sb_info *sbi = EXT4_SB(sb); 368 int error = is_journal_aborted(journal); 369 struct ext4_journal_cb_entry *jce; 370 371 BUG_ON(txn->t_state == T_FINISHED); 372 spin_lock(&sbi->s_md_lock); 373 while (!list_empty(&txn->t_private_list)) { 374 jce = list_entry(txn->t_private_list.next, 375 struct ext4_journal_cb_entry, jce_list); 376 list_del_init(&jce->jce_list); 377 spin_unlock(&sbi->s_md_lock); 378 jce->jce_func(sb, jce, error); 379 spin_lock(&sbi->s_md_lock); 380 } 381 spin_unlock(&sbi->s_md_lock); 382 } 383 384 /* Deal with the reporting of failure conditions on a filesystem such as 385 * inconsistencies detected or read IO failures. 386 * 387 * On ext2, we can store the error state of the filesystem in the 388 * superblock. That is not possible on ext4, because we may have other 389 * write ordering constraints on the superblock which prevent us from 390 * writing it out straight away; and given that the journal is about to 391 * be aborted, we can't rely on the current, or future, transactions to 392 * write out the superblock safely. 393 * 394 * We'll just use the jbd2_journal_abort() error code to record an error in 395 * the journal instead. On recovery, the journal will complain about 396 * that error until we've noted it down and cleared it. 397 */ 398 399 static void ext4_handle_error(struct super_block *sb) 400 { 401 if (sb->s_flags & MS_RDONLY) 402 return; 403 404 if (!test_opt(sb, ERRORS_CONT)) { 405 journal_t *journal = EXT4_SB(sb)->s_journal; 406 407 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 408 if (journal) 409 jbd2_journal_abort(journal, -EIO); 410 } 411 if (test_opt(sb, ERRORS_RO)) { 412 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 413 /* 414 * Make sure updated value of ->s_mount_flags will be visible 415 * before ->s_flags update 416 */ 417 smp_wmb(); 418 sb->s_flags |= MS_RDONLY; 419 } 420 if (test_opt(sb, ERRORS_PANIC)) { 421 if (EXT4_SB(sb)->s_journal && 422 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 423 return; 424 panic("EXT4-fs (device %s): panic forced after error\n", 425 sb->s_id); 426 } 427 } 428 429 #define ext4_error_ratelimit(sb) \ 430 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 431 "EXT4-fs error") 432 433 void __ext4_error(struct super_block *sb, const char *function, 434 unsigned int line, const char *fmt, ...) 435 { 436 struct va_format vaf; 437 va_list args; 438 439 if (ext4_error_ratelimit(sb)) { 440 va_start(args, fmt); 441 vaf.fmt = fmt; 442 vaf.va = &args; 443 printk(KERN_CRIT 444 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 445 sb->s_id, function, line, current->comm, &vaf); 446 va_end(args); 447 } 448 save_error_info(sb, function, line); 449 ext4_handle_error(sb); 450 } 451 452 void __ext4_error_inode(struct inode *inode, const char *function, 453 unsigned int line, ext4_fsblk_t block, 454 const char *fmt, ...) 455 { 456 va_list args; 457 struct va_format vaf; 458 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 459 460 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 461 es->s_last_error_block = cpu_to_le64(block); 462 if (ext4_error_ratelimit(inode->i_sb)) { 463 va_start(args, fmt); 464 vaf.fmt = fmt; 465 vaf.va = &args; 466 if (block) 467 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 468 "inode #%lu: block %llu: comm %s: %pV\n", 469 inode->i_sb->s_id, function, line, inode->i_ino, 470 block, current->comm, &vaf); 471 else 472 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 473 "inode #%lu: comm %s: %pV\n", 474 inode->i_sb->s_id, function, line, inode->i_ino, 475 current->comm, &vaf); 476 va_end(args); 477 } 478 save_error_info(inode->i_sb, function, line); 479 ext4_handle_error(inode->i_sb); 480 } 481 482 void __ext4_error_file(struct file *file, const char *function, 483 unsigned int line, ext4_fsblk_t block, 484 const char *fmt, ...) 485 { 486 va_list args; 487 struct va_format vaf; 488 struct ext4_super_block *es; 489 struct inode *inode = file_inode(file); 490 char pathname[80], *path; 491 492 es = EXT4_SB(inode->i_sb)->s_es; 493 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 494 if (ext4_error_ratelimit(inode->i_sb)) { 495 path = file_path(file, pathname, sizeof(pathname)); 496 if (IS_ERR(path)) 497 path = "(unknown)"; 498 va_start(args, fmt); 499 vaf.fmt = fmt; 500 vaf.va = &args; 501 if (block) 502 printk(KERN_CRIT 503 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 504 "block %llu: comm %s: path %s: %pV\n", 505 inode->i_sb->s_id, function, line, inode->i_ino, 506 block, current->comm, path, &vaf); 507 else 508 printk(KERN_CRIT 509 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 510 "comm %s: path %s: %pV\n", 511 inode->i_sb->s_id, function, line, inode->i_ino, 512 current->comm, path, &vaf); 513 va_end(args); 514 } 515 save_error_info(inode->i_sb, function, line); 516 ext4_handle_error(inode->i_sb); 517 } 518 519 const char *ext4_decode_error(struct super_block *sb, int errno, 520 char nbuf[16]) 521 { 522 char *errstr = NULL; 523 524 switch (errno) { 525 case -EFSCORRUPTED: 526 errstr = "Corrupt filesystem"; 527 break; 528 case -EFSBADCRC: 529 errstr = "Filesystem failed CRC"; 530 break; 531 case -EIO: 532 errstr = "IO failure"; 533 break; 534 case -ENOMEM: 535 errstr = "Out of memory"; 536 break; 537 case -EROFS: 538 if (!sb || (EXT4_SB(sb)->s_journal && 539 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 540 errstr = "Journal has aborted"; 541 else 542 errstr = "Readonly filesystem"; 543 break; 544 default: 545 /* If the caller passed in an extra buffer for unknown 546 * errors, textualise them now. Else we just return 547 * NULL. */ 548 if (nbuf) { 549 /* Check for truncated error codes... */ 550 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 551 errstr = nbuf; 552 } 553 break; 554 } 555 556 return errstr; 557 } 558 559 /* __ext4_std_error decodes expected errors from journaling functions 560 * automatically and invokes the appropriate error response. */ 561 562 void __ext4_std_error(struct super_block *sb, const char *function, 563 unsigned int line, int errno) 564 { 565 char nbuf[16]; 566 const char *errstr; 567 568 /* Special case: if the error is EROFS, and we're not already 569 * inside a transaction, then there's really no point in logging 570 * an error. */ 571 if (errno == -EROFS && journal_current_handle() == NULL && 572 (sb->s_flags & MS_RDONLY)) 573 return; 574 575 if (ext4_error_ratelimit(sb)) { 576 errstr = ext4_decode_error(sb, errno, nbuf); 577 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 578 sb->s_id, function, line, errstr); 579 } 580 581 save_error_info(sb, function, line); 582 ext4_handle_error(sb); 583 } 584 585 /* 586 * ext4_abort is a much stronger failure handler than ext4_error. The 587 * abort function may be used to deal with unrecoverable failures such 588 * as journal IO errors or ENOMEM at a critical moment in log management. 589 * 590 * We unconditionally force the filesystem into an ABORT|READONLY state, 591 * unless the error response on the fs has been set to panic in which 592 * case we take the easy way out and panic immediately. 593 */ 594 595 void __ext4_abort(struct super_block *sb, const char *function, 596 unsigned int line, const char *fmt, ...) 597 { 598 va_list args; 599 600 save_error_info(sb, function, line); 601 va_start(args, fmt); 602 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 603 function, line); 604 vprintk(fmt, args); 605 printk("\n"); 606 va_end(args); 607 608 if ((sb->s_flags & MS_RDONLY) == 0) { 609 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 610 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 611 /* 612 * Make sure updated value of ->s_mount_flags will be visible 613 * before ->s_flags update 614 */ 615 smp_wmb(); 616 sb->s_flags |= MS_RDONLY; 617 if (EXT4_SB(sb)->s_journal) 618 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 619 save_error_info(sb, function, line); 620 } 621 if (test_opt(sb, ERRORS_PANIC)) { 622 if (EXT4_SB(sb)->s_journal && 623 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 624 return; 625 panic("EXT4-fs panic from previous error\n"); 626 } 627 } 628 629 void __ext4_msg(struct super_block *sb, 630 const char *prefix, const char *fmt, ...) 631 { 632 struct va_format vaf; 633 va_list args; 634 635 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 636 return; 637 638 va_start(args, fmt); 639 vaf.fmt = fmt; 640 vaf.va = &args; 641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 642 va_end(args); 643 } 644 645 #define ext4_warning_ratelimit(sb) \ 646 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 647 "EXT4-fs warning") 648 649 void __ext4_warning(struct super_block *sb, const char *function, 650 unsigned int line, const char *fmt, ...) 651 { 652 struct va_format vaf; 653 va_list args; 654 655 if (!ext4_warning_ratelimit(sb)) 656 return; 657 658 va_start(args, fmt); 659 vaf.fmt = fmt; 660 vaf.va = &args; 661 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 662 sb->s_id, function, line, &vaf); 663 va_end(args); 664 } 665 666 void __ext4_warning_inode(const struct inode *inode, const char *function, 667 unsigned int line, const char *fmt, ...) 668 { 669 struct va_format vaf; 670 va_list args; 671 672 if (!ext4_warning_ratelimit(inode->i_sb)) 673 return; 674 675 va_start(args, fmt); 676 vaf.fmt = fmt; 677 vaf.va = &args; 678 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 679 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 680 function, line, inode->i_ino, current->comm, &vaf); 681 va_end(args); 682 } 683 684 void __ext4_grp_locked_error(const char *function, unsigned int line, 685 struct super_block *sb, ext4_group_t grp, 686 unsigned long ino, ext4_fsblk_t block, 687 const char *fmt, ...) 688 __releases(bitlock) 689 __acquires(bitlock) 690 { 691 struct va_format vaf; 692 va_list args; 693 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 694 695 es->s_last_error_ino = cpu_to_le32(ino); 696 es->s_last_error_block = cpu_to_le64(block); 697 __save_error_info(sb, function, line); 698 699 if (ext4_error_ratelimit(sb)) { 700 va_start(args, fmt); 701 vaf.fmt = fmt; 702 vaf.va = &args; 703 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 704 sb->s_id, function, line, grp); 705 if (ino) 706 printk(KERN_CONT "inode %lu: ", ino); 707 if (block) 708 printk(KERN_CONT "block %llu:", 709 (unsigned long long) block); 710 printk(KERN_CONT "%pV\n", &vaf); 711 va_end(args); 712 } 713 714 if (test_opt(sb, ERRORS_CONT)) { 715 ext4_commit_super(sb, 0); 716 return; 717 } 718 719 ext4_unlock_group(sb, grp); 720 ext4_handle_error(sb); 721 /* 722 * We only get here in the ERRORS_RO case; relocking the group 723 * may be dangerous, but nothing bad will happen since the 724 * filesystem will have already been marked read/only and the 725 * journal has been aborted. We return 1 as a hint to callers 726 * who might what to use the return value from 727 * ext4_grp_locked_error() to distinguish between the 728 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 729 * aggressively from the ext4 function in question, with a 730 * more appropriate error code. 731 */ 732 ext4_lock_group(sb, grp); 733 return; 734 } 735 736 void ext4_update_dynamic_rev(struct super_block *sb) 737 { 738 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 739 740 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 741 return; 742 743 ext4_warning(sb, 744 "updating to rev %d because of new feature flag, " 745 "running e2fsck is recommended", 746 EXT4_DYNAMIC_REV); 747 748 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 749 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 750 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 751 /* leave es->s_feature_*compat flags alone */ 752 /* es->s_uuid will be set by e2fsck if empty */ 753 754 /* 755 * The rest of the superblock fields should be zero, and if not it 756 * means they are likely already in use, so leave them alone. We 757 * can leave it up to e2fsck to clean up any inconsistencies there. 758 */ 759 } 760 761 /* 762 * Open the external journal device 763 */ 764 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 765 { 766 struct block_device *bdev; 767 char b[BDEVNAME_SIZE]; 768 769 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 770 if (IS_ERR(bdev)) 771 goto fail; 772 return bdev; 773 774 fail: 775 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 776 __bdevname(dev, b), PTR_ERR(bdev)); 777 return NULL; 778 } 779 780 /* 781 * Release the journal device 782 */ 783 static void ext4_blkdev_put(struct block_device *bdev) 784 { 785 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 786 } 787 788 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 789 { 790 struct block_device *bdev; 791 bdev = sbi->journal_bdev; 792 if (bdev) { 793 ext4_blkdev_put(bdev); 794 sbi->journal_bdev = NULL; 795 } 796 } 797 798 static inline struct inode *orphan_list_entry(struct list_head *l) 799 { 800 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 801 } 802 803 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 804 { 805 struct list_head *l; 806 807 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 808 le32_to_cpu(sbi->s_es->s_last_orphan)); 809 810 printk(KERN_ERR "sb_info orphan list:\n"); 811 list_for_each(l, &sbi->s_orphan) { 812 struct inode *inode = orphan_list_entry(l); 813 printk(KERN_ERR " " 814 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 815 inode->i_sb->s_id, inode->i_ino, inode, 816 inode->i_mode, inode->i_nlink, 817 NEXT_ORPHAN(inode)); 818 } 819 } 820 821 static void ext4_put_super(struct super_block *sb) 822 { 823 struct ext4_sb_info *sbi = EXT4_SB(sb); 824 struct ext4_super_block *es = sbi->s_es; 825 int i, err; 826 827 ext4_unregister_li_request(sb); 828 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 829 830 flush_workqueue(sbi->rsv_conversion_wq); 831 destroy_workqueue(sbi->rsv_conversion_wq); 832 833 if (sbi->s_journal) { 834 err = jbd2_journal_destroy(sbi->s_journal); 835 sbi->s_journal = NULL; 836 if (err < 0) 837 ext4_abort(sb, "Couldn't clean up the journal"); 838 } 839 840 ext4_unregister_sysfs(sb); 841 ext4_es_unregister_shrinker(sbi); 842 del_timer_sync(&sbi->s_err_report); 843 ext4_release_system_zone(sb); 844 ext4_mb_release(sb); 845 ext4_ext_release(sb); 846 847 if (!(sb->s_flags & MS_RDONLY)) { 848 ext4_clear_feature_journal_needs_recovery(sb); 849 es->s_state = cpu_to_le16(sbi->s_mount_state); 850 } 851 if (!(sb->s_flags & MS_RDONLY)) 852 ext4_commit_super(sb, 1); 853 854 for (i = 0; i < sbi->s_gdb_count; i++) 855 brelse(sbi->s_group_desc[i]); 856 kvfree(sbi->s_group_desc); 857 kvfree(sbi->s_flex_groups); 858 percpu_counter_destroy(&sbi->s_freeclusters_counter); 859 percpu_counter_destroy(&sbi->s_freeinodes_counter); 860 percpu_counter_destroy(&sbi->s_dirs_counter); 861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 862 brelse(sbi->s_sbh); 863 #ifdef CONFIG_QUOTA 864 for (i = 0; i < EXT4_MAXQUOTAS; i++) 865 kfree(sbi->s_qf_names[i]); 866 #endif 867 868 /* Debugging code just in case the in-memory inode orphan list 869 * isn't empty. The on-disk one can be non-empty if we've 870 * detected an error and taken the fs readonly, but the 871 * in-memory list had better be clean by this point. */ 872 if (!list_empty(&sbi->s_orphan)) 873 dump_orphan_list(sb, sbi); 874 J_ASSERT(list_empty(&sbi->s_orphan)); 875 876 sync_blockdev(sb->s_bdev); 877 invalidate_bdev(sb->s_bdev); 878 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 879 /* 880 * Invalidate the journal device's buffers. We don't want them 881 * floating about in memory - the physical journal device may 882 * hotswapped, and it breaks the `ro-after' testing code. 883 */ 884 sync_blockdev(sbi->journal_bdev); 885 invalidate_bdev(sbi->journal_bdev); 886 ext4_blkdev_remove(sbi); 887 } 888 if (sbi->s_mb_cache) { 889 ext4_xattr_destroy_cache(sbi->s_mb_cache); 890 sbi->s_mb_cache = NULL; 891 } 892 if (sbi->s_mmp_tsk) 893 kthread_stop(sbi->s_mmp_tsk); 894 sb->s_fs_info = NULL; 895 /* 896 * Now that we are completely done shutting down the 897 * superblock, we need to actually destroy the kobject. 898 */ 899 kobject_put(&sbi->s_kobj); 900 wait_for_completion(&sbi->s_kobj_unregister); 901 if (sbi->s_chksum_driver) 902 crypto_free_shash(sbi->s_chksum_driver); 903 kfree(sbi->s_blockgroup_lock); 904 kfree(sbi); 905 } 906 907 static struct kmem_cache *ext4_inode_cachep; 908 909 /* 910 * Called inside transaction, so use GFP_NOFS 911 */ 912 static struct inode *ext4_alloc_inode(struct super_block *sb) 913 { 914 struct ext4_inode_info *ei; 915 916 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 917 if (!ei) 918 return NULL; 919 920 ei->vfs_inode.i_version = 1; 921 spin_lock_init(&ei->i_raw_lock); 922 INIT_LIST_HEAD(&ei->i_prealloc_list); 923 spin_lock_init(&ei->i_prealloc_lock); 924 ext4_es_init_tree(&ei->i_es_tree); 925 rwlock_init(&ei->i_es_lock); 926 INIT_LIST_HEAD(&ei->i_es_list); 927 ei->i_es_all_nr = 0; 928 ei->i_es_shk_nr = 0; 929 ei->i_es_shrink_lblk = 0; 930 ei->i_reserved_data_blocks = 0; 931 ei->i_reserved_meta_blocks = 0; 932 ei->i_allocated_meta_blocks = 0; 933 ei->i_da_metadata_calc_len = 0; 934 ei->i_da_metadata_calc_last_lblock = 0; 935 spin_lock_init(&(ei->i_block_reservation_lock)); 936 #ifdef CONFIG_QUOTA 937 ei->i_reserved_quota = 0; 938 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 939 #endif 940 ei->jinode = NULL; 941 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 942 spin_lock_init(&ei->i_completed_io_lock); 943 ei->i_sync_tid = 0; 944 ei->i_datasync_tid = 0; 945 atomic_set(&ei->i_unwritten, 0); 946 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 947 #ifdef CONFIG_EXT4_FS_ENCRYPTION 948 ei->i_crypt_info = NULL; 949 #endif 950 return &ei->vfs_inode; 951 } 952 953 static int ext4_drop_inode(struct inode *inode) 954 { 955 int drop = generic_drop_inode(inode); 956 957 trace_ext4_drop_inode(inode, drop); 958 return drop; 959 } 960 961 static void ext4_i_callback(struct rcu_head *head) 962 { 963 struct inode *inode = container_of(head, struct inode, i_rcu); 964 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 965 } 966 967 static void ext4_destroy_inode(struct inode *inode) 968 { 969 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 970 ext4_msg(inode->i_sb, KERN_ERR, 971 "Inode %lu (%p): orphan list check failed!", 972 inode->i_ino, EXT4_I(inode)); 973 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 974 EXT4_I(inode), sizeof(struct ext4_inode_info), 975 true); 976 dump_stack(); 977 } 978 call_rcu(&inode->i_rcu, ext4_i_callback); 979 } 980 981 static void init_once(void *foo) 982 { 983 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 984 985 INIT_LIST_HEAD(&ei->i_orphan); 986 init_rwsem(&ei->xattr_sem); 987 init_rwsem(&ei->i_data_sem); 988 init_rwsem(&ei->i_mmap_sem); 989 inode_init_once(&ei->vfs_inode); 990 } 991 992 static int __init init_inodecache(void) 993 { 994 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 995 sizeof(struct ext4_inode_info), 996 0, (SLAB_RECLAIM_ACCOUNT| 997 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 998 init_once); 999 if (ext4_inode_cachep == NULL) 1000 return -ENOMEM; 1001 return 0; 1002 } 1003 1004 static void destroy_inodecache(void) 1005 { 1006 /* 1007 * Make sure all delayed rcu free inodes are flushed before we 1008 * destroy cache. 1009 */ 1010 rcu_barrier(); 1011 kmem_cache_destroy(ext4_inode_cachep); 1012 } 1013 1014 void ext4_clear_inode(struct inode *inode) 1015 { 1016 invalidate_inode_buffers(inode); 1017 clear_inode(inode); 1018 dquot_drop(inode); 1019 ext4_discard_preallocations(inode); 1020 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1021 if (EXT4_I(inode)->jinode) { 1022 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1023 EXT4_I(inode)->jinode); 1024 jbd2_free_inode(EXT4_I(inode)->jinode); 1025 EXT4_I(inode)->jinode = NULL; 1026 } 1027 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1028 if (EXT4_I(inode)->i_crypt_info) 1029 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info); 1030 #endif 1031 } 1032 1033 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1034 u64 ino, u32 generation) 1035 { 1036 struct inode *inode; 1037 1038 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1039 return ERR_PTR(-ESTALE); 1040 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1041 return ERR_PTR(-ESTALE); 1042 1043 /* iget isn't really right if the inode is currently unallocated!! 