xref: /linux/fs/ext4/page-io.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  * linux/fs/ext4/page-io.c
3  *
4  * This contains the new page_io functions for ext4
5  *
6  * Written by Theodore Ts'o, 2010.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/highuid.h>
12 #include <linux/pagemap.h>
13 #include <linux/quotaops.h>
14 #include <linux/string.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include <linux/mpage.h>
19 #include <linux/namei.h>
20 #include <linux/uio.h>
21 #include <linux/bio.h>
22 #include <linux/workqueue.h>
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30 
31 static struct kmem_cache *io_end_cachep;
32 
33 int __init ext4_init_pageio(void)
34 {
35 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
36 	if (io_end_cachep == NULL)
37 		return -ENOMEM;
38 	return 0;
39 }
40 
41 void ext4_exit_pageio(void)
42 {
43 	kmem_cache_destroy(io_end_cachep);
44 }
45 
46 /*
47  * Print an buffer I/O error compatible with the fs/buffer.c.  This
48  * provides compatibility with dmesg scrapers that look for a specific
49  * buffer I/O error message.  We really need a unified error reporting
50  * structure to userspace ala Digital Unix's uerf system, but it's
51  * probably not going to happen in my lifetime, due to LKML politics...
52  */
53 static void buffer_io_error(struct buffer_head *bh)
54 {
55 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
56 		       bh->b_bdev,
57 			(unsigned long long)bh->b_blocknr);
58 }
59 
60 static void ext4_finish_bio(struct bio *bio)
61 {
62 	int i;
63 	struct bio_vec *bvec;
64 
65 	bio_for_each_segment_all(bvec, bio, i) {
66 		struct page *page = bvec->bv_page;
67 #ifdef CONFIG_EXT4_FS_ENCRYPTION
68 		struct page *data_page = NULL;
69 		struct ext4_crypto_ctx *ctx = NULL;
70 #endif
71 		struct buffer_head *bh, *head;
72 		unsigned bio_start = bvec->bv_offset;
73 		unsigned bio_end = bio_start + bvec->bv_len;
74 		unsigned under_io = 0;
75 		unsigned long flags;
76 
77 		if (!page)
78 			continue;
79 
80 #ifdef CONFIG_EXT4_FS_ENCRYPTION
81 		if (!page->mapping) {
82 			/* The bounce data pages are unmapped. */
83 			data_page = page;
84 			ctx = (struct ext4_crypto_ctx *)page_private(data_page);
85 			page = ctx->w.control_page;
86 		}
87 #endif
88 
89 		if (bio->bi_error) {
90 			SetPageError(page);
91 			set_bit(AS_EIO, &page->mapping->flags);
92 		}
93 		bh = head = page_buffers(page);
94 		/*
95 		 * We check all buffers in the page under BH_Uptodate_Lock
96 		 * to avoid races with other end io clearing async_write flags
97 		 */
98 		local_irq_save(flags);
99 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
100 		do {
101 			if (bh_offset(bh) < bio_start ||
102 			    bh_offset(bh) + bh->b_size > bio_end) {
103 				if (buffer_async_write(bh))
104 					under_io++;
105 				continue;
106 			}
107 			clear_buffer_async_write(bh);
108 			if (bio->bi_error)
109 				buffer_io_error(bh);
110 		} while ((bh = bh->b_this_page) != head);
111 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
112 		local_irq_restore(flags);
113 		if (!under_io) {
114 #ifdef CONFIG_EXT4_FS_ENCRYPTION
115 			if (ctx)
116 				ext4_restore_control_page(data_page);
117 #endif
118 			end_page_writeback(page);
119 		}
120 	}
121 }
122 
123 static void ext4_release_io_end(ext4_io_end_t *io_end)
124 {
125 	struct bio *bio, *next_bio;
126 
127 	BUG_ON(!list_empty(&io_end->list));
128 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
129 	WARN_ON(io_end->handle);
130 
131 	for (bio = io_end->bio; bio; bio = next_bio) {
132 		next_bio = bio->bi_private;
133 		ext4_finish_bio(bio);
134 		bio_put(bio);
135 	}
136 	kmem_cache_free(io_end_cachep, io_end);
137 }
138 
139 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
140 {
141 	struct inode *inode = io_end->inode;
142 
143 	io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
144 	/* Wake up anyone waiting on unwritten extent conversion */
145 	if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
146 		wake_up_all(ext4_ioend_wq(inode));
147 }
148 
149 /*
150  * Check a range of space and convert unwritten extents to written. Note that
151  * we are protected from truncate touching same part of extent tree by the
152  * fact that truncate code waits for all DIO to finish (thus exclusion from
153  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
154  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
155  * completed (happens from ext4_free_ioend()).
