xref: /linux/fs/ext4/inode.c (revision 9f69e8a71026839d4bd2e0c6d269600bfaa6f84d)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
39 
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
44 
45 #include <trace/events/ext4.h>
46 
47 #define MPAGE_DA_EXTENT_TAIL 0x01
48 
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50 			      struct ext4_inode_info *ei)
51 {
52 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 	__u16 csum_lo;
54 	__u16 csum_hi = 0;
55 	__u32 csum;
56 
57 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
58 	raw->i_checksum_lo = 0;
59 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
62 		raw->i_checksum_hi = 0;
63 	}
64 
65 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66 			   EXT4_INODE_SIZE(inode->i_sb));
67 
68 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
69 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
72 
73 	return csum;
74 }
75 
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77 				  struct ext4_inode_info *ei)
78 {
79 	__u32 provided, calculated;
80 
81 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82 	    cpu_to_le32(EXT4_OS_LINUX) ||
83 	    !ext4_has_metadata_csum(inode->i_sb))
84 		return 1;
85 
86 	provided = le16_to_cpu(raw->i_checksum_lo);
87 	calculated = ext4_inode_csum(inode, raw, ei);
88 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91 	else
92 		calculated &= 0xFFFF;
93 
94 	return provided == calculated;
95 }
96 
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98 				struct ext4_inode_info *ei)
99 {
100 	__u32 csum;
101 
102 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103 	    cpu_to_le32(EXT4_OS_LINUX) ||
104 	    !ext4_has_metadata_csum(inode->i_sb))
105 		return;
106 
107 	csum = ext4_inode_csum(inode, raw, ei);
108 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112 }
113 
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115 					      loff_t new_size)
116 {
117 	trace_ext4_begin_ordered_truncate(inode, new_size);
118 	/*
119 	 * If jinode is zero, then we never opened the file for
120 	 * writing, so there's no need to call
121 	 * jbd2_journal_begin_ordered_truncate() since there's no
122 	 * outstanding writes we need to flush.
123 	 */
124 	if (!EXT4_I(inode)->jinode)
125 		return 0;
126 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127 						   EXT4_I(inode)->jinode,
128 						   new_size);
129 }
130 
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132 				unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136 				  int pextents);
137 
138 /*
139  * Test whether an inode is a fast symlink.
140  */
141 int ext4_inode_is_fast_symlink(struct inode *inode)
142 {
143         int ea_blocks = EXT4_I(inode)->i_file_acl ?
144 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145 
146 	if (ext4_has_inline_data(inode))
147 		return 0;
148 
149 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151 
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 				 int nblocks)
159 {
160 	int ret;
161 
162 	/*
163 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 	 * moment, get_block can be called only for blocks inside i_size since
165 	 * page cache has been already dropped and writes are blocked by
166 	 * i_mutex. So we can safely drop the i_data_sem here.
167 	 */
168 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 	jbd_debug(2, "restarting handle %p\n", handle);
170 	up_write(&EXT4_I(inode)->i_data_sem);
171 	ret = ext4_journal_restart(handle, nblocks);
172 	down_write(&EXT4_I(inode)->i_data_sem);
173 	ext4_discard_preallocations(inode);
174 
175 	return ret;
176 }
177 
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183 	handle_t *handle;
184 	int err;
185 
186 	trace_ext4_evict_inode(inode);
187 
188 	if (inode->i_nlink) {
189 		/*
190 		 * When journalling data dirty buffers are tracked only in the
191 		 * journal. So although mm thinks everything is clean and
192 		 * ready for reaping the inode might still have some pages to
193 		 * write in the running transaction or waiting to be
194 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 		 * (via truncate_inode_pages()) to discard these buffers can
196 		 * cause data loss. Also even if we did not discard these
197 		 * buffers, we would have no way to find them after the inode
198 		 * is reaped and thus user could see stale data if he tries to
199 		 * read them before the transaction is checkpointed. So be
200 		 * careful and force everything to disk here... We use
201 		 * ei->i_datasync_tid to store the newest transaction
202 		 * containing inode's data.
203 		 *
204 		 * Note that directories do not have this problem because they
205 		 * don't use page cache.
206 		 */
207 		if (ext4_should_journal_data(inode) &&
208 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 		    inode->i_ino != EXT4_JOURNAL_INO) {
210 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212 
213 			jbd2_complete_transaction(journal, commit_tid);
214 			filemap_write_and_wait(&inode->i_data);
215 		}
216 		truncate_inode_pages_final(&inode->i_data);
217 
218 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219 		goto no_delete;
220 	}
221 
222 	if (is_bad_inode(inode))
223 		goto no_delete;
224 	dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages_final(&inode->i_data);
229 
230 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 
232 	/*
233 	 * Protect us against freezing - iput() caller didn't have to have any
234 	 * protection against it
235 	 */
236 	sb_start_intwrite(inode->i_sb);
237 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 				    ext4_blocks_for_truncate(inode)+3);
239 	if (IS_ERR(handle)) {
240 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 		/*
242 		 * If we're going to skip the normal cleanup, we still need to
243 		 * make sure that the in-core orphan linked list is properly
244 		 * cleaned up.
245 		 */
246 		ext4_orphan_del(NULL, inode);
247 		sb_end_intwrite(inode->i_sb);
248 		goto no_delete;
249 	}
250 
251 	if (IS_SYNC(inode))
252 		ext4_handle_sync(handle);
253 	inode->i_size = 0;
254 	err = ext4_mark_inode_dirty(handle, inode);
255 	if (err) {
256 		ext4_warning(inode->i_sb,
257 			     "couldn't mark inode dirty (err %d)", err);
258 		goto stop_handle;
259 	}
260 	if (inode->i_blocks)
261 		ext4_truncate(inode);
262 
263 	/*
264 	 * ext4_ext_truncate() doesn't reserve any slop when it
265 	 * restarts journal transactions; therefore there may not be
266 	 * enough credits left in the handle to remove the inode from
267 	 * the orphan list and set the dtime field.
268 	 */
269 	if (!ext4_handle_has_enough_credits(handle, 3)) {
270 		err = ext4_journal_extend(handle, 3);
271 		if (err > 0)
272 			err = ext4_journal_restart(handle, 3);
273 		if (err != 0) {
274 			ext4_warning(inode->i_sb,
275 				     "couldn't extend journal (err %d)", err);
276 		stop_handle:
277 			ext4_journal_stop(handle);
278 			ext4_orphan_del(NULL, inode);
279 			sb_end_intwrite(inode->i_sb);
280 			goto no_delete;
281 		}
282 	}
283 
284 	/*
285 	 * Kill off the orphan record which ext4_truncate created.
286 	 * AKPM: I think this can be inside the above `if'.
287 	 * Note that ext4_orphan_del() has to be able to cope with the
288 	 * deletion of a non-existent orphan - this is because we don't
289 	 * know if ext4_truncate() actually created an orphan record.
290 	 * (Well, we could do this if we need to, but heck - it works)
291 	 */
292 	ext4_orphan_del(handle, inode);
293 	EXT4_I(inode)->i_dtime	= get_seconds();
294 
295 	/*
296 	 * One subtle ordering requirement: if anything has gone wrong
297 	 * (transaction abort, IO errors, whatever), then we can still
298 	 * do these next steps (the fs will already have been marked as
299 	 * having errors), but we can't free the inode if the mark_dirty
300 	 * fails.
301 	 */
302 	if (ext4_mark_inode_dirty(handle, inode))
303 		/* If that failed, just do the required in-core inode clear. */
304 		ext4_clear_inode(inode);
305 	else
306 		ext4_free_inode(handle, inode);
307 	ext4_journal_stop(handle);
308 	sb_end_intwrite(inode->i_sb);
309 	return;
310 no_delete:
311 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312 }
313 
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317 	return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320 
321 /*
322  * Called with i_data_sem down, which is important since we can call
323  * ext4_discard_preallocations() from here.
324  */
325 void ext4_da_update_reserve_space(struct inode *inode,
326 					int used, int quota_claim)
327 {
328 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329 	struct ext4_inode_info *ei = EXT4_I(inode);
330 
331 	spin_lock(&ei->i_block_reservation_lock);
332 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333 	if (unlikely(used > ei->i_reserved_data_blocks)) {
334 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335 			 "with only %d reserved data blocks",
336 			 __func__, inode->i_ino, used,
337 			 ei->i_reserved_data_blocks);
338 		WARN_ON(1);
339 		used = ei->i_reserved_data_blocks;
340 	}
341 
342 	/* Update per-inode reservations */
343 	ei->i_reserved_data_blocks -= used;
344 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345 
346 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347 
348 	/* Update quota subsystem for data blocks */
349 	if (quota_claim)
350 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
351 	else {
352 		/*
353 		 * We did fallocate with an offset that is already delayed
354 		 * allocated. So on delayed allocated writeback we should
355 		 * not re-claim the quota for fallocated blocks.
356 		 */
357 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358 	}
359 
360 	/*
361 	 * If we have done all the pending block allocations and if
362 	 * there aren't any writers on the inode, we can discard the
363 	 * inode's preallocations.
364 	 */
365 	if ((ei->i_reserved_data_blocks == 0) &&
366 	    (atomic_read(&inode->i_writecount) == 0))
367 		ext4_discard_preallocations(inode);
368 }
369 
370 static int __check_block_validity(struct inode *inode, const char *func,
371 				unsigned int line,
372 				struct ext4_map_blocks *map)
373 {
374 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375 				   map->m_len)) {
376 		ext4_error_inode(inode, func, line, map->m_pblk,
377 				 "lblock %lu mapped to illegal pblock "
378 				 "(length %d)", (unsigned long) map->m_lblk,
379 				 map->m_len);
380 		return -EIO;
381 	}
382 	return 0;
383 }
384 
385 #define check_block_validity(inode, map)	\
386 	__check_block_validity((inode), __func__, __LINE__, (map))
387 
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390 				       struct inode *inode,
391 				       struct ext4_map_blocks *es_map,
392 				       struct ext4_map_blocks *map,
393 				       int flags)
394 {
395 	int retval;
396 
397 	map->m_flags = 0;
398 	/*
399 	 * There is a race window that the result is not the same.
400 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
401 	 * is that we lookup a block mapping in extent status tree with
402 	 * out taking i_data_sem.  So at the time the unwritten extent
403 	 * could be converted.
404 	 */
405 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406 		down_read(&EXT4_I(inode)->i_data_sem);
407 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
409 					     EXT4_GET_BLOCKS_KEEP_SIZE);
410 	} else {
411 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
412 					     EXT4_GET_BLOCKS_KEEP_SIZE);
413 	}
414 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415 		up_read((&EXT4_I(inode)->i_data_sem));
416 
417 	/*
418 	 * We don't check m_len because extent will be collpased in status
419 	 * tree.  So the m_len might not equal.
420 	 */
421 	if (es_map->m_lblk != map->m_lblk ||
422 	    es_map->m_flags != map->m_flags ||
423 	    es_map->m_pblk != map->m_pblk) {
424 		printk("ES cache assertion failed for inode: %lu "
425 		       "es_cached ex [%d/%d/%llu/%x] != "
426 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
428 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
429 		       map->m_len, map->m_pblk, map->m_flags,
430 		       retval, flags);
431 	}
432 }
433 #endif /* ES_AGGRESSIVE_TEST */
434 
435 /*
436  * The ext4_map_blocks() function tries to look up the requested blocks,
437  * and returns if the blocks are already mapped.
438  *
439  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440  * and store the allocated blocks in the result buffer head and mark it
441  * mapped.
442  *
443  * If file type is extents based, it will call ext4_ext_map_blocks(),
444  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445  * based files
446  *
447  * On success, it returns the number of blocks being mapped or allocated.
448  * if create==0 and the blocks are pre-allocated and unwritten block,
449  * the result buffer head is unmapped. If the create ==1, it will make sure
450  * the buffer head is mapped.
451  *
452  * It returns 0 if plain look up failed (blocks have not been allocated), in
453  * that case, buffer head is unmapped
454  *
455  * It returns the error in case of allocation failure.
456  */
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458 		    struct ext4_map_blocks *map, int flags)
459 {
460 	struct extent_status es;
461 	int retval;
462 	int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464 	struct ext4_map_blocks orig_map;
465 
466 	memcpy(&orig_map, map, sizeof(*map));
467 #endif
468 
469 	map->m_flags = 0;
470 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
472 		  (unsigned long) map->m_lblk);
473 
474 	/*
475 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
476 	 */
477 	if (unlikely(map->m_len > INT_MAX))
478 		map->m_len = INT_MAX;
479 
480 	/* We can handle the block number less than EXT_MAX_BLOCKS */
481 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482 		return -EIO;
483 
484 	/* Lookup extent status tree firstly */
485 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487 			map->m_pblk = ext4_es_pblock(&es) +
488 					map->m_lblk - es.es_lblk;
489 			map->m_flags |= ext4_es_is_written(&es) ?
490 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491 			retval = es.es_len - (map->m_lblk - es.es_lblk);
492 			if (retval > map->m_len)
493 				retval = map->m_len;
494 			map->m_len = retval;
495 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496 			retval = 0;
497 		} else {
498 			BUG_ON(1);
499 		}
500 #ifdef ES_AGGRESSIVE_TEST
501 		ext4_map_blocks_es_recheck(handle, inode, map,
502 					   &orig_map, flags);
503 #endif
504 		goto found;
505 	}
506 
507 	/*
508 	 * Try to see if we can get the block without requesting a new
509 	 * file system block.
510 	 */
511 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 		down_read(&EXT4_I(inode)->i_data_sem);
513 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
515 					     EXT4_GET_BLOCKS_KEEP_SIZE);
516 	} else {
517 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
518 					     EXT4_GET_BLOCKS_KEEP_SIZE);
519 	}
520 	if (retval > 0) {
521 		unsigned int status;
522 
523 		if (unlikely(retval != map->m_len)) {
524 			ext4_warning(inode->i_sb,
525 				     "ES len assertion failed for inode "
526 				     "%lu: retval %d != map->m_len %d",
527 				     inode->i_ino, retval, map->m_len);
528 			WARN_ON(1);
529 		}
530 
531 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534 		    !(status & EXTENT_STATUS_WRITTEN) &&
535 		    ext4_find_delalloc_range(inode, map->m_lblk,
536 					     map->m_lblk + map->m_len - 1))
537 			status |= EXTENT_STATUS_DELAYED;
538 		ret = ext4_es_insert_extent(inode, map->m_lblk,
539 					    map->m_len, map->m_pblk, status);
540 		if (ret < 0)
541 			retval = ret;
542 	}
543 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 		up_read((&EXT4_I(inode)->i_data_sem));
545 
546 found:
547 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548 		ret = check_block_validity(inode, map);
549 		if (ret != 0)
550 			return ret;
551 	}
552 
553 	/* If it is only a block(s) look up */
554 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555 		return retval;
556 
557 	/*
558 	 * Returns if the blocks have already allocated
559 	 *
560 	 * Note that if blocks have been preallocated
561 	 * ext4_ext_get_block() returns the create = 0
562 	 * with buffer head unmapped.
563 	 */
564 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565 		/*
566 		 * If we need to convert extent to unwritten
567 		 * we continue and do the actual work in
568 		 * ext4_ext_map_blocks()
569 		 */
570 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571 			return retval;
572 
573 	/*
574 	 * Here we clear m_flags because after allocating an new extent,
575 	 * it will be set again.
576 	 */
577 	map->m_flags &= ~EXT4_MAP_FLAGS;
578 
579 	/*
580 	 * New blocks allocate and/or writing to unwritten extent
581 	 * will possibly result in updating i_data, so we take
582 	 * the write lock of i_data_sem, and call get_block()
583 	 * with create == 1 flag.
584 	 */
585 	down_write(&EXT4_I(inode)->i_data_sem);
586 
587 	/*
588 	 * We need to check for EXT4 here because migrate
589 	 * could have changed the inode type in between
590 	 */
591 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
593 	} else {
594 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
595 
596 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597 			/*
598 			 * We allocated new blocks which will result in
599 			 * i_data's format changing.  Force the migrate
600 			 * to fail by clearing migrate flags
601 			 */
602 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603 		}
604 
605 		/*
606 		 * Update reserved blocks/metadata blocks after successful
607 		 * block allocation which had been deferred till now. We don't
608 		 * support fallocate for non extent files. So we can update
609 		 * reserve space here.
610 		 */
611 		if ((retval > 0) &&
612 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613 			ext4_da_update_reserve_space(inode, retval, 1);
614 	}
615 
616 	if (retval > 0) {
617 		unsigned int status;
618 
619 		if (unlikely(retval != map->m_len)) {
620 			ext4_warning(inode->i_sb,
621 				     "ES len assertion failed for inode "
622 				     "%lu: retval %d != map->m_len %d",
623 				     inode->i_ino, retval, map->m_len);
624 			WARN_ON(1);
625 		}
626 
627 		/*
628 		 * If the extent has been zeroed out, we don't need to update
629 		 * extent status tree.
630 		 */
631 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633 			if (ext4_es_is_written(&es))
634 				goto has_zeroout;
635 		}
636 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639 		    !(status & EXTENT_STATUS_WRITTEN) &&
640 		    ext4_find_delalloc_range(inode, map->m_lblk,
641 					     map->m_lblk + map->m_len - 1))
642 			status |= EXTENT_STATUS_DELAYED;
643 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644 					    map->m_pblk, status);
645 		if (ret < 0)
646 			retval = ret;
647 	}
648 
649 has_zeroout:
650 	up_write((&EXT4_I(inode)->i_data_sem));
651 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652 		ret = check_block_validity(inode, map);
653 		if (ret != 0)
654 			return ret;
655 	}
656 	return retval;
657 }
658 
659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
660 {
661 	struct inode *inode = bh->b_assoc_map->host;
662 	/* XXX: breaks on 32-bit > 16GB. Is that even supported? */
663 	loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
664 	int err;
665 	if (!uptodate)
666 		return;
667 	WARN_ON(!buffer_unwritten(bh));
668 	err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
669 }
670 
671 /* Maximum number of blocks we map for direct IO at once. */
672 #define DIO_MAX_BLOCKS 4096
673 
674 static int _ext4_get_block(struct inode *inode, sector_t iblock,
675 			   struct buffer_head *bh, int flags)
676 {
677 	handle_t *handle = ext4_journal_current_handle();
678 	struct ext4_map_blocks map;
679 	int ret = 0, started = 0;
680 	int dio_credits;
681 
682 	if (ext4_has_inline_data(inode))
683 		return -ERANGE;
684 
685 	map.m_lblk = iblock;
686 	map.m_len = bh->b_size >> inode->i_blkbits;
687 
688 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
689 		/* Direct IO write... */
690 		if (map.m_len > DIO_MAX_BLOCKS)
691 			map.m_len = DIO_MAX_BLOCKS;
692 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
693 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
694 					    dio_credits);
695 		if (IS_ERR(handle)) {
696 			ret = PTR_ERR(handle);
697 			return ret;
698 		}
699 		started = 1;
700 	}
701 
702 	ret = ext4_map_blocks(handle, inode, &map, flags);
703 	if (ret > 0) {
704 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
705 
706 		map_bh(bh, inode->i_sb, map.m_pblk);
707 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
708 		if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
709 			bh->b_assoc_map = inode->i_mapping;
710 			bh->b_private = (void *)(unsigned long)iblock;
711 			bh->b_end_io = ext4_end_io_unwritten;
712 		}
713 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
714 			set_buffer_defer_completion(bh);
715 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
716 		ret = 0;
717 	}
718 	if (started)
719 		ext4_journal_stop(handle);
720 	return ret;
721 }
722 
723 int ext4_get_block(struct inode *inode, sector_t iblock,
724 		   struct buffer_head *bh, int create)
725 {
726 	return _ext4_get_block(inode, iblock, bh,
727 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
728 }
729 
730 /*
731  * `handle' can be NULL if create is zero
732  */
733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
734 				ext4_lblk_t block, int create)
735 {
736 	struct ext4_map_blocks map;
737 	struct buffer_head *bh;
738 	int err;
739 
740 	J_ASSERT(handle != NULL || create == 0);
741 
742 	map.m_lblk = block;
743 	map.m_len = 1;
744 	err = ext4_map_blocks(handle, inode, &map,
745 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
746 
747 	if (err == 0)
748 		return create ? ERR_PTR(-ENOSPC) : NULL;
749 	if (err < 0)
750 		return ERR_PTR(err);
751 
752 	bh = sb_getblk(inode->i_sb, map.m_pblk);
753 	if (unlikely(!bh))
754 		return ERR_PTR(-ENOMEM);
755 	if (map.m_flags & EXT4_MAP_NEW) {
756 		J_ASSERT(create != 0);
757 		J_ASSERT(handle != NULL);
758 
759 		/*
760 		 * Now that we do not always journal data, we should
761 		 * keep in mind whether this should always journal the
762 		 * new buffer as metadata.  For now, regular file
763 		 * writes use ext4_get_block instead, so it's not a
764 		 * problem.