1044 * 1045 * ext4_read_inode will return a bad_inode if the inode had been 1046 * deleted, so we should be safe. 1047 * 1048 * Currently we don't know the generation for parent directory, so 1049 * a generation of 0 means "accept any" 1050 */ 1051 inode = ext4_iget_normal(sb, ino); 1052 if (IS_ERR(inode)) 1053 return ERR_CAST(inode); 1054 if (generation && inode->i_generation != generation) { 1055 iput(inode); 1056 return ERR_PTR(-ESTALE); 1057 } 1058 1059 return inode; 1060 } 1061 1062 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1063 int fh_len, int fh_type) 1064 { 1065 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1066 ext4_nfs_get_inode); 1067 } 1068 1069 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1070 int fh_len, int fh_type) 1071 { 1072 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1073 ext4_nfs_get_inode); 1074 } 1075 1076 /* 1077 * Try to release metadata pages (indirect blocks, directories) which are 1078 * mapped via the block device. Since these pages could have journal heads 1079 * which would prevent try_to_free_buffers() from freeing them, we must use 1080 * jbd2 layer's try_to_free_buffers() function to release them. 1081 */ 1082 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1083 gfp_t wait) 1084 { 1085 journal_t *journal = EXT4_SB(sb)->s_journal; 1086 1087 WARN_ON(PageChecked(page)); 1088 if (!page_has_buffers(page)) 1089 return 0; 1090 if (journal) 1091 return jbd2_journal_try_to_free_buffers(journal, page, 1092 wait & ~__GFP_DIRECT_RECLAIM); 1093 return try_to_free_buffers(page); 1094 } 1095 1096 #ifdef CONFIG_QUOTA 1097 static char *quotatypes[] = INITQFNAMES; 1098 #define QTYPE2NAME(t) (quotatypes[t]) 1099 1100 static int ext4_write_dquot(struct dquot *dquot); 1101 static int ext4_acquire_dquot(struct dquot *dquot); 1102 static int ext4_release_dquot(struct dquot *dquot); 1103 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1104 static int ext4_write_info(struct super_block *sb, int type); 1105 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1106 struct path *path); 1107 static int ext4_quota_off(struct super_block *sb, int type); 1108 static int ext4_quota_on_mount(struct super_block *sb, int type); 1109 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1110 size_t len, loff_t off); 1111 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1112 const char *data, size_t len, loff_t off); 1113 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1114 unsigned int flags); 1115 static int ext4_enable_quotas(struct super_block *sb); 1116 1117 static struct dquot **ext4_get_dquots(struct inode *inode) 1118 { 1119 return EXT4_I(inode)->i_dquot; 1120 } 1121 1122 static const struct dquot_operations ext4_quota_operations = { 1123 .get_reserved_space = ext4_get_reserved_space, 1124 .write_dquot = ext4_write_dquot, 1125 .acquire_dquot = ext4_acquire_dquot, 1126 .release_dquot = ext4_release_dquot, 1127 .mark_dirty = ext4_mark_dquot_dirty, 1128 .write_info = ext4_write_info, 1129 .alloc_dquot = dquot_alloc, 1130 .destroy_dquot = dquot_destroy, 1131 .get_projid = ext4_get_projid, 1132 }; 1133 1134 static const struct quotactl_ops ext4_qctl_operations = { 1135 .quota_on = ext4_quota_on, 1136 .quota_off = ext4_quota_off, 1137 .quota_sync = dquot_quota_sync, 1138 .get_state = dquot_get_state, 1139 .set_info = dquot_set_dqinfo, 1140 .get_dqblk = dquot_get_dqblk, 1141 .set_dqblk = dquot_set_dqblk 1142 }; 1143 #endif 1144 1145 static const struct super_operations ext4_sops = { 1146 .alloc_inode = ext4_alloc_inode, 1147 .destroy_inode = ext4_destroy_inode, 1148 .write_inode = ext4_write_inode, 1149 .dirty_inode = ext4_dirty_inode, 1150 .drop_inode = ext4_drop_inode, 1151 .evict_inode = ext4_evict_inode, 1152 .put_super = ext4_put_super, 1153 .sync_fs = ext4_sync_fs, 1154 .freeze_fs = ext4_freeze, 1155 .unfreeze_fs = ext4_unfreeze, 1156 .statfs = ext4_statfs, 1157 .remount_fs = ext4_remount, 1158 .show_options = ext4_show_options, 1159 #ifdef CONFIG_QUOTA 1160 .quota_read = ext4_quota_read, 1161 .quota_write = ext4_quota_write, 1162 .get_dquots = ext4_get_dquots, 1163 #endif 1164 .bdev_try_to_free_page = bdev_try_to_free_page, 1165 }; 1166 1167 static const struct export_operations ext4_export_ops = { 1168 .fh_to_dentry = ext4_fh_to_dentry, 1169 .fh_to_parent = ext4_fh_to_parent, 1170 .get_parent = ext4_get_parent, 1171 }; 1172 1173 enum { 1174 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1175 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1176 Opt_nouid32, Opt_debug, Opt_removed, 1177 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1178 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1179 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1180 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1181 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1182 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1183 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1184 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1185 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1186 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1187 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1188 Opt_lazytime, Opt_nolazytime, 1189 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1190 Opt_inode_readahead_blks, Opt_journal_ioprio, 1191 Opt_dioread_nolock, Opt_dioread_lock, 1192 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1193 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1194 }; 1195 1196 static const match_table_t tokens = { 1197 {Opt_bsd_df, "bsddf"}, 1198 {Opt_minix_df, "minixdf"}, 1199 {Opt_grpid, "grpid"}, 1200 {Opt_grpid, "bsdgroups"}, 1201 {Opt_nogrpid, "nogrpid"}, 1202 {Opt_nogrpid, "sysvgroups"}, 1203 {Opt_resgid, "resgid=%u"}, 1204 {Opt_resuid, "resuid=%u"}, 1205 {Opt_sb, "sb=%u"}, 1206 {Opt_err_cont, "errors=continue"}, 1207 {Opt_err_panic, "errors=panic"}, 1208 {Opt_err_ro, "errors=remount-ro"}, 1209 {Opt_nouid32, "nouid32"}, 1210 {Opt_debug, "debug"}, 1211 {Opt_removed, "oldalloc"}, 1212 {Opt_removed, "orlov"}, 1213 {Opt_user_xattr, "user_xattr"}, 1214 {Opt_nouser_xattr, "nouser_xattr"}, 1215 {Opt_acl, "acl"}, 1216 {Opt_noacl, "noacl"}, 1217 {Opt_noload, "norecovery"}, 1218 {Opt_noload, "noload"}, 1219 {Opt_removed, "nobh"}, 1220 {Opt_removed, "bh"}, 1221 {Opt_commit, "commit=%u"}, 1222 {Opt_min_batch_time, "min_batch_time=%u"}, 1223 {Opt_max_batch_time, "max_batch_time=%u"}, 1224 {Opt_journal_dev, "journal_dev=%u"}, 1225 {Opt_journal_path, "journal_path=%s"}, 1226 {Opt_journal_checksum, "journal_checksum"}, 1227 {Opt_nojournal_checksum, "nojournal_checksum"}, 1228 {Opt_journal_async_commit, "journal_async_commit"}, 1229 {Opt_abort, "abort"}, 1230 {Opt_data_journal, "data=journal"}, 1231 {Opt_data_ordered, "data=ordered"}, 1232 {Opt_data_writeback, "data=writeback"}, 1233 {Opt_data_err_abort, "data_err=abort"}, 1234 {Opt_data_err_ignore, "data_err=ignore"}, 1235 {Opt_offusrjquota, "usrjquota="}, 1236 {Opt_usrjquota, "usrjquota=%s"}, 1237 {Opt_offgrpjquota, "grpjquota="}, 1238 {Opt_grpjquota, "grpjquota=%s"}, 1239 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1240 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1241 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1242 {Opt_grpquota, "grpquota"}, 1243 {Opt_noquota, "noquota"}, 1244 {Opt_quota, "quota"}, 1245 {Opt_usrquota, "usrquota"}, 1246 {Opt_barrier, "barrier=%u"}, 1247 {Opt_barrier, "barrier"}, 1248 {Opt_nobarrier, "nobarrier"}, 1249 {Opt_i_version, "i_version"}, 1250 {Opt_dax, "dax"}, 1251 {Opt_stripe, "stripe=%u"}, 1252 {Opt_delalloc, "delalloc"}, 1253 {Opt_lazytime, "lazytime"}, 1254 {Opt_nolazytime, "nolazytime"}, 1255 {Opt_nodelalloc, "nodelalloc"}, 1256 {Opt_removed, "mblk_io_submit"}, 1257 {Opt_removed, "nomblk_io_submit"}, 1258 {Opt_block_validity, "block_validity"}, 1259 {Opt_noblock_validity, "noblock_validity"}, 1260 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1261 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1262 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1263 {Opt_auto_da_alloc, "auto_da_alloc"}, 1264 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1265 {Opt_dioread_nolock, "dioread_nolock"}, 1266 {Opt_dioread_lock, "dioread_lock"}, 1267 {Opt_discard, "discard"}, 1268 {Opt_nodiscard, "nodiscard"}, 1269 {Opt_init_itable, "init_itable=%u"}, 1270 {Opt_init_itable, "init_itable"}, 1271 {Opt_noinit_itable, "noinit_itable"}, 1272 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1273 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1274 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1275 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1276 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1277 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1278 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1279 {Opt_err, NULL}, 1280 }; 1281 1282 static ext4_fsblk_t get_sb_block(void **data) 1283 { 1284 ext4_fsblk_t sb_block; 1285 char *options = (char *) *data; 1286 1287 if (!options || strncmp(options, "sb=", 3) != 0) 1288 return 1; /* Default location */ 1289 1290 options += 3; 1291 /* TODO: use simple_strtoll with >32bit ext4 */ 1292 sb_block = simple_strtoul(options, &options, 0); 1293 if (*options && *options != ',') { 1294 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1295 (char *) *data); 1296 return 1; 1297 } 1298 if (*options == ',') 1299 options++; 1300 *data = (void *) options; 1301 1302 return sb_block; 1303 } 1304 1305 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1306 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1307 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1308 1309 #ifdef CONFIG_QUOTA 1310 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1311 { 1312 struct ext4_sb_info *sbi = EXT4_SB(sb); 1313 char *qname; 1314 int ret = -1; 1315 1316 if (sb_any_quota_loaded(sb) && 1317 !sbi->s_qf_names[qtype]) { 1318 ext4_msg(sb, KERN_ERR, 1319 "Cannot change journaled " 1320 "quota options when quota turned on"); 1321 return -1; 1322 } 1323 if (ext4_has_feature_quota(sb)) { 1324 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1325 "when QUOTA feature is enabled"); 1326 return -1; 1327 } 1328 qname = match_strdup(args); 1329 if (!qname) { 1330 ext4_msg(sb, KERN_ERR, 1331 "Not enough memory for storing quotafile name"); 1332 return -1; 1333 } 1334 if (sbi->s_qf_names[qtype]) { 1335 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1336 ret = 1; 1337 else 1338 ext4_msg(sb, KERN_ERR, 1339 "%s quota file already specified", 1340 QTYPE2NAME(qtype)); 1341 goto errout; 1342 } 1343 if (strchr(qname, '/')) { 1344 ext4_msg(sb, KERN_ERR, 1345 "quotafile must be on filesystem root"); 1346 goto errout; 1347 } 1348 sbi->s_qf_names[qtype] = qname; 1349 set_opt(sb, QUOTA); 1350 return 1; 1351 errout: 1352 kfree(qname); 1353 return ret; 1354 } 1355 1356 static int clear_qf_name(struct super_block *sb, int qtype) 1357 { 1358 1359 struct ext4_sb_info *sbi = EXT4_SB(sb); 1360 1361 if (sb_any_quota_loaded(sb) && 1362 sbi->s_qf_names[qtype]) { 1363 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1364 " when quota turned on"); 1365 return -1; 1366 } 1367 kfree(sbi->s_qf_names[qtype]); 1368 sbi->s_qf_names[qtype] = NULL; 1369 return 1; 1370 } 1371 #endif 1372 1373 #define MOPT_SET 0x0001 1374 #define MOPT_CLEAR 0x0002 1375 #define MOPT_NOSUPPORT 0x0004 1376 #define MOPT_EXPLICIT 0x0008 1377 #define MOPT_CLEAR_ERR 0x0010 1378 #define MOPT_GTE0 0x0020 1379 #ifdef CONFIG_QUOTA 1380 #define MOPT_Q 0 1381 #define MOPT_QFMT 0x0040 1382 #else 1383 #define MOPT_Q MOPT_NOSUPPORT 1384 #define MOPT_QFMT MOPT_NOSUPPORT 1385 #endif 1386 #define MOPT_DATAJ 0x0080 1387 #define MOPT_NO_EXT2 0x0100 1388 #define MOPT_NO_EXT3 0x0200 1389 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1390 #define MOPT_STRING 0x0400 1391 1392 static const struct mount_opts { 1393 int token; 1394 int mount_opt; 1395 int flags; 1396 } ext4_mount_opts[] = { 1397 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1398 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1399 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1400 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1401 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1402 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1403 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1404 MOPT_EXT4_ONLY | MOPT_SET}, 1405 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1406 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1407 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1408 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1409 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1410 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1411 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1412 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1413 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1414 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1415 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1416 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1417 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1418 EXT4_MOUNT_JOURNAL_CHECKSUM), 1419 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1420 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1421 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1422 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1423 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1424 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1425 MOPT_NO_EXT2}, 1426 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1427 MOPT_NO_EXT2}, 1428 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1429 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1430 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1431 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1432 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1433 {Opt_commit, 0, MOPT_GTE0}, 1434 {Opt_max_batch_time, 0, MOPT_GTE0}, 1435 {Opt_min_batch_time, 0, MOPT_GTE0}, 1436 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1437 {Opt_init_itable, 0, MOPT_GTE0}, 1438 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1439 {Opt_stripe, 0, MOPT_GTE0}, 1440 {Opt_resuid, 0, MOPT_GTE0}, 1441 {Opt_resgid, 0, MOPT_GTE0}, 1442 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1443 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1444 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1445 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1446 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1447 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1448 MOPT_NO_EXT2 | MOPT_DATAJ}, 1449 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1450 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1451 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1452 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1453 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1454 #else 1455 {Opt_acl, 0, MOPT_NOSUPPORT}, 1456 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1457 #endif 1458 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1459 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1460 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1461 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1462 MOPT_SET | MOPT_Q}, 1463 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1464 MOPT_SET | MOPT_Q}, 1465 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1466 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1467 {Opt_usrjquota, 0, MOPT_Q}, 1468 {Opt_grpjquota, 0, MOPT_Q}, 1469 {Opt_offusrjquota, 0, MOPT_Q}, 1470 {Opt_offgrpjquota, 0, MOPT_Q}, 1471 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1472 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1473 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1474 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1475 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1476 {Opt_err, 0, 0} 1477 }; 1478 1479 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1480 substring_t *args, unsigned long *journal_devnum, 1481 unsigned int *journal_ioprio, int is_remount) 1482 { 1483 struct ext4_sb_info *sbi = EXT4_SB(sb); 1484 const struct mount_opts *m; 1485 kuid_t uid; 1486 kgid_t gid; 1487 int arg = 0; 1488 1489 #ifdef CONFIG_QUOTA 1490 if (token == Opt_usrjquota) 1491 return set_qf_name(sb, USRQUOTA, &args[0]); 1492 else if (token == Opt_grpjquota) 1493 return set_qf_name(sb, GRPQUOTA, &args[0]); 1494 else if (token == Opt_offusrjquota) 1495 return clear_qf_name(sb, USRQUOTA); 1496 else if (token == Opt_offgrpjquota) 1497 return clear_qf_name(sb, GRPQUOTA); 1498 #endif 1499 switch (token) { 1500 case Opt_noacl: 1501 case Opt_nouser_xattr: 1502 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1503 break; 1504 case Opt_sb: 1505 return 1; /* handled by get_sb_block() */ 1506 case Opt_removed: 1507 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1508 return 1; 1509 case Opt_abort: 1510 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1511 return 1; 1512 case Opt_i_version: 1513 sb->s_flags |= MS_I_VERSION; 1514 return 1; 1515 case Opt_lazytime: 1516 sb->s_flags |= MS_LAZYTIME; 1517 return 1; 1518 case Opt_nolazytime: 1519 sb->s_flags &= ~MS_LAZYTIME; 1520 return 1; 1521 } 1522 1523 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1524 if (token == m->token) 1525 break; 1526 1527 if (m->token == Opt_err) { 1528 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1529 "or missing value", opt); 1530 return -1; 1531 } 1532 1533 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1534 ext4_msg(sb, KERN_ERR, 1535 "Mount option \"%s\" incompatible with ext2", opt); 1536 return -1; 1537 } 1538 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1539 ext4_msg(sb, KERN_ERR, 1540 "Mount option \"%s\" incompatible with ext3", opt); 1541 return -1; 1542 } 1543 1544 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1545 return -1; 1546 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1547 return -1; 1548 if (m->flags & MOPT_EXPLICIT) { 1549 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1550 set_opt2(sb, EXPLICIT_DELALLOC); 1551 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1552 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1553 } else 1554 return -1; 1555 } 1556 if (m->flags & MOPT_CLEAR_ERR) 1557 clear_opt(sb, ERRORS_MASK); 1558 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1559 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1560 "options when quota turned on"); 1561 return -1; 1562 } 1563 1564 if (m->flags & MOPT_NOSUPPORT) { 1565 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1566 } else if (token == Opt_commit) { 1567 if (arg == 0) 1568 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1569 sbi->s_commit_interval = HZ * arg; 1570 } else if (token == Opt_max_batch_time) { 1571 sbi->s_max_batch_time = arg; 1572 } else if (token == Opt_min_batch_time) { 1573 sbi->s_min_batch_time = arg; 1574 } else if (token == Opt_inode_readahead_blks) { 1575 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1576 ext4_msg(sb, KERN_ERR, 1577 "EXT4-fs: inode_readahead_blks must be " 1578 "0 or a power of 2 smaller than 2^31"); 1579 return -1; 1580 } 1581 sbi->s_inode_readahead_blks = arg; 1582 } else if (token == Opt_init_itable) { 1583 set_opt(sb, INIT_INODE_TABLE); 1584 if (!args->from) 1585 arg = EXT4_DEF_LI_WAIT_MULT; 1586 sbi->s_li_wait_mult = arg; 1587 } else