xref: /linux/fs/ext4/inode.c (revision 9d796e66230205cd3366f5660387bd9ecca9d336)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/bitops.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u16 csum_lo;
56 	__u16 csum_hi = 0;
57 	__u32 csum;
58 
59 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 	raw->i_checksum_lo = 0;
61 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 		raw->i_checksum_hi = 0;
65 	}
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 			   EXT4_INODE_SIZE(inode->i_sb));
69 
70 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 
75 	return csum;
76 }
77 
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 				  struct ext4_inode_info *ei)
80 {
81 	__u32 provided, calculated;
82 
83 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 	    cpu_to_le32(EXT4_OS_LINUX) ||
85 	    !ext4_has_metadata_csum(inode->i_sb))
86 		return 1;
87 
88 	provided = le16_to_cpu(raw->i_checksum_lo);
89 	calculated = ext4_inode_csum(inode, raw, ei);
90 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 	else
94 		calculated &= 0xFFFF;
95 
96 	return provided == calculated;
97 }
98 
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 				struct ext4_inode_info *ei)
101 {
102 	__u32 csum;
103 
104 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 	    cpu_to_le32(EXT4_OS_LINUX) ||
106 	    !ext4_has_metadata_csum(inode->i_sb))
107 		return;
108 
109 	csum = ext4_inode_csum(inode, raw, ei);
110 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
111 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
112 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
113 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
114 }
115 
116 static inline int ext4_begin_ordered_truncate(struct inode *inode,
117 					      loff_t new_size)
118 {
119 	trace_ext4_begin_ordered_truncate(inode, new_size);
120 	/*
121 	 * If jinode is zero, then we never opened the file for
122 	 * writing, so there's no need to call
123 	 * jbd2_journal_begin_ordered_truncate() since there's no
124 	 * outstanding writes we need to flush.
125 	 */
126 	if (!EXT4_I(inode)->jinode)
127 		return 0;
128 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
129 						   EXT4_I(inode)->jinode,
130 						   new_size);
131 }
132 
133 static void ext4_invalidatepage(struct page *page, unsigned int offset,
134 				unsigned int length);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
138 				  int pextents);
139 
140 /*
141  * Test whether an inode is a fast symlink.
142  */
143 static int ext4_inode_is_fast_symlink(struct inode *inode)
144 {
145         int ea_blocks = EXT4_I(inode)->i_file_acl ?
146 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
147 
148 	if (ext4_has_inline_data(inode))
149 		return 0;
150 
151 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153 
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160 				 int nblocks)
161 {
162 	int ret;
163 
164 	/*
165 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166 	 * moment, get_block can be called only for blocks inside i_size since
167 	 * page cache has been already dropped and writes are blocked by
168 	 * i_mutex. So we can safely drop the i_data_sem here.
169 	 */
170 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
171 	jbd_debug(2, "restarting handle %p\n", handle);
172 	up_write(&EXT4_I(inode)->i_data_sem);
173 	ret = ext4_journal_restart(handle, nblocks);
174 	down_write(&EXT4_I(inode)->i_data_sem);
175 	ext4_discard_preallocations(inode);
176 
177 	return ret;
178 }
179 
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185 	handle_t *handle;
186 	int err;
187 
188 	trace_ext4_evict_inode(inode);
189 
190 	if (inode->i_nlink) {
191 		/*
192 		 * When journalling data dirty buffers are tracked only in the
193 		 * journal. So although mm thinks everything is clean and
194 		 * ready for reaping the inode might still have some pages to
195 		 * write in the running transaction or waiting to be
196 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 		 * (via truncate_inode_pages()) to discard these buffers can
198 		 * cause data loss. Also even if we did not discard these
199 		 * buffers, we would have no way to find them after the inode
200 		 * is reaped and thus user could see stale data if he tries to
201 		 * read them before the transaction is checkpointed. So be
202 		 * careful and force everything to disk here... We use
203 		 * ei->i_datasync_tid to store the newest transaction
204 		 * containing inode's data.
205 		 *
206 		 * Note that directories do not have this problem because they
207 		 * don't use page cache.
208 		 */
209 		if (ext4_should_journal_data(inode) &&
210 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 		    inode->i_ino != EXT4_JOURNAL_INO) {
212 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 
215 			jbd2_complete_transaction(journal, commit_tid);
216 			filemap_write_and_wait(&inode->i_data);
217 		}
218 		truncate_inode_pages_final(&inode->i_data);
219 
220 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221 		goto no_delete;
222 	}
223 
224 	if (is_bad_inode(inode))
225 		goto no_delete;
226 	dquot_initialize(inode);
227 
228 	if (ext4_should_order_data(inode))
229 		ext4_begin_ordered_truncate(inode, 0);
230 	truncate_inode_pages_final(&inode->i_data);
231 
232 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it
237 	 */
238 	sb_start_intwrite(inode->i_sb);
239 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 				    ext4_blocks_for_truncate(inode)+3);
241 	if (IS_ERR(handle)) {
242 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 		/*
244 		 * If we're going to skip the normal cleanup, we still need to
245 		 * make sure that the in-core orphan linked list is properly
246 		 * cleaned up.
247 		 */
248 		ext4_orphan_del(NULL, inode);
249 		sb_end_intwrite(inode->i_sb);
250 		goto no_delete;
251 	}
252 
253 	if (IS_SYNC(inode))
254 		ext4_handle_sync(handle);
255 	inode->i_size = 0;
256 	err = ext4_mark_inode_dirty(handle, inode);
257 	if (err) {
258 		ext4_warning(inode->i_sb,
259 			     "couldn't mark inode dirty (err %d)", err);
260 		goto stop_handle;
261 	}
262 	if (inode->i_blocks)
263 		ext4_truncate(inode);
264 
265 	/*
266 	 * ext4_ext_truncate() doesn't reserve any slop when it
267 	 * restarts journal transactions; therefore there may not be
268 	 * enough credits left in the handle to remove the inode from
269 	 * the orphan list and set the dtime field.
270 	 */
271 	if (!ext4_handle_has_enough_credits(handle, 3)) {
272 		err = ext4_journal_extend(handle, 3);
273 		if (err > 0)
274 			err = ext4_journal_restart(handle, 3);
275 		if (err != 0) {
276 			ext4_warning(inode->i_sb,
277 				     "couldn't extend journal (err %d)", err);
278 		stop_handle:
279 			ext4_journal_stop(handle);
280 			ext4_orphan_del(NULL, inode);
281 			sb_end_intwrite(inode->i_sb);
282 			goto no_delete;
283 		}
284 	}
285 
286 	/*
287 	 * Kill off the orphan record which ext4_truncate created.
288 	 * AKPM: I think this can be inside the above `if'.
289 	 * Note that ext4_orphan_del() has to be able to cope with the
290 	 * deletion of a non-existent orphan - this is because we don't
291 	 * know if ext4_truncate() actually created an orphan record.
292 	 * (Well, we could do this if we need to, but heck - it works)
293 	 */
294 	ext4_orphan_del(handle, inode);
295 	EXT4_I(inode)->i_dtime	= get_seconds();
296 
297 	/*
298 	 * One subtle ordering requirement: if anything has gone wrong
299 	 * (transaction abort, IO errors, whatever), then we can still
300 	 * do these next steps (the fs will already have been marked as
301 	 * having errors), but we can't free the inode if the mark_dirty
302 	 * fails.
303 	 */
304 	if (ext4_mark_inode_dirty(handle, inode))
305 		/* If that failed, just do the required in-core inode clear. */
306 		ext4_clear_inode(inode);
307 	else
308 		ext4_free_inode(handle, inode);
309 	ext4_journal_stop(handle);
310 	sb_end_intwrite(inode->i_sb);
311 	return;
312 no_delete:
313 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
314 }
315 
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 	return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322 
323 /*
324  * Called with i_data_sem down, which is important since we can call
325  * ext4_discard_preallocations() from here.
326  */
327 void ext4_da_update_reserve_space(struct inode *inode,
328 					int used, int quota_claim)
329 {
330 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
331 	struct ext4_inode_info *ei = EXT4_I(inode);
332 
333 	spin_lock(&ei->i_block_reservation_lock);
334 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
335 	if (unlikely(used > ei->i_reserved_data_blocks)) {
336 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
337 			 "with only %d reserved data blocks",
338 			 __func__, inode->i_ino, used,
339 			 ei->i_reserved_data_blocks);
340 		WARN_ON(1);
341 		used = ei->i_reserved_data_blocks;
342 	}
343 
344 	/* Update per-inode reservations */
345 	ei->i_reserved_data_blocks -= used;
346 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
347 
348 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
349 
350 	/* Update quota subsystem for data blocks */
351 	if (quota_claim)
352 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
353 	else {
354 		/*
355 		 * We did fallocate with an offset that is already delayed
356 		 * allocated. So on delayed allocated writeback we should
357 		 * not re-claim the quota for fallocated blocks.
358 		 */
359 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
360 	}
361 
362 	/*
363 	 * If we have done all the pending block allocations and if
364 	 * there aren't any writers on the inode, we can discard the
365 	 * inode's preallocations.
366 	 */
367 	if ((ei->i_reserved_data_blocks == 0) &&
368 	    (atomic_read(&inode->i_writecount) == 0))
369 		ext4_discard_preallocations(inode);
370 }
371 
372 static int __check_block_validity(struct inode *inode, const char *func,
373 				unsigned int line,
374 				struct ext4_map_blocks *map)
375 {
376 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
377 				   map->m_len)) {
378 		ext4_error_inode(inode, func, line, map->m_pblk,
379 				 "lblock %lu mapped to illegal pblock "
380 				 "(length %d)", (unsigned long) map->m_lblk,
381 				 map->m_len);
382 		return -EIO;
383 	}
384 	return 0;
385 }
386 
387 #define check_block_validity(inode, map)	\
388 	__check_block_validity((inode), __func__, __LINE__, (map))
389 
390 #ifdef ES_AGGRESSIVE_TEST
391 static void ext4_map_blocks_es_recheck(handle_t *handle,
392 				       struct inode *inode,
393 				       struct ext4_map_blocks *es_map,
394 				       struct ext4_map_blocks *map,
395 				       int flags)
396 {
397 	int retval;
398 
399 	map->m_flags = 0;
400 	/*
401 	 * There is a race window that the result is not the same.
402 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
403 	 * is that we lookup a block mapping in extent status tree with
404 	 * out taking i_data_sem.  So at the time the unwritten extent
405 	 * could be converted.
406 	 */
407 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
408 		down_read(&EXT4_I(inode)->i_data_sem);
409 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
410 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
411 					     EXT4_GET_BLOCKS_KEEP_SIZE);
412 	} else {
413 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
414 					     EXT4_GET_BLOCKS_KEEP_SIZE);
415 	}
416 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
417 		up_read((&EXT4_I(inode)->i_data_sem));
418 
419 	/*
420 	 * We don't check m_len because extent will be collpased in status
421 	 * tree.  So the m_len might not equal.
422 	 */
423 	if (es_map->m_lblk != map->m_lblk ||
424 	    es_map->m_flags != map->m_flags ||
425 	    es_map->m_pblk != map->m_pblk) {
426 		printk("ES cache assertion failed for inode: %lu "
427 		       "es_cached ex [%d/%d/%llu/%x] != "
428 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
429 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
430 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
431 		       map->m_len, map->m_pblk, map->m_flags,
432 		       retval, flags);
433 	}
434 }
435 #endif /* ES_AGGRESSIVE_TEST */
436 
437 /*
438  * The ext4_map_blocks() function tries to look up the requested blocks,
439  * and returns if the blocks are already mapped.
440  *
441  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
442  * and store the allocated blocks in the result buffer head and mark it
443  * mapped.
444  *
445  * If file type is extents based, it will call ext4_ext_map_blocks(),
446  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
447  * based files
448  *
449  * On success, it returns the number of blocks being mapped or allocated.
450  * if create==0 and the blocks are pre-allocated and unwritten block,
451  * the result buffer head is unmapped. If the create ==1, it will make sure
452  * the buffer head is mapped.
453  *
454  * It returns 0 if plain look up failed (blocks have not been allocated), in
455  * that case, buffer head is unmapped
456  *
457  * It returns the error in case of allocation failure.
458  */
459 int ext4_map_blocks(handle_t *handle, struct inode *inode,
460 		    struct ext4_map_blocks *map, int flags)
461 {
462 	struct extent_status es;
463 	int retval;
464 	int ret = 0;
465 #ifdef ES_AGGRESSIVE_TEST
466 	struct ext4_map_blocks orig_map;
467 
468 	memcpy(&orig_map, map, sizeof(*map));
469 #endif
470 
471 	map->m_flags = 0;
472 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
473 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
474 		  (unsigned long) map->m_lblk);
475 
476 	/*
477 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
478 	 */
479 	if (unlikely(map->m_len > INT_MAX))
480 		map->m_len = INT_MAX;
481 
482 	/* We can handle the block number less than EXT_MAX_BLOCKS */
483 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
484 		return -EIO;
485 
486 	/* Lookup extent status tree firstly */
487 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
488 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
489 			map->m_pblk = ext4_es_pblock(&es) +
490 					map->m_lblk - es.es_lblk;
491 			map->m_flags |= ext4_es_is_written(&es) ?
492 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
493 			retval = es.es_len - (map->m_lblk - es.es_lblk);
494 			if (retval > map->m_len)
495 				retval = map->m_len;
496 			map->m_len = retval;
497 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
498 			retval = 0;
499 		} else {
500 			BUG_ON(1);
501 		}
502 #ifdef ES_AGGRESSIVE_TEST
503 		ext4_map_blocks_es_recheck(handle, inode, map,
504 					   &orig_map, flags);
505 #endif
506 		goto found;
507 	}
508 
509 	/*
510 	 * Try to see if we can get the block without requesting a new
511 	 * file system block.
512 	 */
513 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514 		down_read(&EXT4_I(inode)->i_data_sem);
515 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
516 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
517 					     EXT4_GET_BLOCKS_KEEP_SIZE);
518 	} else {
519 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
520 					     EXT4_GET_BLOCKS_KEEP_SIZE);
521 	}
522 	if (retval > 0) {
523 		unsigned int status;
524 
525 		if (unlikely(retval != map->m_len)) {
526 			ext4_warning(inode->i_sb,
527 				     "ES len assertion failed for inode "
528 				     "%lu: retval %d != map->m_len %d",
529 				     inode->i_ino, retval, map->m_len);
530 			WARN_ON(1);
531 		}
532 
533 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
534 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
535 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
536 		    ext4_find_delalloc_range(inode, map->m_lblk,
537 					     map->m_lblk + map->m_len - 1))
538 			status |= EXTENT_STATUS_DELAYED;
539 		ret = ext4_es_insert_extent(inode, map->m_lblk,
540 					    map->m_len, map->m_pblk, status);
541 		if (ret < 0)
542 			retval = ret;
543 	}
544 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 		up_read((&EXT4_I(inode)->i_data_sem));
546 
547 found:
548 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549 		ret = check_block_validity(inode, map);
550 		if (ret != 0)
551 			return ret;
552 	}
553 
554 	/* If it is only a block(s) look up */
555 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
556 		return retval;
557 
558 	/*
559 	 * Returns if the blocks have already allocated
560 	 *
561 	 * Note that if blocks have been preallocated
562 	 * ext4_ext_get_block() returns the create = 0
563 	 * with buffer head unmapped.
564 	 */
565 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566 		/*
567 		 * If we need to convert extent to unwritten
568 		 * we continue and do the actual work in
569 		 * ext4_ext_map_blocks()
570 		 */
571 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572 			return retval;
573 
574 	/*
575 	 * Here we clear m_flags because after allocating an new extent,
576 	 * it will be set again.
577 	 */
578 	map->m_flags &= ~EXT4_MAP_FLAGS;
579 
580 	/*
581 	 * New blocks allocate and/or writing to unwritten extent
582 	 * will possibly result in updating i_data, so we take
583 	 * the write lock of i_data_sem, and call get_block()
584 	 * with create == 1 flag.
585 	 */
586 	down_write(&EXT4_I(inode)->i_data_sem);
587 
588 	/*
589 	 * We need to check for EXT4 here because migrate
590 	 * could have changed the inode type in between
591 	 */
592 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
594 	} else {
595 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
596 
597 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598 			/*
599 			 * We allocated new blocks which will result in
600 			 * i_data's format changing.  Force the migrate
601 			 * to fail by clearing migrate flags
602 			 */
603 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
604 		}
605 
606 		/*
607 		 * Update reserved blocks/metadata blocks after successful
608 		 * block allocation which had been deferred till now. We don't
609 		 * support fallocate for non extent files. So we can update
610 		 * reserve space here.
611 		 */
612 		if ((retval > 0) &&
613 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614 			ext4_da_update_reserve_space(inode, retval, 1);
615 	}
616 
617 	if (retval > 0) {
618 		unsigned int status;
619 
620 		if (unlikely(retval != map->m_len)) {
621 			ext4_warning(inode->i_sb,
622 				     "ES len assertion failed for inode "
623 				     "%lu: retval %d != map->m_len %d",
624 				     inode->i_ino, retval, map->m_len);
625 			WARN_ON(1);
626 		}
627 
628 		/*
629 		 * If the extent has been zeroed out, we don't need to update
630 		 * extent status tree.