765 		 */
766 		lock_buffer(bh);
767 		BUFFER_TRACE(bh, "call get_create_access");
768 		err = ext4_journal_get_create_access(handle, bh);
769 		if (unlikely(err)) {
770 			unlock_buffer(bh);
771 			goto errout;
772 		}
773 		if (!buffer_uptodate(bh)) {
774 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
775 			set_buffer_uptodate(bh);
776 		}
777 		unlock_buffer(bh);
778 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
779 		err = ext4_handle_dirty_metadata(handle, inode, bh);
780 		if (unlikely(err))
781 			goto errout;
782 	} else
783 		BUFFER_TRACE(bh, "not a new buffer");
784 	return bh;
785 errout:
786 	brelse(bh);
787 	return ERR_PTR(err);
788 }
789 
790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
791 			       ext4_lblk_t block, int create)
792 {
793 	struct buffer_head *bh;
794 
795 	bh = ext4_getblk(handle, inode, block, create);
796 	if (IS_ERR(bh))
797 		return bh;
798 	if (!bh || buffer_uptodate(bh))
799 		return bh;
800 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
801 	wait_on_buffer(bh);
802 	if (buffer_uptodate(bh))
803 		return bh;
804 	put_bh(bh);
805 	return ERR_PTR(-EIO);
806 }
807 
808 int ext4_walk_page_buffers(handle_t *handle,
809 			   struct buffer_head *head,
810 			   unsigned from,
811 			   unsigned to,
812 			   int *partial,
813 			   int (*fn)(handle_t *handle,
814 				     struct buffer_head *bh))
815 {
816 	struct buffer_head *bh;
817 	unsigned block_start, block_end;
818 	unsigned blocksize = head->b_size;
819 	int err, ret = 0;
820 	struct buffer_head *next;
821 
822 	for (bh = head, block_start = 0;
823 	     ret == 0 && (bh != head || !block_start);
824 	     block_start = block_end, bh = next) {
825 		next = bh->b_this_page;
826 		block_end = block_start + blocksize;
827 		if (block_end <= from || block_start >= to) {
828 			if (partial && !buffer_uptodate(bh))
829 				*partial = 1;
830 			continue;
831 		}
832 		err = (*fn)(handle, bh);
833 		if (!ret)
834 			ret = err;
835 	}
836 	return ret;
837 }
838 
839 /*
840  * To preserve ordering, it is essential that the hole instantiation and
841  * the data write be encapsulated in a single transaction.  We cannot
842  * close off a transaction and start a new one between the ext4_get_block()
843  * and the commit_write().  So doing the jbd2_journal_start at the start of
844  * prepare_write() is the right place.
845  *
846  * Also, this function can nest inside ext4_writepage().  In that case, we
847  * *know* that ext4_writepage() has generated enough buffer credits to do the
848  * whole page.  So we won't block on the journal in that case, which is good,
849  * because the caller may be PF_MEMALLOC.
850  *
851  * By accident, ext4 can be reentered when a transaction is open via
852  * quota file writes.  If we were to commit the transaction while thus
853  * reentered, there can be a deadlock - we would be holding a quota
854  * lock, and the commit would never complete if another thread had a
855  * transaction open and was blocking on the quota lock - a ranking
856  * violation.
857  *
858  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
859  * will _not_ run commit under these circumstances because handle->h_ref
860  * is elevated.  We'll still have enough credits for the tiny quotafile
861  * write.
862  */
863 int do_journal_get_write_access(handle_t *handle,
864 				struct buffer_head *bh)
865 {
866 	int dirty = buffer_dirty(bh);
867 	int ret;
868 
869 	if (!buffer_mapped(bh) || buffer_freed(bh))
870 		return 0;
871 	/*
872 	 * __block_write_begin() could have dirtied some buffers. Clean
873 	 * the dirty bit as jbd2_journal_get_write_access() could complain
874 	 * otherwise about fs integrity issues. Setting of the dirty bit
875 	 * by __block_write_begin() isn't a real problem here as we clear
876 	 * the bit before releasing a page lock and thus writeback cannot
877 	 * ever write the buffer.
878 	 */
879 	if (dirty)
880 		clear_buffer_dirty(bh);
881 	BUFFER_TRACE(bh, "get write access");
882 	ret = ext4_journal_get_write_access(handle, bh);
883 	if (!ret && dirty)
884 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
885 	return ret;
886 }
887 
888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
889 		   struct buffer_head *bh_result, int create);
890 
891 #ifdef CONFIG_EXT4_FS_ENCRYPTION
892 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
893 				  get_block_t *get_block)
894 {
895 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
896 	unsigned to = from + len;
897 	struct inode *inode = page->mapping->host;
898 	unsigned block_start, block_end;
899 	sector_t block;
900 	int err = 0;
901 	unsigned blocksize = inode->i_sb->s_blocksize;
902 	unsigned bbits;
903 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
904 	bool decrypt = false;
905 
906 	BUG_ON(!PageLocked(page));
907 	BUG_ON(from > PAGE_CACHE_SIZE);
908 	BUG_ON(to > PAGE_CACHE_SIZE);
909 	BUG_ON(from > to);
910 
911 	if (!page_has_buffers(page))
912 		create_empty_buffers(page, blocksize, 0);
913 	head = page_buffers(page);
914 	bbits = ilog2(blocksize);
915 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
916 
917 	for (bh = head, block_start = 0; bh != head || !block_start;
918 	    block++, block_start = block_end, bh = bh->b_this_page) {
919 		block_end = block_start + blocksize;
920 		if (block_end <= from || block_start >= to) {
921 			if (PageUptodate(page)) {
922 				if (!buffer_uptodate(bh))
923 					set_buffer_uptodate(bh);
924 			}
925 			continue;
926 		}
927 		if (buffer_new(bh))
928 			clear_buffer_new(bh);
929 		if (!buffer_mapped(bh)) {
930 			WARN_ON(bh->b_size != blocksize);
931 			err = get_block(inode, block, bh, 1);
932 			if (err)
933 				break;
934 			if (buffer_new(bh)) {
935 				unmap_underlying_metadata(bh->b_bdev,
936 							  bh->b_blocknr);
937 				if (PageUptodate(page)) {
938 					clear_buffer_new(bh);
939 					set_buffer_uptodate(bh);
940 					mark_buffer_dirty(bh);
941 					continue;
942 				}
943 				if (block_end > to || block_start < from)
944 					zero_user_segments(page, to, block_end,
945 							   block_start, from);
946 				continue;
947 			}
948 		}
949 		if (PageUptodate(page)) {
950 			if (!buffer_uptodate(bh))
951 				set_buffer_uptodate(bh);
952 			continue;
953 		}
954 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
955 		    !buffer_unwritten(bh) &&
956 		    (block_start < from || block_end > to)) {
957 			ll_rw_block(READ, 1, &bh);
958 			*wait_bh++ = bh;
959 			decrypt = ext4_encrypted_inode(inode) &&
960 				S_ISREG(inode->i_mode);
961 		}
962 	}
963 	/*
964 	 * If we issued read requests, let them complete.
965 	 */
966 	while (wait_bh > wait) {
967 		wait_on_buffer(*--wait_bh);
968 		if (!buffer_uptodate(*wait_bh))
969 			err = -EIO;
970 	}
971 	if (unlikely(err))
972 		page_zero_new_buffers(page, from, to);
973 	else if (decrypt)
974 		err = ext4_decrypt_one(inode, page);
975 	return err;
976 }
977 #endif
978 
979 static int ext4_write_begin(struct file *file, struct address_space *mapping,
980 			    loff_t pos, unsigned len, unsigned flags,
981 			    struct page **pagep, void **fsdata)
982 {
983 	struct inode *inode = mapping->host;
984 	int ret, needed_blocks;
985 	handle_t *handle;
986 	int retries = 0;
987 	struct page *page;
988 	pgoff_t index;
989 	unsigned from, to;
990 
991 	trace_ext4_write_begin(inode, pos, len, flags);
992 	/*
993 	 * Reserve one block more for addition to orphan list in case
994 	 * we allocate blocks but write fails for some reason
995 	 */
996 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
997 	index = pos >> PAGE_CACHE_SHIFT;
998 	from = pos & (PAGE_CACHE_SIZE - 1);
999 	to = from + len;
1000 
1001 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1002 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1003 						    flags, pagep);
1004 		if (ret < 0)
1005 			return ret;
1006 		if (ret == 1)
1007 			return 0;
1008 	}
1009 
1010 	/*
1011 	 * grab_cache_page_write_begin() can take a long time if the
1012 	 * system is thrashing due to memory pressure, or if the page
1013 	 * is being written back.  So grab it first before we start
1014 	 * the transaction handle.  This also allows us to allocate
1015 	 * the page (if needed) without using GFP_NOFS.
1016 	 */
1017 retry_grab:
1018 	page = grab_cache_page_write_begin(mapping, index, flags);
1019 	if (!page)
1020 		return -ENOMEM;
1021 	unlock_page(page);
1022 
1023 retry_journal:
1024 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1025 	if (IS_ERR(handle)) {
1026 		page_cache_release(page);
1027 		return PTR_ERR(handle);
1028 	}
1029 
1030 	lock_page(page);
1031 	if (page->mapping != mapping) {
1032 		/* The page got truncated from under us */
1033 		unlock_page(page);
1034 		page_cache_release(page);
1035 		ext4_journal_stop(handle);
1036 		goto retry_grab;
1037 	}
1038 	/* In case writeback began while the page was unlocked */
1039 	wait_for_stable_page(page);
1040 
1041 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1042 	if (ext4_should_dioread_nolock(inode))
1043 		ret = ext4_block_write_begin(page, pos, len,
1044 					     ext4_get_block_write);
1045 	else
1046 		ret = ext4_block_write_begin(page, pos, len,
1047 					     ext4_get_block);
1048 #else
1049 	if (ext4_should_dioread_nolock(inode))
1050 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1051 	else
1052 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1053 #endif
1054 	if (!ret && ext4_should_journal_data(inode)) {
1055 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1056 					     from, to, NULL,
1057 					     do_journal_get_write_access);
1058 	}
1059 
1060 	if (ret) {
1061 		unlock_page(page);
1062 		/*
1063 		 * __block_write_begin may have instantiated a few blocks
1064 		 * outside i_size.  Trim these off again. Don't need
1065 		 * i_size_read because we hold i_mutex.
1066 		 *
1067 		 * Add inode to orphan list in case we crash before
1068 		 * truncate finishes
1069 		 */
1070 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1071 			ext4_orphan_add(handle, inode);
1072 
1073 		ext4_journal_stop(handle);
1074 		if (pos + len > inode->i_size) {
1075 			ext4_truncate_failed_write(inode);
1076 			/*
1077 			 * If truncate failed early the inode might
1078 			 * still be on the orphan list; we need to
1079 			 * make sure the inode is removed from the
1080 			 * orphan list in that case.
1081 			 */
1082 			if (inode->i_nlink)
1083 				ext4_orphan_del(NULL, inode);
1084 		}
1085 
1086 		if (ret == -ENOSPC &&
1087 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1088 			goto retry_journal;
1089 		page_cache_release(page);
1090 		return ret;
1091 	}
1092 	*pagep = page;
1093 	return ret;
1094 }
1095 
1096 /* For write_end() in data=journal mode */
1097 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1098 {
1099 	int ret;
1100 	if (!buffer_mapped(bh) || buffer_freed(bh))
1101 		return 0;
1102 	set_buffer_uptodate(bh);
1103 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1104 	clear_buffer_meta(bh);
1105 	clear_buffer_prio(bh);
1106 	return ret;
1107 }
1108 
1109 /*
1110  * We need to pick up the new inode size which generic_commit_write gave us
1111  * `file' can be NULL - eg, when called from page_symlink().
1112  *
1113  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1114  * buffers are managed internally.
1115  */
1116 static int ext4_write_end(struct file *file,
1117 			  struct address_space *mapping,
1118 			  loff_t pos, unsigned len, unsigned copied,
1119 			  struct page *page, void *fsdata)
1120 {
1121 	handle_t *handle = ext4_journal_current_handle();
1122 	struct inode *inode = mapping->host;
1123 	loff_t old_size = inode->i_size;
1124 	int ret = 0, ret2;
1125 	int i_size_changed = 0;
1126 
1127 	trace_ext4_write_end(inode, pos, len, copied);
1128 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1129 		ret = ext4_jbd2_file_inode(handle, inode);
1130 		if (ret) {
1131 			unlock_page(page);
1132 			page_cache_release(page);
1133 			goto errout;
1134 		}
1135 	}
1136 
1137 	if (ext4_has_inline_data(inode)) {
1138 		ret = ext4_write_inline_data_end(inode, pos, len,
1139 						 copied, page);
1140 		if (ret < 0)
1141 			goto errout;
1142 		copied = ret;
1143 	} else
1144 		copied = block_write_end(file, mapping, pos,
1145 					 len, copied, page, fsdata);
1146 	/*
1147 	 * it's important to update i_size while still holding page lock:
1148 	 * page writeout could otherwise come in and zero beyond i_size.
1149 	 */
1150 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1151 	unlock_page(page);
1152 	page_cache_release(page);
1153 
1154 	if (old_size < pos)
1155 		pagecache_isize_extended(inode, old_size, pos);
1156 	/*
1157 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1158 	 * makes the holding time of page lock longer. Second, it forces lock
1159 	 * ordering of page lock and transaction start for journaling
1160 	 * filesystems.
1161 	 */
1162 	if (i_size_changed)
1163 		ext4_mark_inode_dirty(handle, inode);
1164 
1165 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1166 		/* if we have allocated more blocks and copied
1167 		 * less. We will have blocks allocated outside
1168 		 * inode->i_size. So truncate them
1169 		 */
1170 		ext4_orphan_add(handle, inode);
1171 errout:
1172 	ret2 = ext4_journal_stop(handle);
1173 	if (!ret)
1174 		ret = ret2;
1175 
1176 	if (pos + len > inode->i_size) {
1177 		ext4_truncate_failed_write(inode);
1178 		/*
1179 		 * If truncate failed early the inode might still be
1180 		 * on the orphan list; we need to make sure the inode
1181 		 * is removed from the orphan list in that case.
1182 		 */
1183 		if (inode->i_nlink)
1184 			ext4_orphan_del(NULL, inode);
1185 	}
1186 
1187 	return ret ? ret : copied;
1188 }
1189 
1190 static int ext4_journalled_write_end(struct file *file,
1191 				     struct address_space *mapping,
1192 				     loff_t pos, unsigned len, unsigned copied,
1193 				     struct page *page, void *fsdata)
1194 {
1195 	handle_t *handle = ext4_journal_current_handle();
1196 	struct inode *inode = mapping->host;
1197 	loff_t old_size = inode->i_size;
1198 	int ret = 0, ret2;
1199 	int partial = 0;
1200 	unsigned from, to;
1201 	int size_changed = 0;
1202 
1203 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1204 	from = pos & (PAGE_CACHE_SIZE - 1);
1205 	to = from + len;
1206 
1207 	BUG_ON(!ext4_handle_valid(handle));
1208 
1209 	if (ext4_has_inline_data(inode))
1210 		copied = ext4_write_inline_data_end(inode, pos, len,
1211 						    copied, page);
1212 	else {
1213 		if (copied < len) {
1214 			if (!PageUptodate(page))
1215 				copied = 0;
1216 			page_zero_new_buffers(page, from+copied, to);
1217 		}
1218 
1219 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1220 					     to, &partial, write_end_fn);
1221 		if (!partial)
1222 			SetPageUptodate(page);
1223 	}
1224 	size_changed = ext4_update_inode_size(inode, pos + copied);
1225 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1226 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1227 	unlock_page(page);
1228 	page_cache_release(page);
1229 
1230 	if (old_size < pos)
1231 		pagecache_isize_extended(inode, old_size, pos);
1232 
1233 	if (size_changed) {
1234 		ret2 = ext4_mark_inode_dirty(handle, inode);
1235 		if (!ret)
1236 			ret = ret2;
1237 	}
1238 
1239 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1240 		/* if we have allocated more blocks and copied
1241 		 * less. We will have blocks allocated outside
1242 		 * inode->i_size. So truncate them
1243 		 */
1244 		ext4_orphan_add(handle, inode);
1245 
1246 	ret2 = ext4_journal_stop(handle);
1247 	if (!ret)
1248 		ret = ret2;
1249 	if (pos + len > inode->i_size) {
1250 		ext4_truncate_failed_write(inode);
1251 		/*
1252 		 * If truncate failed early the inode might still be
1253 		 * on the orphan list; we need to make sure the inode
1254 		 * is removed from the orphan list in that case.
1255 		 */
1256 		if (inode->i_nlink)
1257 			ext4_orphan_del(NULL, inode);
1258 	}
1259 
1260 	return ret ? ret : copied;
1261 }
1262 
1263 /*
1264  * Reserve a single cluster located at lblock
1265  */
1266 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267 {
1268 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269 	struct ext4_inode_info *ei = EXT4_I(inode);
1270 	unsigned int md_needed;
1271 	int ret;
1272 
1273 	/*
1274 	 * We will charge metadata quota at writeout time; this saves
1275 	 * us from metadata over-estimation, though we may go over by
1276 	 * a small amount in the end.  Here we just reserve for data.
1277 	 */
1278 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1279 	if (ret)
1280 		return ret;
1281 
1282 	/*
1283 	 * recalculate the amount of metadata blocks to reserve
1284 	 * in order to allocate nrblocks
1285 	 * worse case is one extent per block
1286 	 */
1287 	spin_lock(&ei->i_block_reservation_lock);
1288 	/*
1289 	 * ext4_calc_metadata_amount() has side effects, which we have
1290 	 * to be prepared undo if we fail to claim space.
1291 	 */
1292 	md_needed = 0;
1293 	trace_ext4_da_reserve_space(inode, 0);
1294 
1295 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1296 		spin_unlock(&ei->i_block_reservation_lock);
1297 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1298 		return -ENOSPC;
1299 	}
1300 	ei->i_reserved_data_blocks++;
1301 	spin_unlock(&ei->i_block_reservation_lock);
1302 
1303 	return 0;       /* success */
1304 }
1305 
1306 static void ext4_da_release_space(struct inode *inode, int to_free)
1307 {
1308 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1309 	struct ext4_inode_info *ei = EXT4_I(inode);
1310 
1311 	if (!to_free)
1312 		return;		/* Nothing to release, exit */
1313 
1314 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1315 
1316 	trace_ext4_da_release_space(inode, to_free);
1317 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1318 		/*
1319 		 * if there aren't enough reserved blocks, then the
1320 		 * counter is messed up somewhere.  Since this
1321 		 * function is called from invalidate page, it's
1322 		 * harmless to return without any action.
1323 		 */
1324 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1325 			 "ino %lu, to_free %d with only %d reserved "
1326 			 "data blocks", inode->i_ino, to_free,
1327 			 ei->i_reserved_data_blocks);
1328 		WARN_ON(1);
1329 		to_free = ei->i_reserved_data_blocks;
1330 	}
1331 	ei->i_reserved_data_blocks -= to_free;
1332 
1333 	/* update fs dirty data blocks counter */
1334 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1335 
1336 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1337 
1338 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1339 }
1340 
1341 static void ext4_da_page_release_reservation(struct page *page,
1342 					     unsigned int offset,
1343 					     unsigned int length)
1344 {
1345 	int to_release = 0;
1346 	struct buffer_head *head, *bh;
1347 	unsigned int curr_off = 0;
1348 	struct inode *inode = page->mapping->host;
1349 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1350 	unsigned int stop = offset + length;
1351 	int num_clusters;
1352 	ext4_fsblk_t lblk;
1353 
1354 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1355 
1356 	head = page_buffers(page);
1357 	bh = head;
1358 	do {
1359 		unsigned int next_off = curr_off + bh->b_size;
1360 
1361 		if (next_off > stop)
1362 			break;
1363 
1364 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1365 			to_release++;
1366 			clear_buffer_delay(bh);
1367 		}
1368 		curr_off = next_off;
1369 	} while ((bh = bh->b_this_page) != head);
1370 
1371 	if (to_release) {
1372 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1373 		ext4_es_remove_extent(inode, lblk, to_release);
1374 	}
1375 
1376 	/* If we have released all the blocks belonging to a cluster, then we
1377 	 * need to release the reserved space for that cluster. */
1378 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1379 	while (num_clusters > 0) {
1380 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1381 			((num_clusters - 1) << sbi->s_cluster_bits);
1382 		if (sbi->s_cluster_ratio == 1 ||
1383 		    !ext4_find_delalloc_cluster(inode, lblk))
1384 			ext4_da_release_space(inode, 1);
1385 
1386 		num_clusters--;
1387 	}
1388 }
1389 
1390 /*
1391  * Delayed allocation stuff
1392  */
1393 
1394 struct mpage_da_data {
1395 	struct inode *inode;
1396 	struct writeback_control *wbc;
1397 
1398 	pgoff_t first_page;	/* The first page to write */
1399 	pgoff_t next_page;	/* Current page to examine */
1400 	pgoff_t last_page;	/* Last page to examine */
1401 	/*
1402 	 * Extent to map - this can be after first_page because that can be
1403 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1404 	 * is delalloc or unwritten.