if (token == Opt_max_dir_size_kb) { 1588 sbi->s_max_dir_size_kb = arg; 1589 } else if (token == Opt_stripe) { 1590 sbi->s_stripe = arg; 1591 } else if (token == Opt_resuid) { 1592 uid = make_kuid(current_user_ns(), arg); 1593 if (!uid_valid(uid)) { 1594 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1595 return -1; 1596 } 1597 sbi->s_resuid = uid; 1598 } else if (token == Opt_resgid) { 1599 gid = make_kgid(current_user_ns(), arg); 1600 if (!gid_valid(gid)) { 1601 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1602 return -1; 1603 } 1604 sbi->s_resgid = gid; 1605 } else if (token == Opt_journal_dev) { 1606 if (is_remount) { 1607 ext4_msg(sb, KERN_ERR, 1608 "Cannot specify journal on remount"); 1609 return -1; 1610 } 1611 *journal_devnum = arg; 1612 } else if (token == Opt_journal_path) { 1613 char *journal_path; 1614 struct inode *journal_inode; 1615 struct path path; 1616 int error; 1617 1618 if (is_remount) { 1619 ext4_msg(sb, KERN_ERR, 1620 "Cannot specify journal on remount"); 1621 return -1; 1622 } 1623 journal_path = match_strdup(&args[0]); 1624 if (!journal_path) { 1625 ext4_msg(sb, KERN_ERR, "error: could not dup " 1626 "journal device string"); 1627 return -1; 1628 } 1629 1630 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1631 if (error) { 1632 ext4_msg(sb, KERN_ERR, "error: could not find " 1633 "journal device path: error %d", error); 1634 kfree(journal_path); 1635 return -1; 1636 } 1637 1638 journal_inode = d_inode(path.dentry); 1639 if (!S_ISBLK(journal_inode->i_mode)) { 1640 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1641 "is not a block device", journal_path); 1642 path_put(&path); 1643 kfree(journal_path); 1644 return -1; 1645 } 1646 1647 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1648 path_put(&path); 1649 kfree(journal_path); 1650 } else if (token == Opt_journal_ioprio) { 1651 if (arg > 7) { 1652 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1653 " (must be 0-7)"); 1654 return -1; 1655 } 1656 *journal_ioprio = 1657 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1658 } else if (token == Opt_test_dummy_encryption) { 1659 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1660 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1661 ext4_msg(sb, KERN_WARNING, 1662 "Test dummy encryption mode enabled"); 1663 #else 1664 ext4_msg(sb, KERN_WARNING, 1665 "Test dummy encryption mount option ignored"); 1666 #endif 1667 } else if (m->flags & MOPT_DATAJ) { 1668 if (is_remount) { 1669 if (!sbi->s_journal) 1670 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1671 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1672 ext4_msg(sb, KERN_ERR, 1673 "Cannot change data mode on remount"); 1674 return -1; 1675 } 1676 } else { 1677 clear_opt(sb, DATA_FLAGS); 1678 sbi->s_mount_opt |= m->mount_opt; 1679 } 1680 #ifdef CONFIG_QUOTA 1681 } else if (m->flags & MOPT_QFMT) { 1682 if (sb_any_quota_loaded(sb) && 1683 sbi->s_jquota_fmt != m->mount_opt) { 1684 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1685 "quota options when quota turned on"); 1686 return -1; 1687 } 1688 if (ext4_has_feature_quota(sb)) { 1689 ext4_msg(sb, KERN_ERR, 1690 "Cannot set journaled quota options " 1691 "when QUOTA feature is enabled"); 1692 return -1; 1693 } 1694 sbi->s_jquota_fmt = m->mount_opt; 1695 #endif 1696 } else if (token == Opt_dax) { 1697 #ifdef CONFIG_FS_DAX 1698 ext4_msg(sb, KERN_WARNING, 1699 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1700 sbi->s_mount_opt |= m->mount_opt; 1701 #else 1702 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1703 return -1; 1704 #endif 1705 } else if (token == Opt_data_err_abort) { 1706 sbi->s_mount_opt |= m->mount_opt; 1707 } else if (token == Opt_data_err_ignore) { 1708 sbi->s_mount_opt &= ~m->mount_opt; 1709 } else { 1710 if (!args->from) 1711 arg = 1; 1712 if (m->flags & MOPT_CLEAR) 1713 arg = !arg; 1714 else if (unlikely(!(m->flags & MOPT_SET))) { 1715 ext4_msg(sb, KERN_WARNING, 1716 "buggy handling of option %s", opt); 1717 WARN_ON(1); 1718 return -1; 1719 } 1720 if (arg != 0) 1721 sbi->s_mount_opt |= m->mount_opt; 1722 else 1723 sbi->s_mount_opt &= ~m->mount_opt; 1724 } 1725 return 1; 1726 } 1727 1728 static int parse_options(char *options, struct super_block *sb, 1729 unsigned long *journal_devnum, 1730 unsigned int *journal_ioprio, 1731 int is_remount) 1732 { 1733 struct ext4_sb_info *sbi = EXT4_SB(sb); 1734 char *p; 1735 substring_t args[MAX_OPT_ARGS]; 1736 int token; 1737 1738 if (!options) 1739 return 1; 1740 1741 while ((p = strsep(&options, ",")) != NULL) { 1742 if (!*p) 1743 continue; 1744 /* 1745 * Initialize args struct so we know whether arg was 1746 * found; some options take optional arguments. 1747 */ 1748 args[0].to = args[0].from = NULL; 1749 token = match_token(p, tokens, args); 1750 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1751 journal_ioprio, is_remount) < 0) 1752 return 0; 1753 } 1754 #ifdef CONFIG_QUOTA 1755 if (ext4_has_feature_quota(sb) && 1756 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1757 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1758 "feature is enabled"); 1759 return 0; 1760 } 1761 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1762 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1763 clear_opt(sb, USRQUOTA); 1764 1765 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1766 clear_opt(sb, GRPQUOTA); 1767 1768 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1769 ext4_msg(sb, KERN_ERR, "old and new quota " 1770 "format mixing"); 1771 return 0; 1772 } 1773 1774 if (!sbi->s_jquota_fmt) { 1775 ext4_msg(sb, KERN_ERR, "journaled quota format " 1776 "not specified"); 1777 return 0; 1778 } 1779 } 1780 #endif 1781 if (test_opt(sb, DIOREAD_NOLOCK)) { 1782 int blocksize = 1783 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1784 1785 if (blocksize < PAGE_CACHE_SIZE) { 1786 ext4_msg(sb, KERN_ERR, "can't mount with " 1787 "dioread_nolock if block size != PAGE_SIZE"); 1788 return 0; 1789 } 1790 } 1791 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1792 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1793 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1794 "in data=ordered mode"); 1795 return 0; 1796 } 1797 return 1; 1798 } 1799 1800 static inline void ext4_show_quota_options(struct seq_file *seq, 1801 struct super_block *sb) 1802 { 1803 #if defined(CONFIG_QUOTA) 1804 struct ext4_sb_info *sbi = EXT4_SB(sb); 1805 1806 if (sbi->s_jquota_fmt) { 1807 char *fmtname = ""; 1808 1809 switch (sbi->s_jquota_fmt) { 1810 case QFMT_VFS_OLD: 1811 fmtname = "vfsold"; 1812 break; 1813 case QFMT_VFS_V0: 1814 fmtname = "vfsv0"; 1815 break; 1816 case QFMT_VFS_V1: 1817 fmtname = "vfsv1"; 1818 break; 1819 } 1820 seq_printf(seq, ",jqfmt=%s", fmtname); 1821 } 1822 1823 if (sbi->s_qf_names[USRQUOTA]) 1824 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1825 1826 if (sbi->s_qf_names[GRPQUOTA]) 1827 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1828 #endif 1829 } 1830 1831 static const char *token2str(int token) 1832 { 1833 const struct match_token *t; 1834 1835 for (t = tokens; t->token != Opt_err; t++) 1836 if (t->token == token && !strchr(t->pattern, '=')) 1837 break; 1838 return t->pattern; 1839 } 1840 1841 /* 1842 * Show an option if 1843 * - it's set to a non-default value OR 1844 * - if the per-sb default is different from the global default 1845 */ 1846 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1847 int nodefs) 1848 { 1849 struct ext4_sb_info *sbi = EXT4_SB(sb); 1850 struct ext4_super_block *es = sbi->s_es; 1851 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1852 const struct mount_opts *m; 1853 char sep = nodefs ? '\n' : ','; 1854 1855 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1856 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1857 1858 if (sbi->s_sb_block != 1) 1859 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1860 1861 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1862 int want_set = m->flags & MOPT_SET; 1863 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1864 (m->flags & MOPT_CLEAR_ERR)) 1865 continue; 1866 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1867 continue; /* skip if same as the default */ 1868 if ((want_set && 1869 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1870 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1871 continue; /* select Opt_noFoo vs Opt_Foo */ 1872 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1873 } 1874 1875 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1876 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1877 SEQ_OPTS_PRINT("resuid=%u", 1878 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1879 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1880 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1881 SEQ_OPTS_PRINT("resgid=%u", 1882 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1883 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1884 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1885 SEQ_OPTS_PUTS("errors=remount-ro"); 1886 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1887 SEQ_OPTS_PUTS("errors=continue"); 1888 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1889 SEQ_OPTS_PUTS("errors=panic"); 1890 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1891 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1892 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1893 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1894 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1895 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1896 if (sb->s_flags & MS_I_VERSION) 1897 SEQ_OPTS_PUTS("i_version"); 1898 if (nodefs || sbi->s_stripe) 1899 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1900 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1901 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1902 SEQ_OPTS_PUTS("data=journal"); 1903 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1904 SEQ_OPTS_PUTS("data=ordered"); 1905 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1906 SEQ_OPTS_PUTS("data=writeback"); 1907 } 1908 if (nodefs || 1909 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1910 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1911 sbi->s_inode_readahead_blks); 1912 1913 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1914 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1915 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1916 if (nodefs || sbi->s_max_dir_size_kb) 1917 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1918 if (test_opt(sb, DATA_ERR_ABORT)) 1919 SEQ_OPTS_PUTS("data_err=abort"); 1920 1921 ext4_show_quota_options(seq, sb); 1922 return 0; 1923 } 1924 1925 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1926 { 1927 return _ext4_show_options(seq, root->d_sb, 0); 1928 } 1929 1930 int ext4_seq_options_show(struct seq_file *seq, void *offset) 1931 { 1932 struct super_block *sb = seq->private; 1933 int rc; 1934 1935 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1936 rc = _ext4_show_options(seq, sb, 1); 1937 seq_puts(seq, "\n"); 1938 return rc; 1939 } 1940 1941 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1942 int read_only) 1943 { 1944 struct ext4_sb_info *sbi = EXT4_SB(sb); 1945 int res = 0; 1946 1947 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1948 ext4_msg(sb, KERN_ERR, "revision level too high, " 1949 "forcing read-only mode"); 1950 res = MS_RDONLY; 1951 } 1952 if (read_only) 1953 goto done; 1954 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1955 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1956 "running e2fsck is recommended"); 1957 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1958 ext4_msg(sb, KERN_WARNING, 1959 "warning: mounting fs with errors, " 1960 "running e2fsck is recommended"); 1961 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1962 le16_to_cpu(es->s_mnt_count) >= 1963 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1964 ext4_msg(sb, KERN_WARNING, 1965 "warning: maximal mount count reached, " 1966 "running e2fsck is recommended"); 1967 else if (le32_to_cpu(es->s_checkinterval) && 1968 (le32_to_cpu(es->s_lastcheck) + 1969 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1970 ext4_msg(sb, KERN_WARNING, 1971 "warning: checktime reached, " 1972 "running e2fsck is recommended"); 1973 if (!sbi->s_journal) 1974 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1975 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1976 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1977 le16_add_cpu(&es->s_mnt_count, 1); 1978 es->s_mtime = cpu_to_le32(get_seconds()); 1979 ext4_update_dynamic_rev(sb); 1980 if (sbi->s_journal) 1981 ext4_set_feature_journal_needs_recovery(sb); 1982 1983 ext4_commit_super(sb, 1); 1984 done: 1985 if (test_opt(sb, DEBUG)) 1986 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1987 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1988 sb->s_blocksize, 1989 sbi->s_groups_count, 1990 EXT4_BLOCKS_PER_GROUP(sb), 1991 EXT4_INODES_PER_GROUP(sb), 1992 sbi->s_mount_opt, sbi->s_mount_opt2); 1993 1994 cleancache_init_fs(sb); 1995 return res; 1996 } 1997 1998 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1999 { 2000 struct ext4_sb_info *sbi = EXT4_SB(sb); 2001 struct flex_groups *new_groups; 2002 int size; 2003 2004 if (!sbi->s_log_groups_per_flex) 2005 return 0; 2006 2007 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2008 if (size <= sbi->s_flex_groups_allocated) 2009 return 0; 2010 2011 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2012 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 2013 if (!new_groups) { 2014 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2015 size / (int) sizeof(struct flex_groups)); 2016 return -ENOMEM; 2017 } 2018 2019 if (sbi->s_flex_groups) { 2020 memcpy(new_groups, sbi->s_flex_groups, 2021 (sbi->s_flex_groups_allocated * 2022 sizeof(struct flex_groups))); 2023 kvfree(sbi->s_flex_groups); 2024 } 2025 sbi->s_flex_groups = new_groups; 2026 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2027 return 0; 2028 } 2029 2030 static int ext4_fill_flex_info(struct super_block *sb) 2031 { 2032 struct ext4_sb_info *sbi = EXT4_SB(sb); 2033 struct ext4_group_desc *gdp = NULL; 2034 ext4_group_t flex_group; 2035 int i, err; 2036 2037 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2038 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2039 sbi->s_log_groups_per_flex = 0; 2040 return 1; 2041 } 2042 2043 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2044 if (err) 2045 goto failed; 2046 2047 for (i = 0; i < sbi->s_groups_count; i++) { 2048 gdp = ext4_get_group_desc(sb, i, NULL); 2049 2050 flex_group = ext4_flex_group(sbi, i); 2051 atomic_add(ext4_free_inodes_count(sb, gdp), 2052 &sbi->s_flex_groups[flex_group].free_inodes); 2053 atomic64_add(ext4_free_group_clusters(sb, gdp), 2054 &sbi->s_flex_groups[flex_group].free_clusters); 2055 atomic_add(ext4_used_dirs_count(sb, gdp), 2056 &sbi->s_flex_groups[flex_group].used_dirs); 2057 } 2058 2059 return 1; 2060 failed: 2061 return 0; 2062 } 2063 2064 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2065 struct ext4_group_desc *gdp) 2066 { 2067 int offset; 2068 __u16 crc = 0; 2069 __le32 le_group = cpu_to_le32(block_group); 2070 struct ext4_sb_info *sbi = EXT4_SB(sb); 2071 2072 if (ext4_has_metadata_csum(sbi->s_sb)) { 2073 /* Use new metadata_csum algorithm */ 2074 __le16 save_csum; 2075 __u32 csum32; 2076 2077 save_csum = gdp->bg_checksum; 2078 gdp->bg_checksum = 0; 2079 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2080 sizeof(le_group)); 2081 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2082 sbi->s_desc_size); 2083 gdp->bg_checksum = save_csum; 2084 2085 crc = csum32 & 0xFFFF; 2086 goto out; 2087 } 2088 2089 /* old crc16 code */ 2090 if (!ext4_has_feature_gdt_csum(sb)) 2091 return 0; 2092 2093 offset = offsetof(struct ext4_group_desc, bg_checksum); 2094 2095 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2096 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2097 crc = crc16(crc, (__u8 *)gdp, offset); 2098 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2099 /* for checksum of struct ext4_group_desc do the rest...*/ 2100 if (ext4_has_feature_64bit(sb) && 2101 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2102 crc = crc16(crc, (__u8 *)gdp + offset, 2103 le16_to_cpu(sbi->s_es->s_desc_size) - 2104 offset); 2105 2106 out: 2107 return cpu_to_le16(crc); 2108 } 2109 2110 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2111 struct ext4_group_desc *gdp) 2112 { 2113 if (ext4_has_group_desc_csum(sb) && 2114 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2115 return 0; 2116 2117 return 1; 2118 } 2119 2120 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2121 struct ext4_group_desc *gdp) 2122 { 2123 if (!ext4_has_group_desc_csum(sb)) 2124 return; 2125 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2126 } 2127 2128 /* Called at mount-time, super-block is locked */ 2129 static int ext4_check_descriptors(struct super_block *sb, 2130 ext4_group_t *first_not_zeroed) 2131 { 2132 struct ext4_sb_info *sbi = EXT4_SB(sb); 2133 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2134 ext4_fsblk_t last_block; 2135 ext4_fsblk_t block_bitmap; 2136 ext4_fsblk_t inode_bitmap; 2137 ext4_fsblk_t inode_table; 2138 int flexbg_flag = 0; 2139 ext4_group_t i, grp = sbi->s_groups_count; 2140 2141 if (ext4_has_feature_flex_bg(sb)) 2142 flexbg_flag = 1; 2143 2144 ext4_debug("Checking group descriptors"); 2145 2146 for (i = 0; i < sbi->s_groups_count; i++) { 2147 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2148 2149 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2150 last_block = ext4_blocks_count(sbi->s_es) - 1; 2151 else 2152 last_block = first_block + 2153 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2154 2155 if ((grp == sbi->s_groups_count) && 2156 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2157 grp = i; 2158 2159 block_bitmap = ext4_block_bitmap(sb, gdp); 2160 if (block_bitmap < first_block || block_bitmap > last_block) { 2161 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2162 "Block bitmap for group %u not in group " 2163 "(block %llu)!", i, block_bitmap); 2164 return 0; 2165 } 2166 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2167 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2168 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2169 "Inode bitmap for group %u not in group " 2170 "(block %llu)!", i, inode_bitmap); 2171 return 0; 2172 } 2173 inode_table = ext4_inode_table(sb, gdp); 2174 if (inode_table < first_block || 2175 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2176 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2177 "Inode table for group %u not in group " 2178 "(block %llu)!", i, inode_table); 2179 return 0; 2180 } 2181 ext4_lock_group(sb, i); 2182 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2183 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2184 "Checksum for group %u failed (%u!=%u)", 2185 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2186 gdp)), le16_to_cpu(gdp->bg_checksum)); 2187 if (!(sb->s_flags & MS_RDONLY)) { 2188 ext4_unlock_group(sb, i); 2189 return 0; 2190 } 2191 } 2192 ext4_unlock_group(sb, i); 2193 if (!flexbg_flag) 2194 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2195 } 2196 if (NULL != first_not_zeroed) 2197 *first_not_zeroed = grp; 2198 return 1; 2199 } 2200 2201 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2202 * the superblock) which were deleted from all directories, but held open by 2203 * a process at the time of a crash. We walk the list and try to delete these 2204 * inodes at recovery time (only with a read-write filesystem). 2205 * 2206 * In order to keep the orphan inode chain consistent during traversal (in 2207 * case of crash during recovery), we link each inode into the superblock 2208 * orphan list_head and handle it the same way as an inode deletion during 2209 * normal operation (which journals the operations for us). 