156  */
157 static int ext4_end_io(ext4_io_end_t *io)
158 {
159 	struct inode *inode = io->inode;
160 	loff_t offset = io->offset;
161 	ssize_t size = io->size;
162 	handle_t *handle = io->handle;
163 	int ret = 0;
164 
165 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
166 		   "list->prev 0x%p\n",
167 		   io, inode->i_ino, io->list.next, io->list.prev);
168 
169 	io->handle = NULL;	/* Following call will use up the handle */
170 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
171 	if (ret < 0) {
172 		ext4_msg(inode->i_sb, KERN_EMERG,
173 			 "failed to convert unwritten extents to written "
174 			 "extents -- potential data loss!  "
175 			 "(inode %lu, offset %llu, size %zd, error %d)",
176 			 inode->i_ino, offset, size, ret);
177 	}
178 	ext4_clear_io_unwritten_flag(io);
179 	ext4_release_io_end(io);
180 	return ret;
181 }
182 
183 static void dump_completed_IO(struct inode *inode, struct list_head *head)
184 {
185 #ifdef	EXT4FS_DEBUG
186 	struct list_head *cur, *before, *after;
187 	ext4_io_end_t *io, *io0, *io1;
188 
189 	if (list_empty(head))
190 		return;
191 
192 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
193 	list_for_each_entry(io, head, list) {
194 		cur = &io->list;
195 		before = cur->prev;
196 		io0 = container_of(before, ext4_io_end_t, list);
197 		after = cur->next;
198 		io1 = container_of(after, ext4_io_end_t, list);
199 
200 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
201 			    io, inode->i_ino, io0, io1);
202 	}
203 #endif
204 }
205 
206 /* Add the io_end to per-inode completed end_io list. */
207 static void ext4_add_complete_io(ext4_io_end_t *io_end)
208 {
209 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
210 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
211 	struct workqueue_struct *wq;
212 	unsigned long flags;
213 
214 	/* Only reserved conversions from writeback should enter here */
215 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
216 	WARN_ON(!io_end->handle && sbi->s_journal);
217 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
218 	wq = sbi->rsv_conversion_wq;
219 	if (list_empty(&ei->i_rsv_conversion_list))
220 		queue_work(wq, &ei->i_rsv_conversion_work);
221 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
222 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
223 }
224 
225 static int ext4_do_flush_completed_IO(struct inode *inode,
226 				      struct list_head *head)
227 {
228 	ext4_io_end_t *io;
229 	struct list_head unwritten;
230 	unsigned long flags;
231 	struct ext4_inode_info *ei = EXT4_I(inode);
232 	int err, ret = 0;
233 
234 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
235 	dump_completed_IO(inode, head);
236 	list_replace_init(head, &unwritten);
237 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
238 
239 	while (!list_empty(&unwritten)) {
240 		io = list_entry(unwritten.next, ext4_io_end_t, list);
241 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
242 		list_del_init(&io->list);
243 
244 		err = ext4_end_io(io);
245 		if (unlikely(!ret && err))
246 			ret = err;
247 	}
248 	return ret;
249 }
250 
251 /*
252  * work on completed IO, to convert unwritten extents to extents
253  */
254 void ext4_end_io_rsv_work(struct work_struct *work)
255 {
256 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
257 						  i_rsv_conversion_work);
258 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
259 }
260 
261 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
262 {
263 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
264 	if (io) {
265 		io->inode = inode;
266 		INIT_LIST_HEAD(&io->list);
267 		atomic_set(&io->count, 1);
268 	}
269 	return io;
270 }
271 