1405 	 */
1406 	struct ext4_map_blocks map;
1407 	struct ext4_io_submit io_submit;	/* IO submission data */
1408 };
1409 
1410 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1411 				       bool invalidate)
1412 {
1413 	int nr_pages, i;
1414 	pgoff_t index, end;
1415 	struct pagevec pvec;
1416 	struct inode *inode = mpd->inode;
1417 	struct address_space *mapping = inode->i_mapping;
1418 
1419 	/* This is necessary when next_page == 0. */
1420 	if (mpd->first_page >= mpd->next_page)
1421 		return;
1422 
1423 	index = mpd->first_page;
1424 	end   = mpd->next_page - 1;
1425 	if (invalidate) {
1426 		ext4_lblk_t start, last;
1427 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1428 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1429 		ext4_es_remove_extent(inode, start, last - start + 1);
1430 	}
1431 
1432 	pagevec_init(&pvec, 0);
1433 	while (index <= end) {
1434 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1435 		if (nr_pages == 0)
1436 			break;
1437 		for (i = 0; i < nr_pages; i++) {
1438 			struct page *page = pvec.pages[i];
1439 			if (page->index > end)
1440 				break;
1441 			BUG_ON(!PageLocked(page));
1442 			BUG_ON(PageWriteback(page));
1443 			if (invalidate) {
1444 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1445 				ClearPageUptodate(page);
1446 			}
1447 			unlock_page(page);
1448 		}
1449 		index = pvec.pages[nr_pages - 1]->index + 1;
1450 		pagevec_release(&pvec);
1451 	}
1452 }
1453 
1454 static void ext4_print_free_blocks(struct inode *inode)
1455 {
1456 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1457 	struct super_block *sb = inode->i_sb;
1458 	struct ext4_inode_info *ei = EXT4_I(inode);
1459 
1460 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1461 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1462 			ext4_count_free_clusters(sb)));
1463 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1464 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1465 	       (long long) EXT4_C2B(EXT4_SB(sb),
1466 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1467 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1468 	       (long long) EXT4_C2B(EXT4_SB(sb),
1469 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1470 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1471 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1472 		 ei->i_reserved_data_blocks);
1473 	return;
1474 }
1475 
1476 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1477 {
1478 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1479 }
1480 
1481 /*
1482  * This function is grabs code from the very beginning of
1483  * ext4_map_blocks, but assumes that the caller is from delayed write
1484  * time. This function looks up the requested blocks and sets the
1485  * buffer delay bit under the protection of i_data_sem.
1486  */
1487 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1488 			      struct ext4_map_blocks *map,
1489 			      struct buffer_head *bh)
1490 {
1491 	struct extent_status es;
1492 	int retval;
1493 	sector_t invalid_block = ~((sector_t) 0xffff);
1494 #ifdef ES_AGGRESSIVE_TEST
1495 	struct ext4_map_blocks orig_map;
1496 
1497 	memcpy(&orig_map, map, sizeof(*map));
1498 #endif
1499 
1500 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1501 		invalid_block = ~0;
1502 
1503 	map->m_flags = 0;
1504 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1505 		  "logical block %lu\n", inode->i_ino, map->m_len,
1506 		  (unsigned long) map->m_lblk);
1507 
1508 	/* Lookup extent status tree firstly */
1509 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1510 		if (ext4_es_is_hole(&es)) {
1511 			retval = 0;
1512 			down_read(&EXT4_I(inode)->i_data_sem);
1513 			goto add_delayed;
1514 		}
1515 
1516 		/*
1517 		 * Delayed extent could be allocated by fallocate.
1518 		 * So we need to check it.
1519 		 */
1520 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1521 			map_bh(bh, inode->i_sb, invalid_block);
1522 			set_buffer_new(bh);
1523 			set_buffer_delay(bh);
1524 			return 0;
1525 		}
1526 
1527 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1528 		retval = es.es_len - (iblock - es.es_lblk);
1529 		if (retval > map->m_len)
1530 			retval = map->m_len;
1531 		map->m_len = retval;
1532 		if (ext4_es_is_written(&es))
1533 			map->m_flags |= EXT4_MAP_MAPPED;
1534 		else if (ext4_es_is_unwritten(&es))
1535 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1536 		else
1537 			BUG_ON(1);
1538 
1539 #ifdef ES_AGGRESSIVE_TEST
1540 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1541 #endif
1542 		return retval;
1543 	}
1544 
1545 	/*
1546 	 * Try to see if we can get the block without requesting a new
1547 	 * file system block.
1548 	 */
1549 	down_read(&EXT4_I(inode)->i_data_sem);
1550 	if (ext4_has_inline_data(inode))
1551 		retval = 0;
1552 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1553 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1554 	else
1555 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1556 
1557 add_delayed:
1558 	if (retval == 0) {
1559 		int ret;
1560 		/*
1561 		 * XXX: __block_prepare_write() unmaps passed block,
1562 		 * is it OK?
1563 		 */
1564 		/*
1565 		 * If the block was allocated from previously allocated cluster,
1566 		 * then we don't need to reserve it again. However we still need
1567 		 * to reserve metadata for every block we're going to write.
1568 		 */
1569 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1570 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1571 			ret = ext4_da_reserve_space(inode, iblock);
1572 			if (ret) {
1573 				/* not enough space to reserve */
1574 				retval = ret;
1575 				goto out_unlock;
1576 			}
1577 		}
1578 
1579 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1580 					    ~0, EXTENT_STATUS_DELAYED);
1581 		if (ret) {
1582 			retval = ret;
1583 			goto out_unlock;
1584 		}
1585 
1586 		map_bh(bh, inode->i_sb, invalid_block);
1587 		set_buffer_new(bh);
1588 		set_buffer_delay(bh);
1589 	} else if (retval > 0) {
1590 		int ret;
1591 		unsigned int status;
1592 
1593 		if (unlikely(retval != map->m_len)) {
1594 			ext4_warning(inode->i_sb,
1595 				     "ES len assertion failed for inode "
1596 				     "%lu: retval %d != map->m_len %d",
1597 				     inode->i_ino, retval, map->m_len);
1598 			WARN_ON(1);
1599 		}
1600 
1601 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1602 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1603 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1604 					    map->m_pblk, status);
1605 		if (ret != 0)
1606 			retval = ret;
1607 	}
1608 
1609 out_unlock:
1610 	up_read((&EXT4_I(inode)->i_data_sem));
1611 
1612 	return retval;
1613 }
1614 
1615 /*
1616  * This is a special get_block_t callback which is used by
1617  * ext4_da_write_begin().  It will either return mapped block or
1618  * reserve space for a single block.
1619  *
1620  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1621  * We also have b_blocknr = -1 and b_bdev initialized properly
1622  *
1623  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1624  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1625  * initialized properly.
1626  */
1627 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1628 			   struct buffer_head *bh, int create)
1629 {
1630 	struct ext4_map_blocks map;
1631 	int ret = 0;
1632 
1633 	BUG_ON(create == 0);
1634 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1635 
1636 	map.m_lblk = iblock;
1637 	map.m_len = 1;
1638 
1639 	/*
1640 	 * first, we need to know whether the block is allocated already
1641 	 * preallocated blocks are unmapped but should treated
1642 	 * the same as allocated blocks.
1643 	 */
1644 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1645 	if (ret <= 0)
1646 		return ret;
1647 
1648 	map_bh(bh, inode->i_sb, map.m_pblk);
1649 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1650 
1651 	if (buffer_unwritten(bh)) {
1652 		/* A delayed write to unwritten bh should be marked
1653 		 * new and mapped.  Mapped ensures that we don't do
1654 		 * get_block multiple times when we write to the same
1655 		 * offset and new ensures that we do proper zero out
1656 		 * for partial write.
1657 		 */
1658 		set_buffer_new(bh);
1659 		set_buffer_mapped(bh);
1660 	}
1661 	return 0;
1662 }
1663 
1664 static int bget_one(handle_t *handle, struct buffer_head *bh)
1665 {
1666 	get_bh(bh);
1667 	return 0;
1668 }
1669 
1670 static int bput_one(handle_t *handle, struct buffer_head *bh)
1671 {
1672 	put_bh(bh);
1673 	return 0;
1674 }
1675 
1676 static int __ext4_journalled_writepage(struct page *page,
1677 				       unsigned int len)
1678 {
1679 	struct address_space *mapping = page->mapping;
1680 	struct inode *inode = mapping->host;
1681 	struct buffer_head *page_bufs = NULL;
1682 	handle_t *handle = NULL;
1683 	int ret = 0, err = 0;
1684 	int inline_data = ext4_has_inline_data(inode);
1685 	struct buffer_head *inode_bh = NULL;
1686 
1687 	ClearPageChecked(page);
1688 
1689 	if (inline_data) {
1690 		BUG_ON(page->index != 0);
1691 		BUG_ON(len > ext4_get_max_inline_size(inode));
1692 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1693 		if (inode_bh == NULL)
1694 			goto out;
1695 	} else {
1696 		page_bufs = page_buffers(page);
1697 		if (!page_bufs) {
1698 			BUG();
1699 			goto out;
1700 		}
1701 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1702 				       NULL, bget_one);
1703 	}
1704 	/* As soon as we unlock the page, it can go away, but we have
1705 	 * references to buffers so we are safe */
1706 	unlock_page(page);
1707 
1708 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1709 				    ext4_writepage_trans_blocks(inode));
1710 	if (IS_ERR(handle)) {
1711 		ret = PTR_ERR(handle);
1712 		goto out;
1713 	}
1714 
1715 	BUG_ON(!ext4_handle_valid(handle));
1716 
1717 	if (inline_data) {
1718 		BUFFER_TRACE(inode_bh, "get write access");
1719 		ret = ext4_journal_get_write_access(handle, inode_bh);
1720 
1721 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1722 
1723 	} else {
1724 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1725 					     do_journal_get_write_access);
1726 
1727 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1728 					     write_end_fn);
1729 	}
1730 	if (ret == 0)
1731 		ret = err;
1732 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1733 	err = ext4_journal_stop(handle);
1734 	if (!ret)
1735 		ret = err;
1736 
1737 	if (!ext4_has_inline_data(inode))
1738 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1739 				       NULL, bput_one);
1740 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1741 out:
1742 	brelse(inode_bh);
1743 	return ret;
1744 }
1745 
1746 /*
1747  * Note that we don't need to start a transaction unless we're journaling data
1748  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1749  * need to file the inode to the transaction's list in ordered mode because if
1750  * we are writing back data added by write(), the inode is already there and if
1751  * we are writing back data modified via mmap(), no one guarantees in which
1752  * transaction the data will hit the disk. In case we are journaling data, we
1753  * cannot start transaction directly because transaction start ranks above page
1754  * lock so we have to do some magic.
1755  *
1756  * This function can get called via...
1757  *   - ext4_writepages after taking page lock (have journal handle)
1758  *   - journal_submit_inode_data_buffers (no journal handle)
1759  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1760  *   - grab_page_cache when doing write_begin (have journal handle)
1761  *
1762  * We don't do any block allocation in this function. If we have page with
1763  * multiple blocks we need to write those buffer_heads that are mapped. This
1764  * is important for mmaped based write. So if we do with blocksize 1K
1765  * truncate(f, 1024);
1766  * a = mmap(f, 0, 4096);
1767  * a[0] = 'a';
1768  * truncate(f, 4096);
1769  * we have in the page first buffer_head mapped via page_mkwrite call back
1770  * but other buffer_heads would be unmapped but dirty (dirty done via the
1771  * do_wp_page). So writepage should write the first block. If we modify
1772  * the mmap area beyond 1024 we will again get a page_fault and the
1773  * page_mkwrite callback will do the block allocation and mark the
1774  * buffer_heads mapped.
1775  *
1776  * We redirty the page if we have any buffer_heads that is either delay or
1777  * unwritten in the page.
1778  *
1779  * We can get recursively called as show below.
1780  *
1781  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1782  *		ext4_writepage()
1783  *
1784  * But since we don't do any block allocation we should not deadlock.
1785  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1786  */
1787 static int ext4_writepage(struct page *page,
1788 			  struct writeback_control *wbc)
1789 {
1790 	int ret = 0;
1791 	loff_t size;
1792 	unsigned int len;
1793 	struct buffer_head *page_bufs = NULL;
1794 	struct inode *inode = page->mapping->host;
1795 	struct ext4_io_submit io_submit;
1796 	bool keep_towrite = false;
1797 
1798 	trace_ext4_writepage(page);
1799 	size = i_size_read(inode);
1800 	if (page->index == size >> PAGE_CACHE_SHIFT)
1801 		len = size & ~PAGE_CACHE_MASK;
1802 	else
1803 		len = PAGE_CACHE_SIZE;
1804 
1805 	page_bufs = page_buffers(page);
1806 	/*
1807 	 * We cannot do block allocation or other extent handling in this
1808 	 * function. If there are buffers needing that, we have to redirty
1809 	 * the page. But we may reach here when we do a journal commit via
1810 	 * journal_submit_inode_data_buffers() and in that case we must write
1811 	 * allocated buffers to achieve data=ordered mode guarantees.
1812 	 */
1813 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1814 				   ext4_bh_delay_or_unwritten)) {
1815 		redirty_page_for_writepage(wbc, page);
1816 		if (current->flags & PF_MEMALLOC) {
1817 			/*
1818 			 * For memory cleaning there's no point in writing only
1819 			 * some buffers. So just bail out. Warn if we came here
1820 			 * from direct reclaim.
1821 			 */
1822 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1823 							== PF_MEMALLOC);
1824 			unlock_page(page);
1825 			return 0;
1826 		}
1827 		keep_towrite = true;
1828 	}
1829 
1830 	if (PageChecked(page) && ext4_should_journal_data(inode))
1831 		/*
1832 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1833 		 * doesn't seem much point in redirtying the page here.
1834 		 */
1835 		return __ext4_journalled_writepage(page, len);
1836 
1837 	ext4_io_submit_init(&io_submit, wbc);
1838 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1839 	if (!io_submit.io_end) {
1840 		redirty_page_for_writepage(wbc, page);
1841 		unlock_page(page);
1842 		return -ENOMEM;
1843 	}
1844 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1845 	ext4_io_submit(&io_submit);
1846 	/* Drop io_end reference we got from init */
1847 	ext4_put_io_end_defer(io_submit.io_end);
1848 	return ret;
1849 }
1850 
1851 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1852 {
1853 	int len;
1854 	loff_t size = i_size_read(mpd->inode);
1855 	int err;
1856 
1857 	BUG_ON(page->index != mpd->first_page);
1858 	if (page->index == size >> PAGE_CACHE_SHIFT)
1859 		len = size & ~PAGE_CACHE_MASK;
1860 	else
1861 		len = PAGE_CACHE_SIZE;
1862 	clear_page_dirty_for_io(page);
1863 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1864 	if (!err)
1865 		mpd->wbc->nr_to_write--;
1866 	mpd->first_page++;
1867 
1868 	return err;
1869 }
1870 
1871 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1872 
1873 /*
1874  * mballoc gives us at most this number of blocks...
1875  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1876  * The rest of mballoc seems to handle chunks up to full group size.
1877  */
1878 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1879 
1880 /*
1881  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1882  *
1883  * @mpd - extent of blocks
1884  * @lblk - logical number of the block in the file
1885  * @bh - buffer head we want to add to the extent
1886  *
1887  * The function is used to collect contig. blocks in the same state. If the
1888  * buffer doesn't require mapping for writeback and we haven't started the
1889  * extent of buffers to map yet, the function returns 'true' immediately - the
1890  * caller can write the buffer right away. Otherwise the function returns true
1891  * if the block has been added to the extent, false if the block couldn't be
1892  * added.
1893  */
1894 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1895 				   struct buffer_head *bh)
1896 {
1897 	struct ext4_map_blocks *map = &mpd->map;
1898 
1899 	/* Buffer that doesn't need mapping for writeback? */
1900 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1901 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1902 		/* So far no extent to map => we write the buffer right away */
1903 		if (map->m_len == 0)
1904 			return true;
1905 		return false;
1906 	}
1907 
1908 	/* First block in the extent? */
1909 	if (map->m_len == 0) {
1910 		map->m_lblk = lblk;
1911 		map->m_len = 1;
1912 		map->m_flags = bh->b_state & BH_FLAGS;
1913 		return true;
1914 	}
1915 
1916 	/* Don't go larger than mballoc is willing to allocate */
1917 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1918 		return false;
1919 
1920 	/* Can we merge the block to our big extent? */
1921 	if (lblk == map->m_lblk + map->m_len &&
1922 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1923 		map->m_len++;
1924 		return true;
1925 	}
1926 	return false;
1927 }
1928 
1929 /*
1930  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1931  *
1932  * @mpd - extent of blocks for mapping
1933  * @head - the first buffer in the page
1934  * @bh - buffer we should start processing from
1935  * @lblk - logical number of the block in the file corresponding to @bh
1936  *
1937  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1938  * the page for IO if all buffers in this page were mapped and there's no
1939  * accumulated extent of buffers to map or add buffers in the page to the
1940  * extent of buffers to map. The function returns 1 if the caller can continue
1941  * by processing the next page, 0 if it should stop adding buffers to the
1942  * extent to map because we cannot extend it anymore. It can also return value
1943  * < 0 in case of error during IO submission.
1944  */
1945 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1946 				   struct buffer_head *head,
1947 				   struct buffer_head *bh,
1948 				   ext4_lblk_t lblk)
1949 {
1950 	struct inode *inode = mpd->inode;
1951 	int err;
1952 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1953 							>> inode->i_blkbits;
1954 
1955 	do {
1956 		BUG_ON(buffer_locked(bh));
1957 
1958 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1959 			/* Found extent to map? */
1960 			if (mpd->map.m_len)
1961 				return 0;
1962 			/* Everything mapped so far and we hit EOF */
1963 			break;
1964 		}
1965 	} while (lblk++, (bh = bh->b_this_page) != head);
1966 	/* So far everything mapped? Submit the page for IO. */
1967 	if (mpd->map.m_len == 0) {
1968 		err = mpage_submit_page(mpd, head->b_page);
1969 		if (err < 0)
1970 			return err;
1971 	}
1972 	return lblk < blocks;
1973 }
1974 
1975 /*
1976  * mpage_map_buffers - update buffers corresponding to changed extent and
1977  *		       submit fully mapped pages for IO
1978  *
1979  * @mpd - description of extent to map, on return next extent to map
1980  *
1981  * Scan buffers corresponding to changed extent (we expect corresponding pages
1982  * to be already locked) and update buffer state according to new extent state.
1983  * We map delalloc buffers to their physical location, clear unwritten bits,
1984  * and mark buffers as uninit when we perform writes to unwritten extents
1985  * and do extent conversion after IO is finished. If the last page is not fully
1986  * mapped, we update @map to the next extent in the last page that needs
1987  * mapping. Otherwise we submit the page for IO.
1988  */
1989 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1990 {
1991 	struct pagevec pvec;
1992 	int nr_pages, i;
1993 	struct inode *inode = mpd->inode;
1994 	struct buffer_head *head, *bh;
1995 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1996 	pgoff_t start, end;
1997 	ext4_lblk_t lblk;
1998 	sector_t pblock;
1999 	int err;
2000 
2001 	start = mpd->map.m_lblk >> bpp_bits;
2002 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2003 	lblk = start << bpp_bits;
2004 	pblock = mpd->map.m_pblk;
2005 
2006 	pagevec_init(&pvec, 0);
2007 	while (start <= end) {
2008 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2009 					  PAGEVEC_SIZE);
2010 		if (nr_pages == 0)
2011 			break;
2012 		for (i = 0; i < nr_pages; i++) {
2013 			struct page *page = pvec.pages[i];
2014 
2015 			if (page->index > end)
2016 				break;
2017 			/* Up to 'end' pages must be contiguous */
2018 			BUG_ON(page->index != start);
2019 			bh = head = page_buffers(page);
2020 			do {
2021 				if (lblk < mpd->map.m_lblk)
2022 					continue;
2023 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2024 					/*
2025 					 * Buffer after end of mapped extent.
2026 					 * Find next buffer in the page to map.
2027 					 */
2028 					mpd->map.m_len = 0;
2029 					mpd->map.m_flags = 0;
2030 					/*
2031 					 * FIXME: If dioread_nolock supports
2032 					 * blocksize < pagesize, we need to make
2033 					 * sure we add size mapped so far to
2034 					 * io_end->size as the following call
2035 					 * can submit the page for IO.
2036 					 */
2037 					err = mpage_process_page_bufs(mpd, head,
2038 								      bh, lblk);
2039 					pagevec_release(&pvec);
2040 					if (err > 0)
2041 						err = 0;
2042 					return err;
2043 				}
2044 				if (buffer_delay(bh)) {
2045 					clear_buffer_delay(bh);
2046 					bh->b_blocknr = pblock++;
2047 				}
2048 				clear_buffer_unwritten(bh);
2049 			} while (lblk++, (bh = bh->b_this_page) != head);
2050 
2051 			/*
2052 			 * FIXME: This is going to break if dioread_nolock
2053 			 * supports blocksize < pagesize as we will try to
2054 			 * convert potentially unmapped parts of inode.