631 		 */
632 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634 			if (ext4_es_is_written(&es))
635 				goto has_zeroout;
636 		}
637 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640 		    ext4_find_delalloc_range(inode, map->m_lblk,
641 					     map->m_lblk + map->m_len - 1))
642 			status |= EXTENT_STATUS_DELAYED;
643 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644 					    map->m_pblk, status);
645 		if (ret < 0)
646 			retval = ret;
647 	}
648 
649 has_zeroout:
650 	up_write((&EXT4_I(inode)->i_data_sem));
651 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652 		ret = check_block_validity(inode, map);
653 		if (ret != 0)
654 			return ret;
655 	}
656 	return retval;
657 }
658 
659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
660 {
661 	struct inode *inode = bh->b_assoc_map->host;
662 	/* XXX: breaks on 32-bit > 16GB. Is that even supported? */
663 	loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
664 	int err;
665 	if (!uptodate)
666 		return;
667 	WARN_ON(!buffer_unwritten(bh));
668 	err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
669 }
670 
671 /* Maximum number of blocks we map for direct IO at once. */
672 #define DIO_MAX_BLOCKS 4096
673 
674 static int _ext4_get_block(struct inode *inode, sector_t iblock,
675 			   struct buffer_head *bh, int flags)
676 {
677 	handle_t *handle = ext4_journal_current_handle();
678 	struct ext4_map_blocks map;
679 	int ret = 0, started = 0;
680 	int dio_credits;
681 
682 	if (ext4_has_inline_data(inode))
683 		return -ERANGE;
684 
685 	map.m_lblk = iblock;
686 	map.m_len = bh->b_size >> inode->i_blkbits;
687 
688 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
689 		/* Direct IO write... */
690 		if (map.m_len > DIO_MAX_BLOCKS)
691 			map.m_len = DIO_MAX_BLOCKS;
692 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
693 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
694 					    dio_credits);
695 		if (IS_ERR(handle)) {
696 			ret = PTR_ERR(handle);
697 			return ret;
698 		}
699 		started = 1;
700 	}
701 
702 	ret = ext4_map_blocks(handle, inode, &map, flags);
703 	if (ret > 0) {
704 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
705 
706 		map_bh(bh, inode->i_sb, map.m_pblk);
707 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
708 		if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
709 			bh->b_assoc_map = inode->i_mapping;
710 			bh->b_private = (void *)(unsigned long)iblock;
711 			bh->b_end_io = ext4_end_io_unwritten;
712 		}
713 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
714 			set_buffer_defer_completion(bh);
715 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
716 		ret = 0;
717 	}
718 	if (started)
719 		ext4_journal_stop(handle);
720 	return ret;
721 }
722 
723 int ext4_get_block(struct inode *inode, sector_t iblock,
724 		   struct buffer_head *bh, int create)
725 {
726 	return _ext4_get_block(inode, iblock, bh,
727 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
728 }
729 
730 /*
731  * `handle' can be NULL if create is zero
732  */
733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
734 				ext4_lblk_t block, int create)
735 {
736 	struct ext4_map_blocks map;
737 	struct buffer_head *bh;
738 	int err;
739 
740 	J_ASSERT(handle != NULL || create == 0);
741 
742 	map.m_lblk = block;
743 	map.m_len = 1;
744 	err = ext4_map_blocks(handle, inode, &map,
745 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
746 
747 	if (err == 0)
748 		return create ? ERR_PTR(-ENOSPC) : NULL;
749 	if (err < 0)
750 		return ERR_PTR(err);
751 
752 	bh = sb_getblk(inode->i_sb, map.m_pblk);
753 	if (unlikely(!bh))
754 		return ERR_PTR(-ENOMEM);
755 	if (map.m_flags & EXT4_MAP_NEW) {
756 		J_ASSERT(create != 0);
757 		J_ASSERT(handle != NULL);
758 
759 		/*
760 		 * Now that we do not always journal data, we should
761 		 * keep in mind whether this should always journal the
762 		 * new buffer as metadata.  For now, regular file
763 		 * writes use ext4_get_block instead, so it's not a
764 		 * problem.
765 		 */
766 		lock_buffer(bh);
767 		BUFFER_TRACE(bh, "call get_create_access");
768 		err = ext4_journal_get_create_access(handle, bh);
769 		if (unlikely(err)) {
770 			unlock_buffer(bh);
771 			goto errout;
772 		}
773 		if (!buffer_uptodate(bh)) {
774 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
775 			set_buffer_uptodate(bh);
776 		}
777 		unlock_buffer(bh);
778 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
779 		err = ext4_handle_dirty_metadata(handle, inode, bh);
780 		if (unlikely(err))
781 			goto errout;
782 	} else
783 		BUFFER_TRACE(bh, "not a new buffer");
784 	return bh;
785 errout:
786 	brelse(bh);
787 	return ERR_PTR(err);
788 }
789 
790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
791 			       ext4_lblk_t block, int create)
792 {
793 	struct buffer_head *bh;
794 
795 	bh = ext4_getblk(handle, inode, block, create);
796 	if (IS_ERR(bh))
797 		return bh;
798 	if (!bh || buffer_uptodate(bh))
799 		return bh;
800 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
801 	wait_on_buffer(bh);
802 	if (buffer_uptodate(bh))
803 		return bh;
804 	put_bh(bh);
805 	return ERR_PTR(-EIO);
806 }
807 
808 int ext4_walk_page_buffers(handle_t *handle,
809 			   struct buffer_head *head,
810 			   unsigned from,
811 			   unsigned to,
812 			   int *partial,
813 			   int (*fn)(handle_t *handle,
814 				     struct buffer_head *bh))
815 {
816 	struct buffer_head *bh;
817 	unsigned block_start, block_end;
818 	unsigned blocksize = head->b_size;
819 	int err, ret = 0;
820 	struct buffer_head *next;
821 
822 	for (bh = head, block_start = 0;
823 	     ret == 0 && (bh != head || !block_start);
824 	     block_start = block_end, bh = next) {
825 		next = bh->b_this_page;
826 		block_end = block_start + blocksize;
827 		if (block_end <= from || block_start >= to) {
828 			if (partial && !buffer_uptodate(bh))
829 				*partial = 1;
830 			continue;
831 		}
832 		err = (*fn)(handle, bh);
833 		if (!ret)
834 			ret = err;
835 	}
836 	return ret;
837 }
838 
839 /*
840  * To preserve ordering, it is essential that the hole instantiation and
841  * the data write be encapsulated in a single transaction.  We cannot
842  * close off a transaction and start a new one between the ext4_get_block()
843  * and the commit_write().  So doing the jbd2_journal_start at the start of
844  * prepare_write() is the right place.
845  *
846  * Also, this function can nest inside ext4_writepage().  In that case, we
847  * *know* that ext4_writepage() has generated enough buffer credits to do the
848  * whole page.  So we won't block on the journal in that case, which is good,
849  * because the caller may be PF_MEMALLOC.
850  *
851  * By accident, ext4 can be reentered when a transaction is open via
852  * quota file writes.  If we were to commit the transaction while thus
853  * reentered, there can be a deadlock - we would be holding a quota
854  * lock, and the commit would never complete if another thread had a
855  * transaction open and was blocking on the quota lock - a ranking
856  * violation.
857  *
858  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
859  * will _not_ run commit under these circumstances because handle->h_ref
860  * is elevated.  We'll still have enough credits for the tiny quotafile
861  * write.
862  */
863 int do_journal_get_write_access(handle_t *handle,
864 				struct buffer_head *bh)
865 {
866 	int dirty = buffer_dirty(bh);
867 	int ret;
868 
869 	if (!buffer_mapped(bh) || buffer_freed(bh))
870 		return 0;
871 	/*
872 	 * __block_write_begin() could have dirtied some buffers. Clean
873 	 * the dirty bit as jbd2_journal_get_write_access() could complain
874 	 * otherwise about fs integrity issues. Setting of the dirty bit
875 	 * by __block_write_begin() isn't a real problem here as we clear
876 	 * the bit before releasing a page lock and thus writeback cannot
877 	 * ever write the buffer.
878 	 */
879 	if (dirty)
880 		clear_buffer_dirty(bh);
881 	BUFFER_TRACE(bh, "get write access");
882 	ret = ext4_journal_get_write_access(handle, bh);
883 	if (!ret && dirty)
884 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
885 	return ret;
886 }
887 
888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
889 		   struct buffer_head *bh_result, int create);
890 static int ext4_write_begin(struct file *file, struct address_space *mapping,
891 			    loff_t pos, unsigned len, unsigned flags,
892 			    struct page **pagep, void **fsdata)
893 {
894 	struct inode *inode = mapping->host;
895 	int ret, needed_blocks;
896 	handle_t *handle;
897 	int retries = 0;
898 	struct page *page;
899 	pgoff_t index;
900 	unsigned from, to;
901 
902 	trace_ext4_write_begin(inode, pos, len, flags);
903 	/*
904 	 * Reserve one block more for addition to orphan list in case
905 	 * we allocate blocks but write fails for some reason
906 	 */
907 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
908 	index = pos >> PAGE_CACHE_SHIFT;
909 	from = pos & (PAGE_CACHE_SIZE - 1);
910 	to = from + len;
911 
912 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
913 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
914 						    flags, pagep);
915 		if (ret < 0)
916 			return ret;
917 		if (ret == 1)
918 			return 0;
919 	}
920 
921 	/*
922 	 * grab_cache_page_write_begin() can take a long time if the
923 	 * system is thrashing due to memory pressure, or if the page
924 	 * is being written back.  So grab it first before we start
925 	 * the transaction handle.  This also allows us to allocate
926 	 * the page (if needed) without using GFP_NOFS.
927 	 */
928 retry_grab:
929 	page = grab_cache_page_write_begin(mapping, index, flags);
930 	if (!page)
931 		return -ENOMEM;
932 	unlock_page(page);
933 
934 retry_journal:
935 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
936 	if (IS_ERR(handle)) {
937 		page_cache_release(page);
938 		return PTR_ERR(handle);
939 	}
940 
941 	lock_page(page);
942 	if (page->mapping != mapping) {
943 		/* The page got truncated from under us */
944 		unlock_page(page);
945 		page_cache_release(page);
946 		ext4_journal_stop(handle);
947 		goto retry_grab;
948 	}
949 	/* In case writeback began while the page was unlocked */
950 	wait_for_stable_page(page);
951 
952 	if (ext4_should_dioread_nolock(inode))
953 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
954 	else
955 		ret = __block_write_begin(page, pos, len, ext4_get_block);
956 
957 	if (!ret && ext4_should_journal_data(inode)) {
958 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
959 					     from, to, NULL,
960 					     do_journal_get_write_access);
961 	}
962 
963 	if (ret) {
964 		unlock_page(page);
965 		/*
966 		 * __block_write_begin may have instantiated a few blocks
967 		 * outside i_size.  Trim these off again. Don't need
968 		 * i_size_read because we hold i_mutex.
969 		 *
970 		 * Add inode to orphan list in case we crash before
971 		 * truncate finishes
972 		 */
973 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
974 			ext4_orphan_add(handle, inode);
975 
976 		ext4_journal_stop(handle);
977 		if (pos + len > inode->i_size) {
978 			ext4_truncate_failed_write(inode);
979 			/*
980 			 * If truncate failed early the inode might
981 			 * still be on the orphan list; we need to
982 			 * make sure the inode is removed from the
983 			 * orphan list in that case.
984 			 */
985 			if (inode->i_nlink)
986 				ext4_orphan_del(NULL, inode);
987 		}
988 
989 		if (ret == -ENOSPC &&
990 		    ext4_should_retry_alloc(inode->i_sb, &retries))
991 			goto retry_journal;
992 		page_cache_release(page);
993 		return ret;
994 	}
995 	*pagep = page;
996 	return ret;
997 }
998 
999 /* For write_end() in data=journal mode */
1000 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1001 {
1002 	int ret;
1003 	if (!buffer_mapped(bh) || buffer_freed(bh))
1004 		return 0;
1005 	set_buffer_uptodate(bh);
1006 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1007 	clear_buffer_meta(bh);
1008 	clear_buffer_prio(bh);
1009 	return ret;
1010 }
1011 
1012 /*
1013  * We need to pick up the new inode size which generic_commit_write gave us
1014  * `file' can be NULL - eg, when called from page_symlink().
1015  *
1016  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1017  * buffers are managed internally.
1018  */
1019 static int ext4_write_end(struct file *file,
1020 			  struct address_space *mapping,
1021 			  loff_t pos, unsigned len, unsigned copied,
1022 			  struct page *page, void *fsdata)
1023 {
1024 	handle_t *handle = ext4_journal_current_handle();
1025 	struct inode *inode = mapping->host;
1026 	loff_t old_size = inode->i_size;
1027 	int ret = 0, ret2;
1028 	int i_size_changed = 0;
1029 
1030 	trace_ext4_write_end(inode, pos, len, copied);
1031 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1032 		ret = ext4_jbd2_file_inode(handle, inode);
1033 		if (ret) {
1034 			unlock_page(page);
1035 			page_cache_release(page);
1036 			goto errout;
1037 		}
1038 	}
1039 
1040 	if (ext4_has_inline_data(inode)) {
1041 		ret = ext4_write_inline_data_end(inode, pos, len,
1042 						 copied, page);
1043 		if (ret < 0)
1044 			goto errout;
1045 		copied = ret;
1046 	} else
1047 		copied = block_write_end(file, mapping, pos,
1048 					 len, copied, page, fsdata);
1049 	/*
1050 	 * it's important to update i_size while still holding page lock:
1051 	 * page writeout could otherwise come in and zero beyond i_size.
1052 	 */
1053 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1054 	unlock_page(page);
1055 	page_cache_release(page);
1056 
1057 	if (old_size < pos)
1058 		pagecache_isize_extended(inode, old_size, pos);
1059 	/*
1060 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1061 	 * makes the holding time of page lock longer. Second, it forces lock
1062 	 * ordering of page lock and transaction start for journaling
1063 	 * filesystems.
1064 	 */
1065 	if (i_size_changed)
1066 		ext4_mark_inode_dirty(handle, inode);
1067 
1068 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1069 		/* if we have allocated more blocks and copied
1070 		 * less. We will have blocks allocated outside
1071 		 * inode->i_size. So truncate them
1072 		 */
1073 		ext4_orphan_add(handle, inode);
1074 errout:
1075 	ret2 = ext4_journal_stop(handle);
1076 	if (!ret)
1077 		ret = ret2;
1078 
1079 	if (pos + len > inode->i_size) {
1080 		ext4_truncate_failed_write(inode);
1081 		/*
1082 		 * If truncate failed early the inode might still be
1083 		 * on the orphan list; we need to make sure the inode
1084 		 * is removed from the orphan list in that case.
1085 		 */
1086 		if (inode->i_nlink)
1087 			ext4_orphan_del(NULL, inode);
1088 	}
1089 
1090 	return ret ? ret : copied;
1091 }
1092 
1093 static int ext4_journalled_write_end(struct file *file,
1094 				     struct address_space *mapping,
1095 				     loff_t pos, unsigned len, unsigned copied,
1096 				     struct page *page, void *fsdata)
1097 {
1098 	handle_t *handle = ext4_journal_current_handle();
1099 	struct inode *inode = mapping->host;
1100 	loff_t old_size = inode->i_size;
1101 	int ret = 0, ret2;
1102 	int partial = 0;
1103 	unsigned from, to;
1104 	int size_changed = 0;
1105 
1106 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1107 	from = pos & (PAGE_CACHE_SIZE - 1);
1108 	to = from + len;
1109 
1110 	BUG_ON(!ext4_handle_valid(handle));
1111 
1112 	if (ext4_has_inline_data(inode))
1113 		copied = ext4_write_inline_data_end(inode, pos, len,
1114 						    copied, page);
1115 	else {
1116 		if (copied < len) {
1117 			if (!PageUptodate(page))
1118 				copied = 0;
1119 			page_zero_new_buffers(page, from+copied, to);
1120 		}
1121 
1122 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1123 					     to, &partial, write_end_fn);
1124 		if (!partial)
1125 			SetPageUptodate(page);
1126 	}
1127 	size_changed = ext4_update_inode_size(inode, pos + copied);
1128 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1129 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1130 	unlock_page(page);
1131 	page_cache_release(page);
1132 
1133 	if (old_size < pos)
1134 		pagecache_isize_extended(inode, old_size, pos);
1135 
1136 	if (size_changed) {
1137 		ret2 = ext4_mark_inode_dirty(handle, inode);
1138 		if (!ret)
1139 			ret = ret2;
1140 	}
1141 
1142 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1143 		/* if we have allocated more blocks and copied
1144 		 * less. We will have blocks allocated outside
1145 		 * inode->i_size. So truncate them
1146 		 */
1147 		ext4_orphan_add(handle, inode);
1148 
1149 	ret2 = ext4_journal_stop(handle);
1150 	if (!ret)
1151 		ret = ret2;
1152 	if (pos + len > inode->i_size) {
1153 		ext4_truncate_failed_write(inode);
1154 		/*
1155 		 * If truncate failed early the inode might still be
1156 		 * on the orphan list; we need to make sure the inode
1157 		 * is removed from the orphan list in that case.
1158 		 */
1159 		if (inode->i_nlink)
1160 			ext4_orphan_del(NULL, inode);
1161 	}
1162 
1163 	return ret ? ret : copied;
1164 }
1165 
1166 /*
1167  * Reserve a single cluster located at lblock
1168  */
1169 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1170 {
1171 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1172 	struct ext4_inode_info *ei = EXT4_I(inode);
1173 	unsigned int md_needed;
1174 	int ret;
1175 
1176 	/*
1177 	 * We will charge metadata quota at writeout time; this saves
1178 	 * us from metadata over-estimation, though we may go over by
1179 	 * a small amount in the end.  Here we just reserve for data.
1180 	 */
1181 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1182 	if (ret)
1183 		return ret;
1184 
1185 	/*
1186 	 * recalculate the amount of metadata blocks to reserve
1187 	 * in order to allocate nrblocks
1188 	 * worse case is one extent per block
1189 	 */
1190 	spin_lock(&ei->i_block_reservation_lock);
1191 	/*
1192 	 * ext4_calc_metadata_amount() has side effects, which we have
1193 	 * to be prepared undo if we fail to claim space.
1194 	 */
1195 	md_needed = 0;
1196 	trace_ext4_da_reserve_space(inode, 0);
1197 
1198 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1199 		spin_unlock(&ei->i_block_reservation_lock);
1200 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1201 		return -ENOSPC;
1202 	}
1203 	ei->i_reserved_data_blocks++;
1204 	spin_unlock(&ei->i_block_reservation_lock);
1205 
1206 	return 0;       /* success */
1207 }
1208 
1209 static void ext4_da_release_space(struct inode *inode, int to_free)
1210 {
1211 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1212 	struct ext4_inode_info *ei = EXT4_I(inode);
1213 
1214 	if (!to_free)
1215 		return;		/* Nothing to release, exit */
1216 
1217 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1218 
1219 	trace_ext4_da_release_space(inode, to_free);
1220 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1221 		/*
1222 		 * if there aren't enough reserved blocks, then the
1223 		 * counter is messed up somewhere.  Since this
1224 		 * function is called from invalidate page, it's
1225 		 * harmless to return without any action.
