xref: /linux/fs/ext4/super.c (revision 1f24458a1071f006e3f7449c08ae0f12af493923)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 
52 #include "ext4.h"
53 #include "ext4_extents.h"	/* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62 
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66 
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 			     unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 					struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 				  struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 					    unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 				      struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98 
99 /*
100  * Lock ordering
101  *
102  * page fault path:
103  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104  *   -> page lock -> i_data_sem (rw)
105  *
106  * buffered write path:
107  * sb_start_write -> i_mutex -> mmap_lock
108  * sb_start_write -> i_mutex -> transaction start -> page lock ->
109  *   i_data_sem (rw)
110  *
111  * truncate:
112  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113  *   page lock
114  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115  *   i_data_sem (rw)
116  *
117  * direct IO:
118  * sb_start_write -> i_mutex -> mmap_lock
119  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120  *
121  * writepages:
122  * transaction start -> page lock(s) -> i_data_sem (rw)
123  */
124 
125 static const struct fs_context_operations ext4_context_ops = {
126 	.parse_param	= ext4_parse_param,
127 	.get_tree	= ext4_get_tree,
128 	.reconfigure	= ext4_reconfigure,
129 	.free		= ext4_fc_free,
130 };
131 
132 
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 	.owner			= THIS_MODULE,
136 	.name			= "ext2",
137 	.init_fs_context	= ext4_init_fs_context,
138 	.parameters		= ext4_param_specs,
139 	.kill_sb		= ext4_kill_sb,
140 	.fs_flags		= FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148 
149 
150 static struct file_system_type ext3_fs_type = {
151 	.owner			= THIS_MODULE,
152 	.name			= "ext3",
153 	.init_fs_context	= ext4_init_fs_context,
154 	.parameters		= ext4_param_specs,
155 	.kill_sb		= ext4_kill_sb,
156 	.fs_flags		= FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161 
162 
163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 				  bh_end_io_t *end_io)
165 {
166 	/*
167 	 * buffer's verified bit is no longer valid after reading from
168 	 * disk again due to write out error, clear it to make sure we
169 	 * recheck the buffer contents.
170 	 */
171 	clear_buffer_verified(bh);
172 
173 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174 	get_bh(bh);
175 	submit_bh(REQ_OP_READ | op_flags, bh);
176 }
177 
178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
179 			 bh_end_io_t *end_io)
180 {
181 	BUG_ON(!buffer_locked(bh));
182 
183 	if (ext4_buffer_uptodate(bh)) {
184 		unlock_buffer(bh);
185 		return;
186 	}
187 	__ext4_read_bh(bh, op_flags, end_io);
188 }
189 
190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
191 {
192 	BUG_ON(!buffer_locked(bh));
193 
194 	if (ext4_buffer_uptodate(bh)) {
195 		unlock_buffer(bh);
196 		return 0;
197 	}
198 
199 	__ext4_read_bh(bh, op_flags, end_io);
200 
201 	wait_on_buffer(bh);
202 	if (buffer_uptodate(bh))
203 		return 0;
204 	return -EIO;
205 }
206 
207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
208 {
209 	lock_buffer(bh);
210 	if (!wait) {
211 		ext4_read_bh_nowait(bh, op_flags, NULL);
212 		return 0;
213 	}
214 	return ext4_read_bh(bh, op_flags, NULL);
215 }
216 
217 /*
218  * This works like __bread_gfp() except it uses ERR_PTR for error
219  * returns.  Currently with sb_bread it's impossible to distinguish
220  * between ENOMEM and EIO situations (since both result in a NULL
221  * return.
222  */
223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
224 					       sector_t block,
225 					       blk_opf_t op_flags, gfp_t gfp)
226 {
227 	struct buffer_head *bh;
228 	int ret;
229 
230 	bh = sb_getblk_gfp(sb, block, gfp);
231 	if (bh == NULL)
232 		return ERR_PTR(-ENOMEM);
233 	if (ext4_buffer_uptodate(bh))
234 		return bh;
235 
236 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
237 	if (ret) {
238 		put_bh(bh);
239 		return ERR_PTR(ret);
240 	}
241 	return bh;
242 }
243 
244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
245 				   blk_opf_t op_flags)
246 {
247 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
248 			~__GFP_FS) | __GFP_MOVABLE;
249 
250 	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
251 }
252 
253 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
254 					    sector_t block)
255 {
256 	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
257 			~__GFP_FS);
258 
259 	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
260 }
261 
262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
263 {
264 	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
265 			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
266 
267 	if (likely(bh)) {
268 		if (trylock_buffer(bh))
269 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
270 		brelse(bh);
271 	}
272 }
273 
274 static int ext4_verify_csum_type(struct super_block *sb,
275 				 struct ext4_super_block *es)
276 {
277 	if (!ext4_has_feature_metadata_csum(sb))
278 		return 1;
279 
280 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
281 }
282 
283 __le32 ext4_superblock_csum(struct super_block *sb,
284 			    struct ext4_super_block *es)
285 {
286 	struct ext4_sb_info *sbi = EXT4_SB(sb);
287 	int offset = offsetof(struct ext4_super_block, s_checksum);
288 	__u32 csum;
289 
290 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
291 
292 	return cpu_to_le32(csum);
293 }
294 
295 static int ext4_superblock_csum_verify(struct super_block *sb,
296 				       struct ext4_super_block *es)
297 {
298 	if (!ext4_has_metadata_csum(sb))
299 		return 1;
300 
301 	return es->s_checksum == ext4_superblock_csum(sb, es);
302 }
303 
304 void ext4_superblock_csum_set(struct super_block *sb)
305 {
306 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307 
308 	if (!ext4_has_metadata_csum(sb))
309 		return;
310 
311 	es->s_checksum = ext4_superblock_csum(sb, es);
312 }
313 
314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
315 			       struct ext4_group_desc *bg)
316 {
317 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
318 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
320 }
321 
322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
323 			       struct ext4_group_desc *bg)
324 {
325 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
326 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
328 }
329 
330 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
331 			      struct ext4_group_desc *bg)
332 {
333 	return le32_to_cpu(bg->bg_inode_table_lo) |
334 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
336 }
337 
338 __u32 ext4_free_group_clusters(struct super_block *sb,
339 			       struct ext4_group_desc *bg)
340 {
341 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
342 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
344 }
345 
346 __u32 ext4_free_inodes_count(struct super_block *sb,
347 			      struct ext4_group_desc *bg)
348 {
349 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
350 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
352 }
353 
354 __u32 ext4_used_dirs_count(struct super_block *sb,
355 			      struct ext4_group_desc *bg)
356 {
357 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
358 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
360 }
361 
362 __u32 ext4_itable_unused_count(struct super_block *sb,
363 			      struct ext4_group_desc *bg)
364 {
365 	return le16_to_cpu(bg->bg_itable_unused_lo) |
366 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
367 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
368 }
369 
370 void ext4_block_bitmap_set(struct super_block *sb,
371 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
374 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377 
378 void ext4_inode_bitmap_set(struct super_block *sb,
379 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
382 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
384 }
385 
386 void ext4_inode_table_set(struct super_block *sb,
387 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
388 {
389 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
390 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
392 }
393 
394 void ext4_free_group_clusters_set(struct super_block *sb,
395 				  struct ext4_group_desc *bg, __u32 count)
396 {
397 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
398 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
400 }
401 
402 void ext4_free_inodes_set(struct super_block *sb,
403 			  struct ext4_group_desc *bg, __u32 count)
404 {
405 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
406 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
408 }
409 
410 void ext4_used_dirs_set(struct super_block *sb,
411 			  struct ext4_group_desc *bg, __u32 count)
412 {
413 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
414 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
416 }
417 
418 void ext4_itable_unused_set(struct super_block *sb,
419 			  struct ext4_group_desc *bg, __u32 count)
420 {
421 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
422 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
423 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
424 }
425 
426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
427 {
428 	now = clamp_val(now, 0, (1ull << 40) - 1);
429 
430 	*lo = cpu_to_le32(lower_32_bits(now));
431 	*hi = upper_32_bits(now);
432 }
433 
434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
435 {
436 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
437 }
438 #define ext4_update_tstamp(es, tstamp) \
439 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
440 			     ktime_get_real_seconds())
441 #define ext4_get_tstamp(es, tstamp) \
442 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
443 
444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
446 
447 /*
448  * The ext4_maybe_update_superblock() function checks and updates the
449  * superblock if needed.
450  *
451  * This function is designed to update the on-disk superblock only under
452  * certain conditions to prevent excessive disk writes and unnecessary
453  * waking of the disk from sleep. The superblock will be updated if:
454  * 1. More than an hour has passed since the last superblock update, and
455  * 2. More than 16MB have been written since the last superblock update.
456  *
457  * @sb: The superblock
458  */
459 static void ext4_maybe_update_superblock(struct super_block *sb)
460 {
461 	struct ext4_sb_info *sbi = EXT4_SB(sb);
462 	struct ext4_super_block *es = sbi->s_es;
463 	journal_t *journal = sbi->s_journal;
464 	time64_t now;
465 	__u64 last_update;
466 	__u64 lifetime_write_kbytes;
467 	__u64 diff_size;
468 
469 	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
470 	    !journal || (journal->j_flags & JBD2_UNMOUNT))
471 		return;
472 
473 	now = ktime_get_real_seconds();
474 	last_update = ext4_get_tstamp(es, s_wtime);
475 
476 	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
477 		return;
478 
479 	lifetime_write_kbytes = sbi->s_kbytes_written +
480 		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
481 		  sbi->s_sectors_written_start) >> 1);
482 
483 	/* Get the number of kilobytes not written to disk to account
484 	 * for statistics and compare with a multiple of 16 MB. This
485 	 * is used to determine when the next superblock commit should
486 	 * occur (i.e. not more often than once per 16MB if there was
487 	 * less written in an hour).
488 	 */
489 	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
490 
491 	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
492 		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
493 }
494 
495 /*
496  * The del_gendisk() function uninitializes the disk-specific data
497  * structures, including the bdi structure, without telling anyone
498  * else.  Once this happens, any attempt to call mark_buffer_dirty()
499  * (for example, by ext4_commit_super), will cause a kernel OOPS.
500  * This is a kludge to prevent these oops until we can put in a proper
501  * hook in del_gendisk() to inform the VFS and file system layers.
502  */
503 static int block_device_ejected(struct super_block *sb)
504 {
505 	struct inode *bd_inode = sb->s_bdev->bd_inode;
506 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
507 
508 	return bdi->dev == NULL;
509 }
510 
511 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
512 {
513 	struct super_block		*sb = journal->j_private;
514 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
515 	int				error = is_journal_aborted(journal);
516 	struct ext4_journal_cb_entry	*jce;
517 
518 	BUG_ON(txn->t_state == T_FINISHED);
519 
520 	ext4_process_freed_data(sb, txn->t_tid);
521 	ext4_maybe_update_superblock(sb);
522 
523 	spin_lock(&sbi->s_md_lock);
524 	while (!list_empty(&txn->t_private_list)) {
525 		jce = list_entry(txn->t_private_list.next,
526 				 struct ext4_journal_cb_entry, jce_list);
527 		list_del_init(&jce->jce_list);
528 		spin_unlock(&sbi->s_md_lock);
529 		jce->jce_func(sb, jce, error);
530 		spin_lock(&sbi->s_md_lock);
531 	}
532 	spin_unlock(&sbi->s_md_lock);
533 }
534 
535 /*
536  * This writepage callback for write_cache_pages()
537  * takes care of a few cases after page cleaning.
538  *
539  * write_cache_pages() already checks for dirty pages
540  * and calls clear_page_dirty_for_io(), which we want,
541  * to write protect the pages.
542  *
543  * However, we may have to redirty a page (see below.)
544  */
545 static int ext4_journalled_writepage_callback(struct folio *folio,
546 					      struct writeback_control *wbc,
547 					      void *data)
548 {
549 	transaction_t *transaction = (transaction_t *) data;
550 	struct buffer_head *bh, *head;
551 	struct journal_head *jh;
552 
553 	bh = head = folio_buffers(folio);
554 	do {
555 		/*
556 		 * We have to redirty a page in these cases:
557 		 * 1) If buffer is dirty, it means the page was dirty because it
558 		 * contains a buffer that needs checkpointing. So the dirty bit
559 		 * needs to be preserved so that checkpointing writes the buffer
560 		 * properly.
561 		 * 2) If buffer is not part of the committing transaction
562 		 * (we may have just accidentally come across this buffer because
563 		 * inode range tracking is not exact) or if the currently running
564 		 * transaction already contains this buffer as well, dirty bit
565 		 * needs to be preserved so that the buffer gets writeprotected
566 		 * properly on running transaction's commit.
567 		 */
568 		jh = bh2jh(bh);
569 		if (buffer_dirty(bh) ||
570 		    (jh && (jh->b_transaction != transaction ||
571 			    jh->b_next_transaction))) {
572 			folio_redirty_for_writepage(wbc, folio);
573 			goto out;
574 		}
575 	} while ((bh = bh->b_this_page) != head);
576 
577 out:
578 	return AOP_WRITEPAGE_ACTIVATE;
579 }
580 
581 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
582 {
583 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
584 	struct writeback_control wbc = {
585 		.sync_mode =  WB_SYNC_ALL,
586 		.nr_to_write = LONG_MAX,
587 		.range_start = jinode->i_dirty_start,
588 		.range_end = jinode->i_dirty_end,
589         };
590 
591 	return write_cache_pages(mapping, &wbc,
592 				 ext4_journalled_writepage_callback,
593 				 jinode->i_transaction);
594 }
595 
596 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
597 {
598 	int ret;
599 
600 	if (ext4_should_journal_data(jinode->i_vfs_inode))
601 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
602 	else
603 		ret = ext4_normal_submit_inode_data_buffers(jinode);
604 	return ret;
605 }
606 
607 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
608 {
609 	int ret = 0;
610 
611 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
612 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
613 
614 	return ret;
615 }
616 
617 static bool system_going_down(void)
618 {
619 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
620 		|| system_state == SYSTEM_RESTART;
621 }
622 
623 struct ext4_err_translation {
624 	int code;
625 	int errno;
626 };
627 
628 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
629 
630 static struct ext4_err_translation err_translation[] = {
631 	EXT4_ERR_TRANSLATE(EIO),
632 	EXT4_ERR_TRANSLATE(ENOMEM),
633 	EXT4_ERR_TRANSLATE(EFSBADCRC),
634 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
635 	EXT4_ERR_TRANSLATE(ENOSPC),
636 	EXT4_ERR_TRANSLATE(ENOKEY),
637 	EXT4_ERR_TRANSLATE(EROFS),
638 	EXT4_ERR_TRANSLATE(EFBIG),
639 	EXT4_ERR_TRANSLATE(EEXIST),
640 	EXT4_ERR_TRANSLATE(ERANGE),
641 	EXT4_ERR_TRANSLATE(EOVERFLOW),
642 	EXT4_ERR_TRANSLATE(EBUSY),
643 	EXT4_ERR_TRANSLATE(ENOTDIR),
644 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
645 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
646 	EXT4_ERR_TRANSLATE(EFAULT),
647 };
648 
649 static int ext4_errno_to_code(int errno)
650 {
651 	int i;
652 
653 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
654 		if (err_translation[i].errno == errno)
655 			return err_translation[i].code;
656 	return EXT4_ERR_UNKNOWN;
657 }
658 
659 static void save_error_info(struct super_block *sb, int error,
660 			    __u32 ino, __u64 block,
661 			    const char *func, unsigned int line)
662 {
663 	struct ext4_sb_info *sbi = EXT4_SB(sb);
664 
665 	/* We default to EFSCORRUPTED error... */
666 	if (error == 0)
667 		error = EFSCORRUPTED;
668 
669 	spin_lock(&sbi->s_error_lock);
670 	sbi->s_add_error_count++;
671 	sbi->s_last_error_code = error;
672 	sbi->s_last_error_line = line;
673 	sbi->s_last_error_ino = ino;
674 	sbi->s_last_error_block = block;
675 	sbi->s_last_error_func = func;
676 	sbi->s_last_error_time = ktime_get_real_seconds();
677 	if (!sbi->s_first_error_time) {
678 		sbi->s_first_error_code = error;
679 		sbi->s_first_error_line = line;
680 		sbi->s_first_error_ino = ino;
681 		sbi->s_first_error_block = block;
682 		sbi->s_first_error_func = func;
683 		sbi->s_first_error_time = sbi->s_last_error_time;
684 	}
685 	spin_unlock(&sbi->s_error_lock);
686 }
687 
688 /* Deal with the reporting of failure conditions on a filesystem such as
689  * inconsistencies detected or read IO failures.
690  *
691  * On ext2, we can store the error state of the filesystem in the
692  * superblock.  That is not possible on ext4, because we may have other
693  * write ordering constraints on the superblock which prevent us from
694  * writing it out straight away; and given that the journal is about to
695  * be aborted, we can't rely on the current, or future, transactions to
696  * write out the superblock safely.
697  *
698  * We'll just use the jbd2_journal_abort() error code to record an error in
699  * the journal instead.  On recovery, the journal will complain about
700  * that error until we've noted it down and cleared it.
701  *
702  * If force_ro is set, we unconditionally force the filesystem into an
703  * ABORT|READONLY state, unless the error response on the fs has been set to
704  * panic in which case we take the easy way out and panic immediately. This is
705  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
706  * at a critical moment in log management.
707  */
708 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
709 			      __u32 ino, __u64 block,
710 			      const char *func, unsigned int line)
711 {
712 	journal_t *journal = EXT4_SB(sb)->s_journal;
713 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
714 
715 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
716 	if (test_opt(sb, WARN_ON_ERROR))
717 		WARN_ON_ONCE(1);
718 
719 	if (!continue_fs && !sb_rdonly(sb)) {
720 		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
721 		if (journal)
722 			jbd2_journal_abort(journal, -EIO);
723 	}
724 
725 	if (!bdev_read_only(sb->s_bdev)) {
726 		save_error_info(sb, error, ino, block, func, line);
727 		/*
728 		 * In case the fs should keep running, we need to writeout
729 		 * superblock through the journal. Due to lock ordering
730 		 * constraints, it may not be safe to do it right here so we
731 		 * defer superblock flushing to a workqueue.
732 		 */
733 		if (continue_fs && journal)
734 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
735 		else
736 			ext4_commit_super(sb);
737 	}
738 
739 	/*
740 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
741 	 * could panic during 'reboot -f' as the underlying device got already
742 	 * disabled.
743 	 */
744 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
745 		panic("EXT4-fs (device %s): panic forced after error\n",
746 			sb->s_id);
747 	}
748 
749 	if (sb_rdonly(sb) || continue_fs)
750 		return;
751 
752 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
753 	/*
754 	 * Make sure updated value of ->s_mount_flags will be visible before
755 	 * ->s_flags update
756 	 */
757 	smp_wmb();
758 	sb->s_flags |= SB_RDONLY;
759 }
760 
761 static void update_super_work(struct work_struct *work)
762 {
763 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
764 						s_sb_upd_work);
765 	journal_t *journal = sbi->s_journal;
766 	handle_t *handle;
767 
768 	/*
769 	 * If the journal is still running, we have to write out superblock
770 	 * through the journal to avoid collisions of other journalled sb
771 	 * updates.
772 	 *
773 	 * We use directly jbd2 functions here to avoid recursing back into
774 	 * ext4 error handling code during handling of previous errors.
775 	 */
776 	if (!sb_rdonly(sbi->s_sb) && journal) {
777 		struct buffer_head *sbh = sbi->s_sbh;
778 		bool call_notify_err = false;
779 
780 		handle = jbd2_journal_start(journal, 1);
781 		if (IS_ERR(handle))
782 			goto write_directly;
783 		if (jbd2_journal_get_write_access(handle, sbh)) {
784 			jbd2_journal_stop(handle);
785 			goto write_directly;
786 		}
787 
788 		if (sbi->s_add_error_count > 0)
789 			call_notify_err = true;
790 
791 		ext4_update_super(sbi->s_sb);
792 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
793 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
794 				 "superblock detected");
795 			clear_buffer_write_io_error(sbh);
796 			set_buffer_uptodate(sbh);
797 		}
798 
799 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
800 			jbd2_journal_stop(handle);
801 			goto write_directly;
802 		}
803 		jbd2_journal_stop(handle);
804 
805 		if (call_notify_err)
806 			ext4_notify_error_sysfs(sbi);
807 
808 		return;
809 	}
810 write_directly:
811 	/*
812 	 * Write through journal failed. Write sb directly to get error info
813 	 * out and hope for the best.
814 	 */
815 	ext4_commit_super(sbi->s_sb);
816 	ext4_notify_error_sysfs(sbi);
817 }
818 
819 #define ext4_error_ratelimit(sb)					\
820 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
821 			     "EXT4-fs error")
822 
823 void __ext4_error(struct super_block *sb, const char *function,
824 		  unsigned int line, bool force_ro, int error, __u64 block,
825 		  const char *fmt, ...)
826 {
827 	struct va_format vaf;
828 	va_list args;
829 
830 	if (unlikely(ext4_forced_shutdown(sb)))
831 		return;
832 
833 	trace_ext4_error(sb, function, line);
834 	if (ext4_error_ratelimit(sb)) {
835 		va_start(args, fmt);
836 		vaf.fmt = fmt;
837 		vaf.va = &args;
838 		printk(KERN_CRIT
839 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
840 		       sb->s_id, function, line, current->comm, &vaf);
841 		va_end(args);
842 	}
843 	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
844 
845 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
846 }
847 
848 void __ext4_error_inode(struct inode *inode, const char *function,
849 			unsigned int line, ext4_fsblk_t block, int error,
850 			const char *fmt, ...)
851 {
852 	va_list args;
853 	struct va_format vaf;
854 
855 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
856 		return;
857 
858 	trace_ext4_error(inode->i_sb, function, line);
859 	if (ext4_error_ratelimit(inode->i_sb)) {
860 		va_start(args, fmt);
861 		vaf.fmt = fmt;
862 		vaf.va = &args;
863 		if (block)
864 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
865 			       "inode #%lu: block %llu: comm %s: %pV\n",
866 			       inode->i_sb->s_id, function, line, inode->i_ino,
867 			       block, current->comm, &vaf);
868 		else
869 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
870 			       "inode #%lu: comm %s: %pV\n",
871 			       inode->i_sb->s_id, function, line, inode->i_ino,
872 			       current->comm, &vaf);
873 		va_end(args);
874 	}
875 	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
876 
877 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
878 			  function, line);
879 }
880 
881 void __ext4_error_file(struct file *file, const char *function,
882 		       unsigned int line, ext4_fsblk_t block,
883 		       const char *fmt, ...)
884 {
885 	va_list args;
886 	struct va_format vaf;
887 	struct inode *inode = file_inode(file);
888 	char pathname[80], *path;
889 
890 	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
891 		return;
892 
893 	trace_ext4_error(inode->i_sb, function, line);
894 	if (ext4_error_ratelimit(inode->i_sb)) {
895 		path = file_path(file, pathname, sizeof(pathname));
896 		if (IS_ERR(path))
897 			path = "(unknown)";
898 		va_start(args, fmt);
899 		vaf.fmt = fmt;
900 		vaf.va = &args;
901 		if (block)
902 			printk(KERN_CRIT
903 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
904 			       "block %llu: comm %s: path %s: %pV\n",
905 			       inode->i_sb->s_id, function, line, inode->i_ino,
906 			       block, current->comm, path, &vaf);
907 		else
908 			printk(KERN_CRIT
909 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
910 			       "comm %s: path %s: %pV\n",
911 			       inode->i_sb->s_id, function, line, inode->i_ino,
912 			       current->comm, path, &vaf);
913 		va_end(args);
914 	}
915 	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
916 
917 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
918 			  function, line);
919 }
920 
921 const char *ext4_decode_error(struct super_block *sb, int errno,
922 			      char nbuf[16])
923 {
924 	char *errstr = NULL;
925 
926 	switch (errno) {
927 	case -EFSCORRUPTED:
928 		errstr = "Corrupt filesystem";
929 		break;
930 	case -EFSBADCRC:
931 		errstr = "Filesystem failed CRC";
932 		break;
933 	case -EIO:
934 		errstr = "IO failure";
935 		break;
936 	case -ENOMEM:
937 		errstr = "Out of memory";
938 		break;
939 	case -EROFS:
940 		if (!sb || (EXT4_SB(sb)->s_journal &&
941 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
942 			errstr = "Journal has aborted";
943 		else
944 			errstr = "Readonly filesystem";
945 		break;
946 	default:
947 		/* If the caller passed in an extra buffer for unknown
948 		 * errors, textualise them now.  Else we just return
949 		 * NULL. */
950 		if (nbuf) {
951 			/* Check for truncated error codes... */
952 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
953 				errstr = nbuf;
954 		}
955 		break;
956 	}
957 
958 	return errstr;
959 }
960 
961 /* __ext4_std_error decodes expected errors from journaling functions
962  * automatically and invokes the appropriate error response.  */
963 
964 void __ext4_std_error(struct super_block *sb, const char *function,
965 		      unsigned int line, int errno)
966 {
967 	char nbuf[16];
968 	const char *errstr;
969 
970 	if (unlikely(ext4_forced_shutdown(sb)))
971 		return;
972 
973 	/* Special case: if the error is EROFS, and we're not already
974 	 * inside a transaction, then there's really no point in logging
975 	 * an error. */
976 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
977 		return;
978 
979 	if (ext4_error_ratelimit(sb)) {
980 		errstr = ext4_decode_error(sb, errno, nbuf);
981 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
982 		       sb->s_id, function, line, errstr);
983 	}
984 	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
985 
986 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
987 }
988 
989 void __ext4_msg(struct super_block *sb,
990 		const char *prefix, const char *fmt, ...)
991 {
992 	struct va_format vaf;
993 	va_list args;
994 
995 	if (sb) {
996 		atomic_inc(&EXT4_SB(sb)->s_msg_count);
997 		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
998 				  "EXT4-fs"))
999 			return;
1000 	}
1001 
1002 	va_start(args, fmt);
1003 	vaf.fmt = fmt;
1004 	vaf.va = &args;
1005 	if (sb)
1006 		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1007 	else
1008 		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1009 	va_end(args);
1010 }
1011 
1012 static int ext4_warning_ratelimit(struct super_block *sb)
1013 {
1014 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1015 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1016 			    "EXT4-fs warning");
1017 }
1018 
1019 void __ext4_warning(struct super_block *sb, const char *function,
1020 		    unsigned int line, const char *fmt, ...)
1021 {
1022 	struct va_format vaf;
1023 	va_list args;
1024 
1025 	if (!ext4_warning_ratelimit(sb))
1026 		return;
1027 
1028 	va_start(args, fmt);
1029 	vaf.fmt = fmt;
1030 	vaf.va = &args;
1031 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1032 	       sb->s_id, function, line, &vaf);
1033 	va_end(args);
1034 }
1035 
1036 void __ext4_warning_inode(const struct inode *inode, const char *function,
1037 			  unsigned int line, const char *fmt, ...)
1038 {
1039 	struct va_format vaf;
1040 	va_list args;
1041 
1042 	if (!ext4_warning_ratelimit(inode->i_sb))
1043 		return;
1044 
1045 	va_start(args, fmt);
1046 	vaf.fmt = fmt;
1047 	vaf.va = &args;
1048 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1049 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1050 	       function, line, inode->i_ino, current->comm, &vaf);
1051 	va_end(args);
1052 }
1053 
1054 void __ext4_grp_locked_error(const char *function, unsigned int line,
1055 			     struct super_block *sb, ext4_group_t grp,
1056 			     unsigned long ino, ext4_fsblk_t block,
1057 			     const char *fmt, ...)
1058 __releases(bitlock)
1059 __acquires(bitlock)
1060 {
1061 	struct va_format vaf;
1062 	va_list args;
1063 
1064 	if (unlikely(ext4_forced_shutdown(sb)))
1065 		return;
1066 
1067 	trace_ext4_error(sb, function, line);
1068 	if (ext4_error_ratelimit(sb)) {
1069 		va_start(args, fmt);
1070 		vaf.fmt = fmt;
1071 		vaf.va = &args;
1072 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1073 		       sb->s_id, function, line, grp);
1074 		if (ino)
1075 			printk(KERN_CONT "inode %lu: ", ino);
1076 		if (block)
1077 			printk(KERN_CONT "block %llu:",
1078 			       (unsigned long long) block);
1079 		printk(KERN_CONT "%pV\n", &vaf);
1080 		va_end(args);
1081 	}
1082 
1083 	if (test_opt(sb, ERRORS_CONT)) {
1084 		if (test_opt(sb, WARN_ON_ERROR))
1085 			WARN_ON_ONCE(1);
1086 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1087 		if (!bdev_read_only(sb->s_bdev)) {
1088 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1089 					line);
1090 			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1091 		}
1092 		return;
1093 	}
1094 	ext4_unlock_group(sb, grp);
1095 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1096 	/*
1097 	 * We only get here in the ERRORS_RO case; relocking the group
1098 	 * may be dangerous, but nothing bad will happen since the
1099 	 * filesystem will have already been marked read/only and the
1100 	 * journal has been aborted.  We return 1 as a hint to callers
1101 	 * who might what to use the return value from
1102 	 * ext4_grp_locked_error() to distinguish between the
1103 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1104 	 * aggressively from the ext4 function in question, with a
1105 	 * more appropriate error code.