2210 * 2211 * We only do an iget() and an iput() on each inode, which is very safe if we 2212 * accidentally point at an in-use or already deleted inode. The worst that 2213 * can happen in this case is that we get a "bit already cleared" message from 2214 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2215 * e2fsck was run on this filesystem, and it must have already done the orphan 2216 * inode cleanup for us, so we can safely abort without any further action. 2217 */ 2218 static void ext4_orphan_cleanup(struct super_block *sb, 2219 struct ext4_super_block *es) 2220 { 2221 unsigned int s_flags = sb->s_flags; 2222 int nr_orphans = 0, nr_truncates = 0; 2223 #ifdef CONFIG_QUOTA 2224 int i; 2225 #endif 2226 if (!es->s_last_orphan) { 2227 jbd_debug(4, "no orphan inodes to clean up\n"); 2228 return; 2229 } 2230 2231 if (bdev_read_only(sb->s_bdev)) { 2232 ext4_msg(sb, KERN_ERR, "write access " 2233 "unavailable, skipping orphan cleanup"); 2234 return; 2235 } 2236 2237 /* Check if feature set would not allow a r/w mount */ 2238 if (!ext4_feature_set_ok(sb, 0)) { 2239 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2240 "unknown ROCOMPAT features"); 2241 return; 2242 } 2243 2244 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2245 /* don't clear list on RO mount w/ errors */ 2246 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2247 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2248 "clearing orphan list.\n"); 2249 es->s_last_orphan = 0; 2250 } 2251 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2252 return; 2253 } 2254 2255 if (s_flags & MS_RDONLY) { 2256 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2257 sb->s_flags &= ~MS_RDONLY; 2258 } 2259 #ifdef CONFIG_QUOTA 2260 /* Needed for iput() to work correctly and not trash data */ 2261 sb->s_flags |= MS_ACTIVE; 2262 /* Turn on quotas so that they are updated correctly */ 2263 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2264 if (EXT4_SB(sb)->s_qf_names[i]) { 2265 int ret = ext4_quota_on_mount(sb, i); 2266 if (ret < 0) 2267 ext4_msg(sb, KERN_ERR, 2268 "Cannot turn on journaled " 2269 "quota: error %d", ret); 2270 } 2271 } 2272 #endif 2273 2274 while (es->s_last_orphan) { 2275 struct inode *inode; 2276 2277 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2278 if (IS_ERR(inode)) { 2279 es->s_last_orphan = 0; 2280 break; 2281 } 2282 2283 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2284 dquot_initialize(inode); 2285 if (inode->i_nlink) { 2286 if (test_opt(sb, DEBUG)) 2287 ext4_msg(sb, KERN_DEBUG, 2288 "%s: truncating inode %lu to %lld bytes", 2289 __func__, inode->i_ino, inode->i_size); 2290 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2291 inode->i_ino, inode->i_size); 2292 inode_lock(inode); 2293 truncate_inode_pages(inode->i_mapping, inode->i_size); 2294 ext4_truncate(inode); 2295 inode_unlock(inode); 2296 nr_truncates++; 2297 } else { 2298 if (test_opt(sb, DEBUG)) 2299 ext4_msg(sb, KERN_DEBUG, 2300 "%s: deleting unreferenced inode %lu", 2301 __func__, inode->i_ino); 2302 jbd_debug(2, "deleting unreferenced inode %lu\n", 2303 inode->i_ino); 2304 nr_orphans++; 2305 } 2306 iput(inode); /* The delete magic happens here! */ 2307 } 2308 2309 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2310 2311 if (nr_orphans) 2312 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2313 PLURAL(nr_orphans)); 2314 if (nr_truncates) 2315 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2316 PLURAL(nr_truncates)); 2317 #ifdef CONFIG_QUOTA 2318 /* Turn quotas off */ 2319 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2320 if (sb_dqopt(sb)->files[i]) 2321 dquot_quota_off(sb, i); 2322 } 2323 #endif 2324 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2325 } 2326 2327 /* 2328 * Maximal extent format file size. 2329 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2330 * extent format containers, within a sector_t, and within i_blocks 2331 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2332 * so that won't be a limiting factor. 2333 * 2334 * However there is other limiting factor. We do store extents in the form 2335 * of starting block and length, hence the resulting length of the extent 2336 * covering maximum file size must fit into on-disk format containers as 2337 * well. Given that length is always by 1 unit bigger than max unit (because 2338 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2339 * 2340 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2341 */ 2342 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2343 { 2344 loff_t res; 2345 loff_t upper_limit = MAX_LFS_FILESIZE; 2346 2347 /* small i_blocks in vfs inode? */ 2348 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2349 /* 2350 * CONFIG_LBDAF is not enabled implies the inode 2351 * i_block represent total blocks in 512 bytes 2352 * 32 == size of vfs inode i_blocks * 8 2353 */ 2354 upper_limit = (1LL << 32) - 1; 2355 2356 /* total blocks in file system block size */ 2357 upper_limit >>= (blkbits - 9); 2358 upper_limit <<= blkbits; 2359 } 2360 2361 /* 2362 * 32-bit extent-start container, ee_block. We lower the maxbytes 2363 * by one fs block, so ee_len can cover the extent of maximum file 2364 * size 2365 */ 2366 res = (1LL << 32) - 1; 2367 res <<= blkbits; 2368 2369 /* Sanity check against vm- & vfs- imposed limits */ 2370 if (res > upper_limit) 2371 res = upper_limit; 2372 2373 return res; 2374 } 2375 2376 /* 2377 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2378 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2379 * We need to be 1 filesystem block less than the 2^48 sector limit. 2380 */ 2381 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2382 { 2383 loff_t res = EXT4_NDIR_BLOCKS; 2384 int meta_blocks; 2385 loff_t upper_limit; 2386 /* This is calculated to be the largest file size for a dense, block 2387 * mapped file such that the file's total number of 512-byte sectors, 2388 * including data and all indirect blocks, does not exceed (2^48 - 1). 2389 * 2390 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2391 * number of 512-byte sectors of the file. 2392 */ 2393 2394 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2395 /* 2396 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2397 * the inode i_block field represents total file blocks in 2398 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2399 */ 2400 upper_limit = (1LL << 32) - 1; 2401 2402 /* total blocks in file system block size */ 2403 upper_limit >>= (bits - 9); 2404 2405 } else { 2406 /* 2407 * We use 48 bit ext4_inode i_blocks 2408 * With EXT4_HUGE_FILE_FL set the i_blocks 2409 * represent total number of blocks in 2410 * file system block size 2411 */ 2412 upper_limit = (1LL << 48) - 1; 2413 2414 } 2415 2416 /* indirect blocks */ 2417 meta_blocks = 1; 2418 /* double indirect blocks */ 2419 meta_blocks += 1 + (1LL << (bits-2)); 2420 /* tripple indirect blocks */ 2421 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2422 2423 upper_limit -= meta_blocks; 2424 upper_limit <<= bits; 2425 2426 res += 1LL << (bits-2); 2427 res += 1LL << (2*(bits-2)); 2428 res += 1LL << (3*(bits-2)); 2429 res <<= bits; 2430 if (res > upper_limit) 2431 res = upper_limit; 2432 2433 if (res > MAX_LFS_FILESIZE) 2434 res = MAX_LFS_FILESIZE; 2435 2436 return res; 2437 } 2438 2439 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2440 ext4_fsblk_t logical_sb_block, int nr) 2441 { 2442 struct ext4_sb_info *sbi = EXT4_SB(sb); 2443 ext4_group_t bg, first_meta_bg; 2444 int has_super = 0; 2445 2446 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2447 2448 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2449 return logical_sb_block + nr + 1; 2450 bg = sbi->s_desc_per_block * nr; 2451 if (ext4_bg_has_super(sb, bg)) 2452 has_super = 1; 2453 2454 /* 2455 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2456 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2457 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2458 * compensate. 2459 */ 2460 if (sb->s_blocksize == 1024 && nr == 0 && 2461 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2462 has_super++; 2463 2464 return (has_super + ext4_group_first_block_no(sb, bg)); 2465 } 2466 2467 /** 2468 * ext4_get_stripe_size: Get the stripe size. 2469 * @sbi: In memory super block info 2470 * 2471 * If we have specified it via mount option, then 2472 * use the mount option value. If the value specified at mount time is 2473 * greater than the blocks per group use the super block value. 2474 * If the super block value is greater than blocks per group return 0. 2475 * Allocator needs it be less than blocks per group. 2476 * 2477 */ 2478 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2479 { 2480 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2481 unsigned long stripe_width = 2482 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2483 int ret; 2484 2485 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2486 ret = sbi->s_stripe; 2487 else if (stripe_width <= sbi->s_blocks_per_group) 2488 ret = stripe_width; 2489 else if (stride <= sbi->s_blocks_per_group) 2490 ret = stride; 2491 else 2492 ret = 0; 2493 2494 /* 2495 * If the stripe width is 1, this makes no sense and 2496 * we set it to 0 to turn off stripe handling code. 2497 */ 2498 if (ret <= 1) 2499 ret = 0; 2500 2501 return ret; 2502 } 2503 2504 /* 2505 * Check whether this filesystem can be mounted based on 2506 * the features present and the RDONLY/RDWR mount requested. 2507 * Returns 1 if this filesystem can be mounted as requested, 2508 * 0 if it cannot be. 2509 */ 2510 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2511 { 2512 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2513 ext4_msg(sb, KERN_ERR, 2514 "Couldn't mount because of " 2515 "unsupported optional features (%x)", 2516 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2517 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2518 return 0; 2519 } 2520 2521 if (readonly) 2522 return 1; 2523 2524 if (ext4_has_feature_readonly(sb)) { 2525 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2526 sb->s_flags |= MS_RDONLY; 2527 return 1; 2528 } 2529 2530 /* Check that feature set is OK for a read-write mount */ 2531 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2532 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2533 "unsupported optional features (%x)", 2534 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2535 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2536 return 0; 2537 } 2538 /* 2539 * Large file size enabled file system can only be mounted 2540 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2541 */ 2542 if (ext4_has_feature_huge_file(sb)) { 2543 if (sizeof(blkcnt_t) < sizeof(u64)) { 2544 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2545 "cannot be mounted RDWR without " 2546 "CONFIG_LBDAF"); 2547 return 0; 2548 } 2549 } 2550 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2551 ext4_msg(sb, KERN_ERR, 2552 "Can't support bigalloc feature without " 2553 "extents feature\n"); 2554 return 0; 2555 } 2556 2557 #ifndef CONFIG_QUOTA 2558 if (ext4_has_feature_quota(sb) && !readonly) { 2559 ext4_msg(sb, KERN_ERR, 2560 "Filesystem with quota feature cannot be mounted RDWR " 2561 "without CONFIG_QUOTA"); 2562 return 0; 2563 } 2564 if (ext4_has_feature_project(sb) && !readonly) { 2565 ext4_msg(sb, KERN_ERR, 2566 "Filesystem with project quota feature cannot be mounted RDWR " 2567 "without CONFIG_QUOTA"); 2568 return 0; 2569 } 2570 #endif /* CONFIG_QUOTA */ 2571 return 1; 2572 } 2573 2574 /* 2575 * This function is called once a day if we have errors logged 2576 * on the file system 2577 */ 2578 static void print_daily_error_info(unsigned long arg) 2579 { 2580 struct super_block *sb = (struct super_block *) arg; 2581 struct ext4_sb_info *sbi; 2582 struct ext4_super_block *es; 2583 2584 sbi = EXT4_SB(sb); 2585 es = sbi->s_es; 2586 2587 if (es->s_error_count) 2588 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2589 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2590 le32_to_cpu(es->s_error_count)); 2591 if (es->s_first_error_time) { 2592 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2593 sb->s_id, le32_to_cpu(es->s_first_error_time), 2594 (int) sizeof(es->s_first_error_func), 2595 es->s_first_error_func, 2596 le32_to_cpu(es->s_first_error_line)); 2597 if (es->s_first_error_ino) 2598 printk(": inode %u", 2599 le32_to_cpu(es->s_first_error_ino)); 2600 if (es->s_first_error_block) 2601 printk(": block %llu", (unsigned long long) 2602 le64_to_cpu(es->s_first_error_block)); 2603 printk("\n"); 2604 } 2605 if (es->s_last_error_time) { 2606 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2607 sb->s_id, le32_to_cpu(es->s_last_error_time), 2608 (int) sizeof(es->s_last_error_func), 2609 es->s_last_error_func, 2610 le32_to_cpu(es->s_last_error_line)); 2611 if (es->s_last_error_ino) 2612 printk(": inode %u", 2613 le32_to_cpu(es->s_last_error_ino)); 2614 if (es->s_last_error_block) 2615 printk(": block %llu", (unsigned long long) 2616 le64_to_cpu(es->s_last_error_block)); 2617 printk("\n"); 2618 } 2619 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2620 } 2621 2622 /* Find next suitable group and run ext4_init_inode_table */ 2623 static int ext4_run_li_request(struct ext4_li_request *elr) 2624 { 2625 struct ext4_group_desc *gdp = NULL; 2626 ext4_group_t group, ngroups; 2627 struct super_block *sb; 2628 unsigned long timeout = 0; 2629 int ret = 0; 2630 2631 sb = elr->lr_super; 2632 ngroups = EXT4_SB(sb)->s_groups_count; 2633 2634 sb_start_write(sb); 2635 for (group = elr->lr_next_group; group < ngroups; group++) { 2636 gdp = ext4_get_group_desc(sb, group, NULL); 2637 if (!gdp) { 2638 ret = 1; 2639 break; 2640 } 2641 2642 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2643 break; 2644 } 2645 2646 if (group >= ngroups) 2647 ret = 1; 2648 2649 if (!ret) { 2650 timeout = jiffies; 2651 ret = ext4_init_inode_table(sb, group, 2652 elr->lr_timeout ? 0 : 1); 2653 if (elr->lr_timeout == 0) { 2654 timeout = (jiffies - timeout) * 2655 elr->lr_sbi->s_li_wait_mult; 2656 elr->lr_timeout = timeout; 2657 } 2658 elr->lr_next_sched = jiffies + elr->lr_timeout; 2659 elr->lr_next_group = group + 1; 2660 } 2661 sb_end_write(sb); 2662 2663 return ret; 2664 } 2665 2666 /* 2667 * Remove lr_request from the list_request and free the 2668 * request structure. Should be called with li_list_mtx held 2669 */ 2670 static void ext4_remove_li_request(struct ext4_li_request *elr) 2671 { 2672 struct ext4_sb_info *sbi; 2673 2674 if (!elr) 2675 return; 2676 2677 sbi = elr->lr_sbi; 2678 2679 list_del(&elr->lr_request); 2680 sbi->s_li_request = NULL; 2681 kfree(elr); 2682 } 2683 2684 static void ext4_unregister_li_request(struct super_block *sb) 2685 { 2686 mutex_lock(&ext4_li_mtx); 2687 if (!ext4_li_info) { 2688 mutex_unlock(&ext4_li_mtx); 2689 return; 2690 } 2691 2692 mutex_lock(&ext4_li_info->li_list_mtx); 2693 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2694 mutex_unlock(&ext4_li_info->li_list_mtx); 2695 mutex_unlock(&ext4_li_mtx); 2696 } 2697 2698 static struct task_struct *ext4_lazyinit_task; 2699 2700 /* 2701 * This is the function where ext4lazyinit thread lives. It walks 2702 * through the request list searching for next scheduled filesystem. 2703 * When such a fs is found, run the lazy initialization request 2704 * (ext4_rn_li_request) and keep track of the time spend in this 2705 * function. Based on that time we compute next schedule time of 2706 * the request. When walking through the list is complete, compute 2707 * next waking time and put itself into sleep. 2708 */ 2709 static int ext4_lazyinit_thread(void *arg) 2710 { 2711 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2712 struct list_head *pos, *n; 2713 struct ext4_li_request *elr; 2714 unsigned long next_wakeup, cur; 2715 2716 BUG_ON(NULL == eli); 2717 2718 cont_thread: 2719 while (true) { 2720 next_wakeup = MAX_JIFFY_OFFSET; 2721 2722 mutex_lock(&eli->li_list_mtx); 2723 if (list_empty(&eli->li_request_list)) { 2724 mutex_unlock(&eli->li_list_mtx); 2725 goto exit_thread; 2726 } 2727 2728 list_for_each_safe(pos, n, &eli->li_request_list) { 2729 elr = list_entry(pos, struct ext4_li_request, 2730 lr_request); 2731 2732 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2733 if (ext4_run_li_request(elr) != 0) { 2734 /* error, remove the lazy_init job */ 2735 ext4_remove_li_request(elr); 2736 continue; 2737 } 2738 } 2739 2740 if (time_before(elr->lr_next_sched, next_wakeup)) 2741 next_wakeup = elr->lr_next_sched; 2742 } 2743 mutex_unlock(&eli->li_list_mtx); 2744 2745 try_to_freeze(); 2746 2747 cur = jiffies; 2748 if ((time_after_eq(cur, next_wakeup)) || 2749 (MAX_JIFFY_OFFSET == next_wakeup)) { 2750 cond_resched(); 2751 continue; 2752 } 2753 2754 schedule_timeout_interruptible(next_wakeup - cur); 2755 2756 if (kthread_should_stop()) { 2757 ext4_clear_request_list(); 2758 goto exit_thread; 2759 } 2760 } 2761 2762 exit_thread: 2763 /* 2764 * It looks like the request list is empty, but we need 2765 * to check it under the li_list_mtx lock, to prevent any 2766 * additions into it, and of course we should lock ext4_li_mtx 2767 * to atomically free the list and ext4_li_info, because at 2768 * this point another ext4 filesystem could be registering 2769 * new one. 2770 */ 2771 mutex_lock(&ext4_li_mtx); 2772 mutex_lock(&eli->li_list_mtx); 2773 if (!list_empty(&eli->li_request_list)) { 2774 mutex_unlock(&eli->li_list_mtx); 2775 mutex_unlock(&ext4_li_mtx); 2776 goto cont_thread; 2777 } 2778 mutex_unlock(&eli->li_list_mtx); 2779 kfree(ext4_li_info); 2780 ext4_li_info = NULL; 2781 mutex_unlock(&ext4_li_mtx); 2782 2783 return 0; 2784 } 2785 2786 static void ext4_clear_request_list(void) 2787 { 2788 struct list_head *pos, *n; 2789 struct ext4_li_request *elr; 2790 2791 mutex_lock(&ext4_li_info->li_list_mtx); 2792 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2793 elr = list_entry(pos, struct ext4_li_request, 2794 lr_request); 2795 ext4_remove_li_request(elr); 2796 } 2797 mutex_unlock(&ext4_li_info->li_list_mtx); 2798 } 2799 2800 static int ext4_run_lazyinit_thread(void) 2801 { 2802 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2803 ext4_li_info, "ext4lazyinit"); 2804 if (IS_ERR(ext4_lazyinit_task)) { 2805 int err = PTR_ERR(ext4_lazyinit_task); 2806 ext4_clear_request_list(); 2807 kfree(ext4_li_info); 2808 ext4_li_info = NULL; 2809 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2810 "initialization thread\n", 2811 err); 2812 return err; 2813 } 2814 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2815 return 0; 2816 } 2817 2818 /* 2819 * Check whether it make sense to run itable init. thread or not. 2820 * If there is at least one uninitialized inode table, return 2821 * corresponding group number, else the loop goes through all 2822 * groups and return total number of groups. 2823 */ 2824 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2825 { 2826 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2827 struct ext4_group_desc *gdp = NULL; 2828 2829 for (group = 0; group < ngroups; group++) { 2830 gdp = ext4_get_group_desc(sb, group, NULL); 2831 if (!gdp) 2832 continue; 2833 2834 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2835 break; 2836 } 2837 2838 return group; 2839 } 2840 2841 static int ext4_li_info_new(void) 2842 { 2843 struct ext4_lazy_init *eli = NULL; 2844 2845 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2846 if (!eli) 2847 return -ENOMEM; 2848 2849 INIT_LIST_HEAD(&eli->li_request_list); 2850 mutex_init(&eli->li_list_mtx); 2851 2852 eli->li_state |= EXT4_LAZYINIT_QUIT; 2853 2854 ext4_li_info = eli; 2855 2856 return 0; 2857 } 2858 2859 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2860 ext4_group_t start) 2861 { 2862 struct ext4_sb_info *sbi = EXT4_SB(sb); 2863 struct ext4_li_request *elr; 2864 2865 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2866 if (!elr) 2867 return NULL; 2868 2869 elr->lr_super = sb; 2870 elr->lr_sbi = sbi; 2871 elr->lr_next_group = start; 2872 2873 /* 2874 * Randomize first schedule time of the request to 2875 * spread the inode table initialization requests 2876 * better. 