1226 		 */
1227 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1228 			 "ino %lu, to_free %d with only %d reserved "
1229 			 "data blocks", inode->i_ino, to_free,
1230 			 ei->i_reserved_data_blocks);
1231 		WARN_ON(1);
1232 		to_free = ei->i_reserved_data_blocks;
1233 	}
1234 	ei->i_reserved_data_blocks -= to_free;
1235 
1236 	/* update fs dirty data blocks counter */
1237 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1238 
1239 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1240 
1241 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1242 }
1243 
1244 static void ext4_da_page_release_reservation(struct page *page,
1245 					     unsigned int offset,
1246 					     unsigned int length)
1247 {
1248 	int to_release = 0;
1249 	struct buffer_head *head, *bh;
1250 	unsigned int curr_off = 0;
1251 	struct inode *inode = page->mapping->host;
1252 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1253 	unsigned int stop = offset + length;
1254 	int num_clusters;
1255 	ext4_fsblk_t lblk;
1256 
1257 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1258 
1259 	head = page_buffers(page);
1260 	bh = head;
1261 	do {
1262 		unsigned int next_off = curr_off + bh->b_size;
1263 
1264 		if (next_off > stop)
1265 			break;
1266 
1267 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1268 			to_release++;
1269 			clear_buffer_delay(bh);
1270 		}
1271 		curr_off = next_off;
1272 	} while ((bh = bh->b_this_page) != head);
1273 
1274 	if (to_release) {
1275 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1276 		ext4_es_remove_extent(inode, lblk, to_release);
1277 	}
1278 
1279 	/* If we have released all the blocks belonging to a cluster, then we
1280 	 * need to release the reserved space for that cluster. */
1281 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1282 	while (num_clusters > 0) {
1283 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1284 			((num_clusters - 1) << sbi->s_cluster_bits);
1285 		if (sbi->s_cluster_ratio == 1 ||
1286 		    !ext4_find_delalloc_cluster(inode, lblk))
1287 			ext4_da_release_space(inode, 1);
1288 
1289 		num_clusters--;
1290 	}
1291 }
1292 
1293 /*
1294  * Delayed allocation stuff
1295  */
1296 
1297 struct mpage_da_data {
1298 	struct inode *inode;
1299 	struct writeback_control *wbc;
1300 
1301 	pgoff_t first_page;	/* The first page to write */
1302 	pgoff_t next_page;	/* Current page to examine */
1303 	pgoff_t last_page;	/* Last page to examine */
1304 	/*
1305 	 * Extent to map - this can be after first_page because that can be
1306 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1307 	 * is delalloc or unwritten.
1308 	 */
1309 	struct ext4_map_blocks map;
1310 	struct ext4_io_submit io_submit;	/* IO submission data */
1311 };
1312 
1313 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1314 				       bool invalidate)
1315 {
1316 	int nr_pages, i;
1317 	pgoff_t index, end;
1318 	struct pagevec pvec;
1319 	struct inode *inode = mpd->inode;
1320 	struct address_space *mapping = inode->i_mapping;
1321 
1322 	/* This is necessary when next_page == 0. */
1323 	if (mpd->first_page >= mpd->next_page)
1324 		return;
1325 
1326 	index = mpd->first_page;
1327 	end   = mpd->next_page - 1;
1328 	if (invalidate) {
1329 		ext4_lblk_t start, last;
1330 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1331 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1332 		ext4_es_remove_extent(inode, start, last - start + 1);
1333 	}
1334 
1335 	pagevec_init(&pvec, 0);
1336 	while (index <= end) {
1337 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1338 		if (nr_pages == 0)
1339 			break;
1340 		for (i = 0; i < nr_pages; i++) {
1341 			struct page *page = pvec.pages[i];
1342 			if (page->index > end)
1343 				break;
1344 			BUG_ON(!PageLocked(page));
1345 			BUG_ON(PageWriteback(page));
1346 			if (invalidate) {
1347 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1348 				ClearPageUptodate(page);
1349 			}
1350 			unlock_page(page);
1351 		}
1352 		index = pvec.pages[nr_pages - 1]->index + 1;
1353 		pagevec_release(&pvec);
1354 	}
1355 }
1356 
1357 static void ext4_print_free_blocks(struct inode *inode)
1358 {
1359 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1360 	struct super_block *sb = inode->i_sb;
1361 	struct ext4_inode_info *ei = EXT4_I(inode);
1362 
1363 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1364 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1365 			ext4_count_free_clusters(sb)));
1366 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1367 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1368 	       (long long) EXT4_C2B(EXT4_SB(sb),
1369 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1370 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1371 	       (long long) EXT4_C2B(EXT4_SB(sb),
1372 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1373 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1374 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1375 		 ei->i_reserved_data_blocks);
1376 	return;
1377 }
1378 
1379 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1380 {
1381 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1382 }
1383 
1384 /*
1385  * This function is grabs code from the very beginning of
1386  * ext4_map_blocks, but assumes that the caller is from delayed write
1387  * time. This function looks up the requested blocks and sets the
1388  * buffer delay bit under the protection of i_data_sem.
1389  */
1390 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1391 			      struct ext4_map_blocks *map,
1392 			      struct buffer_head *bh)
1393 {
1394 	struct extent_status es;
1395 	int retval;
1396 	sector_t invalid_block = ~((sector_t) 0xffff);
1397 #ifdef ES_AGGRESSIVE_TEST
1398 	struct ext4_map_blocks orig_map;
1399 
1400 	memcpy(&orig_map, map, sizeof(*map));
1401 #endif
1402 
1403 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1404 		invalid_block = ~0;
1405 
1406 	map->m_flags = 0;
1407 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1408 		  "logical block %lu\n", inode->i_ino, map->m_len,
1409 		  (unsigned long) map->m_lblk);
1410 
1411 	/* Lookup extent status tree firstly */
1412 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1413 		if (ext4_es_is_hole(&es)) {
1414 			retval = 0;
1415 			down_read(&EXT4_I(inode)->i_data_sem);
1416 			goto add_delayed;
1417 		}
1418 
1419 		/*
1420 		 * Delayed extent could be allocated by fallocate.
1421 		 * So we need to check it.
1422 		 */
1423 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1424 			map_bh(bh, inode->i_sb, invalid_block);
1425 			set_buffer_new(bh);
1426 			set_buffer_delay(bh);
1427 			return 0;
1428 		}
1429 
1430 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1431 		retval = es.es_len - (iblock - es.es_lblk);
1432 		if (retval > map->m_len)
1433 			retval = map->m_len;
1434 		map->m_len = retval;
1435 		if (ext4_es_is_written(&es))
1436 			map->m_flags |= EXT4_MAP_MAPPED;
1437 		else if (ext4_es_is_unwritten(&es))
1438 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1439 		else
1440 			BUG_ON(1);
1441 
1442 #ifdef ES_AGGRESSIVE_TEST
1443 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1444 #endif
1445 		return retval;
1446 	}
1447 
1448 	/*
1449 	 * Try to see if we can get the block without requesting a new
1450 	 * file system block.
1451 	 */
1452 	down_read(&EXT4_I(inode)->i_data_sem);
1453 	if (ext4_has_inline_data(inode))
1454 		retval = 0;
1455 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1456 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1457 	else
1458 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1459 
1460 add_delayed:
1461 	if (retval == 0) {
1462 		int ret;
1463 		/*
1464 		 * XXX: __block_prepare_write() unmaps passed block,
1465 		 * is it OK?
1466 		 */
1467 		/*
1468 		 * If the block was allocated from previously allocated cluster,
1469 		 * then we don't need to reserve it again. However we still need
1470 		 * to reserve metadata for every block we're going to write.
1471 		 */
1472 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1473 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1474 			ret = ext4_da_reserve_space(inode, iblock);
1475 			if (ret) {
1476 				/* not enough space to reserve */
1477 				retval = ret;
1478 				goto out_unlock;
1479 			}
1480 		}
1481 
1482 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1483 					    ~0, EXTENT_STATUS_DELAYED);
1484 		if (ret) {
1485 			retval = ret;
1486 			goto out_unlock;
1487 		}
1488 
1489 		map_bh(bh, inode->i_sb, invalid_block);
1490 		set_buffer_new(bh);
1491 		set_buffer_delay(bh);
1492 	} else if (retval > 0) {
1493 		int ret;
1494 		unsigned int status;
1495 
1496 		if (unlikely(retval != map->m_len)) {
1497 			ext4_warning(inode->i_sb,
1498 				     "ES len assertion failed for inode "
1499 				     "%lu: retval %d != map->m_len %d",
1500 				     inode->i_ino, retval, map->m_len);
1501 			WARN_ON(1);
1502 		}
1503 
1504 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1505 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1506 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1507 					    map->m_pblk, status);
1508 		if (ret != 0)
1509 			retval = ret;
1510 	}
1511 
1512 out_unlock:
1513 	up_read((&EXT4_I(inode)->i_data_sem));
1514 
1515 	return retval;
1516 }
1517 
1518 /*
1519  * This is a special get_block_t callback which is used by
1520  * ext4_da_write_begin().  It will either return mapped block or
1521  * reserve space for a single block.
1522  *
1523  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1524  * We also have b_blocknr = -1 and b_bdev initialized properly
1525  *
1526  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1527  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1528  * initialized properly.
1529  */
1530 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1531 			   struct buffer_head *bh, int create)
1532 {
1533 	struct ext4_map_blocks map;
1534 	int ret = 0;
1535 
1536 	BUG_ON(create == 0);
1537 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1538 
1539 	map.m_lblk = iblock;
1540 	map.m_len = 1;
1541 
1542 	/*
1543 	 * first, we need to know whether the block is allocated already
1544 	 * preallocated blocks are unmapped but should treated
1545 	 * the same as allocated blocks.
1546 	 */
1547 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1548 	if (ret <= 0)
1549 		return ret;
1550 
1551 	map_bh(bh, inode->i_sb, map.m_pblk);
1552 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1553 
1554 	if (buffer_unwritten(bh)) {
1555 		/* A delayed write to unwritten bh should be marked
1556 		 * new and mapped.  Mapped ensures that we don't do
1557 		 * get_block multiple times when we write to the same
1558 		 * offset and new ensures that we do proper zero out
1559 		 * for partial write.
1560 		 */
1561 		set_buffer_new(bh);
1562 		set_buffer_mapped(bh);
1563 	}
1564 	return 0;
1565 }
1566 
1567 static int bget_one(handle_t *handle, struct buffer_head *bh)
1568 {
1569 	get_bh(bh);
1570 	return 0;
1571 }
1572 
1573 static int bput_one(handle_t *handle, struct buffer_head *bh)
1574 {
1575 	put_bh(bh);
1576 	return 0;
1577 }
1578 
1579 static int __ext4_journalled_writepage(struct page *page,
1580 				       unsigned int len)
1581 {
1582 	struct address_space *mapping = page->mapping;
1583 	struct inode *inode = mapping->host;
1584 	struct buffer_head *page_bufs = NULL;
1585 	handle_t *handle = NULL;
1586 	int ret = 0, err = 0;
1587 	int inline_data = ext4_has_inline_data(inode);
1588 	struct buffer_head *inode_bh = NULL;
1589 
1590 	ClearPageChecked(page);
1591 
1592 	if (inline_data) {
1593 		BUG_ON(page->index != 0);
1594 		BUG_ON(len > ext4_get_max_inline_size(inode));
1595 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1596 		if (inode_bh == NULL)
1597 			goto out;
1598 	} else {
1599 		page_bufs = page_buffers(page);
1600 		if (!page_bufs) {
1601 			BUG();
1602 			goto out;
1603 		}
1604 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1605 				       NULL, bget_one);
1606 	}
1607 	/* As soon as we unlock the page, it can go away, but we have
1608 	 * references to buffers so we are safe */
1609 	unlock_page(page);
1610 
1611 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1612 				    ext4_writepage_trans_blocks(inode));
1613 	if (IS_ERR(handle)) {
1614 		ret = PTR_ERR(handle);
1615 		goto out;
1616 	}
1617 
1618 	BUG_ON(!ext4_handle_valid(handle));
1619 
1620 	if (inline_data) {
1621 		BUFFER_TRACE(inode_bh, "get write access");
1622 		ret = ext4_journal_get_write_access(handle, inode_bh);
1623 
1624 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1625 
1626 	} else {
1627 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1628 					     do_journal_get_write_access);
1629 
1630 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1631 					     write_end_fn);
1632 	}
1633 	if (ret == 0)
1634 		ret = err;
1635 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1636 	err = ext4_journal_stop(handle);
1637 	if (!ret)
1638 		ret = err;
1639 
1640 	if (!ext4_has_inline_data(inode))
1641 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1642 				       NULL, bput_one);
1643 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1644 out:
1645 	brelse(inode_bh);
1646 	return ret;
1647 }
1648 
1649 /*
1650  * Note that we don't need to start a transaction unless we're journaling data
1651  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1652  * need to file the inode to the transaction's list in ordered mode because if
1653  * we are writing back data added by write(), the inode is already there and if
1654  * we are writing back data modified via mmap(), no one guarantees in which
1655  * transaction the data will hit the disk. In case we are journaling data, we
1656  * cannot start transaction directly because transaction start ranks above page
1657  * lock so we have to do some magic.
1658  *
1659  * This function can get called via...
1660  *   - ext4_writepages after taking page lock (have journal handle)
1661  *   - journal_submit_inode_data_buffers (no journal handle)
1662  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1663  *   - grab_page_cache when doing write_begin (have journal handle)
1664  *
1665  * We don't do any block allocation in this function. If we have page with
1666  * multiple blocks we need to write those buffer_heads that are mapped. This
1667  * is important for mmaped based write. So if we do with blocksize 1K
1668  * truncate(f, 1024);
1669  * a = mmap(f, 0, 4096);
1670  * a[0] = 'a';
1671  * truncate(f, 4096);
1672  * we have in the page first buffer_head mapped via page_mkwrite call back
1673  * but other buffer_heads would be unmapped but dirty (dirty done via the
1674  * do_wp_page). So writepage should write the first block. If we modify
1675  * the mmap area beyond 1024 we will again get a page_fault and the
1676  * page_mkwrite callback will do the block allocation and mark the
1677  * buffer_heads mapped.
1678  *
1679  * We redirty the page if we have any buffer_heads that is either delay or
1680  * unwritten in the page.
1681  *
1682  * We can get recursively called as show below.
1683  *
1684  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1685  *		ext4_writepage()
1686  *
1687  * But since we don't do any block allocation we should not deadlock.
1688  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1689  */
1690 static int ext4_writepage(struct page *page,
1691 			  struct writeback_control *wbc)
1692 {
1693 	int ret = 0;
1694 	loff_t size;
1695 	unsigned int len;
1696 	struct buffer_head *page_bufs = NULL;
1697 	struct inode *inode = page->mapping->host;
1698 	struct ext4_io_submit io_submit;
1699 	bool keep_towrite = false;
1700 
1701 	trace_ext4_writepage(page);
1702 	size = i_size_read(inode);
1703 	if (page->index == size >> PAGE_CACHE_SHIFT)
1704 		len = size & ~PAGE_CACHE_MASK;
1705 	else
1706 		len = PAGE_CACHE_SIZE;
1707 
1708 	page_bufs = page_buffers(page);
1709 	/*
1710 	 * We cannot do block allocation or other extent handling in this
1711 	 * function. If there are buffers needing that, we have to redirty
1712 	 * the page. But we may reach here when we do a journal commit via
1713 	 * journal_submit_inode_data_buffers() and in that case we must write
1714 	 * allocated buffers to achieve data=ordered mode guarantees.
1715 	 */
1716 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1717 				   ext4_bh_delay_or_unwritten)) {
1718 		redirty_page_for_writepage(wbc, page);
1719 		if (current->flags & PF_MEMALLOC) {
1720 			/*
1721 			 * For memory cleaning there's no point in writing only
1722 			 * some buffers. So just bail out. Warn if we came here
1723 			 * from direct reclaim.
1724 			 */
1725 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1726 							== PF_MEMALLOC);
1727 			unlock_page(page);
1728 			return 0;
1729 		}
1730 		keep_towrite = true;
1731 	}
1732 
1733 	if (PageChecked(page) && ext4_should_journal_data(inode))
1734 		/*
1735 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1736 		 * doesn't seem much point in redirtying the page here.
1737 		 */
1738 		return __ext4_journalled_writepage(page, len);
1739 
1740 	ext4_io_submit_init(&io_submit, wbc);
1741 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1742 	if (!io_submit.io_end) {
1743 		redirty_page_for_writepage(wbc, page);
1744 		unlock_page(page);
1745 		return -ENOMEM;
1746 	}
1747 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1748 	ext4_io_submit(&io_submit);
1749 	/* Drop io_end reference we got from init */
1750 	ext4_put_io_end_defer(io_submit.io_end);
1751 	return ret;
1752 }
1753 
1754 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1755 {
1756 	int len;
1757 	loff_t size = i_size_read(mpd->inode);
1758 	int err;
1759 
1760 	BUG_ON(page->index != mpd->first_page);
1761 	if (page->index == size >> PAGE_CACHE_SHIFT)
1762 		len = size & ~PAGE_CACHE_MASK;
1763 	else
1764 		len = PAGE_CACHE_SIZE;
1765 	clear_page_dirty_for_io(page);
1766 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1767 	if (!err)
1768 		mpd->wbc->nr_to_write--;
1769 	mpd->first_page++;
1770 
1771 	return err;
1772 }
1773 
1774 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1775 
1776 /*
1777  * mballoc gives us at most this number of blocks...
1778  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1779  * The rest of mballoc seems to handle chunks up to full group size.
1780  */
1781 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1782 
1783 /*
1784  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1785  *
1786  * @mpd - extent of blocks
1787  * @lblk - logical number of the block in the file
1788  * @bh - buffer head we want to add to the extent
1789  *
1790  * The function is used to collect contig. blocks in the same state. If the
1791  * buffer doesn't require mapping for writeback and we haven't started the
1792  * extent of buffers to map yet, the function returns 'true' immediately - the
1793  * caller can write the buffer right away. Otherwise the function returns true
1794  * if the block has been added to the extent, false if the block couldn't be
1795  * added.