1106 	 */
1107 	ext4_lock_group(sb, grp);
1108 	return;
1109 }
1110 
1111 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1112 				     ext4_group_t group,
1113 				     unsigned int flags)
1114 {
1115 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1116 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1117 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1118 	int ret;
1119 
1120 	if (!grp || !gdp)
1121 		return;
1122 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1123 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1124 					    &grp->bb_state);
1125 		if (!ret)
1126 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1127 					   grp->bb_free);
1128 	}
1129 
1130 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1131 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1132 					    &grp->bb_state);
1133 		if (!ret && gdp) {
1134 			int count;
1135 
1136 			count = ext4_free_inodes_count(sb, gdp);
1137 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1138 					   count);
1139 		}
1140 	}
1141 }
1142 
1143 void ext4_update_dynamic_rev(struct super_block *sb)
1144 {
1145 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1146 
1147 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1148 		return;
1149 
1150 	ext4_warning(sb,
1151 		     "updating to rev %d because of new feature flag, "
1152 		     "running e2fsck is recommended",
1153 		     EXT4_DYNAMIC_REV);
1154 
1155 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1156 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1157 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1158 	/* leave es->s_feature_*compat flags alone */
1159 	/* es->s_uuid will be set by e2fsck if empty */
1160 
1161 	/*
1162 	 * The rest of the superblock fields should be zero, and if not it
1163 	 * means they are likely already in use, so leave them alone.  We
1164 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1165 	 */
1166 }
1167 
1168 static inline struct inode *orphan_list_entry(struct list_head *l)
1169 {
1170 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1171 }
1172 
1173 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1174 {
1175 	struct list_head *l;
1176 
1177 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1178 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1179 
1180 	printk(KERN_ERR "sb_info orphan list:\n");
1181 	list_for_each(l, &sbi->s_orphan) {
1182 		struct inode *inode = orphan_list_entry(l);
1183 		printk(KERN_ERR "  "
1184 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1185 		       inode->i_sb->s_id, inode->i_ino, inode,
1186 		       inode->i_mode, inode->i_nlink,
1187 		       NEXT_ORPHAN(inode));
1188 	}
1189 }
1190 
1191 #ifdef CONFIG_QUOTA
1192 static int ext4_quota_off(struct super_block *sb, int type);
1193 
1194 static inline void ext4_quotas_off(struct super_block *sb, int type)
1195 {
1196 	BUG_ON(type > EXT4_MAXQUOTAS);
1197 
1198 	/* Use our quota_off function to clear inode flags etc. */
1199 	for (type--; type >= 0; type--)
1200 		ext4_quota_off(sb, type);
1201 }
1202 
1203 /*
1204  * This is a helper function which is used in the mount/remount
1205  * codepaths (which holds s_umount) to fetch the quota file name.
1206  */
1207 static inline char *get_qf_name(struct super_block *sb,
1208 				struct ext4_sb_info *sbi,
1209 				int type)
1210 {
1211 	return rcu_dereference_protected(sbi->s_qf_names[type],
1212 					 lockdep_is_held(&sb->s_umount));
1213 }
1214 #else
1215 static inline void ext4_quotas_off(struct super_block *sb, int type)
1216 {
1217 }
1218 #endif
1219 
1220 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1221 {
1222 	ext4_fsblk_t block;
1223 	int err;
1224 
1225 	block = ext4_count_free_clusters(sbi->s_sb);
1226 	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1227 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1228 				  GFP_KERNEL);
1229 	if (!err) {
1230 		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1231 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1232 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1233 					  GFP_KERNEL);
1234 	}
1235 	if (!err)
1236 		err = percpu_counter_init(&sbi->s_dirs_counter,
1237 					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1238 	if (!err)
1239 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1240 					  GFP_KERNEL);
1241 	if (!err)
1242 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1243 					  GFP_KERNEL);
1244 	if (!err)
1245 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1246 
1247 	if (err)
1248 		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1249 
1250 	return err;
1251 }
1252 
1253 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1254 {
1255 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1256 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1257 	percpu_counter_destroy(&sbi->s_dirs_counter);
1258 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1259 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1260 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1261 }
1262 
1263 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1264 {
1265 	struct buffer_head **group_desc;
1266 	int i;
1267 
1268 	rcu_read_lock();
1269 	group_desc = rcu_dereference(sbi->s_group_desc);
1270 	for (i = 0; i < sbi->s_gdb_count; i++)
1271 		brelse(group_desc[i]);
1272 	kvfree(group_desc);
1273 	rcu_read_unlock();
1274 }
1275 
1276 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1277 {
1278 	struct flex_groups **flex_groups;
1279 	int i;
1280 
1281 	rcu_read_lock();
1282 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1283 	if (flex_groups) {
1284 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1285 			kvfree(flex_groups[i]);
1286 		kvfree(flex_groups);
1287 	}
1288 	rcu_read_unlock();
1289 }
1290 
1291 static void ext4_put_super(struct super_block *sb)
1292 {
1293 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1294 	struct ext4_super_block *es = sbi->s_es;
1295 	int aborted = 0;
1296 	int err;
1297 
1298 	/*
1299 	 * Unregister sysfs before destroying jbd2 journal.
1300 	 * Since we could still access attr_journal_task attribute via sysfs
1301 	 * path which could have sbi->s_journal->j_task as NULL
1302 	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1303 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1304 	 * read metadata verify failed then will queue error work.
1305 	 * update_super_work will call start_this_handle may trigger
1306 	 * BUG_ON.
1307 	 */
1308 	ext4_unregister_sysfs(sb);
1309 
1310 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1311 		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1312 			 &sb->s_uuid);
1313 
1314 	ext4_unregister_li_request(sb);
1315 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1316 
1317 	flush_work(&sbi->s_sb_upd_work);
1318 	destroy_workqueue(sbi->rsv_conversion_wq);
1319 	ext4_release_orphan_info(sb);
1320 
1321 	if (sbi->s_journal) {
1322 		aborted = is_journal_aborted(sbi->s_journal);
1323 		err = jbd2_journal_destroy(sbi->s_journal);
1324 		sbi->s_journal = NULL;
1325 		if ((err < 0) && !aborted) {
1326 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1327 		}
1328 	}
1329 
1330 	ext4_es_unregister_shrinker(sbi);
1331 	timer_shutdown_sync(&sbi->s_err_report);
1332 	ext4_release_system_zone(sb);
1333 	ext4_mb_release(sb);
1334 	ext4_ext_release(sb);
1335 
1336 	if (!sb_rdonly(sb) && !aborted) {
1337 		ext4_clear_feature_journal_needs_recovery(sb);
1338 		ext4_clear_feature_orphan_present(sb);
1339 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1340 	}
1341 	if (!sb_rdonly(sb))
1342 		ext4_commit_super(sb);
1343 
1344 	ext4_group_desc_free(sbi);
1345 	ext4_flex_groups_free(sbi);
1346 	ext4_percpu_param_destroy(sbi);
1347 #ifdef CONFIG_QUOTA
1348 	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1349 		kfree(get_qf_name(sb, sbi, i));
1350 #endif
1351 
1352 	/* Debugging code just in case the in-memory inode orphan list
1353 	 * isn't empty.  The on-disk one can be non-empty if we've
1354 	 * detected an error and taken the fs readonly, but the
1355 	 * in-memory list had better be clean by this point. */
1356 	if (!list_empty(&sbi->s_orphan))
1357 		dump_orphan_list(sb, sbi);
1358 	ASSERT(list_empty(&sbi->s_orphan));
1359 
1360 	sync_blockdev(sb->s_bdev);
1361 	invalidate_bdev(sb->s_bdev);
1362 	if (sbi->s_journal_bdev_handle) {
1363 		/*
1364 		 * Invalidate the journal device's buffers.  We don't want them
1365 		 * floating about in memory - the physical journal device may
1366 		 * hotswapped, and it breaks the `ro-after' testing code.
1367 		 */
1368 		sync_blockdev(sbi->s_journal_bdev_handle->bdev);
1369 		invalidate_bdev(sbi->s_journal_bdev_handle->bdev);
1370 	}
1371 
1372 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1373 	sbi->s_ea_inode_cache = NULL;
1374 
1375 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1376 	sbi->s_ea_block_cache = NULL;
1377 
1378 	ext4_stop_mmpd(sbi);
1379 
1380 	brelse(sbi->s_sbh);
1381 	sb->s_fs_info = NULL;
1382 	/*
1383 	 * Now that we are completely done shutting down the
1384 	 * superblock, we need to actually destroy the kobject.
1385 	 */
1386 	kobject_put(&sbi->s_kobj);
1387 	wait_for_completion(&sbi->s_kobj_unregister);
1388 	if (sbi->s_chksum_driver)
1389 		crypto_free_shash(sbi->s_chksum_driver);
1390 	kfree(sbi->s_blockgroup_lock);
1391 	fs_put_dax(sbi->s_daxdev, NULL);
1392 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1393 #if IS_ENABLED(CONFIG_UNICODE)
1394 	utf8_unload(sb->s_encoding);
1395 #endif
1396 	kfree(sbi);
1397 }
1398 
1399 static struct kmem_cache *ext4_inode_cachep;
1400 
1401 /*
1402  * Called inside transaction, so use GFP_NOFS
1403  */
1404 static struct inode *ext4_alloc_inode(struct super_block *sb)
1405 {
1406 	struct ext4_inode_info *ei;
1407 
1408 	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1409 	if (!ei)
1410 		return NULL;
1411 
1412 	inode_set_iversion(&ei->vfs_inode, 1);
1413 	ei->i_flags = 0;
1414 	spin_lock_init(&ei->i_raw_lock);
1415 	ei->i_prealloc_node = RB_ROOT;
1416 	atomic_set(&ei->i_prealloc_active, 0);
1417 	rwlock_init(&ei->i_prealloc_lock);
1418 	ext4_es_init_tree(&ei->i_es_tree);
1419 	rwlock_init(&ei->i_es_lock);
1420 	INIT_LIST_HEAD(&ei->i_es_list);
1421 	ei->i_es_all_nr = 0;
1422 	ei->i_es_shk_nr = 0;
1423 	ei->i_es_shrink_lblk = 0;
1424 	ei->i_reserved_data_blocks = 0;
1425 	spin_lock_init(&(ei->i_block_reservation_lock));
1426 	ext4_init_pending_tree(&ei->i_pending_tree);
1427 #ifdef CONFIG_QUOTA
1428 	ei->i_reserved_quota = 0;
1429 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1430 #endif
1431 	ei->jinode = NULL;
1432 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1433 	spin_lock_init(&ei->i_completed_io_lock);
1434 	ei->i_sync_tid = 0;
1435 	ei->i_datasync_tid = 0;
1436 	atomic_set(&ei->i_unwritten, 0);
1437 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1438 	ext4_fc_init_inode(&ei->vfs_inode);
1439 	mutex_init(&ei->i_fc_lock);
1440 	return &ei->vfs_inode;
1441 }
1442 
1443 static int ext4_drop_inode(struct inode *inode)
1444 {
1445 	int drop = generic_drop_inode(inode);
1446 
1447 	if (!drop)
1448 		drop = fscrypt_drop_inode(inode);
1449 
1450 	trace_ext4_drop_inode(inode, drop);
1451 	return drop;
1452 }
1453 
1454 static void ext4_free_in_core_inode(struct inode *inode)
1455 {
1456 	fscrypt_free_inode(inode);
1457 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1458 		pr_warn("%s: inode %ld still in fc list",
1459 			__func__, inode->i_ino);
1460 	}
1461 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1462 }
1463 
1464 static void ext4_destroy_inode(struct inode *inode)
1465 {
1466 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1467 		ext4_msg(inode->i_sb, KERN_ERR,
1468 			 "Inode %lu (%p): orphan list check failed!",
1469 			 inode->i_ino, EXT4_I(inode));
1470 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1471 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1472 				true);
1473 		dump_stack();
1474 	}
1475 
1476 	if (EXT4_I(inode)->i_reserved_data_blocks)
1477 		ext4_msg(inode->i_sb, KERN_ERR,
1478 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1479 			 inode->i_ino, EXT4_I(inode),
1480 			 EXT4_I(inode)->i_reserved_data_blocks);
1481 }
1482 
1483 static void ext4_shutdown(struct super_block *sb)
1484 {
1485        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1486 }
1487 
1488 static void init_once(void *foo)
1489 {
1490 	struct ext4_inode_info *ei = foo;
1491 
1492 	INIT_LIST_HEAD(&ei->i_orphan);
1493 	init_rwsem(&ei->xattr_sem);
1494 	init_rwsem(&ei->i_data_sem);
1495 	inode_init_once(&ei->vfs_inode);
1496 	ext4_fc_init_inode(&ei->vfs_inode);
1497 }
1498 
1499 static int __init init_inodecache(void)
1500 {
1501 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1502 				sizeof(struct ext4_inode_info), 0,
1503 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1504 					SLAB_ACCOUNT),
1505 				offsetof(struct ext4_inode_info, i_data),
1506 				sizeof_field(struct ext4_inode_info, i_data),
1507 				init_once);
1508 	if (ext4_inode_cachep == NULL)
1509 		return -ENOMEM;
1510 	return 0;
1511 }
1512 
1513 static void destroy_inodecache(void)
1514 {
1515 	/*
1516 	 * Make sure all delayed rcu free inodes are flushed before we
1517 	 * destroy cache.
1518 	 */
1519 	rcu_barrier();
1520 	kmem_cache_destroy(ext4_inode_cachep);
1521 }
1522 
1523 void ext4_clear_inode(struct inode *inode)
1524 {
1525 	ext4_fc_del(inode);
1526 	invalidate_inode_buffers(inode);
1527 	clear_inode(inode);
1528 	ext4_discard_preallocations(inode, 0);
1529 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1530 	dquot_drop(inode);
1531 	if (EXT4_I(inode)->jinode) {
1532 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1533 					       EXT4_I(inode)->jinode);
1534 		jbd2_free_inode(EXT4_I(inode)->jinode);
1535 		EXT4_I(inode)->jinode = NULL;
1536 	}
1537 	fscrypt_put_encryption_info(inode);
1538 	fsverity_cleanup_inode(inode);
1539 }
1540 
1541 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1542 					u64 ino, u32 generation)
1543 {
1544 	struct inode *inode;
1545 
1546 	/*
1547 	 * Currently we don't know the generation for parent directory, so
1548 	 * a generation of 0 means "accept any"
1549 	 */
1550 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1551 	if (IS_ERR(inode))
1552 		return ERR_CAST(inode);
1553 	if (generation && inode->i_generation != generation) {
1554 		iput(inode);
1555 		return ERR_PTR(-ESTALE);
1556 	}
1557 
1558 	return inode;
1559 }
1560 
1561 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1562 					int fh_len, int fh_type)
1563 {
1564 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1565 				    ext4_nfs_get_inode);
1566 }
1567 
1568 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1569 					int fh_len, int fh_type)
1570 {
1571 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1572 				    ext4_nfs_get_inode);
1573 }
1574 
1575 static int ext4_nfs_commit_metadata(struct inode *inode)
1576 {
1577 	struct writeback_control wbc = {
1578 		.sync_mode = WB_SYNC_ALL
1579 	};
1580 
1581 	trace_ext4_nfs_commit_metadata(inode);
1582 	return ext4_write_inode(inode, &wbc);
1583 }
1584 
1585 #ifdef CONFIG_QUOTA
1586 static const char * const quotatypes[] = INITQFNAMES;
1587 #define QTYPE2NAME(t) (quotatypes[t])
1588 
1589 static int ext4_write_dquot(struct dquot *dquot);
1590 static int ext4_acquire_dquot(struct dquot *dquot);
1591 static int ext4_release_dquot(struct dquot *dquot);
1592 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1593 static int ext4_write_info(struct super_block *sb, int type);
1594 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1595 			 const struct path *path);
1596 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1597 			       size_t len, loff_t off);
1598 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1599 				const char *data, size_t len, loff_t off);
1600 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1601 			     unsigned int flags);
1602 
1603 static struct dquot **ext4_get_dquots(struct inode *inode)
1604 {
1605 	return EXT4_I(inode)->i_dquot;
1606 }
1607 
1608 static const struct dquot_operations ext4_quota_operations = {
1609 	.get_reserved_space	= ext4_get_reserved_space,
1610 	.write_dquot		= ext4_write_dquot,
1611 	.acquire_dquot		= ext4_acquire_dquot,
1612 	.release_dquot		= ext4_release_dquot,
1613 	.mark_dirty		= ext4_mark_dquot_dirty,
1614 	.write_info		= ext4_write_info,
1615 	.alloc_dquot		= dquot_alloc,
1616 	.destroy_dquot		= dquot_destroy,
1617 	.get_projid		= ext4_get_projid,
1618 	.get_inode_usage	= ext4_get_inode_usage,
1619 	.get_next_id		= dquot_get_next_id,
1620 };
1621 
1622 static const struct quotactl_ops ext4_qctl_operations = {
1623 	.quota_on	= ext4_quota_on,
1624 	.quota_off	= ext4_quota_off,
1625 	.quota_sync	= dquot_quota_sync,
1626 	.get_state	= dquot_get_state,
1627 	.set_info	= dquot_set_dqinfo,
1628 	.get_dqblk	= dquot_get_dqblk,
1629 	.set_dqblk	= dquot_set_dqblk,
1630 	.get_nextdqblk	= dquot_get_next_dqblk,
1631 };
1632 #endif
1633 
1634 static const struct super_operations ext4_sops = {
1635 	.alloc_inode	= ext4_alloc_inode,
1636 	.free_inode	= ext4_free_in_core_inode,
1637 	.destroy_inode	= ext4_destroy_inode,
1638 	.write_inode	= ext4_write_inode,
1639 	.dirty_inode	= ext4_dirty_inode,
1640 	.drop_inode	= ext4_drop_inode,
1641 	.evict_inode	= ext4_evict_inode,
1642 	.put_super	= ext4_put_super,
1643 	.sync_fs	= ext4_sync_fs,
1644 	.freeze_fs	= ext4_freeze,
1645 	.unfreeze_fs	= ext4_unfreeze,
1646 	.statfs		= ext4_statfs,
1647 	.show_options	= ext4_show_options,
1648 	.shutdown	= ext4_shutdown,
1649 #ifdef CONFIG_QUOTA
1650 	.quota_read	= ext4_quota_read,
1651 	.quota_write	= ext4_quota_write,
1652 	.get_dquots	= ext4_get_dquots,
1653 #endif
1654 };
1655 
1656 static const struct export_operations ext4_export_ops = {
1657 	.fh_to_dentry = ext4_fh_to_dentry,
1658 	.fh_to_parent = ext4_fh_to_parent,
1659 	.get_parent = ext4_get_parent,
1660 	.commit_metadata = ext4_nfs_commit_metadata,
1661 };
1662 
1663 enum {
1664 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1665 	Opt_resgid, Opt_resuid, Opt_sb,
1666 	Opt_nouid32, Opt_debug, Opt_removed,
1667 	Opt_user_xattr, Opt_acl,
1668 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1669 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1670 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1671 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1672 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1673 	Opt_inlinecrypt,
1674 	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1675 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1676 	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1677 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1678 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1679 	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1680 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1681 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1682 	Opt_dioread_nolock, Opt_dioread_lock,
1683 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1684 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1685 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1686 	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1687 #ifdef CONFIG_EXT4_DEBUG
1688 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1689 #endif
1690 };
1691 
1692 static const struct constant_table ext4_param_errors[] = {
1693 	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1694 	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1695 	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1696 	{}
1697 };
1698 
1699 static const struct constant_table ext4_param_data[] = {
1700 	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1701 	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1702 	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1703 	{}
1704 };
1705 
1706 static const struct constant_table ext4_param_data_err[] = {
1707 	{"abort",	Opt_data_err_abort},
1708 	{"ignore",	Opt_data_err_ignore},
1709 	{}
1710 };
1711 
1712 static const struct constant_table ext4_param_jqfmt[] = {
1713 	{"vfsold",	QFMT_VFS_OLD},
1714 	{"vfsv0",	QFMT_VFS_V0},
1715 	{"vfsv1",	QFMT_VFS_V1},
1716 	{}
1717 };
1718 
1719 static const struct constant_table ext4_param_dax[] = {
1720 	{"always",	Opt_dax_always},
1721 	{"inode",	Opt_dax_inode},
1722 	{"never",	Opt_dax_never},
1723 	{}
1724 };
1725 
1726 /* String parameter that allows empty argument */
1727 #define fsparam_string_empty(NAME, OPT) \
1728 	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1729 
1730 /*
1731  * Mount option specification
1732  * We don't use fsparam_flag_no because of the way we set the
1733  * options and the way we show them in _ext4_show_options(). To
1734  * keep the changes to a minimum, let's keep the negative options
1735  * separate for now.
1736  */
1737 static const struct fs_parameter_spec ext4_param_specs[] = {
1738 	fsparam_flag	("bsddf",		Opt_bsd_df),
1739 	fsparam_flag	("minixdf",		Opt_minix_df),
1740 	fsparam_flag	("grpid",		Opt_grpid),
1741 	fsparam_flag	("bsdgroups",		Opt_grpid),
1742 	fsparam_flag	("nogrpid",		Opt_nogrpid),
1743 	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1744 	fsparam_u32	("resgid",		Opt_resgid),
1745 	fsparam_u32	("resuid",		Opt_resuid),
1746 	fsparam_u32	("sb",			Opt_sb),
1747 	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1748 	fsparam_flag	("nouid32",		Opt_nouid32),
1749 	fsparam_flag	("debug",		Opt_debug),
1750 	fsparam_flag	("oldalloc",		Opt_removed),
1751 	fsparam_flag	("orlov",		Opt_removed),
1752 	fsparam_flag	("user_xattr",		Opt_user_xattr),
1753 	fsparam_flag	("acl",			Opt_acl),
1754 	fsparam_flag	("norecovery",		Opt_noload),
1755 	fsparam_flag	("noload",		Opt_noload),
1756 	fsparam_flag	("bh",			Opt_removed),
1757 	fsparam_flag	("nobh",		Opt_removed),
1758 	fsparam_u32	("commit",		Opt_commit),
1759 	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1760 	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1761 	fsparam_u32	("journal_dev",		Opt_journal_dev),
1762 	fsparam_bdev	("journal_path",	Opt_journal_path),
1763 	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1764 	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1765 	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1766 	fsparam_flag	("abort",		Opt_abort),
1767 	fsparam_enum	("data",		Opt_data, ext4_param_data),
1768 	fsparam_enum	("data_err",		Opt_data_err,
1769 						ext4_param_data_err),
1770 	fsparam_string_empty
1771 			("usrjquota",		Opt_usrjquota),
1772 	fsparam_string_empty
1773 			("grpjquota",		Opt_grpjquota),
1774 	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1775 	fsparam_flag	("grpquota",		Opt_grpquota),
1776 	fsparam_flag	("quota",		Opt_quota),
1777 	fsparam_flag	("noquota",		Opt_noquota),
1778 	fsparam_flag	("usrquota",		Opt_usrquota),
1779 	fsparam_flag	("prjquota",		Opt_prjquota),
1780 	fsparam_flag	("barrier",		Opt_barrier),
1781 	fsparam_u32	("barrier",		Opt_barrier),
1782 	fsparam_flag	("nobarrier",		Opt_nobarrier),
1783 	fsparam_flag	("i_version",		Opt_removed),
1784 	fsparam_flag	("dax",			Opt_dax),
1785 	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1786 	fsparam_u32	("stripe",		Opt_stripe),
1787 	fsparam_flag	("delalloc",		Opt_delalloc),
1788 	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1789 	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1790 	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1791 	fsparam_u32	("debug_want_extra_isize",
1792 						Opt_debug_want_extra_isize),
1793 	fsparam_flag	("mblk_io_submit",	Opt_removed),
1794 	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1795 	fsparam_flag	("block_validity",	Opt_block_validity),
1796 	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1797 	fsparam_u32	("inode_readahead_blks",
1798 						Opt_inode_readahead_blks),
1799 	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1800 	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1801 	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1802 	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1803 	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1804 	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1805 	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1806 	fsparam_flag	("discard",		Opt_discard),
1807 	fsparam_flag	("nodiscard",		Opt_nodiscard),
1808 	fsparam_u32	("init_itable",		Opt_init_itable),
1809 	fsparam_flag	("init_itable",		Opt_init_itable),
1810 	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1811 #ifdef CONFIG_EXT4_DEBUG
1812 	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1813 	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1814 #endif
1815 	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1816 	fsparam_flag	("test_dummy_encryption",
1817 						Opt_test_dummy_encryption),
1818 	fsparam_string	("test_dummy_encryption",
1819 						Opt_test_dummy_encryption),
1820 	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1821 	fsparam_flag	("nombcache",		Opt_nombcache),
1822 	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1823 	fsparam_flag	("prefetch_block_bitmaps",
1824 						Opt_removed),
1825 	fsparam_flag	("no_prefetch_block_bitmaps",
1826 						Opt_no_prefetch_block_bitmaps),
1827 	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1828 	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1829 	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1830 	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1831 	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1832 	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1833 	{}
1834 };
1835 
1836 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1837 
1838 #define MOPT_SET	0x0001
1839 #define MOPT_CLEAR	0x0002
1840 #define MOPT_NOSUPPORT	0x0004
1841 #define MOPT_EXPLICIT	0x0008
1842 #ifdef CONFIG_QUOTA
1843 #define MOPT_Q		0
1844 #define MOPT_QFMT	0x0010
1845 #else
1846 #define MOPT_Q		MOPT_NOSUPPORT
1847 #define MOPT_QFMT	MOPT_NOSUPPORT
1848 #endif
1849 #define MOPT_NO_EXT2	0x0020
1850 #define MOPT_NO_EXT3	0x0040
1851 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1852 #define MOPT_SKIP	0x0080
1853 #define	MOPT_2		0x0100
1854 
1855 static const struct mount_opts {
1856 	int	token;
1857 	int	mount_opt;
1858 	int	flags;
1859 } ext4_mount_opts[] = {
1860 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1861 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1862 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1863 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1864 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1865 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1866 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1867 	 MOPT_EXT4_ONLY | MOPT_SET},
1868 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1869 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1870 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1871 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1872 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1873 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1874 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1875 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1876 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1877 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1878 	{Opt_commit, 0, MOPT_NO_EXT2},
1879 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1880 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1881 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1882 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1883 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1884 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1885 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1886 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1887 	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1888 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1889 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1890 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1891 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1892 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1893 	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1894 	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1895 	{Opt_journal_path, 0, MOPT_NO_EXT2},
1896 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1897 	{Opt_data, 0, MOPT_NO_EXT2},
1898 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1899 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1900 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1901 #else
1902 	{Opt_acl, 0, MOPT_NOSUPPORT},
1903 #endif
1904 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1905 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1906 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1907 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1908 							MOPT_SET | MOPT_Q},
1909 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1910 							MOPT_SET | MOPT_Q},
1911 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1912 							MOPT_SET | MOPT_Q},
1913 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1914 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1915 							MOPT_CLEAR | MOPT_Q},
1916 	{Opt_usrjquota, 0, MOPT_Q},
1917 	{Opt_grpjquota, 0, MOPT_Q},
1918 	{Opt_jqfmt, 0, MOPT_QFMT},
1919 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1920 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1921 	 MOPT_SET},
1922 #ifdef CONFIG_EXT4_DEBUG
1923 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1924 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1925 #endif
1926 	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1927 	{Opt_err, 0, 0}
1928 };
1929 
1930 #if IS_ENABLED(CONFIG_UNICODE)
1931 static const struct ext4_sb_encodings {
1932 	__u16 magic;
1933 	char *name;
1934 	unsigned int version;
1935 } ext4_sb_encoding_map[] = {
1936 	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1937 };
1938 
1939 static const struct ext4_sb_encodings *
1940 ext4_sb_read_encoding(const struct ext4_super_block *es)
1941 {
1942 	__u16 magic = le16_to_cpu(es->s_encoding);
1943 	int i;
1944 
1945 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1946 		if (magic == ext4_sb_encoding_map[i].magic)
1947 			return &ext4_sb_encoding_map[i];
1948 
1949 	return NULL;
1950 }
1951 #endif
1952 
1953 #define EXT4_SPEC_JQUOTA			(1 <<  0)
1954 #define EXT4_SPEC_JQFMT				(1 <<  1)
1955 #define EXT4_SPEC_DATAJ				(1 <<  2)
1956 #define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1957 #define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1958 #define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1959 #define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1960 #define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1961 #define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1962 #define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1963 #define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1964 #define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1965 #define EXT4_SPEC_s_stripe			(1 << 13)
1966 #define EXT4_SPEC_s_resuid			(1 << 14)
1967 #define EXT4_SPEC_s_resgid			(1 << 15)
1968 #define EXT4_SPEC_s_commit_interval		(1 << 16)
1969 #define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1970 #define EXT4_SPEC_s_sb_block			(1 << 18)
1971 #define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1972 
1973 struct ext4_fs_context {
1974 	char		*s_qf_names[EXT4_MAXQUOTAS];
1975 	struct fscrypt_dummy_policy dummy_enc_policy;
1976 	int		s_jquota_fmt;	/* Format of quota to use */
1977 #ifdef CONFIG_EXT4_DEBUG
1978 	int s_fc_debug_max_replay;
1979 #endif
1980 	unsigned short	qname_spec;
1981 	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1982 	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1983 	unsigned long	journal_devnum;
1984 	unsigned long	s_commit_interval;
1985 	unsigned long	s_stripe;
1986 	unsigned int	s_inode_readahead_blks;
1987 	unsigned int	s_want_extra_isize;
1988 	unsigned int	s_li_wait_mult;
1989 	unsigned int	s_max_dir_size_kb;
1990 	unsigned int	journal_ioprio;
1991 	unsigned int	vals_s_mount_opt;
1992 	unsigned int	mask_s_mount_opt;
1993 	unsigned int	vals_s_mount_opt2;
1994 	unsigned int	mask_s_mount_opt2;
1995 	unsigned int	opt_flags;	/* MOPT flags */
1996 	unsigned int	spec;
1997 	u32		s_max_batch_time;
1998 	u32		s_min_batch_time;
1999 	kuid_t		s_resuid;
2000 	kgid_t		s_resgid;
2001 	ext4_fsblk_t	s_sb_block;
2002 };
2003 
2004 static void ext4_fc_free(struct fs_context *fc)
2005 {
2006 	struct ext4_fs_context *ctx = fc->fs_private;
2007 	int i;
2008 
2009 	if (!ctx)
2010 		return;
2011 
2012 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2013 		kfree(ctx->s_qf_names[i]);
2014 
2015 	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2016 	kfree(ctx);
2017 }
2018 
2019 int ext4_init_fs_context(struct fs_context *fc)
2020 {
2021 	struct ext4_fs_context *ctx;
2022 
2023 	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2024 	if (!ctx)
2025 		return -ENOMEM;
2026 
2027 	fc->fs_private = ctx;
2028 	fc->ops = &ext4_context_ops;
2029 
2030 	return 0;
2031 }
2032 
2033 #ifdef CONFIG_QUOTA
2034 /*
2035  * Note the name of the specified quota file.