2877 */ 2878 elr->lr_next_sched = jiffies + (prandom_u32() % 2879 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2880 return elr; 2881 } 2882 2883 int ext4_register_li_request(struct super_block *sb, 2884 ext4_group_t first_not_zeroed) 2885 { 2886 struct ext4_sb_info *sbi = EXT4_SB(sb); 2887 struct ext4_li_request *elr = NULL; 2888 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2889 int ret = 0; 2890 2891 mutex_lock(&ext4_li_mtx); 2892 if (sbi->s_li_request != NULL) { 2893 /* 2894 * Reset timeout so it can be computed again, because 2895 * s_li_wait_mult might have changed. 2896 */ 2897 sbi->s_li_request->lr_timeout = 0; 2898 goto out; 2899 } 2900 2901 if (first_not_zeroed == ngroups || 2902 (sb->s_flags & MS_RDONLY) || 2903 !test_opt(sb, INIT_INODE_TABLE)) 2904 goto out; 2905 2906 elr = ext4_li_request_new(sb, first_not_zeroed); 2907 if (!elr) { 2908 ret = -ENOMEM; 2909 goto out; 2910 } 2911 2912 if (NULL == ext4_li_info) { 2913 ret = ext4_li_info_new(); 2914 if (ret) 2915 goto out; 2916 } 2917 2918 mutex_lock(&ext4_li_info->li_list_mtx); 2919 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2920 mutex_unlock(&ext4_li_info->li_list_mtx); 2921 2922 sbi->s_li_request = elr; 2923 /* 2924 * set elr to NULL here since it has been inserted to 2925 * the request_list and the removal and free of it is 2926 * handled by ext4_clear_request_list from now on. 2927 */ 2928 elr = NULL; 2929 2930 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 2931 ret = ext4_run_lazyinit_thread(); 2932 if (ret) 2933 goto out; 2934 } 2935 out: 2936 mutex_unlock(&ext4_li_mtx); 2937 if (ret) 2938 kfree(elr); 2939 return ret; 2940 } 2941 2942 /* 2943 * We do not need to lock anything since this is called on 2944 * module unload. 2945 */ 2946 static void ext4_destroy_lazyinit_thread(void) 2947 { 2948 /* 2949 * If thread exited earlier 2950 * there's nothing to be done. 2951 */ 2952 if (!ext4_li_info || !ext4_lazyinit_task) 2953 return; 2954 2955 kthread_stop(ext4_lazyinit_task); 2956 } 2957 2958 static int set_journal_csum_feature_set(struct super_block *sb) 2959 { 2960 int ret = 1; 2961 int compat, incompat; 2962 struct ext4_sb_info *sbi = EXT4_SB(sb); 2963 2964 if (ext4_has_metadata_csum(sb)) { 2965 /* journal checksum v3 */ 2966 compat = 0; 2967 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 2968 } else { 2969 /* journal checksum v1 */ 2970 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 2971 incompat = 0; 2972 } 2973 2974 jbd2_journal_clear_features(sbi->s_journal, 2975 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2976 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 2977 JBD2_FEATURE_INCOMPAT_CSUM_V2); 2978 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2979 ret = jbd2_journal_set_features(sbi->s_journal, 2980 compat, 0, 2981 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 2982 incompat); 2983 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2984 ret = jbd2_journal_set_features(sbi->s_journal, 2985 compat, 0, 2986 incompat); 2987 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2988 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2989 } else { 2990 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2991 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2992 } 2993 2994 return ret; 2995 } 2996 2997 /* 2998 * Note: calculating the overhead so we can be compatible with 2999 * historical BSD practice is quite difficult in the face of 3000 * clusters/bigalloc. This is because multiple metadata blocks from 3001 * different block group can end up in the same allocation cluster. 3002 * Calculating the exact overhead in the face of clustered allocation 3003 * requires either O(all block bitmaps) in memory or O(number of block 3004 * groups**2) in time. We will still calculate the superblock for 3005 * older file systems --- and if we come across with a bigalloc file 3006 * system with zero in s_overhead_clusters the estimate will be close to 3007 * correct especially for very large cluster sizes --- but for newer 3008 * file systems, it's better to calculate this figure once at mkfs 3009 * time, and store it in the superblock. If the superblock value is 3010 * present (even for non-bigalloc file systems), we will use it. 3011 */ 3012 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3013 char *buf) 3014 { 3015 struct ext4_sb_info *sbi = EXT4_SB(sb); 3016 struct ext4_group_desc *gdp; 3017 ext4_fsblk_t first_block, last_block, b; 3018 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3019 int s, j, count = 0; 3020 3021 if (!ext4_has_feature_bigalloc(sb)) 3022 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3023 sbi->s_itb_per_group + 2); 3024 3025 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3026 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3027 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3028 for (i = 0; i < ngroups; i++) { 3029 gdp = ext4_get_group_desc(sb, i, NULL); 3030 b = ext4_block_bitmap(sb, gdp); 3031 if (b >= first_block && b <= last_block) { 3032 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3033 count++; 3034 } 3035 b = ext4_inode_bitmap(sb, gdp); 3036 if (b >= first_block && b <= last_block) { 3037 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3038 count++; 3039 } 3040 b = ext4_inode_table(sb, gdp); 3041 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3042 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3043 int c = EXT4_B2C(sbi, b - first_block); 3044 ext4_set_bit(c, buf); 3045 count++; 3046 } 3047 if (i != grp) 3048 continue; 3049 s = 0; 3050 if (ext4_bg_has_super(sb, grp)) { 3051 ext4_set_bit(s++, buf); 3052 count++; 3053 } 3054 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3055 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3056 count++; 3057 } 3058 } 3059 if (!count) 3060 return 0; 3061 return EXT4_CLUSTERS_PER_GROUP(sb) - 3062 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3063 } 3064 3065 /* 3066 * Compute the overhead and stash it in sbi->s_overhead 3067 */ 3068 int ext4_calculate_overhead(struct super_block *sb) 3069 { 3070 struct ext4_sb_info *sbi = EXT4_SB(sb); 3071 struct ext4_super_block *es = sbi->s_es; 3072 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3073 ext4_fsblk_t overhead = 0; 3074 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3075 3076 if (!buf) 3077 return -ENOMEM; 3078 3079 /* 3080 * Compute the overhead (FS structures). This is constant 3081 * for a given filesystem unless the number of block groups 3082 * changes so we cache the previous value until it does. 3083 */ 3084 3085 /* 3086 * All of the blocks before first_data_block are overhead 3087 */ 3088 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3089 3090 /* 3091 * Add the overhead found in each block group 3092 */ 3093 for (i = 0; i < ngroups; i++) { 3094 int blks; 3095 3096 blks = count_overhead(sb, i, buf); 3097 overhead += blks; 3098 if (blks) 3099 memset(buf, 0, PAGE_SIZE); 3100 cond_resched(); 3101 } 3102 /* Add the internal journal blocks as well */ 3103 if (sbi->s_journal && !sbi->journal_bdev) 3104 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3105 3106 sbi->s_overhead = overhead; 3107 smp_wmb(); 3108 free_page((unsigned long) buf); 3109 return 0; 3110 } 3111 3112 static void ext4_set_resv_clusters(struct super_block *sb) 3113 { 3114 ext4_fsblk_t resv_clusters; 3115 struct ext4_sb_info *sbi = EXT4_SB(sb); 3116 3117 /* 3118 * There's no need to reserve anything when we aren't using extents. 3119 * The space estimates are exact, there are no unwritten extents, 3120 * hole punching doesn't need new metadata... This is needed especially 3121 * to keep ext2/3 backward compatibility. 3122 */ 3123 if (!ext4_has_feature_extents(sb)) 3124 return; 3125 /* 3126 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3127 * This should cover the situations where we can not afford to run 3128 * out of space like for example punch hole, or converting 3129 * unwritten extents in delalloc path. In most cases such 3130 * allocation would require 1, or 2 blocks, higher numbers are 3131 * very rare. 3132 */ 3133 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3134 sbi->s_cluster_bits); 3135 3136 do_div(resv_clusters, 50); 3137 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3138 3139 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3140 } 3141 3142 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3143 { 3144 char *orig_data = kstrdup(data, GFP_KERNEL); 3145 struct buffer_head *bh; 3146 struct ext4_super_block *es = NULL; 3147 struct ext4_sb_info *sbi; 3148 ext4_fsblk_t block; 3149 ext4_fsblk_t sb_block = get_sb_block(&data); 3150 ext4_fsblk_t logical_sb_block; 3151 unsigned long offset = 0; 3152 unsigned long journal_devnum = 0; 3153 unsigned long def_mount_opts; 3154 struct inode *root; 3155 const char *descr; 3156 int ret = -ENOMEM; 3157 int blocksize, clustersize; 3158 unsigned int db_count; 3159 unsigned int i; 3160 int needs_recovery, has_huge_files, has_bigalloc; 3161 __u64 blocks_count; 3162 int err = 0; 3163 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3164 ext4_group_t first_not_zeroed; 3165 3166 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3167 if (!sbi) 3168 goto out_free_orig; 3169 3170 sbi->s_blockgroup_lock = 3171 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3172 if (!sbi->s_blockgroup_lock) { 3173 kfree(sbi); 3174 goto out_free_orig; 3175 } 3176 sb->s_fs_info = sbi; 3177 sbi->s_sb = sb; 3178 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3179 sbi->s_sb_block = sb_block; 3180 if (sb->s_bdev->bd_part) 3181 sbi->s_sectors_written_start = 3182 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3183 3184 /* Cleanup superblock name */ 3185 strreplace(sb->s_id, '/', '!'); 3186 3187 /* -EINVAL is default */ 3188 ret = -EINVAL; 3189 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3190 if (!blocksize) { 3191 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3192 goto out_fail; 3193 } 3194 3195 /* 3196 * The ext4 superblock will not be buffer aligned for other than 1kB 3197 * block sizes. We need to calculate the offset from buffer start. 3198 */ 3199 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3200 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3201 offset = do_div(logical_sb_block, blocksize); 3202 } else { 3203 logical_sb_block = sb_block; 3204 } 3205 3206 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3207 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3208 goto out_fail; 3209 } 3210 /* 3211 * Note: s_es must be initialized as soon as possible because 3212 * some ext4 macro-instructions depend on its value 3213 */ 3214 es = (struct ext4_super_block *) (bh->b_data + offset); 3215 sbi->s_es = es; 3216 sb->s_magic = le16_to_cpu(es->s_magic); 3217 if (sb->s_magic != EXT4_SUPER_MAGIC) 3218 goto cantfind_ext4; 3219 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3220 3221 /* Warn if metadata_csum and gdt_csum are both set. */ 3222 if (ext4_has_feature_metadata_csum(sb) && 3223 ext4_has_feature_gdt_csum(sb)) 3224 ext4_warning(sb, "metadata_csum and uninit_bg are " 3225 "redundant flags; please run fsck."); 3226 3227 /* Check for a known checksum algorithm */ 3228 if (!ext4_verify_csum_type(sb, es)) { 3229 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3230 "unknown checksum algorithm."); 3231 silent = 1; 3232 goto cantfind_ext4; 3233 } 3234 3235 /* Load the checksum driver */ 3236 if (ext4_has_feature_metadata_csum(sb)) { 3237 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3238 if (IS_ERR(sbi->s_chksum_driver)) { 3239 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3240 ret = PTR_ERR(sbi->s_chksum_driver); 3241 sbi->s_chksum_driver = NULL; 3242 goto failed_mount; 3243 } 3244 } 3245 3246 /* Check superblock checksum */ 3247 if (!ext4_superblock_csum_verify(sb, es)) { 3248 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3249 "invalid superblock checksum. Run e2fsck?"); 3250 silent = 1; 3251 ret = -EFSBADCRC; 3252 goto cantfind_ext4; 3253 } 3254 3255 /* Precompute checksum seed for all metadata */ 3256 if (ext4_has_feature_csum_seed(sb)) 3257 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3258 else if (ext4_has_metadata_csum(sb)) 3259 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3260 sizeof(es->s_uuid)); 3261 3262 /* Set defaults before we parse the mount options */ 3263 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3264 set_opt(sb, INIT_INODE_TABLE); 3265 if (def_mount_opts & EXT4_DEFM_DEBUG) 3266 set_opt(sb, DEBUG); 3267 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3268 set_opt(sb, GRPID); 3269 if (def_mount_opts & EXT4_DEFM_UID16) 3270 set_opt(sb, NO_UID32); 3271 /* xattr user namespace & acls are now defaulted on */ 3272 set_opt(sb, XATTR_USER); 3273 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3274 set_opt(sb, POSIX_ACL); 3275 #endif 3276 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3277 if (ext4_has_metadata_csum(sb)) 3278 set_opt(sb, JOURNAL_CHECKSUM); 3279 3280 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3281 set_opt(sb, JOURNAL_DATA); 3282 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3283 set_opt(sb, ORDERED_DATA); 3284 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3285 set_opt(sb, WRITEBACK_DATA); 3286 3287 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3288 set_opt(sb, ERRORS_PANIC); 3289 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3290 set_opt(sb, ERRORS_CONT); 3291 else 3292 set_opt(sb, ERRORS_RO); 3293 /* block_validity enabled by default; disable with noblock_validity */ 3294 set_opt(sb, BLOCK_VALIDITY); 3295 if (def_mount_opts & EXT4_DEFM_DISCARD) 3296 set_opt(sb, DISCARD); 3297 3298 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3299 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3300 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3301 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3302 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3303 3304 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3305 set_opt(sb, BARRIER); 3306 3307 /* 3308 * enable delayed allocation by default 3309 * Use -o nodelalloc to turn it off 3310 */ 3311 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3312 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3313 set_opt(sb, DELALLOC); 3314 3315 /* 3316 * set default s_li_wait_mult for lazyinit, for the case there is 3317 * no mount option specified. 3318 */ 3319 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3320 3321 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3322 &journal_devnum, &journal_ioprio, 0)) { 3323 ext4_msg(sb, KERN_WARNING, 3324 "failed to parse options in superblock: %s", 3325 sbi->s_es->s_mount_opts); 3326 } 3327 sbi->s_def_mount_opt = sbi->s_mount_opt; 3328 if (!parse_options((char *) data, sb, &journal_devnum, 3329 &journal_ioprio, 0)) 3330 goto failed_mount; 3331 3332 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3333 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3334 "with data=journal disables delayed " 3335 "allocation and O_DIRECT support!\n"); 3336 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3337 ext4_msg(sb, KERN_ERR, "can't mount with " 3338 "both data=journal and delalloc"); 3339 goto failed_mount; 3340 } 3341 if (test_opt(sb, DIOREAD_NOLOCK)) { 3342 ext4_msg(sb, KERN_ERR, "can't mount with " 3343 "both data=journal and dioread_nolock"); 3344 goto failed_mount; 3345 } 3346 if (test_opt(sb, DAX)) { 3347 ext4_msg(sb, KERN_ERR, "can't mount with " 3348 "both data=journal and dax"); 3349 goto failed_mount; 3350 } 3351 if (test_opt(sb, DELALLOC)) 3352 clear_opt(sb, DELALLOC); 3353 } else { 3354 sb->s_iflags |= SB_I_CGROUPWB; 3355 } 3356 3357 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3358 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3359 3360 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3361 (ext4_has_compat_features(sb) || 3362 ext4_has_ro_compat_features(sb) || 3363 ext4_has_incompat_features(sb))) 3364 ext4_msg(sb, KERN_WARNING, 3365 "feature flags set on rev 0 fs, " 3366 "running e2fsck is recommended"); 3367 3368 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3369 set_opt2(sb, HURD_COMPAT); 3370 if (ext4_has_feature_64bit(sb)) { 3371 ext4_msg(sb, KERN_ERR, 3372 "The Hurd can't support 64-bit file systems"); 3373 goto failed_mount; 3374 } 3375 } 3376 3377 if (IS_EXT2_SB(sb)) { 3378 if (ext2_feature_set_ok(sb)) 3379 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3380 "using the ext4 subsystem"); 3381 else { 3382 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3383 "to feature incompatibilities"); 3384 goto failed_mount; 3385 } 3386 } 3387 3388 if (IS_EXT3_SB(sb)) { 3389 if (ext3_feature_set_ok(sb)) 3390 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3391 "using the ext4 subsystem"); 3392 else { 3393 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3394 "to feature incompatibilities"); 3395 goto failed_mount; 3396 } 3397 } 3398 3399 /* 3400 * Check feature flags regardless of the revision level, since we 3401 * previously didn't change the revision level when setting the flags, 3402 * so there is a chance incompat flags are set on a rev 0 filesystem. 3403 */ 3404 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3405 goto failed_mount; 3406 3407 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3408 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3409 blocksize > EXT4_MAX_BLOCK_SIZE) { 3410 ext4_msg(sb, KERN_ERR, 3411 "Unsupported filesystem blocksize %d", blocksize); 3412 goto failed_mount; 3413 } 3414 3415 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3416 if (blocksize != PAGE_SIZE) { 3417 ext4_msg(sb, KERN_ERR, 3418 "error: unsupported blocksize for dax"); 3419 goto failed_mount; 3420 } 3421 if (!sb->s_bdev->bd_disk->fops->direct_access) { 3422 ext4_msg(sb, KERN_ERR, 3423 "error: device does not support dax"); 3424 goto failed_mount; 3425 } 3426 } 3427 3428 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3429 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3430 es->s_encryption_level); 3431 goto failed_mount; 3432 } 3433 3434 if (sb->s_blocksize != blocksize) { 3435 /* Validate the filesystem blocksize */ 3436 if (!sb_set_blocksize(sb, blocksize)) { 3437 ext4_msg(sb, KERN_ERR, "bad block size %d", 3438 blocksize); 3439 goto failed_mount; 3440 } 3441 3442 brelse(bh); 3443 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3444 offset = do_div(logical_sb_block, blocksize); 3445 bh = sb_bread_unmovable(sb, logical_sb_block); 3446 if (!bh) { 3447 ext4_msg(sb, KERN_ERR, 3448 "Can't read superblock on 2nd try"); 3449 goto failed_mount; 3450 } 3451 es = (struct ext4_super_block *)(bh->b_data + offset); 3452 sbi->s_es = es; 3453 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3454 ext4_msg(sb, KERN_ERR, 3455 "Magic mismatch, very weird!"); 3456 goto failed_mount; 3457 } 3458 } 3459 3460 has_huge_files = ext4_has_feature_huge_file(sb); 3461 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3462 has_huge_files); 3463 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3464 3465 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3466 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3467 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3468 } else { 3469 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3470 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3471 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3472 (!is_power_of_2(sbi->s_inode_size)) || 3473 (sbi->s_inode_size > blocksize)) { 3474 ext4_msg(sb, KERN_ERR, 3475 "unsupported inode size: %d", 3476 sbi->s_inode_size); 3477 goto failed_mount; 3478 } 3479 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3480 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3481 } 3482 3483 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3484 if (ext4_has_feature_64bit(sb)) { 3485 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3486 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3487 !is_power_of_2(sbi->s_desc_size)) { 3488 ext4_msg(sb, KERN_ERR, 3489 "unsupported descriptor size %lu", 3490 sbi->s_desc_size); 3491 goto failed_mount; 3492 } 3493 } else 3494 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3495 3496 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3497 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3498 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3499 goto cantfind_ext4; 3500 3501 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3502 if (sbi->s_inodes_per_block == 0) 3503 goto cantfind_ext4; 3504 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3505 sbi->s_inodes_per_block; 3506 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3507 sbi->s_sbh = bh; 3508 sbi->s_mount_state = le16_to_cpu(es->s_state); 3509 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3510 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3511 3512 for (i = 0; i < 4; i++) 3513 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3514 sbi->s_def_hash_version = es->s_def_hash_version; 3515 if (ext4_has_feature_dir_index(sb)) { 3516 i = le32_to_cpu(es->s_flags); 3517 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3518 sbi->s_hash_unsigned = 3; 3519 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3520 #ifdef __CHAR_UNSIGNED__ 3521 if (!