1796  */
1797 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1798 				   struct buffer_head *bh)
1799 {
1800 	struct ext4_map_blocks *map = &mpd->map;
1801 
1802 	/* Buffer that doesn't need mapping for writeback? */
1803 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1804 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1805 		/* So far no extent to map => we write the buffer right away */
1806 		if (map->m_len == 0)
1807 			return true;
1808 		return false;
1809 	}
1810 
1811 	/* First block in the extent? */
1812 	if (map->m_len == 0) {
1813 		map->m_lblk = lblk;
1814 		map->m_len = 1;
1815 		map->m_flags = bh->b_state & BH_FLAGS;
1816 		return true;
1817 	}
1818 
1819 	/* Don't go larger than mballoc is willing to allocate */
1820 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1821 		return false;
1822 
1823 	/* Can we merge the block to our big extent? */
1824 	if (lblk == map->m_lblk + map->m_len &&
1825 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1826 		map->m_len++;
1827 		return true;
1828 	}
1829 	return false;
1830 }
1831 
1832 /*
1833  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1834  *
1835  * @mpd - extent of blocks for mapping
1836  * @head - the first buffer in the page
1837  * @bh - buffer we should start processing from
1838  * @lblk - logical number of the block in the file corresponding to @bh
1839  *
1840  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1841  * the page for IO if all buffers in this page were mapped and there's no
1842  * accumulated extent of buffers to map or add buffers in the page to the
1843  * extent of buffers to map. The function returns 1 if the caller can continue
1844  * by processing the next page, 0 if it should stop adding buffers to the
1845  * extent to map because we cannot extend it anymore. It can also return value
1846  * < 0 in case of error during IO submission.
1847  */
1848 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1849 				   struct buffer_head *head,
1850 				   struct buffer_head *bh,
1851 				   ext4_lblk_t lblk)
1852 {
1853 	struct inode *inode = mpd->inode;
1854 	int err;
1855 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1856 							>> inode->i_blkbits;
1857 
1858 	do {
1859 		BUG_ON(buffer_locked(bh));
1860 
1861 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1862 			/* Found extent to map? */
1863 			if (mpd->map.m_len)
1864 				return 0;
1865 			/* Everything mapped so far and we hit EOF */
1866 			break;
1867 		}
1868 	} while (lblk++, (bh = bh->b_this_page) != head);
1869 	/* So far everything mapped? Submit the page for IO. */
1870 	if (mpd->map.m_len == 0) {
1871 		err = mpage_submit_page(mpd, head->b_page);
1872 		if (err < 0)
1873 			return err;
1874 	}
1875 	return lblk < blocks;
1876 }
1877 
1878 /*
1879  * mpage_map_buffers - update buffers corresponding to changed extent and
1880  *		       submit fully mapped pages for IO
1881  *
1882  * @mpd - description of extent to map, on return next extent to map
1883  *
1884  * Scan buffers corresponding to changed extent (we expect corresponding pages
1885  * to be already locked) and update buffer state according to new extent state.
1886  * We map delalloc buffers to their physical location, clear unwritten bits,
1887  * and mark buffers as uninit when we perform writes to unwritten extents
1888  * and do extent conversion after IO is finished. If the last page is not fully
1889  * mapped, we update @map to the next extent in the last page that needs
1890  * mapping. Otherwise we submit the page for IO.
1891  */
1892 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1893 {
1894 	struct pagevec pvec;
1895 	int nr_pages, i;
1896 	struct inode *inode = mpd->inode;
1897 	struct buffer_head *head, *bh;
1898 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1899 	pgoff_t start, end;
1900 	ext4_lblk_t lblk;
1901 	sector_t pblock;
1902 	int err;
1903 
1904 	start = mpd->map.m_lblk >> bpp_bits;
1905 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1906 	lblk = start << bpp_bits;
1907 	pblock = mpd->map.m_pblk;
1908 
1909 	pagevec_init(&pvec, 0);
1910 	while (start <= end) {
1911 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1912 					  PAGEVEC_SIZE);
1913 		if (nr_pages == 0)
1914 			break;
1915 		for (i = 0; i < nr_pages; i++) {
1916 			struct page *page = pvec.pages[i];
1917 
1918 			if (page->index > end)
1919 				break;
1920 			/* Up to 'end' pages must be contiguous */
1921 			BUG_ON(page->index != start);
1922 			bh = head = page_buffers(page);
1923 			do {
1924 				if (lblk < mpd->map.m_lblk)
1925 					continue;
1926 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1927 					/*
1928 					 * Buffer after end of mapped extent.
1929 					 * Find next buffer in the page to map.
1930 					 */
1931 					mpd->map.m_len = 0;
1932 					mpd->map.m_flags = 0;
1933 					/*
1934 					 * FIXME: If dioread_nolock supports
1935 					 * blocksize < pagesize, we need to make
1936 					 * sure we add size mapped so far to
1937 					 * io_end->size as the following call
1938 					 * can submit the page for IO.
1939 					 */
1940 					err = mpage_process_page_bufs(mpd, head,
1941 								      bh, lblk);
1942 					pagevec_release(&pvec);
1943 					if (err > 0)
1944 						err = 0;
1945 					return err;
1946 				}
1947 				if (buffer_delay(bh)) {
1948 					clear_buffer_delay(bh);
1949 					bh->b_blocknr = pblock++;
1950 				}
1951 				clear_buffer_unwritten(bh);
1952 			} while (lblk++, (bh = bh->b_this_page) != head);
1953 
1954 			/*
1955 			 * FIXME: This is going to break if dioread_nolock
1956 			 * supports blocksize < pagesize as we will try to
1957 			 * convert potentially unmapped parts of inode.
1958 			 */
1959 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1960 			/* Page fully mapped - let IO run! */
1961 			err = mpage_submit_page(mpd, page);
1962 			if (err < 0) {
1963 				pagevec_release(&pvec);
1964 				return err;
1965 			}
1966 			start++;
1967 		}
1968 		pagevec_release(&pvec);
1969 	}
1970 	/* Extent fully mapped and matches with page boundary. We are done. */
1971 	mpd->map.m_len = 0;
1972 	mpd->map.m_flags = 0;
1973 	return 0;
1974 }
1975 
1976 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1977 {
1978 	struct inode *inode = mpd->inode;
1979 	struct ext4_map_blocks *map = &mpd->map;
1980 	int get_blocks_flags;
1981 	int err, dioread_nolock;
1982 
1983 	trace_ext4_da_write_pages_extent(inode, map);
1984 	/*
1985 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1986 	 * to convert an unwritten extent to be initialized (in the case
1987 	 * where we have written into one or more preallocated blocks).  It is
1988 	 * possible that we're going to need more metadata blocks than
1989 	 * previously reserved. However we must not fail because we're in
1990 	 * writeback and there is nothing we can do about it so it might result
1991 	 * in data loss.  So use reserved blocks to allocate metadata if
1992 	 * possible.
1993 	 *
1994 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1995 	 * the blocks in question are delalloc blocks.  This indicates
1996 	 * that the blocks and quotas has already been checked when
1997 	 * the data was copied into the page cache.
1998 	 */
1999 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2000 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2001 	dioread_nolock = ext4_should_dioread_nolock(inode);
2002 	if (dioread_nolock)
2003 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2004 	if (map->m_flags & (1 << BH_Delay))
2005 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2006 
2007 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2008 	if (err < 0)
2009 		return err;
2010 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2011 		if (!mpd->io_submit.io_end->handle &&
2012 		    ext4_handle_valid(handle)) {
2013 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2014 			handle->h_rsv_handle = NULL;
2015 		}
2016 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2017 	}
2018 
2019 	BUG_ON(map->m_len == 0);
2020 	if (map->m_flags & EXT4_MAP_NEW) {
2021 		struct block_device *bdev = inode->i_sb->s_bdev;
2022 		int i;
2023 
2024 		for (i = 0; i < map->m_len; i++)
2025 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2026 	}
2027 	return 0;
2028 }
2029 
2030 /*
2031  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2032  *				 mpd->len and submit pages underlying it for IO
2033  *
2034  * @handle - handle for journal operations
2035  * @mpd - extent to map
2036  * @give_up_on_write - we set this to true iff there is a fatal error and there
2037  *                     is no hope of writing the data. The caller should discard
2038  *                     dirty pages to avoid infinite loops.
2039  *
2040  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2041  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2042  * them to initialized or split the described range from larger unwritten
2043  * extent. Note that we need not map all the described range since allocation
2044  * can return less blocks or the range is covered by more unwritten extents. We
2045  * cannot map more because we are limited by reserved transaction credits. On
2046  * the other hand we always make sure that the last touched page is fully
2047  * mapped so that it can be written out (and thus forward progress is
2048  * guaranteed). After mapping we submit all mapped pages for IO.
2049  */
2050 static int mpage_map_and_submit_extent(handle_t *handle,
2051 				       struct mpage_da_data *mpd,
2052 				       bool *give_up_on_write)
2053 {
2054 	struct inode *inode = mpd->inode;
2055 	struct ext4_map_blocks *map = &mpd->map;
2056 	int err;
2057 	loff_t disksize;
2058 	int progress = 0;
2059 
2060 	mpd->io_submit.io_end->offset =
2061 				((loff_t)map->m_lblk) << inode->i_blkbits;
2062 	do {
2063 		err = mpage_map_one_extent(handle, mpd);
2064 		if (err < 0) {
2065 			struct super_block *sb = inode->i_sb;
2066 
2067 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2068 				goto invalidate_dirty_pages;
2069 			/*
2070 			 * Let the uper layers retry transient errors.
2071 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2072 			 * is non-zero, a commit should free up blocks.
2073 			 */
2074 			if ((err == -ENOMEM) ||
2075 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2076 				if (progress)
2077 					goto update_disksize;
2078 				return err;
2079 			}
2080 			ext4_msg(sb, KERN_CRIT,
2081 				 "Delayed block allocation failed for "
2082 				 "inode %lu at logical offset %llu with"
2083 				 " max blocks %u with error %d",
2084 				 inode->i_ino,
2085 				 (unsigned long long)map->m_lblk,
2086 				 (unsigned)map->m_len, -err);
2087 			ext4_msg(sb, KERN_CRIT,
2088 				 "This should not happen!! Data will "
2089 				 "be lost\n");
2090 			if (err == -ENOSPC)
2091 				ext4_print_free_blocks(inode);
2092 		invalidate_dirty_pages:
2093 			*give_up_on_write = true;
2094 			return err;
2095 		}
2096 		progress = 1;
2097 		/*
2098 		 * Update buffer state, submit mapped pages, and get us new
2099 		 * extent to map
2100 		 */
2101 		err = mpage_map_and_submit_buffers(mpd);
2102 		if (err < 0)
2103 			goto update_disksize;
2104 	} while (map->m_len);
2105 
2106 update_disksize:
2107 	/*
2108 	 * Update on-disk size after IO is submitted.  Races with
2109 	 * truncate are avoided by checking i_size under i_data_sem.
2110 	 */
2111 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2112 	if (disksize > EXT4_I(inode)->i_disksize) {
2113 		int err2;
2114 		loff_t i_size;
2115 
2116 		down_write(&EXT4_I(inode)->i_data_sem);
2117 		i_size = i_size_read(inode);
2118 		if (disksize > i_size)
2119 			disksize = i_size;
2120 		if (disksize > EXT4_I(inode)->i_disksize)
2121 			EXT4_I(inode)->i_disksize = disksize;
2122 		err2 = ext4_mark_inode_dirty(handle, inode);
2123 		up_write(&EXT4_I(inode)->i_data_sem);
2124 		if (err2)
2125 			ext4_error(inode->i_sb,
2126 				   "Failed to mark inode %lu dirty",
2127 				   inode->i_ino);
2128 		if (!err)
2129 			err = err2;
2130 	}
2131 	return err;
2132 }
2133 
2134 /*
2135  * Calculate the total number of credits to reserve for one writepages
2136  * iteration. This is called from ext4_writepages(). We map an extent of
2137  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2138  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2139  * bpp - 1 blocks in bpp different extents.
2140  */
2141 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2142 {
2143 	int bpp = ext4_journal_blocks_per_page(inode);
2144 
2145 	return ext4_meta_trans_blocks(inode,
2146 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2147 }
2148 
2149 /*
2150  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2151  * 				 and underlying extent to map
2152  *
2153  * @mpd - where to look for pages
2154  *
2155  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2156  * IO immediately. When we find a page which isn't mapped we start accumulating
2157  * extent of buffers underlying these pages that needs mapping (formed by
2158  * either delayed or unwritten buffers). We also lock the pages containing
2159  * these buffers. The extent found is returned in @mpd structure (starting at
2160  * mpd->lblk with length mpd->len blocks).
2161  *
2162  * Note that this function can attach bios to one io_end structure which are
2163  * neither logically nor physically contiguous. Although it may seem as an
2164  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2165  * case as we need to track IO to all buffers underlying a page in one io_end.
2166  */
2167 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2168 {
2169 	struct address_space *mapping = mpd->inode->i_mapping;
2170 	struct pagevec pvec;
2171 	unsigned int nr_pages;
2172 	long left = mpd->wbc->nr_to_write;
2173 	pgoff_t index = mpd->first_page;
2174 	pgoff_t end = mpd->last_page;
2175 	int tag;
2176 	int i, err = 0;
2177 	int blkbits = mpd->inode->i_blkbits;
2178 	ext4_lblk_t lblk;
2179 	struct buffer_head *head;
2180 
2181 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2182 		tag = PAGECACHE_TAG_TOWRITE;
2183 	else
2184 		tag = PAGECACHE_TAG_DIRTY;
2185 
2186 	pagevec_init(&pvec, 0);
2187 	mpd->map.m_len = 0;
2188 	mpd->next_page = index;
2189 	while (index <= end) {
2190 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2191 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2192 		if (nr_pages == 0)
2193 			goto out;
2194 
2195 		for (i = 0; i < nr_pages; i++) {
2196 			struct page *page = pvec.pages[i];
2197 
2198 			/*
2199 			 * At this point, the page may be truncated or
2200 			 * invalidated (changing page->mapping to NULL), or
2201 			 * even swizzled back from swapper_space to tmpfs file
2202 			 * mapping. However, page->index will not change
2203 			 * because we have a reference on the page.
2204 			 */
2205 			if (page->index > end)
2206 				goto out;
2207 
2208 			/*
2209 			 * Accumulated enough dirty pages? This doesn't apply
2210 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2211 			 * keep going because someone may be concurrently
2212 			 * dirtying pages, and we might have synced a lot of
2213 			 * newly appeared dirty pages, but have not synced all
2214 			 * of the old dirty pages.
2215 			 */
2216 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2217 				goto out;
2218 
2219 			/* If we can't merge this page, we are done. */
2220 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2221 				goto out;
2222 
2223 			lock_page(page);
2224 			/*
2225 			 * If the page is no longer dirty, or its mapping no
2226 			 * longer corresponds to inode we are writing (which
2227 			 * means it has been truncated or invalidated), or the
2228 			 * page is already under writeback and we are not doing
2229 			 * a data integrity writeback, skip the page
2230 			 */
2231 			if (!PageDirty(page) ||
2232 			    (PageWriteback(page) &&
2233 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2234 			    unlikely(page->mapping != mapping)) {
2235 				unlock_page(page);
2236 				continue;
2237 			}
2238 
2239 			wait_on_page_writeback(page);
2240 			BUG_ON(PageWriteback(page));
2241 
2242 			if (mpd->map.m_len == 0)
2243 				mpd->first_page = page->index;
2244 			mpd->next_page = page->index + 1;
2245 			/* Add all dirty buffers to mpd */
2246 			lblk = ((ext4_lblk_t)page->index) <<
2247 				(PAGE_CACHE_SHIFT - blkbits);
2248 			head = page_buffers(page);
2249 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2250 			if (err <= 0)
2251 				goto out;
2252 			err = 0;
2253 			left--;
2254 		}
2255 		pagevec_release(&pvec);
2256 		cond_resched();
2257 	}
2258 	return 0;
2259 out:
2260 	pagevec_release(&pvec);
2261 	return err;
2262 }
2263 
2264 static int __writepage(struct page *page, struct writeback_control *wbc,
2265 		       void *data)
2266 {
2267 	struct address_space *mapping = data;
2268 	int ret = ext4_writepage(page, wbc);
2269 	mapping_set_error(mapping, ret);
2270 	return ret;
2271 }
2272 
2273 static int ext4_writepages(struct address_space *mapping,
2274 			   struct writeback_control *wbc)
2275 {
2276 	pgoff_t	writeback_index = 0;
2277 	long nr_to_write = wbc->nr_to_write;
2278 	int range_whole = 0;
2279 	int cycled = 1;
2280 	handle_t *handle = NULL;
2281 	struct mpage_da_data mpd;
2282 	struct inode *inode = mapping->host;
2283 	int needed_blocks, rsv_blocks = 0, ret = 0;
2284 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2285 	bool done;
2286 	struct blk_plug plug;
2287 	bool give_up_on_write = false;
2288 
2289 	trace_ext4_writepages(inode, wbc);
2290 
2291 	/*
2292 	 * No pages to write? This is mainly a kludge to avoid starting
2293 	 * a transaction for special inodes like journal inode on last iput()
2294 	 * because that could violate lock ordering on umount
2295 	 */
2296 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2297 		goto out_writepages;
2298 
2299 	if (ext4_should_journal_data(inode)) {
2300 		struct blk_plug plug;
2301 
2302 		blk_start_plug(&plug);
2303 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2304 		blk_finish_plug(&plug);
2305 		goto out_writepages;
2306 	}
2307 
2308 	/*
2309 	 * If the filesystem has aborted, it is read-only, so return
2310 	 * right away instead of dumping stack traces later on that
2311 	 * will obscure the real source of the problem.  We test
2312 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2313 	 * the latter could be true if the filesystem is mounted
2314 	 * read-only, and in that case, ext4_writepages should
2315 	 * *never* be called, so if that ever happens, we would want
2316 	 * the stack trace.
2317 	 */
2318 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2319 		ret = -EROFS;
2320 		goto out_writepages;
2321 	}
2322 
2323 	if (ext4_should_dioread_nolock(inode)) {
2324 		/*
2325 		 * We may need to convert up to one extent per block in
2326 		 * the page and we may dirty the inode.