2055 			 */
2056 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2057 			/* Page fully mapped - let IO run! */
2058 			err = mpage_submit_page(mpd, page);
2059 			if (err < 0) {
2060 				pagevec_release(&pvec);
2061 				return err;
2062 			}
2063 			start++;
2064 		}
2065 		pagevec_release(&pvec);
2066 	}
2067 	/* Extent fully mapped and matches with page boundary. We are done. */
2068 	mpd->map.m_len = 0;
2069 	mpd->map.m_flags = 0;
2070 	return 0;
2071 }
2072 
2073 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2074 {
2075 	struct inode *inode = mpd->inode;
2076 	struct ext4_map_blocks *map = &mpd->map;
2077 	int get_blocks_flags;
2078 	int err, dioread_nolock;
2079 
2080 	trace_ext4_da_write_pages_extent(inode, map);
2081 	/*
2082 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2083 	 * to convert an unwritten extent to be initialized (in the case
2084 	 * where we have written into one or more preallocated blocks).  It is
2085 	 * possible that we're going to need more metadata blocks than
2086 	 * previously reserved. However we must not fail because we're in
2087 	 * writeback and there is nothing we can do about it so it might result
2088 	 * in data loss.  So use reserved blocks to allocate metadata if
2089 	 * possible.
2090 	 *
2091 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2092 	 * the blocks in question are delalloc blocks.  This indicates
2093 	 * that the blocks and quotas has already been checked when
2094 	 * the data was copied into the page cache.
2095 	 */
2096 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2097 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2098 	dioread_nolock = ext4_should_dioread_nolock(inode);
2099 	if (dioread_nolock)
2100 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2101 	if (map->m_flags & (1 << BH_Delay))
2102 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2103 
2104 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2105 	if (err < 0)
2106 		return err;
2107 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2108 		if (!mpd->io_submit.io_end->handle &&
2109 		    ext4_handle_valid(handle)) {
2110 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2111 			handle->h_rsv_handle = NULL;
2112 		}
2113 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2114 	}
2115 
2116 	BUG_ON(map->m_len == 0);
2117 	if (map->m_flags & EXT4_MAP_NEW) {
2118 		struct block_device *bdev = inode->i_sb->s_bdev;
2119 		int i;
2120 
2121 		for (i = 0; i < map->m_len; i++)
2122 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2123 	}
2124 	return 0;
2125 }
2126 
2127 /*
2128  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2129  *				 mpd->len and submit pages underlying it for IO
2130  *
2131  * @handle - handle for journal operations
2132  * @mpd - extent to map
2133  * @give_up_on_write - we set this to true iff there is a fatal error and there
2134  *                     is no hope of writing the data. The caller should discard
2135  *                     dirty pages to avoid infinite loops.
2136  *
2137  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2138  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2139  * them to initialized or split the described range from larger unwritten
2140  * extent. Note that we need not map all the described range since allocation
2141  * can return less blocks or the range is covered by more unwritten extents. We
2142  * cannot map more because we are limited by reserved transaction credits. On
2143  * the other hand we always make sure that the last touched page is fully
2144  * mapped so that it can be written out (and thus forward progress is
2145  * guaranteed). After mapping we submit all mapped pages for IO.
2146  */
2147 static int mpage_map_and_submit_extent(handle_t *handle,
2148 				       struct mpage_da_data *mpd,
2149 				       bool *give_up_on_write)
2150 {
2151 	struct inode *inode = mpd->inode;
2152 	struct ext4_map_blocks *map = &mpd->map;
2153 	int err;
2154 	loff_t disksize;
2155 	int progress = 0;
2156 
2157 	mpd->io_submit.io_end->offset =
2158 				((loff_t)map->m_lblk) << inode->i_blkbits;
2159 	do {
2160 		err = mpage_map_one_extent(handle, mpd);
2161 		if (err < 0) {
2162 			struct super_block *sb = inode->i_sb;
2163 
2164 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2165 				goto invalidate_dirty_pages;
2166 			/*
2167 			 * Let the uper layers retry transient errors.
2168 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2169 			 * is non-zero, a commit should free up blocks.
2170 			 */
2171 			if ((err == -ENOMEM) ||
2172 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2173 				if (progress)
2174 					goto update_disksize;
2175 				return err;
2176 			}
2177 			ext4_msg(sb, KERN_CRIT,
2178 				 "Delayed block allocation failed for "
2179 				 "inode %lu at logical offset %llu with"
2180 				 " max blocks %u with error %d",
2181 				 inode->i_ino,
2182 				 (unsigned long long)map->m_lblk,
2183 				 (unsigned)map->m_len, -err);
2184 			ext4_msg(sb, KERN_CRIT,
2185 				 "This should not happen!! Data will "
2186 				 "be lost\n");
2187 			if (err == -ENOSPC)
2188 				ext4_print_free_blocks(inode);
2189 		invalidate_dirty_pages:
2190 			*give_up_on_write = true;
2191 			return err;
2192 		}
2193 		progress = 1;
2194 		/*
2195 		 * Update buffer state, submit mapped pages, and get us new
2196 		 * extent to map
2197 		 */
2198 		err = mpage_map_and_submit_buffers(mpd);
2199 		if (err < 0)
2200 			goto update_disksize;
2201 	} while (map->m_len);
2202 
2203 update_disksize:
2204 	/*
2205 	 * Update on-disk size after IO is submitted.  Races with
2206 	 * truncate are avoided by checking i_size under i_data_sem.
2207 	 */
2208 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2209 	if (disksize > EXT4_I(inode)->i_disksize) {
2210 		int err2;
2211 		loff_t i_size;
2212 
2213 		down_write(&EXT4_I(inode)->i_data_sem);
2214 		i_size = i_size_read(inode);
2215 		if (disksize > i_size)
2216 			disksize = i_size;
2217 		if (disksize > EXT4_I(inode)->i_disksize)
2218 			EXT4_I(inode)->i_disksize = disksize;
2219 		err2 = ext4_mark_inode_dirty(handle, inode);
2220 		up_write(&EXT4_I(inode)->i_data_sem);
2221 		if (err2)
2222 			ext4_error(inode->i_sb,
2223 				   "Failed to mark inode %lu dirty",
2224 				   inode->i_ino);
2225 		if (!err)
2226 			err = err2;
2227 	}
2228 	return err;
2229 }
2230 
2231 /*
2232  * Calculate the total number of credits to reserve for one writepages
2233  * iteration. This is called from ext4_writepages(). We map an extent of
2234  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2235  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2236  * bpp - 1 blocks in bpp different extents.
2237  */
2238 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2239 {
2240 	int bpp = ext4_journal_blocks_per_page(inode);
2241 
2242 	return ext4_meta_trans_blocks(inode,
2243 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2244 }
2245 
2246 /*
2247  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2248  * 				 and underlying extent to map
2249  *
2250  * @mpd - where to look for pages
2251  *
2252  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2253  * IO immediately. When we find a page which isn't mapped we start accumulating
2254  * extent of buffers underlying these pages that needs mapping (formed by
2255  * either delayed or unwritten buffers). We also lock the pages containing
2256  * these buffers. The extent found is returned in @mpd structure (starting at
2257  * mpd->lblk with length mpd->len blocks).
2258  *
2259  * Note that this function can attach bios to one io_end structure which are
2260  * neither logically nor physically contiguous. Although it may seem as an
2261  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2262  * case as we need to track IO to all buffers underlying a page in one io_end.
2263  */
2264 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2265 {
2266 	struct address_space *mapping = mpd->inode->i_mapping;
2267 	struct pagevec pvec;
2268 	unsigned int nr_pages;
2269 	long left = mpd->wbc->nr_to_write;
2270 	pgoff_t index = mpd->first_page;
2271 	pgoff_t end = mpd->last_page;
2272 	int tag;
2273 	int i, err = 0;
2274 	int blkbits = mpd->inode->i_blkbits;
2275 	ext4_lblk_t lblk;
2276 	struct buffer_head *head;
2277 
2278 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2279 		tag = PAGECACHE_TAG_TOWRITE;
2280 	else
2281 		tag = PAGECACHE_TAG_DIRTY;
2282 
2283 	pagevec_init(&pvec, 0);
2284 	mpd->map.m_len = 0;
2285 	mpd->next_page = index;
2286 	while (index <= end) {
2287 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2288 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2289 		if (nr_pages == 0)
2290 			goto out;
2291 
2292 		for (i = 0; i < nr_pages; i++) {
2293 			struct page *page = pvec.pages[i];
2294 
2295 			/*
2296 			 * At this point, the page may be truncated or
2297 			 * invalidated (changing page->mapping to NULL), or
2298 			 * even swizzled back from swapper_space to tmpfs file
2299 			 * mapping. However, page->index will not change
2300 			 * because we have a reference on the page.
2301 			 */
2302 			if (page->index > end)
2303 				goto out;
2304 
2305 			/*
2306 			 * Accumulated enough dirty pages? This doesn't apply
2307 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2308 			 * keep going because someone may be concurrently
2309 			 * dirtying pages, and we might have synced a lot of
2310 			 * newly appeared dirty pages, but have not synced all
2311 			 * of the old dirty pages.
2312 			 */
2313 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2314 				goto out;
2315 
2316 			/* If we can't merge this page, we are done. */
2317 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2318 				goto out;
2319 
2320 			lock_page(page);
2321 			/*
2322 			 * If the page is no longer dirty, or its mapping no
2323 			 * longer corresponds to inode we are writing (which
2324 			 * means it has been truncated or invalidated), or the
2325 			 * page is already under writeback and we are not doing
2326 			 * a data integrity writeback, skip the page
2327 			 */
2328 			if (!PageDirty(page) ||
2329 			    (PageWriteback(page) &&
2330 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2331 			    unlikely(page->mapping != mapping)) {
2332 				unlock_page(page);
2333 				continue;
2334 			}
2335 
2336 			wait_on_page_writeback(page);
2337 			BUG_ON(PageWriteback(page));
2338 
2339 			if (mpd->map.m_len == 0)
2340 				mpd->first_page = page->index;
2341 			mpd->next_page = page->index + 1;
2342 			/* Add all dirty buffers to mpd */
2343 			lblk = ((ext4_lblk_t)page->index) <<
2344 				(PAGE_CACHE_SHIFT - blkbits);
2345 			head = page_buffers(page);
2346 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2347 			if (err <= 0)
2348 				goto out;
2349 			err = 0;
2350 			left--;
2351 		}
2352 		pagevec_release(&pvec);
2353 		cond_resched();
2354 	}
2355 	return 0;
2356 out:
2357 	pagevec_release(&pvec);
2358 	return err;
2359 }
2360 
2361 static int __writepage(struct page *page, struct writeback_control *wbc,
2362 		       void *data)
2363 {
2364 	struct address_space *mapping = data;
2365 	int ret = ext4_writepage(page, wbc);
2366 	mapping_set_error(mapping, ret);
2367 	return ret;
2368 }
2369 
2370 static int ext4_writepages(struct address_space *mapping,
2371 			   struct writeback_control *wbc)
2372 {
2373 	pgoff_t	writeback_index = 0;
2374 	long nr_to_write = wbc->nr_to_write;
2375 	int range_whole = 0;
2376 	int cycled = 1;
2377 	handle_t *handle = NULL;
2378 	struct mpage_da_data mpd;
2379 	struct inode *inode = mapping->host;
2380 	int needed_blocks, rsv_blocks = 0, ret = 0;
2381 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2382 	bool done;
2383 	struct blk_plug plug;
2384 	bool give_up_on_write = false;
2385 
2386 	trace_ext4_writepages(inode, wbc);
2387 
2388 	/*
2389 	 * No pages to write? This is mainly a kludge to avoid starting
2390 	 * a transaction for special inodes like journal inode on last iput()
2391 	 * because that could violate lock ordering on umount
2392 	 */
2393 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2394 		goto out_writepages;
2395 
2396 	if (ext4_should_journal_data(inode)) {
2397 		struct blk_plug plug;
2398 
2399 		blk_start_plug(&plug);
2400 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2401 		blk_finish_plug(&plug);
2402 		goto out_writepages;
2403 	}
2404 
2405 	/*
2406 	 * If the filesystem has aborted, it is read-only, so return
2407 	 * right away instead of dumping stack traces later on that
2408 	 * will obscure the real source of the problem.  We test
2409 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2410 	 * the latter could be true if the filesystem is mounted
2411 	 * read-only, and in that case, ext4_writepages should
2412 	 * *never* be called, so if that ever happens, we would want
2413 	 * the stack trace.
2414 	 */
2415 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2416 		ret = -EROFS;
2417 		goto out_writepages;
2418 	}
2419 
2420 	if (ext4_should_dioread_nolock(inode)) {
2421 		/*
2422 		 * We may need to convert up to one extent per block in
2423 		 * the page and we may dirty the inode.
2424 		 */
2425 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2426 	}
2427 
2428 	/*
2429 	 * If we have inline data and arrive here, it means that
2430 	 * we will soon create the block for the 1st page, so
2431 	 * we'd better clear the inline data here.
2432 	 */
2433 	if (ext4_has_inline_data(inode)) {
2434 		/* Just inode will be modified... */
2435 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2436 		if (IS_ERR(handle)) {
2437 			ret = PTR_ERR(handle);
2438 			goto out_writepages;
2439 		}
2440 		BUG_ON(ext4_test_inode_state(inode,
2441 				EXT4_STATE_MAY_INLINE_DATA));
2442 		ext4_destroy_inline_data(handle, inode);
2443 		ext4_journal_stop(handle);
2444 	}
2445 
2446 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2447 		range_whole = 1;
2448 
2449 	if (wbc->range_cyclic) {
2450 		writeback_index = mapping->writeback_index;
2451 		if (writeback_index)
2452 			cycled = 0;
2453 		mpd.first_page = writeback_index;
2454 		mpd.last_page = -1;
2455 	} else {
2456 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2457 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2458 	}
2459 
2460 	mpd.inode = inode;
2461 	mpd.wbc = wbc;
2462 	ext4_io_submit_init(&mpd.io_submit, wbc);
2463 retry:
2464 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2465 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2466 	done = false;
2467 	blk_start_plug(&plug);
2468 	while (!done && mpd.first_page <= mpd.last_page) {
2469 		/* For each extent of pages we use new io_end */
2470 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2471 		if (!mpd.io_submit.io_end) {
2472 			ret = -ENOMEM;
2473 			break;
2474 		}
2475 
2476 		/*
2477 		 * We have two constraints: We find one extent to map and we
2478 		 * must always write out whole page (makes a difference when
2479 		 * blocksize < pagesize) so that we don't block on IO when we
2480 		 * try to write out the rest of the page. Journalled mode is
2481 		 * not supported by delalloc.
2482 		 */
2483 		BUG_ON(ext4_should_journal_data(inode));
2484 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2485 
2486 		/* start a new transaction */
2487 		handle = ext4_journal_start_with_reserve(inode,
2488 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2489 		if (IS_ERR(handle)) {
2490 			ret = PTR_ERR(handle);
2491 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2492 			       "%ld pages, ino %lu; err %d", __func__,
2493 				wbc->nr_to_write, inode->i_ino, ret);
2494 			/* Release allocated io_end */
2495 			ext4_put_io_end(mpd.io_submit.io_end);
2496 			break;
2497 		}
2498 
2499 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2500 		ret = mpage_prepare_extent_to_map(&mpd);
2501 		if (!ret) {
2502 			if (mpd.map.m_len)
2503 				ret = mpage_map_and_submit_extent(handle, &mpd,
2504 					&give_up_on_write);
2505 			else {
2506 				/*
2507 				 * We scanned the whole range (or exhausted
2508 				 * nr_to_write), submitted what was mapped and
2509 				 * didn't find anything needing mapping. We are
2510 				 * done.
2511 				 */
2512 				done = true;
2513 			}
2514 		}
2515 		ext4_journal_stop(handle);
2516 		/* Submit prepared bio */
2517 		ext4_io_submit(&mpd.io_submit);
2518 		/* Unlock pages we didn't use */
2519 		mpage_release_unused_pages(&mpd, give_up_on_write);
2520 		/* Drop our io_end reference we got from init */
2521 		ext4_put_io_end(mpd.io_submit.io_end);
2522 
2523 		if (ret == -ENOSPC && sbi->s_journal) {
2524 			/*
2525 			 * Commit the transaction which would
2526 			 * free blocks released in the transaction
2527 			 * and try again
2528 			 */
2529 			jbd2_journal_force_commit_nested(sbi->s_journal);
2530 			ret = 0;
2531 			continue;
2532 		}
2533 		/* Fatal error - ENOMEM, EIO... */
2534 		if (ret)
2535 			break;
2536 	}
2537 	blk_finish_plug(&plug);
2538 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2539 		cycled = 1;
2540 		mpd.last_page = writeback_index - 1;
2541 		mpd.first_page = 0;
2542 		goto retry;
2543 	}
2544 
2545 	/* Update index */
2546 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2547 		/*
2548 		 * Set the writeback_index so that range_cyclic
2549 		 * mode will write it back later
2550 		 */
2551 		mapping->writeback_index = mpd.first_page;
2552 
2553 out_writepages:
2554 	trace_ext4_writepages_result(inode, wbc, ret,
2555 				     nr_to_write - wbc->nr_to_write);
2556 	return ret;
2557 }
2558 
2559 static int ext4_nonda_switch(struct super_block *sb)
2560 {
2561 	s64 free_clusters, dirty_clusters;
2562 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2563 
2564 	/*
2565 	 * switch to non delalloc mode if we are running low
2566 	 * on free block. The free block accounting via percpu
2567 	 * counters can get slightly wrong with percpu_counter_batch getting
2568 	 * accumulated on each CPU without updating global counters
2569 	 * Delalloc need an accurate free block accounting. So switch
2570 	 * to non delalloc when we are near to error range.
2571 	 */
2572 	free_clusters =
2573 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2574 	dirty_clusters =
2575 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2576 	/*
2577 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2578 	 */
2579 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2580 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2581 
2582 	if (2 * free_clusters < 3 * dirty_clusters ||
2583 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2584 		/*
2585 		 * free block count is less than 150% of dirty blocks
2586 		 * or free blocks is less than watermark
2587 		 */
2588 		return 1;
2589 	}
2590 	return 0;
2591 }
2592 
2593 /* We always reserve for an inode update; the superblock could be there too */
2594 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2595 {
2596 	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2597 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2598 		return 1;
2599 
2600 	if (pos + len <= 0x7fffffffULL)
2601 		return 1;
2602 
2603 	/* We might need to update the superblock to set LARGE_FILE */
2604 	return 2;
2605 }
2606 
2607 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2608 			       loff_t pos, unsigned len, unsigned flags,
2609 			       struct page **pagep, void **fsdata)
2610 {
2611 	int ret, retries = 0;
2612 	struct page *page;
2613 	pgoff_t index;
2614 	struct inode *inode = mapping->host;
2615 	handle_t *handle;
2616 
2617 	index = pos >> PAGE_CACHE_SHIFT;
2618 
2619 	if (ext4_nonda_switch(inode->i_sb)) {
2620 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2621 		return ext4_write_begin(file, mapping, pos,
2622 					len, flags, pagep, fsdata);
2623 	}
2624 	*fsdata = (void *)0;
2625 	trace_ext4_da_write_begin(inode, pos, len, flags);
2626 
2627 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2628 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2629 						      pos, len, flags,
2630 						      pagep, fsdata);
2631 		if (ret < 0)
2632 			return ret;
2633 		if (ret == 1)
2634 			return 0;
2635 	}
2636 
2637 	/*
2638 	 * grab_cache_page_write_begin() can take a long time if the
2639 	 * system is thrashing due to memory pressure, or if the page
2640 	 * is being written back.  So grab it first before we start
2641 	 * the transaction handle.  This also allows us to allocate
2642 	 * the page (if needed) without using GFP_NOFS.
2643 	 */
2644 retry_grab:
2645 	page = grab_cache_page_write_begin(mapping, index, flags);
2646 	if (!page)
2647 		return -ENOMEM;
2648 	unlock_page(page);
2649 
2650 	/*
2651 	 * With delayed allocation, we don't log the i_disksize update
2652 	 * if there is delayed block allocation. But we still need
2653 	 * to journalling the i_disksize update if writes to the end
2654 	 * of file which has an already mapped buffer.
2655 	 */
2656 retry_journal:
2657 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2658 				ext4_da_write_credits(inode, pos, len));
2659 	if (IS_ERR(handle)) {
2660 		page_cache_release(page);
2661 		return PTR_ERR(handle);
2662 	}
2663 
2664 	lock_page(page);
2665 	if (page->mapping != mapping) {
2666 		/* The page got truncated from under us */
2667 		unlock_page(page);
2668 		page_cache_release(page);
2669 		ext4_journal_stop(handle);
2670 		goto retry_grab;
2671 	}
2672 	/* In case writeback began while the page was unlocked */
2673 	wait_for_stable_page(page);
2674 
2675 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2676 	ret = ext4_block_write_begin(page, pos, len,
2677 				     ext4_da_get_block_prep);
2678 #else
2679 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2680 #endif
2681 	if (ret < 0) {
2682 		unlock_page(page);
2683 		ext4_journal_stop(handle);
2684 		/*
2685 		 * block_write_begin may have instantiated a few blocks
2686 		 * outside i_size.  Trim these off again. Don't need
2687 		 * i_size_read because we hold i_mutex.