(sb->s_flags & MS_RDONLY)) 3522 es->s_flags |= 3523 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3524 sbi->s_hash_unsigned = 3; 3525 #else 3526 if (!(sb->s_flags & MS_RDONLY)) 3527 es->s_flags |= 3528 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3529 #endif 3530 } 3531 } 3532 3533 /* Handle clustersize */ 3534 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3535 has_bigalloc = ext4_has_feature_bigalloc(sb); 3536 if (has_bigalloc) { 3537 if (clustersize < blocksize) { 3538 ext4_msg(sb, KERN_ERR, 3539 "cluster size (%d) smaller than " 3540 "block size (%d)", clustersize, blocksize); 3541 goto failed_mount; 3542 } 3543 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3544 le32_to_cpu(es->s_log_block_size); 3545 sbi->s_clusters_per_group = 3546 le32_to_cpu(es->s_clusters_per_group); 3547 if (sbi->s_clusters_per_group > blocksize * 8) { 3548 ext4_msg(sb, KERN_ERR, 3549 "#clusters per group too big: %lu", 3550 sbi->s_clusters_per_group); 3551 goto failed_mount; 3552 } 3553 if (sbi->s_blocks_per_group != 3554 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3555 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3556 "clusters per group (%lu) inconsistent", 3557 sbi->s_blocks_per_group, 3558 sbi->s_clusters_per_group); 3559 goto failed_mount; 3560 } 3561 } else { 3562 if (clustersize != blocksize) { 3563 ext4_warning(sb, "fragment/cluster size (%d) != " 3564 "block size (%d)", clustersize, 3565 blocksize); 3566 clustersize = blocksize; 3567 } 3568 if (sbi->s_blocks_per_group > blocksize * 8) { 3569 ext4_msg(sb, KERN_ERR, 3570 "#blocks per group too big: %lu", 3571 sbi->s_blocks_per_group); 3572 goto failed_mount; 3573 } 3574 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3575 sbi->s_cluster_bits = 0; 3576 } 3577 sbi->s_cluster_ratio = clustersize / blocksize; 3578 3579 if (sbi->s_inodes_per_group > blocksize * 8) { 3580 ext4_msg(sb, KERN_ERR, 3581 "#inodes per group too big: %lu", 3582 sbi->s_inodes_per_group); 3583 goto failed_mount; 3584 } 3585 3586 /* Do we have standard group size of clustersize * 8 blocks ? */ 3587 if (sbi->s_blocks_per_group == clustersize << 3) 3588 set_opt2(sb, STD_GROUP_SIZE); 3589 3590 /* 3591 * Test whether we have more sectors than will fit in sector_t, 3592 * and whether the max offset is addressable by the page cache. 3593 */ 3594 err = generic_check_addressable(sb->s_blocksize_bits, 3595 ext4_blocks_count(es)); 3596 if (err) { 3597 ext4_msg(sb, KERN_ERR, "filesystem" 3598 " too large to mount safely on this system"); 3599 if (sizeof(sector_t) < 8) 3600 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3601 goto failed_mount; 3602 } 3603 3604 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3605 goto cantfind_ext4; 3606 3607 /* check blocks count against device size */ 3608 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3609 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3610 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3611 "exceeds size of device (%llu blocks)", 3612 ext4_blocks_count(es), blocks_count); 3613 goto failed_mount; 3614 } 3615 3616 /* 3617 * It makes no sense for the first data block to be beyond the end 3618 * of the filesystem. 3619 */ 3620 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3621 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3622 "block %u is beyond end of filesystem (%llu)", 3623 le32_to_cpu(es->s_first_data_block), 3624 ext4_blocks_count(es)); 3625 goto failed_mount; 3626 } 3627 blocks_count = (ext4_blocks_count(es) - 3628 le32_to_cpu(es->s_first_data_block) + 3629 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3630 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3631 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3632 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3633 "(block count %llu, first data block %u, " 3634 "blocks per group %lu)", sbi->s_groups_count, 3635 ext4_blocks_count(es), 3636 le32_to_cpu(es->s_first_data_block), 3637 EXT4_BLOCKS_PER_GROUP(sb)); 3638 goto failed_mount; 3639 } 3640 sbi->s_groups_count = blocks_count; 3641 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3642 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3643 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3644 EXT4_DESC_PER_BLOCK(sb); 3645 sbi->s_group_desc = ext4_kvmalloc(db_count * 3646 sizeof(struct buffer_head *), 3647 GFP_KERNEL); 3648 if (sbi->s_group_desc == NULL) { 3649 ext4_msg(sb, KERN_ERR, "not enough memory"); 3650 ret = -ENOMEM; 3651 goto failed_mount; 3652 } 3653 3654 bgl_lock_init(sbi->s_blockgroup_lock); 3655 3656 for (i = 0; i < db_count; i++) { 3657 block = descriptor_loc(sb, logical_sb_block, i); 3658 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3659 if (!sbi->s_group_desc[i]) { 3660 ext4_msg(sb, KERN_ERR, 3661 "can't read group descriptor %d", i); 3662 db_count = i; 3663 goto failed_mount2; 3664 } 3665 } 3666 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3667 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3668 ret = -EFSCORRUPTED; 3669 goto failed_mount2; 3670 } 3671 3672 sbi->s_gdb_count = db_count; 3673 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3674 spin_lock_init(&sbi->s_next_gen_lock); 3675 3676 setup_timer(&sbi->s_err_report, print_daily_error_info, 3677 (unsigned long) sb); 3678 3679 /* Register extent status tree shrinker */ 3680 if (ext4_es_register_shrinker(sbi)) 3681 goto failed_mount3; 3682 3683 sbi->s_stripe = ext4_get_stripe_size(sbi); 3684 sbi->s_extent_max_zeroout_kb = 32; 3685 3686 /* 3687 * set up enough so that it can read an inode 3688 */ 3689 sb->s_op = &ext4_sops; 3690 sb->s_export_op = &ext4_export_ops; 3691 sb->s_xattr = ext4_xattr_handlers; 3692 #ifdef CONFIG_QUOTA 3693 sb->dq_op = &ext4_quota_operations; 3694 if (ext4_has_feature_quota(sb)) 3695 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3696 else 3697 sb->s_qcop = &ext4_qctl_operations; 3698 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3699 #endif 3700 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3701 3702 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3703 mutex_init(&sbi->s_orphan_lock); 3704 3705 sb->s_root = NULL; 3706 3707 needs_recovery = (es->s_last_orphan != 0 || 3708 ext4_has_feature_journal_needs_recovery(sb)); 3709 3710 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3711 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3712 goto failed_mount3a; 3713 3714 /* 3715 * The first inode we look at is the journal inode. Don't try 3716 * root first: it may be modified in the journal! 3717 */ 3718 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3719 if (ext4_load_journal(sb, es, journal_devnum)) 3720 goto failed_mount3a; 3721 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3722 ext4_has_feature_journal_needs_recovery(sb)) { 3723 ext4_msg(sb, KERN_ERR, "required journal recovery " 3724 "suppressed and not mounted read-only"); 3725 goto failed_mount_wq; 3726 } else { 3727 /* Nojournal mode, all journal mount options are illegal */ 3728 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3729 ext4_msg(sb, KERN_ERR, "can't mount with " 3730 "journal_checksum, fs mounted w/o journal"); 3731 goto failed_mount_wq; 3732 } 3733 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3734 ext4_msg(sb, KERN_ERR, "can't mount with " 3735 "journal_async_commit, fs mounted w/o journal"); 3736 goto failed_mount_wq; 3737 } 3738 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3739 ext4_msg(sb, KERN_ERR, "can't mount with " 3740 "commit=%lu, fs mounted w/o journal", 3741 sbi->s_commit_interval / HZ); 3742 goto failed_mount_wq; 3743 } 3744 if (EXT4_MOUNT_DATA_FLAGS & 3745 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3746 ext4_msg(sb, KERN_ERR, "can't mount with " 3747 "data=, fs mounted w/o journal"); 3748 goto failed_mount_wq; 3749 } 3750 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 3751 clear_opt(sb, JOURNAL_CHECKSUM); 3752 clear_opt(sb, DATA_FLAGS); 3753 sbi->s_journal = NULL; 3754 needs_recovery = 0; 3755 goto no_journal; 3756 } 3757 3758 if (ext4_has_feature_64bit(sb) && 3759 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3760 JBD2_FEATURE_INCOMPAT_64BIT)) { 3761 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3762 goto failed_mount_wq; 3763 } 3764 3765 if (!set_journal_csum_feature_set(sb)) { 3766 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3767 "feature set"); 3768 goto failed_mount_wq; 3769 } 3770 3771 /* We have now updated the journal if required, so we can 3772 * validate the data journaling mode. */ 3773 switch (test_opt(sb, DATA_FLAGS)) { 3774 case 0: 3775 /* No mode set, assume a default based on the journal 3776 * capabilities: ORDERED_DATA if the journal can 3777 * cope, else JOURNAL_DATA 3778 */ 3779 if (jbd2_journal_check_available_features 3780 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3781 set_opt(sb, ORDERED_DATA); 3782 else 3783 set_opt(sb, JOURNAL_DATA); 3784 break; 3785 3786 case EXT4_MOUNT_ORDERED_DATA: 3787 case EXT4_MOUNT_WRITEBACK_DATA: 3788 if (!jbd2_journal_check_available_features 3789 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3790 ext4_msg(sb, KERN_ERR, "Journal does not support " 3791 "requested data journaling mode"); 3792 goto failed_mount_wq; 3793 } 3794 default: 3795 break; 3796 } 3797 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3798 3799 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3800 3801 no_journal: 3802 sbi->s_mb_cache = ext4_xattr_create_cache(); 3803 if (!sbi->s_mb_cache) { 3804 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 3805 goto failed_mount_wq; 3806 } 3807 3808 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 3809 (blocksize != PAGE_CACHE_SIZE)) { 3810 ext4_msg(sb, KERN_ERR, 3811 "Unsupported blocksize for fs encryption"); 3812 goto failed_mount_wq; 3813 } 3814 3815 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 3816 !ext4_has_feature_encrypt(sb)) { 3817 ext4_set_feature_encrypt(sb); 3818 ext4_commit_super(sb, 1); 3819 } 3820 3821 /* 3822 * Get the # of file system overhead blocks from the 3823 * superblock if present. 3824 */ 3825 if (es->s_overhead_clusters) 3826 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3827 else { 3828 err = ext4_calculate_overhead(sb); 3829 if (err) 3830 goto failed_mount_wq; 3831 } 3832 3833 /* 3834 * The maximum number of concurrent works can be high and 3835 * concurrency isn't really necessary. Limit it to 1. 3836 */ 3837 EXT4_SB(sb)->rsv_conversion_wq = 3838 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3839 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3840 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3841 ret = -ENOMEM; 3842 goto failed_mount4; 3843 } 3844 3845 /* 3846 * The jbd2_journal_load will have done any necessary log recovery, 3847 * so we can safely mount the rest of the filesystem now. 3848 */ 3849 3850 root = ext4_iget(sb, EXT4_ROOT_INO); 3851 if (IS_ERR(root)) { 3852 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3853 ret = PTR_ERR(root); 3854 root = NULL; 3855 goto failed_mount4; 3856 } 3857 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3858 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3859 iput(root); 3860 goto failed_mount4; 3861 } 3862 sb->s_root = d_make_root(root); 3863 if (!sb->s_root) { 3864 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3865 ret = -ENOMEM; 3866 goto failed_mount4; 3867 } 3868 3869 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3870 sb->s_flags |= MS_RDONLY; 3871 3872 /* determine the minimum size of new large inodes, if present */ 3873 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3874 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3875 EXT4_GOOD_OLD_INODE_SIZE; 3876 if (ext4_has_feature_extra_isize(sb)) { 3877 if (sbi->s_want_extra_isize < 3878 le16_to_cpu(es->s_want_extra_isize)) 3879 sbi->s_want_extra_isize = 3880 le16_to_cpu(es->s_want_extra_isize); 3881 if (sbi->s_want_extra_isize < 3882 le16_to_cpu(es->s_min_extra_isize)) 3883 sbi->s_want_extra_isize = 3884 le16_to_cpu(es->s_min_extra_isize); 3885 } 3886 } 3887 /* Check if enough inode space is available */ 3888 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3889 sbi->s_inode_size) { 3890 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3891 EXT4_GOOD_OLD_INODE_SIZE; 3892 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3893 "available"); 3894 } 3895 3896 ext4_set_resv_clusters(sb); 3897 3898 err = ext4_setup_system_zone(sb); 3899 if (err) { 3900 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3901 "zone (%d)", err); 3902 goto failed_mount4a; 3903 } 3904 3905 ext4_ext_init(sb); 3906 err = ext4_mb_init(sb); 3907 if (err) { 3908 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3909 err); 3910 goto failed_mount5; 3911 } 3912 3913 block = ext4_count_free_clusters(sb); 3914 ext4_free_blocks_count_set(sbi->s_es, 3915 EXT4_C2B(sbi, block)); 3916 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 3917 GFP_KERNEL); 3918 if (!err) { 3919 unsigned long freei = ext4_count_free_inodes(sb); 3920 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 3921 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 3922 GFP_KERNEL); 3923 } 3924 if (!err) 3925 err = percpu_counter_init(&sbi->s_dirs_counter, 3926 ext4_count_dirs(sb), GFP_KERNEL); 3927 if (!err) 3928 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 3929 GFP_KERNEL); 3930 if (err) { 3931 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3932 goto failed_mount6; 3933 } 3934 3935 if (ext4_has_feature_flex_bg(sb)) 3936 if (!ext4_fill_flex_info(sb)) { 3937 ext4_msg(sb, KERN_ERR, 3938 "unable to initialize " 3939 "flex_bg meta info!"); 3940 goto failed_mount6; 3941 } 3942 3943 err = ext4_register_li_request(sb, first_not_zeroed); 3944 if (err) 3945 goto failed_mount6; 3946 3947 err = ext4_register_sysfs(sb); 3948 if (err) 3949 goto failed_mount7; 3950 3951 #ifdef CONFIG_QUOTA 3952 /* Enable quota usage during mount. */ 3953 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 3954 err = ext4_enable_quotas(sb); 3955 if (err) 3956 goto failed_mount8; 3957 } 3958 #endif /* CONFIG_QUOTA */ 3959 3960 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3961 ext4_orphan_cleanup(sb, es); 3962 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3963 if (needs_recovery) { 3964 ext4_msg(sb, KERN_INFO, "recovery complete"); 3965 ext4_mark_recovery_complete(sb, es); 3966 } 3967 if (EXT4_SB(sb)->s_journal) { 3968 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3969 descr = " journalled data mode"; 3970 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3971 descr = " ordered data mode"; 3972 else 3973 descr = " writeback data mode"; 3974 } else 3975 descr = "out journal"; 3976 3977 if (test_opt(sb, DISCARD)) { 3978 struct request_queue *q = bdev_get_queue(sb->s_bdev); 3979 if (!blk_queue_discard(q)) 3980 ext4_msg(sb, KERN_WARNING, 3981 "mounting with \"discard\" option, but " 3982 "the device does not support discard"); 3983 } 3984 3985 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 3986 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3987 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3988 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3989 3990 if (es->s_error_count) 3991 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3992 3993 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 3994 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 3995 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 3996 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 3997 3998 kfree(orig_data); 3999 return 0; 4000 4001 cantfind_ext4: 4002 if (!silent) 4003 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4004 goto failed_mount; 4005 4006 #ifdef CONFIG_QUOTA 4007 failed_mount8: 4008 ext4_unregister_sysfs(sb); 4009 #endif 4010 failed_mount7: 4011 ext4_unregister_li_request(sb); 4012 failed_mount6: 4013 ext4_mb_release(sb); 4014 if (sbi->s_flex_groups) 4015 kvfree(sbi->s_flex_groups); 4016 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4017 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4018 percpu_counter_destroy(&sbi->s_dirs_counter); 4019 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4020 failed_mount5: 4021 ext4_ext_release(sb); 4022 ext4_release_system_zone(sb); 4023 failed_mount4a: 4024 dput(sb->s_root); 4025 sb->s_root = NULL; 4026 failed_mount4: 4027 ext4_msg(sb, KERN_ERR, "mount failed"); 4028 if (EXT4_SB(sb)->rsv_conversion_wq) 4029 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4030 failed_mount_wq: 4031 if (sbi->s_mb_cache) { 4032 ext4_xattr_destroy_cache(sbi->s_mb_cache); 4033 sbi->s_mb_cache = NULL; 4034 } 4035 if (sbi->s_journal) { 4036 jbd2_journal_destroy(sbi->s_journal); 4037 sbi->s_journal = NULL; 4038 } 4039 failed_mount3a: 4040 ext4_es_unregister_shrinker(sbi); 4041 failed_mount3: 4042 del_timer_sync(&sbi->s_err_report); 4043 if (sbi->s_mmp_tsk) 4044 kthread_stop(sbi->s_mmp_tsk); 4045 failed_mount2: 4046 for (i = 0; i < db_count; i++) 4047 brelse(sbi->s_group_desc[i]); 4048 kvfree(sbi->s_group_desc); 4049 failed_mount: 4050 if (sbi->s_chksum_driver) 4051 crypto_free_shash(sbi->s_chksum_driver); 4052 #ifdef CONFIG_QUOTA 4053 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4054 kfree(sbi->s_qf_names[i]); 4055 #endif 4056 ext4_blkdev_remove(sbi); 4057 brelse(bh); 4058 out_fail: 4059 sb->s_fs_info = NULL; 4060 kfree(sbi->s_blockgroup_lock); 4061 kfree(sbi); 4062 out_free_orig: 4063 kfree(orig_data); 4064 return err ? err : ret; 4065 } 4066 4067 /* 4068 * Setup any per-fs journal parameters now. We'll do this both on 4069 * initial mount, once the journal has been initialised but before we've 4070 * done any recovery; and again on any subsequent remount. 