2036  */
2037 static int note_qf_name(struct fs_context *fc, int qtype,
2038 		       struct fs_parameter *param)
2039 {
2040 	struct ext4_fs_context *ctx = fc->fs_private;
2041 	char *qname;
2042 
2043 	if (param->size < 1) {
2044 		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2045 		return -EINVAL;
2046 	}
2047 	if (strchr(param->string, '/')) {
2048 		ext4_msg(NULL, KERN_ERR,
2049 			 "quotafile must be on filesystem root");
2050 		return -EINVAL;
2051 	}
2052 	if (ctx->s_qf_names[qtype]) {
2053 		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2054 			ext4_msg(NULL, KERN_ERR,
2055 				 "%s quota file already specified",
2056 				 QTYPE2NAME(qtype));
2057 			return -EINVAL;
2058 		}
2059 		return 0;
2060 	}
2061 
2062 	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2063 	if (!qname) {
2064 		ext4_msg(NULL, KERN_ERR,
2065 			 "Not enough memory for storing quotafile name");
2066 		return -ENOMEM;
2067 	}
2068 	ctx->s_qf_names[qtype] = qname;
2069 	ctx->qname_spec |= 1 << qtype;
2070 	ctx->spec |= EXT4_SPEC_JQUOTA;
2071 	return 0;
2072 }
2073 
2074 /*
2075  * Clear the name of the specified quota file.
2076  */
2077 static int unnote_qf_name(struct fs_context *fc, int qtype)
2078 {
2079 	struct ext4_fs_context *ctx = fc->fs_private;
2080 
2081 	if (ctx->s_qf_names[qtype])
2082 		kfree(ctx->s_qf_names[qtype]);
2083 
2084 	ctx->s_qf_names[qtype] = NULL;
2085 	ctx->qname_spec |= 1 << qtype;
2086 	ctx->spec |= EXT4_SPEC_JQUOTA;
2087 	return 0;
2088 }
2089 #endif
2090 
2091 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2092 					    struct ext4_fs_context *ctx)
2093 {
2094 	int err;
2095 
2096 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2097 		ext4_msg(NULL, KERN_WARNING,
2098 			 "test_dummy_encryption option not supported");
2099 		return -EINVAL;
2100 	}
2101 	err = fscrypt_parse_test_dummy_encryption(param,
2102 						  &ctx->dummy_enc_policy);
2103 	if (err == -EINVAL) {
2104 		ext4_msg(NULL, KERN_WARNING,
2105 			 "Value of option \"%s\" is unrecognized", param->key);
2106 	} else if (err == -EEXIST) {
2107 		ext4_msg(NULL, KERN_WARNING,
2108 			 "Conflicting test_dummy_encryption options");
2109 		return -EINVAL;
2110 	}
2111 	return err;
2112 }
2113 
2114 #define EXT4_SET_CTX(name)						\
2115 static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2116 				  unsigned long flag)			\
2117 {									\
2118 	ctx->mask_s_##name |= flag;					\
2119 	ctx->vals_s_##name |= flag;					\
2120 }
2121 
2122 #define EXT4_CLEAR_CTX(name)						\
2123 static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2124 				    unsigned long flag)			\
2125 {									\
2126 	ctx->mask_s_##name |= flag;					\
2127 	ctx->vals_s_##name &= ~flag;					\
2128 }
2129 
2130 #define EXT4_TEST_CTX(name)						\
2131 static inline unsigned long						\
2132 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2133 {									\
2134 	return (ctx->vals_s_##name & flag);				\
2135 }
2136 
2137 EXT4_SET_CTX(flags); /* set only */
2138 EXT4_SET_CTX(mount_opt);
2139 EXT4_CLEAR_CTX(mount_opt);
2140 EXT4_TEST_CTX(mount_opt);
2141 EXT4_SET_CTX(mount_opt2);
2142 EXT4_CLEAR_CTX(mount_opt2);
2143 EXT4_TEST_CTX(mount_opt2);
2144 
2145 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2146 {
2147 	struct ext4_fs_context *ctx = fc->fs_private;
2148 	struct fs_parse_result result;
2149 	const struct mount_opts *m;
2150 	int is_remount;
2151 	kuid_t uid;
2152 	kgid_t gid;
2153 	int token;
2154 
2155 	token = fs_parse(fc, ext4_param_specs, param, &result);
2156 	if (token < 0)
2157 		return token;
2158 	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2159 
2160 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2161 		if (token == m->token)
2162 			break;
2163 
2164 	ctx->opt_flags |= m->flags;
2165 
2166 	if (m->flags & MOPT_EXPLICIT) {
2167 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2168 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2169 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2170 			ctx_set_mount_opt2(ctx,
2171 				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2172 		} else
2173 			return -EINVAL;
2174 	}
2175 
2176 	if (m->flags & MOPT_NOSUPPORT) {
2177 		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2178 			 param->key);
2179 		return 0;
2180 	}
2181 
2182 	switch (token) {
2183 #ifdef CONFIG_QUOTA
2184 	case Opt_usrjquota:
2185 		if (!*param->string)
2186 			return unnote_qf_name(fc, USRQUOTA);
2187 		else
2188 			return note_qf_name(fc, USRQUOTA, param);
2189 	case Opt_grpjquota:
2190 		if (!*param->string)
2191 			return unnote_qf_name(fc, GRPQUOTA);
2192 		else
2193 			return note_qf_name(fc, GRPQUOTA, param);
2194 #endif
2195 	case Opt_sb:
2196 		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2197 			ext4_msg(NULL, KERN_WARNING,
2198 				 "Ignoring %s option on remount", param->key);
2199 		} else {
2200 			ctx->s_sb_block = result.uint_32;
2201 			ctx->spec |= EXT4_SPEC_s_sb_block;
2202 		}
2203 		return 0;
2204 	case Opt_removed:
2205 		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2206 			 param->key);
2207 		return 0;
2208 	case Opt_inlinecrypt:
2209 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2210 		ctx_set_flags(ctx, SB_INLINECRYPT);
2211 #else
2212 		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2213 #endif
2214 		return 0;
2215 	case Opt_errors:
2216 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2217 		ctx_set_mount_opt(ctx, result.uint_32);
2218 		return 0;
2219 #ifdef CONFIG_QUOTA
2220 	case Opt_jqfmt:
2221 		ctx->s_jquota_fmt = result.uint_32;
2222 		ctx->spec |= EXT4_SPEC_JQFMT;
2223 		return 0;
2224 #endif
2225 	case Opt_data:
2226 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2227 		ctx_set_mount_opt(ctx, result.uint_32);
2228 		ctx->spec |= EXT4_SPEC_DATAJ;
2229 		return 0;
2230 	case Opt_commit:
2231 		if (result.uint_32 == 0)
2232 			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2233 		else if (result.uint_32 > INT_MAX / HZ) {
2234 			ext4_msg(NULL, KERN_ERR,
2235 				 "Invalid commit interval %d, "
2236 				 "must be smaller than %d",
2237 				 result.uint_32, INT_MAX / HZ);
2238 			return -EINVAL;
2239 		}
2240 		ctx->s_commit_interval = HZ * result.uint_32;
2241 		ctx->spec |= EXT4_SPEC_s_commit_interval;
2242 		return 0;
2243 	case Opt_debug_want_extra_isize:
2244 		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2245 			ext4_msg(NULL, KERN_ERR,
2246 				 "Invalid want_extra_isize %d", result.uint_32);
2247 			return -EINVAL;
2248 		}
2249 		ctx->s_want_extra_isize = result.uint_32;
2250 		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2251 		return 0;
2252 	case Opt_max_batch_time:
2253 		ctx->s_max_batch_time = result.uint_32;
2254 		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2255 		return 0;
2256 	case Opt_min_batch_time:
2257 		ctx->s_min_batch_time = result.uint_32;
2258 		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2259 		return 0;
2260 	case Opt_inode_readahead_blks:
2261 		if (result.uint_32 &&
2262 		    (result.uint_32 > (1 << 30) ||
2263 		     !is_power_of_2(result.uint_32))) {
2264 			ext4_msg(NULL, KERN_ERR,
2265 				 "EXT4-fs: inode_readahead_blks must be "
2266 				 "0 or a power of 2 smaller than 2^31");
2267 			return -EINVAL;
2268 		}
2269 		ctx->s_inode_readahead_blks = result.uint_32;
2270 		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2271 		return 0;
2272 	case Opt_init_itable:
2273 		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2274 		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2275 		if (param->type == fs_value_is_string)
2276 			ctx->s_li_wait_mult = result.uint_32;
2277 		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2278 		return 0;
2279 	case Opt_max_dir_size_kb:
2280 		ctx->s_max_dir_size_kb = result.uint_32;
2281 		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2282 		return 0;
2283 #ifdef CONFIG_EXT4_DEBUG
2284 	case Opt_fc_debug_max_replay:
2285 		ctx->s_fc_debug_max_replay = result.uint_32;
2286 		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2287 		return 0;
2288 #endif
2289 	case Opt_stripe:
2290 		ctx->s_stripe = result.uint_32;
2291 		ctx->spec |= EXT4_SPEC_s_stripe;
2292 		return 0;
2293 	case Opt_resuid:
2294 		uid = make_kuid(current_user_ns(), result.uint_32);
2295 		if (!uid_valid(uid)) {
2296 			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2297 				 result.uint_32);
2298 			return -EINVAL;
2299 		}
2300 		ctx->s_resuid = uid;
2301 		ctx->spec |= EXT4_SPEC_s_resuid;
2302 		return 0;
2303 	case Opt_resgid:
2304 		gid = make_kgid(current_user_ns(), result.uint_32);
2305 		if (!gid_valid(gid)) {
2306 			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2307 				 result.uint_32);
2308 			return -EINVAL;
2309 		}
2310 		ctx->s_resgid = gid;
2311 		ctx->spec |= EXT4_SPEC_s_resgid;
2312 		return 0;
2313 	case Opt_journal_dev:
2314 		if (is_remount) {
2315 			ext4_msg(NULL, KERN_ERR,
2316 				 "Cannot specify journal on remount");
2317 			return -EINVAL;
2318 		}
2319 		ctx->journal_devnum = result.uint_32;
2320 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2321 		return 0;
2322 	case Opt_journal_path:
2323 	{
2324 		struct inode *journal_inode;
2325 		struct path path;
2326 		int error;
2327 
2328 		if (is_remount) {
2329 			ext4_msg(NULL, KERN_ERR,
2330 				 "Cannot specify journal on remount");
2331 			return -EINVAL;
2332 		}
2333 
2334 		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2335 		if (error) {
2336 			ext4_msg(NULL, KERN_ERR, "error: could not find "
2337 				 "journal device path");
2338 			return -EINVAL;
2339 		}
2340 
2341 		journal_inode = d_inode(path.dentry);
2342 		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2343 		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2344 		path_put(&path);
2345 		return 0;
2346 	}
2347 	case Opt_journal_ioprio:
2348 		if (result.uint_32 > 7) {
2349 			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2350 				 " (must be 0-7)");
2351 			return -EINVAL;
2352 		}
2353 		ctx->journal_ioprio =
2354 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2355 		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2356 		return 0;
2357 	case Opt_test_dummy_encryption:
2358 		return ext4_parse_test_dummy_encryption(param, ctx);
2359 	case Opt_dax:
2360 	case Opt_dax_type:
2361 #ifdef CONFIG_FS_DAX
2362 	{
2363 		int type = (token == Opt_dax) ?
2364 			   Opt_dax : result.uint_32;
2365 
2366 		switch (type) {
2367 		case Opt_dax:
2368 		case Opt_dax_always:
2369 			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2370 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2371 			break;
2372 		case Opt_dax_never:
2373 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2374 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2375 			break;
2376 		case Opt_dax_inode:
2377 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2378 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2379 			/* Strictly for printing options */
2380 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2381 			break;
2382 		}
2383 		return 0;
2384 	}
2385 #else
2386 		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2387 		return -EINVAL;
2388 #endif
2389 	case Opt_data_err:
2390 		if (result.uint_32 == Opt_data_err_abort)
2391 			ctx_set_mount_opt(ctx, m->mount_opt);
2392 		else if (result.uint_32 == Opt_data_err_ignore)
2393 			ctx_clear_mount_opt(ctx, m->mount_opt);
2394 		return 0;
2395 	case Opt_mb_optimize_scan:
2396 		if (result.int_32 == 1) {
2397 			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2398 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2399 		} else if (result.int_32 == 0) {
2400 			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2401 			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2402 		} else {
2403 			ext4_msg(NULL, KERN_WARNING,
2404 				 "mb_optimize_scan should be set to 0 or 1.");
2405 			return -EINVAL;
2406 		}
2407 		return 0;
2408 	}
2409 
2410 	/*
2411 	 * At this point we should only be getting options requiring MOPT_SET,
2412 	 * or MOPT_CLEAR. Anything else is a bug
2413 	 */
2414 	if (m->token == Opt_err) {
2415 		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2416 			 param->key);
2417 		WARN_ON(1);
2418 		return -EINVAL;
2419 	}
2420 
2421 	else {
2422 		unsigned int set = 0;
2423 
2424 		if ((param->type == fs_value_is_flag) ||
2425 		    result.uint_32 > 0)
2426 			set = 1;
2427 
2428 		if (m->flags & MOPT_CLEAR)
2429 			set = !set;
2430 		else if (unlikely(!(m->flags & MOPT_SET))) {
2431 			ext4_msg(NULL, KERN_WARNING,
2432 				 "buggy handling of option %s",
2433 				 param->key);
2434 			WARN_ON(1);
2435 			return -EINVAL;
2436 		}
2437 		if (m->flags & MOPT_2) {
2438 			if (set != 0)
2439 				ctx_set_mount_opt2(ctx, m->mount_opt);
2440 			else
2441 				ctx_clear_mount_opt2(ctx, m->mount_opt);
2442 		} else {
2443 			if (set != 0)
2444 				ctx_set_mount_opt(ctx, m->mount_opt);
2445 			else
2446 				ctx_clear_mount_opt(ctx, m->mount_opt);
2447 		}
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 static int parse_options(struct fs_context *fc, char *options)
2454 {
2455 	struct fs_parameter param;
2456 	int ret;
2457 	char *key;
2458 
2459 	if (!options)
2460 		return 0;
2461 
2462 	while ((key = strsep(&options, ",")) != NULL) {
2463 		if (*key) {
2464 			size_t v_len = 0;
2465 			char *value = strchr(key, '=');
2466 
2467 			param.type = fs_value_is_flag;
2468 			param.string = NULL;
2469 
2470 			if (value) {
2471 				if (value == key)
2472 					continue;
2473 
2474 				*value++ = 0;
2475 				v_len = strlen(value);
2476 				param.string = kmemdup_nul(value, v_len,
2477 							   GFP_KERNEL);
2478 				if (!param.string)
2479 					return -ENOMEM;
2480 				param.type = fs_value_is_string;
2481 			}
2482 
2483 			param.key = key;
2484 			param.size = v_len;
2485 
2486 			ret = ext4_parse_param(fc, &param);
2487 			if (param.string)
2488 				kfree(param.string);
2489 			if (ret < 0)
2490 				return ret;
2491 		}
2492 	}
2493 
2494 	ret = ext4_validate_options(fc);
2495 	if (ret < 0)
2496 		return ret;
2497 
2498 	return 0;
2499 }
2500 
2501 static int parse_apply_sb_mount_options(struct super_block *sb,
2502 					struct ext4_fs_context *m_ctx)
2503 {
2504 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2505 	char *s_mount_opts = NULL;
2506 	struct ext4_fs_context *s_ctx = NULL;
2507 	struct fs_context *fc = NULL;
2508 	int ret = -ENOMEM;
2509 
2510 	if (!sbi->s_es->s_mount_opts[0])
2511 		return 0;
2512 
2513 	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2514 				sizeof(sbi->s_es->s_mount_opts),
2515 				GFP_KERNEL);
2516 	if (!s_mount_opts)
2517 		return ret;
2518 
2519 	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2520 	if (!fc)
2521 		goto out_free;
2522 
2523 	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2524 	if (!s_ctx)
2525 		goto out_free;
2526 
2527 	fc->fs_private = s_ctx;
2528 	fc->s_fs_info = sbi;
2529 
2530 	ret = parse_options(fc, s_mount_opts);
2531 	if (ret < 0)
2532 		goto parse_failed;
2533 
2534 	ret = ext4_check_opt_consistency(fc, sb);
2535 	if (ret < 0) {
2536 parse_failed:
2537 		ext4_msg(sb, KERN_WARNING,
2538 			 "failed to parse options in superblock: %s",
2539 			 s_mount_opts);
2540 		ret = 0;
2541 		goto out_free;
2542 	}
2543 
2544 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2545 		m_ctx->journal_devnum = s_ctx->journal_devnum;
2546 	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2547 		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2548 
2549 	ext4_apply_options(fc, sb);
2550 	ret = 0;
2551 
2552 out_free:
2553 	if (fc) {
2554 		ext4_fc_free(fc);
2555 		kfree(fc);
2556 	}
2557 	kfree(s_mount_opts);
2558 	return ret;
2559 }
2560 
2561 static void ext4_apply_quota_options(struct fs_context *fc,
2562 				     struct super_block *sb)
2563 {
2564 #ifdef CONFIG_QUOTA
2565 	bool quota_feature = ext4_has_feature_quota(sb);
2566 	struct ext4_fs_context *ctx = fc->fs_private;
2567 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2568 	char *qname;
2569 	int i;
2570 
2571 	if (quota_feature)
2572 		return;
2573 
2574 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2575 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2576 			if (!(ctx->qname_spec & (1 << i)))
2577 				continue;
2578 
2579 			qname = ctx->s_qf_names[i]; /* May be NULL */
2580 			if (qname)
2581 				set_opt(sb, QUOTA);
2582 			ctx->s_qf_names[i] = NULL;
2583 			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2584 						lockdep_is_held(&sb->s_umount));
2585 			if (qname)
2586 				kfree_rcu_mightsleep(qname);
2587 		}
2588 	}
2589 
2590 	if (ctx->spec & EXT4_SPEC_JQFMT)
2591 		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2592 #endif
2593 }
2594 
2595 /*
2596  * Check quota settings consistency.
2597  */
2598 static int ext4_check_quota_consistency(struct fs_context *fc,
2599 					struct super_block *sb)
2600 {
2601 #ifdef CONFIG_QUOTA
2602 	struct ext4_fs_context *ctx = fc->fs_private;
2603 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2604 	bool quota_feature = ext4_has_feature_quota(sb);
2605 	bool quota_loaded = sb_any_quota_loaded(sb);
2606 	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2607 	int quota_flags, i;
2608 
2609 	/*
2610 	 * We do the test below only for project quotas. 'usrquota' and
2611 	 * 'grpquota' mount options are allowed even without quota feature
2612 	 * to support legacy quotas in quota files.
2613 	 */
2614 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2615 	    !ext4_has_feature_project(sb)) {
2616 		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2617 			 "Cannot enable project quota enforcement.");
2618 		return -EINVAL;
2619 	}
2620 
2621 	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2622 		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2623 	if (quota_loaded &&
2624 	    ctx->mask_s_mount_opt & quota_flags &&
2625 	    !ctx_test_mount_opt(ctx, quota_flags))
2626 		goto err_quota_change;
2627 
2628 	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2629 
2630 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2631 			if (!(ctx->qname_spec & (1 << i)))
2632 				continue;
2633 
2634 			if (quota_loaded &&
2635 			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2636 				goto err_jquota_change;
2637 
2638 			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2639 			    strcmp(get_qf_name(sb, sbi, i),
2640 				   ctx->s_qf_names[i]) != 0)
2641 				goto err_jquota_specified;
2642 		}
2643 
2644 		if (quota_feature) {
2645 			ext4_msg(NULL, KERN_INFO,
2646 				 "Journaled quota options ignored when "
2647 				 "QUOTA feature is enabled");
2648 			return 0;
2649 		}
2650 	}
2651 
2652 	if (ctx->spec & EXT4_SPEC_JQFMT) {
2653 		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2654 			goto err_jquota_change;
2655 		if (quota_feature) {
2656 			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2657 				 "ignored when QUOTA feature is enabled");
2658 			return 0;
2659 		}
2660 	}
2661 
2662 	/* Make sure we don't mix old and new quota format */
2663 	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2664 		       ctx->s_qf_names[USRQUOTA]);
2665 	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2666 		       ctx->s_qf_names[GRPQUOTA]);
2667 
2668 	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2669 		    test_opt(sb, USRQUOTA));
2670 
2671 	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2672 		    test_opt(sb, GRPQUOTA));
2673 
2674 	if (usr_qf_name) {
2675 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2676 		usrquota = false;
2677 	}
2678 	if (grp_qf_name) {
2679 		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2680 		grpquota = false;
2681 	}
2682 
2683 	if (usr_qf_name || grp_qf_name) {
2684 		if (usrquota || grpquota) {
2685 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2686 				 "format mixing");
2687 			return -EINVAL;
2688 		}
2689 
2690 		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2691 			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2692 				 "not specified");
2693 			return -EINVAL;
2694 		}
2695 	}
2696 
2697 	return 0;
2698 
2699 err_quota_change:
2700 	ext4_msg(NULL, KERN_ERR,
2701 		 "Cannot change quota options when quota turned on");
2702 	return -EINVAL;
2703 err_jquota_change:
2704 	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2705 		 "options when quota turned on");
2706 	return -EINVAL;
2707 err_jquota_specified:
2708 	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2709 		 QTYPE2NAME(i));
2710 	return -EINVAL;
2711 #else
2712 	return 0;
2713 #endif
2714 }
2715 
2716 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2717 					    struct super_block *sb)
2718 {
2719 	const struct ext4_fs_context *ctx = fc->fs_private;
2720 	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2721 
2722 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2723 		return 0;
2724 
2725 	if (!ext4_has_feature_encrypt(sb)) {
2726 		ext4_msg(NULL, KERN_WARNING,
2727 			 "test_dummy_encryption requires encrypt feature");
2728 		return -EINVAL;
2729 	}
2730 	/*
2731 	 * This mount option is just for testing, and it's not worthwhile to
2732 	 * implement the extra complexity (e.g. RCU protection) that would be
2733 	 * needed to allow it to be set or changed during remount.  We do allow
2734 	 * it to be specified during remount, but only if there is no change.