2688 		 */
2689 		if (pos + len > inode->i_size)
2690 			ext4_truncate_failed_write(inode);
2691 
2692 		if (ret == -ENOSPC &&
2693 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2694 			goto retry_journal;
2695 
2696 		page_cache_release(page);
2697 		return ret;
2698 	}
2699 
2700 	*pagep = page;
2701 	return ret;
2702 }
2703 
2704 /*
2705  * Check if we should update i_disksize
2706  * when write to the end of file but not require block allocation
2707  */
2708 static int ext4_da_should_update_i_disksize(struct page *page,
2709 					    unsigned long offset)
2710 {
2711 	struct buffer_head *bh;
2712 	struct inode *inode = page->mapping->host;
2713 	unsigned int idx;
2714 	int i;
2715 
2716 	bh = page_buffers(page);
2717 	idx = offset >> inode->i_blkbits;
2718 
2719 	for (i = 0; i < idx; i++)
2720 		bh = bh->b_this_page;
2721 
2722 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2723 		return 0;
2724 	return 1;
2725 }
2726 
2727 static int ext4_da_write_end(struct file *file,
2728 			     struct address_space *mapping,
2729 			     loff_t pos, unsigned len, unsigned copied,
2730 			     struct page *page, void *fsdata)
2731 {
2732 	struct inode *inode = mapping->host;
2733 	int ret = 0, ret2;
2734 	handle_t *handle = ext4_journal_current_handle();
2735 	loff_t new_i_size;
2736 	unsigned long start, end;
2737 	int write_mode = (int)(unsigned long)fsdata;
2738 
2739 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2740 		return ext4_write_end(file, mapping, pos,
2741 				      len, copied, page, fsdata);
2742 
2743 	trace_ext4_da_write_end(inode, pos, len, copied);
2744 	start = pos & (PAGE_CACHE_SIZE - 1);
2745 	end = start + copied - 1;
2746 
2747 	/*
2748 	 * generic_write_end() will run mark_inode_dirty() if i_size
2749 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2750 	 * into that.
2751 	 */
2752 	new_i_size = pos + copied;
2753 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2754 		if (ext4_has_inline_data(inode) ||
2755 		    ext4_da_should_update_i_disksize(page, end)) {
2756 			ext4_update_i_disksize(inode, new_i_size);
2757 			/* We need to mark inode dirty even if
2758 			 * new_i_size is less that inode->i_size
2759 			 * bu greater than i_disksize.(hint delalloc)
2760 			 */
2761 			ext4_mark_inode_dirty(handle, inode);
2762 		}
2763 	}
2764 
2765 	if (write_mode != CONVERT_INLINE_DATA &&
2766 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2767 	    ext4_has_inline_data(inode))
2768 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2769 						     page);
2770 	else
2771 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2772 							page, fsdata);
2773 
2774 	copied = ret2;
2775 	if (ret2 < 0)
2776 		ret = ret2;
2777 	ret2 = ext4_journal_stop(handle);
2778 	if (!ret)
2779 		ret = ret2;
2780 
2781 	return ret ? ret : copied;
2782 }
2783 
2784 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2785 				   unsigned int length)
2786 {
2787 	/*
2788 	 * Drop reserved blocks
2789 	 */
2790 	BUG_ON(!PageLocked(page));
2791 	if (!page_has_buffers(page))
2792 		goto out;
2793 
2794 	ext4_da_page_release_reservation(page, offset, length);
2795 
2796 out:
2797 	ext4_invalidatepage(page, offset, length);
2798 
2799 	return;
2800 }
2801 
2802 /*
2803  * Force all delayed allocation blocks to be allocated for a given inode.
2804  */
2805 int ext4_alloc_da_blocks(struct inode *inode)
2806 {
2807 	trace_ext4_alloc_da_blocks(inode);
2808 
2809 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2810 		return 0;
2811 
2812 	/*
2813 	 * We do something simple for now.  The filemap_flush() will
2814 	 * also start triggering a write of the data blocks, which is
2815 	 * not strictly speaking necessary (and for users of
2816 	 * laptop_mode, not even desirable).  However, to do otherwise
2817 	 * would require replicating code paths in:
2818 	 *
2819 	 * ext4_writepages() ->
2820 	 *    write_cache_pages() ---> (via passed in callback function)
2821 	 *        __mpage_da_writepage() -->
2822 	 *           mpage_add_bh_to_extent()
2823 	 *           mpage_da_map_blocks()
2824 	 *
2825 	 * The problem is that write_cache_pages(), located in
2826 	 * mm/page-writeback.c, marks pages clean in preparation for
2827 	 * doing I/O, which is not desirable if we're not planning on
2828 	 * doing I/O at all.
2829 	 *
2830 	 * We could call write_cache_pages(), and then redirty all of
2831 	 * the pages by calling redirty_page_for_writepage() but that
2832 	 * would be ugly in the extreme.  So instead we would need to
2833 	 * replicate parts of the code in the above functions,
2834 	 * simplifying them because we wouldn't actually intend to
2835 	 * write out the pages, but rather only collect contiguous
2836 	 * logical block extents, call the multi-block allocator, and
2837 	 * then update the buffer heads with the block allocations.
2838 	 *
2839 	 * For now, though, we'll cheat by calling filemap_flush(),
2840 	 * which will map the blocks, and start the I/O, but not
2841 	 * actually wait for the I/O to complete.
2842 	 */
2843 	return filemap_flush(inode->i_mapping);
2844 }
2845 
2846 /*
2847  * bmap() is special.  It gets used by applications such as lilo and by
2848  * the swapper to find the on-disk block of a specific piece of data.
2849  *
2850  * Naturally, this is dangerous if the block concerned is still in the
2851  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2852  * filesystem and enables swap, then they may get a nasty shock when the
2853  * data getting swapped to that swapfile suddenly gets overwritten by
2854  * the original zero's written out previously to the journal and
2855  * awaiting writeback in the kernel's buffer cache.
2856  *
2857  * So, if we see any bmap calls here on a modified, data-journaled file,
2858  * take extra steps to flush any blocks which might be in the cache.
2859  */
2860 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2861 {
2862 	struct inode *inode = mapping->host;
2863 	journal_t *journal;
2864 	int err;
2865 
2866 	/*
2867 	 * We can get here for an inline file via the FIBMAP ioctl
2868 	 */
2869 	if (ext4_has_inline_data(inode))
2870 		return 0;
2871 
2872 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2873 			test_opt(inode->i_sb, DELALLOC)) {
2874 		/*
2875 		 * With delalloc we want to sync the file
2876 		 * so that we can make sure we allocate
2877 		 * blocks for file
2878 		 */
2879 		filemap_write_and_wait(mapping);
2880 	}
2881 
2882 	if (EXT4_JOURNAL(inode) &&
2883 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2884 		/*
2885 		 * This is a REALLY heavyweight approach, but the use of
2886 		 * bmap on dirty files is expected to be extremely rare:
2887 		 * only if we run lilo or swapon on a freshly made file
2888 		 * do we expect this to happen.
2889 		 *
2890 		 * (bmap requires CAP_SYS_RAWIO so this does not
2891 		 * represent an unprivileged user DOS attack --- we'd be
2892 		 * in trouble if mortal users could trigger this path at
2893 		 * will.)
2894 		 *
2895 		 * NB. EXT4_STATE_JDATA is not set on files other than
2896 		 * regular files.  If somebody wants to bmap a directory
2897 		 * or symlink and gets confused because the buffer
2898 		 * hasn't yet been flushed to disk, they deserve
2899 		 * everything they get.
2900 		 */
2901 
2902 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2903 		journal = EXT4_JOURNAL(inode);
2904 		jbd2_journal_lock_updates(journal);
2905 		err = jbd2_journal_flush(journal);
2906 		jbd2_journal_unlock_updates(journal);
2907 
2908 		if (err)
2909 			return 0;
2910 	}
2911 
2912 	return generic_block_bmap(mapping, block, ext4_get_block);
2913 }
2914 
2915 static int ext4_readpage(struct file *file, struct page *page)
2916 {
2917 	int ret = -EAGAIN;
2918 	struct inode *inode = page->mapping->host;
2919 
2920 	trace_ext4_readpage(page);
2921 
2922 	if (ext4_has_inline_data(inode))
2923 		ret = ext4_readpage_inline(inode, page);
2924 
2925 	if (ret == -EAGAIN)
2926 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2927 
2928 	return ret;
2929 }
2930 
2931 static int
2932 ext4_readpages(struct file *file, struct address_space *mapping,
2933 		struct list_head *pages, unsigned nr_pages)
2934 {
2935 	struct inode *inode = mapping->host;
2936 
2937 	/* If the file has inline data, no need to do readpages. */
2938 	if (ext4_has_inline_data(inode))
2939 		return 0;
2940 
2941 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2942 }
2943 
2944 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2945 				unsigned int length)
2946 {
2947 	trace_ext4_invalidatepage(page, offset, length);
2948 
2949 	/* No journalling happens on data buffers when this function is used */
2950 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2951 
2952 	block_invalidatepage(page, offset, length);
2953 }
2954 
2955 static int __ext4_journalled_invalidatepage(struct page *page,
2956 					    unsigned int offset,
2957 					    unsigned int length)
2958 {
2959 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2960 
2961 	trace_ext4_journalled_invalidatepage(page, offset, length);
2962 
2963 	/*
2964 	 * If it's a full truncate we just forget about the pending dirtying
2965 	 */
2966 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2967 		ClearPageChecked(page);
2968 
2969 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2970 }
2971 
2972 /* Wrapper for aops... */
2973 static void ext4_journalled_invalidatepage(struct page *page,
2974 					   unsigned int offset,
2975 					   unsigned int length)
2976 {
2977 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2978 }
2979 
2980 static int ext4_releasepage(struct page *page, gfp_t wait)
2981 {
2982 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2983 
2984 	trace_ext4_releasepage(page);
2985 
2986 	/* Page has dirty journalled data -> cannot release */
2987 	if (PageChecked(page))
2988 		return 0;
2989 	if (journal)
2990 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2991 	else
2992 		return try_to_free_buffers(page);
2993 }
2994 
2995 /*
2996  * ext4_get_block used when preparing for a DIO write or buffer write.
2997  * We allocate an uinitialized extent if blocks haven't been allocated.
2998  * The extent will be converted to initialized after the IO is complete.
2999  */
3000 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3001 		   struct buffer_head *bh_result, int create)
3002 {
3003 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3004 		   inode->i_ino, create);
3005 	return _ext4_get_block(inode, iblock, bh_result,
3006 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3007 }
3008 
3009 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3010 		   struct buffer_head *bh_result, int create)
3011 {
3012 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3013 		   inode->i_ino, create);
3014 	return _ext4_get_block(inode, iblock, bh_result,
3015 			       EXT4_GET_BLOCKS_NO_LOCK);
3016 }
3017 
3018 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3019 			    ssize_t size, void *private)
3020 {
3021         ext4_io_end_t *io_end = iocb->private;
3022 
3023 	/* if not async direct IO just return */
3024 	if (!io_end)
3025 		return;
3026 
3027 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3028 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3029  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3030 		  size);
3031 
3032 	iocb->private = NULL;
3033 	io_end->offset = offset;
3034 	io_end->size = size;
3035 	ext4_put_io_end(io_end);
3036 }
3037 
3038 /*
3039  * For ext4 extent files, ext4 will do direct-io write to holes,
3040  * preallocated extents, and those write extend the file, no need to
3041  * fall back to buffered IO.
3042  *
3043  * For holes, we fallocate those blocks, mark them as unwritten
3044  * If those blocks were preallocated, we mark sure they are split, but
3045  * still keep the range to write as unwritten.
3046  *
3047  * The unwritten extents will be converted to written when DIO is completed.
3048  * For async direct IO, since the IO may still pending when return, we
3049  * set up an end_io call back function, which will do the conversion
3050  * when async direct IO completed.
3051  *
3052  * If the O_DIRECT write will extend the file then add this inode to the
3053  * orphan list.  So recovery will truncate it back to the original size
3054  * if the machine crashes during the write.
3055  *
3056  */
3057 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3058 				  loff_t offset)
3059 {
3060 	struct file *file = iocb->ki_filp;
3061 	struct inode *inode = file->f_mapping->host;
3062 	ssize_t ret;
3063 	size_t count = iov_iter_count(iter);
3064 	int overwrite = 0;
3065 	get_block_t *get_block_func = NULL;
3066 	int dio_flags = 0;
3067 	loff_t final_size = offset + count;
3068 	ext4_io_end_t *io_end = NULL;
3069 
3070 	/* Use the old path for reads and writes beyond i_size. */
3071 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3072 		return ext4_ind_direct_IO(iocb, iter, offset);
3073 
3074 	BUG_ON(iocb->private == NULL);
3075 
3076 	/*
3077 	 * Make all waiters for direct IO properly wait also for extent
3078 	 * conversion. This also disallows race between truncate() and
3079 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3080 	 */
3081 	if (iov_iter_rw(iter) == WRITE)
3082 		inode_dio_begin(inode);
3083 
3084 	/* If we do a overwrite dio, i_mutex locking can be released */
3085 	overwrite = *((int *)iocb->private);
3086 
3087 	if (overwrite) {
3088 		down_read(&EXT4_I(inode)->i_data_sem);
3089 		mutex_unlock(&inode->i_mutex);
3090 	}
3091 
3092 	/*
3093 	 * We could direct write to holes and fallocate.
3094 	 *
3095 	 * Allocated blocks to fill the hole are marked as
3096 	 * unwritten to prevent parallel buffered read to expose
3097 	 * the stale data before DIO complete the data IO.
3098 	 *
3099 	 * As to previously fallocated extents, ext4 get_block will
3100 	 * just simply mark the buffer mapped but still keep the
3101 	 * extents unwritten.
3102 	 *
3103 	 * For non AIO case, we will convert those unwritten extents
3104 	 * to written after return back from blockdev_direct_IO.
3105 	 *
3106 	 * For async DIO, the conversion needs to be deferred when the
3107 	 * IO is completed. The ext4 end_io callback function will be
3108 	 * called to take care of the conversion work.  Here for async
3109 	 * case, we allocate an io_end structure to hook to the iocb.
3110 	 */
3111 	iocb->private = NULL;
3112 	ext4_inode_aio_set(inode, NULL);
3113 	if (!is_sync_kiocb(iocb)) {
3114 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3115 		if (!io_end) {
3116 			ret = -ENOMEM;
3117 			goto retake_lock;
3118 		}
3119 		/*
3120 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3121 		 */
3122 		iocb->private = ext4_get_io_end(io_end);
3123 		/*
3124 		 * we save the io structure for current async direct
3125 		 * IO, so that later ext4_map_blocks() could flag the
3126 		 * io structure whether there is a unwritten extents
3127 		 * needs to be converted when IO is completed.
3128 		 */
3129 		ext4_inode_aio_set(inode, io_end);
3130 	}
3131 
3132 	if (overwrite) {
3133 		get_block_func = ext4_get_block_write_nolock;
3134 	} else {
3135 		get_block_func = ext4_get_block_write;
3136 		dio_flags = DIO_LOCKING;
3137 	}
3138 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3139 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3140 #endif
3141 	if (IS_DAX(inode))
3142 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3143 				ext4_end_io_dio, dio_flags);
3144 	else
3145 		ret = __blockdev_direct_IO(iocb, inode,
3146 					   inode->i_sb->s_bdev, iter, offset,
3147 					   get_block_func,
3148 					   ext4_end_io_dio, NULL, dio_flags);
3149 
3150 	/*
3151 	 * Put our reference to io_end. This can free the io_end structure e.g.
3152 	 * in sync IO case or in case of error. It can even perform extent
3153 	 * conversion if all bios we submitted finished before we got here.
3154 	 * Note that in that case iocb->private can be already set to NULL
3155 	 * here.
3156 	 */
3157 	if (io_end) {
3158 		ext4_inode_aio_set(inode, NULL);
3159 		ext4_put_io_end(io_end);
3160 		/*
3161 		 * When no IO was submitted ext4_end_io_dio() was not
3162 		 * called so we have to put iocb's reference.
3163 		 */
3164 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3165 			WARN_ON(iocb->private != io_end);
3166 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3167 			ext4_put_io_end(io_end);
3168 			iocb->private = NULL;
3169 		}
3170 	}
3171 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3172 						EXT4_STATE_DIO_UNWRITTEN)) {
3173 		int err;
3174 		/*
3175 		 * for non AIO case, since the IO is already
3176 		 * completed, we could do the conversion right here
3177 		 */
3178 		err = ext4_convert_unwritten_extents(NULL, inode,
3179 						     offset, ret);
3180 		if (err < 0)
3181 			ret = err;
3182 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3183 	}
3184 
3185 retake_lock:
3186 	if (iov_iter_rw(iter) == WRITE)
3187 		inode_dio_end(inode);
3188 	/* take i_mutex locking again if we do a ovewrite dio */
3189 	if (overwrite) {
3190 		up_read(&EXT4_I(inode)->i_data_sem);
3191 		mutex_lock(&inode->i_mutex);
3192 	}
3193 
3194 	return ret;
3195 }
3196 
3197 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3198 			      loff_t offset)
3199 {
3200 	struct file *file = iocb->ki_filp;
3201 	struct inode *inode = file->f_mapping->host;
3202 	size_t count = iov_iter_count(iter);
3203 	ssize_t ret;
3204 
3205 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3206 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3207 		return 0;
3208 #endif
3209 
3210 	/*
3211 	 * If we are doing data journalling we don't support O_DIRECT
3212 	 */
3213 	if (ext4_should_journal_data(inode))
3214 		return 0;
3215 
3216 	/* Let buffer I/O handle the inline data case. */
3217 	if (ext4_has_inline_data(inode))
3218 		return 0;
3219 
3220 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3221 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3222 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3223 	else
3224 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3225 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3226 	return ret;
3227 }
3228 
3229 /*
3230  * Pages can be marked dirty completely asynchronously from ext4's journalling
3231  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3232  * much here because ->set_page_dirty is called under VFS locks.  The page is
3233  * not necessarily locked.
3234  *
3235  * We cannot just dirty the page and leave attached buffers clean, because the
3236  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3237  * or jbddirty because all the journalling code will explode.
3238  *
3239  * So what we do is to mark the page "pending dirty" and next time writepage
3240  * is called, propagate that into the buffers appropriately.