2327 		 */
2328 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2329 	}
2330 
2331 	/*
2332 	 * If we have inline data and arrive here, it means that
2333 	 * we will soon create the block for the 1st page, so
2334 	 * we'd better clear the inline data here.
2335 	 */
2336 	if (ext4_has_inline_data(inode)) {
2337 		/* Just inode will be modified... */
2338 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2339 		if (IS_ERR(handle)) {
2340 			ret = PTR_ERR(handle);
2341 			goto out_writepages;
2342 		}
2343 		BUG_ON(ext4_test_inode_state(inode,
2344 				EXT4_STATE_MAY_INLINE_DATA));
2345 		ext4_destroy_inline_data(handle, inode);
2346 		ext4_journal_stop(handle);
2347 	}
2348 
2349 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2350 		range_whole = 1;
2351 
2352 	if (wbc->range_cyclic) {
2353 		writeback_index = mapping->writeback_index;
2354 		if (writeback_index)
2355 			cycled = 0;
2356 		mpd.first_page = writeback_index;
2357 		mpd.last_page = -1;
2358 	} else {
2359 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2360 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2361 	}
2362 
2363 	mpd.inode = inode;
2364 	mpd.wbc = wbc;
2365 	ext4_io_submit_init(&mpd.io_submit, wbc);
2366 retry:
2367 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2368 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2369 	done = false;
2370 	blk_start_plug(&plug);
2371 	while (!done && mpd.first_page <= mpd.last_page) {
2372 		/* For each extent of pages we use new io_end */
2373 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2374 		if (!mpd.io_submit.io_end) {
2375 			ret = -ENOMEM;
2376 			break;
2377 		}
2378 
2379 		/*
2380 		 * We have two constraints: We find one extent to map and we
2381 		 * must always write out whole page (makes a difference when
2382 		 * blocksize < pagesize) so that we don't block on IO when we
2383 		 * try to write out the rest of the page. Journalled mode is
2384 		 * not supported by delalloc.
2385 		 */
2386 		BUG_ON(ext4_should_journal_data(inode));
2387 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2388 
2389 		/* start a new transaction */
2390 		handle = ext4_journal_start_with_reserve(inode,
2391 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2392 		if (IS_ERR(handle)) {
2393 			ret = PTR_ERR(handle);
2394 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2395 			       "%ld pages, ino %lu; err %d", __func__,
2396 				wbc->nr_to_write, inode->i_ino, ret);
2397 			/* Release allocated io_end */
2398 			ext4_put_io_end(mpd.io_submit.io_end);
2399 			break;
2400 		}
2401 
2402 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2403 		ret = mpage_prepare_extent_to_map(&mpd);
2404 		if (!ret) {
2405 			if (mpd.map.m_len)
2406 				ret = mpage_map_and_submit_extent(handle, &mpd,
2407 					&give_up_on_write);
2408 			else {
2409 				/*
2410 				 * We scanned the whole range (or exhausted
2411 				 * nr_to_write), submitted what was mapped and
2412 				 * didn't find anything needing mapping. We are
2413 				 * done.
2414 				 */
2415 				done = true;
2416 			}
2417 		}
2418 		ext4_journal_stop(handle);
2419 		/* Submit prepared bio */
2420 		ext4_io_submit(&mpd.io_submit);
2421 		/* Unlock pages we didn't use */
2422 		mpage_release_unused_pages(&mpd, give_up_on_write);
2423 		/* Drop our io_end reference we got from init */
2424 		ext4_put_io_end(mpd.io_submit.io_end);
2425 
2426 		if (ret == -ENOSPC && sbi->s_journal) {
2427 			/*
2428 			 * Commit the transaction which would
2429 			 * free blocks released in the transaction
2430 			 * and try again
2431 			 */
2432 			jbd2_journal_force_commit_nested(sbi->s_journal);
2433 			ret = 0;
2434 			continue;
2435 		}
2436 		/* Fatal error - ENOMEM, EIO... */
2437 		if (ret)
2438 			break;
2439 	}
2440 	blk_finish_plug(&plug);
2441 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2442 		cycled = 1;
2443 		mpd.last_page = writeback_index - 1;
2444 		mpd.first_page = 0;
2445 		goto retry;
2446 	}
2447 
2448 	/* Update index */
2449 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2450 		/*
2451 		 * Set the writeback_index so that range_cyclic
2452 		 * mode will write it back later
2453 		 */
2454 		mapping->writeback_index = mpd.first_page;
2455 
2456 out_writepages:
2457 	trace_ext4_writepages_result(inode, wbc, ret,
2458 				     nr_to_write - wbc->nr_to_write);
2459 	return ret;
2460 }
2461 
2462 static int ext4_nonda_switch(struct super_block *sb)
2463 {
2464 	s64 free_clusters, dirty_clusters;
2465 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2466 
2467 	/*
2468 	 * switch to non delalloc mode if we are running low
2469 	 * on free block. The free block accounting via percpu
2470 	 * counters can get slightly wrong with percpu_counter_batch getting
2471 	 * accumulated on each CPU without updating global counters
2472 	 * Delalloc need an accurate free block accounting. So switch
2473 	 * to non delalloc when we are near to error range.
2474 	 */
2475 	free_clusters =
2476 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2477 	dirty_clusters =
2478 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2479 	/*
2480 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2481 	 */
2482 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2483 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2484 
2485 	if (2 * free_clusters < 3 * dirty_clusters ||
2486 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2487 		/*
2488 		 * free block count is less than 150% of dirty blocks
2489 		 * or free blocks is less than watermark
2490 		 */
2491 		return 1;
2492 	}
2493 	return 0;
2494 }
2495 
2496 /* We always reserve for an inode update; the superblock could be there too */
2497 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2498 {
2499 	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2500 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2501 		return 1;
2502 
2503 	if (pos + len <= 0x7fffffffULL)
2504 		return 1;
2505 
2506 	/* We might need to update the superblock to set LARGE_FILE */
2507 	return 2;
2508 }
2509 
2510 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2511 			       loff_t pos, unsigned len, unsigned flags,
2512 			       struct page **pagep, void **fsdata)
2513 {
2514 	int ret, retries = 0;
2515 	struct page *page;
2516 	pgoff_t index;
2517 	struct inode *inode = mapping->host;
2518 	handle_t *handle;
2519 
2520 	index = pos >> PAGE_CACHE_SHIFT;
2521 
2522 	if (ext4_nonda_switch(inode->i_sb)) {
2523 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2524 		return ext4_write_begin(file, mapping, pos,
2525 					len, flags, pagep, fsdata);
2526 	}
2527 	*fsdata = (void *)0;
2528 	trace_ext4_da_write_begin(inode, pos, len, flags);
2529 
2530 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2531 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2532 						      pos, len, flags,
2533 						      pagep, fsdata);
2534 		if (ret < 0)
2535 			return ret;
2536 		if (ret == 1)
2537 			return 0;
2538 	}
2539 
2540 	/*
2541 	 * grab_cache_page_write_begin() can take a long time if the
2542 	 * system is thrashing due to memory pressure, or if the page
2543 	 * is being written back.  So grab it first before we start
2544 	 * the transaction handle.  This also allows us to allocate
2545 	 * the page (if needed) without using GFP_NOFS.
2546 	 */
2547 retry_grab:
2548 	page = grab_cache_page_write_begin(mapping, index, flags);
2549 	if (!page)
2550 		return -ENOMEM;
2551 	unlock_page(page);
2552 
2553 	/*
2554 	 * With delayed allocation, we don't log the i_disksize update
2555 	 * if there is delayed block allocation. But we still need
2556 	 * to journalling the i_disksize update if writes to the end
2557 	 * of file which has an already mapped buffer.
2558 	 */
2559 retry_journal:
2560 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2561 				ext4_da_write_credits(inode, pos, len));
2562 	if (IS_ERR(handle)) {
2563 		page_cache_release(page);
2564 		return PTR_ERR(handle);
2565 	}
2566 
2567 	lock_page(page);
2568 	if (page->mapping != mapping) {
2569 		/* The page got truncated from under us */
2570 		unlock_page(page);
2571 		page_cache_release(page);
2572 		ext4_journal_stop(handle);
2573 		goto retry_grab;
2574 	}
2575 	/* In case writeback began while the page was unlocked */
2576 	wait_for_stable_page(page);
2577 
2578 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2579 	if (ret < 0) {
2580 		unlock_page(page);
2581 		ext4_journal_stop(handle);
2582 		/*
2583 		 * block_write_begin may have instantiated a few blocks
2584 		 * outside i_size.  Trim these off again. Don't need
2585 		 * i_size_read because we hold i_mutex.
2586 		 */
2587 		if (pos + len > inode->i_size)
2588 			ext4_truncate_failed_write(inode);
2589 
2590 		if (ret == -ENOSPC &&
2591 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2592 			goto retry_journal;
2593 
2594 		page_cache_release(page);
2595 		return ret;
2596 	}
2597 
2598 	*pagep = page;
2599 	return ret;
2600 }
2601 
2602 /*
2603  * Check if we should update i_disksize
2604  * when write to the end of file but not require block allocation
2605  */
2606 static int ext4_da_should_update_i_disksize(struct page *page,
2607 					    unsigned long offset)
2608 {
2609 	struct buffer_head *bh;
2610 	struct inode *inode = page->mapping->host;
2611 	unsigned int idx;
2612 	int i;
2613 
2614 	bh = page_buffers(page);
2615 	idx = offset >> inode->i_blkbits;
2616 
2617 	for (i = 0; i < idx; i++)
2618 		bh = bh->b_this_page;
2619 
2620 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2621 		return 0;
2622 	return 1;
2623 }
2624 
2625 static int ext4_da_write_end(struct file *file,
2626 			     struct address_space *mapping,
2627 			     loff_t pos, unsigned len, unsigned copied,
2628 			     struct page *page, void *fsdata)
2629 {
2630 	struct inode *inode = mapping->host;
2631 	int ret = 0, ret2;
2632 	handle_t *handle = ext4_journal_current_handle();
2633 	loff_t new_i_size;
2634 	unsigned long start, end;
2635 	int write_mode = (int)(unsigned long)fsdata;
2636 
2637 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2638 		return ext4_write_end(file, mapping, pos,
2639 				      len, copied, page, fsdata);
2640 
2641 	trace_ext4_da_write_end(inode, pos, len, copied);
2642 	start = pos & (PAGE_CACHE_SIZE - 1);
2643 	end = start + copied - 1;
2644 
2645 	/*
2646 	 * generic_write_end() will run mark_inode_dirty() if i_size
2647 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2648 	 * into that.
2649 	 */
2650 	new_i_size = pos + copied;
2651 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2652 		if (ext4_has_inline_data(inode) ||
2653 		    ext4_da_should_update_i_disksize(page, end)) {
2654 			ext4_update_i_disksize(inode, new_i_size);
2655 			/* We need to mark inode dirty even if
2656 			 * new_i_size is less that inode->i_size
2657 			 * bu greater than i_disksize.(hint delalloc)
2658 			 */
2659 			ext4_mark_inode_dirty(handle, inode);
2660 		}
2661 	}
2662 
2663 	if (write_mode != CONVERT_INLINE_DATA &&
2664 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2665 	    ext4_has_inline_data(inode))
2666 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2667 						     page);
2668 	else
2669 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2670 							page, fsdata);
2671 
2672 	copied = ret2;
2673 	if (ret2 < 0)
2674 		ret = ret2;
2675 	ret2 = ext4_journal_stop(handle);
2676 	if (!ret)
2677 		ret = ret2;
2678 
2679 	return ret ? ret : copied;
2680 }
2681 
2682 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2683 				   unsigned int length)
2684 {
2685 	/*
2686 	 * Drop reserved blocks
2687 	 */
2688 	BUG_ON(!PageLocked(page));
2689 	if (!page_has_buffers(page))
2690 		goto out;
2691 
2692 	ext4_da_page_release_reservation(page, offset, length);
2693 
2694 out:
2695 	ext4_invalidatepage(page, offset, length);
2696 
2697 	return;
2698 }
2699 
2700 /*
2701  * Force all delayed allocation blocks to be allocated for a given inode.
2702  */
2703 int ext4_alloc_da_blocks(struct inode *inode)
2704 {
2705 	trace_ext4_alloc_da_blocks(inode);
2706 
2707 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2708 		return 0;
2709 
2710 	/*
2711 	 * We do something simple for now.  The filemap_flush() will
2712 	 * also start triggering a write of the data blocks, which is
2713 	 * not strictly speaking necessary (and for users of
2714 	 * laptop_mode, not even desirable).  However, to do otherwise
2715 	 * would require replicating code paths in:
2716 	 *
2717 	 * ext4_writepages() ->
2718 	 *    write_cache_pages() ---> (via passed in callback function)
2719 	 *        __mpage_da_writepage() -->
2720 	 *           mpage_add_bh_to_extent()
2721 	 *           mpage_da_map_blocks()
2722 	 *
2723 	 * The problem is that write_cache_pages(), located in
2724 	 * mm/page-writeback.c, marks pages clean in preparation for
2725 	 * doing I/O, which is not desirable if we're not planning on
2726 	 * doing I/O at all.
2727 	 *
2728 	 * We could call write_cache_pages(), and then redirty all of
2729 	 * the pages by calling redirty_page_for_writepage() but that
2730 	 * would be ugly in the extreme.  So instead we would need to
2731 	 * replicate parts of the code in the above functions,
2732 	 * simplifying them because we wouldn't actually intend to
2733 	 * write out the pages, but rather only collect contiguous
2734 	 * logical block extents, call the multi-block allocator, and
2735 	 * then update the buffer heads with the block allocations.
2736 	 *
2737 	 * For now, though, we'll cheat by calling filemap_flush(),
2738 	 * which will map the blocks, and start the I/O, but not
2739 	 * actually wait for the I/O to complete.
2740 	 */
2741 	return filemap_flush(inode->i_mapping);
2742 }
2743 
2744 /*
2745  * bmap() is special.  It gets used by applications such as lilo and by
2746  * the swapper to find the on-disk block of a specific piece of data.
2747  *
2748  * Naturally, this is dangerous if the block concerned is still in the
2749  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2750  * filesystem and enables swap, then they may get a nasty shock when the
2751  * data getting swapped to that swapfile suddenly gets overwritten by
2752  * the original zero's written out previously to the journal and
2753  * awaiting writeback in the kernel's buffer cache.
2754  *
2755  * So, if we see any bmap calls here on a modified, data-journaled file,
2756  * take extra steps to flush any blocks which might be in the cache.
2757  */
2758 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2759 {
2760 	struct inode *inode = mapping->host;
2761 	journal_t *journal;
2762 	int err;
2763 
2764 	/*
2765 	 * We can get here for an inline file via the FIBMAP ioctl
2766 	 */
2767 	if (ext4_has_inline_data(inode))
2768 		return 0;
2769 
2770 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2771 			test_opt(inode->i_sb, DELALLOC)) {
2772 		/*
2773 		 * With delalloc we want to sync the file
2774 		 * so that we can make sure we allocate
2775 		 * blocks for file
2776 		 */
2777 		filemap_write_and_wait(mapping);
2778 	}
2779 
2780 	if (EXT4_JOURNAL(inode) &&
2781 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2782 		/*
2783 		 * This is a REALLY heavyweight approach, but the use of
2784 		 * bmap on dirty files is expected to be extremely rare:
2785 		 * only if we run lilo or swapon on a freshly made file
2786 		 * do we expect this to happen.
2787 		 *
2788 		 * (bmap requires CAP_SYS_RAWIO so this does not
2789 		 * represent an unprivileged user DOS attack --- we'd be
2790 		 * in trouble if mortal users could trigger this path at
2791 		 * will.)
2792 		 *
2793 		 * NB. EXT4_STATE_JDATA is not set on files other than
2794 		 * regular files.  If somebody wants to bmap a directory
2795 		 * or symlink and gets confused because the buffer
2796 		 * hasn't yet been flushed to disk, they deserve
2797 		 * everything they get.
2798 		 */
2799 
2800 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2801 		journal = EXT4_JOURNAL(inode);
2802 		jbd2_journal_lock_updates(journal);
2803 		err = jbd2_journal_flush(journal);
2804 		jbd2_journal_unlock_updates(journal);
2805 
2806 		if (err)
2807 			return 0;
2808 	}
2809 
2810 	return generic_block_bmap(mapping, block, ext4_get_block);
2811 }
2812 
2813 static int ext4_readpage(struct file *file, struct page *page)
2814 {
2815 	int ret = -EAGAIN;
2816 	struct inode *inode = page->mapping->host;
2817 
2818 	trace_ext4_readpage(page);
2819 
2820 	if (ext4_has_inline_data(inode))
2821 		ret = ext4_readpage_inline(inode, page);
2822 
2823 	if (ret == -EAGAIN)
2824 		return mpage_readpage(page, ext4_get_block);
2825 
2826 	return ret;
2827 }
2828 
2829 static int
2830 ext4_readpages(struct file *file, struct address_space *mapping,
2831 		struct list_head *pages, unsigned nr_pages)
2832 {
2833 	struct inode *inode = mapping->host;
2834 
2835 	/* If the file has inline data, no need to do readpages. */
2836 	if (ext4_has_inline_data(inode))
2837 		return 0;
2838 
2839 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2840 }
2841 
2842 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2843 				unsigned int length)
2844 {
2845 	trace_ext4_invalidatepage(page, offset, length);
2846 
2847 	/* No journalling happens on data buffers when this function is used */
2848 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2849 
2850 	block_invalidatepage(page, offset, length);
2851 }
2852 
2853 static int __ext4_journalled_invalidatepage(struct page *page,
2854 					    unsigned int offset,
2855 					    unsigned int length)
2856 {
2857 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2858 
2859 	trace_ext4_journalled_invalidatepage(page, offset, length);
2860 
2861 	/*
2862 	 * If it's a full truncate we just forget about the pending dirtying
2863 	 */
2864 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2865 		ClearPageChecked(page);
2866 
2867 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2868 }
2869 
2870 /* Wrapper for aops... */
2871 static void ext4_journalled_invalidatepage(struct page *page,
2872 					   unsigned int offset,
2873 					   unsigned int length)
2874 {
2875 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2876 }
2877 
2878 static int ext4_releasepage(struct page *page, gfp_t wait)
2879 {
2880 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2881 
2882 	trace_ext4_releasepage(page);
2883 
2884 	/* Page has dirty journalled data -> cannot release */
2885 	if (PageChecked(page))
2886 		return 0;
2887 	if (journal)
2888 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2889 	else
2890 		return try_to_free_buffers(page);
2891 }
2892 
2893 /*
2894  * ext4_get_block used when preparing for a DIO write or buffer write.