2735 	 */
2736 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2737 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2738 						 &ctx->dummy_enc_policy))
2739 			return 0;
2740 		ext4_msg(NULL, KERN_WARNING,
2741 			 "Can't set or change test_dummy_encryption on remount");
2742 		return -EINVAL;
2743 	}
2744 	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2745 	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2746 		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2747 						 &ctx->dummy_enc_policy))
2748 			return 0;
2749 		ext4_msg(NULL, KERN_WARNING,
2750 			 "Conflicting test_dummy_encryption options");
2751 		return -EINVAL;
2752 	}
2753 	return 0;
2754 }
2755 
2756 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2757 					     struct super_block *sb)
2758 {
2759 	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2760 	    /* if already set, it was already verified to be the same */
2761 	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2762 		return;
2763 	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2764 	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2765 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2766 }
2767 
2768 static int ext4_check_opt_consistency(struct fs_context *fc,
2769 				      struct super_block *sb)
2770 {
2771 	struct ext4_fs_context *ctx = fc->fs_private;
2772 	struct ext4_sb_info *sbi = fc->s_fs_info;
2773 	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2774 	int err;
2775 
2776 	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2777 		ext4_msg(NULL, KERN_ERR,
2778 			 "Mount option(s) incompatible with ext2");
2779 		return -EINVAL;
2780 	}
2781 	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2782 		ext4_msg(NULL, KERN_ERR,
2783 			 "Mount option(s) incompatible with ext3");
2784 		return -EINVAL;
2785 	}
2786 
2787 	if (ctx->s_want_extra_isize >
2788 	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2789 		ext4_msg(NULL, KERN_ERR,
2790 			 "Invalid want_extra_isize %d",
2791 			 ctx->s_want_extra_isize);
2792 		return -EINVAL;
2793 	}
2794 
2795 	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2796 		int blocksize =
2797 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2798 		if (blocksize < PAGE_SIZE)
2799 			ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2800 				 "experimental mount option 'dioread_nolock' "
2801 				 "for blocksize < PAGE_SIZE");
2802 	}
2803 
2804 	err = ext4_check_test_dummy_encryption(fc, sb);
2805 	if (err)
2806 		return err;
2807 
2808 	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2809 		if (!sbi->s_journal) {
2810 			ext4_msg(NULL, KERN_WARNING,
2811 				 "Remounting file system with no journal "
2812 				 "so ignoring journalled data option");
2813 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2814 		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2815 			   test_opt(sb, DATA_FLAGS)) {
2816 			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2817 				 "on remount");
2818 			return -EINVAL;
2819 		}
2820 	}
2821 
2822 	if (is_remount) {
2823 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2824 		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2825 			ext4_msg(NULL, KERN_ERR, "can't mount with "
2826 				 "both data=journal and dax");
2827 			return -EINVAL;
2828 		}
2829 
2830 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2831 		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2832 		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2833 fail_dax_change_remount:
2834 			ext4_msg(NULL, KERN_ERR, "can't change "
2835 				 "dax mount option while remounting");
2836 			return -EINVAL;
2837 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2838 			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2839 			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2840 			goto fail_dax_change_remount;
2841 		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2842 			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2843 			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2844 			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2845 			goto fail_dax_change_remount;
2846 		}
2847 	}
2848 
2849 	return ext4_check_quota_consistency(fc, sb);
2850 }
2851 
2852 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2853 {
2854 	struct ext4_fs_context *ctx = fc->fs_private;
2855 	struct ext4_sb_info *sbi = fc->s_fs_info;
2856 
2857 	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2858 	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2859 	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2860 	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2861 	sb->s_flags &= ~ctx->mask_s_flags;
2862 	sb->s_flags |= ctx->vals_s_flags;
2863 
2864 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2865 	APPLY(s_commit_interval);
2866 	APPLY(s_stripe);
2867 	APPLY(s_max_batch_time);
2868 	APPLY(s_min_batch_time);
2869 	APPLY(s_want_extra_isize);
2870 	APPLY(s_inode_readahead_blks);
2871 	APPLY(s_max_dir_size_kb);
2872 	APPLY(s_li_wait_mult);
2873 	APPLY(s_resgid);
2874 	APPLY(s_resuid);
2875 
2876 #ifdef CONFIG_EXT4_DEBUG
2877 	APPLY(s_fc_debug_max_replay);
2878 #endif
2879 
2880 	ext4_apply_quota_options(fc, sb);
2881 	ext4_apply_test_dummy_encryption(ctx, sb);
2882 }
2883 
2884 
2885 static int ext4_validate_options(struct fs_context *fc)
2886 {
2887 #ifdef CONFIG_QUOTA
2888 	struct ext4_fs_context *ctx = fc->fs_private;
2889 	char *usr_qf_name, *grp_qf_name;
2890 
2891 	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2892 	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2893 
2894 	if (usr_qf_name || grp_qf_name) {
2895 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2896 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2897 
2898 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2899 			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2900 
2901 		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2902 		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2903 			ext4_msg(NULL, KERN_ERR, "old and new quota "
2904 				 "format mixing");
2905 			return -EINVAL;
2906 		}
2907 	}
2908 #endif
2909 	return 1;
2910 }
2911 
2912 static inline void ext4_show_quota_options(struct seq_file *seq,
2913 					   struct super_block *sb)
2914 {
2915 #if defined(CONFIG_QUOTA)
2916 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2917 	char *usr_qf_name, *grp_qf_name;
2918 
2919 	if (sbi->s_jquota_fmt) {
2920 		char *fmtname = "";
2921 
2922 		switch (sbi->s_jquota_fmt) {
2923 		case QFMT_VFS_OLD:
2924 			fmtname = "vfsold";
2925 			break;
2926 		case QFMT_VFS_V0:
2927 			fmtname = "vfsv0";
2928 			break;
2929 		case QFMT_VFS_V1:
2930 			fmtname = "vfsv1";
2931 			break;
2932 		}
2933 		seq_printf(seq, ",jqfmt=%s", fmtname);
2934 	}
2935 
2936 	rcu_read_lock();
2937 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2938 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2939 	if (usr_qf_name)
2940 		seq_show_option(seq, "usrjquota", usr_qf_name);
2941 	if (grp_qf_name)
2942 		seq_show_option(seq, "grpjquota", grp_qf_name);
2943 	rcu_read_unlock();
2944 #endif
2945 }
2946 
2947 static const char *token2str(int token)
2948 {
2949 	const struct fs_parameter_spec *spec;
2950 
2951 	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2952 		if (spec->opt == token && !spec->type)
2953 			break;
2954 	return spec->name;
2955 }
2956 
2957 /*
2958  * Show an option if
2959  *  - it's set to a non-default value OR
2960  *  - if the per-sb default is different from the global default
2961  */
2962 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2963 			      int nodefs)
2964 {
2965 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2966 	struct ext4_super_block *es = sbi->s_es;
2967 	int def_errors;
2968 	const struct mount_opts *m;
2969 	char sep = nodefs ? '\n' : ',';
2970 
2971 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2972 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2973 
2974 	if (sbi->s_sb_block != 1)
2975 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2976 
2977 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2978 		int want_set = m->flags & MOPT_SET;
2979 		int opt_2 = m->flags & MOPT_2;
2980 		unsigned int mount_opt, def_mount_opt;
2981 
2982 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2983 		    m->flags & MOPT_SKIP)
2984 			continue;
2985 
2986 		if (opt_2) {
2987 			mount_opt = sbi->s_mount_opt2;
2988 			def_mount_opt = sbi->s_def_mount_opt2;
2989 		} else {
2990 			mount_opt = sbi->s_mount_opt;
2991 			def_mount_opt = sbi->s_def_mount_opt;
2992 		}
2993 		/* skip if same as the default */
2994 		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2995 			continue;
2996 		/* select Opt_noFoo vs Opt_Foo */
2997 		if ((want_set &&
2998 		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2999 		    (!want_set && (mount_opt & m->mount_opt)))
3000 			continue;
3001 		SEQ_OPTS_PRINT("%s", token2str(m->token));
3002 	}
3003 
3004 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
3005 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
3006 		SEQ_OPTS_PRINT("resuid=%u",
3007 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
3008 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3009 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3010 		SEQ_OPTS_PRINT("resgid=%u",
3011 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
3012 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3013 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3014 		SEQ_OPTS_PUTS("errors=remount-ro");
3015 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3016 		SEQ_OPTS_PUTS("errors=continue");
3017 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3018 		SEQ_OPTS_PUTS("errors=panic");
3019 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3020 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3021 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3022 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3023 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3024 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3025 	if (nodefs || sbi->s_stripe)
3026 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3027 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3028 			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3029 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3030 			SEQ_OPTS_PUTS("data=journal");
3031 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3032 			SEQ_OPTS_PUTS("data=ordered");
3033 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3034 			SEQ_OPTS_PUTS("data=writeback");
3035 	}
3036 	if (nodefs ||
3037 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3038 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3039 			       sbi->s_inode_readahead_blks);
3040 
3041 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3042 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3043 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3044 	if (nodefs || sbi->s_max_dir_size_kb)
3045 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3046 	if (test_opt(sb, DATA_ERR_ABORT))
3047 		SEQ_OPTS_PUTS("data_err=abort");
3048 
3049 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3050 
3051 	if (sb->s_flags & SB_INLINECRYPT)
3052 		SEQ_OPTS_PUTS("inlinecrypt");
3053 
3054 	if (test_opt(sb, DAX_ALWAYS)) {
3055 		if (IS_EXT2_SB(sb))
3056 			SEQ_OPTS_PUTS("dax");
3057 		else
3058 			SEQ_OPTS_PUTS("dax=always");
3059 	} else if (test_opt2(sb, DAX_NEVER)) {
3060 		SEQ_OPTS_PUTS("dax=never");
3061 	} else if (test_opt2(sb, DAX_INODE)) {
3062 		SEQ_OPTS_PUTS("dax=inode");
3063 	}
3064 
3065 	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3066 			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3067 		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3068 	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3069 			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3070 		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3071 	}
3072 
3073 	ext4_show_quota_options(seq, sb);
3074 	return 0;
3075 }
3076 
3077 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3078 {
3079 	return _ext4_show_options(seq, root->d_sb, 0);
3080 }
3081 
3082 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3083 {
3084 	struct super_block *sb = seq->private;
3085 	int rc;
3086 
3087 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3088 	rc = _ext4_show_options(seq, sb, 1);
3089 	seq_puts(seq, "\n");
3090 	return rc;
3091 }
3092 
3093 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3094 			    int read_only)
3095 {
3096 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3097 	int err = 0;
3098 
3099 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3100 		ext4_msg(sb, KERN_ERR, "revision level too high, "
3101 			 "forcing read-only mode");
3102 		err = -EROFS;
3103 		goto done;
3104 	}
3105 	if (read_only)
3106 		goto done;
3107 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3108 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3109 			 "running e2fsck is recommended");
3110 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3111 		ext4_msg(sb, KERN_WARNING,
3112 			 "warning: mounting fs with errors, "
3113 			 "running e2fsck is recommended");
3114 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3115 		 le16_to_cpu(es->s_mnt_count) >=
3116 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3117 		ext4_msg(sb, KERN_WARNING,
3118 			 "warning: maximal mount count reached, "
3119 			 "running e2fsck is recommended");
3120 	else if (le32_to_cpu(es->s_checkinterval) &&
3121 		 (ext4_get_tstamp(es, s_lastcheck) +
3122 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3123 		ext4_msg(sb, KERN_WARNING,
3124 			 "warning: checktime reached, "
3125 			 "running e2fsck is recommended");
3126 	if (!sbi->s_journal)
3127 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3128 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3129 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3130 	le16_add_cpu(&es->s_mnt_count, 1);
3131 	ext4_update_tstamp(es, s_mtime);
3132 	if (sbi->s_journal) {
3133 		ext4_set_feature_journal_needs_recovery(sb);
3134 		if (ext4_has_feature_orphan_file(sb))
3135 			ext4_set_feature_orphan_present(sb);
3136 	}
3137 
3138 	err = ext4_commit_super(sb);
3139 done:
3140 	if (test_opt(sb, DEBUG))
3141 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3142 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3143 			sb->s_blocksize,
3144 			sbi->s_groups_count,
3145 			EXT4_BLOCKS_PER_GROUP(sb),
3146 			EXT4_INODES_PER_GROUP(sb),
3147 			sbi->s_mount_opt, sbi->s_mount_opt2);
3148 	return err;
3149 }
3150 
3151 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3152 {
3153 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3154 	struct flex_groups **old_groups, **new_groups;
3155 	int size, i, j;
3156 
3157 	if (!sbi->s_log_groups_per_flex)
3158 		return 0;
3159 
3160 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3161 	if (size <= sbi->s_flex_groups_allocated)
3162 		return 0;
3163 
3164 	new_groups = kvzalloc(roundup_pow_of_two(size *
3165 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3166 	if (!new_groups) {
3167 		ext4_msg(sb, KERN_ERR,
3168 			 "not enough memory for %d flex group pointers", size);
3169 		return -ENOMEM;
3170 	}
3171 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3172 		new_groups[i] = kvzalloc(roundup_pow_of_two(
3173 					 sizeof(struct flex_groups)),
3174 					 GFP_KERNEL);
3175 		if (!new_groups[i]) {
3176 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3177 				kvfree(new_groups[j]);
3178 			kvfree(new_groups);
3179 			ext4_msg(sb, KERN_ERR,
3180 				 "not enough memory for %d flex groups", size);
3181 			return -ENOMEM;
3182 		}
3183 	}
3184 	rcu_read_lock();
3185 	old_groups = rcu_dereference(sbi->s_flex_groups);
3186 	if (old_groups)
3187 		memcpy(new_groups, old_groups,
3188 		       (sbi->s_flex_groups_allocated *
3189 			sizeof(struct flex_groups *)));
3190 	rcu_read_unlock();
3191 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3192 	sbi->s_flex_groups_allocated = size;
3193 	if (old_groups)
3194 		ext4_kvfree_array_rcu(old_groups);
3195 	return 0;
3196 }
3197 
3198 static int ext4_fill_flex_info(struct super_block *sb)
3199 {
3200 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3201 	struct ext4_group_desc *gdp = NULL;
3202 	struct flex_groups *fg;
3203 	ext4_group_t flex_group;
3204 	int i, err;
3205 
3206 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3207 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3208 		sbi->s_log_groups_per_flex = 0;
3209 		return 1;
3210 	}
3211 
3212 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3213 	if (err)
3214 		goto failed;
3215 
3216 	for (i = 0; i < sbi->s_groups_count; i++) {
3217 		gdp = ext4_get_group_desc(sb, i, NULL);
3218 
3219 		flex_group = ext4_flex_group(sbi, i);
3220 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3221 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3222 		atomic64_add(ext4_free_group_clusters(sb, gdp),
3223 			     &fg->free_clusters);
3224 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3225 	}
3226 
3227 	return 1;
3228 failed:
3229 	return 0;
3230 }
3231 
3232 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3233 				   struct ext4_group_desc *gdp)
3234 {
3235 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3236 	__u16 crc = 0;
3237 	__le32 le_group = cpu_to_le32(block_group);
3238 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3239 
3240 	if (ext4_has_metadata_csum(sbi->s_sb)) {
3241 		/* Use new metadata_csum algorithm */
3242 		__u32 csum32;
3243 		__u16 dummy_csum = 0;
3244 
3245 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3246 				     sizeof(le_group));
3247 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3248 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3249 				     sizeof(dummy_csum));
3250 		offset += sizeof(dummy_csum);
3251 		if (offset < sbi->s_desc_size)
3252 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3253 					     sbi->s_desc_size - offset);
3254 
3255 		crc = csum32 & 0xFFFF;
3256 		goto out;
3257 	}
3258 
3259 	/* old crc16 code */
3260 	if (!ext4_has_feature_gdt_csum(sb))
3261 		return 0;
3262 
3263 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3264 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3265 	crc = crc16(crc, (__u8 *)gdp, offset);
3266 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3267 	/* for checksum of struct ext4_group_desc do the rest...*/
3268 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3269 		crc = crc16(crc, (__u8 *)gdp + offset,
3270 			    sbi->s_desc_size - offset);
3271 
3272 out:
3273 	return cpu_to_le16(crc);
3274 }
3275 
3276 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3277 				struct ext4_group_desc *gdp)
3278 {
3279 	if (ext4_has_group_desc_csum(sb) &&
3280 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3281 		return 0;
3282 
3283 	return 1;
3284 }
3285 
3286 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3287 			      struct ext4_group_desc *gdp)
3288 {
3289 	if (!ext4_has_group_desc_csum(sb))
3290 		return;
3291 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3292 }
3293 
3294 /* Called at mount-time, super-block is locked */
3295 static int ext4_check_descriptors(struct super_block *sb,
3296 				  ext4_fsblk_t sb_block,
3297 				  ext4_group_t *first_not_zeroed)
3298 {
3299 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3300 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3301 	ext4_fsblk_t last_block;
3302 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3303 	ext4_fsblk_t block_bitmap;
3304 	ext4_fsblk_t inode_bitmap;
3305 	ext4_fsblk_t inode_table;
3306 	int flexbg_flag = 0;
3307 	ext4_group_t i, grp = sbi->s_groups_count;
3308 
3309 	if (ext4_has_feature_flex_bg(sb))
3310 		flexbg_flag = 1;
3311 
3312 	ext4_debug("Checking group descriptors");
3313 
3314 	for (i = 0; i < sbi->s_groups_count; i++) {
3315 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3316 
3317 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3318 			last_block = ext4_blocks_count(sbi->s_es) - 1;
3319 		else
3320 			last_block = first_block +
3321 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3322 
3323 		if ((grp == sbi->s_groups_count) &&
3324 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3325 			grp = i;
3326 
3327 		block_bitmap = ext4_block_bitmap(sb, gdp);
3328 		if (block_bitmap == sb_block) {
3329 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3330 				 "Block bitmap for group %u overlaps "
3331 				 "superblock", i);
3332 			if (!sb_rdonly(sb))
3333 				return 0;
3334 		}
3335 		if (block_bitmap >= sb_block + 1 &&
3336 		    block_bitmap <= last_bg_block) {
3337 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3338 				 "Block bitmap for group %u overlaps "
3339 				 "block group descriptors", i);
3340 			if (!sb_rdonly(sb))
3341 				return 0;
3342 		}
3343 		if (block_bitmap < first_block || block_bitmap > last_block) {
3344 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3345 			       "Block bitmap for group %u not in group "
3346 			       "(block %llu)!", i, block_bitmap);
3347 			return 0;
3348 		}
3349 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3350 		if (inode_bitmap == sb_block) {
3351 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3352 				 "Inode bitmap for group %u overlaps "
3353 				 "superblock", i);
3354 			if (!sb_rdonly(sb))
3355 				return 0;
3356 		}
3357 		if (inode_bitmap >= sb_block + 1 &&
3358 		    inode_bitmap <= last_bg_block) {
3359 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3360 				 "Inode bitmap for group %u overlaps "
3361 				 "block group descriptors", i);
3362 			if (!sb_rdonly(sb))
3363 				return 0;
3364 		}
3365 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3366 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3367 			       "Inode bitmap for group %u not in group "
3368 			       "(block %llu)!", i, inode_bitmap);
3369 			return 0;
3370 		}
3371 		inode_table = ext4_inode_table(sb, gdp);
3372 		if (inode_table == sb_block) {
3373 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3374 				 "Inode table for group %u overlaps "
3375 				 "superblock", i);
3376 			if (!sb_rdonly(sb))
3377 				return 0;
3378 		}
3379 		if (inode_table >= sb_block + 1 &&
3380 		    inode_table <= last_bg_block) {
3381 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3382 				 "Inode table for group %u overlaps "
3383 				 "block group descriptors", i);
3384 			if (!sb_rdonly(sb))
3385 				return 0;
3386 		}
3387 		if (inode_table < first_block ||
3388 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3389 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3390 			       "Inode table for group %u not in group "
3391 			       "(block %llu)!", i, inode_table);
3392 			return 0;
3393 		}
3394 		ext4_lock_group(sb, i);
3395 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3396 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3397 				 "Checksum for group %u failed (%u!=%u)",
3398 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3399 				     gdp)), le16_to_cpu(gdp->bg_checksum));
3400 			if (!sb_rdonly(sb)) {
3401 				ext4_unlock_group(sb, i);
3402 				return 0;
3403 			}
3404 		}
3405 		ext4_unlock_group(sb, i);
3406 		if (!flexbg_flag)
3407 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3408 	}
3409 	if (NULL != first_not_zeroed)
3410 		*first_not_zeroed = grp;
3411 	return 1;
3412 }
3413 
3414 /*
3415  * Maximal extent format file size.
3416  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3417  * extent format containers, within a sector_t, and within i_blocks
3418  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3419  * so that won't be a limiting factor.
3420  *
3421  * However there is other limiting factor. We do store extents in the form
3422  * of starting block and length, hence the resulting length of the extent
3423  * covering maximum file size must fit into on-disk format containers as
3424  * well. Given that length is always by 1 unit bigger than max unit (because
3425  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3426  *
3427  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3428  */
3429 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3430 {
3431 	loff_t res;
3432 	loff_t upper_limit = MAX_LFS_FILESIZE;
3433 
3434 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3435 
3436 	if (!has_huge_files) {
3437 		upper_limit = (1LL << 32) - 1;
3438 
3439 		/* total blocks in file system block size */
3440 		upper_limit >>= (blkbits - 9);
3441 		upper_limit <<= blkbits;
3442 	}
3443 
3444 	/*
3445 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3446 	 * by one fs block, so ee_len can cover the extent of maximum file
3447 	 * size
3448 	 */
3449 	res = (1LL << 32) - 1;
3450 	res <<= blkbits;
3451 
3452 	/* Sanity check against vm- & vfs- imposed limits */
3453 	if (res > upper_limit)
3454 		res = upper_limit;
3455 
3456 	return res;
3457 }
3458 
3459 /*
3460  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3461  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3462  * We need to be 1 filesystem block less than the 2^48 sector limit.
3463  */
3464 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3465 {
3466 	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3467 	int meta_blocks;
3468 	unsigned int ppb = 1 << (bits - 2);
3469 
3470 	/*
3471 	 * This is calculated to be the largest file size for a dense, block
3472 	 * mapped file such that the file's total number of 512-byte sectors,
3473 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3474 	 *
3475 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3476 	 * number of 512-byte sectors of the file.
3477 	 */
3478 	if (!has_huge_files) {
3479 		/*
3480 		 * !has_huge_files or implies that the inode i_block field
3481 		 * represents total file blocks in 2^32 512-byte sectors ==
3482 		 * size of vfs inode i_blocks * 8
3483 		 */
3484 		upper_limit = (1LL << 32) - 1;
3485 
3486 		/* total blocks in file system block size */
3487 		upper_limit >>= (bits - 9);
3488 
3489 	} else {
3490 		/*
3491 		 * We use 48 bit ext4_inode i_blocks
3492 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3493 		 * represent total number of blocks in
3494 		 * file system block size
3495 		 */
3496 		upper_limit = (1LL << 48) - 1;
3497 
3498 	}
3499 
3500 	/* Compute how many blocks we can address by block tree */
3501 	res += ppb;
3502 	res += ppb * ppb;
3503 	res += ((loff_t)ppb) * ppb * ppb;
3504 	/* Compute how many metadata blocks are needed */
3505 	meta_blocks = 1;
3506 	meta_blocks += 1 + ppb;
3507 	meta_blocks += 1 + ppb + ppb * ppb;
3508 	/* Does block tree limit file size? */
3509 	if (res + meta_blocks <= upper_limit)
3510 		goto check_lfs;
3511 
3512 	res = upper_limit;
3513 	/* How many metadata blocks are needed for addressing upper_limit? */
3514 	upper_limit -= EXT4_NDIR_BLOCKS;
3515 	/* indirect blocks */
3516 	meta_blocks = 1;
3517 	upper_limit -= ppb;
3518 	/* double indirect blocks */
3519 	if (upper_limit < ppb * ppb) {
3520 		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3521 		res -= meta_blocks;
3522 		goto check_lfs;
3523 	}
3524 	meta_blocks += 1 + ppb;
3525 	upper_limit -= ppb * ppb;
3526 	/* tripple indirect blocks for the rest */
3527 	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3528 		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3529 	res -= meta_blocks;
3530 check_lfs:
3531 	res <<= bits;
3532 	if (res > MAX_LFS_FILESIZE)
3533 		res = MAX_LFS_FILESIZE;
3534 
3535 	return res;
3536 }
3537 
3538 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3539 				   ext4_fsblk_t logical_sb_block, int nr)
3540 {
3541 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3542 	ext4_group_t bg, first_meta_bg;
3543 	int has_super = 0;
3544 
3545 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3546 
3547 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3548 		return logical_sb_block + nr + 1;
3549 	bg = sbi->s_desc_per_block * nr;
3550 	if (ext4_bg_has_super(sb, bg))
3551 		has_super = 1;
3552 
3553 	/*
3554 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3555 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3556 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3557 	 * compensate.
3558 	 */
3559 	if (sb->s_blocksize == 1024 && nr == 0 &&
3560 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3561 		has_super++;
3562 
3563 	return (has_super + ext4_group_first_block_no(sb, bg));
3564 }
3565 
3566 /**
3567  * ext4_get_stripe_size: Get the stripe size.
3568  * @sbi: In memory super block info
3569  *
3570  * If we have specified it via mount option, then
3571  * use the mount option value. If the value specified at mount time is
3572  * greater than the blocks per group use the super block value.
3573  * If the super block value is greater than blocks per group return 0.
3574  * Allocator needs it be less than blocks per group.
3575  *
3576  */
3577 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3578 {
3579 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3580 	unsigned long stripe_width =
3581 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3582 	int ret;
3583 
3584 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3585 		ret = sbi->s_stripe;
3586 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3587 		ret = stripe_width;
3588 	else if (stride && stride <= sbi->s_blocks_per_group)
3589 		ret = stride;
3590 	else
3591 		ret = 0;
3592 
3593 	/*
3594 	 * If the stripe width is 1, this makes no sense and
3595 	 * we set it to 0 to turn off stripe handling code.
3596 	 */
3597 	if (ret <= 1)
3598 		ret = 0;
3599 
3600 	return ret;
3601 }
3602 
3603 /*
3604  * Check whether this filesystem can be mounted based on
3605  * the features present and the RDONLY/RDWR mount requested.
3606  * Returns 1 if this filesystem can be mounted as requested,
3607  * 0 if it cannot be.
3608  */
3609 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3610 {
3611 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3612 		ext4_msg(sb, KERN_ERR,
3613 			"Couldn't mount because of "
3614 			"unsupported optional features (%x)",
3615 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3616 			~EXT4_FEATURE_INCOMPAT_SUPP));
3617 		return 0;
3618 	}
3619 
3620 #if !IS_ENABLED(CONFIG_UNICODE)
3621 	if (ext4_has_feature_casefold(sb)) {
3622 		ext4_msg(sb, KERN_ERR,
3623 			 "Filesystem with casefold feature cannot be "
3624 			 "mounted without CONFIG_UNICODE");
3625 		return 0;
3626 	}
3627 #endif
3628 
3629 	if (readonly)
3630 		return 1;
3631 
3632 	if (ext4_has_feature_readonly(sb)) {
3633 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3634 		sb->s_flags |= SB_RDONLY;
3635 		return 1;
3636 	}
3637 
3638 	/* Check that feature set is OK for a read-write mount */
3639 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3640 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3641 			 "unsupported optional features (%x)",
3642 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3643 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3644 		return 0;
3645 	}
3646 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3647 		ext4_msg(sb, KERN_ERR,
3648 			 "Can't support bigalloc feature without "
3649 			 "extents feature\n");
3650 		return 0;
3651 	}
3652 
3653 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3654 	if (!readonly && (ext4_has_feature_quota(sb) ||
3655 			  ext4_has_feature_project(sb))) {
3656 		ext4_msg(sb, KERN_ERR,
3657 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3658 		return 0;
3659 	}
3660 #endif  /* CONFIG_QUOTA */
3661 	return 1;
3662 }
3663 
3664 /*
3665  * This function is called once a day if we have errors logged
3666  * on the file system
3667  */
3668 static void print_daily_error_info(struct timer_list *t)
3669 {
3670 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3671 	struct super_block *sb = sbi->s_sb;
3672 	struct ext4_super_block *es = sbi->s_es;
3673 
3674 	if (es->s_error_count)
3675 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3676 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3677 			 le32_to_cpu(es->s_error_count));
3678 	if (es->s_first_error_time) {
3679 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3680 		       sb->s_id,
3681 		       ext4_get_tstamp(es, s_first_error_time),
3682 		       (int) sizeof(es->s_first_error_func),
3683 		       es->s_first_error_func,
3684 		       le32_to_cpu(es->s_first_error_line));
3685 		if (es->s_first_error_ino)
3686 			printk(KERN_CONT ": inode %u",
3687 			       le32_to_cpu(es->s_first_error_ino));
3688 		if (es->s_first_error_block)
3689 			printk(KERN_CONT ": block %llu", (unsigned long long)
3690 			       le64_to_cpu(es->s_first_error_block));
3691 		printk(KERN_CONT "\n");
3692 	}
3693 	if (es->s_last_error_time) {
3694 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3695 		       sb->s_id,
3696 		       ext4_get_tstamp(es, s_last_error_time),
3697 		       (int) sizeof(es->s_last_error_func),
3698 		       es->s_last_error_func,
3699 		       le32_to_cpu(es->s_last_error_line));
3700 		if (es->s_last_error_ino)
3701 			printk(KERN_CONT ": inode %u",
3702 			       le32_to_cpu(es->s_last_error_ino));
3703 		if (es->s_last_error_block)
3704 			printk(KERN_CONT ": block %llu", (unsigned long long)
3705 			       le64_to_cpu(es->s_last_error_block));
3706 		printk(KERN_CONT "\n");
3707 	}
3708 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3709 }
3710 
3711 /* Find next suitable group and run ext4_init_inode_table */
3712 static int ext4_run_li_request(struct ext4_li_request *elr)
3713 {
3714 	struct ext4_group_desc *gdp = NULL;
3715 	struct super_block *sb = elr->lr_super;
3716 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3717 	ext4_group_t group = elr->lr_next_group;
3718 	unsigned int prefetch_ios = 0;
3719 	int ret = 0;
3720 	int nr = EXT4_SB(sb)->s_mb_prefetch;
3721 	u64 start_time;
3722 
3723 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3724 		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3725 		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3726 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3727 		if (group >= elr->lr_next_group) {
3728 			ret = 1;
3729 			if (elr->lr_first_not_zeroed != ngroups &&
3730 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3731 				elr->lr_next_group = elr->lr_first_not_zeroed;
3732 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3733 				ret = 0;
3734 			}
3735 		}
3736 		return ret;
3737 	}
3738 
3739 	for (; group < ngroups; group++) {
3740 		gdp = ext4_get_group_desc(sb, group, NULL);
3741 		if (!gdp) {
3742 			ret = 1;
3743 			break;
3744 		}
3745 
3746 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3747 			break;
3748 	}
3749 
3750 	if (group >= ngroups)
3751 		ret = 1;
3752 
3753 	if (!ret) {
3754 		start_time = ktime_get_real_ns();
3755 		ret = ext4_init_inode_table(sb, group,
3756 					    elr->lr_timeout ? 0 : 1);
3757 		trace_ext4_lazy_itable_init(sb, group);
3758 		if (elr->lr_timeout == 0) {
3759 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3760 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3761 		}
3762 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3763 		elr->lr_next_group = group + 1;
3764 	}
3765 	return ret;
3766 }
3767 
3768 /*
3769  * Remove lr_request from the list_request and free the
3770  * request structure. Should be called with li_list_mtx held
3771  */
3772 static void ext4_remove_li_request(struct ext4_li_request *elr)
3773 {
3774 	if (!elr)
3775 		return;
3776 
3777 	list_del(&elr->lr_request);
3778 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3779 	kfree(elr);
3780 }
3781 
3782 static void ext4_unregister_li_request(struct super_block *sb)
3783 {
3784 	mutex_lock(&ext4_li_mtx);
3785 	if (!ext4_li_info) {
3786 		mutex_unlock(&ext4_li_mtx);
3787 		return;
3788 	}
3789 
3790 	mutex_lock(&ext4_li_info->li_list_mtx);
3791 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3792 	mutex_unlock(&ext4_li_info->li_list_mtx);
3793 	mutex_unlock(&ext4_li_mtx);
3794 }
3795 
3796 static struct task_struct *ext4_lazyinit_task;
3797 
3798 /*
3799  * This is the function where ext4lazyinit thread lives. It walks
3800  * through the request list searching for next scheduled filesystem.
3801  * When such a fs is found, run the lazy initialization request
3802  * (ext4_rn_li_request) and keep track of the time spend in this
3803  * function. Based on that time we compute next schedule time of
3804  * the request. When walking through the list is complete, compute
3805  * next waking time and put itself into sleep.