3241  */
3242 static int ext4_journalled_set_page_dirty(struct page *page)
3243 {
3244 	SetPageChecked(page);
3245 	return __set_page_dirty_nobuffers(page);
3246 }
3247 
3248 static const struct address_space_operations ext4_aops = {
3249 	.readpage		= ext4_readpage,
3250 	.readpages		= ext4_readpages,
3251 	.writepage		= ext4_writepage,
3252 	.writepages		= ext4_writepages,
3253 	.write_begin		= ext4_write_begin,
3254 	.write_end		= ext4_write_end,
3255 	.bmap			= ext4_bmap,
3256 	.invalidatepage		= ext4_invalidatepage,
3257 	.releasepage		= ext4_releasepage,
3258 	.direct_IO		= ext4_direct_IO,
3259 	.migratepage		= buffer_migrate_page,
3260 	.is_partially_uptodate  = block_is_partially_uptodate,
3261 	.error_remove_page	= generic_error_remove_page,
3262 };
3263 
3264 static const struct address_space_operations ext4_journalled_aops = {
3265 	.readpage		= ext4_readpage,
3266 	.readpages		= ext4_readpages,
3267 	.writepage		= ext4_writepage,
3268 	.writepages		= ext4_writepages,
3269 	.write_begin		= ext4_write_begin,
3270 	.write_end		= ext4_journalled_write_end,
3271 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3272 	.bmap			= ext4_bmap,
3273 	.invalidatepage		= ext4_journalled_invalidatepage,
3274 	.releasepage		= ext4_releasepage,
3275 	.direct_IO		= ext4_direct_IO,
3276 	.is_partially_uptodate  = block_is_partially_uptodate,
3277 	.error_remove_page	= generic_error_remove_page,
3278 };
3279 
3280 static const struct address_space_operations ext4_da_aops = {
3281 	.readpage		= ext4_readpage,
3282 	.readpages		= ext4_readpages,
3283 	.writepage		= ext4_writepage,
3284 	.writepages		= ext4_writepages,
3285 	.write_begin		= ext4_da_write_begin,
3286 	.write_end		= ext4_da_write_end,
3287 	.bmap			= ext4_bmap,
3288 	.invalidatepage		= ext4_da_invalidatepage,
3289 	.releasepage		= ext4_releasepage,
3290 	.direct_IO		= ext4_direct_IO,
3291 	.migratepage		= buffer_migrate_page,
3292 	.is_partially_uptodate  = block_is_partially_uptodate,
3293 	.error_remove_page	= generic_error_remove_page,
3294 };
3295 
3296 void ext4_set_aops(struct inode *inode)
3297 {
3298 	switch (ext4_inode_journal_mode(inode)) {
3299 	case EXT4_INODE_ORDERED_DATA_MODE:
3300 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3301 		break;
3302 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3303 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3304 		break;
3305 	case EXT4_INODE_JOURNAL_DATA_MODE:
3306 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3307 		return;
3308 	default:
3309 		BUG();
3310 	}
3311 	if (test_opt(inode->i_sb, DELALLOC))
3312 		inode->i_mapping->a_ops = &ext4_da_aops;
3313 	else
3314 		inode->i_mapping->a_ops = &ext4_aops;
3315 }
3316 
3317 static int __ext4_block_zero_page_range(handle_t *handle,
3318 		struct address_space *mapping, loff_t from, loff_t length)
3319 {
3320 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3321 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3322 	unsigned blocksize, pos;
3323 	ext4_lblk_t iblock;
3324 	struct inode *inode = mapping->host;
3325 	struct buffer_head *bh;
3326 	struct page *page;
3327 	int err = 0;
3328 
3329 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3330 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3331 	if (!page)
3332 		return -ENOMEM;
3333 
3334 	blocksize = inode->i_sb->s_blocksize;
3335 
3336 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3337 
3338 	if (!page_has_buffers(page))
3339 		create_empty_buffers(page, blocksize, 0);
3340 
3341 	/* Find the buffer that contains "offset" */
3342 	bh = page_buffers(page);
3343 	pos = blocksize;
3344 	while (offset >= pos) {
3345 		bh = bh->b_this_page;
3346 		iblock++;
3347 		pos += blocksize;
3348 	}
3349 	if (buffer_freed(bh)) {
3350 		BUFFER_TRACE(bh, "freed: skip");
3351 		goto unlock;
3352 	}
3353 	if (!buffer_mapped(bh)) {
3354 		BUFFER_TRACE(bh, "unmapped");
3355 		ext4_get_block(inode, iblock, bh, 0);
3356 		/* unmapped? It's a hole - nothing to do */
3357 		if (!buffer_mapped(bh)) {
3358 			BUFFER_TRACE(bh, "still unmapped");
3359 			goto unlock;
3360 		}
3361 	}
3362 
3363 	/* Ok, it's mapped. Make sure it's up-to-date */
3364 	if (PageUptodate(page))
3365 		set_buffer_uptodate(bh);
3366 
3367 	if (!buffer_uptodate(bh)) {
3368 		err = -EIO;
3369 		ll_rw_block(READ, 1, &bh);
3370 		wait_on_buffer(bh);
3371 		/* Uhhuh. Read error. Complain and punt. */
3372 		if (!buffer_uptodate(bh))
3373 			goto unlock;
3374 		if (S_ISREG(inode->i_mode) &&
3375 		    ext4_encrypted_inode(inode)) {
3376 			/* We expect the key to be set. */
3377 			BUG_ON(!ext4_has_encryption_key(inode));
3378 			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3379 			WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3380 		}
3381 	}
3382 	if (ext4_should_journal_data(inode)) {
3383 		BUFFER_TRACE(bh, "get write access");
3384 		err = ext4_journal_get_write_access(handle, bh);
3385 		if (err)
3386 			goto unlock;
3387 	}
3388 	zero_user(page, offset, length);
3389 	BUFFER_TRACE(bh, "zeroed end of block");
3390 
3391 	if (ext4_should_journal_data(inode)) {
3392 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3393 	} else {
3394 		err = 0;
3395 		mark_buffer_dirty(bh);
3396 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3397 			err = ext4_jbd2_file_inode(handle, inode);
3398 	}
3399 
3400 unlock:
3401 	unlock_page(page);
3402 	page_cache_release(page);
3403 	return err;
3404 }
3405 
3406 /*
3407  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3408  * starting from file offset 'from'.  The range to be zero'd must
3409  * be contained with in one block.  If the specified range exceeds
3410  * the end of the block it will be shortened to end of the block
3411  * that cooresponds to 'from'
3412  */
3413 static int ext4_block_zero_page_range(handle_t *handle,
3414 		struct address_space *mapping, loff_t from, loff_t length)
3415 {
3416 	struct inode *inode = mapping->host;
3417 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3418 	unsigned blocksize = inode->i_sb->s_blocksize;
3419 	unsigned max = blocksize - (offset & (blocksize - 1));
3420 
3421 	/*
3422 	 * correct length if it does not fall between
3423 	 * 'from' and the end of the block
3424 	 */
3425 	if (length > max || length < 0)
3426 		length = max;
3427 
3428 	if (IS_DAX(inode))
3429 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3430 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3431 }
3432 
3433 /*
3434  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3435  * up to the end of the block which corresponds to `from'.
3436  * This required during truncate. We need to physically zero the tail end
3437  * of that block so it doesn't yield old data if the file is later grown.
3438  */
3439 static int ext4_block_truncate_page(handle_t *handle,
3440 		struct address_space *mapping, loff_t from)
3441 {
3442 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3443 	unsigned length;
3444 	unsigned blocksize;
3445 	struct inode *inode = mapping->host;
3446 
3447 	blocksize = inode->i_sb->s_blocksize;
3448 	length = blocksize - (offset & (blocksize - 1));
3449 
3450 	return ext4_block_zero_page_range(handle, mapping, from, length);
3451 }
3452 
3453 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3454 			     loff_t lstart, loff_t length)
3455 {
3456 	struct super_block *sb = inode->i_sb;
3457 	struct address_space *mapping = inode->i_mapping;
3458 	unsigned partial_start, partial_end;
3459 	ext4_fsblk_t start, end;
3460 	loff_t byte_end = (lstart + length - 1);
3461 	int err = 0;
3462 
3463 	partial_start = lstart & (sb->s_blocksize - 1);
3464 	partial_end = byte_end & (sb->s_blocksize - 1);
3465 
3466 	start = lstart >> sb->s_blocksize_bits;
3467 	end = byte_end >> sb->s_blocksize_bits;
3468 
3469 	/* Handle partial zero within the single block */
3470 	if (start == end &&
3471 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3472 		err = ext4_block_zero_page_range(handle, mapping,
3473 						 lstart, length);
3474 		return err;
3475 	}
3476 	/* Handle partial zero out on the start of the range */
3477 	if (partial_start) {
3478 		err = ext4_block_zero_page_range(handle, mapping,
3479 						 lstart, sb->s_blocksize);
3480 		if (err)
3481 			return err;
3482 	}
3483 	/* Handle partial zero out on the end of the range */
3484 	if (partial_end != sb->s_blocksize - 1)
3485 		err = ext4_block_zero_page_range(handle, mapping,
3486 						 byte_end - partial_end,
3487 						 partial_end + 1);
3488 	return err;
3489 }
3490 
3491 int ext4_can_truncate(struct inode *inode)
3492 {
3493 	if (S_ISREG(inode->i_mode))
3494 		return 1;
3495 	if (S_ISDIR(inode->i_mode))
3496 		return 1;
3497 	if (S_ISLNK(inode->i_mode))
3498 		return !ext4_inode_is_fast_symlink(inode);
3499 	return 0;
3500 }
3501 
3502 /*
3503  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3504  * associated with the given offset and length
3505  *
3506  * @inode:  File inode
3507  * @offset: The offset where the hole will begin
3508  * @len:    The length of the hole
3509  *
3510  * Returns: 0 on success or negative on failure
3511  */
3512 
3513 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3514 {
3515 	struct super_block *sb = inode->i_sb;
3516 	ext4_lblk_t first_block, stop_block;
3517 	struct address_space *mapping = inode->i_mapping;
3518 	loff_t first_block_offset, last_block_offset;
3519 	handle_t *handle;
3520 	unsigned int credits;
3521 	int ret = 0;
3522 
3523 	if (!S_ISREG(inode->i_mode))
3524 		return -EOPNOTSUPP;
3525 
3526 	trace_ext4_punch_hole(inode, offset, length, 0);
3527 
3528 	/*
3529 	 * Write out all dirty pages to avoid race conditions
3530 	 * Then release them.
3531 	 */
3532 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3533 		ret = filemap_write_and_wait_range(mapping, offset,
3534 						   offset + length - 1);
3535 		if (ret)
3536 			return ret;
3537 	}
3538 
3539 	mutex_lock(&inode->i_mutex);
3540 
3541 	/* No need to punch hole beyond i_size */
3542 	if (offset >= inode->i_size)
3543 		goto out_mutex;
3544 
3545 	/*
3546 	 * If the hole extends beyond i_size, set the hole
3547 	 * to end after the page that contains i_size
3548 	 */
3549 	if (offset + length > inode->i_size) {
3550 		length = inode->i_size +
3551 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3552 		   offset;
3553 	}
3554 
3555 	if (offset & (sb->s_blocksize - 1) ||
3556 	    (offset + length) & (sb->s_blocksize - 1)) {
3557 		/*
3558 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3559 		 * partial block
3560 		 */
3561 		ret = ext4_inode_attach_jinode(inode);
3562 		if (ret < 0)
3563 			goto out_mutex;
3564 
3565 	}
3566 
3567 	first_block_offset = round_up(offset, sb->s_blocksize);
3568 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3569 
3570 	/* Now release the pages and zero block aligned part of pages*/
3571 	if (last_block_offset > first_block_offset)
3572 		truncate_pagecache_range(inode, first_block_offset,
3573 					 last_block_offset);
3574 
3575 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3576 	ext4_inode_block_unlocked_dio(inode);
3577 	inode_dio_wait(inode);
3578 
3579 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3580 		credits = ext4_writepage_trans_blocks(inode);
3581 	else
3582 		credits = ext4_blocks_for_truncate(inode);
3583 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3584 	if (IS_ERR(handle)) {
3585 		ret = PTR_ERR(handle);
3586 		ext4_std_error(sb, ret);
3587 		goto out_dio;
3588 	}
3589 
3590 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3591 				       length);
3592 	if (ret)
3593 		goto out_stop;
3594 
3595 	first_block = (offset + sb->s_blocksize - 1) >>
3596 		EXT4_BLOCK_SIZE_BITS(sb);
3597 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3598 
3599 	/* If there are no blocks to remove, return now */
3600 	if (first_block >= stop_block)
3601 		goto out_stop;
3602 
3603 	down_write(&EXT4_I(inode)->i_data_sem);
3604 	ext4_discard_preallocations(inode);
3605 
3606 	ret = ext4_es_remove_extent(inode, first_block,
3607 				    stop_block - first_block);
3608 	if (ret) {
3609 		up_write(&EXT4_I(inode)->i_data_sem);
3610 		goto out_stop;
3611 	}
3612 
3613 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3614 		ret = ext4_ext_remove_space(inode, first_block,
3615 					    stop_block - 1);
3616 	else
3617 		ret = ext4_ind_remove_space(handle, inode, first_block,
3618 					    stop_block);
3619 
3620 	up_write(&EXT4_I(inode)->i_data_sem);
3621 	if (IS_SYNC(inode))
3622 		ext4_handle_sync(handle);
3623 
3624 	/* Now release the pages again to reduce race window */
3625 	if (last_block_offset > first_block_offset)
3626 		truncate_pagecache_range(inode, first_block_offset,
3627 					 last_block_offset);
3628 
3629 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3630 	ext4_mark_inode_dirty(handle, inode);
3631 out_stop:
3632 	ext4_journal_stop(handle);
3633 out_dio:
3634 	ext4_inode_resume_unlocked_dio(inode);
3635 out_mutex:
3636 	mutex_unlock(&inode->i_mutex);
3637 	return ret;
3638 }
3639 
3640 int ext4_inode_attach_jinode(struct inode *inode)
3641 {
3642 	struct ext4_inode_info *ei = EXT4_I(inode);
3643 	struct jbd2_inode *jinode;
3644 
3645 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3646 		return 0;
3647 
3648 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3649 	spin_lock(&inode->i_lock);
3650 	if (!ei->jinode) {
3651 		if (!jinode) {
3652 			spin_unlock(&inode->i_lock);
3653 			return -ENOMEM;
3654 		}
3655 		ei->jinode = jinode;
3656 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3657 		jinode = NULL;
3658 	}
3659 	spin_unlock(&inode->i_lock);
3660 	if (unlikely(jinode != NULL))
3661 		jbd2_free_inode(jinode);
3662 	return 0;
3663 }
3664 
3665 /*
3666  * ext4_truncate()
3667  *
3668  * We block out ext4_get_block() block instantiations across the entire
3669  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3670  * simultaneously on behalf of the same inode.
3671  *
3672  * As we work through the truncate and commit bits of it to the journal there
3673  * is one core, guiding principle: the file's tree must always be consistent on
3674  * disk.  We must be able to restart the truncate after a crash.
3675  *
3676  * The file's tree may be transiently inconsistent in memory (although it
3677  * probably isn't), but whenever we close off and commit a journal transaction,
3678  * the contents of (the filesystem + the journal) must be consistent and
3679  * restartable.  It's pretty simple, really: bottom up, right to left (although
3680  * left-to-right works OK too).
3681  *
3682  * Note that at recovery time, journal replay occurs *before* the restart of
3683  * truncate against the orphan inode list.
3684  *
3685  * The committed inode has the new, desired i_size (which is the same as
3686  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3687  * that this inode's truncate did not complete and it will again call
3688  * ext4_truncate() to have another go.  So there will be instantiated blocks
3689  * to the right of the truncation point in a crashed ext4 filesystem.  But
3690  * that's fine - as long as they are linked from the inode, the post-crash
3691  * ext4_truncate() run will find them and release them.
3692  */
3693 void ext4_truncate(struct inode *inode)
3694 {
3695 	struct ext4_inode_info *ei = EXT4_I(inode);
3696 	unsigned int credits;
3697 	handle_t *handle;
3698 	struct address_space *mapping = inode->i_mapping;
3699 
3700 	/*
3701 	 * There is a possibility that we're either freeing the inode
3702 	 * or it's a completely new inode. In those cases we might not
3703 	 * have i_mutex locked because it's not necessary.
3704 	 */
3705 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3706 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3707 	trace_ext4_truncate_enter(inode);
3708 
3709 	if (!ext4_can_truncate(inode))
3710 		return;
3711 
3712 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3713 
3714 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3715 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3716 
3717 	if (ext4_has_inline_data(inode)) {
3718 		int has_inline = 1;
3719 
3720 		ext4_inline_data_truncate(inode, &has_inline);
3721 		if (has_inline)
3722 			return;
3723 	}
3724 
3725 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3726 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3727 		if (ext4_inode_attach_jinode(inode) < 0)
3728 			return;
3729 	}
3730 
3731 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3732 		credits = ext4_writepage_trans_blocks(inode);
3733 	else
3734 		credits = ext4_blocks_for_truncate(inode);
3735 
3736 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3737 	if (IS_ERR(handle)) {
3738 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3739 		return;
3740 	}
3741 
3742 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3743 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3744 
3745 	/*
3746 	 * We add the inode to the orphan list, so that if this
3747 	 * truncate spans multiple transactions, and we crash, we will
3748 	 * resume the truncate when the filesystem recovers.  It also
3749 	 * marks the inode dirty, to catch the new size.
3750 	 *
3751 	 * Implication: the file must always be in a sane, consistent
3752 	 * truncatable state while each transaction commits.
3753 	 */
3754 	if (ext4_orphan_add(handle, inode))
3755 		goto out_stop;
3756 
3757 	down_write(&EXT4_I(inode)->i_data_sem);
3758 
3759 	ext4_discard_preallocations(inode);
3760 
3761 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3762 		ext4_ext_truncate(handle, inode);
3763 	else
3764 		ext4_ind_truncate(handle, inode);
3765 
3766 	up_write(&ei->i_data_sem);
3767 
3768 	if (IS_SYNC(inode))
3769 		ext4_handle_sync(handle);
3770 
3771 out_stop:
3772 	/*
3773 	 * If this was a simple ftruncate() and the file will remain alive,
3774 	 * then we need to clear up the orphan record which we created above.
3775 	 * However, if this was a real unlink then we were called by
3776 	 * ext4_evict_inode(), and we allow that function to clean up the
3777 	 * orphan info for us.
3778 	 */
3779 	if (inode->i_nlink)
3780 		ext4_orphan_del(handle, inode);
3781 
3782 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3783 	ext4_mark_inode_dirty(handle, inode);
3784 	ext4_journal_stop(handle);
3785 
3786 	trace_ext4_truncate_exit(inode);
3787 }
3788 
3789 /*
3790  * ext4_get_inode_loc returns with an extra refcount against the inode's
3791  * underlying buffer_head on success. If 'in_mem' is true, we have all
3792  * data in memory that is needed to recreate the on-disk version of this
3793  * inode.
3794  */
3795 static int __ext4_get_inode_loc(struct inode *inode,
3796 				struct ext4_iloc *iloc, int in_mem)
3797 {
3798 	struct ext4_group_desc	*gdp;
3799 	struct buffer_head	*bh;
3800 	struct super_block	*sb = inode->i_sb;
3801 	ext4_fsblk_t		block;
3802 	int			inodes_per_block, inode_offset;
3803 
3804 	iloc->bh = NULL;
3805 	if (!ext4_valid_inum(sb, inode->i_ino))
3806 		return -EIO;
3807 
3808 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3809 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3810 	if (!gdp)
3811 		return -EIO;
3812 
3813 	/*
3814 	 * Figure out the offset within the block group inode table
3815 	 */
3816 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3817 	inode_offset = ((inode->i_ino - 1) %
3818 			EXT4_INODES_PER_GROUP(sb));
3819 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3820 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3821 
3822 	bh = sb_getblk(sb, block);
3823 	if (unlikely(!bh))
3824 		return -ENOMEM;
3825 	if (!buffer_uptodate(bh)) {
3826 		lock_buffer(bh);
3827 
3828 		/*
3829 		 * If the buffer has the write error flag, we have failed
3830 		 * to write out another inode in the same block.  In this
3831 		 * case, we don't have to read the block because we may
3832 		 * read the old inode data successfully.
3833 		 */
3834 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3835 			set_buffer_uptodate(bh);
3836 
3837 		if (buffer_uptodate(bh)) {
3838 			/* someone brought it uptodate while we waited */
3839 			unlock_buffer(bh);
3840 			goto has_buffer;
3841 		}
3842 
3843 		/*
3844 		 * If we have all information of the inode in memory and this
3845 		 * is the only valid inode in the block, we need not read the
3846 		 * block.
3847 		 */
3848 		if (in_mem) {
3849 			struct buffer_head *bitmap_bh;
3850 			int i, start;
3851 
3852 			start = inode_offset & ~(inodes_per_block - 1);
3853 
3854 			/* Is the inode bitmap in cache? */
3855 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3856 			if (unlikely(!bitmap_bh))
3857 				goto make_io;
3858 
3859 			/*
3860 			 * If the inode bitmap isn't in cache then the
3861 			 * optimisation may end up performing two reads instead
3862 			 * of one, so skip it.
3863 			 */
3864 			if (!buffer_uptodate(bitmap_bh)) {
3865 				brelse(bitmap_bh);
3866 				goto make_io;
3867 			}
3868 			for (i = start; i < start + inodes_per_block; i++) {
3869 				if (i == inode_offset)
3870 					continue;
3871 				if (ext4_test_bit(i, bitmap_bh->b_data))
3872 					break;
3873 			}
3874 			brelse(bitmap_bh);
3875 			if (i == start + inodes_per_block) {
3876 				/* all other inodes are free, so skip I/O */
3877 				memset(bh->b_data, 0, bh->b_size);
3878 				set_buffer_uptodate(bh);
3879 				unlock_buffer(bh);
3880 				goto has_buffer;
3881 			}
3882 		}
3883 
3884 make_io:
3885 		/*
3886 		 * If we need to do any I/O, try to pre-readahead extra
3887 		 * blocks from the inode table.
3888 		 */
3889 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3890 			ext4_fsblk_t b, end, table;
3891 			unsigned num;
3892 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3893 
3894 			table = ext4_inode_table(sb, gdp);
3895 			/* s_inode_readahead_blks is always a power of 2 */
3896 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3897 			if (table > b)
3898 				b = table;
3899 			end = b + ra_blks;
3900 			num = EXT4_INODES_PER_GROUP(sb);
3901 			if (ext4_has_group_desc_csum(sb))
3902 				num -= ext4_itable_unused_count(sb, gdp);
3903 			table += num / inodes_per_block;
3904 			if (end > table)
3905 				end = table;
3906 			while (b <= end)
3907 				sb_breadahead(sb, b++);
3908 		}
3909 
3910 		/*
3911 		 * There are other valid inodes in the buffer, this inode
3912 		 * has in-inode xattrs, or we don't have this inode in memory.
3913 		 * Read the block from disk.