4071 */ 4072 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4073 { 4074 struct ext4_sb_info *sbi = EXT4_SB(sb); 4075 4076 journal->j_commit_interval = sbi->s_commit_interval; 4077 journal->j_min_batch_time = sbi->s_min_batch_time; 4078 journal->j_max_batch_time = sbi->s_max_batch_time; 4079 4080 write_lock(&journal->j_state_lock); 4081 if (test_opt(sb, BARRIER)) 4082 journal->j_flags |= JBD2_BARRIER; 4083 else 4084 journal->j_flags &= ~JBD2_BARRIER; 4085 if (test_opt(sb, DATA_ERR_ABORT)) 4086 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4087 else 4088 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4089 write_unlock(&journal->j_state_lock); 4090 } 4091 4092 static journal_t *ext4_get_journal(struct super_block *sb, 4093 unsigned int journal_inum) 4094 { 4095 struct inode *journal_inode; 4096 journal_t *journal; 4097 4098 BUG_ON(!ext4_has_feature_journal(sb)); 4099 4100 /* First, test for the existence of a valid inode on disk. Bad 4101 * things happen if we iget() an unused inode, as the subsequent 4102 * iput() will try to delete it. */ 4103 4104 journal_inode = ext4_iget(sb, journal_inum); 4105 if (IS_ERR(journal_inode)) { 4106 ext4_msg(sb, KERN_ERR, "no journal found"); 4107 return NULL; 4108 } 4109 if (!journal_inode->i_nlink) { 4110 make_bad_inode(journal_inode); 4111 iput(journal_inode); 4112 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4113 return NULL; 4114 } 4115 4116 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4117 journal_inode, journal_inode->i_size); 4118 if (!S_ISREG(journal_inode->i_mode)) { 4119 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4120 iput(journal_inode); 4121 return NULL; 4122 } 4123 4124 journal = jbd2_journal_init_inode(journal_inode); 4125 if (!journal) { 4126 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4127 iput(journal_inode); 4128 return NULL; 4129 } 4130 journal->j_private = sb; 4131 ext4_init_journal_params(sb, journal); 4132 return journal; 4133 } 4134 4135 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4136 dev_t j_dev) 4137 { 4138 struct buffer_head *bh; 4139 journal_t *journal; 4140 ext4_fsblk_t start; 4141 ext4_fsblk_t len; 4142 int hblock, blocksize; 4143 ext4_fsblk_t sb_block; 4144 unsigned long offset; 4145 struct ext4_super_block *es; 4146 struct block_device *bdev; 4147 4148 BUG_ON(!ext4_has_feature_journal(sb)); 4149 4150 bdev = ext4_blkdev_get(j_dev, sb); 4151 if (bdev == NULL) 4152 return NULL; 4153 4154 blocksize = sb->s_blocksize; 4155 hblock = bdev_logical_block_size(bdev); 4156 if (blocksize < hblock) { 4157 ext4_msg(sb, KERN_ERR, 4158 "blocksize too small for journal device"); 4159 goto out_bdev; 4160 } 4161 4162 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4163 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4164 set_blocksize(bdev, blocksize); 4165 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4166 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4167 "external journal"); 4168 goto out_bdev; 4169 } 4170 4171 es = (struct ext4_super_block *) (bh->b_data + offset); 4172 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4173 !(le32_to_cpu(es->s_feature_incompat) & 4174 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4175 ext4_msg(sb, KERN_ERR, "external journal has " 4176 "bad superblock"); 4177 brelse(bh); 4178 goto out_bdev; 4179 } 4180 4181 if ((le32_to_cpu(es->s_feature_ro_compat) & 4182 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4183 es->s_checksum != ext4_superblock_csum(sb, es)) { 4184 ext4_msg(sb, KERN_ERR, "external journal has " 4185 "corrupt superblock"); 4186 brelse(bh); 4187 goto out_bdev; 4188 } 4189 4190 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4191 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4192 brelse(bh); 4193 goto out_bdev; 4194 } 4195 4196 len = ext4_blocks_count(es); 4197 start = sb_block + 1; 4198 brelse(bh); /* we're done with the superblock */ 4199 4200 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4201 start, len, blocksize); 4202 if (!journal) { 4203 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4204 goto out_bdev; 4205 } 4206 journal->j_private = sb; 4207 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4208 wait_on_buffer(journal->j_sb_buffer); 4209 if (!buffer_uptodate(journal->j_sb_buffer)) { 4210 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4211 goto out_journal; 4212 } 4213 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4214 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4215 "user (unsupported) - %d", 4216 be32_to_cpu(journal->j_superblock->s_nr_users)); 4217 goto out_journal; 4218 } 4219 EXT4_SB(sb)->journal_bdev = bdev; 4220 ext4_init_journal_params(sb, journal); 4221 return journal; 4222 4223 out_journal: 4224 jbd2_journal_destroy(journal); 4225 out_bdev: 4226 ext4_blkdev_put(bdev); 4227 return NULL; 4228 } 4229 4230 static int ext4_load_journal(struct super_block *sb, 4231 struct ext4_super_block *es, 4232 unsigned long journal_devnum) 4233 { 4234 journal_t *journal; 4235 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4236 dev_t journal_dev; 4237 int err = 0; 4238 int really_read_only; 4239 4240 BUG_ON(!ext4_has_feature_journal(sb)); 4241 4242 if (journal_devnum && 4243 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4244 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4245 "numbers have changed"); 4246 journal_dev = new_decode_dev(journal_devnum); 4247 } else 4248 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4249 4250 really_read_only = bdev_read_only(sb->s_bdev); 4251 4252 /* 4253 * Are we loading a blank journal or performing recovery after a 4254 * crash? For recovery, we need to check in advance whether we 4255 * can get read-write access to the device. 4256 */ 4257 if (ext4_has_feature_journal_needs_recovery(sb)) { 4258 if (sb->s_flags & MS_RDONLY) { 4259 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4260 "required on readonly filesystem"); 4261 if (really_read_only) { 4262 ext4_msg(sb, KERN_ERR, "write access " 4263 "unavailable, cannot proceed"); 4264 return -EROFS; 4265 } 4266 ext4_msg(sb, KERN_INFO, "write access will " 4267 "be enabled during recovery"); 4268 } 4269 } 4270 4271 if (journal_inum && journal_dev) { 4272 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4273 "and inode journals!"); 4274 return -EINVAL; 4275 } 4276 4277 if (journal_inum) { 4278 if (!(journal = ext4_get_journal(sb, journal_inum))) 4279 return -EINVAL; 4280 } else { 4281 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4282 return -EINVAL; 4283 } 4284 4285 if (!(journal->j_flags & JBD2_BARRIER)) 4286 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4287 4288 if (!ext4_has_feature_journal_needs_recovery(sb)) 4289 err = jbd2_journal_wipe(journal, !really_read_only); 4290 if (!err) { 4291 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4292 if (save) 4293 memcpy(save, ((char *) es) + 4294 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4295 err = jbd2_journal_load(journal); 4296 if (save) 4297 memcpy(((char *) es) + EXT4_S_ERR_START, 4298 save, EXT4_S_ERR_LEN); 4299 kfree(save); 4300 } 4301 4302 if (err) { 4303 ext4_msg(sb, KERN_ERR, "error loading journal"); 4304 jbd2_journal_destroy(journal); 4305 return err; 4306 } 4307 4308 EXT4_SB(sb)->s_journal = journal; 4309 ext4_clear_journal_err(sb, es); 4310 4311 if (!really_read_only && journal_devnum && 4312 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4313 es->s_journal_dev = cpu_to_le32(journal_devnum); 4314 4315 /* Make sure we flush the recovery flag to disk. */ 4316 ext4_commit_super(sb, 1); 4317 } 4318 4319 return 0; 4320 } 4321 4322 static int ext4_commit_super(struct super_block *sb, int sync) 4323 { 4324 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4325 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4326 int error = 0; 4327 4328 if (!sbh || block_device_ejected(sb)) 4329 return error; 4330 if (buffer_write_io_error(sbh)) { 4331 /* 4332 * Oh, dear. A previous attempt to write the 4333 * superblock failed. This could happen because the 4334 * USB device was yanked out. Or it could happen to 4335 * be a transient write error and maybe the block will 4336 * be remapped. Nothing we can do but to retry the 4337 * write and hope for the best. 4338 */ 4339 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4340 "superblock detected"); 4341 clear_buffer_write_io_error(sbh); 4342 set_buffer_uptodate(sbh); 4343 } 4344 /* 4345 * If the file system is mounted read-only, don't update the 4346 * superblock write time. This avoids updating the superblock 4347 * write time when we are mounting the root file system 4348 * read/only but we need to replay the journal; at that point, 4349 * for people who are east of GMT and who make their clock 4350 * tick in localtime for Windows bug-for-bug compatibility, 4351 * the clock is set in the future, and this will cause e2fsck 4352 * to complain and force a full file system check. 4353 */ 4354 if (!(sb->s_flags & MS_RDONLY)) 4355 es->s_wtime = cpu_to_le32(get_seconds()); 4356 if (sb->s_bdev->bd_part) 4357 es->s_kbytes_written = 4358 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4359 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4360 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4361 else 4362 es->s_kbytes_written = 4363 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4364 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4365 ext4_free_blocks_count_set(es, 4366 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4367 &EXT4_SB(sb)->s_freeclusters_counter))); 4368 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4369 es->s_free_inodes_count = 4370 cpu_to_le32(percpu_counter_sum_positive( 4371 &EXT4_SB(sb)->s_freeinodes_counter)); 4372 BUFFER_TRACE(sbh, "marking dirty"); 4373 ext4_superblock_csum_set(sb); 4374 mark_buffer_dirty(sbh); 4375 if (sync) { 4376 error = __sync_dirty_buffer(sbh, 4377 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC); 4378 if (error) 4379 return error; 4380 4381 error = buffer_write_io_error(sbh); 4382 if (error) { 4383 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4384 "superblock"); 4385 clear_buffer_write_io_error(sbh); 4386 set_buffer_uptodate(sbh); 4387 } 4388 } 4389 return error; 4390 } 4391 4392 /* 4393 * Have we just finished recovery? If so, and if we are mounting (or 4394 * remounting) the filesystem readonly, then we will end up with a 4395 * consistent fs on disk. Record that fact. 4396 */ 4397 static void ext4_mark_recovery_complete(struct super_block *sb, 4398 struct ext4_super_block *es) 4399 { 4400 journal_t *journal = EXT4_SB(sb)->s_journal; 4401 4402 if (!ext4_has_feature_journal(sb)) { 4403 BUG_ON(journal != NULL); 4404 return; 4405 } 4406 jbd2_journal_lock_updates(journal); 4407 if (jbd2_journal_flush(journal) < 0) 4408 goto out; 4409 4410 if (ext4_has_feature_journal_needs_recovery(sb) && 4411 sb->s_flags & MS_RDONLY) { 4412 ext4_clear_feature_journal_needs_recovery(sb); 4413 ext4_commit_super(sb, 1); 4414 } 4415 4416 out: 4417 jbd2_journal_unlock_updates(journal); 4418 } 4419 4420 /* 4421 * If we are mounting (or read-write remounting) a filesystem whose journal 4422 * has recorded an error from a previous lifetime, move that error to the 4423 * main filesystem now. 4424 */ 4425 static void ext4_clear_journal_err(struct super_block *sb, 4426 struct ext4_super_block *es) 4427 { 4428 journal_t *journal; 4429 int j_errno; 4430 const char *errstr; 4431 4432 BUG_ON(!ext4_has_feature_journal(sb)); 4433 4434 journal = EXT4_SB(sb)->s_journal; 4435 4436 /* 4437 * Now check for any error status which may have been recorded in the 4438 * journal by a prior ext4_error() or ext4_abort() 4439 */ 4440 4441 j_errno = jbd2_journal_errno(journal); 4442 if (j_errno) { 4443 char nbuf[16]; 4444 4445 errstr = ext4_decode_error(sb, j_errno, nbuf); 4446 ext4_warning(sb, "Filesystem error recorded " 4447 "from previous mount: %s", errstr); 4448 ext4_warning(sb, "Marking fs in need of filesystem check."); 4449 4450 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4451 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4452 ext4_commit_super(sb, 1); 4453 4454 jbd2_journal_clear_err(journal); 4455 jbd2_journal_update_sb_errno(journal); 4456 } 4457 } 4458 4459 /* 4460 * Force the running and committing transactions to commit, 4461 * and wait on the commit. 4462 */ 4463 int ext4_force_commit(struct super_block *sb) 4464 { 4465 journal_t *journal; 4466 4467 if (sb->s_flags & MS_RDONLY) 4468 return 0; 4469 4470 journal = EXT4_SB(sb)->s_journal; 4471 return ext4_journal_force_commit(journal); 4472 } 4473 4474 static int ext4_sync_fs(struct super_block *sb, int wait) 4475 { 4476 int ret = 0; 4477 tid_t target; 4478 bool needs_barrier = false; 4479 struct ext4_sb_info *sbi = EXT4_SB(sb); 4480 4481 trace_ext4_sync_fs(sb, wait); 4482 flush_workqueue(sbi->rsv_conversion_wq); 4483 /* 4484 * Writeback quota in non-journalled quota case - journalled quota has 4485 * no dirty dquots 4486 */ 4487 dquot_writeback_dquots(sb, -1); 4488 /* 4489 * Data writeback is possible w/o journal transaction, so barrier must 4490 * being sent at the end of the function. But we can skip it if 4491 * transaction_commit will do it for us. 4492 */ 4493 if (sbi->s_journal) { 4494 target = jbd2_get_latest_transaction(sbi->s_journal); 4495 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4496 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4497 needs_barrier = true; 4498 4499 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4500 if (wait) 4501 ret = jbd2_log_wait_commit(sbi->s_journal, 4502 target); 4503 } 4504 } else if (wait && test_opt(sb, BARRIER)) 4505 needs_barrier = true; 4506 if (needs_barrier) { 4507 int err; 4508 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4509 if (!ret) 4510 ret = err; 4511 } 4512 4513 return ret; 4514 } 4515 4516 /* 4517 * LVM calls this function before a (read-only) snapshot is created. This 4518 * gives us a chance to flush the journal completely and mark the fs clean. 4519 * 4520 * Note that only this function cannot bring a filesystem to be in a clean 4521 * state independently. It relies on upper layer to stop all data & metadata 4522 * modifications. 4523 */ 4524 static int ext4_freeze(struct super_block *sb) 4525 { 4526 int error = 0; 4527 journal_t *journal; 4528 4529 if (sb->s_flags & MS_RDONLY) 4530 return 0; 4531 4532 journal = EXT4_SB(sb)->s_journal; 4533 4534 if (journal) { 4535 /* Now we set up the journal barrier. */ 4536 jbd2_journal_lock_updates(journal); 4537 4538 /* 4539 * Don't clear the needs_recovery flag if we failed to 4540 * flush the journal. 4541 */ 4542 error = jbd2_journal_flush(journal); 4543 if (error < 0) 4544 goto out; 4545 4546 /* Journal blocked and flushed, clear needs_recovery flag. */ 4547 ext4_clear_feature_journal_needs_recovery(sb); 4548 } 4549 4550 error = ext4_commit_super(sb, 1); 4551 out: 4552 if (journal) 4553 /* we rely on upper layer to stop further updates */ 4554 jbd2_journal_unlock_updates(journal); 4555 return error; 4556 } 4557 4558 /* 4559 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4560 * flag here, even though the filesystem is not technically dirty yet. 4561 */ 4562 static int ext4_unfreeze(struct super_block *sb) 4563 { 4564 if (sb->s_flags & MS_RDONLY) 4565 return 0; 4566 4567 if (EXT4_SB(sb)->s_journal) { 4568 /* Reset the needs_recovery flag before the fs is unlocked. */ 4569 ext4_set_feature_journal_needs_recovery(sb); 4570 } 4571 4572 ext4_commit_super(sb, 1); 4573 return 0; 4574 } 4575 4576 /* 4577 * Structure to save mount options for ext4_remount's benefit 4578 */ 4579 struct ext4_mount_options { 4580 unsigned long s_mount_opt; 4581 unsigned long s_mount_opt2; 4582 kuid_t s_resuid; 4583 kgid_t s_resgid; 4584 unsigned long s_commit_interval; 4585 u32 s_min_batch_time, s_max_batch_time; 4586 #ifdef CONFIG_QUOTA 4587 int s_jquota_fmt; 4588 char *s_qf_names[EXT4_MAXQUOTAS]; 4589 #endif 4590 }; 4591 4592 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4593 { 4594 struct ext4_super_block *es; 4595 struct ext4_sb_info *sbi = EXT4_SB(sb); 4596 unsigned long old_sb_flags; 4597 struct ext4_mount_options old_opts; 4598 int enable_quota = 0; 4599 ext4_group_t g; 4600 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4601 int err = 0; 4602 #ifdef CONFIG_QUOTA 4603 int i, j; 4604 #endif 4605 char *orig_data = kstrdup(data, GFP_KERNEL); 4606 4607 /* Store the original options */ 4608 old_sb_flags = sb->s_flags; 4609 old_opts.s_mount_opt = sbi->s_mount_opt; 4610 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4611 old_opts.s_resuid = sbi->s_resuid; 4612 old_opts.s_resgid = sbi->s_resgid; 4613 old_opts.s_commit_interval = sbi->s_commit_interval; 4614 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4615 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4616 #ifdef CONFIG_QUOTA 4617 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4618 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4619 if (sbi->s_qf_names[i]) { 4620 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4621 GFP_KERNEL); 4622 if (!old_opts.s_qf_names[i]) { 4623 for (j = 0; j < i; j++) 4624 kfree(old_opts.s_qf_names[j]); 4625 kfree(orig_data); 4626 return -ENOMEM; 4627 } 4628 } else 4629 old_opts.s_qf_names[i] = NULL; 4630 #endif 4631 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4632 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4633 4634 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4635 err = -EINVAL; 4636 goto restore_opts; 4637 } 4638 4639 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4640 test_opt(sb, JOURNAL_CHECKSUM)) { 4641 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4642 "during remount not supported; ignoring"); 4643 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4644 } 4645 4646 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4647 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4648 ext4_msg(sb, KERN_ERR, "can't mount with " 4649 "both data=journal and delalloc"); 4650 err = -EINVAL; 4651 goto restore_opts; 4652 } 4653 if (test_opt(sb, DIOREAD_NOLOCK)) { 4654 ext4_msg(sb, KERN_ERR, "can't mount with " 4655 "both data=journal and dioread_nolock"); 4656 err = -EINVAL; 4657 goto restore_opts; 4658 } 4659 if (test_opt(sb, DAX)) { 4660 ext4_msg(sb, KERN_ERR, "can't mount with " 4661 "both data=journal and dax"); 4662 err = -EINVAL; 4663 goto restore_opts; 4664 } 4665 } 4666 4667 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4668 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4669 "dax flag with busy inodes while remounting"); 4670 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4671 } 4672 4673 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4674 ext4_abort(sb, "Abort forced by user"); 4675 4676 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4677 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4678 4679 es = sbi->s_es; 4680 4681 if (sbi->s_journal) { 4682 ext4_init_journal_params(sb, sbi->s_journal); 4683 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4684 } 4685 4686 if (*flags & MS_LAZYTIME) 4687 sb->s_flags |= MS_LAZYTIME; 4688 4689 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4690 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4691 err = -EROFS; 4692 goto restore_opts; 4693 } 4694 4695 if (*flags & MS_RDONLY) { 4696 err = sync_filesystem(sb); 4697 if (err < 0) 4698 goto restore_opts; 4699 err = dquot_suspend(sb, -1); 4700 if (err < 0) 4701 goto restore_opts; 4702 4703 /* 4704 * First of all, the unconditional stuff we have to do 4705 * to disable replay of the journal when we next remount 4706 */ 4707 sb->s_flags |= MS_RDONLY; 4708 4709 /* 4710 * OK, test if we are remounting a valid rw partition 4711 * readonly, and if so set the rdonly flag and then 4712 * mark the partition as valid again. 