3806  */
3807 static int ext4_lazyinit_thread(void *arg)
3808 {
3809 	struct ext4_lazy_init *eli = arg;
3810 	struct list_head *pos, *n;
3811 	struct ext4_li_request *elr;
3812 	unsigned long next_wakeup, cur;
3813 
3814 	BUG_ON(NULL == eli);
3815 	set_freezable();
3816 
3817 cont_thread:
3818 	while (true) {
3819 		next_wakeup = MAX_JIFFY_OFFSET;
3820 
3821 		mutex_lock(&eli->li_list_mtx);
3822 		if (list_empty(&eli->li_request_list)) {
3823 			mutex_unlock(&eli->li_list_mtx);
3824 			goto exit_thread;
3825 		}
3826 		list_for_each_safe(pos, n, &eli->li_request_list) {
3827 			int err = 0;
3828 			int progress = 0;
3829 			elr = list_entry(pos, struct ext4_li_request,
3830 					 lr_request);
3831 
3832 			if (time_before(jiffies, elr->lr_next_sched)) {
3833 				if (time_before(elr->lr_next_sched, next_wakeup))
3834 					next_wakeup = elr->lr_next_sched;
3835 				continue;
3836 			}
3837 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3838 				if (sb_start_write_trylock(elr->lr_super)) {
3839 					progress = 1;
3840 					/*
3841 					 * We hold sb->s_umount, sb can not
3842 					 * be removed from the list, it is
3843 					 * now safe to drop li_list_mtx
3844 					 */
3845 					mutex_unlock(&eli->li_list_mtx);
3846 					err = ext4_run_li_request(elr);
3847 					sb_end_write(elr->lr_super);
3848 					mutex_lock(&eli->li_list_mtx);
3849 					n = pos->next;
3850 				}
3851 				up_read((&elr->lr_super->s_umount));
3852 			}
3853 			/* error, remove the lazy_init job */
3854 			if (err) {
3855 				ext4_remove_li_request(elr);
3856 				continue;
3857 			}
3858 			if (!progress) {
3859 				elr->lr_next_sched = jiffies +
3860 					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3861 			}
3862 			if (time_before(elr->lr_next_sched, next_wakeup))
3863 				next_wakeup = elr->lr_next_sched;
3864 		}
3865 		mutex_unlock(&eli->li_list_mtx);
3866 
3867 		try_to_freeze();
3868 
3869 		cur = jiffies;
3870 		if ((time_after_eq(cur, next_wakeup)) ||
3871 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3872 			cond_resched();
3873 			continue;
3874 		}
3875 
3876 		schedule_timeout_interruptible(next_wakeup - cur);
3877 
3878 		if (kthread_should_stop()) {
3879 			ext4_clear_request_list();
3880 			goto exit_thread;
3881 		}
3882 	}
3883 
3884 exit_thread:
3885 	/*
3886 	 * It looks like the request list is empty, but we need
3887 	 * to check it under the li_list_mtx lock, to prevent any
3888 	 * additions into it, and of course we should lock ext4_li_mtx
3889 	 * to atomically free the list and ext4_li_info, because at
3890 	 * this point another ext4 filesystem could be registering
3891 	 * new one.
3892 	 */
3893 	mutex_lock(&ext4_li_mtx);
3894 	mutex_lock(&eli->li_list_mtx);
3895 	if (!list_empty(&eli->li_request_list)) {
3896 		mutex_unlock(&eli->li_list_mtx);
3897 		mutex_unlock(&ext4_li_mtx);
3898 		goto cont_thread;
3899 	}
3900 	mutex_unlock(&eli->li_list_mtx);
3901 	kfree(ext4_li_info);
3902 	ext4_li_info = NULL;
3903 	mutex_unlock(&ext4_li_mtx);
3904 
3905 	return 0;
3906 }
3907 
3908 static void ext4_clear_request_list(void)
3909 {
3910 	struct list_head *pos, *n;
3911 	struct ext4_li_request *elr;
3912 
3913 	mutex_lock(&ext4_li_info->li_list_mtx);
3914 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3915 		elr = list_entry(pos, struct ext4_li_request,
3916 				 lr_request);
3917 		ext4_remove_li_request(elr);
3918 	}
3919 	mutex_unlock(&ext4_li_info->li_list_mtx);
3920 }
3921 
3922 static int ext4_run_lazyinit_thread(void)
3923 {
3924 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3925 					 ext4_li_info, "ext4lazyinit");
3926 	if (IS_ERR(ext4_lazyinit_task)) {
3927 		int err = PTR_ERR(ext4_lazyinit_task);
3928 		ext4_clear_request_list();
3929 		kfree(ext4_li_info);
3930 		ext4_li_info = NULL;
3931 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3932 				 "initialization thread\n",
3933 				 err);
3934 		return err;
3935 	}
3936 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3937 	return 0;
3938 }
3939 
3940 /*
3941  * Check whether it make sense to run itable init. thread or not.
3942  * If there is at least one uninitialized inode table, return
3943  * corresponding group number, else the loop goes through all
3944  * groups and return total number of groups.
3945  */
3946 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3947 {
3948 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3949 	struct ext4_group_desc *gdp = NULL;
3950 
3951 	if (!ext4_has_group_desc_csum(sb))
3952 		return ngroups;
3953 
3954 	for (group = 0; group < ngroups; group++) {
3955 		gdp = ext4_get_group_desc(sb, group, NULL);
3956 		if (!gdp)
3957 			continue;
3958 
3959 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3960 			break;
3961 	}
3962 
3963 	return group;
3964 }
3965 
3966 static int ext4_li_info_new(void)
3967 {
3968 	struct ext4_lazy_init *eli = NULL;
3969 
3970 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3971 	if (!eli)
3972 		return -ENOMEM;
3973 
3974 	INIT_LIST_HEAD(&eli->li_request_list);
3975 	mutex_init(&eli->li_list_mtx);
3976 
3977 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3978 
3979 	ext4_li_info = eli;
3980 
3981 	return 0;
3982 }
3983 
3984 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3985 					    ext4_group_t start)
3986 {
3987 	struct ext4_li_request *elr;
3988 
3989 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3990 	if (!elr)
3991 		return NULL;
3992 
3993 	elr->lr_super = sb;
3994 	elr->lr_first_not_zeroed = start;
3995 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3996 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3997 		elr->lr_next_group = start;
3998 	} else {
3999 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
4000 	}
4001 
4002 	/*
4003 	 * Randomize first schedule time of the request to
4004 	 * spread the inode table initialization requests
4005 	 * better.
4006 	 */
4007 	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4008 	return elr;
4009 }
4010 
4011 int ext4_register_li_request(struct super_block *sb,
4012 			     ext4_group_t first_not_zeroed)
4013 {
4014 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4015 	struct ext4_li_request *elr = NULL;
4016 	ext4_group_t ngroups = sbi->s_groups_count;
4017 	int ret = 0;
4018 
4019 	mutex_lock(&ext4_li_mtx);
4020 	if (sbi->s_li_request != NULL) {
4021 		/*
4022 		 * Reset timeout so it can be computed again, because
4023 		 * s_li_wait_mult might have changed.
4024 		 */
4025 		sbi->s_li_request->lr_timeout = 0;
4026 		goto out;
4027 	}
4028 
4029 	if (sb_rdonly(sb) ||
4030 	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4031 	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4032 		goto out;
4033 
4034 	elr = ext4_li_request_new(sb, first_not_zeroed);
4035 	if (!elr) {
4036 		ret = -ENOMEM;
4037 		goto out;
4038 	}
4039 
4040 	if (NULL == ext4_li_info) {
4041 		ret = ext4_li_info_new();
4042 		if (ret)
4043 			goto out;
4044 	}
4045 
4046 	mutex_lock(&ext4_li_info->li_list_mtx);
4047 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4048 	mutex_unlock(&ext4_li_info->li_list_mtx);
4049 
4050 	sbi->s_li_request = elr;
4051 	/*
4052 	 * set elr to NULL here since it has been inserted to
4053 	 * the request_list and the removal and free of it is
4054 	 * handled by ext4_clear_request_list from now on.
4055 	 */
4056 	elr = NULL;
4057 
4058 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4059 		ret = ext4_run_lazyinit_thread();
4060 		if (ret)
4061 			goto out;
4062 	}
4063 out:
4064 	mutex_unlock(&ext4_li_mtx);
4065 	if (ret)
4066 		kfree(elr);
4067 	return ret;
4068 }
4069 
4070 /*
4071  * We do not need to lock anything since this is called on
4072  * module unload.
4073  */
4074 static void ext4_destroy_lazyinit_thread(void)
4075 {
4076 	/*
4077 	 * If thread exited earlier
4078 	 * there's nothing to be done.
4079 	 */
4080 	if (!ext4_li_info || !ext4_lazyinit_task)
4081 		return;
4082 
4083 	kthread_stop(ext4_lazyinit_task);
4084 }
4085 
4086 static int set_journal_csum_feature_set(struct super_block *sb)
4087 {
4088 	int ret = 1;
4089 	int compat, incompat;
4090 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4091 
4092 	if (ext4_has_metadata_csum(sb)) {
4093 		/* journal checksum v3 */
4094 		compat = 0;
4095 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4096 	} else {
4097 		/* journal checksum v1 */
4098 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4099 		incompat = 0;
4100 	}
4101 
4102 	jbd2_journal_clear_features(sbi->s_journal,
4103 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4104 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4105 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4106 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4107 		ret = jbd2_journal_set_features(sbi->s_journal,
4108 				compat, 0,
4109 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4110 				incompat);
4111 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4112 		ret = jbd2_journal_set_features(sbi->s_journal,
4113 				compat, 0,
4114 				incompat);
4115 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4116 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4117 	} else {
4118 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4119 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4120 	}
4121 
4122 	return ret;
4123 }
4124 
4125 /*
4126  * Note: calculating the overhead so we can be compatible with
4127  * historical BSD practice is quite difficult in the face of
4128  * clusters/bigalloc.  This is because multiple metadata blocks from
4129  * different block group can end up in the same allocation cluster.
4130  * Calculating the exact overhead in the face of clustered allocation
4131  * requires either O(all block bitmaps) in memory or O(number of block
4132  * groups**2) in time.  We will still calculate the superblock for
4133  * older file systems --- and if we come across with a bigalloc file
4134  * system with zero in s_overhead_clusters the estimate will be close to
4135  * correct especially for very large cluster sizes --- but for newer
4136  * file systems, it's better to calculate this figure once at mkfs
4137  * time, and store it in the superblock.  If the superblock value is
4138  * present (even for non-bigalloc file systems), we will use it.
4139  */
4140 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4141 			  char *buf)
4142 {
4143 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4144 	struct ext4_group_desc	*gdp;
4145 	ext4_fsblk_t		first_block, last_block, b;
4146 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4147 	int			s, j, count = 0;
4148 	int			has_super = ext4_bg_has_super(sb, grp);
4149 
4150 	if (!ext4_has_feature_bigalloc(sb))
4151 		return (has_super + ext4_bg_num_gdb(sb, grp) +
4152 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4153 			sbi->s_itb_per_group + 2);
4154 
4155 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4156 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4157 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4158 	for (i = 0; i < ngroups; i++) {
4159 		gdp = ext4_get_group_desc(sb, i, NULL);
4160 		b = ext4_block_bitmap(sb, gdp);
4161 		if (b >= first_block && b <= last_block) {
4162 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4163 			count++;
4164 		}
4165 		b = ext4_inode_bitmap(sb, gdp);
4166 		if (b >= first_block && b <= last_block) {
4167 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4168 			count++;
4169 		}
4170 		b = ext4_inode_table(sb, gdp);
4171 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4172 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4173 				int c = EXT4_B2C(sbi, b - first_block);
4174 				ext4_set_bit(c, buf);
4175 				count++;
4176 			}
4177 		if (i != grp)
4178 			continue;
4179 		s = 0;
4180 		if (ext4_bg_has_super(sb, grp)) {
4181 			ext4_set_bit(s++, buf);
4182 			count++;
4183 		}
4184 		j = ext4_bg_num_gdb(sb, grp);
4185 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4186 			ext4_error(sb, "Invalid number of block group "
4187 				   "descriptor blocks: %d", j);
4188 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4189 		}
4190 		count += j;
4191 		for (; j > 0; j--)
4192 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4193 	}
4194 	if (!count)
4195 		return 0;
4196 	return EXT4_CLUSTERS_PER_GROUP(sb) -
4197 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4198 }
4199 
4200 /*
4201  * Compute the overhead and stash it in sbi->s_overhead
4202  */
4203 int ext4_calculate_overhead(struct super_block *sb)
4204 {
4205 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4206 	struct ext4_super_block *es = sbi->s_es;
4207 	struct inode *j_inode;
4208 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4209 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4210 	ext4_fsblk_t overhead = 0;
4211 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4212 
4213 	if (!buf)
4214 		return -ENOMEM;
4215 
4216 	/*
4217 	 * Compute the overhead (FS structures).  This is constant
4218 	 * for a given filesystem unless the number of block groups
4219 	 * changes so we cache the previous value until it does.
4220 	 */
4221 
4222 	/*
4223 	 * All of the blocks before first_data_block are overhead
4224 	 */
4225 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4226 
4227 	/*
4228 	 * Add the overhead found in each block group
4229 	 */
4230 	for (i = 0; i < ngroups; i++) {
4231 		int blks;
4232 
4233 		blks = count_overhead(sb, i, buf);
4234 		overhead += blks;
4235 		if (blks)
4236 			memset(buf, 0, PAGE_SIZE);
4237 		cond_resched();
4238 	}
4239 
4240 	/*
4241 	 * Add the internal journal blocks whether the journal has been
4242 	 * loaded or not
4243 	 */
4244 	if (sbi->s_journal && !sbi->s_journal_bdev_handle)
4245 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4246 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4247 		/* j_inum for internal journal is non-zero */
4248 		j_inode = ext4_get_journal_inode(sb, j_inum);
4249 		if (!IS_ERR(j_inode)) {
4250 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4251 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4252 			iput(j_inode);
4253 		} else {
4254 			ext4_msg(sb, KERN_ERR, "can't get journal size");
4255 		}
4256 	}
4257 	sbi->s_overhead = overhead;
4258 	smp_wmb();
4259 	free_page((unsigned long) buf);
4260 	return 0;
4261 }
4262 
4263 static void ext4_set_resv_clusters(struct super_block *sb)
4264 {
4265 	ext4_fsblk_t resv_clusters;
4266 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4267 
4268 	/*
4269 	 * There's no need to reserve anything when we aren't using extents.
4270 	 * The space estimates are exact, there are no unwritten extents,
4271 	 * hole punching doesn't need new metadata... This is needed especially
4272 	 * to keep ext2/3 backward compatibility.
4273 	 */
4274 	if (!ext4_has_feature_extents(sb))
4275 		return;
4276 	/*
4277 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4278 	 * This should cover the situations where we can not afford to run
4279 	 * out of space like for example punch hole, or converting
4280 	 * unwritten extents in delalloc path. In most cases such
4281 	 * allocation would require 1, or 2 blocks, higher numbers are
4282 	 * very rare.
4283 	 */
4284 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4285 			 sbi->s_cluster_bits);
4286 
4287 	do_div(resv_clusters, 50);
4288 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4289 
4290 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4291 }
4292 
4293 static const char *ext4_quota_mode(struct super_block *sb)
4294 {
4295 #ifdef CONFIG_QUOTA
4296 	if (!ext4_quota_capable(sb))
4297 		return "none";
4298 
4299 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4300 		return "journalled";
4301 	else
4302 		return "writeback";
4303 #else
4304 	return "disabled";
4305 #endif
4306 }
4307 
4308 static void ext4_setup_csum_trigger(struct super_block *sb,
4309 				    enum ext4_journal_trigger_type type,
4310 				    void (*trigger)(
4311 					struct jbd2_buffer_trigger_type *type,
4312 					struct buffer_head *bh,
4313 					void *mapped_data,
4314 					size_t size))
4315 {
4316 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4317 
4318 	sbi->s_journal_triggers[type].sb = sb;
4319 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4320 }
4321 
4322 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4323 {
4324 	if (!sbi)
4325 		return;
4326 
4327 	kfree(sbi->s_blockgroup_lock);
4328 	fs_put_dax(sbi->s_daxdev, NULL);
4329 	kfree(sbi);
4330 }
4331 
4332 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4333 {
4334 	struct ext4_sb_info *sbi;
4335 
4336 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4337 	if (!sbi)
4338 		return NULL;
4339 
4340 	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4341 					   NULL, NULL);
4342 
4343 	sbi->s_blockgroup_lock =
4344 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4345 
4346 	if (!sbi->s_blockgroup_lock)
4347 		goto err_out;
4348 
4349 	sb->s_fs_info = sbi;
4350 	sbi->s_sb = sb;
4351 	return sbi;
4352 err_out:
4353 	fs_put_dax(sbi->s_daxdev, NULL);
4354 	kfree(sbi);
4355 	return NULL;
4356 }
4357 
4358 static void ext4_set_def_opts(struct super_block *sb,
4359 			      struct ext4_super_block *es)
4360 {
4361 	unsigned long def_mount_opts;
4362 
4363 	/* Set defaults before we parse the mount options */
4364 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4365 	set_opt(sb, INIT_INODE_TABLE);
4366 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4367 		set_opt(sb, DEBUG);
4368 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4369 		set_opt(sb, GRPID);
4370 	if (def_mount_opts & EXT4_DEFM_UID16)
4371 		set_opt(sb, NO_UID32);
4372 	/* xattr user namespace & acls are now defaulted on */
4373 	set_opt(sb, XATTR_USER);
4374 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4375 	set_opt(sb, POSIX_ACL);
4376 #endif
4377 	if (ext4_has_feature_fast_commit(sb))
4378 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4379 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4380 	if (ext4_has_metadata_csum(sb))
4381 		set_opt(sb, JOURNAL_CHECKSUM);
4382 
4383 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4384 		set_opt(sb, JOURNAL_DATA);
4385 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4386 		set_opt(sb, ORDERED_DATA);
4387 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4388 		set_opt(sb, WRITEBACK_DATA);
4389 
4390 	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4391 		set_opt(sb, ERRORS_PANIC);
4392 	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4393 		set_opt(sb, ERRORS_CONT);
4394 	else
4395 		set_opt(sb, ERRORS_RO);
4396 	/* block_validity enabled by default; disable with noblock_validity */
4397 	set_opt(sb, BLOCK_VALIDITY);
4398 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4399 		set_opt(sb, DISCARD);
4400 
4401 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4402 		set_opt(sb, BARRIER);
4403 
4404 	/*
4405 	 * enable delayed allocation by default
4406 	 * Use -o nodelalloc to turn it off
4407 	 */
4408 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4409 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4410 		set_opt(sb, DELALLOC);
4411 
4412 	if (sb->s_blocksize == PAGE_SIZE)
4413 		set_opt(sb, DIOREAD_NOLOCK);
4414 }
4415 
4416 static int ext4_handle_clustersize(struct super_block *sb)
4417 {
4418 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4419 	struct ext4_super_block *es = sbi->s_es;
4420 	int clustersize;
4421 
4422 	/* Handle clustersize */
4423 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4424 	if (ext4_has_feature_bigalloc(sb)) {
4425 		if (clustersize < sb->s_blocksize) {
4426 			ext4_msg(sb, KERN_ERR,
4427 				 "cluster size (%d) smaller than "
4428 				 "block size (%lu)", clustersize, sb->s_blocksize);
4429 			return -EINVAL;
4430 		}
4431 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4432 			le32_to_cpu(es->s_log_block_size);
4433 		sbi->s_clusters_per_group =
4434 			le32_to_cpu(es->s_clusters_per_group);
4435 		if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4436 			ext4_msg(sb, KERN_ERR,
4437 				 "#clusters per group too big: %lu",
4438 				 sbi->s_clusters_per_group);
4439 			return -EINVAL;
4440 		}
4441 		if (sbi->s_blocks_per_group !=
4442 		    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4443 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4444 				 "clusters per group (%lu) inconsistent",
4445 				 sbi->s_blocks_per_group,
4446 				 sbi->s_clusters_per_group);
4447 			return -EINVAL;
4448 		}
4449 	} else {
4450 		if (clustersize != sb->s_blocksize) {
4451 			ext4_msg(sb, KERN_ERR,
4452 				 "fragment/cluster size (%d) != "
4453 				 "block size (%lu)", clustersize, sb->s_blocksize);
4454 			return -EINVAL;
4455 		}
4456 		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4457 			ext4_msg(sb, KERN_ERR,
4458 				 "#blocks per group too big: %lu",
4459 				 sbi->s_blocks_per_group);
4460 			return -EINVAL;
4461 		}
4462 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4463 		sbi->s_cluster_bits = 0;
4464 	}
4465 	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4466 
4467 	/* Do we have standard group size of clustersize * 8 blocks ? */
4468 	if (sbi->s_blocks_per_group == clustersize << 3)
4469 		set_opt2(sb, STD_GROUP_SIZE);
4470 
4471 	return 0;
4472 }
4473 
4474 static void ext4_fast_commit_init(struct super_block *sb)
4475 {
4476 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4477 
4478 	/* Initialize fast commit stuff */
4479 	atomic_set(&sbi->s_fc_subtid, 0);
4480 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4481 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4482 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4483 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4484 	sbi->s_fc_bytes = 0;
4485 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4486 	sbi->s_fc_ineligible_tid = 0;
4487 	spin_lock_init(&sbi->s_fc_lock);
4488 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4489 	sbi->s_fc_replay_state.fc_regions = NULL;
4490 	sbi->s_fc_replay_state.fc_regions_size = 0;
4491 	sbi->s_fc_replay_state.fc_regions_used = 0;
4492 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4493 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4494 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4495 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4496 }
4497 
4498 static int ext4_inode_info_init(struct super_block *sb,
4499 				struct ext4_super_block *es)
4500 {
4501 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4502 
4503 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4504 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4505 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4506 	} else {
4507 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4508 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4509 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4510 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4511 				 sbi->s_first_ino);
4512 			return -EINVAL;
4513 		}
4514 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4515 		    (!is_power_of_2(sbi->s_inode_size)) ||
4516 		    (sbi->s_inode_size > sb->s_blocksize)) {
4517 			ext4_msg(sb, KERN_ERR,
4518 			       "unsupported inode size: %d",
4519 			       sbi->s_inode_size);
4520 			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4521 			return -EINVAL;
4522 		}
4523 		/*
4524 		 * i_atime_extra is the last extra field available for
4525 		 * [acm]times in struct ext4_inode. Checking for that
4526 		 * field should suffice to ensure we have extra space
4527 		 * for all three.
4528 		 */
4529 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4530 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4531 			sb->s_time_gran = 1;
4532 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4533 		} else {
4534 			sb->s_time_gran = NSEC_PER_SEC;
4535 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4536 		}
4537 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4538 	}
4539 
4540 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4541 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4542 			EXT4_GOOD_OLD_INODE_SIZE;
4543 		if (ext4_has_feature_extra_isize(sb)) {
4544 			unsigned v, max = (sbi->s_inode_size -
4545 					   EXT4_GOOD_OLD_INODE_SIZE);
4546 
4547 			v = le16_to_cpu(es->s_want_extra_isize);
4548 			if (v > max) {
4549 				ext4_msg(sb, KERN_ERR,
4550 					 "bad s_want_extra_isize: %d", v);
4551 				return -EINVAL;
4552 			}
4553 			if (sbi->s_want_extra_isize < v)
4554 				sbi->s_want_extra_isize = v;
4555 
4556 			v = le16_to_cpu(es->s_min_extra_isize);
4557 			if (v > max) {
4558 				ext4_msg(sb, KERN_ERR,
4559 					 "bad s_min_extra_isize: %d", v);
4560 				return -EINVAL;
4561 			}
4562 			if (sbi->s_want_extra_isize < v)
4563 				sbi->s_want_extra_isize = v;
4564 		}
4565 	}
4566 
4567 	return 0;
4568 }
4569 
4570 #if IS_ENABLED(CONFIG_UNICODE)
4571 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4572 {
4573 	const struct ext4_sb_encodings *encoding_info;
4574 	struct unicode_map *encoding;
4575 	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4576 
4577 	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4578 		return 0;
4579 
4580 	encoding_info = ext4_sb_read_encoding(es);
4581 	if (!encoding_info) {
4582 		ext4_msg(sb, KERN_ERR,
4583 			"Encoding requested by superblock is unknown");
4584 		return -EINVAL;
4585 	}
4586 
4587 	encoding = utf8_load(encoding_info->version);
4588 	if (IS_ERR(encoding)) {
4589 		ext4_msg(sb, KERN_ERR,
4590 			"can't mount with superblock charset: %s-%u.%u.%u "
4591 			"not supported by the kernel. flags: 0x%x.",
4592 			encoding_info->name,
4593 			unicode_major(encoding_info->version),
4594 			unicode_minor(encoding_info->version),
4595 			unicode_rev(encoding_info->version),
4596 			encoding_flags);
4597 		return -EINVAL;
4598 	}
4599 	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4600 		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4601 		unicode_major(encoding_info->version),
4602 		unicode_minor(encoding_info->version),
4603 		unicode_rev(encoding_info->version),
4604 		encoding_flags);
4605 
4606 	sb->s_encoding = encoding;
4607 	sb->s_encoding_flags = encoding_flags;
4608 
4609 	return 0;
4610 }
4611 #else
4612 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4613 {
4614 	return 0;
4615 }
4616 #endif
4617 
4618 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4619 {
4620 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4621 
4622 	/* Warn if metadata_csum and gdt_csum are both set. */
4623 	if (ext4_has_feature_metadata_csum(sb) &&
4624 	    ext4_has_feature_gdt_csum(sb))
4625 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4626 			     "redundant flags; please run fsck.");
4627 
4628 	/* Check for a known checksum algorithm */
4629 	if (!ext4_verify_csum_type(sb, es)) {
4630 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4631 			 "unknown checksum algorithm.");
4632 		return -EINVAL;
4633 	}
4634 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4635 				ext4_orphan_file_block_trigger);
4636 
4637 	/* Load the checksum driver */
4638 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4639 	if (IS_ERR(sbi->s_chksum_driver)) {
4640 		int ret = PTR_ERR(sbi->s_chksum_driver);
4641 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4642 		sbi->s_chksum_driver = NULL;
4643 		return ret;
4644 	}
4645 
4646 	/* Check superblock checksum */
4647 	if (!ext4_superblock_csum_verify(sb, es)) {
4648 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4649 			 "invalid superblock checksum.  Run e2fsck?");
4650 		return -EFSBADCRC;
4651 	}
4652 
4653 	/* Precompute checksum seed for all metadata */
4654 	if (ext4_has_feature_csum_seed(sb))
4655 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4656 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4657 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4658 					       sizeof(es->s_uuid));
4659 	return 0;
4660 }
4661 
4662 static int ext4_check_feature_compatibility(struct super_block *sb,
4663 					    struct ext4_super_block *es,
4664 					    int silent)
4665 {
4666 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4667 
4668 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4669 	    (ext4_has_compat_features(sb) ||
4670 	     ext4_has_ro_compat_features(sb) ||
4671 	     ext4_has_incompat_features(sb)))
4672 		ext4_msg(sb, KERN_WARNING,
4673 		       "feature flags set on rev 0 fs, "
4674 		       "running e2fsck is recommended");
4675 
4676 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4677 		set_opt2(sb, HURD_COMPAT);
4678 		if (ext4_has_feature_64bit(sb)) {
4679 			ext4_msg(sb, KERN_ERR,
4680 				 "The Hurd can't support 64-bit file systems");
4681 			return -EINVAL;
4682 		}
4683 
4684 		/*
4685 		 * ea_inode feature uses l_i_version field which is not
4686 		 * available in HURD_COMPAT mode.
4687 		 */
4688 		if (ext4_has_feature_ea_inode(sb)) {
4689 			ext4_msg(sb, KERN_ERR,
4690 				 "ea_inode feature is not supported for Hurd");
4691 			return -EINVAL;
4692 		}
4693 	}
4694 
4695 	if (IS_EXT2_SB(sb)) {
4696 		if (ext2_feature_set_ok(sb))
4697 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4698 				 "using the ext4 subsystem");
4699 		else {
4700 			/*
4701 			 * If we're probing be silent, if this looks like
4702 			 * it's actually an ext[34] filesystem.
4703 			 */
4704 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4705 				return -EINVAL;
4706 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4707 				 "to feature incompatibilities");
4708 			return -EINVAL;
4709 		}
4710 	}
4711 
4712 	if (IS_EXT3_SB(sb)) {
4713 		if (ext3_feature_set_ok(sb))
4714 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4715 				 "using the ext4 subsystem");
4716 		else {
4717 			/*
4718 			 * If we're probing be silent, if this looks like
4719 			 * it's actually an ext4 filesystem.