3914 		 */
3915 		trace_ext4_load_inode(inode);
3916 		get_bh(bh);
3917 		bh->b_end_io = end_buffer_read_sync;
3918 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3919 		wait_on_buffer(bh);
3920 		if (!buffer_uptodate(bh)) {
3921 			EXT4_ERROR_INODE_BLOCK(inode, block,
3922 					       "unable to read itable block");
3923 			brelse(bh);
3924 			return -EIO;
3925 		}
3926 	}
3927 has_buffer:
3928 	iloc->bh = bh;
3929 	return 0;
3930 }
3931 
3932 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3933 {
3934 	/* We have all inode data except xattrs in memory here. */
3935 	return __ext4_get_inode_loc(inode, iloc,
3936 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3937 }
3938 
3939 void ext4_set_inode_flags(struct inode *inode)
3940 {
3941 	unsigned int flags = EXT4_I(inode)->i_flags;
3942 	unsigned int new_fl = 0;
3943 
3944 	if (flags & EXT4_SYNC_FL)
3945 		new_fl |= S_SYNC;
3946 	if (flags & EXT4_APPEND_FL)
3947 		new_fl |= S_APPEND;
3948 	if (flags & EXT4_IMMUTABLE_FL)
3949 		new_fl |= S_IMMUTABLE;
3950 	if (flags & EXT4_NOATIME_FL)
3951 		new_fl |= S_NOATIME;
3952 	if (flags & EXT4_DIRSYNC_FL)
3953 		new_fl |= S_DIRSYNC;
3954 	if (test_opt(inode->i_sb, DAX))
3955 		new_fl |= S_DAX;
3956 	inode_set_flags(inode, new_fl,
3957 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3958 }
3959 
3960 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3961 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3962 {
3963 	unsigned int vfs_fl;
3964 	unsigned long old_fl, new_fl;
3965 
3966 	do {
3967 		vfs_fl = ei->vfs_inode.i_flags;
3968 		old_fl = ei->i_flags;
3969 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3970 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3971 				EXT4_DIRSYNC_FL);
3972 		if (vfs_fl & S_SYNC)
3973 			new_fl |= EXT4_SYNC_FL;
3974 		if (vfs_fl & S_APPEND)
3975 			new_fl |= EXT4_APPEND_FL;
3976 		if (vfs_fl & S_IMMUTABLE)
3977 			new_fl |= EXT4_IMMUTABLE_FL;
3978 		if (vfs_fl & S_NOATIME)
3979 			new_fl |= EXT4_NOATIME_FL;
3980 		if (vfs_fl & S_DIRSYNC)
3981 			new_fl |= EXT4_DIRSYNC_FL;
3982 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3983 }
3984 
3985 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3986 				  struct ext4_inode_info *ei)
3987 {
3988 	blkcnt_t i_blocks ;
3989 	struct inode *inode = &(ei->vfs_inode);
3990 	struct super_block *sb = inode->i_sb;
3991 
3992 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3993 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3994 		/* we are using combined 48 bit field */
3995 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3996 					le32_to_cpu(raw_inode->i_blocks_lo);
3997 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3998 			/* i_blocks represent file system block size */
3999 			return i_blocks  << (inode->i_blkbits - 9);
4000 		} else {
4001 			return i_blocks;
4002 		}
4003 	} else {
4004 		return le32_to_cpu(raw_inode->i_blocks_lo);
4005 	}
4006 }
4007 
4008 static inline void ext4_iget_extra_inode(struct inode *inode,
4009 					 struct ext4_inode *raw_inode,
4010 					 struct ext4_inode_info *ei)
4011 {
4012 	__le32 *magic = (void *)raw_inode +
4013 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4014 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4015 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4016 		ext4_find_inline_data_nolock(inode);
4017 	} else
4018 		EXT4_I(inode)->i_inline_off = 0;
4019 }
4020 
4021 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4022 {
4023 	struct ext4_iloc iloc;
4024 	struct ext4_inode *raw_inode;
4025 	struct ext4_inode_info *ei;
4026 	struct inode *inode;
4027 	journal_t *journal = EXT4_SB(sb)->s_journal;
4028 	long ret;
4029 	int block;
4030 	uid_t i_uid;
4031 	gid_t i_gid;
4032 
4033 	inode = iget_locked(sb, ino);
4034 	if (!inode)
4035 		return ERR_PTR(-ENOMEM);
4036 	if (!(inode->i_state & I_NEW))
4037 		return inode;
4038 
4039 	ei = EXT4_I(inode);
4040 	iloc.bh = NULL;
4041 
4042 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4043 	if (ret < 0)
4044 		goto bad_inode;
4045 	raw_inode = ext4_raw_inode(&iloc);
4046 
4047 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4048 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4049 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4050 		    EXT4_INODE_SIZE(inode->i_sb)) {
4051 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4052 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4053 				EXT4_INODE_SIZE(inode->i_sb));
4054 			ret = -EIO;
4055 			goto bad_inode;
4056 		}
4057 	} else
4058 		ei->i_extra_isize = 0;
4059 
4060 	/* Precompute checksum seed for inode metadata */
4061 	if (ext4_has_metadata_csum(sb)) {
4062 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4063 		__u32 csum;
4064 		__le32 inum = cpu_to_le32(inode->i_ino);
4065 		__le32 gen = raw_inode->i_generation;
4066 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4067 				   sizeof(inum));
4068 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4069 					      sizeof(gen));
4070 	}
4071 
4072 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4073 		EXT4_ERROR_INODE(inode, "checksum invalid");
4074 		ret = -EIO;
4075 		goto bad_inode;
4076 	}
4077 
4078 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4079 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4080 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4081 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4082 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4083 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4084 	}
4085 	i_uid_write(inode, i_uid);
4086 	i_gid_write(inode, i_gid);
4087 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4088 
4089 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4090 	ei->i_inline_off = 0;
4091 	ei->i_dir_start_lookup = 0;
4092 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4093 	/* We now have enough fields to check if the inode was active or not.
4094 	 * This is needed because nfsd might try to access dead inodes
4095 	 * the test is that same one that e2fsck uses
4096 	 * NeilBrown 1999oct15
4097 	 */
4098 	if (inode->i_nlink == 0) {
4099 		if ((inode->i_mode == 0 ||
4100 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4101 		    ino != EXT4_BOOT_LOADER_INO) {
4102 			/* this inode is deleted */
4103 			ret = -ESTALE;
4104 			goto bad_inode;
4105 		}
4106 		/* The only unlinked inodes we let through here have
4107 		 * valid i_mode and are being read by the orphan
4108 		 * recovery code: that's fine, we're about to complete
4109 		 * the process of deleting those.
4110 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4111 		 * not initialized on a new filesystem. */
4112 	}
4113 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4114 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4115 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4116 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4117 		ei->i_file_acl |=
4118 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4119 	inode->i_size = ext4_isize(raw_inode);
4120 	ei->i_disksize = inode->i_size;
4121 #ifdef CONFIG_QUOTA
4122 	ei->i_reserved_quota = 0;
4123 #endif
4124 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4125 	ei->i_block_group = iloc.block_group;
4126 	ei->i_last_alloc_group = ~0;
4127 	/*
4128 	 * NOTE! The in-memory inode i_data array is in little-endian order
4129 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4130 	 */
4131 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4132 		ei->i_data[block] = raw_inode->i_block[block];
4133 	INIT_LIST_HEAD(&ei->i_orphan);
4134 
4135 	/*
4136 	 * Set transaction id's of transactions that have to be committed
4137 	 * to finish f[data]sync. We set them to currently running transaction
4138 	 * as we cannot be sure that the inode or some of its metadata isn't
4139 	 * part of the transaction - the inode could have been reclaimed and
4140 	 * now it is reread from disk.
4141 	 */
4142 	if (journal) {
4143 		transaction_t *transaction;
4144 		tid_t tid;
4145 
4146 		read_lock(&journal->j_state_lock);
4147 		if (journal->j_running_transaction)
4148 			transaction = journal->j_running_transaction;
4149 		else
4150 			transaction = journal->j_committing_transaction;
4151 		if (transaction)
4152 			tid = transaction->t_tid;
4153 		else
4154 			tid = journal->j_commit_sequence;
4155 		read_unlock(&journal->j_state_lock);
4156 		ei->i_sync_tid = tid;
4157 		ei->i_datasync_tid = tid;
4158 	}
4159 
4160 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4161 		if (ei->i_extra_isize == 0) {
4162 			/* The extra space is currently unused. Use it. */
4163 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4164 					    EXT4_GOOD_OLD_INODE_SIZE;
4165 		} else {
4166 			ext4_iget_extra_inode(inode, raw_inode, ei);
4167 		}
4168 	}
4169 
4170 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4171 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4172 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4173 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4174 
4175 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4176 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4177 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4178 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4179 				inode->i_version |=
4180 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4181 		}
4182 	}
4183 
4184 	ret = 0;
4185 	if (ei->i_file_acl &&
4186 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4187 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4188 				 ei->i_file_acl);
4189 		ret = -EIO;
4190 		goto bad_inode;
4191 	} else if (!ext4_has_inline_data(inode)) {
4192 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4193 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4194 			    (S_ISLNK(inode->i_mode) &&
4195 			     !ext4_inode_is_fast_symlink(inode))))
4196 				/* Validate extent which is part of inode */
4197 				ret = ext4_ext_check_inode(inode);
4198 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4199 			   (S_ISLNK(inode->i_mode) &&
4200 			    !ext4_inode_is_fast_symlink(inode))) {
4201 			/* Validate block references which are part of inode */
4202 			ret = ext4_ind_check_inode(inode);
4203 		}
4204 	}
4205 	if (ret)
4206 		goto bad_inode;
4207 
4208 	if (S_ISREG(inode->i_mode)) {
4209 		inode->i_op = &ext4_file_inode_operations;
4210 		inode->i_fop = &ext4_file_operations;
4211 		ext4_set_aops(inode);
4212 	} else if (S_ISDIR(inode->i_mode)) {
4213 		inode->i_op = &ext4_dir_inode_operations;
4214 		inode->i_fop = &ext4_dir_operations;
4215 	} else if (S_ISLNK(inode->i_mode)) {
4216 		if (ext4_inode_is_fast_symlink(inode) &&
4217 		    !ext4_encrypted_inode(inode)) {
4218 			inode->i_op = &ext4_fast_symlink_inode_operations;
4219 			nd_terminate_link(ei->i_data, inode->i_size,
4220 				sizeof(ei->i_data) - 1);
4221 		} else {
4222 			inode->i_op = &ext4_symlink_inode_operations;
4223 			ext4_set_aops(inode);
4224 		}
4225 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4226 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4227 		inode->i_op = &ext4_special_inode_operations;
4228 		if (raw_inode->i_block[0])
4229 			init_special_inode(inode, inode->i_mode,
4230 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4231 		else
4232 			init_special_inode(inode, inode->i_mode,
4233 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4234 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4235 		make_bad_inode(inode);
4236 	} else {
4237 		ret = -EIO;
4238 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4239 		goto bad_inode;
4240 	}
4241 	brelse(iloc.bh);
4242 	ext4_set_inode_flags(inode);
4243 	unlock_new_inode(inode);
4244 	return inode;
4245 
4246 bad_inode:
4247 	brelse(iloc.bh);
4248 	iget_failed(inode);
4249 	return ERR_PTR(ret);
4250 }
4251 
4252 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4253 {
4254 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4255 		return ERR_PTR(-EIO);
4256 	return ext4_iget(sb, ino);
4257 }
4258 
4259 static int ext4_inode_blocks_set(handle_t *handle,
4260 				struct ext4_inode *raw_inode,
4261 				struct ext4_inode_info *ei)
4262 {
4263 	struct inode *inode = &(ei->vfs_inode);
4264 	u64 i_blocks = inode->i_blocks;
4265 	struct super_block *sb = inode->i_sb;
4266 
4267 	if (i_blocks <= ~0U) {
4268 		/*
4269 		 * i_blocks can be represented in a 32 bit variable
4270 		 * as multiple of 512 bytes
4271 		 */
4272 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4273 		raw_inode->i_blocks_high = 0;
4274 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4275 		return 0;
4276 	}
4277 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4278 		return -EFBIG;
4279 
4280 	if (i_blocks <= 0xffffffffffffULL) {
4281 		/*
4282 		 * i_blocks can be represented in a 48 bit variable
4283 		 * as multiple of 512 bytes
4284 		 */
4285 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4286 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4287 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4288 	} else {
4289 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4290 		/* i_block is stored in file system block size */
4291 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4292 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4293 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4294 	}
4295 	return 0;
4296 }
4297 
4298 struct other_inode {
4299 	unsigned long		orig_ino;
4300 	struct ext4_inode	*raw_inode;
4301 };
4302 
4303 static int other_inode_match(struct inode * inode, unsigned long ino,
4304 			     void *data)
4305 {
4306 	struct other_inode *oi = (struct other_inode *) data;
4307 
4308 	if ((inode->i_ino != ino) ||
4309 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4310 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4311 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4312 		return 0;
4313 	spin_lock(&inode->i_lock);
4314 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4315 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4316 	    (inode->i_state & I_DIRTY_TIME)) {
4317 		struct ext4_inode_info	*ei = EXT4_I(inode);
4318 
4319 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4320 		spin_unlock(&inode->i_lock);
4321 
4322 		spin_lock(&ei->i_raw_lock);
4323 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4324 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4325 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4326 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4327 		spin_unlock(&ei->i_raw_lock);
4328 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4329 		return -1;
4330 	}
4331 	spin_unlock(&inode->i_lock);
4332 	return -1;
4333 }
4334 
4335 /*
4336  * Opportunistically update the other time fields for other inodes in
4337  * the same inode table block.
4338  */
4339 static void ext4_update_other_inodes_time(struct super_block *sb,
4340 					  unsigned long orig_ino, char *buf)
4341 {
4342 	struct other_inode oi;
4343 	unsigned long ino;
4344 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4345 	int inode_size = EXT4_INODE_SIZE(sb);
4346 
4347 	oi.orig_ino = orig_ino;
4348 	ino = orig_ino & ~(inodes_per_block - 1);
4349 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4350 		if (ino == orig_ino)
4351 			continue;
4352 		oi.raw_inode = (struct ext4_inode *) buf;
4353 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4354 	}
4355 }
4356 
4357 /*
4358  * Post the struct inode info into an on-disk inode location in the
4359  * buffer-cache.  This gobbles the caller's reference to the
4360  * buffer_head in the inode location struct.
4361  *
4362  * The caller must have write access to iloc->bh.
4363  */
4364 static int ext4_do_update_inode(handle_t *handle,
4365 				struct inode *inode,
4366 				struct ext4_iloc *iloc)
4367 {
4368 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4369 	struct ext4_inode_info *ei = EXT4_I(inode);
4370 	struct buffer_head *bh = iloc->bh;
4371 	struct super_block *sb = inode->i_sb;
4372 	int err = 0, rc, block;
4373 	int need_datasync = 0, set_large_file = 0;
4374 	uid_t i_uid;
4375 	gid_t i_gid;
4376 
4377 	spin_lock(&ei->i_raw_lock);
4378 
4379 	/* For fields not tracked in the in-memory inode,
4380 	 * initialise them to zero for new inodes. */
4381 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4382 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4383 
4384 	ext4_get_inode_flags(ei);
4385 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4386 	i_uid = i_uid_read(inode);
4387 	i_gid = i_gid_read(inode);
4388 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4389 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4390 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4391 /*
4392  * Fix up interoperability with old kernels. Otherwise, old inodes get
4393  * re-used with the upper 16 bits of the uid/gid intact
4394  */
4395 		if (!ei->i_dtime) {
4396 			raw_inode->i_uid_high =
4397 				cpu_to_le16(high_16_bits(i_uid));
4398 			raw_inode->i_gid_high =
4399 				cpu_to_le16(high_16_bits(i_gid));
4400 		} else {
4401 			raw_inode->i_uid_high = 0;
4402 			raw_inode->i_gid_high = 0;
4403 		}
4404 	} else {
4405 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4406 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4407 		raw_inode->i_uid_high = 0;
4408 		raw_inode->i_gid_high = 0;
4409 	}
4410 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4411 
4412 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4413 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4414 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4415 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4416 
4417 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4418 	if (err) {
4419 		spin_unlock(&ei->i_raw_lock);
4420 		goto out_brelse;
4421 	}
4422 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4423 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4424 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4425 		raw_inode->i_file_acl_high =
4426 			cpu_to_le16(ei->i_file_acl >> 32);
4427 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4428 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4429 		ext4_isize_set(raw_inode, ei->i_disksize);
4430 		need_datasync = 1;
4431 	}
4432 	if (ei->i_disksize > 0x7fffffffULL) {
4433 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4434 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4435 				EXT4_SB(sb)->s_es->s_rev_level ==
4436 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4437 			set_large_file = 1;
4438 	}
4439 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4440 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4441 		if (old_valid_dev(inode->i_rdev)) {
4442 			raw_inode->i_block[0] =
4443 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4444 			raw_inode->i_block[1] = 0;
4445 		} else {
4446 			raw_inode->i_block[0] = 0;
4447 			raw_inode->i_block[1] =
4448 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4449 			raw_inode->i_block[2] = 0;
4450 		}
4451 	} else if (!ext4_has_inline_data(inode)) {
4452 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4453 			raw_inode->i_block[block] = ei->i_data[block];
4454 	}
4455 
4456 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4457 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4458 		if (ei->i_extra_isize) {
4459 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4460 				raw_inode->i_version_hi =
4461 					cpu_to_le32(inode->i_version >> 32);
4462 			raw_inode->i_extra_isize =
4463 				cpu_to_le16(ei->i_extra_isize);
4464 		}
4465 	}
4466 	ext4_inode_csum_set(inode, raw_inode, ei);
4467 	spin_unlock(&ei->i_raw_lock);
4468 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4469 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4470 					      bh->b_data);
4471 
4472 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4473 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4474 	if (!err)
4475 		err = rc;
4476 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4477 	if (set_large_file) {
4478 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4479 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4480 		if (err)
4481 			goto out_brelse;
4482 		ext4_update_dynamic_rev(sb);
4483 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4484 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4485 		ext4_handle_sync(handle);
4486 		err = ext4_handle_dirty_super(handle, sb);
4487 	}
4488 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4489 out_brelse:
4490 	brelse(bh);
4491 	ext4_std_error(inode->i_sb, err);
4492 	return err;
4493 }
4494 
4495 /*
4496  * ext4_write_inode()
4497  *
4498  * We are called from a few places:
4499  *
4500  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4501  *   Here, there will be no transaction running. We wait for any running
4502  *   transaction to commit.
4503  *
4504  * - Within flush work (sys_sync(), kupdate and such).
4505  *   We wait on commit, if told to.
4506  *
4507  * - Within iput_final() -> write_inode_now()
4508  *   We wait on commit, if told to.
4509  *
4510  * In all cases it is actually safe for us to return without doing anything,
4511  * because the inode has been copied into a raw inode buffer in
4512  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4513  * writeback.
4514  *
4515  * Note that we are absolutely dependent upon all inode dirtiers doing the
4516  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4517  * which we are interested.
4518  *
4519  * It would be a bug for them to not do this.  The code:
4520  *
4521  *	mark_inode_dirty(inode)
4522  *	stuff();
4523  *	inode->i_size = expr;
4524  *
4525  * is in error because write_inode() could occur while `stuff()' is running,
4526  * and the new i_size will be lost.  Plus the inode will no longer be on the
4527  * superblock's dirty inode list.
4528  */
4529 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4530 {
4531 	int err;
4532 
4533 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4534 		return 0;
4535 
4536 	if (EXT4_SB(inode->i_sb)->s_journal) {
4537 		if (ext4_journal_current_handle()) {
4538 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4539 			dump_stack();
4540 			return -EIO;
4541 		}
4542 
4543 		/*
4544 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4545 		 * ext4_sync_fs() will force the commit after everything is
4546 		 * written.
4547 		 */
4548 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4549 			return 0;
4550 
4551 		err = ext4_force_commit(inode->i_sb);
4552 	} else {
4553 		struct ext4_iloc iloc;
4554 
4555 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4556 		if (err)
4557 			return err;
4558 		/*
4559 		 * sync(2) will flush the whole buffer cache. No need to do
4560 		 * it here separately for each inode.
4561 		 */
4562 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4563 			sync_dirty_buffer(iloc.bh);
4564 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4565 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4566 					 "IO error syncing inode");
4567 			err = -EIO;
4568 		}
4569 		brelse(iloc.bh);
4570 	}
4571 	return err;
4572 }
4573 
4574 /*
4575  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4576  * buffers that are attached to a page stradding i_size and are undergoing
4577  * commit. In that case we have to wait for commit to finish and try again.
4578  */
4579 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4580 {
4581 	struct page *page;
4582 	unsigned offset;
4583 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4584 	tid_t commit_tid = 0;
4585 	int ret;
4586 
4587 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4588 	/*
4589 	 * All buffers in the last page remain valid? Then there's nothing to
4590 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4591 	 * blocksize case
4592 	 */
4593 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4594 		return;
4595 	while (1) {
4596 		page = find_lock_page(inode->i_mapping,
4597 				      inode->i_size >> PAGE_CACHE_SHIFT);
4598 		if (!page)
4599 			return;
4600 		ret = __ext4_journalled_invalidatepage(page, offset,
4601 						PAGE_CACHE_SIZE - offset);
4602 		unlock_page(page);
4603 		page_cache_release(page);
4604 		if (ret != -EBUSY)
4605 			return;
4606 		commit_tid = 0;
4607 		read_lock(&journal->j_state_lock);
4608 		if (journal->j_committing_transaction)
4609 			commit_tid = journal->j_committing_transaction->t_tid;
4610 		read_unlock(&journal->j_state_lock);
4611 		if (commit_tid)
4612 			jbd2_log_wait_commit(journal, commit_tid);
4613 	}
4614 }
4615 
4616 /*
4617  * ext4_setattr()
4618  *
4619  * Called from notify_change.
4620  *
4621  * We want to trap VFS attempts to truncate the file as soon as
4622  * possible.  In particular, we want to make sure that when the VFS
4623  * shrinks i_size, we put the inode on the orphan list and modify
4624  * i_disksize immediately, so that during the subsequent flushing of
4625  * dirty pages and freeing of disk blocks, we can guarantee that any
4626  * commit will leave the blocks being flushed in an unused state on
4627  * disk.  (On recovery, the inode will get truncated and the blocks will
4628  * be freed, so we have a strong guarantee that no future commit will
4629  * leave these blocks visible to the user.)
4630  *
4631  * Another thing we have to assure is that if we are in ordered mode
4632  * and inode is still attached to the committing transaction, we must
4633  * we start writeout of all the dirty pages which are being truncated.