4713 */ 4714 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4715 (sbi->s_mount_state & EXT4_VALID_FS)) 4716 es->s_state = cpu_to_le16(sbi->s_mount_state); 4717 4718 if (sbi->s_journal) 4719 ext4_mark_recovery_complete(sb, es); 4720 } else { 4721 /* Make sure we can mount this feature set readwrite */ 4722 if (ext4_has_feature_readonly(sb) || 4723 !ext4_feature_set_ok(sb, 0)) { 4724 err = -EROFS; 4725 goto restore_opts; 4726 } 4727 /* 4728 * Make sure the group descriptor checksums 4729 * are sane. If they aren't, refuse to remount r/w. 4730 */ 4731 for (g = 0; g < sbi->s_groups_count; g++) { 4732 struct ext4_group_desc *gdp = 4733 ext4_get_group_desc(sb, g, NULL); 4734 4735 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4736 ext4_msg(sb, KERN_ERR, 4737 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4738 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 4739 le16_to_cpu(gdp->bg_checksum)); 4740 err = -EFSBADCRC; 4741 goto restore_opts; 4742 } 4743 } 4744 4745 /* 4746 * If we have an unprocessed orphan list hanging 4747 * around from a previously readonly bdev mount, 4748 * require a full umount/remount for now. 4749 */ 4750 if (es->s_last_orphan) { 4751 ext4_msg(sb, KERN_WARNING, "Couldn't " 4752 "remount RDWR because of unprocessed " 4753 "orphan inode list. Please " 4754 "umount/remount instead"); 4755 err = -EINVAL; 4756 goto restore_opts; 4757 } 4758 4759 /* 4760 * Mounting a RDONLY partition read-write, so reread 4761 * and store the current valid flag. (It may have 4762 * been changed by e2fsck since we originally mounted 4763 * the partition.) 4764 */ 4765 if (sbi->s_journal) 4766 ext4_clear_journal_err(sb, es); 4767 sbi->s_mount_state = le16_to_cpu(es->s_state); 4768 if (!ext4_setup_super(sb, es, 0)) 4769 sb->s_flags &= ~MS_RDONLY; 4770 if (ext4_has_feature_mmp(sb)) 4771 if (ext4_multi_mount_protect(sb, 4772 le64_to_cpu(es->s_mmp_block))) { 4773 err = -EROFS; 4774 goto restore_opts; 4775 } 4776 enable_quota = 1; 4777 } 4778 } 4779 4780 /* 4781 * Reinitialize lazy itable initialization thread based on 4782 * current settings 4783 */ 4784 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4785 ext4_unregister_li_request(sb); 4786 else { 4787 ext4_group_t first_not_zeroed; 4788 first_not_zeroed = ext4_has_uninit_itable(sb); 4789 ext4_register_li_request(sb, first_not_zeroed); 4790 } 4791 4792 ext4_setup_system_zone(sb); 4793 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4794 ext4_commit_super(sb, 1); 4795 4796 #ifdef CONFIG_QUOTA 4797 /* Release old quota file names */ 4798 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4799 kfree(old_opts.s_qf_names[i]); 4800 if (enable_quota) { 4801 if (sb_any_quota_suspended(sb)) 4802 dquot_resume(sb, -1); 4803 else if (ext4_has_feature_quota(sb)) { 4804 err = ext4_enable_quotas(sb); 4805 if (err) 4806 goto restore_opts; 4807 } 4808 } 4809 #endif 4810 4811 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 4812 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4813 kfree(orig_data); 4814 return 0; 4815 4816 restore_opts: 4817 sb->s_flags = old_sb_flags; 4818 sbi->s_mount_opt = old_opts.s_mount_opt; 4819 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4820 sbi->s_resuid = old_opts.s_resuid; 4821 sbi->s_resgid = old_opts.s_resgid; 4822 sbi->s_commit_interval = old_opts.s_commit_interval; 4823 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4824 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4825 #ifdef CONFIG_QUOTA 4826 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4827 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 4828 kfree(sbi->s_qf_names[i]); 4829 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4830 } 4831 #endif 4832 kfree(orig_data); 4833 return err; 4834 } 4835 4836 #ifdef CONFIG_QUOTA 4837 static int ext4_statfs_project(struct super_block *sb, 4838 kprojid_t projid, struct kstatfs *buf) 4839 { 4840 struct kqid qid; 4841 struct dquot *dquot; 4842 u64 limit; 4843 u64 curblock; 4844 4845 qid = make_kqid_projid(projid); 4846 dquot = dqget(sb, qid); 4847 if (IS_ERR(dquot)) 4848 return PTR_ERR(dquot); 4849 spin_lock(&dq_data_lock); 4850 4851 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 4852 dquot->dq_dqb.dqb_bsoftlimit : 4853 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 4854 if (limit && buf->f_blocks > limit) { 4855 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 4856 buf->f_blocks = limit; 4857 buf->f_bfree = buf->f_bavail = 4858 (buf->f_blocks > curblock) ? 4859 (buf->f_blocks - curblock) : 0; 4860 } 4861 4862 limit = dquot->dq_dqb.dqb_isoftlimit ? 4863 dquot->dq_dqb.dqb_isoftlimit : 4864 dquot->dq_dqb.dqb_ihardlimit; 4865 if (limit && buf->f_files > limit) { 4866 buf->f_files = limit; 4867 buf->f_ffree = 4868 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 4869 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 4870 } 4871 4872 spin_unlock(&dq_data_lock); 4873 dqput(dquot); 4874 return 0; 4875 } 4876 #endif 4877 4878 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4879 { 4880 struct super_block *sb = dentry->d_sb; 4881 struct ext4_sb_info *sbi = EXT4_SB(sb); 4882 struct ext4_super_block *es = sbi->s_es; 4883 ext4_fsblk_t overhead = 0, resv_blocks; 4884 u64 fsid; 4885 s64 bfree; 4886 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4887 4888 if (!test_opt(sb, MINIX_DF)) 4889 overhead = sbi->s_overhead; 4890 4891 buf->f_type = EXT4_SUPER_MAGIC; 4892 buf->f_bsize = sb->s_blocksize; 4893 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4894 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4895 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4896 /* prevent underflow in case that few free space is available */ 4897 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4898 buf->f_bavail = buf->f_bfree - 4899 (ext4_r_blocks_count(es) + resv_blocks); 4900 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 4901 buf->f_bavail = 0; 4902 buf->f_files = le32_to_cpu(es->s_inodes_count); 4903 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4904 buf->f_namelen = EXT4_NAME_LEN; 4905 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4906 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4907 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4908 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4909 4910 #ifdef CONFIG_QUOTA 4911 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 4912 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 4913 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 4914 #endif 4915 return 0; 4916 } 4917 4918 /* Helper function for writing quotas on sync - we need to start transaction 4919 * before quota file is locked for write. Otherwise the are possible deadlocks: 4920 * Process 1 Process 2 4921 * ext4_create() quota_sync() 4922 * jbd2_journal_start() write_dquot() 4923 * dquot_initialize() down(dqio_mutex) 4924 * down(dqio_mutex) jbd2_journal_start() 4925 * 4926 */ 4927 4928 #ifdef CONFIG_QUOTA 4929 4930 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4931 { 4932 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4933 } 4934 4935 static int ext4_write_dquot(struct dquot *dquot) 4936 { 4937 int ret, err; 4938 handle_t *handle; 4939 struct inode *inode; 4940 4941 inode = dquot_to_inode(dquot); 4942 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4943 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4944 if (IS_ERR(handle)) 4945 return PTR_ERR(handle); 4946 ret = dquot_commit(dquot); 4947 err = ext4_journal_stop(handle); 4948 if (!ret) 4949 ret = err; 4950 return ret; 4951 } 4952 4953 static int ext4_acquire_dquot(struct dquot *dquot) 4954 { 4955 int ret, err; 4956 handle_t *handle; 4957 4958 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4959 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4960 if (IS_ERR(handle)) 4961 return PTR_ERR(handle); 4962 ret = dquot_acquire(dquot); 4963 err = ext4_journal_stop(handle); 4964 if (!ret) 4965 ret = err; 4966 return ret; 4967 } 4968 4969 static int ext4_release_dquot(struct dquot *dquot) 4970 { 4971 int ret, err; 4972 handle_t *handle; 4973 4974 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4975 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4976 if (IS_ERR(handle)) { 4977 /* Release dquot anyway to avoid endless cycle in dqput() */ 4978 dquot_release(dquot); 4979 return PTR_ERR(handle); 4980 } 4981 ret = dquot_release(dquot); 4982 err = ext4_journal_stop(handle); 4983 if (!ret) 4984 ret = err; 4985 return ret; 4986 } 4987 4988 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4989 { 4990 struct super_block *sb = dquot->dq_sb; 4991 struct ext4_sb_info *sbi = EXT4_SB(sb); 4992 4993 /* Are we journaling quotas? */ 4994 if (ext4_has_feature_quota(sb) || 4995 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 4996 dquot_mark_dquot_dirty(dquot); 4997 return ext4_write_dquot(dquot); 4998 } else { 4999 return dquot_mark_dquot_dirty(dquot); 5000 } 5001 } 5002 5003 static int ext4_write_info(struct super_block *sb, int type) 5004 { 5005 int ret, err; 5006 handle_t *handle; 5007 5008 /* Data block + inode block */ 5009 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5010 if (IS_ERR(handle)) 5011 return PTR_ERR(handle); 5012 ret = dquot_commit_info(sb, type); 5013 err = ext4_journal_stop(handle); 5014 if (!ret) 5015 ret = err; 5016 return ret; 5017 } 5018 5019 /* 5020 * Turn on quotas during mount time - we need to find 5021 * the quota file and such... 5022 */ 5023 static int ext4_quota_on_mount(struct super_block *sb, int type) 5024 { 5025 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5026 EXT4_SB(sb)->s_jquota_fmt, type); 5027 } 5028 5029 /* 5030 * Standard function to be called on quota_on 5031 */ 5032 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5033 struct path *path) 5034 { 5035 int err; 5036 5037 if (!test_opt(sb, QUOTA)) 5038 return -EINVAL; 5039 5040 /* Quotafile not on the same filesystem? */ 5041 if (path->dentry->d_sb != sb) 5042 return -EXDEV; 5043 /* Journaling quota? */ 5044 if (EXT4_SB(sb)->s_qf_names[type]) { 5045 /* Quotafile not in fs root? */ 5046 if (path->dentry->d_parent != sb->s_root) 5047 ext4_msg(sb, KERN_WARNING, 5048 "Quota file not on filesystem root. " 5049 "Journaled quota will not work"); 5050 } 5051 5052 /* 5053 * When we journal data on quota file, we have to flush journal to see 5054 * all updates to the file when we bypass pagecache... 5055 */ 5056 if (EXT4_SB(sb)->s_journal && 5057 ext4_should_journal_data(d_inode(path->dentry))) { 5058 /* 5059 * We don't need to lock updates but journal_flush() could 5060 * otherwise be livelocked... 5061 */ 5062 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5063 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5064 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5065 if (err) 5066 return err; 5067 } 5068 5069 return dquot_quota_on(sb, type, format_id, path); 5070 } 5071 5072 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5073 unsigned int flags) 5074 { 5075 int err; 5076 struct inode *qf_inode; 5077 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5078 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5079 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5080 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5081 }; 5082 5083 BUG_ON(!ext4_has_feature_quota(sb)); 5084 5085 if (!qf_inums[type]) 5086 return -EPERM; 5087 5088 qf_inode = ext4_iget(sb, qf_inums[type]); 5089 if (IS_ERR(qf_inode)) { 5090 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5091 return PTR_ERR(qf_inode); 5092 } 5093 5094 /* Don't account quota for quota files to avoid recursion */ 5095 qf_inode->i_flags |= S_NOQUOTA; 5096 err = dquot_enable(qf_inode, type, format_id, flags); 5097 iput(qf_inode); 5098 5099 return err; 5100 } 5101 5102 /* Enable usage tracking for all quota types. */ 5103 static int ext4_enable_quotas(struct super_block *sb) 5104 { 5105 int type, err = 0; 5106 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5107 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5108 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5109 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5110 }; 5111 5112 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5113 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5114 if (qf_inums[type]) { 5115 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5116 DQUOT_USAGE_ENABLED); 5117 if (err) { 5118 ext4_warning(sb, 5119 "Failed to enable quota tracking " 5120 "(type=%d, err=%d). Please run " 5121 "e2fsck to fix.", type, err); 5122 return err; 5123 } 5124 } 5125 } 5126 return 0; 5127 } 5128 5129 static int ext4_quota_off(struct super_block *sb, int type) 5130 { 5131 struct inode *inode = sb_dqopt(sb)->files[type]; 5132 handle_t *handle; 5133 5134 /* Force all delayed allocation blocks to be allocated. 5135 * Caller already holds s_umount sem */ 5136 if (test_opt(sb, DELALLOC)) 5137 sync_filesystem(sb); 5138 5139 if (!inode) 5140 goto out; 5141 5142 /* Update modification times of quota files when userspace can 5143 * start looking at them */ 5144 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5145 if (IS_ERR(handle)) 5146 goto out; 5147 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5148 ext4_mark_inode_dirty(handle, inode); 5149 ext4_journal_stop(handle); 5150 5151 out: 5152 return dquot_quota_off(sb, type); 5153 } 5154 5155 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5156 * acquiring the locks... As quota files are never truncated and quota code 5157 * itself serializes the operations (and no one else should touch the files) 5158 * we don't have to be afraid of races */ 5159 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5160 size_t len, loff_t off) 5161 { 5162 struct inode *inode = sb_dqopt(sb)->files[type]; 5163 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5164 int offset = off & (sb->s_blocksize - 1); 5165 int tocopy; 5166 size_t toread; 5167 struct buffer_head *bh; 5168 loff_t i_size = i_size_read(inode); 5169 5170 if (off > i_size) 5171 return 0; 5172 if (off+len > i_size) 5173 len = i_size-off; 5174 toread = len; 5175 while (toread > 0) { 5176 tocopy = sb->s_blocksize - offset < toread ? 5177 sb->s_blocksize - offset : toread; 5178 bh = ext4_bread(NULL, inode, blk, 0); 5179 if (IS_ERR(bh)) 5180 return PTR_ERR(bh); 5181 if (!bh) /* A hole? */ 5182 memset(data, 0, tocopy); 5183 else 5184 memcpy(data, bh->b_data+offset, tocopy); 5185 brelse(bh); 5186 offset = 0; 5187 toread -= tocopy; 5188 data += tocopy; 5189 blk++; 5190 } 5191 return len; 5192 } 5193 5194 /* Write to quotafile (we know the transaction is already started and has 5195 * enough credits) */ 5196 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5197 const char *data, size_t len, loff_t off) 5198 { 5199 struct inode *inode = sb_dqopt(sb)->files[type]; 5200 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5201 int err, offset = off & (sb->s_blocksize - 1); 5202 int retries = 0; 5203 struct buffer_head *bh; 5204 handle_t *handle = journal_current_handle(); 5205 5206 if (EXT4_SB(sb)->s_journal && !handle) { 5207 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5208 " cancelled because transaction is not started", 5209 (unsigned long long)off, (unsigned long long)len); 5210 return -EIO; 5211 } 5212 /* 5213 * Since we account only one data block in transaction credits, 5214 * then it is impossible to cross a block boundary. 5215 */ 5216 if (sb->s_blocksize - offset < len) { 5217 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5218 " cancelled because not block aligned", 5219 (unsigned long long)off, (unsigned long long)len); 5220 return -EIO; 5221 } 5222 5223 do { 5224 bh = ext4_bread(handle, inode, blk, 5225 EXT4_GET_BLOCKS_CREATE | 5226 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5227 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5228 ext4_should_retry_alloc(inode->i_sb, &retries)); 5229 if (IS_ERR(bh)) 5230 return PTR_ERR(bh); 5231 if (!bh) 5232 goto out; 5233 BUFFER_TRACE(bh, "get write access"); 5234 err = ext4_journal_get_write_access(handle, bh); 5235 if (err) { 5236 brelse(bh); 5237 return err; 5238 } 5239 lock_buffer(bh); 5240 memcpy(bh->b_data+offset, data, len); 5241 flush_dcache_page(bh->b_page); 5242 unlock_buffer(bh); 5243 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5244 brelse(bh); 5245 out: 5246 if (inode->i_size < off + len) { 5247 i_size_write(inode, off + len); 5248 EXT4_I(inode)->i_disksize = inode->i_size; 5249 ext4_mark_inode_dirty(handle, inode); 5250 } 5251 return len; 5252 } 5253 5254 #endif 5255 5256 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5257 const char *dev_name, void *data) 5258 { 5259 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5260 } 5261 5262 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5263 static inline void register_as_ext2(void) 5264 { 5265 int err = register_filesystem(&ext2_fs_type); 5266 if (err) 5267 printk(KERN_WARNING 5268 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5269 } 5270 5271 static inline void unregister_as_ext2(void) 5272 { 5273 unregister_filesystem(&ext2_fs_type); 5274 } 5275 5276 static inline int ext2_feature_set_ok(struct super_block *sb) 5277 { 5278 if (ext4_has_unknown_ext2_incompat_features(sb)) 5279 return 0; 5280 if (sb->s_flags & MS_RDONLY) 5281 return 1; 5282 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5283 return 0; 5284 return 1; 5285 } 5286 #else 5287 static inline void register_as_ext2(void) { } 5288 static inline void unregister_as_ext2(void) { } 5289 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5290 #endif 5291 5292 static inline void register_as_ext3(void) 5293 { 5294 int err = register_filesystem(&ext3_fs_type); 5295 if (err) 5296 printk(KERN_WARNING 5297 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5298 } 5299 5300 static inline void unregister_as_ext3(void) 5301 { 5302 unregister_filesystem(&ext3_fs_type); 5303 } 5304 5305 static inline int ext3_feature_set_ok(struct super_block *sb) 5306 { 5307 if (ext4_has_unknown_ext3_incompat_features(sb)) 5308 return 0; 5309 if (!ext4_has_feature_journal(sb)) 5310 return 0; 5311 if (sb->s_flags & MS_RDONLY) 5312 return 1; 5313 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5314 return 0; 5315 return 1; 5316 } 5317 5318 static struct file_system_type ext4_fs_type = { 5319 .owner = THIS_MODULE, 5320 .name = "ext4", 5321 .mount = ext4_mount, 5322 .kill_sb = kill_block_super, 5323 .fs_flags = FS_REQUIRES_DEV, 5324 }; 5325 MODULE_ALIAS_FS("ext4"); 5326 5327 /* Shared across all ext4 file systems */ 5328 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5329 5330 static int __init ext4_init_fs(void) 5331 { 5332 int i, err; 5333 5334 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5335 ext4_li_info = NULL; 5336 mutex_init(&ext4_li_mtx); 5337 5338 /* Build-time check for flags consistency */ 5339 ext4_check_flag_values(); 5340 5341 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5342 init_waitqueue_head(&ext4__ioend_wq[i]); 5343 5344 err = ext4_init_es(); 5345 if (err) 5346 return err; 5347 5348 err = ext4_init_pageio(); 5349 if (err) 5350 goto out5; 5351 5352 err = ext4_init_system_zone(); 5353 if (err) 5354 goto out4; 5355 5356 err = ext4_init_sysfs(); 5357 if (err) 5358 goto out3; 5359 5360 err = ext4_init_mballoc(); 5361 if (err) 5362 goto out2; 5363 err = init_inodecache(); 5364 if (err) 5365 goto out1; 5366 register_as_ext3(); 5367 register_as_ext2(); 5368 err = register_filesystem(&ext4_fs_type); 5369 if (err) 5370 goto out; 5371 5372 return 0; 5373 out: 5374 unregister_as_ext2(); 5375 unregister_as_ext3(); 5376 destroy_inodecache(); 5377 out1: 5378 ext4_exit_mballoc(); 5379 out2: 5380 ext4_exit_sysfs(); 5381 out3: 5382 ext4_exit_system_zone(); 5383 out4: 5384 ext4_exit_pageio(); 5385 out5: 5386 ext4_exit_es(); 5387 5388 return err; 5389 } 5390 5391 static void __exit ext4_exit_fs(void) 5392 { 5393 ext4_exit_crypto(); 5394 ext4_destroy_lazyinit_thread(); 5395 unregister_as_ext2(); 5396 unregister_as_ext3(); 5397 unregister_filesystem(&ext4_fs_type); 5398 destroy_inodecache(); 5399 ext4_exit_mballoc(); 5400 ext4_exit_sysfs(); 5401 ext4_exit_system_zone(); 5402 ext4_exit_pageio(); 5403 ext4_exit_es(); 5404 } 5405 5406 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5407 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5408 MODULE_LICENSE("GPL"); 5409 module_init(ext4_init_fs) 5410 module_exit(ext4_exit_fs) 5411