4720 			 */
4721 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4722 				return -EINVAL;
4723 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4724 				 "to feature incompatibilities");
4725 			return -EINVAL;
4726 		}
4727 	}
4728 
4729 	/*
4730 	 * Check feature flags regardless of the revision level, since we
4731 	 * previously didn't change the revision level when setting the flags,
4732 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4733 	 */
4734 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4735 		return -EINVAL;
4736 
4737 	if (sbi->s_daxdev) {
4738 		if (sb->s_blocksize == PAGE_SIZE)
4739 			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4740 		else
4741 			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4742 	}
4743 
4744 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4745 		if (ext4_has_feature_inline_data(sb)) {
4746 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4747 					" that may contain inline data");
4748 			return -EINVAL;
4749 		}
4750 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4751 			ext4_msg(sb, KERN_ERR,
4752 				"DAX unsupported by block device.");
4753 			return -EINVAL;
4754 		}
4755 	}
4756 
4757 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4758 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4759 			 es->s_encryption_level);
4760 		return -EINVAL;
4761 	}
4762 
4763 	return 0;
4764 }
4765 
4766 static int ext4_check_geometry(struct super_block *sb,
4767 			       struct ext4_super_block *es)
4768 {
4769 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4770 	__u64 blocks_count;
4771 	int err;
4772 
4773 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4774 		ext4_msg(sb, KERN_ERR,
4775 			 "Number of reserved GDT blocks insanely large: %d",
4776 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4777 		return -EINVAL;
4778 	}
4779 	/*
4780 	 * Test whether we have more sectors than will fit in sector_t,
4781 	 * and whether the max offset is addressable by the page cache.
4782 	 */
4783 	err = generic_check_addressable(sb->s_blocksize_bits,
4784 					ext4_blocks_count(es));
4785 	if (err) {
4786 		ext4_msg(sb, KERN_ERR, "filesystem"
4787 			 " too large to mount safely on this system");
4788 		return err;
4789 	}
4790 
4791 	/* check blocks count against device size */
4792 	blocks_count = sb_bdev_nr_blocks(sb);
4793 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4794 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4795 		       "exceeds size of device (%llu blocks)",
4796 		       ext4_blocks_count(es), blocks_count);
4797 		return -EINVAL;
4798 	}
4799 
4800 	/*
4801 	 * It makes no sense for the first data block to be beyond the end
4802 	 * of the filesystem.
4803 	 */
4804 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4805 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4806 			 "block %u is beyond end of filesystem (%llu)",
4807 			 le32_to_cpu(es->s_first_data_block),
4808 			 ext4_blocks_count(es));
4809 		return -EINVAL;
4810 	}
4811 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4812 	    (sbi->s_cluster_ratio == 1)) {
4813 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4814 			 "block is 0 with a 1k block and cluster size");
4815 		return -EINVAL;
4816 	}
4817 
4818 	blocks_count = (ext4_blocks_count(es) -
4819 			le32_to_cpu(es->s_first_data_block) +
4820 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4821 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4822 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4823 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4824 		       "(block count %llu, first data block %u, "
4825 		       "blocks per group %lu)", blocks_count,
4826 		       ext4_blocks_count(es),
4827 		       le32_to_cpu(es->s_first_data_block),
4828 		       EXT4_BLOCKS_PER_GROUP(sb));
4829 		return -EINVAL;
4830 	}
4831 	sbi->s_groups_count = blocks_count;
4832 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4833 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4834 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4835 	    le32_to_cpu(es->s_inodes_count)) {
4836 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4837 			 le32_to_cpu(es->s_inodes_count),
4838 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4839 		return -EINVAL;
4840 	}
4841 
4842 	return 0;
4843 }
4844 
4845 static int ext4_group_desc_init(struct super_block *sb,
4846 				struct ext4_super_block *es,
4847 				ext4_fsblk_t logical_sb_block,
4848 				ext4_group_t *first_not_zeroed)
4849 {
4850 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4851 	unsigned int db_count;
4852 	ext4_fsblk_t block;
4853 	int i;
4854 
4855 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4856 		   EXT4_DESC_PER_BLOCK(sb);
4857 	if (ext4_has_feature_meta_bg(sb)) {
4858 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4859 			ext4_msg(sb, KERN_WARNING,
4860 				 "first meta block group too large: %u "
4861 				 "(group descriptor block count %u)",
4862 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4863 			return -EINVAL;
4864 		}
4865 	}
4866 	rcu_assign_pointer(sbi->s_group_desc,
4867 			   kvmalloc_array(db_count,
4868 					  sizeof(struct buffer_head *),
4869 					  GFP_KERNEL));
4870 	if (sbi->s_group_desc == NULL) {
4871 		ext4_msg(sb, KERN_ERR, "not enough memory");
4872 		return -ENOMEM;
4873 	}
4874 
4875 	bgl_lock_init(sbi->s_blockgroup_lock);
4876 
4877 	/* Pre-read the descriptors into the buffer cache */
4878 	for (i = 0; i < db_count; i++) {
4879 		block = descriptor_loc(sb, logical_sb_block, i);
4880 		ext4_sb_breadahead_unmovable(sb, block);
4881 	}
4882 
4883 	for (i = 0; i < db_count; i++) {
4884 		struct buffer_head *bh;
4885 
4886 		block = descriptor_loc(sb, logical_sb_block, i);
4887 		bh = ext4_sb_bread_unmovable(sb, block);
4888 		if (IS_ERR(bh)) {
4889 			ext4_msg(sb, KERN_ERR,
4890 			       "can't read group descriptor %d", i);
4891 			sbi->s_gdb_count = i;
4892 			return PTR_ERR(bh);
4893 		}
4894 		rcu_read_lock();
4895 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4896 		rcu_read_unlock();
4897 	}
4898 	sbi->s_gdb_count = db_count;
4899 	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4900 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4901 		return -EFSCORRUPTED;
4902 	}
4903 
4904 	return 0;
4905 }
4906 
4907 static int ext4_load_and_init_journal(struct super_block *sb,
4908 				      struct ext4_super_block *es,
4909 				      struct ext4_fs_context *ctx)
4910 {
4911 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4912 	int err;
4913 
4914 	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4915 	if (err)
4916 		return err;
4917 
4918 	if (ext4_has_feature_64bit(sb) &&
4919 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4920 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4921 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4922 		goto out;
4923 	}
4924 
4925 	if (!set_journal_csum_feature_set(sb)) {
4926 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4927 			 "feature set");
4928 		goto out;
4929 	}
4930 
4931 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4932 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4933 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4934 		ext4_msg(sb, KERN_ERR,
4935 			"Failed to set fast commit journal feature");
4936 		goto out;
4937 	}
4938 
4939 	/* We have now updated the journal if required, so we can
4940 	 * validate the data journaling mode. */
4941 	switch (test_opt(sb, DATA_FLAGS)) {
4942 	case 0:
4943 		/* No mode set, assume a default based on the journal
4944 		 * capabilities: ORDERED_DATA if the journal can
4945 		 * cope, else JOURNAL_DATA
4946 		 */
4947 		if (jbd2_journal_check_available_features
4948 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4949 			set_opt(sb, ORDERED_DATA);
4950 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4951 		} else {
4952 			set_opt(sb, JOURNAL_DATA);
4953 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4954 		}
4955 		break;
4956 
4957 	case EXT4_MOUNT_ORDERED_DATA:
4958 	case EXT4_MOUNT_WRITEBACK_DATA:
4959 		if (!jbd2_journal_check_available_features
4960 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4961 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4962 			       "requested data journaling mode");
4963 			goto out;
4964 		}
4965 		break;
4966 	default:
4967 		break;
4968 	}
4969 
4970 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4971 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4972 		ext4_msg(sb, KERN_ERR, "can't mount with "
4973 			"journal_async_commit in data=ordered mode");
4974 		goto out;
4975 	}
4976 
4977 	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4978 
4979 	sbi->s_journal->j_submit_inode_data_buffers =
4980 		ext4_journal_submit_inode_data_buffers;
4981 	sbi->s_journal->j_finish_inode_data_buffers =
4982 		ext4_journal_finish_inode_data_buffers;
4983 
4984 	return 0;
4985 
4986 out:
4987 	/* flush s_sb_upd_work before destroying the journal. */
4988 	flush_work(&sbi->s_sb_upd_work);
4989 	jbd2_journal_destroy(sbi->s_journal);
4990 	sbi->s_journal = NULL;
4991 	return -EINVAL;
4992 }
4993 
4994 static int ext4_check_journal_data_mode(struct super_block *sb)
4995 {
4996 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4997 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4998 			    "data=journal disables delayed allocation, "
4999 			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
5000 		/* can't mount with both data=journal and dioread_nolock. */
5001 		clear_opt(sb, DIOREAD_NOLOCK);
5002 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5003 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5004 			ext4_msg(sb, KERN_ERR, "can't mount with "
5005 				 "both data=journal and delalloc");
5006 			return -EINVAL;
5007 		}
5008 		if (test_opt(sb, DAX_ALWAYS)) {
5009 			ext4_msg(sb, KERN_ERR, "can't mount with "
5010 				 "both data=journal and dax");
5011 			return -EINVAL;
5012 		}
5013 		if (ext4_has_feature_encrypt(sb)) {
5014 			ext4_msg(sb, KERN_WARNING,
5015 				 "encrypted files will use data=ordered "
5016 				 "instead of data journaling mode");
5017 		}
5018 		if (test_opt(sb, DELALLOC))
5019 			clear_opt(sb, DELALLOC);
5020 	} else {
5021 		sb->s_iflags |= SB_I_CGROUPWB;
5022 	}
5023 
5024 	return 0;
5025 }
5026 
5027 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5028 			   int silent)
5029 {
5030 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5031 	struct ext4_super_block *es;
5032 	ext4_fsblk_t logical_sb_block;
5033 	unsigned long offset = 0;
5034 	struct buffer_head *bh;
5035 	int ret = -EINVAL;
5036 	int blocksize;
5037 
5038 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5039 	if (!blocksize) {
5040 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5041 		return -EINVAL;
5042 	}
5043 
5044 	/*
5045 	 * The ext4 superblock will not be buffer aligned for other than 1kB
5046 	 * block sizes.  We need to calculate the offset from buffer start.
5047 	 */
5048 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5049 		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5050 		offset = do_div(logical_sb_block, blocksize);
5051 	} else {
5052 		logical_sb_block = sbi->s_sb_block;
5053 	}
5054 
5055 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5056 	if (IS_ERR(bh)) {
5057 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5058 		return PTR_ERR(bh);
5059 	}
5060 	/*
5061 	 * Note: s_es must be initialized as soon as possible because
5062 	 *       some ext4 macro-instructions depend on its value
5063 	 */
5064 	es = (struct ext4_super_block *) (bh->b_data + offset);
5065 	sbi->s_es = es;
5066 	sb->s_magic = le16_to_cpu(es->s_magic);
5067 	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5068 		if (!silent)
5069 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5070 		goto out;
5071 	}
5072 
5073 	if (le32_to_cpu(es->s_log_block_size) >
5074 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5075 		ext4_msg(sb, KERN_ERR,
5076 			 "Invalid log block size: %u",
5077 			 le32_to_cpu(es->s_log_block_size));
5078 		goto out;
5079 	}
5080 	if (le32_to_cpu(es->s_log_cluster_size) >
5081 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5082 		ext4_msg(sb, KERN_ERR,
5083 			 "Invalid log cluster size: %u",
5084 			 le32_to_cpu(es->s_log_cluster_size));
5085 		goto out;
5086 	}
5087 
5088 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5089 
5090 	/*
5091 	 * If the default block size is not the same as the real block size,
5092 	 * we need to reload it.
5093 	 */
5094 	if (sb->s_blocksize == blocksize) {
5095 		*lsb = logical_sb_block;
5096 		sbi->s_sbh = bh;
5097 		return 0;
5098 	}
5099 
5100 	/*
5101 	 * bh must be released before kill_bdev(), otherwise
5102 	 * it won't be freed and its page also. kill_bdev()
5103 	 * is called by sb_set_blocksize().
5104 	 */
5105 	brelse(bh);
5106 	/* Validate the filesystem blocksize */
5107 	if (!sb_set_blocksize(sb, blocksize)) {
5108 		ext4_msg(sb, KERN_ERR, "bad block size %d",
5109 				blocksize);
5110 		bh = NULL;
5111 		goto out;
5112 	}
5113 
5114 	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5115 	offset = do_div(logical_sb_block, blocksize);
5116 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5117 	if (IS_ERR(bh)) {
5118 		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5119 		ret = PTR_ERR(bh);
5120 		bh = NULL;
5121 		goto out;
5122 	}
5123 	es = (struct ext4_super_block *)(bh->b_data + offset);
5124 	sbi->s_es = es;
5125 	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5126 		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5127 		goto out;
5128 	}
5129 	*lsb = logical_sb_block;
5130 	sbi->s_sbh = bh;
5131 	return 0;
5132 out:
5133 	brelse(bh);
5134 	return ret;
5135 }
5136 
5137 static void ext4_hash_info_init(struct super_block *sb)
5138 {
5139 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5140 	struct ext4_super_block *es = sbi->s_es;
5141 	unsigned int i;
5142 
5143 	for (i = 0; i < 4; i++)
5144 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5145 
5146 	sbi->s_def_hash_version = es->s_def_hash_version;
5147 	if (ext4_has_feature_dir_index(sb)) {
5148 		i = le32_to_cpu(es->s_flags);
5149 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5150 			sbi->s_hash_unsigned = 3;
5151 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5152 #ifdef __CHAR_UNSIGNED__
5153 			if (!sb_rdonly(sb))
5154 				es->s_flags |=
5155 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5156 			sbi->s_hash_unsigned = 3;
5157 #else
5158 			if (!sb_rdonly(sb))
5159 				es->s_flags |=
5160 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5161 #endif
5162 		}
5163 	}
5164 }
5165 
5166 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5167 {
5168 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5169 	struct ext4_super_block *es = sbi->s_es;
5170 	int has_huge_files;
5171 
5172 	has_huge_files = ext4_has_feature_huge_file(sb);
5173 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5174 						      has_huge_files);
5175 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5176 
5177 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5178 	if (ext4_has_feature_64bit(sb)) {
5179 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5180 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5181 		    !is_power_of_2(sbi->s_desc_size)) {
5182 			ext4_msg(sb, KERN_ERR,
5183 			       "unsupported descriptor size %lu",
5184 			       sbi->s_desc_size);
5185 			return -EINVAL;
5186 		}
5187 	} else
5188 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5189 
5190 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5191 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5192 
5193 	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5194 	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5195 		if (!silent)
5196 			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5197 		return -EINVAL;
5198 	}
5199 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5200 	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5201 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5202 			 sbi->s_inodes_per_group);
5203 		return -EINVAL;
5204 	}
5205 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5206 					sbi->s_inodes_per_block;
5207 	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5208 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5209 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5210 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5211 
5212 	return 0;
5213 }
5214 
5215 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5216 {
5217 	struct ext4_super_block *es = NULL;
5218 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5219 	ext4_fsblk_t logical_sb_block;
5220 	struct inode *root;
5221 	int needs_recovery;
5222 	int err;
5223 	ext4_group_t first_not_zeroed;
5224 	struct ext4_fs_context *ctx = fc->fs_private;
5225 	int silent = fc->sb_flags & SB_SILENT;
5226 
5227 	/* Set defaults for the variables that will be set during parsing */
5228 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5229 		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5230 
5231 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5232 	sbi->s_sectors_written_start =
5233 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5234 
5235 	err = ext4_load_super(sb, &logical_sb_block, silent);
5236 	if (err)
5237 		goto out_fail;
5238 
5239 	es = sbi->s_es;
5240 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5241 
5242 	err = ext4_init_metadata_csum(sb, es);
5243 	if (err)
5244 		goto failed_mount;
5245 
5246 	ext4_set_def_opts(sb, es);
5247 
5248 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5249 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5250 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5251 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5252 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5253 
5254 	/*
5255 	 * set default s_li_wait_mult for lazyinit, for the case there is
5256 	 * no mount option specified.
5257 	 */
5258 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5259 
5260 	err = ext4_inode_info_init(sb, es);
5261 	if (err)
5262 		goto failed_mount;
5263 
5264 	err = parse_apply_sb_mount_options(sb, ctx);
5265 	if (err < 0)
5266 		goto failed_mount;
5267 
5268 	sbi->s_def_mount_opt = sbi->s_mount_opt;
5269 	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5270 
5271 	err = ext4_check_opt_consistency(fc, sb);
5272 	if (err < 0)
5273 		goto failed_mount;
5274 
5275 	ext4_apply_options(fc, sb);
5276 
5277 	err = ext4_encoding_init(sb, es);
5278 	if (err)
5279 		goto failed_mount;
5280 
5281 	err = ext4_check_journal_data_mode(sb);
5282 	if (err)
5283 		goto failed_mount;
5284 
5285 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5286 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5287 
5288 	/* i_version is always enabled now */
5289 	sb->s_flags |= SB_I_VERSION;
5290 
5291 	err = ext4_check_feature_compatibility(sb, es, silent);
5292 	if (err)
5293 		goto failed_mount;
5294 
5295 	err = ext4_block_group_meta_init(sb, silent);
5296 	if (err)
5297 		goto failed_mount;
5298 
5299 	ext4_hash_info_init(sb);
5300 
5301 	err = ext4_handle_clustersize(sb);
5302 	if (err)
5303 		goto failed_mount;
5304 
5305 	err = ext4_check_geometry(sb, es);
5306 	if (err)
5307 		goto failed_mount;
5308 
5309 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5310 	spin_lock_init(&sbi->s_error_lock);
5311 	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5312 
5313 	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5314 	if (err)
5315 		goto failed_mount3;
5316 
5317 	err = ext4_es_register_shrinker(sbi);
5318 	if (err)
5319 		goto failed_mount3;
5320 
5321 	sbi->s_stripe = ext4_get_stripe_size(sbi);
5322 	/*
5323 	 * It's hard to get stripe aligned blocks if stripe is not aligned with
5324 	 * cluster, just disable stripe and alert user to simpfy code and avoid
5325 	 * stripe aligned allocation which will rarely successes.
5326 	 */
5327 	if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5328 	    sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5329 		ext4_msg(sb, KERN_WARNING,
5330 			 "stripe (%lu) is not aligned with cluster size (%u), "
5331 			 "stripe is disabled",
5332 			 sbi->s_stripe, sbi->s_cluster_ratio);
5333 		sbi->s_stripe = 0;
5334 	}
5335 	sbi->s_extent_max_zeroout_kb = 32;
5336 
5337 	/*
5338 	 * set up enough so that it can read an inode
5339 	 */
5340 	sb->s_op = &ext4_sops;
5341 	sb->s_export_op = &ext4_export_ops;
5342 	sb->s_xattr = ext4_xattr_handlers;
5343 #ifdef CONFIG_FS_ENCRYPTION
5344 	sb->s_cop = &ext4_cryptops;
5345 #endif
5346 #ifdef CONFIG_FS_VERITY
5347 	sb->s_vop = &ext4_verityops;
5348 #endif
5349 #ifdef CONFIG_QUOTA
5350 	sb->dq_op = &ext4_quota_operations;
5351 	if (ext4_has_feature_quota(sb))
5352 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5353 	else
5354 		sb->s_qcop = &ext4_qctl_operations;
5355 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5356 #endif
5357 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5358 
5359 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5360 	mutex_init(&sbi->s_orphan_lock);
5361 
5362 	ext4_fast_commit_init(sb);
5363 
5364 	sb->s_root = NULL;
5365 
5366 	needs_recovery = (es->s_last_orphan != 0 ||
5367 			  ext4_has_feature_orphan_present(sb) ||
5368 			  ext4_has_feature_journal_needs_recovery(sb));
5369 
5370 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5371 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5372 		if (err)
5373 			goto failed_mount3a;
5374 	}
5375 
5376 	err = -EINVAL;
5377 	/*
5378 	 * The first inode we look at is the journal inode.  Don't try
5379 	 * root first: it may be modified in the journal!
5380 	 */
5381 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5382 		err = ext4_load_and_init_journal(sb, es, ctx);
5383 		if (err)
5384 			goto failed_mount3a;
5385 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5386 		   ext4_has_feature_journal_needs_recovery(sb)) {
5387 		ext4_msg(sb, KERN_ERR, "required journal recovery "
5388 		       "suppressed and not mounted read-only");
5389 		goto failed_mount3a;
5390 	} else {
5391 		/* Nojournal mode, all journal mount options are illegal */
5392 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5393 			ext4_msg(sb, KERN_ERR, "can't mount with "
5394 				 "journal_async_commit, fs mounted w/o journal");
5395 			goto failed_mount3a;
5396 		}
5397 
5398 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5399 			ext4_msg(sb, KERN_ERR, "can't mount with "
5400 				 "journal_checksum, fs mounted w/o journal");
5401 			goto failed_mount3a;
5402 		}
5403 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5404 			ext4_msg(sb, KERN_ERR, "can't mount with "
5405 				 "commit=%lu, fs mounted w/o journal",
5406 				 sbi->s_commit_interval / HZ);
5407 			goto failed_mount3a;
5408 		}
5409 		if (EXT4_MOUNT_DATA_FLAGS &
5410 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5411 			ext4_msg(sb, KERN_ERR, "can't mount with "
5412 				 "data=, fs mounted w/o journal");
5413 			goto failed_mount3a;
5414 		}
5415 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5416 		clear_opt(sb, JOURNAL_CHECKSUM);
5417 		clear_opt(sb, DATA_FLAGS);
5418 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5419 		sbi->s_journal = NULL;
5420 		needs_recovery = 0;
5421 	}
5422 
5423 	if (!test_opt(sb, NO_MBCACHE)) {
5424 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5425 		if (!sbi->s_ea_block_cache) {
5426 			ext4_msg(sb, KERN_ERR,
5427 				 "Failed to create ea_block_cache");
5428 			err = -EINVAL;
5429 			goto failed_mount_wq;
5430 		}
5431 
5432 		if (ext4_has_feature_ea_inode(sb)) {
5433 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5434 			if (!sbi->s_ea_inode_cache) {
5435 				ext4_msg(sb, KERN_ERR,
5436 					 "Failed to create ea_inode_cache");
5437 				err = -EINVAL;
5438 				goto failed_mount_wq;
5439 			}
5440 		}
5441 	}
5442 
5443 	/*
5444 	 * Get the # of file system overhead blocks from the
5445 	 * superblock if present.
5446 	 */
5447 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5448 	/* ignore the precalculated value if it is ridiculous */
5449 	if (sbi->s_overhead > ext4_blocks_count(es))
5450 		sbi->s_overhead = 0;
5451 	/*
5452 	 * If the bigalloc feature is not enabled recalculating the
5453 	 * overhead doesn't take long, so we might as well just redo
5454 	 * it to make sure we are using the correct value.
5455 	 */
5456 	if (!ext4_has_feature_bigalloc(sb))
5457 		sbi->s_overhead = 0;
5458 	if (sbi->s_overhead == 0) {
5459 		err = ext4_calculate_overhead(sb);
5460 		if (err)
5461 			goto failed_mount_wq;
5462 	}
5463 
5464 	/*
5465 	 * The maximum number of concurrent works can be high and
5466 	 * concurrency isn't really necessary.  Limit it to 1.
5467 	 */
5468 	EXT4_SB(sb)->rsv_conversion_wq =
5469 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5470 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5471 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5472 		err = -ENOMEM;
5473 		goto failed_mount4;
5474 	}
5475 
5476 	/*
5477 	 * The jbd2_journal_load will have done any necessary log recovery,
5478 	 * so we can safely mount the rest of the filesystem now.
5479 	 */
5480 
5481 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5482 	if (IS_ERR(root)) {
5483 		ext4_msg(sb, KERN_ERR, "get root inode failed");
5484 		err = PTR_ERR(root);
5485 		root = NULL;
5486 		goto failed_mount4;
5487 	}
5488 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5489 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5490 		iput(root);
5491 		err = -EFSCORRUPTED;
5492 		goto failed_mount4;
5493 	}
5494 
5495 	sb->s_root = d_make_root(root);
5496 	if (!sb->s_root) {
5497 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5498 		err = -ENOMEM;
5499 		goto failed_mount4;
5500 	}
5501 
5502 	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5503 	if (err == -EROFS) {
5504 		sb->s_flags |= SB_RDONLY;
5505 	} else if (err)
5506 		goto failed_mount4a;
5507 
5508 	ext4_set_resv_clusters(sb);
5509 
5510 	if (test_opt(sb, BLOCK_VALIDITY)) {
5511 		err = ext4_setup_system_zone(sb);
5512 		if (err) {
5513 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5514 				 "zone (%d)", err);
5515 			goto failed_mount4a;
5516 		}
5517 	}
5518 	ext4_fc_replay_cleanup(sb);
5519 
5520 	ext4_ext_init(sb);
5521 
5522 	/*
5523 	 * Enable optimize_scan if number of groups is > threshold. This can be
5524 	 * turned off by passing "mb_optimize_scan=0". This can also be
5525 	 * turned on forcefully by passing "mb_optimize_scan=1".
5526 	 */
5527 	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5528 		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5529 			set_opt2(sb, MB_OPTIMIZE_SCAN);
5530 		else
5531 			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5532 	}
5533 
5534 	err = ext4_mb_init(sb);
5535 	if (err) {
5536 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5537 			 err);
5538 		goto failed_mount5;
5539 	}
5540 
5541 	/*
5542 	 * We can only set up the journal commit callback once
5543 	 * mballoc is initialized
5544 	 */
5545 	if (sbi->s_journal)
5546 		sbi->s_journal->j_commit_callback =
5547 			ext4_journal_commit_callback;
5548 
5549 	err = ext4_percpu_param_init(sbi);
5550 	if (err)
5551 		goto failed_mount6;
5552 
5553 	if (ext4_has_feature_flex_bg(sb))
5554 		if (!ext4_fill_flex_info(sb)) {
5555 			ext4_msg(sb, KERN_ERR,
5556 			       "unable to initialize "
5557 			       "flex_bg meta info!");
5558 			err = -ENOMEM;
5559 			goto failed_mount6;
5560 		}
5561 
5562 	err = ext4_register_li_request(sb, first_not_zeroed);
5563 	if (err)
5564 		goto failed_mount6;
5565 
5566 	err = ext4_register_sysfs(sb);
5567 	if (err)
5568 		goto failed_mount7;
5569 
5570 	err = ext4_init_orphan_info(sb);
5571 	if (err)
5572 		goto failed_mount8;
5573 #ifdef CONFIG_QUOTA
5574 	/* Enable quota usage during mount. */
5575 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5576 		err = ext4_enable_quotas(sb);
5577 		if (err)
5578 			goto failed_mount9;
5579 	}
5580 #endif  /* CONFIG_QUOTA */
5581 
5582 	/*
5583 	 * Save the original bdev mapping's wb_err value which could be
5584 	 * used to detect the metadata async write error.
5585 	 */
5586 	spin_lock_init(&sbi->s_bdev_wb_lock);
5587 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5588 				 &sbi->s_bdev_wb_err);
5589 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5590 	ext4_orphan_cleanup(sb, es);
5591 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5592 	/*
5593 	 * Update the checksum after updating free space/inode counters and
5594 	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5595 	 * checksum in the buffer cache until it is written out and
5596 	 * e2fsprogs programs trying to open a file system immediately
5597 	 * after it is mounted can fail.