2895  * We allocate an uinitialized extent if blocks haven't been allocated.
2896  * The extent will be converted to initialized after the IO is complete.
2897  */
2898 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2899 		   struct buffer_head *bh_result, int create)
2900 {
2901 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2902 		   inode->i_ino, create);
2903 	return _ext4_get_block(inode, iblock, bh_result,
2904 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2905 }
2906 
2907 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2908 		   struct buffer_head *bh_result, int create)
2909 {
2910 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2911 		   inode->i_ino, create);
2912 	return _ext4_get_block(inode, iblock, bh_result,
2913 			       EXT4_GET_BLOCKS_NO_LOCK);
2914 }
2915 
2916 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2917 			    ssize_t size, void *private)
2918 {
2919         ext4_io_end_t *io_end = iocb->private;
2920 
2921 	/* if not async direct IO just return */
2922 	if (!io_end)
2923 		return;
2924 
2925 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2926 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2927  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2928 		  size);
2929 
2930 	iocb->private = NULL;
2931 	io_end->offset = offset;
2932 	io_end->size = size;
2933 	ext4_put_io_end(io_end);
2934 }
2935 
2936 /*
2937  * For ext4 extent files, ext4 will do direct-io write to holes,
2938  * preallocated extents, and those write extend the file, no need to
2939  * fall back to buffered IO.
2940  *
2941  * For holes, we fallocate those blocks, mark them as unwritten
2942  * If those blocks were preallocated, we mark sure they are split, but
2943  * still keep the range to write as unwritten.
2944  *
2945  * The unwritten extents will be converted to written when DIO is completed.
2946  * For async direct IO, since the IO may still pending when return, we
2947  * set up an end_io call back function, which will do the conversion
2948  * when async direct IO completed.
2949  *
2950  * If the O_DIRECT write will extend the file then add this inode to the
2951  * orphan list.  So recovery will truncate it back to the original size
2952  * if the machine crashes during the write.
2953  *
2954  */
2955 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2956 			      struct iov_iter *iter, loff_t offset)
2957 {
2958 	struct file *file = iocb->ki_filp;
2959 	struct inode *inode = file->f_mapping->host;
2960 	ssize_t ret;
2961 	size_t count = iov_iter_count(iter);
2962 	int overwrite = 0;
2963 	get_block_t *get_block_func = NULL;
2964 	int dio_flags = 0;
2965 	loff_t final_size = offset + count;
2966 	ext4_io_end_t *io_end = NULL;
2967 
2968 	/* Use the old path for reads and writes beyond i_size. */
2969 	if (rw != WRITE || final_size > inode->i_size)
2970 		return ext4_ind_direct_IO(rw, iocb, iter, offset);
2971 
2972 	BUG_ON(iocb->private == NULL);
2973 
2974 	/*
2975 	 * Make all waiters for direct IO properly wait also for extent
2976 	 * conversion. This also disallows race between truncate() and
2977 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2978 	 */
2979 	if (rw == WRITE)
2980 		atomic_inc(&inode->i_dio_count);
2981 
2982 	/* If we do a overwrite dio, i_mutex locking can be released */
2983 	overwrite = *((int *)iocb->private);
2984 
2985 	if (overwrite) {
2986 		down_read(&EXT4_I(inode)->i_data_sem);
2987 		mutex_unlock(&inode->i_mutex);
2988 	}
2989 
2990 	/*
2991 	 * We could direct write to holes and fallocate.
2992 	 *
2993 	 * Allocated blocks to fill the hole are marked as
2994 	 * unwritten to prevent parallel buffered read to expose
2995 	 * the stale data before DIO complete the data IO.
2996 	 *
2997 	 * As to previously fallocated extents, ext4 get_block will
2998 	 * just simply mark the buffer mapped but still keep the
2999 	 * extents unwritten.
3000 	 *
3001 	 * For non AIO case, we will convert those unwritten extents
3002 	 * to written after return back from blockdev_direct_IO.
3003 	 *
3004 	 * For async DIO, the conversion needs to be deferred when the
3005 	 * IO is completed. The ext4 end_io callback function will be
3006 	 * called to take care of the conversion work.  Here for async
3007 	 * case, we allocate an io_end structure to hook to the iocb.
3008 	 */
3009 	iocb->private = NULL;
3010 	ext4_inode_aio_set(inode, NULL);
3011 	if (!is_sync_kiocb(iocb)) {
3012 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3013 		if (!io_end) {
3014 			ret = -ENOMEM;
3015 			goto retake_lock;
3016 		}
3017 		/*
3018 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3019 		 */
3020 		iocb->private = ext4_get_io_end(io_end);
3021 		/*
3022 		 * we save the io structure for current async direct
3023 		 * IO, so that later ext4_map_blocks() could flag the
3024 		 * io structure whether there is a unwritten extents
3025 		 * needs to be converted when IO is completed.
3026 		 */
3027 		ext4_inode_aio_set(inode, io_end);
3028 	}
3029 
3030 	if (overwrite) {
3031 		get_block_func = ext4_get_block_write_nolock;
3032 	} else {
3033 		get_block_func = ext4_get_block_write;
3034 		dio_flags = DIO_LOCKING;
3035 	}
3036 	if (IS_DAX(inode))
3037 		ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
3038 				ext4_end_io_dio, dio_flags);
3039 	else
3040 		ret = __blockdev_direct_IO(rw, iocb, inode,
3041 					   inode->i_sb->s_bdev, iter, offset,
3042 					   get_block_func,
3043 					   ext4_end_io_dio, NULL, dio_flags);
3044 
3045 	/*
3046 	 * Put our reference to io_end. This can free the io_end structure e.g.
3047 	 * in sync IO case or in case of error. It can even perform extent
3048 	 * conversion if all bios we submitted finished before we got here.
3049 	 * Note that in that case iocb->private can be already set to NULL
3050 	 * here.
3051 	 */
3052 	if (io_end) {
3053 		ext4_inode_aio_set(inode, NULL);
3054 		ext4_put_io_end(io_end);
3055 		/*
3056 		 * When no IO was submitted ext4_end_io_dio() was not
3057 		 * called so we have to put iocb's reference.
3058 		 */
3059 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3060 			WARN_ON(iocb->private != io_end);
3061 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3062 			ext4_put_io_end(io_end);
3063 			iocb->private = NULL;
3064 		}
3065 	}
3066 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3067 						EXT4_STATE_DIO_UNWRITTEN)) {
3068 		int err;
3069 		/*
3070 		 * for non AIO case, since the IO is already
3071 		 * completed, we could do the conversion right here
3072 		 */
3073 		err = ext4_convert_unwritten_extents(NULL, inode,
3074 						     offset, ret);
3075 		if (err < 0)
3076 			ret = err;
3077 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3078 	}
3079 
3080 retake_lock:
3081 	if (rw == WRITE)
3082 		inode_dio_done(inode);
3083 	/* take i_mutex locking again if we do a ovewrite dio */
3084 	if (overwrite) {
3085 		up_read(&EXT4_I(inode)->i_data_sem);
3086 		mutex_lock(&inode->i_mutex);
3087 	}
3088 
3089 	return ret;
3090 }
3091 
3092 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3093 			      struct iov_iter *iter, loff_t offset)
3094 {
3095 	struct file *file = iocb->ki_filp;
3096 	struct inode *inode = file->f_mapping->host;
3097 	size_t count = iov_iter_count(iter);
3098 	ssize_t ret;
3099 
3100 	/*
3101 	 * If we are doing data journalling we don't support O_DIRECT
3102 	 */
3103 	if (ext4_should_journal_data(inode))
3104 		return 0;
3105 
3106 	/* Let buffer I/O handle the inline data case. */
3107 	if (ext4_has_inline_data(inode))
3108 		return 0;
3109 
3110 	trace_ext4_direct_IO_enter(inode, offset, count, rw);
3111 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3112 		ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3113 	else
3114 		ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3115 	trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3116 	return ret;
3117 }
3118 
3119 /*
3120  * Pages can be marked dirty completely asynchronously from ext4's journalling
3121  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3122  * much here because ->set_page_dirty is called under VFS locks.  The page is
3123  * not necessarily locked.
3124  *
3125  * We cannot just dirty the page and leave attached buffers clean, because the
3126  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3127  * or jbddirty because all the journalling code will explode.
3128  *
3129  * So what we do is to mark the page "pending dirty" and next time writepage
3130  * is called, propagate that into the buffers appropriately.
3131  */
3132 static int ext4_journalled_set_page_dirty(struct page *page)
3133 {
3134 	SetPageChecked(page);
3135 	return __set_page_dirty_nobuffers(page);
3136 }
3137 
3138 static const struct address_space_operations ext4_aops = {
3139 	.readpage		= ext4_readpage,
3140 	.readpages		= ext4_readpages,
3141 	.writepage		= ext4_writepage,
3142 	.writepages		= ext4_writepages,
3143 	.write_begin		= ext4_write_begin,
3144 	.write_end		= ext4_write_end,
3145 	.bmap			= ext4_bmap,
3146 	.invalidatepage		= ext4_invalidatepage,
3147 	.releasepage		= ext4_releasepage,
3148 	.direct_IO		= ext4_direct_IO,
3149 	.migratepage		= buffer_migrate_page,
3150 	.is_partially_uptodate  = block_is_partially_uptodate,
3151 	.error_remove_page	= generic_error_remove_page,
3152 };
3153 
3154 static const struct address_space_operations ext4_journalled_aops = {
3155 	.readpage		= ext4_readpage,
3156 	.readpages		= ext4_readpages,
3157 	.writepage		= ext4_writepage,
3158 	.writepages		= ext4_writepages,
3159 	.write_begin		= ext4_write_begin,
3160 	.write_end		= ext4_journalled_write_end,
3161 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3162 	.bmap			= ext4_bmap,
3163 	.invalidatepage		= ext4_journalled_invalidatepage,
3164 	.releasepage		= ext4_releasepage,
3165 	.direct_IO		= ext4_direct_IO,
3166 	.is_partially_uptodate  = block_is_partially_uptodate,
3167 	.error_remove_page	= generic_error_remove_page,
3168 };
3169 
3170 static const struct address_space_operations ext4_da_aops = {
3171 	.readpage		= ext4_readpage,
3172 	.readpages		= ext4_readpages,
3173 	.writepage		= ext4_writepage,
3174 	.writepages		= ext4_writepages,
3175 	.write_begin		= ext4_da_write_begin,
3176 	.write_end		= ext4_da_write_end,
3177 	.bmap			= ext4_bmap,
3178 	.invalidatepage		= ext4_da_invalidatepage,
3179 	.releasepage		= ext4_releasepage,
3180 	.direct_IO		= ext4_direct_IO,
3181 	.migratepage		= buffer_migrate_page,
3182 	.is_partially_uptodate  = block_is_partially_uptodate,
3183 	.error_remove_page	= generic_error_remove_page,
3184 };
3185 
3186 void ext4_set_aops(struct inode *inode)
3187 {
3188 	switch (ext4_inode_journal_mode(inode)) {
3189 	case EXT4_INODE_ORDERED_DATA_MODE:
3190 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3191 		break;
3192 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3193 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3194 		break;
3195 	case EXT4_INODE_JOURNAL_DATA_MODE:
3196 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3197 		return;
3198 	default:
3199 		BUG();
3200 	}
3201 	if (test_opt(inode->i_sb, DELALLOC))
3202 		inode->i_mapping->a_ops = &ext4_da_aops;
3203 	else
3204 		inode->i_mapping->a_ops = &ext4_aops;
3205 }
3206 
3207 static int __ext4_block_zero_page_range(handle_t *handle,
3208 		struct address_space *mapping, loff_t from, loff_t length)
3209 {
3210 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3211 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3212 	unsigned blocksize, pos;
3213 	ext4_lblk_t iblock;
3214 	struct inode *inode = mapping->host;
3215 	struct buffer_head *bh;
3216 	struct page *page;
3217 	int err = 0;
3218 
3219 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3220 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3221 	if (!page)
3222 		return -ENOMEM;
3223 
3224 	blocksize = inode->i_sb->s_blocksize;
3225 
3226 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3227 
3228 	if (!page_has_buffers(page))
3229 		create_empty_buffers(page, blocksize, 0);
3230 
3231 	/* Find the buffer that contains "offset" */
3232 	bh = page_buffers(page);
3233 	pos = blocksize;
3234 	while (offset >= pos) {
3235 		bh = bh->b_this_page;
3236 		iblock++;
3237 		pos += blocksize;
3238 	}
3239 	if (buffer_freed(bh)) {
3240 		BUFFER_TRACE(bh, "freed: skip");
3241 		goto unlock;
3242 	}
3243 	if (!buffer_mapped(bh)) {
3244 		BUFFER_TRACE(bh, "unmapped");
3245 		ext4_get_block(inode, iblock, bh, 0);
3246 		/* unmapped? It's a hole - nothing to do */
3247 		if (!buffer_mapped(bh)) {
3248 			BUFFER_TRACE(bh, "still unmapped");
3249 			goto unlock;
3250 		}
3251 	}
3252 
3253 	/* Ok, it's mapped. Make sure it's up-to-date */
3254 	if (PageUptodate(page))
3255 		set_buffer_uptodate(bh);
3256 
3257 	if (!buffer_uptodate(bh)) {
3258 		err = -EIO;
3259 		ll_rw_block(READ, 1, &bh);
3260 		wait_on_buffer(bh);
3261 		/* Uhhuh. Read error. Complain and punt. */
3262 		if (!buffer_uptodate(bh))
3263 			goto unlock;
3264 	}
3265 	if (ext4_should_journal_data(inode)) {
3266 		BUFFER_TRACE(bh, "get write access");
3267 		err = ext4_journal_get_write_access(handle, bh);
3268 		if (err)
3269 			goto unlock;
3270 	}
3271 	zero_user(page, offset, length);
3272 	BUFFER_TRACE(bh, "zeroed end of block");
3273 
3274 	if (ext4_should_journal_data(inode)) {
3275 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3276 	} else {
3277 		err = 0;
3278 		mark_buffer_dirty(bh);
3279 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3280 			err = ext4_jbd2_file_inode(handle, inode);
3281 	}
3282 
3283 unlock:
3284 	unlock_page(page);
3285 	page_cache_release(page);
3286 	return err;
3287 }
3288 
3289 /*
3290  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3291  * starting from file offset 'from'.  The range to be zero'd must
3292  * be contained with in one block.  If the specified range exceeds
3293  * the end of the block it will be shortened to end of the block
3294  * that cooresponds to 'from'
3295  */
3296 static int ext4_block_zero_page_range(handle_t *handle,
3297 		struct address_space *mapping, loff_t from, loff_t length)
3298 {
3299 	struct inode *inode = mapping->host;
3300 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3301 	unsigned blocksize = inode->i_sb->s_blocksize;
3302 	unsigned max = blocksize - (offset & (blocksize - 1));
3303 
3304 	/*
3305 	 * correct length if it does not fall between
3306 	 * 'from' and the end of the block
3307 	 */
3308 	if (length > max || length < 0)
3309 		length = max;
3310 
3311 	if (IS_DAX(inode))
3312 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3313 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3314 }
3315 
3316 /*
3317  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3318  * up to the end of the block which corresponds to `from'.
3319  * This required during truncate. We need to physically zero the tail end
3320  * of that block so it doesn't yield old data if the file is later grown.
3321  */
3322 static int ext4_block_truncate_page(handle_t *handle,
3323 		struct address_space *mapping, loff_t from)
3324 {
3325 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3326 	unsigned length;
3327 	unsigned blocksize;
3328 	struct inode *inode = mapping->host;
3329 
3330 	blocksize = inode->i_sb->s_blocksize;
3331 	length = blocksize - (offset & (blocksize - 1));
3332 
3333 	return ext4_block_zero_page_range(handle, mapping, from, length);
3334 }
3335 
3336 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3337 			     loff_t lstart, loff_t length)
3338 {
3339 	struct super_block *sb = inode->i_sb;
3340 	struct address_space *mapping = inode->i_mapping;
3341 	unsigned partial_start, partial_end;
3342 	ext4_fsblk_t start, end;
3343 	loff_t byte_end = (lstart + length - 1);
3344 	int err = 0;
3345 
3346 	partial_start = lstart & (sb->s_blocksize - 1);
3347 	partial_end = byte_end & (sb->s_blocksize - 1);
3348 
3349 	start = lstart >> sb->s_blocksize_bits;
3350 	end = byte_end >> sb->s_blocksize_bits;
3351 
3352 	/* Handle partial zero within the single block */
3353 	if (start == end &&
3354 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3355 		err = ext4_block_zero_page_range(handle, mapping,
3356 						 lstart, length);
3357 		return err;
3358 	}
3359 	/* Handle partial zero out on the start of the range */
3360 	if (partial_start) {
3361 		err = ext4_block_zero_page_range(handle, mapping,
3362 						 lstart, sb->s_blocksize);
3363 		if (err)
3364 			return err;
3365 	}
3366 	/* Handle partial zero out on the end of the range */
3367 	if (partial_end != sb->s_blocksize - 1)
3368 		err = ext4_block_zero_page_range(handle, mapping,
3369 						 byte_end - partial_end,
3370 						 partial_end + 1);
3371 	return err;
3372 }
3373 
3374 int ext4_can_truncate(struct inode *inode)
3375 {
3376 	if (S_ISREG(inode->i_mode))
3377 		return 1;
3378 	if (S_ISDIR(inode->i_mode))
3379 		return 1;
3380 	if (S_ISLNK(inode->i_mode))
3381 		return !ext4_inode_is_fast_symlink(inode);
3382 	return 0;
3383 }
3384 
3385 /*
3386  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3387  * associated with the given offset and length
3388  *
3389  * @inode:  File inode
3390  * @offset: The offset where the hole will begin
3391  * @len:    The length of the hole
3392  *
3393  * Returns: 0 on success or negative on failure
3394  */
3395 
3396 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3397 {
3398 	struct super_block *sb = inode->i_sb;
3399 	ext4_lblk_t first_block, stop_block;
3400 	struct address_space *mapping = inode->i_mapping;
3401 	loff_t first_block_offset, last_block_offset;
3402 	handle_t *handle;
3403 	unsigned int credits;
3404 	int ret = 0;
3405 
3406 	if (!S_ISREG(inode->i_mode))
3407 		return -EOPNOTSUPP;
3408 
3409 	trace_ext4_punch_hole(inode, offset, length, 0);
3410 
3411 	/*
3412 	 * Write out all dirty pages to avoid race conditions
3413 	 * Then release them.