4634  * This way we are sure that all the data written in the previous
4635  * transaction are already on disk (truncate waits for pages under
4636  * writeback).
4637  *
4638  * Called with inode->i_mutex down.
4639  */
4640 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4641 {
4642 	struct inode *inode = d_inode(dentry);
4643 	int error, rc = 0;
4644 	int orphan = 0;
4645 	const unsigned int ia_valid = attr->ia_valid;
4646 
4647 	error = inode_change_ok(inode, attr);
4648 	if (error)
4649 		return error;
4650 
4651 	if (is_quota_modification(inode, attr))
4652 		dquot_initialize(inode);
4653 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4654 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4655 		handle_t *handle;
4656 
4657 		/* (user+group)*(old+new) structure, inode write (sb,
4658 		 * inode block, ? - but truncate inode update has it) */
4659 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4660 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4661 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4662 		if (IS_ERR(handle)) {
4663 			error = PTR_ERR(handle);
4664 			goto err_out;
4665 		}
4666 		error = dquot_transfer(inode, attr);
4667 		if (error) {
4668 			ext4_journal_stop(handle);
4669 			return error;
4670 		}
4671 		/* Update corresponding info in inode so that everything is in
4672 		 * one transaction */
4673 		if (attr->ia_valid & ATTR_UID)
4674 			inode->i_uid = attr->ia_uid;
4675 		if (attr->ia_valid & ATTR_GID)
4676 			inode->i_gid = attr->ia_gid;
4677 		error = ext4_mark_inode_dirty(handle, inode);
4678 		ext4_journal_stop(handle);
4679 	}
4680 
4681 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4682 		handle_t *handle;
4683 
4684 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4685 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4686 
4687 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4688 				return -EFBIG;
4689 		}
4690 
4691 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4692 			inode_inc_iversion(inode);
4693 
4694 		if (S_ISREG(inode->i_mode) &&
4695 		    (attr->ia_size < inode->i_size)) {
4696 			if (ext4_should_order_data(inode)) {
4697 				error = ext4_begin_ordered_truncate(inode,
4698 							    attr->ia_size);
4699 				if (error)
4700 					goto err_out;
4701 			}
4702 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4703 			if (IS_ERR(handle)) {
4704 				error = PTR_ERR(handle);
4705 				goto err_out;
4706 			}
4707 			if (ext4_handle_valid(handle)) {
4708 				error = ext4_orphan_add(handle, inode);
4709 				orphan = 1;
4710 			}
4711 			down_write(&EXT4_I(inode)->i_data_sem);
4712 			EXT4_I(inode)->i_disksize = attr->ia_size;
4713 			rc = ext4_mark_inode_dirty(handle, inode);
4714 			if (!error)
4715 				error = rc;
4716 			/*
4717 			 * We have to update i_size under i_data_sem together
4718 			 * with i_disksize to avoid races with writeback code
4719 			 * running ext4_wb_update_i_disksize().
4720 			 */
4721 			if (!error)
4722 				i_size_write(inode, attr->ia_size);
4723 			up_write(&EXT4_I(inode)->i_data_sem);
4724 			ext4_journal_stop(handle);
4725 			if (error) {
4726 				ext4_orphan_del(NULL, inode);
4727 				goto err_out;
4728 			}
4729 		} else {
4730 			loff_t oldsize = inode->i_size;
4731 
4732 			i_size_write(inode, attr->ia_size);
4733 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4734 		}
4735 
4736 		/*
4737 		 * Blocks are going to be removed from the inode. Wait
4738 		 * for dio in flight.  Temporarily disable
4739 		 * dioread_nolock to prevent livelock.
4740 		 */
4741 		if (orphan) {
4742 			if (!ext4_should_journal_data(inode)) {
4743 				ext4_inode_block_unlocked_dio(inode);
4744 				inode_dio_wait(inode);
4745 				ext4_inode_resume_unlocked_dio(inode);
4746 			} else
4747 				ext4_wait_for_tail_page_commit(inode);
4748 		}
4749 		/*
4750 		 * Truncate pagecache after we've waited for commit
4751 		 * in data=journal mode to make pages freeable.
4752 		 */
4753 		truncate_pagecache(inode, inode->i_size);
4754 	}
4755 	/*
4756 	 * We want to call ext4_truncate() even if attr->ia_size ==
4757 	 * inode->i_size for cases like truncation of fallocated space
4758 	 */
4759 	if (attr->ia_valid & ATTR_SIZE)
4760 		ext4_truncate(inode);
4761 
4762 	if (!rc) {
4763 		setattr_copy(inode, attr);
4764 		mark_inode_dirty(inode);
4765 	}
4766 
4767 	/*
4768 	 * If the call to ext4_truncate failed to get a transaction handle at
4769 	 * all, we need to clean up the in-core orphan list manually.
4770 	 */
4771 	if (orphan && inode->i_nlink)
4772 		ext4_orphan_del(NULL, inode);
4773 
4774 	if (!rc && (ia_valid & ATTR_MODE))
4775 		rc = posix_acl_chmod(inode, inode->i_mode);
4776 
4777 err_out:
4778 	ext4_std_error(inode->i_sb, error);
4779 	if (!error)
4780 		error = rc;
4781 	return error;
4782 }
4783 
4784 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4785 		 struct kstat *stat)
4786 {
4787 	struct inode *inode;
4788 	unsigned long long delalloc_blocks;
4789 
4790 	inode = d_inode(dentry);
4791 	generic_fillattr(inode, stat);
4792 
4793 	/*
4794 	 * If there is inline data in the inode, the inode will normally not
4795 	 * have data blocks allocated (it may have an external xattr block).
4796 	 * Report at least one sector for such files, so tools like tar, rsync,
4797 	 * others doen't incorrectly think the file is completely sparse.
4798 	 */
4799 	if (unlikely(ext4_has_inline_data(inode)))
4800 		stat->blocks += (stat->size + 511) >> 9;
4801 
4802 	/*
4803 	 * We can't update i_blocks if the block allocation is delayed
4804 	 * otherwise in the case of system crash before the real block
4805 	 * allocation is done, we will have i_blocks inconsistent with
4806 	 * on-disk file blocks.
4807 	 * We always keep i_blocks updated together with real
4808 	 * allocation. But to not confuse with user, stat
4809 	 * will return the blocks that include the delayed allocation
4810 	 * blocks for this file.
4811 	 */
4812 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4813 				   EXT4_I(inode)->i_reserved_data_blocks);
4814 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4815 	return 0;
4816 }
4817 
4818 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4819 				   int pextents)
4820 {
4821 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4822 		return ext4_ind_trans_blocks(inode, lblocks);
4823 	return ext4_ext_index_trans_blocks(inode, pextents);
4824 }
4825 
4826 /*
4827  * Account for index blocks, block groups bitmaps and block group
4828  * descriptor blocks if modify datablocks and index blocks
4829  * worse case, the indexs blocks spread over different block groups
4830  *
4831  * If datablocks are discontiguous, they are possible to spread over
4832  * different block groups too. If they are contiguous, with flexbg,
4833  * they could still across block group boundary.
4834  *
4835  * Also account for superblock, inode, quota and xattr blocks
4836  */
4837 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4838 				  int pextents)
4839 {
4840 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4841 	int gdpblocks;
4842 	int idxblocks;
4843 	int ret = 0;
4844 
4845 	/*
4846 	 * How many index blocks need to touch to map @lblocks logical blocks
4847 	 * to @pextents physical extents?
4848 	 */
4849 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4850 
4851 	ret = idxblocks;
4852 
4853 	/*
4854 	 * Now let's see how many group bitmaps and group descriptors need
4855 	 * to account
4856 	 */
4857 	groups = idxblocks + pextents;
4858 	gdpblocks = groups;
4859 	if (groups > ngroups)
4860 		groups = ngroups;
4861 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4862 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4863 
4864 	/* bitmaps and block group descriptor blocks */
4865 	ret += groups + gdpblocks;
4866 
4867 	/* Blocks for super block, inode, quota and xattr blocks */
4868 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4869 
4870 	return ret;
4871 }
4872 
4873 /*
4874  * Calculate the total number of credits to reserve to fit
4875  * the modification of a single pages into a single transaction,
4876  * which may include multiple chunks of block allocations.
4877  *
4878  * This could be called via ext4_write_begin()
4879  *
4880  * We need to consider the worse case, when
4881  * one new block per extent.
4882  */
4883 int ext4_writepage_trans_blocks(struct inode *inode)
4884 {
4885 	int bpp = ext4_journal_blocks_per_page(inode);
4886 	int ret;
4887 
4888 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4889 
4890 	/* Account for data blocks for journalled mode */
4891 	if (ext4_should_journal_data(inode))
4892 		ret += bpp;
4893 	return ret;
4894 }
4895 
4896 /*
4897  * Calculate the journal credits for a chunk of data modification.
4898  *
4899  * This is called from DIO, fallocate or whoever calling
4900  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4901  *
4902  * journal buffers for data blocks are not included here, as DIO
4903  * and fallocate do no need to journal data buffers.
4904  */
4905 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4906 {
4907 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4908 }
4909 
4910 /*
4911  * The caller must have previously called ext4_reserve_inode_write().
4912  * Give this, we know that the caller already has write access to iloc->bh.
4913  */
4914 int ext4_mark_iloc_dirty(handle_t *handle,
4915 			 struct inode *inode, struct ext4_iloc *iloc)
4916 {
4917 	int err = 0;
4918 
4919 	if (IS_I_VERSION(inode))
4920 		inode_inc_iversion(inode);
4921 
4922 	/* the do_update_inode consumes one bh->b_count */
4923 	get_bh(iloc->bh);
4924 
4925 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4926 	err = ext4_do_update_inode(handle, inode, iloc);
4927 	put_bh(iloc->bh);
4928 	return err;
4929 }
4930 
4931 /*
4932  * On success, We end up with an outstanding reference count against
4933  * iloc->bh.  This _must_ be cleaned up later.
4934  */
4935 
4936 int
4937 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4938 			 struct ext4_iloc *iloc)
4939 {
4940 	int err;
4941 
4942 	err = ext4_get_inode_loc(inode, iloc);
4943 	if (!err) {
4944 		BUFFER_TRACE(iloc->bh, "get_write_access");
4945 		err = ext4_journal_get_write_access(handle, iloc->bh);
4946 		if (err) {
4947 			brelse(iloc->bh);
4948 			iloc->bh = NULL;
4949 		}
4950 	}
4951 	ext4_std_error(inode->i_sb, err);
4952 	return err;
4953 }
4954 
4955 /*
4956  * Expand an inode by new_extra_isize bytes.
4957  * Returns 0 on success or negative error number on failure.
4958  */
4959 static int ext4_expand_extra_isize(struct inode *inode,
4960 				   unsigned int new_extra_isize,
4961 				   struct ext4_iloc iloc,
4962 				   handle_t *handle)
4963 {
4964 	struct ext4_inode *raw_inode;
4965 	struct ext4_xattr_ibody_header *header;
4966 
4967 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4968 		return 0;
4969 
4970 	raw_inode = ext4_raw_inode(&iloc);
4971 
4972 	header = IHDR(inode, raw_inode);
4973 
4974 	/* No extended attributes present */
4975 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4976 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4977 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4978 			new_extra_isize);
4979 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4980 		return 0;
4981 	}
4982 
4983 	/* try to expand with EAs present */
4984 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4985 					  raw_inode, handle);
4986 }
4987 
4988 /*
4989  * What we do here is to mark the in-core inode as clean with respect to inode
4990  * dirtiness (it may still be data-dirty).
4991  * This means that the in-core inode may be reaped by prune_icache
4992  * without having to perform any I/O.  This is a very good thing,
4993  * because *any* task may call prune_icache - even ones which
4994  * have a transaction open against a different journal.
4995  *
4996  * Is this cheating?  Not really.  Sure, we haven't written the
4997  * inode out, but prune_icache isn't a user-visible syncing function.
4998  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4999  * we start and wait on commits.
5000  */
5001 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5002 {
5003 	struct ext4_iloc iloc;
5004 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5005 	static unsigned int mnt_count;
5006 	int err, ret;
5007 
5008 	might_sleep();
5009 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5010 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5011 	if (ext4_handle_valid(handle) &&
5012 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5013 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5014 		/*
5015 		 * We need extra buffer credits since we may write into EA block
5016 		 * with this same handle. If journal_extend fails, then it will
5017 		 * only result in a minor loss of functionality for that inode.
5018 		 * If this is felt to be critical, then e2fsck should be run to
5019 		 * force a large enough s_min_extra_isize.
5020 		 */
5021 		if ((jbd2_journal_extend(handle,
5022 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5023 			ret = ext4_expand_extra_isize(inode,
5024 						      sbi->s_want_extra_isize,
5025 						      iloc, handle);
5026 			if (ret) {
5027 				ext4_set_inode_state(inode,
5028 						     EXT4_STATE_NO_EXPAND);
5029 				if (mnt_count !=
5030 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5031 					ext4_warning(inode->i_sb,
5032 					"Unable to expand inode %lu. Delete"
5033 					" some EAs or run e2fsck.",
5034 					inode->i_ino);
5035 					mnt_count =
5036 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5037 				}
5038 			}
5039 		}
5040 	}
5041 	if (!err)
5042 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5043 	return err;
5044 }
5045 
5046 /*
5047  * ext4_dirty_inode() is called from __mark_inode_dirty()
5048  *
5049  * We're really interested in the case where a file is being extended.
5050  * i_size has been changed by generic_commit_write() and we thus need
5051  * to include the updated inode in the current transaction.
5052  *
5053  * Also, dquot_alloc_block() will always dirty the inode when blocks
5054  * are allocated to the file.
5055  *
5056  * If the inode is marked synchronous, we don't honour that here - doing
5057  * so would cause a commit on atime updates, which we don't bother doing.
5058  * We handle synchronous inodes at the highest possible level.
5059  *
5060  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5061  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5062  * to copy into the on-disk inode structure are the timestamp files.
5063  */
5064 void ext4_dirty_inode(struct inode *inode, int flags)
5065 {
5066 	handle_t *handle;
5067 
5068 	if (flags == I_DIRTY_TIME)
5069 		return;
5070 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5071 	if (IS_ERR(handle))
5072 		goto out;
5073 
5074 	ext4_mark_inode_dirty(handle, inode);
5075 
5076 	ext4_journal_stop(handle);
5077 out:
5078 	return;
5079 }
5080 
5081 #if 0
5082 /*
5083  * Bind an inode's backing buffer_head into this transaction, to prevent
5084  * it from being flushed to disk early.  Unlike
5085  * ext4_reserve_inode_write, this leaves behind no bh reference and
5086  * returns no iloc structure, so the caller needs to repeat the iloc
5087  * lookup to mark the inode dirty later.
5088  */
5089 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5090 {
5091 	struct ext4_iloc iloc;
5092 
5093 	int err = 0;
5094 	if (handle) {
5095 		err = ext4_get_inode_loc(inode, &iloc);
5096 		if (!err) {
5097 			BUFFER_TRACE(iloc.bh, "get_write_access");
5098 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5099 			if (!err)
5100 				err = ext4_handle_dirty_metadata(handle,
5101 								 NULL,
5102 								 iloc.bh);
5103 			brelse(iloc.bh);
5104 		}
5105 	}
5106 	ext4_std_error(inode->i_sb, err);
5107 	return err;
5108 }
5109 #endif
5110 
5111 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5112 {
5113 	journal_t *journal;
5114 	handle_t *handle;
5115 	int err;
5116 
5117 	/*
5118 	 * We have to be very careful here: changing a data block's
5119 	 * journaling status dynamically is dangerous.  If we write a
5120 	 * data block to the journal, change the status and then delete
5121 	 * that block, we risk forgetting to revoke the old log record
5122 	 * from the journal and so a subsequent replay can corrupt data.
5123 	 * So, first we make sure that the journal is empty and that
5124 	 * nobody is changing anything.
5125 	 */
5126 
5127 	journal = EXT4_JOURNAL(inode);
5128 	if (!journal)
5129 		return 0;
5130 	if (is_journal_aborted(journal))
5131 		return -EROFS;
5132 	/* We have to allocate physical blocks for delalloc blocks
5133 	 * before flushing journal. otherwise delalloc blocks can not
5134 	 * be allocated any more. even more truncate on delalloc blocks
5135 	 * could trigger BUG by flushing delalloc blocks in journal.
5136 	 * There is no delalloc block in non-journal data mode.
5137 	 */
5138 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5139 		err = ext4_alloc_da_blocks(inode);
5140 		if (err < 0)
5141 			return err;
5142 	}
5143 
5144 	/* Wait for all existing dio workers */
5145 	ext4_inode_block_unlocked_dio(inode);
5146 	inode_dio_wait(inode);
5147 
5148 	jbd2_journal_lock_updates(journal);
5149 
5150 	/*
5151 	 * OK, there are no updates running now, and all cached data is
5152 	 * synced to disk.  We are now in a completely consistent state
5153 	 * which doesn't have anything in the journal, and we know that
5154 	 * no filesystem updates are running, so it is safe to modify
5155 	 * the inode's in-core data-journaling state flag now.
5156 	 */
5157 
5158 	if (val)
5159 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5160 	else {
5161 		err = jbd2_journal_flush(journal);
5162 		if (err < 0) {
5163 			jbd2_journal_unlock_updates(journal);
5164 			ext4_inode_resume_unlocked_dio(inode);
5165 			return err;
5166 		}
5167 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5168 	}
5169 	ext4_set_aops(inode);
5170 
5171 	jbd2_journal_unlock_updates(journal);
5172 	ext4_inode_resume_unlocked_dio(inode);
5173 
5174 	/* Finally we can mark the inode as dirty. */
5175 
5176 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5177 	if (IS_ERR(handle))
5178 		return PTR_ERR(handle);
5179 
5180 	err = ext4_mark_inode_dirty(handle, inode);
5181 	ext4_handle_sync(handle);
5182 	ext4_journal_stop(handle);
5183 	ext4_std_error(inode->i_sb, err);
5184 
5185 	return err;
5186 }
5187 
5188 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5189 {
5190 	return !buffer_mapped(bh);
5191 }
5192 
5193 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5194 {
5195 	struct page *page = vmf->page;
5196 	loff_t size;
5197 	unsigned long len;
5198 	int ret;
5199 	struct file *file = vma->vm_file;
5200 	struct inode *inode = file_inode(file);
5201 	struct address_space *mapping = inode->i_mapping;
5202 	handle_t *handle;
5203 	get_block_t *get_block;
5204 	int retries = 0;
5205 
5206 	sb_start_pagefault(inode->i_sb);
5207 	file_update_time(vma->vm_file);
5208 	/* Delalloc case is easy... */
5209 	if (test_opt(inode->i_sb, DELALLOC) &&
5210 	    !ext4_should_journal_data(inode) &&
5211 	    !ext4_nonda_switch(inode->i_sb)) {
5212 		do {
5213 			ret = __block_page_mkwrite(vma, vmf,
5214 						   ext4_da_get_block_prep);
5215 		} while (ret == -ENOSPC &&
5216 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5217 		goto out_ret;
5218 	}
5219 
5220 	lock_page(page);
5221 	size = i_size_read(inode);
5222 	/* Page got truncated from under us? */
5223 	if (page->mapping != mapping || page_offset(page) > size) {
5224 		unlock_page(page);
5225 		ret = VM_FAULT_NOPAGE;
5226 		goto out;
5227 	}
5228 
5229 	if (page->index == size >> PAGE_CACHE_SHIFT)
5230 		len = size & ~PAGE_CACHE_MASK;
5231 	else
5232 		len = PAGE_CACHE_SIZE;
5233 	/*
5234 	 * Return if we have all the buffers mapped. This avoids the need to do
5235 	 * journal_start/journal_stop which can block and take a long time
5236 	 */
5237 	if (page_has_buffers(page)) {
5238 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5239 					    0, len, NULL,
5240 					    ext4_bh_unmapped)) {
5241 			/* Wait so that we don't change page under IO */
5242 			wait_for_stable_page(page);
5243 			ret = VM_FAULT_LOCKED;
5244 			goto out;
5245 		}
5246 	}
5247 	unlock_page(page);
5248 	/* OK, we need to fill the hole... */
5249 	if (ext4_should_dioread_nolock(inode))
5250 		get_block = ext4_get_block_write;
5251 	else
5252 		get_block = ext4_get_block;
5253 retry_alloc:
5254 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5255 				    ext4_writepage_trans_blocks(inode));
5256 	if (IS_ERR(handle)) {
5257 		ret = VM_FAULT_SIGBUS;
5258 		goto out;
5259 	}
5260 	ret = __block_page_mkwrite(vma, vmf, get_block);
5261 	if (!ret && ext4_should_journal_data(inode)) {
5262 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5263 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5264 			unlock_page(page);
5265 			ret = VM_FAULT_SIGBUS;
5266 			ext4_journal_stop(handle);
5267 			goto out;
5268 		}
5269 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5270 	}
5271 	ext4_journal_stop(handle);
5272 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5273 		goto retry_alloc;
5274 out_ret:
5275 	ret = block_page_mkwrite_return(ret);
5276 out:
5277 	sb_end_pagefault(inode->i_sb);
5278 	return ret;
5279 }
5280