5598 	 */
5599 	ext4_superblock_csum_set(sb);
5600 	if (needs_recovery) {
5601 		ext4_msg(sb, KERN_INFO, "recovery complete");
5602 		err = ext4_mark_recovery_complete(sb, es);
5603 		if (err)
5604 			goto failed_mount10;
5605 	}
5606 
5607 	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5608 		ext4_msg(sb, KERN_WARNING,
5609 			 "mounting with \"discard\" option, but the device does not support discard");
5610 
5611 	if (es->s_error_count)
5612 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5613 
5614 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5615 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5616 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5617 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5618 	atomic_set(&sbi->s_warning_count, 0);
5619 	atomic_set(&sbi->s_msg_count, 0);
5620 
5621 	return 0;
5622 
5623 failed_mount10:
5624 	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5625 failed_mount9: __maybe_unused
5626 	ext4_release_orphan_info(sb);
5627 failed_mount8:
5628 	ext4_unregister_sysfs(sb);
5629 	kobject_put(&sbi->s_kobj);
5630 failed_mount7:
5631 	ext4_unregister_li_request(sb);
5632 failed_mount6:
5633 	ext4_mb_release(sb);
5634 	ext4_flex_groups_free(sbi);
5635 	ext4_percpu_param_destroy(sbi);
5636 failed_mount5:
5637 	ext4_ext_release(sb);
5638 	ext4_release_system_zone(sb);
5639 failed_mount4a:
5640 	dput(sb->s_root);
5641 	sb->s_root = NULL;
5642 failed_mount4:
5643 	ext4_msg(sb, KERN_ERR, "mount failed");
5644 	if (EXT4_SB(sb)->rsv_conversion_wq)
5645 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5646 failed_mount_wq:
5647 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5648 	sbi->s_ea_inode_cache = NULL;
5649 
5650 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5651 	sbi->s_ea_block_cache = NULL;
5652 
5653 	if (sbi->s_journal) {
5654 		/* flush s_sb_upd_work before journal destroy. */
5655 		flush_work(&sbi->s_sb_upd_work);
5656 		jbd2_journal_destroy(sbi->s_journal);
5657 		sbi->s_journal = NULL;
5658 	}
5659 failed_mount3a:
5660 	ext4_es_unregister_shrinker(sbi);
5661 failed_mount3:
5662 	/* flush s_sb_upd_work before sbi destroy */
5663 	flush_work(&sbi->s_sb_upd_work);
5664 	del_timer_sync(&sbi->s_err_report);
5665 	ext4_stop_mmpd(sbi);
5666 	ext4_group_desc_free(sbi);
5667 failed_mount:
5668 	if (sbi->s_chksum_driver)
5669 		crypto_free_shash(sbi->s_chksum_driver);
5670 
5671 #if IS_ENABLED(CONFIG_UNICODE)
5672 	utf8_unload(sb->s_encoding);
5673 #endif
5674 
5675 #ifdef CONFIG_QUOTA
5676 	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5677 		kfree(get_qf_name(sb, sbi, i));
5678 #endif
5679 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5680 	brelse(sbi->s_sbh);
5681 	if (sbi->s_journal_bdev_handle) {
5682 		invalidate_bdev(sbi->s_journal_bdev_handle->bdev);
5683 		bdev_release(sbi->s_journal_bdev_handle);
5684 	}
5685 out_fail:
5686 	invalidate_bdev(sb->s_bdev);
5687 	sb->s_fs_info = NULL;
5688 	return err;
5689 }
5690 
5691 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5692 {
5693 	struct ext4_fs_context *ctx = fc->fs_private;
5694 	struct ext4_sb_info *sbi;
5695 	const char *descr;
5696 	int ret;
5697 
5698 	sbi = ext4_alloc_sbi(sb);
5699 	if (!sbi)
5700 		return -ENOMEM;
5701 
5702 	fc->s_fs_info = sbi;
5703 
5704 	/* Cleanup superblock name */
5705 	strreplace(sb->s_id, '/', '!');
5706 
5707 	sbi->s_sb_block = 1;	/* Default super block location */
5708 	if (ctx->spec & EXT4_SPEC_s_sb_block)
5709 		sbi->s_sb_block = ctx->s_sb_block;
5710 
5711 	ret = __ext4_fill_super(fc, sb);
5712 	if (ret < 0)
5713 		goto free_sbi;
5714 
5715 	if (sbi->s_journal) {
5716 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5717 			descr = " journalled data mode";
5718 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5719 			descr = " ordered data mode";
5720 		else
5721 			descr = " writeback data mode";
5722 	} else
5723 		descr = "out journal";
5724 
5725 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5726 		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5727 			 "Quota mode: %s.", &sb->s_uuid,
5728 			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5729 			 ext4_quota_mode(sb));
5730 
5731 	/* Update the s_overhead_clusters if necessary */
5732 	ext4_update_overhead(sb, false);
5733 	return 0;
5734 
5735 free_sbi:
5736 	ext4_free_sbi(sbi);
5737 	fc->s_fs_info = NULL;
5738 	return ret;
5739 }
5740 
5741 static int ext4_get_tree(struct fs_context *fc)
5742 {
5743 	return get_tree_bdev(fc, ext4_fill_super);
5744 }
5745 
5746 /*
5747  * Setup any per-fs journal parameters now.  We'll do this both on
5748  * initial mount, once the journal has been initialised but before we've
5749  * done any recovery; and again on any subsequent remount.
5750  */
5751 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5752 {
5753 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5754 
5755 	journal->j_commit_interval = sbi->s_commit_interval;
5756 	journal->j_min_batch_time = sbi->s_min_batch_time;
5757 	journal->j_max_batch_time = sbi->s_max_batch_time;
5758 	ext4_fc_init(sb, journal);
5759 
5760 	write_lock(&journal->j_state_lock);
5761 	if (test_opt(sb, BARRIER))
5762 		journal->j_flags |= JBD2_BARRIER;
5763 	else
5764 		journal->j_flags &= ~JBD2_BARRIER;
5765 	if (test_opt(sb, DATA_ERR_ABORT))
5766 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5767 	else
5768 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5769 	/*
5770 	 * Always enable journal cycle record option, letting the journal
5771 	 * records log transactions continuously between each mount.
5772 	 */
5773 	journal->j_flags |= JBD2_CYCLE_RECORD;
5774 	write_unlock(&journal->j_state_lock);
5775 }
5776 
5777 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5778 					     unsigned int journal_inum)
5779 {
5780 	struct inode *journal_inode;
5781 
5782 	/*
5783 	 * Test for the existence of a valid inode on disk.  Bad things
5784 	 * happen if we iget() an unused inode, as the subsequent iput()
5785 	 * will try to delete it.
5786 	 */
5787 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5788 	if (IS_ERR(journal_inode)) {
5789 		ext4_msg(sb, KERN_ERR, "no journal found");
5790 		return ERR_CAST(journal_inode);
5791 	}
5792 	if (!journal_inode->i_nlink) {
5793 		make_bad_inode(journal_inode);
5794 		iput(journal_inode);
5795 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5796 		return ERR_PTR(-EFSCORRUPTED);
5797 	}
5798 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5799 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5800 		iput(journal_inode);
5801 		return ERR_PTR(-EFSCORRUPTED);
5802 	}
5803 
5804 	ext4_debug("Journal inode found at %p: %lld bytes\n",
5805 		  journal_inode, journal_inode->i_size);
5806 	return journal_inode;
5807 }
5808 
5809 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5810 {
5811 	struct ext4_map_blocks map;
5812 	int ret;
5813 
5814 	if (journal->j_inode == NULL)
5815 		return 0;
5816 
5817 	map.m_lblk = *block;
5818 	map.m_len = 1;
5819 	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5820 	if (ret <= 0) {
5821 		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5822 			 "journal bmap failed: block %llu ret %d\n",
5823 			 *block, ret);
5824 		jbd2_journal_abort(journal, ret ? ret : -EIO);
5825 		return ret;
5826 	}
5827 	*block = map.m_pblk;
5828 	return 0;
5829 }
5830 
5831 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5832 					  unsigned int journal_inum)
5833 {
5834 	struct inode *journal_inode;
5835 	journal_t *journal;
5836 
5837 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5838 	if (IS_ERR(journal_inode))
5839 		return ERR_CAST(journal_inode);
5840 
5841 	journal = jbd2_journal_init_inode(journal_inode);
5842 	if (IS_ERR(journal)) {
5843 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5844 		iput(journal_inode);
5845 		return ERR_CAST(journal);
5846 	}
5847 	journal->j_private = sb;
5848 	journal->j_bmap = ext4_journal_bmap;
5849 	ext4_init_journal_params(sb, journal);
5850 	return journal;
5851 }
5852 
5853 static struct bdev_handle *ext4_get_journal_blkdev(struct super_block *sb,
5854 					dev_t j_dev, ext4_fsblk_t *j_start,
5855 					ext4_fsblk_t *j_len)
5856 {
5857 	struct buffer_head *bh;
5858 	struct block_device *bdev;
5859 	struct bdev_handle *bdev_handle;
5860 	int hblock, blocksize;
5861 	ext4_fsblk_t sb_block;
5862 	unsigned long offset;
5863 	struct ext4_super_block *es;
5864 	int errno;
5865 
5866 	/* see get_tree_bdev why this is needed and safe */
5867 	up_write(&sb->s_umount);
5868 	bdev_handle = bdev_open_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE,
5869 				       sb, &fs_holder_ops);
5870 	down_write(&sb->s_umount);
5871 	if (IS_ERR(bdev_handle)) {
5872 		ext4_msg(sb, KERN_ERR,
5873 			 "failed to open journal device unknown-block(%u,%u) %ld",
5874 			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_handle));
5875 		return bdev_handle;
5876 	}
5877 
5878 	bdev = bdev_handle->bdev;
5879 	blocksize = sb->s_blocksize;
5880 	hblock = bdev_logical_block_size(bdev);
5881 	if (blocksize < hblock) {
5882 		ext4_msg(sb, KERN_ERR,
5883 			"blocksize too small for journal device");
5884 		errno = -EINVAL;
5885 		goto out_bdev;
5886 	}
5887 
5888 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5889 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5890 	set_blocksize(bdev, blocksize);
5891 	bh = __bread(bdev, sb_block, blocksize);
5892 	if (!bh) {
5893 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5894 		       "external journal");
5895 		errno = -EINVAL;
5896 		goto out_bdev;
5897 	}
5898 
5899 	es = (struct ext4_super_block *) (bh->b_data + offset);
5900 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5901 	    !(le32_to_cpu(es->s_feature_incompat) &
5902 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5903 		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5904 		errno = -EFSCORRUPTED;
5905 		goto out_bh;
5906 	}
5907 
5908 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5909 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5910 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5911 		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5912 		errno = -EFSCORRUPTED;
5913 		goto out_bh;
5914 	}
5915 
5916 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5917 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5918 		errno = -EFSCORRUPTED;
5919 		goto out_bh;
5920 	}
5921 
5922 	*j_start = sb_block + 1;
5923 	*j_len = ext4_blocks_count(es);
5924 	brelse(bh);
5925 	return bdev_handle;
5926 
5927 out_bh:
5928 	brelse(bh);
5929 out_bdev:
5930 	bdev_release(bdev_handle);
5931 	return ERR_PTR(errno);
5932 }
5933 
5934 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5935 					dev_t j_dev)
5936 {
5937 	journal_t *journal;
5938 	ext4_fsblk_t j_start;
5939 	ext4_fsblk_t j_len;
5940 	struct bdev_handle *bdev_handle;
5941 	int errno = 0;
5942 
5943 	bdev_handle = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5944 	if (IS_ERR(bdev_handle))
5945 		return ERR_CAST(bdev_handle);
5946 
5947 	journal = jbd2_journal_init_dev(bdev_handle->bdev, sb->s_bdev, j_start,
5948 					j_len, sb->s_blocksize);
5949 	if (IS_ERR(journal)) {
5950 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5951 		errno = PTR_ERR(journal);
5952 		goto out_bdev;
5953 	}
5954 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5955 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5956 					"user (unsupported) - %d",
5957 			be32_to_cpu(journal->j_superblock->s_nr_users));
5958 		errno = -EINVAL;
5959 		goto out_journal;
5960 	}
5961 	journal->j_private = sb;
5962 	EXT4_SB(sb)->s_journal_bdev_handle = bdev_handle;
5963 	ext4_init_journal_params(sb, journal);
5964 	return journal;
5965 
5966 out_journal:
5967 	jbd2_journal_destroy(journal);
5968 out_bdev:
5969 	bdev_release(bdev_handle);
5970 	return ERR_PTR(errno);
5971 }
5972 
5973 static int ext4_load_journal(struct super_block *sb,
5974 			     struct ext4_super_block *es,
5975 			     unsigned long journal_devnum)
5976 {
5977 	journal_t *journal;
5978 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5979 	dev_t journal_dev;
5980 	int err = 0;
5981 	int really_read_only;
5982 	int journal_dev_ro;
5983 
5984 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5985 		return -EFSCORRUPTED;
5986 
5987 	if (journal_devnum &&
5988 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5989 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5990 			"numbers have changed");
5991 		journal_dev = new_decode_dev(journal_devnum);
5992 	} else
5993 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5994 
5995 	if (journal_inum && journal_dev) {
5996 		ext4_msg(sb, KERN_ERR,
5997 			 "filesystem has both journal inode and journal device!");
5998 		return -EINVAL;
5999 	}
6000 
6001 	if (journal_inum) {
6002 		journal = ext4_open_inode_journal(sb, journal_inum);
6003 		if (IS_ERR(journal))
6004 			return PTR_ERR(journal);
6005 	} else {
6006 		journal = ext4_open_dev_journal(sb, journal_dev);
6007 		if (IS_ERR(journal))
6008 			return PTR_ERR(journal);
6009 	}
6010 
6011 	journal_dev_ro = bdev_read_only(journal->j_dev);
6012 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6013 
6014 	if (journal_dev_ro && !sb_rdonly(sb)) {
6015 		ext4_msg(sb, KERN_ERR,
6016 			 "journal device read-only, try mounting with '-o ro'");
6017 		err = -EROFS;
6018 		goto err_out;
6019 	}
6020 
6021 	/*
6022 	 * Are we loading a blank journal or performing recovery after a
6023 	 * crash?  For recovery, we need to check in advance whether we
6024 	 * can get read-write access to the device.
6025 	 */
6026 	if (ext4_has_feature_journal_needs_recovery(sb)) {
6027 		if (sb_rdonly(sb)) {
6028 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6029 					"required on readonly filesystem");
6030 			if (really_read_only) {
6031 				ext4_msg(sb, KERN_ERR, "write access "
6032 					"unavailable, cannot proceed "
6033 					"(try mounting with noload)");
6034 				err = -EROFS;
6035 				goto err_out;
6036 			}
6037 			ext4_msg(sb, KERN_INFO, "write access will "
6038 			       "be enabled during recovery");
6039 		}
6040 	}
6041 
6042 	if (!(journal->j_flags & JBD2_BARRIER))
6043 		ext4_msg(sb, KERN_INFO, "barriers disabled");
6044 
6045 	if (!ext4_has_feature_journal_needs_recovery(sb))
6046 		err = jbd2_journal_wipe(journal, !really_read_only);
6047 	if (!err) {
6048 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6049 		__le16 orig_state;
6050 		bool changed = false;
6051 
6052 		if (save)
6053 			memcpy(save, ((char *) es) +
6054 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6055 		err = jbd2_journal_load(journal);
6056 		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6057 				   save, EXT4_S_ERR_LEN)) {
6058 			memcpy(((char *) es) + EXT4_S_ERR_START,
6059 			       save, EXT4_S_ERR_LEN);
6060 			changed = true;
6061 		}
6062 		kfree(save);
6063 		orig_state = es->s_state;
6064 		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6065 					   EXT4_ERROR_FS);
6066 		if (orig_state != es->s_state)
6067 			changed = true;
6068 		/* Write out restored error information to the superblock */
6069 		if (changed && !really_read_only) {
6070 			int err2;
6071 			err2 = ext4_commit_super(sb);
6072 			err = err ? : err2;
6073 		}
6074 	}
6075 
6076 	if (err) {
6077 		ext4_msg(sb, KERN_ERR, "error loading journal");
6078 		goto err_out;
6079 	}
6080 
6081 	EXT4_SB(sb)->s_journal = journal;
6082 	err = ext4_clear_journal_err(sb, es);
6083 	if (err) {
6084 		EXT4_SB(sb)->s_journal = NULL;
6085 		jbd2_journal_destroy(journal);
6086 		return err;
6087 	}
6088 
6089 	if (!really_read_only && journal_devnum &&
6090 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6091 		es->s_journal_dev = cpu_to_le32(journal_devnum);
6092 		ext4_commit_super(sb);
6093 	}
6094 	if (!really_read_only && journal_inum &&
6095 	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6096 		es->s_journal_inum = cpu_to_le32(journal_inum);
6097 		ext4_commit_super(sb);
6098 	}
6099 
6100 	return 0;
6101 
6102 err_out:
6103 	jbd2_journal_destroy(journal);
6104 	return err;
6105 }
6106 
6107 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6108 static void ext4_update_super(struct super_block *sb)
6109 {
6110 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6111 	struct ext4_super_block *es = sbi->s_es;
6112 	struct buffer_head *sbh = sbi->s_sbh;
6113 
6114 	lock_buffer(sbh);
6115 	/*
6116 	 * If the file system is mounted read-only, don't update the
6117 	 * superblock write time.  This avoids updating the superblock
6118 	 * write time when we are mounting the root file system
6119 	 * read/only but we need to replay the journal; at that point,
6120 	 * for people who are east of GMT and who make their clock
6121 	 * tick in localtime for Windows bug-for-bug compatibility,
6122 	 * the clock is set in the future, and this will cause e2fsck
6123 	 * to complain and force a full file system check.
6124 	 */
6125 	if (!sb_rdonly(sb))
6126 		ext4_update_tstamp(es, s_wtime);
6127 	es->s_kbytes_written =
6128 		cpu_to_le64(sbi->s_kbytes_written +
6129 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6130 		      sbi->s_sectors_written_start) >> 1));
6131 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6132 		ext4_free_blocks_count_set(es,
6133 			EXT4_C2B(sbi, percpu_counter_sum_positive(
6134 				&sbi->s_freeclusters_counter)));
6135 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6136 		es->s_free_inodes_count =
6137 			cpu_to_le32(percpu_counter_sum_positive(
6138 				&sbi->s_freeinodes_counter));
6139 	/* Copy error information to the on-disk superblock */
6140 	spin_lock(&sbi->s_error_lock);
6141 	if (sbi->s_add_error_count > 0) {
6142 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6143 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6144 			__ext4_update_tstamp(&es->s_first_error_time,
6145 					     &es->s_first_error_time_hi,
6146 					     sbi->s_first_error_time);
6147 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6148 				sizeof(es->s_first_error_func));
6149 			es->s_first_error_line =
6150 				cpu_to_le32(sbi->s_first_error_line);
6151 			es->s_first_error_ino =
6152 				cpu_to_le32(sbi->s_first_error_ino);
6153 			es->s_first_error_block =
6154 				cpu_to_le64(sbi->s_first_error_block);
6155 			es->s_first_error_errcode =
6156 				ext4_errno_to_code(sbi->s_first_error_code);
6157 		}
6158 		__ext4_update_tstamp(&es->s_last_error_time,
6159 				     &es->s_last_error_time_hi,
6160 				     sbi->s_last_error_time);
6161 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6162 			sizeof(es->s_last_error_func));
6163 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6164 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6165 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6166 		es->s_last_error_errcode =
6167 				ext4_errno_to_code(sbi->s_last_error_code);
6168 		/*
6169 		 * Start the daily error reporting function if it hasn't been
6170 		 * started already
6171 		 */
6172 		if (!es->s_error_count)
6173 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6174 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6175 		sbi->s_add_error_count = 0;
6176 	}
6177 	spin_unlock(&sbi->s_error_lock);
6178 
6179 	ext4_superblock_csum_set(sb);
6180 	unlock_buffer(sbh);
6181 }
6182 
6183 static int ext4_commit_super(struct super_block *sb)
6184 {
6185 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6186 
6187 	if (!sbh)
6188 		return -EINVAL;
6189 	if (block_device_ejected(sb))
6190 		return -ENODEV;
6191 
6192 	ext4_update_super(sb);
6193 
6194 	lock_buffer(sbh);
6195 	/* Buffer got discarded which means block device got invalidated */
6196 	if (!buffer_mapped(sbh)) {
6197 		unlock_buffer(sbh);
6198 		return -EIO;
6199 	}
6200 
6201 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6202 		/*
6203 		 * Oh, dear.  A previous attempt to write the
6204 		 * superblock failed.  This could happen because the
6205 		 * USB device was yanked out.  Or it could happen to
6206 		 * be a transient write error and maybe the block will
6207 		 * be remapped.  Nothing we can do but to retry the
6208 		 * write and hope for the best.
6209 		 */
6210 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6211 		       "superblock detected");
6212 		clear_buffer_write_io_error(sbh);
6213 		set_buffer_uptodate(sbh);
6214 	}
6215 	get_bh(sbh);
6216 	/* Clear potential dirty bit if it was journalled update */
6217 	clear_buffer_dirty(sbh);
6218 	sbh->b_end_io = end_buffer_write_sync;
6219 	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6220 		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6221 	wait_on_buffer(sbh);
6222 	if (buffer_write_io_error(sbh)) {
6223 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6224 		       "superblock");
6225 		clear_buffer_write_io_error(sbh);
6226 		set_buffer_uptodate(sbh);
6227 		return -EIO;
6228 	}
6229 	return 0;
6230 }
6231 
6232 /*
6233  * Have we just finished recovery?  If so, and if we are mounting (or
6234  * remounting) the filesystem readonly, then we will end up with a
6235  * consistent fs on disk.  Record that fact.
6236  */
6237 static int ext4_mark_recovery_complete(struct super_block *sb,
6238 				       struct ext4_super_block *es)
6239 {
6240 	int err;
6241 	journal_t *journal = EXT4_SB(sb)->s_journal;
6242 
6243 	if (!ext4_has_feature_journal(sb)) {
6244 		if (journal != NULL) {
6245 			ext4_error(sb, "Journal got removed while the fs was "
6246 				   "mounted!");
6247 			return -EFSCORRUPTED;
6248 		}
6249 		return 0;
6250 	}
6251 	jbd2_journal_lock_updates(journal);
6252 	err = jbd2_journal_flush(journal, 0);
6253 	if (err < 0)
6254 		goto out;
6255 
6256 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6257 	    ext4_has_feature_orphan_present(sb))) {
6258 		if (!ext4_orphan_file_empty(sb)) {
6259 			ext4_error(sb, "Orphan file not empty on read-only fs.");
6260 			err = -EFSCORRUPTED;
6261 			goto out;
6262 		}
6263 		ext4_clear_feature_journal_needs_recovery(sb);
6264 		ext4_clear_feature_orphan_present(sb);
6265 		ext4_commit_super(sb);
6266 	}
6267 out:
6268 	jbd2_journal_unlock_updates(journal);
6269 	return err;
6270 }
6271 
6272 /*
6273  * If we are mounting (or read-write remounting) a filesystem whose journal
6274  * has recorded an error from a previous lifetime, move that error to the
6275  * main filesystem now.
6276  */
6277 static int ext4_clear_journal_err(struct super_block *sb,
6278 				   struct ext4_super_block *es)
6279 {
6280 	journal_t *journal;
6281 	int j_errno;
6282 	const char *errstr;
6283 
6284 	if (!ext4_has_feature_journal(sb)) {
6285 		ext4_error(sb, "Journal got removed while the fs was mounted!");
6286 		return -EFSCORRUPTED;
6287 	}
6288 
6289 	journal = EXT4_SB(sb)->s_journal;
6290 
6291 	/*
6292 	 * Now check for any error status which may have been recorded in the
6293 	 * journal by a prior ext4_error() or ext4_abort()
6294 	 */
6295 
6296 	j_errno = jbd2_journal_errno(journal);
6297 	if (j_errno) {
6298 		char nbuf[16];
6299 
6300 		errstr = ext4_decode_error(sb, j_errno, nbuf);
6301 		ext4_warning(sb, "Filesystem error recorded "
6302 			     "from previous mount: %s", errstr);
6303 
6304 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6305 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6306 		j_errno = ext4_commit_super(sb);
6307 		if (j_errno)
6308 			return j_errno;
6309 		ext4_warning(sb, "Marked fs in need of filesystem check.");
6310 
6311 		jbd2_journal_clear_err(journal);
6312 		jbd2_journal_update_sb_errno(journal);
6313 	}
6314 	return 0;
6315 }
6316 
6317 /*
6318  * Force the running and committing transactions to commit,
6319  * and wait on the commit.
6320  */
6321 int ext4_force_commit(struct super_block *sb)
6322 {
6323 	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6324 }
6325 
6326 static int ext4_sync_fs(struct super_block *sb, int wait)
6327 {
6328 	int ret = 0;
6329 	tid_t target;
6330 	bool needs_barrier = false;
6331 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6332 
6333 	if (unlikely(ext4_forced_shutdown(sb)))
6334 		return 0;
6335 
6336 	trace_ext4_sync_fs(sb, wait);
6337 	flush_workqueue(sbi->rsv_conversion_wq);
6338 	/*
6339 	 * Writeback quota in non-journalled quota case - journalled quota has
6340 	 * no dirty dquots
6341 	 */
6342 	dquot_writeback_dquots(sb, -1);
6343 	/*
6344 	 * Data writeback is possible w/o journal transaction, so barrier must
6345 	 * being sent at the end of the function. But we can skip it if
6346 	 * transaction_commit will do it for us.
6347 	 */
6348 	if (sbi->s_journal) {
6349 		target = jbd2_get_latest_transaction(sbi->s_journal);
6350 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6351 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6352 			needs_barrier = true;
6353 
6354 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6355 			if (wait)
6356 				ret = jbd2_log_wait_commit(sbi->s_journal,
6357 							   target);
6358 		}
6359 	} else if (wait && test_opt(sb, BARRIER))
6360 		needs_barrier = true;
6361 	if (needs_barrier) {
6362 		int err;
6363 		err = blkdev_issue_flush(sb->s_bdev);
6364 		if (!ret)
6365 			ret = err;
6366 	}
6367 
6368 	return ret;
6369 }
6370 
6371 /*
6372  * LVM calls this function before a (read-only) snapshot is created.  This
6373  * gives us a chance to flush the journal completely and mark the fs clean.
6374  *
6375  * Note that only this function cannot bring a filesystem to be in a clean
6376  * state independently. It relies on upper layer to stop all data & metadata
6377  * modifications.
6378  */
6379 static int ext4_freeze(struct super_block *sb)
6380 {
6381 	int error = 0;
6382 	journal_t *journal = EXT4_SB(sb)->s_journal;
6383 
6384 	if (journal) {
6385 		/* Now we set up the journal barrier. */
6386 		jbd2_journal_lock_updates(journal);
6387 
6388 		/*
6389 		 * Don't clear the needs_recovery flag if we failed to
6390 		 * flush the journal.
6391 		 */
6392 		error = jbd2_journal_flush(journal, 0);
6393 		if (error < 0)
6394 			goto out;
6395 
6396 		/* Journal blocked and flushed, clear needs_recovery flag. */
6397 		ext4_clear_feature_journal_needs_recovery(sb);
6398 		if (ext4_orphan_file_empty(sb))
6399 			ext4_clear_feature_orphan_present(sb);
6400 	}
6401 
6402 	error = ext4_commit_super(sb);
6403 out:
6404 	if (journal)
6405 		/* we rely on upper layer to stop further updates */
6406 		jbd2_journal_unlock_updates(journal);
6407 	return error;
6408 }
6409 
6410 /*
6411  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6412  * flag here, even though the filesystem is not technically dirty yet.
6413  */
6414 static int ext4_unfreeze(struct super_block *sb)
6415 {
6416 	if (ext4_forced_shutdown(sb))
6417 		return 0;
6418 
6419 	if (EXT4_SB(sb)->s_journal) {
6420 		/* Reset the needs_recovery flag before the fs is unlocked. */
6421 		ext4_set_feature_journal_needs_recovery(sb);
6422 		if (ext4_has_feature_orphan_file(sb))
6423 			ext4_set_feature_orphan_present(sb);
6424 	}
6425 
6426 	ext4_commit_super(sb);
6427 	return 0;
6428 }
6429 
6430 /*
6431  * Structure to save mount options for ext4_remount's benefit
6432  */
6433 struct ext4_mount_options {
6434 	unsigned long s_mount_opt;
6435 	unsigned long s_mount_opt2;
6436 	kuid_t s_resuid;
6437 	kgid_t s_resgid;
6438 	unsigned long s_commit_interval;
6439 	u32 s_min_batch_time, s_max_batch_time;
6440 #ifdef CONFIG_QUOTA
6441 	int s_jquota_fmt;
6442 	char *s_qf_names[EXT4_MAXQUOTAS];
6443 #endif
6444 };
6445 
6446 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6447 {
6448 	struct ext4_fs_context *ctx = fc->fs_private;
6449 	struct ext4_super_block *es;
6450 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6451 	unsigned long old_sb_flags;
6452 	struct ext4_mount_options old_opts;
6453 	ext4_group_t g;
6454 	int err = 0;
6455 	int alloc_ctx;
6456 #ifdef CONFIG_QUOTA
6457 	int enable_quota = 0;
6458 	int i, j;
6459 	char *to_free[EXT4_MAXQUOTAS];
6460 #endif
6461 
6462 
6463 	/* Store the original options */
6464 	old_sb_flags = sb->s_flags;
6465 	old_opts.s_mount_opt = sbi->s_mount_opt;
6466 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6467 	old_opts.s_resuid = sbi->s_resuid;
6468 	old_opts.s_resgid = sbi->s_resgid;
6469 	old_opts.s_commit_interval = sbi->s_commit_interval;
6470 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6471 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6472 #ifdef CONFIG_QUOTA
6473 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6474 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6475 		if (sbi->s_qf_names[i]) {
6476 			char *qf_name = get_qf_name(sb, sbi, i);
6477 
6478 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6479 			if (!old_opts.s_qf_names[i]) {
6480 				for (j = 0; j < i; j++)
6481 					kfree(old_opts.s_qf_names[j]);
6482 				return -ENOMEM;
6483 			}
6484 		} else
6485 			old_opts.s_qf_names[i] = NULL;
6486 #endif
6487 	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6488 		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6489 			ctx->journal_ioprio =
6490 				sbi->s_journal->j_task->io_context->ioprio;
6491 		else
6492 			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6493 
6494 	}
6495 
6496 	/*
6497 	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6498 	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6499 	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6500 	 * here s_writepages_rwsem to avoid race between writepages ops and
6501 	 * remount.