3414 	 */
3415 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3416 		ret = filemap_write_and_wait_range(mapping, offset,
3417 						   offset + length - 1);
3418 		if (ret)
3419 			return ret;
3420 	}
3421 
3422 	mutex_lock(&inode->i_mutex);
3423 
3424 	/* No need to punch hole beyond i_size */
3425 	if (offset >= inode->i_size)
3426 		goto out_mutex;
3427 
3428 	/*
3429 	 * If the hole extends beyond i_size, set the hole
3430 	 * to end after the page that contains i_size
3431 	 */
3432 	if (offset + length > inode->i_size) {
3433 		length = inode->i_size +
3434 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3435 		   offset;
3436 	}
3437 
3438 	if (offset & (sb->s_blocksize - 1) ||
3439 	    (offset + length) & (sb->s_blocksize - 1)) {
3440 		/*
3441 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3442 		 * partial block
3443 		 */
3444 		ret = ext4_inode_attach_jinode(inode);
3445 		if (ret < 0)
3446 			goto out_mutex;
3447 
3448 	}
3449 
3450 	first_block_offset = round_up(offset, sb->s_blocksize);
3451 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3452 
3453 	/* Now release the pages and zero block aligned part of pages*/
3454 	if (last_block_offset > first_block_offset)
3455 		truncate_pagecache_range(inode, first_block_offset,
3456 					 last_block_offset);
3457 
3458 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3459 	ext4_inode_block_unlocked_dio(inode);
3460 	inode_dio_wait(inode);
3461 
3462 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3463 		credits = ext4_writepage_trans_blocks(inode);
3464 	else
3465 		credits = ext4_blocks_for_truncate(inode);
3466 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3467 	if (IS_ERR(handle)) {
3468 		ret = PTR_ERR(handle);
3469 		ext4_std_error(sb, ret);
3470 		goto out_dio;
3471 	}
3472 
3473 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3474 				       length);
3475 	if (ret)
3476 		goto out_stop;
3477 
3478 	first_block = (offset + sb->s_blocksize - 1) >>
3479 		EXT4_BLOCK_SIZE_BITS(sb);
3480 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3481 
3482 	/* If there are no blocks to remove, return now */
3483 	if (first_block >= stop_block)
3484 		goto out_stop;
3485 
3486 	down_write(&EXT4_I(inode)->i_data_sem);
3487 	ext4_discard_preallocations(inode);
3488 
3489 	ret = ext4_es_remove_extent(inode, first_block,
3490 				    stop_block - first_block);
3491 	if (ret) {
3492 		up_write(&EXT4_I(inode)->i_data_sem);
3493 		goto out_stop;
3494 	}
3495 
3496 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3497 		ret = ext4_ext_remove_space(inode, first_block,
3498 					    stop_block - 1);
3499 	else
3500 		ret = ext4_ind_remove_space(handle, inode, first_block,
3501 					    stop_block);
3502 
3503 	up_write(&EXT4_I(inode)->i_data_sem);
3504 	if (IS_SYNC(inode))
3505 		ext4_handle_sync(handle);
3506 
3507 	/* Now release the pages again to reduce race window */
3508 	if (last_block_offset > first_block_offset)
3509 		truncate_pagecache_range(inode, first_block_offset,
3510 					 last_block_offset);
3511 
3512 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3513 	ext4_mark_inode_dirty(handle, inode);
3514 out_stop:
3515 	ext4_journal_stop(handle);
3516 out_dio:
3517 	ext4_inode_resume_unlocked_dio(inode);
3518 out_mutex:
3519 	mutex_unlock(&inode->i_mutex);
3520 	return ret;
3521 }
3522 
3523 int ext4_inode_attach_jinode(struct inode *inode)
3524 {
3525 	struct ext4_inode_info *ei = EXT4_I(inode);
3526 	struct jbd2_inode *jinode;
3527 
3528 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3529 		return 0;
3530 
3531 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3532 	spin_lock(&inode->i_lock);
3533 	if (!ei->jinode) {
3534 		if (!jinode) {
3535 			spin_unlock(&inode->i_lock);
3536 			return -ENOMEM;
3537 		}
3538 		ei->jinode = jinode;
3539 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3540 		jinode = NULL;
3541 	}
3542 	spin_unlock(&inode->i_lock);
3543 	if (unlikely(jinode != NULL))
3544 		jbd2_free_inode(jinode);
3545 	return 0;
3546 }
3547 
3548 /*
3549  * ext4_truncate()
3550  *
3551  * We block out ext4_get_block() block instantiations across the entire
3552  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3553  * simultaneously on behalf of the same inode.
3554  *
3555  * As we work through the truncate and commit bits of it to the journal there
3556  * is one core, guiding principle: the file's tree must always be consistent on
3557  * disk.  We must be able to restart the truncate after a crash.
3558  *
3559  * The file's tree may be transiently inconsistent in memory (although it
3560  * probably isn't), but whenever we close off and commit a journal transaction,
3561  * the contents of (the filesystem + the journal) must be consistent and
3562  * restartable.  It's pretty simple, really: bottom up, right to left (although
3563  * left-to-right works OK too).
3564  *
3565  * Note that at recovery time, journal replay occurs *before* the restart of
3566  * truncate against the orphan inode list.
3567  *
3568  * The committed inode has the new, desired i_size (which is the same as
3569  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3570  * that this inode's truncate did not complete and it will again call
3571  * ext4_truncate() to have another go.  So there will be instantiated blocks
3572  * to the right of the truncation point in a crashed ext4 filesystem.  But
3573  * that's fine - as long as they are linked from the inode, the post-crash
3574  * ext4_truncate() run will find them and release them.
3575  */
3576 void ext4_truncate(struct inode *inode)
3577 {
3578 	struct ext4_inode_info *ei = EXT4_I(inode);
3579 	unsigned int credits;
3580 	handle_t *handle;
3581 	struct address_space *mapping = inode->i_mapping;
3582 
3583 	/*
3584 	 * There is a possibility that we're either freeing the inode
3585 	 * or it's a completely new inode. In those cases we might not
3586 	 * have i_mutex locked because it's not necessary.
3587 	 */
3588 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3589 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3590 	trace_ext4_truncate_enter(inode);
3591 
3592 	if (!ext4_can_truncate(inode))
3593 		return;
3594 
3595 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3596 
3597 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3598 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3599 
3600 	if (ext4_has_inline_data(inode)) {
3601 		int has_inline = 1;
3602 
3603 		ext4_inline_data_truncate(inode, &has_inline);
3604 		if (has_inline)
3605 			return;
3606 	}
3607 
3608 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3609 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3610 		if (ext4_inode_attach_jinode(inode) < 0)
3611 			return;
3612 	}
3613 
3614 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3615 		credits = ext4_writepage_trans_blocks(inode);
3616 	else
3617 		credits = ext4_blocks_for_truncate(inode);
3618 
3619 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3620 	if (IS_ERR(handle)) {
3621 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3622 		return;
3623 	}
3624 
3625 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3626 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3627 
3628 	/*
3629 	 * We add the inode to the orphan list, so that if this
3630 	 * truncate spans multiple transactions, and we crash, we will
3631 	 * resume the truncate when the filesystem recovers.  It also
3632 	 * marks the inode dirty, to catch the new size.
3633 	 *
3634 	 * Implication: the file must always be in a sane, consistent
3635 	 * truncatable state while each transaction commits.
3636 	 */
3637 	if (ext4_orphan_add(handle, inode))
3638 		goto out_stop;
3639 
3640 	down_write(&EXT4_I(inode)->i_data_sem);
3641 
3642 	ext4_discard_preallocations(inode);
3643 
3644 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3645 		ext4_ext_truncate(handle, inode);
3646 	else
3647 		ext4_ind_truncate(handle, inode);
3648 
3649 	up_write(&ei->i_data_sem);
3650 
3651 	if (IS_SYNC(inode))
3652 		ext4_handle_sync(handle);
3653 
3654 out_stop:
3655 	/*
3656 	 * If this was a simple ftruncate() and the file will remain alive,
3657 	 * then we need to clear up the orphan record which we created above.
3658 	 * However, if this was a real unlink then we were called by
3659 	 * ext4_evict_inode(), and we allow that function to clean up the
3660 	 * orphan info for us.
3661 	 */
3662 	if (inode->i_nlink)
3663 		ext4_orphan_del(handle, inode);
3664 
3665 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3666 	ext4_mark_inode_dirty(handle, inode);
3667 	ext4_journal_stop(handle);
3668 
3669 	trace_ext4_truncate_exit(inode);
3670 }
3671 
3672 /*
3673  * ext4_get_inode_loc returns with an extra refcount against the inode's
3674  * underlying buffer_head on success. If 'in_mem' is true, we have all
3675  * data in memory that is needed to recreate the on-disk version of this
3676  * inode.
3677  */
3678 static int __ext4_get_inode_loc(struct inode *inode,
3679 				struct ext4_iloc *iloc, int in_mem)
3680 {
3681 	struct ext4_group_desc	*gdp;
3682 	struct buffer_head	*bh;
3683 	struct super_block	*sb = inode->i_sb;
3684 	ext4_fsblk_t		block;
3685 	int			inodes_per_block, inode_offset;
3686 
3687 	iloc->bh = NULL;
3688 	if (!ext4_valid_inum(sb, inode->i_ino))
3689 		return -EIO;
3690 
3691 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3692 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3693 	if (!gdp)
3694 		return -EIO;
3695 
3696 	/*
3697 	 * Figure out the offset within the block group inode table
3698 	 */
3699 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3700 	inode_offset = ((inode->i_ino - 1) %
3701 			EXT4_INODES_PER_GROUP(sb));
3702 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3703 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3704 
3705 	bh = sb_getblk(sb, block);
3706 	if (unlikely(!bh))
3707 		return -ENOMEM;
3708 	if (!buffer_uptodate(bh)) {
3709 		lock_buffer(bh);
3710 
3711 		/*
3712 		 * If the buffer has the write error flag, we have failed
3713 		 * to write out another inode in the same block.  In this
3714 		 * case, we don't have to read the block because we may
3715 		 * read the old inode data successfully.
3716 		 */
3717 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3718 			set_buffer_uptodate(bh);
3719 
3720 		if (buffer_uptodate(bh)) {
3721 			/* someone brought it uptodate while we waited */
3722 			unlock_buffer(bh);
3723 			goto has_buffer;
3724 		}
3725 
3726 		/*
3727 		 * If we have all information of the inode in memory and this
3728 		 * is the only valid inode in the block, we need not read the
3729 		 * block.
3730 		 */
3731 		if (in_mem) {
3732 			struct buffer_head *bitmap_bh;
3733 			int i, start;
3734 
3735 			start = inode_offset & ~(inodes_per_block - 1);
3736 
3737 			/* Is the inode bitmap in cache? */
3738 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3739 			if (unlikely(!bitmap_bh))
3740 				goto make_io;
3741 
3742 			/*
3743 			 * If the inode bitmap isn't in cache then the
3744 			 * optimisation may end up performing two reads instead
3745 			 * of one, so skip it.
3746 			 */
3747 			if (!buffer_uptodate(bitmap_bh)) {
3748 				brelse(bitmap_bh);
3749 				goto make_io;
3750 			}
3751 			for (i = start; i < start + inodes_per_block; i++) {
3752 				if (i == inode_offset)
3753 					continue;
3754 				if (ext4_test_bit(i, bitmap_bh->b_data))
3755 					break;
3756 			}
3757 			brelse(bitmap_bh);
3758 			if (i == start + inodes_per_block) {
3759 				/* all other inodes are free, so skip I/O */
3760 				memset(bh->b_data, 0, bh->b_size);
3761 				set_buffer_uptodate(bh);
3762 				unlock_buffer(bh);
3763 				goto has_buffer;
3764 			}
3765 		}
3766 
3767 make_io:
3768 		/*
3769 		 * If we need to do any I/O, try to pre-readahead extra
3770 		 * blocks from the inode table.
3771 		 */
3772 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3773 			ext4_fsblk_t b, end, table;
3774 			unsigned num;
3775 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3776 
3777 			table = ext4_inode_table(sb, gdp);
3778 			/* s_inode_readahead_blks is always a power of 2 */
3779 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3780 			if (table > b)
3781 				b = table;
3782 			end = b + ra_blks;
3783 			num = EXT4_INODES_PER_GROUP(sb);
3784 			if (ext4_has_group_desc_csum(sb))
3785 				num -= ext4_itable_unused_count(sb, gdp);
3786 			table += num / inodes_per_block;
3787 			if (end > table)
3788 				end = table;
3789 			while (b <= end)
3790 				sb_breadahead(sb, b++);
3791 		}
3792 
3793 		/*
3794 		 * There are other valid inodes in the buffer, this inode
3795 		 * has in-inode xattrs, or we don't have this inode in memory.
3796 		 * Read the block from disk.
3797 		 */
3798 		trace_ext4_load_inode(inode);
3799 		get_bh(bh);
3800 		bh->b_end_io = end_buffer_read_sync;
3801 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3802 		wait_on_buffer(bh);
3803 		if (!buffer_uptodate(bh)) {
3804 			EXT4_ERROR_INODE_BLOCK(inode, block,
3805 					       "unable to read itable block");
3806 			brelse(bh);
3807 			return -EIO;
3808 		}
3809 	}
3810 has_buffer:
3811 	iloc->bh = bh;
3812 	return 0;
3813 }
3814 
3815 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3816 {
3817 	/* We have all inode data except xattrs in memory here. */
3818 	return __ext4_get_inode_loc(inode, iloc,
3819 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3820 }
3821 
3822 void ext4_set_inode_flags(struct inode *inode)
3823 {
3824 	unsigned int flags = EXT4_I(inode)->i_flags;
3825 	unsigned int new_fl = 0;
3826 
3827 	if (flags & EXT4_SYNC_FL)
3828 		new_fl |= S_SYNC;
3829 	if (flags & EXT4_APPEND_FL)
3830 		new_fl |= S_APPEND;
3831 	if (flags & EXT4_IMMUTABLE_FL)
3832 		new_fl |= S_IMMUTABLE;
3833 	if (flags & EXT4_NOATIME_FL)
3834 		new_fl |= S_NOATIME;
3835 	if (flags & EXT4_DIRSYNC_FL)
3836 		new_fl |= S_DIRSYNC;
3837 	if (test_opt(inode->i_sb, DAX))
3838 		new_fl |= S_DAX;
3839 	inode_set_flags(inode, new_fl,
3840 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3841 }
3842 
3843 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3844 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3845 {
3846 	unsigned int vfs_fl;
3847 	unsigned long old_fl, new_fl;
3848 
3849 	do {
3850 		vfs_fl = ei->vfs_inode.i_flags;
3851 		old_fl = ei->i_flags;
3852 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3853 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3854 				EXT4_DIRSYNC_FL);
3855 		if (vfs_fl & S_SYNC)
3856 			new_fl |= EXT4_SYNC_FL;
3857 		if (vfs_fl & S_APPEND)
3858 			new_fl |= EXT4_APPEND_FL;
3859 		if (vfs_fl & S_IMMUTABLE)
3860 			new_fl |= EXT4_IMMUTABLE_FL;
3861 		if (vfs_fl & S_NOATIME)
3862 			new_fl |= EXT4_NOATIME_FL;
3863 		if (vfs_fl & S_DIRSYNC)
3864 			new_fl |= EXT4_DIRSYNC_FL;
3865 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3866 }
3867 
3868 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3869 				  struct ext4_inode_info *ei)
3870 {
3871 	blkcnt_t i_blocks ;
3872 	struct inode *inode = &(ei->vfs_inode);
3873 	struct super_block *sb = inode->i_sb;
3874 
3875 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3876 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3877 		/* we are using combined 48 bit field */
3878 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3879 					le32_to_cpu(raw_inode->i_blocks_lo);
3880 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3881 			/* i_blocks represent file system block size */
3882 			return i_blocks  << (inode->i_blkbits - 9);
3883 		} else {
3884 			return i_blocks;
3885 		}
3886 	} else {
3887 		return le32_to_cpu(raw_inode->i_blocks_lo);
3888 	}
3889 }
3890 
3891 static inline void ext4_iget_extra_inode(struct inode *inode,
3892 					 struct ext4_inode *raw_inode,
3893 					 struct ext4_inode_info *ei)
3894 {
3895 	__le32 *magic = (void *)raw_inode +
3896 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3897 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3898 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3899 		ext4_find_inline_data_nolock(inode);
3900 	} else
3901 		EXT4_I(inode)->i_inline_off = 0;
3902 }
3903 
3904 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3905 {
3906 	struct ext4_iloc iloc;
3907 	struct ext4_inode *raw_inode;
3908 	struct ext4_inode_info *ei;
3909 	struct inode *inode;
3910 	journal_t *journal = EXT4_SB(sb)->s_journal;
3911 	long ret;
3912 	int block;
3913 	uid_t i_uid;
3914 	gid_t i_gid;
3915 
3916 	inode = iget_locked(sb, ino);
3917 	if (!inode)
3918 		return ERR_PTR(-ENOMEM);
3919 	if (!(inode->i_state & I_NEW))
3920 		return inode;
3921 
3922 	ei = EXT4_I(inode);
3923 	iloc.bh = NULL;
3924 
3925 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3926 	if (ret < 0)
3927 		goto bad_inode;
3928 	raw_inode = ext4_raw_inode(&iloc);
3929 
3930 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3931 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3932 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3933 		    EXT4_INODE_SIZE(inode->i_sb)) {
3934 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3935 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3936 				EXT4_INODE_SIZE(inode->i_sb));
3937 			ret = -EIO;
3938 			goto bad_inode;
3939 		}
3940 	} else
3941 		ei->i_extra_isize = 0;
3942 
3943 	/* Precompute checksum seed for inode metadata */
3944 	if (ext4_has_metadata_csum(sb)) {
3945 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3946 		__u32 csum;
3947 		__le32 inum = cpu_to_le32(inode->i_ino);
3948 		__le32 gen = raw_inode->i_generation;
3949 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3950 				   sizeof(inum));
3951 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3952 					      sizeof(gen));
3953 	}
3954 
3955 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3956 		EXT4_ERROR_INODE(inode, "checksum invalid");
3957 		ret = -EIO;
3958 		goto bad_inode;
3959 	}
3960 
3961 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3962 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3963 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3964 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3965 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3966 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3967 	}
3968 	i_uid_write(inode, i_uid);
3969 	i_gid_write(inode, i_gid);
3970 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3971 
3972 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3973 	ei->i_inline_off = 0;
3974 	ei->i_dir_start_lookup = 0;
3975 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3976 	/* We now have enough fields to check if the inode was active or not.