272 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
273 {
274 	if (atomic_dec_and_test(&io_end->count)) {
275 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
276 			ext4_release_io_end(io_end);
277 			return;
278 		}
279 		ext4_add_complete_io(io_end);
280 	}
281 }
282 
283 int ext4_put_io_end(ext4_io_end_t *io_end)
284 {
285 	int err = 0;
286 
287 	if (atomic_dec_and_test(&io_end->count)) {
288 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
289 			err = ext4_convert_unwritten_extents(io_end->handle,
290 						io_end->inode, io_end->offset,
291 						io_end->size);
292 			io_end->handle = NULL;
293 			ext4_clear_io_unwritten_flag(io_end);
294 		}
295 		ext4_release_io_end(io_end);
296 	}
297 	return err;
298 }
299 
300 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
301 {
302 	atomic_inc(&io_end->count);
303 	return io_end;
304 }
305 
306 /* BIO completion function for page writeback */
307 static void ext4_end_bio(struct bio *bio)
308 {
309 	ext4_io_end_t *io_end = bio->bi_private;
310 	sector_t bi_sector = bio->bi_iter.bi_sector;
311 
312 	BUG_ON(!io_end);
313 	bio->bi_end_io = NULL;
314 
315 	if (bio->bi_error) {
316 		struct inode *inode = io_end->inode;
317 
318 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
319 			     "(offset %llu size %ld starting block %llu)",
320 			     bio->bi_error, inode->i_ino,
321 			     (unsigned long long) io_end->offset,
322 			     (long) io_end->size,
323 			     (unsigned long long)
324 			     bi_sector >> (inode->i_blkbits - 9));
325 		mapping_set_error(inode->i_mapping, bio->bi_error);
326 	}
327 
328 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
329 		/*
330 		 * Link bio into list hanging from io_end. We have to do it
331 		 * atomically as bio completions can be racing against each
332 		 * other.
333 		 */
334 		bio->bi_private = xchg(&io_end->bio, bio);
335 		ext4_put_io_end_defer(io_end);
336 	} else {
337 		/*
338 		 * Drop io_end reference early. Inode can get freed once
339 		 * we finish the bio.
340 		 */
341 		ext4_put_io_end_defer(io_end);
342 		ext4_finish_bio(bio);
343 		bio_put(bio);
344 	}
345 }
346 
347 void ext4_io_submit(struct ext4_io_submit *io)
348 {
349 	struct bio *bio = io->io_bio;
350 
351 	if (bio) {
352 		int io_op = io->io_wbc->sync_mode == WB_SYNC_ALL ?
353 			    WRITE_SYNC : WRITE;
354 		bio_get(io->io_bio);
355 		submit_bio(io_op, io->io_bio);
356 		bio_put(io->io_bio);
357 	}
358 	io->io_bio = NULL;
359 }
360 
361 void ext4_io_submit_init(struct ext4_io_submit *io,
362 			 struct writeback_control *wbc)
363 {
364 	io->io_wbc = wbc;
365 	io->io_bio = NULL;
366 	io->io_end = NULL;
367 }
368 
369 static int io_submit_init_bio(struct ext4_io_submit *io,
370 			      struct buffer_head *bh)
371 {
372 	struct bio *bio;
373 
374 	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
375 	if (!bio)
376 		return -ENOMEM;
377 	wbc_init_bio(io->io_wbc, bio);
378 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
379 	bio->bi_bdev = bh->b_bdev;
380 	bio->bi_end_io = ext4_end_bio;
381 	bio->bi_private = ext4_get_io_end(io->io_end);
382 	io->io_bio = bio;
383 	io->io_next_block = bh->b_blocknr;
384 	return 0;
385 }
386 
387 static int io_submit_add_bh(struct ext4_io_submit *io,
388 			    struct inode *inode,
389 			    struct page *page,
390 			    struct buffer_head *bh)
391 {
392 	int ret;
393 
394 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
395 submit_and_retry:
396 		ext4_io_submit(io);
397 	}
398 	if (io->io_bio == NULL) {
399 		ret = io_submit_init_bio(io, bh);
400 		if (ret)
401 			return ret;
402 	}
403 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
404 	if (ret != bh->b_size)
405 		goto submit_and_retry;