6502 	 */
6503 	alloc_ctx = ext4_writepages_down_write(sb);
6504 	ext4_apply_options(fc, sb);
6505 	ext4_writepages_up_write(sb, alloc_ctx);
6506 
6507 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6508 	    test_opt(sb, JOURNAL_CHECKSUM)) {
6509 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6510 			 "during remount not supported; ignoring");
6511 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6512 	}
6513 
6514 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6515 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6516 			ext4_msg(sb, KERN_ERR, "can't mount with "
6517 				 "both data=journal and delalloc");
6518 			err = -EINVAL;
6519 			goto restore_opts;
6520 		}
6521 		if (test_opt(sb, DIOREAD_NOLOCK)) {
6522 			ext4_msg(sb, KERN_ERR, "can't mount with "
6523 				 "both data=journal and dioread_nolock");
6524 			err = -EINVAL;
6525 			goto restore_opts;
6526 		}
6527 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6528 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6529 			ext4_msg(sb, KERN_ERR, "can't mount with "
6530 				"journal_async_commit in data=ordered mode");
6531 			err = -EINVAL;
6532 			goto restore_opts;
6533 		}
6534 	}
6535 
6536 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6537 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6538 		err = -EINVAL;
6539 		goto restore_opts;
6540 	}
6541 
6542 	if (test_opt2(sb, ABORT))
6543 		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6544 
6545 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6546 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6547 
6548 	es = sbi->s_es;
6549 
6550 	if (sbi->s_journal) {
6551 		ext4_init_journal_params(sb, sbi->s_journal);
6552 		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6553 	}
6554 
6555 	/* Flush outstanding errors before changing fs state */
6556 	flush_work(&sbi->s_sb_upd_work);
6557 
6558 	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6559 		if (ext4_forced_shutdown(sb)) {
6560 			err = -EROFS;
6561 			goto restore_opts;
6562 		}
6563 
6564 		if (fc->sb_flags & SB_RDONLY) {
6565 			err = sync_filesystem(sb);
6566 			if (err < 0)
6567 				goto restore_opts;
6568 			err = dquot_suspend(sb, -1);
6569 			if (err < 0)
6570 				goto restore_opts;
6571 
6572 			/*
6573 			 * First of all, the unconditional stuff we have to do
6574 			 * to disable replay of the journal when we next remount
6575 			 */
6576 			sb->s_flags |= SB_RDONLY;
6577 
6578 			/*
6579 			 * OK, test if we are remounting a valid rw partition
6580 			 * readonly, and if so set the rdonly flag and then
6581 			 * mark the partition as valid again.
6582 			 */
6583 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6584 			    (sbi->s_mount_state & EXT4_VALID_FS))
6585 				es->s_state = cpu_to_le16(sbi->s_mount_state);
6586 
6587 			if (sbi->s_journal) {
6588 				/*
6589 				 * We let remount-ro finish even if marking fs
6590 				 * as clean failed...
6591 				 */
6592 				ext4_mark_recovery_complete(sb, es);
6593 			}
6594 		} else {
6595 			/* Make sure we can mount this feature set readwrite */
6596 			if (ext4_has_feature_readonly(sb) ||
6597 			    !ext4_feature_set_ok(sb, 0)) {
6598 				err = -EROFS;
6599 				goto restore_opts;
6600 			}
6601 			/*
6602 			 * Make sure the group descriptor checksums
6603 			 * are sane.  If they aren't, refuse to remount r/w.
6604 			 */
6605 			for (g = 0; g < sbi->s_groups_count; g++) {
6606 				struct ext4_group_desc *gdp =
6607 					ext4_get_group_desc(sb, g, NULL);
6608 
6609 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6610 					ext4_msg(sb, KERN_ERR,
6611 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6612 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6613 					       le16_to_cpu(gdp->bg_checksum));
6614 					err = -EFSBADCRC;
6615 					goto restore_opts;
6616 				}
6617 			}
6618 
6619 			/*
6620 			 * If we have an unprocessed orphan list hanging
6621 			 * around from a previously readonly bdev mount,
6622 			 * require a full umount/remount for now.
6623 			 */
6624 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6625 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6626 				       "remount RDWR because of unprocessed "
6627 				       "orphan inode list.  Please "
6628 				       "umount/remount instead");
6629 				err = -EINVAL;
6630 				goto restore_opts;
6631 			}
6632 
6633 			/*
6634 			 * Mounting a RDONLY partition read-write, so reread
6635 			 * and store the current valid flag.  (It may have
6636 			 * been changed by e2fsck since we originally mounted
6637 			 * the partition.)
6638 			 */
6639 			if (sbi->s_journal) {
6640 				err = ext4_clear_journal_err(sb, es);
6641 				if (err)
6642 					goto restore_opts;
6643 			}
6644 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6645 					      ~EXT4_FC_REPLAY);
6646 
6647 			err = ext4_setup_super(sb, es, 0);
6648 			if (err)
6649 				goto restore_opts;
6650 
6651 			sb->s_flags &= ~SB_RDONLY;
6652 			if (ext4_has_feature_mmp(sb)) {
6653 				err = ext4_multi_mount_protect(sb,
6654 						le64_to_cpu(es->s_mmp_block));
6655 				if (err)
6656 					goto restore_opts;
6657 			}
6658 #ifdef CONFIG_QUOTA
6659 			enable_quota = 1;
6660 #endif
6661 		}
6662 	}
6663 
6664 	/*
6665 	 * Handle creation of system zone data early because it can fail.
6666 	 * Releasing of existing data is done when we are sure remount will
6667 	 * succeed.
6668 	 */
6669 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6670 		err = ext4_setup_system_zone(sb);
6671 		if (err)
6672 			goto restore_opts;
6673 	}
6674 
6675 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6676 		err = ext4_commit_super(sb);
6677 		if (err)
6678 			goto restore_opts;
6679 	}
6680 
6681 #ifdef CONFIG_QUOTA
6682 	if (enable_quota) {
6683 		if (sb_any_quota_suspended(sb))
6684 			dquot_resume(sb, -1);
6685 		else if (ext4_has_feature_quota(sb)) {
6686 			err = ext4_enable_quotas(sb);
6687 			if (err)
6688 				goto restore_opts;
6689 		}
6690 	}
6691 	/* Release old quota file names */
6692 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6693 		kfree(old_opts.s_qf_names[i]);
6694 #endif
6695 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6696 		ext4_release_system_zone(sb);
6697 
6698 	/*
6699 	 * Reinitialize lazy itable initialization thread based on
6700 	 * current settings
6701 	 */
6702 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6703 		ext4_unregister_li_request(sb);
6704 	else {
6705 		ext4_group_t first_not_zeroed;
6706 		first_not_zeroed = ext4_has_uninit_itable(sb);
6707 		ext4_register_li_request(sb, first_not_zeroed);
6708 	}
6709 
6710 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6711 		ext4_stop_mmpd(sbi);
6712 
6713 	return 0;
6714 
6715 restore_opts:
6716 	/*
6717 	 * If there was a failing r/w to ro transition, we may need to
6718 	 * re-enable quota
6719 	 */
6720 	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6721 	    sb_any_quota_suspended(sb))
6722 		dquot_resume(sb, -1);
6723 
6724 	alloc_ctx = ext4_writepages_down_write(sb);
6725 	sb->s_flags = old_sb_flags;
6726 	sbi->s_mount_opt = old_opts.s_mount_opt;
6727 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6728 	sbi->s_resuid = old_opts.s_resuid;
6729 	sbi->s_resgid = old_opts.s_resgid;
6730 	sbi->s_commit_interval = old_opts.s_commit_interval;
6731 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6732 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6733 	ext4_writepages_up_write(sb, alloc_ctx);
6734 
6735 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6736 		ext4_release_system_zone(sb);
6737 #ifdef CONFIG_QUOTA
6738 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6739 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6740 		to_free[i] = get_qf_name(sb, sbi, i);
6741 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6742 	}
6743 	synchronize_rcu();
6744 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6745 		kfree(to_free[i]);
6746 #endif
6747 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6748 		ext4_stop_mmpd(sbi);
6749 	return err;
6750 }
6751 
6752 static int ext4_reconfigure(struct fs_context *fc)
6753 {
6754 	struct super_block *sb = fc->root->d_sb;
6755 	int ret;
6756 
6757 	fc->s_fs_info = EXT4_SB(sb);
6758 
6759 	ret = ext4_check_opt_consistency(fc, sb);
6760 	if (ret < 0)
6761 		return ret;
6762 
6763 	ret = __ext4_remount(fc, sb);
6764 	if (ret < 0)
6765 		return ret;
6766 
6767 	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6768 		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6769 		 ext4_quota_mode(sb));
6770 
6771 	return 0;
6772 }
6773 
6774 #ifdef CONFIG_QUOTA
6775 static int ext4_statfs_project(struct super_block *sb,
6776 			       kprojid_t projid, struct kstatfs *buf)
6777 {
6778 	struct kqid qid;
6779 	struct dquot *dquot;
6780 	u64 limit;
6781 	u64 curblock;
6782 
6783 	qid = make_kqid_projid(projid);
6784 	dquot = dqget(sb, qid);
6785 	if (IS_ERR(dquot))
6786 		return PTR_ERR(dquot);
6787 	spin_lock(&dquot->dq_dqb_lock);
6788 
6789 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6790 			     dquot->dq_dqb.dqb_bhardlimit);
6791 	limit >>= sb->s_blocksize_bits;
6792 
6793 	if (limit && buf->f_blocks > limit) {
6794 		curblock = (dquot->dq_dqb.dqb_curspace +
6795 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6796 		buf->f_blocks = limit;
6797 		buf->f_bfree = buf->f_bavail =
6798 			(buf->f_blocks > curblock) ?
6799 			 (buf->f_blocks - curblock) : 0;
6800 	}
6801 
6802 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6803 			     dquot->dq_dqb.dqb_ihardlimit);
6804 	if (limit && buf->f_files > limit) {
6805 		buf->f_files = limit;
6806 		buf->f_ffree =
6807 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6808 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6809 	}
6810 
6811 	spin_unlock(&dquot->dq_dqb_lock);
6812 	dqput(dquot);
6813 	return 0;
6814 }
6815 #endif
6816 
6817 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6818 {
6819 	struct super_block *sb = dentry->d_sb;
6820 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6821 	struct ext4_super_block *es = sbi->s_es;
6822 	ext4_fsblk_t overhead = 0, resv_blocks;
6823 	s64 bfree;
6824 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6825 
6826 	if (!test_opt(sb, MINIX_DF))
6827 		overhead = sbi->s_overhead;
6828 
6829 	buf->f_type = EXT4_SUPER_MAGIC;
6830 	buf->f_bsize = sb->s_blocksize;
6831 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6832 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6833 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6834 	/* prevent underflow in case that few free space is available */
6835 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6836 	buf->f_bavail = buf->f_bfree -
6837 			(ext4_r_blocks_count(es) + resv_blocks);
6838 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6839 		buf->f_bavail = 0;
6840 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6841 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6842 	buf->f_namelen = EXT4_NAME_LEN;
6843 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6844 
6845 #ifdef CONFIG_QUOTA
6846 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6847 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6848 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6849 #endif
6850 	return 0;
6851 }
6852 
6853 
6854 #ifdef CONFIG_QUOTA
6855 
6856 /*
6857  * Helper functions so that transaction is started before we acquire dqio_sem
6858  * to keep correct lock ordering of transaction > dqio_sem
6859  */
6860 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6861 {
6862 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6863 }
6864 
6865 static int ext4_write_dquot(struct dquot *dquot)
6866 {
6867 	int ret, err;
6868 	handle_t *handle;
6869 	struct inode *inode;
6870 
6871 	inode = dquot_to_inode(dquot);
6872 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6873 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6874 	if (IS_ERR(handle))
6875 		return PTR_ERR(handle);
6876 	ret = dquot_commit(dquot);
6877 	err = ext4_journal_stop(handle);
6878 	if (!ret)
6879 		ret = err;
6880 	return ret;
6881 }
6882 
6883 static int ext4_acquire_dquot(struct dquot *dquot)
6884 {
6885 	int ret, err;
6886 	handle_t *handle;
6887 
6888 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6889 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6890 	if (IS_ERR(handle))
6891 		return PTR_ERR(handle);
6892 	ret = dquot_acquire(dquot);
6893 	err = ext4_journal_stop(handle);
6894 	if (!ret)
6895 		ret = err;
6896 	return ret;
6897 }
6898 
6899 static int ext4_release_dquot(struct dquot *dquot)
6900 {
6901 	int ret, err;
6902 	handle_t *handle;
6903 
6904 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6905 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6906 	if (IS_ERR(handle)) {
6907 		/* Release dquot anyway to avoid endless cycle in dqput() */
6908 		dquot_release(dquot);
6909 		return PTR_ERR(handle);
6910 	}
6911 	ret = dquot_release(dquot);
6912 	err = ext4_journal_stop(handle);
6913 	if (!ret)
6914 		ret = err;
6915 	return ret;
6916 }
6917 
6918 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6919 {
6920 	struct super_block *sb = dquot->dq_sb;
6921 
6922 	if (ext4_is_quota_journalled(sb)) {
6923 		dquot_mark_dquot_dirty(dquot);
6924 		return ext4_write_dquot(dquot);
6925 	} else {
6926 		return dquot_mark_dquot_dirty(dquot);
6927 	}
6928 }
6929 
6930 static int ext4_write_info(struct super_block *sb, int type)
6931 {
6932 	int ret, err;
6933 	handle_t *handle;
6934 
6935 	/* Data block + inode block */
6936 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6937 	if (IS_ERR(handle))
6938 		return PTR_ERR(handle);
6939 	ret = dquot_commit_info(sb, type);
6940 	err = ext4_journal_stop(handle);
6941 	if (!ret)
6942 		ret = err;
6943 	return ret;
6944 }
6945 
6946 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6947 {
6948 	struct ext4_inode_info *ei = EXT4_I(inode);
6949 
6950 	/* The first argument of lockdep_set_subclass has to be
6951 	 * *exactly* the same as the argument to init_rwsem() --- in
6952 	 * this case, in init_once() --- or lockdep gets unhappy
6953 	 * because the name of the lock is set using the
6954 	 * stringification of the argument to init_rwsem().
6955 	 */
6956 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6957 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6958 }
6959 
6960 /*
6961  * Standard function to be called on quota_on
6962  */
6963 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6964 			 const struct path *path)
6965 {
6966 	int err;
6967 
6968 	if (!test_opt(sb, QUOTA))
6969 		return -EINVAL;
6970 
6971 	/* Quotafile not on the same filesystem? */
6972 	if (path->dentry->d_sb != sb)
6973 		return -EXDEV;
6974 
6975 	/* Quota already enabled for this file? */
6976 	if (IS_NOQUOTA(d_inode(path->dentry)))
6977 		return -EBUSY;
6978 
6979 	/* Journaling quota? */
6980 	if (EXT4_SB(sb)->s_qf_names[type]) {
6981 		/* Quotafile not in fs root? */
6982 		if (path->dentry->d_parent != sb->s_root)
6983 			ext4_msg(sb, KERN_WARNING,
6984 				"Quota file not on filesystem root. "
6985 				"Journaled quota will not work");
6986 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6987 	} else {
6988 		/*
6989 		 * Clear the flag just in case mount options changed since
6990 		 * last time.
6991 		 */
6992 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6993 	}
6994 
6995 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6996 	err = dquot_quota_on(sb, type, format_id, path);
6997 	if (!err) {
6998 		struct inode *inode = d_inode(path->dentry);
6999 		handle_t *handle;
7000 
7001 		/*
7002 		 * Set inode flags to prevent userspace from messing with quota
7003 		 * files. If this fails, we return success anyway since quotas
7004 		 * are already enabled and this is not a hard failure.
7005 		 */
7006 		inode_lock(inode);
7007 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7008 		if (IS_ERR(handle))
7009 			goto unlock_inode;
7010 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7011 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7012 				S_NOATIME | S_IMMUTABLE);
7013 		err = ext4_mark_inode_dirty(handle, inode);
7014 		ext4_journal_stop(handle);
7015 	unlock_inode:
7016 		inode_unlock(inode);
7017 		if (err)
7018 			dquot_quota_off(sb, type);
7019 	}
7020 	if (err)
7021 		lockdep_set_quota_inode(path->dentry->d_inode,
7022 					     I_DATA_SEM_NORMAL);
7023 	return err;
7024 }
7025 
7026 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7027 {
7028 	switch (type) {
7029 	case USRQUOTA:
7030 		return qf_inum == EXT4_USR_QUOTA_INO;
7031 	case GRPQUOTA:
7032 		return qf_inum == EXT4_GRP_QUOTA_INO;
7033 	case PRJQUOTA:
7034 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7035 	default:
7036 		BUG();
7037 	}
7038 }
7039 
7040 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7041 			     unsigned int flags)
7042 {
7043 	int err;
7044 	struct inode *qf_inode;
7045 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7046 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7047 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7048 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7049 	};
7050 
7051 	BUG_ON(!ext4_has_feature_quota(sb));
7052 
7053 	if (!qf_inums[type])
7054 		return -EPERM;
7055 
7056 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7057 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7058 				qf_inums[type], type);
7059 		return -EUCLEAN;
7060 	}
7061 
7062 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7063 	if (IS_ERR(qf_inode)) {
7064 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7065 				qf_inums[type], type);
7066 		return PTR_ERR(qf_inode);
7067 	}
7068 
7069 	/* Don't account quota for quota files to avoid recursion */
7070 	qf_inode->i_flags |= S_NOQUOTA;
7071 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7072 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7073 	if (err)
7074 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7075 	iput(qf_inode);
7076 
7077 	return err;
7078 }
7079 
7080 /* Enable usage tracking for all quota types. */
7081 int ext4_enable_quotas(struct super_block *sb)
7082 {
7083 	int type, err = 0;
7084 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7085 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7086 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7087 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7088 	};
7089 	bool quota_mopt[EXT4_MAXQUOTAS] = {
7090 		test_opt(sb, USRQUOTA),
7091 		test_opt(sb, GRPQUOTA),
7092 		test_opt(sb, PRJQUOTA),
7093 	};
7094 
7095 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7096 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7097 		if (qf_inums[type]) {
7098 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7099 				DQUOT_USAGE_ENABLED |
7100 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7101 			if (err) {
7102 				ext4_warning(sb,
7103 					"Failed to enable quota tracking "
7104 					"(type=%d, err=%d, ino=%lu). "
7105 					"Please run e2fsck to fix.", type,
7106 					err, qf_inums[type]);
7107 
7108 				ext4_quotas_off(sb, type);
7109 				return err;
7110 			}
7111 		}
7112 	}
7113 	return 0;
7114 }
7115 
7116 static int ext4_quota_off(struct super_block *sb, int type)
7117 {
7118 	struct inode *inode = sb_dqopt(sb)->files[type];
7119 	handle_t *handle;
7120 	int err;
7121 
7122 	/* Force all delayed allocation blocks to be allocated.
7123 	 * Caller already holds s_umount sem */
7124 	if (test_opt(sb, DELALLOC))
7125 		sync_filesystem(sb);
7126 
7127 	if (!inode || !igrab(inode))
7128 		goto out;
7129 
7130 	err = dquot_quota_off(sb, type);
7131 	if (err || ext4_has_feature_quota(sb))
7132 		goto out_put;
7133 	/*
7134 	 * When the filesystem was remounted read-only first, we cannot cleanup
7135 	 * inode flags here. Bad luck but people should be using QUOTA feature
7136 	 * these days anyway.
7137 	 */
7138 	if (sb_rdonly(sb))
7139 		goto out_put;
7140 
7141 	inode_lock(inode);
7142 	/*
7143 	 * Update modification times of quota files when userspace can
7144 	 * start looking at them. If we fail, we return success anyway since
7145 	 * this is not a hard failure and quotas are already disabled.
7146 	 */
7147 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7148 	if (IS_ERR(handle)) {
7149 		err = PTR_ERR(handle);
7150 		goto out_unlock;
7151 	}
7152 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7153 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7154 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7155 	err = ext4_mark_inode_dirty(handle, inode);
7156 	ext4_journal_stop(handle);
7157 out_unlock:
7158 	inode_unlock(inode);
7159 out_put:
7160 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7161 	iput(inode);
7162 	return err;
7163 out:
7164 	return dquot_quota_off(sb, type);
7165 }
7166 
7167 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7168  * acquiring the locks... As quota files are never truncated and quota code
7169  * itself serializes the operations (and no one else should touch the files)
7170  * we don't have to be afraid of races */
7171 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7172 			       size_t len, loff_t off)
7173 {
7174 	struct inode *inode = sb_dqopt(sb)->files[type];
7175 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7176 	int offset = off & (sb->s_blocksize - 1);
7177 	int tocopy;
7178 	size_t toread;
7179 	struct buffer_head *bh;
7180 	loff_t i_size = i_size_read(inode);
7181 
7182 	if (off > i_size)
7183 		return 0;
7184 	if (off+len > i_size)
7185 		len = i_size-off;
7186 	toread = len;
7187 	while (toread > 0) {
7188 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7189 		bh = ext4_bread(NULL, inode, blk, 0);
7190 		if (IS_ERR(bh))
7191 			return PTR_ERR(bh);
7192 		if (!bh)	/* A hole? */
7193 			memset(data, 0, tocopy);
7194 		else
7195 			memcpy(data, bh->b_data+offset, tocopy);
7196 		brelse(bh);
7197 		offset = 0;
7198 		toread -= tocopy;
7199 		data += tocopy;
7200 		blk++;
7201 	}
7202 	return len;
7203 }
7204 
7205 /* Write to quotafile (we know the transaction is already started and has
7206  * enough credits) */
7207 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7208 				const char *data, size_t len, loff_t off)
7209 {
7210 	struct inode *inode = sb_dqopt(sb)->files[type];
7211 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7212 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7213 	int retries = 0;
7214 	struct buffer_head *bh;
7215 	handle_t *handle = journal_current_handle();
7216 
7217 	if (!handle) {
7218 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7219 			" cancelled because transaction is not started",
7220 			(unsigned long long)off, (unsigned long long)len);
7221 		return -EIO;
7222 	}
7223 	/*
7224 	 * Since we account only one data block in transaction credits,
7225 	 * then it is impossible to cross a block boundary.
7226 	 */
7227 	if (sb->s_blocksize - offset < len) {
7228 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7229 			" cancelled because not block aligned",
7230 			(unsigned long long)off, (unsigned long long)len);
7231 		return -EIO;
7232 	}
7233 
7234 	do {
7235 		bh = ext4_bread(handle, inode, blk,
7236 				EXT4_GET_BLOCKS_CREATE |
7237 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7238 	} while (PTR_ERR(bh) == -ENOSPC &&
7239 		 ext4_should_retry_alloc(inode->i_sb, &retries));
7240 	if (IS_ERR(bh))
7241 		return PTR_ERR(bh);
7242 	if (!bh)
7243 		goto out;
7244 	BUFFER_TRACE(bh, "get write access");
7245 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7246 	if (err) {
7247 		brelse(bh);
7248 		return err;
7249 	}
7250 	lock_buffer(bh);
7251 	memcpy(bh->b_data+offset, data, len);
7252 	flush_dcache_page(bh->b_page);
7253 	unlock_buffer(bh);
7254 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7255 	brelse(bh);
7256 out:
7257 	if (inode->i_size < off + len) {
7258 		i_size_write(inode, off + len);
7259 		EXT4_I(inode)->i_disksize = inode->i_size;
7260 		err2 = ext4_mark_inode_dirty(handle, inode);
7261 		if (unlikely(err2 && !err))
7262 			err = err2;
7263 	}
7264 	return err ? err : len;
7265 }
7266 #endif
7267 
7268 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7269 static inline void register_as_ext2(void)
7270 {
7271 	int err = register_filesystem(&ext2_fs_type);
7272 	if (err)
7273 		printk(KERN_WARNING
7274 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7275 }
7276 
7277 static inline void unregister_as_ext2(void)
7278 {
7279 	unregister_filesystem(&ext2_fs_type);
7280 }
7281 
7282 static inline int ext2_feature_set_ok(struct super_block *sb)
7283 {
7284 	if (ext4_has_unknown_ext2_incompat_features(sb))
7285 		return 0;
7286 	if (sb_rdonly(sb))
7287 		return 1;
7288 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7289 		return 0;
7290 	return 1;
7291 }
7292 #else
7293 static inline void register_as_ext2(void) { }
7294 static inline void unregister_as_ext2(void) { }
7295 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7296 #endif
7297 
7298 static inline void register_as_ext3(void)
7299 {
7300 	int err = register_filesystem(&ext3_fs_type);
7301 	if (err)
7302 		printk(KERN_WARNING
7303 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7304 }
7305 
7306 static inline void unregister_as_ext3(void)
7307 {
7308 	unregister_filesystem(&ext3_fs_type);
7309 }
7310 
7311 static inline int ext3_feature_set_ok(struct super_block *sb)
7312 {
7313 	if (ext4_has_unknown_ext3_incompat_features(sb))
7314 		return 0;
7315 	if (!ext4_has_feature_journal(sb))
7316 		return 0;
7317 	if (sb_rdonly(sb))
7318 		return 1;
7319 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7320 		return 0;
7321 	return 1;
7322 }
7323 
7324 static void ext4_kill_sb(struct super_block *sb)
7325 {
7326 	struct ext4_sb_info *sbi = EXT4_SB(sb);
7327 	struct bdev_handle *handle = sbi ? sbi->s_journal_bdev_handle : NULL;
7328 
7329 	kill_block_super(sb);
7330 
7331 	if (handle)
7332 		bdev_release(handle);
7333 }
7334 
7335 static struct file_system_type ext4_fs_type = {
7336 	.owner			= THIS_MODULE,
7337 	.name			= "ext4",
7338 	.init_fs_context	= ext4_init_fs_context,
7339 	.parameters		= ext4_param_specs,
7340 	.kill_sb		= ext4_kill_sb,
7341 	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7342 };
7343 MODULE_ALIAS_FS("ext4");
7344 
7345 /* Shared across all ext4 file systems */
7346 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7347 
7348 static int __init ext4_init_fs(void)
7349 {
7350 	int i, err;
7351 
7352 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7353 	ext4_li_info = NULL;
7354 
7355 	/* Build-time check for flags consistency */
7356 	ext4_check_flag_values();
7357 
7358 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7359 		init_waitqueue_head(&ext4__ioend_wq[i]);
7360 
7361 	err = ext4_init_es();
7362 	if (err)
7363 		return err;
7364 
7365 	err = ext4_init_pending();
7366 	if (err)
7367 		goto out7;
7368 
7369 	err = ext4_init_post_read_processing();
7370 	if (err)
7371 		goto out6;
7372 
7373 	err = ext4_init_pageio();
7374 	if (err)
7375 		goto out5;
7376 
7377 	err = ext4_init_system_zone();
7378 	if (err)
7379 		goto out4;
7380 
7381 	err = ext4_init_sysfs();
7382 	if (err)
7383 		goto out3;
7384 
7385 	err = ext4_init_mballoc();
7386 	if (err)
7387 		goto out2;
7388 	err = init_inodecache();
7389 	if (err)
7390 		goto out1;
7391 
7392 	err = ext4_fc_init_dentry_cache();
7393 	if (err)
7394 		goto out05;
7395 
7396 	register_as_ext3();
7397 	register_as_ext2();
7398 	err = register_filesystem(&ext4_fs_type);
7399 	if (err)
7400 		goto out;
7401 
7402 	return 0;
7403 out:
7404 	unregister_as_ext2();
7405 	unregister_as_ext3();
7406 	ext4_fc_destroy_dentry_cache();
7407 out05:
7408 	destroy_inodecache();
7409 out1:
7410 	ext4_exit_mballoc();
7411 out2:
7412 	ext4_exit_sysfs();
7413 out3:
7414 	ext4_exit_system_zone();
7415 out4:
7416 	ext4_exit_pageio();
7417 out5:
7418 	ext4_exit_post_read_processing();
7419 out6:
7420 	ext4_exit_pending();
7421 out7:
7422 	ext4_exit_es();
7423 
7424 	return err;
7425 }
7426 
7427 static void __exit ext4_exit_fs(void)
7428 {
7429 	ext4_destroy_lazyinit_thread();
7430 	unregister_as_ext2();
7431 	unregister_as_ext3();
7432 	unregister_filesystem(&ext4_fs_type);
7433 	ext4_fc_destroy_dentry_cache();
7434 	destroy_inodecache();
7435 	ext4_exit_mballoc();
7436 	ext4_exit_sysfs();
7437 	ext4_exit_system_zone();
7438 	ext4_exit_pageio();
7439 	ext4_exit_post_read_processing();
7440 	ext4_exit_es();
7441 	ext4_exit_pending();
7442 }
7443 
7444 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7445 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7446 MODULE_LICENSE("GPL");
7447 MODULE_SOFTDEP("pre: crc32c");
7448 module_init(ext4_init_fs)
7449 module_exit(ext4_exit_fs)
7450