406 	wbc_account_io(io->io_wbc, page, bh->b_size);
407 	io->io_next_block++;
408 	return 0;
409 }
410 
411 int ext4_bio_write_page(struct ext4_io_submit *io,
412 			struct page *page,
413 			int len,
414 			struct writeback_control *wbc,
415 			bool keep_towrite)
416 {
417 	struct page *data_page = NULL;
418 	struct inode *inode = page->mapping->host;
419 	unsigned block_start, blocksize;
420 	struct buffer_head *bh, *head;
421 	int ret = 0;
422 	int nr_submitted = 0;
423 	int nr_to_submit = 0;
424 
425 	blocksize = 1 << inode->i_blkbits;
426 
427 	BUG_ON(!PageLocked(page));
428 	BUG_ON(PageWriteback(page));
429 
430 	if (keep_towrite)
431 		set_page_writeback_keepwrite(page);
432 	else
433 		set_page_writeback(page);
434 	ClearPageError(page);
435 
436 	/*
437 	 * Comments copied from block_write_full_page:
438 	 *
439 	 * The page straddles i_size.  It must be zeroed out on each and every
440 	 * writepage invocation because it may be mmapped.  "A file is mapped
441 	 * in multiples of the page size.  For a file that is not a multiple of
442 	 * the page size, the remaining memory is zeroed when mapped, and
443 	 * writes to that region are not written out to the file."
444 	 */
445 	if (len < PAGE_CACHE_SIZE)
446 		zero_user_segment(page, len, PAGE_CACHE_SIZE);
447 	/*
448 	 * In the first loop we prepare and mark buffers to submit. We have to
449 	 * mark all buffers in the page before submitting so that
450 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
451 	 * on the first buffer finishes and we are still working on submitting
452 	 * the second buffer.
453 	 */
454 	bh = head = page_buffers(page);
455 	do {
456 		block_start = bh_offset(bh);
457 		if (block_start >= len) {
458 			clear_buffer_dirty(bh);
459 			set_buffer_uptodate(bh);
460 			continue;
461 		}
462 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
463 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
464 			/* A hole? We can safely clear the dirty bit */
465 			if (!buffer_mapped(bh))
466 				clear_buffer_dirty(bh);
467 			if (io->io_bio)
468 				ext4_io_submit(io);
469 			continue;
470 		}
471 		if (buffer_new(bh)) {
472 			clear_buffer_new(bh);
473 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
474 		}
475 		set_buffer_async_write(bh);
476 		nr_to_submit++;
477 	} while ((bh = bh->b_this_page) != head);
478 
479 	bh = head = page_buffers(page);
480 
481 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) &&
482 	    nr_to_submit) {
483 		data_page = ext4_encrypt(inode, page);
484 		if (IS_ERR(data_page)) {
485 			ret = PTR_ERR(data_page);
486 			data_page = NULL;
487 			goto out;
488 		}
489 	}
490 
491 	/* Now submit buffers to write */
492 	do {
493 		if (!buffer_async_write(bh))
494 			continue;
495 		ret = io_submit_add_bh(io, inode,
496 				       data_page ? data_page : page, bh);
497 		if (ret) {
498 			/*
499 			 * We only get here on ENOMEM.  Not much else
500 			 * we can do but mark the page as dirty, and
501 			 * better luck next time.
502 			 */
503 			break;
504 		}
505 		nr_submitted++;
506 		clear_buffer_dirty(bh);
507 	} while ((bh = bh->b_this_page) != head);
508 
509 	/* Error stopped previous loop? Clean up buffers... */
510 	if (ret) {
511 	out:
512 		if (data_page)
513 			ext4_restore_control_page(data_page);
514 		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
515 		redirty_page_for_writepage(wbc, page);
516 		do {
517 			clear_buffer_async_write(bh);
518 			bh = bh->b_this_page;
519 		} while (bh != head);
520 	}
521 	unlock_page(page);
522 	/* Nothing submitted - we have to end page writeback */
523 	if (!nr_submitted)
524 		end_page_writeback(page);
525 	return ret;
526 }
527