3977 	 * This is needed because nfsd might try to access dead inodes
3978 	 * the test is that same one that e2fsck uses
3979 	 * NeilBrown 1999oct15
3980 	 */
3981 	if (inode->i_nlink == 0) {
3982 		if ((inode->i_mode == 0 ||
3983 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3984 		    ino != EXT4_BOOT_LOADER_INO) {
3985 			/* this inode is deleted */
3986 			ret = -ESTALE;
3987 			goto bad_inode;
3988 		}
3989 		/* The only unlinked inodes we let through here have
3990 		 * valid i_mode and are being read by the orphan
3991 		 * recovery code: that's fine, we're about to complete
3992 		 * the process of deleting those.
3993 		 * OR it is the EXT4_BOOT_LOADER_INO which is
3994 		 * not initialized on a new filesystem. */
3995 	}
3996 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3997 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3998 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3999 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4000 		ei->i_file_acl |=
4001 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4002 	inode->i_size = ext4_isize(raw_inode);
4003 	ei->i_disksize = inode->i_size;
4004 #ifdef CONFIG_QUOTA
4005 	ei->i_reserved_quota = 0;
4006 #endif
4007 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4008 	ei->i_block_group = iloc.block_group;
4009 	ei->i_last_alloc_group = ~0;
4010 	/*
4011 	 * NOTE! The in-memory inode i_data array is in little-endian order
4012 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4013 	 */
4014 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4015 		ei->i_data[block] = raw_inode->i_block[block];
4016 	INIT_LIST_HEAD(&ei->i_orphan);
4017 
4018 	/*
4019 	 * Set transaction id's of transactions that have to be committed
4020 	 * to finish f[data]sync. We set them to currently running transaction
4021 	 * as we cannot be sure that the inode or some of its metadata isn't
4022 	 * part of the transaction - the inode could have been reclaimed and
4023 	 * now it is reread from disk.
4024 	 */
4025 	if (journal) {
4026 		transaction_t *transaction;
4027 		tid_t tid;
4028 
4029 		read_lock(&journal->j_state_lock);
4030 		if (journal->j_running_transaction)
4031 			transaction = journal->j_running_transaction;
4032 		else
4033 			transaction = journal->j_committing_transaction;
4034 		if (transaction)
4035 			tid = transaction->t_tid;
4036 		else
4037 			tid = journal->j_commit_sequence;
4038 		read_unlock(&journal->j_state_lock);
4039 		ei->i_sync_tid = tid;
4040 		ei->i_datasync_tid = tid;
4041 	}
4042 
4043 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4044 		if (ei->i_extra_isize == 0) {
4045 			/* The extra space is currently unused. Use it. */
4046 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4047 					    EXT4_GOOD_OLD_INODE_SIZE;
4048 		} else {
4049 			ext4_iget_extra_inode(inode, raw_inode, ei);
4050 		}
4051 	}
4052 
4053 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4054 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4055 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4056 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4057 
4058 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4059 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4060 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4061 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4062 				inode->i_version |=
4063 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4064 		}
4065 	}
4066 
4067 	ret = 0;
4068 	if (ei->i_file_acl &&
4069 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4070 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4071 				 ei->i_file_acl);
4072 		ret = -EIO;
4073 		goto bad_inode;
4074 	} else if (!ext4_has_inline_data(inode)) {
4075 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4076 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4077 			    (S_ISLNK(inode->i_mode) &&
4078 			     !ext4_inode_is_fast_symlink(inode))))
4079 				/* Validate extent which is part of inode */
4080 				ret = ext4_ext_check_inode(inode);
4081 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4082 			   (S_ISLNK(inode->i_mode) &&
4083 			    !ext4_inode_is_fast_symlink(inode))) {
4084 			/* Validate block references which are part of inode */
4085 			ret = ext4_ind_check_inode(inode);
4086 		}
4087 	}
4088 	if (ret)
4089 		goto bad_inode;
4090 
4091 	if (S_ISREG(inode->i_mode)) {
4092 		inode->i_op = &ext4_file_inode_operations;
4093 		inode->i_fop = &ext4_file_operations;
4094 		ext4_set_aops(inode);
4095 	} else if (S_ISDIR(inode->i_mode)) {
4096 		inode->i_op = &ext4_dir_inode_operations;
4097 		inode->i_fop = &ext4_dir_operations;
4098 	} else if (S_ISLNK(inode->i_mode)) {
4099 		if (ext4_inode_is_fast_symlink(inode)) {
4100 			inode->i_op = &ext4_fast_symlink_inode_operations;
4101 			nd_terminate_link(ei->i_data, inode->i_size,
4102 				sizeof(ei->i_data) - 1);
4103 		} else {
4104 			inode->i_op = &ext4_symlink_inode_operations;
4105 			ext4_set_aops(inode);
4106 		}
4107 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4108 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4109 		inode->i_op = &ext4_special_inode_operations;
4110 		if (raw_inode->i_block[0])
4111 			init_special_inode(inode, inode->i_mode,
4112 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4113 		else
4114 			init_special_inode(inode, inode->i_mode,
4115 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4116 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4117 		make_bad_inode(inode);
4118 	} else {
4119 		ret = -EIO;
4120 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4121 		goto bad_inode;
4122 	}
4123 	brelse(iloc.bh);
4124 	ext4_set_inode_flags(inode);
4125 	unlock_new_inode(inode);
4126 	return inode;
4127 
4128 bad_inode:
4129 	brelse(iloc.bh);
4130 	iget_failed(inode);
4131 	return ERR_PTR(ret);
4132 }
4133 
4134 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4135 {
4136 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4137 		return ERR_PTR(-EIO);
4138 	return ext4_iget(sb, ino);
4139 }
4140 
4141 static int ext4_inode_blocks_set(handle_t *handle,
4142 				struct ext4_inode *raw_inode,
4143 				struct ext4_inode_info *ei)
4144 {
4145 	struct inode *inode = &(ei->vfs_inode);
4146 	u64 i_blocks = inode->i_blocks;
4147 	struct super_block *sb = inode->i_sb;
4148 
4149 	if (i_blocks <= ~0U) {
4150 		/*
4151 		 * i_blocks can be represented in a 32 bit variable
4152 		 * as multiple of 512 bytes
4153 		 */
4154 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4155 		raw_inode->i_blocks_high = 0;
4156 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4157 		return 0;
4158 	}
4159 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4160 		return -EFBIG;
4161 
4162 	if (i_blocks <= 0xffffffffffffULL) {
4163 		/*
4164 		 * i_blocks can be represented in a 48 bit variable
4165 		 * as multiple of 512 bytes
4166 		 */
4167 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4168 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4169 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4170 	} else {
4171 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4172 		/* i_block is stored in file system block size */
4173 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4174 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4175 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4176 	}
4177 	return 0;
4178 }
4179 
4180 struct other_inode {
4181 	unsigned long		orig_ino;
4182 	struct ext4_inode	*raw_inode;
4183 };
4184 
4185 static int other_inode_match(struct inode * inode, unsigned long ino,
4186 			     void *data)
4187 {
4188 	struct other_inode *oi = (struct other_inode *) data;
4189 
4190 	if ((inode->i_ino != ino) ||
4191 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4192 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4193 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4194 		return 0;
4195 	spin_lock(&inode->i_lock);
4196 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4197 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4198 	    (inode->i_state & I_DIRTY_TIME)) {
4199 		struct ext4_inode_info	*ei = EXT4_I(inode);
4200 
4201 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4202 		spin_unlock(&inode->i_lock);
4203 
4204 		spin_lock(&ei->i_raw_lock);
4205 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4206 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4207 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4208 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4209 		spin_unlock(&ei->i_raw_lock);
4210 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4211 		return -1;
4212 	}
4213 	spin_unlock(&inode->i_lock);
4214 	return -1;
4215 }
4216 
4217 /*
4218  * Opportunistically update the other time fields for other inodes in
4219  * the same inode table block.
4220  */
4221 static void ext4_update_other_inodes_time(struct super_block *sb,
4222 					  unsigned long orig_ino, char *buf)
4223 {
4224 	struct other_inode oi;
4225 	unsigned long ino;
4226 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4227 	int inode_size = EXT4_INODE_SIZE(sb);
4228 
4229 	oi.orig_ino = orig_ino;
4230 	ino = orig_ino & ~(inodes_per_block - 1);
4231 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4232 		if (ino == orig_ino)
4233 			continue;
4234 		oi.raw_inode = (struct ext4_inode *) buf;
4235 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4236 	}
4237 }
4238 
4239 /*
4240  * Post the struct inode info into an on-disk inode location in the
4241  * buffer-cache.  This gobbles the caller's reference to the
4242  * buffer_head in the inode location struct.
4243  *
4244  * The caller must have write access to iloc->bh.
4245  */
4246 static int ext4_do_update_inode(handle_t *handle,
4247 				struct inode *inode,
4248 				struct ext4_iloc *iloc)
4249 {
4250 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4251 	struct ext4_inode_info *ei = EXT4_I(inode);
4252 	struct buffer_head *bh = iloc->bh;
4253 	struct super_block *sb = inode->i_sb;
4254 	int err = 0, rc, block;
4255 	int need_datasync = 0, set_large_file = 0;
4256 	uid_t i_uid;
4257 	gid_t i_gid;
4258 
4259 	spin_lock(&ei->i_raw_lock);
4260 
4261 	/* For fields not tracked in the in-memory inode,
4262 	 * initialise them to zero for new inodes. */
4263 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4264 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4265 
4266 	ext4_get_inode_flags(ei);
4267 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4268 	i_uid = i_uid_read(inode);
4269 	i_gid = i_gid_read(inode);
4270 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4271 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4272 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4273 /*
4274  * Fix up interoperability with old kernels. Otherwise, old inodes get
4275  * re-used with the upper 16 bits of the uid/gid intact
4276  */
4277 		if (!ei->i_dtime) {
4278 			raw_inode->i_uid_high =
4279 				cpu_to_le16(high_16_bits(i_uid));
4280 			raw_inode->i_gid_high =
4281 				cpu_to_le16(high_16_bits(i_gid));
4282 		} else {
4283 			raw_inode->i_uid_high = 0;
4284 			raw_inode->i_gid_high = 0;
4285 		}
4286 	} else {
4287 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4288 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4289 		raw_inode->i_uid_high = 0;
4290 		raw_inode->i_gid_high = 0;
4291 	}
4292 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4293 
4294 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4295 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4296 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4297 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4298 
4299 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4300 	if (err) {
4301 		spin_unlock(&ei->i_raw_lock);
4302 		goto out_brelse;
4303 	}
4304 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4305 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4306 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4307 		raw_inode->i_file_acl_high =
4308 			cpu_to_le16(ei->i_file_acl >> 32);
4309 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4310 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4311 		ext4_isize_set(raw_inode, ei->i_disksize);
4312 		need_datasync = 1;
4313 	}
4314 	if (ei->i_disksize > 0x7fffffffULL) {
4315 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4316 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4317 				EXT4_SB(sb)->s_es->s_rev_level ==
4318 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4319 			set_large_file = 1;
4320 	}
4321 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4322 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4323 		if (old_valid_dev(inode->i_rdev)) {
4324 			raw_inode->i_block[0] =
4325 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4326 			raw_inode->i_block[1] = 0;
4327 		} else {
4328 			raw_inode->i_block[0] = 0;
4329 			raw_inode->i_block[1] =
4330 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4331 			raw_inode->i_block[2] = 0;
4332 		}
4333 	} else if (!ext4_has_inline_data(inode)) {
4334 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4335 			raw_inode->i_block[block] = ei->i_data[block];
4336 	}
4337 
4338 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4339 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4340 		if (ei->i_extra_isize) {
4341 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4342 				raw_inode->i_version_hi =
4343 					cpu_to_le32(inode->i_version >> 32);
4344 			raw_inode->i_extra_isize =
4345 				cpu_to_le16(ei->i_extra_isize);
4346 		}
4347 	}
4348 	ext4_inode_csum_set(inode, raw_inode, ei);
4349 	spin_unlock(&ei->i_raw_lock);
4350 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4351 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4352 					      bh->b_data);
4353 
4354 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4355 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4356 	if (!err)
4357 		err = rc;
4358 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4359 	if (set_large_file) {
4360 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4361 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4362 		if (err)
4363 			goto out_brelse;
4364 		ext4_update_dynamic_rev(sb);
4365 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4366 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4367 		ext4_handle_sync(handle);
4368 		err = ext4_handle_dirty_super(handle, sb);
4369 	}
4370 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4371 out_brelse:
4372 	brelse(bh);
4373 	ext4_std_error(inode->i_sb, err);
4374 	return err;
4375 }
4376 
4377 /*
4378  * ext4_write_inode()
4379  *
4380  * We are called from a few places:
4381  *
4382  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4383  *   Here, there will be no transaction running. We wait for any running
4384  *   transaction to commit.
4385  *
4386  * - Within flush work (sys_sync(), kupdate and such).
4387  *   We wait on commit, if told to.
4388  *
4389  * - Within iput_final() -> write_inode_now()
4390  *   We wait on commit, if told to.
4391  *
4392  * In all cases it is actually safe for us to return without doing anything,
4393  * because the inode has been copied into a raw inode buffer in
4394  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4395  * writeback.
4396  *
4397  * Note that we are absolutely dependent upon all inode dirtiers doing the
4398  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4399  * which we are interested.
4400  *
4401  * It would be a bug for them to not do this.  The code:
4402  *
4403  *	mark_inode_dirty(inode)
4404  *	stuff();
4405  *	inode->i_size = expr;
4406  *
4407  * is in error because write_inode() could occur while `stuff()' is running,
4408  * and the new i_size will be lost.  Plus the inode will no longer be on the
4409  * superblock's dirty inode list.
4410  */
4411 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4412 {
4413 	int err;
4414 
4415 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4416 		return 0;
4417 
4418 	if (EXT4_SB(inode->i_sb)->s_journal) {
4419 		if (ext4_journal_current_handle()) {
4420 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4421 			dump_stack();
4422 			return -EIO;
4423 		}
4424 
4425 		/*
4426 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4427 		 * ext4_sync_fs() will force the commit after everything is
4428 		 * written.
4429 		 */
4430 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4431 			return 0;
4432 
4433 		err = ext4_force_commit(inode->i_sb);
4434 	} else {
4435 		struct ext4_iloc iloc;
4436 
4437 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4438 		if (err)
4439 			return err;
4440 		/*
4441 		 * sync(2) will flush the whole buffer cache. No need to do
4442 		 * it here separately for each inode.
4443 		 */
4444 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4445 			sync_dirty_buffer(iloc.bh);
4446 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4447 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4448 					 "IO error syncing inode");
4449 			err = -EIO;
4450 		}
4451 		brelse(iloc.bh);
4452 	}
4453 	return err;
4454 }
4455 
4456 /*
4457  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4458  * buffers that are attached to a page stradding i_size and are undergoing
4459  * commit. In that case we have to wait for commit to finish and try again.
4460  */
4461 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4462 {
4463 	struct page *page;
4464 	unsigned offset;
4465 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4466 	tid_t commit_tid = 0;
4467 	int ret;
4468 
4469 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4470 	/*
4471 	 * All buffers in the last page remain valid? Then there's nothing to
4472 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4473 	 * blocksize case
4474 	 */
4475 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4476 		return;
4477 	while (1) {
4478 		page = find_lock_page(inode->i_mapping,
4479 				      inode->i_size >> PAGE_CACHE_SHIFT);
4480 		if (!page)
4481 			return;
4482 		ret = __ext4_journalled_invalidatepage(page, offset,
4483 						PAGE_CACHE_SIZE - offset);
4484 		unlock_page(page);
4485 		page_cache_release(page);
4486 		if (ret != -EBUSY)
4487 			return;
4488 		commit_tid = 0;
4489 		read_lock(&journal->j_state_lock);
4490 		if (journal->j_committing_transaction)
4491 			commit_tid = journal->j_committing_transaction->t_tid;
4492 		read_unlock(&journal->j_state_lock);
4493 		if (commit_tid)
4494 			jbd2_log_wait_commit(journal, commit_tid);
4495 	}
4496 }
4497 
4498 /*
4499  * ext4_setattr()
4500  *
4501  * Called from notify_change.
4502  *
4503  * We want to trap VFS attempts to truncate the file as soon as
4504  * possible.  In particular, we want to make sure that when the VFS
4505  * shrinks i_size, we put the inode on the orphan list and modify
4506  * i_disksize immediately, so that during the subsequent flushing of
4507  * dirty pages and freeing of disk blocks, we can guarantee that any
4508  * commit will leave the blocks being flushed in an unused state on
4509  * disk.  (On recovery, the inode will get truncated and the blocks will
4510  * be freed, so we have a strong guarantee that no future commit will
4511  * leave these blocks visible to the user.)
4512  *
4513  * Another thing we have to assure is that if we are in ordered mode
4514  * and inode is still attached to the committing transaction, we must
4515  * we start writeout of all the dirty pages which are being truncated.
4516  * This way we are sure that all the data written in the previous
4517  * transaction are already on disk (truncate waits for pages under
4518  * writeback).
4519  *
4520  * Called with inode->i_mutex down.
4521  */
4522 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4523 {
4524 	struct inode *inode = dentry->d_inode;
4525 	int error, rc = 0;
4526 	int orphan = 0;
4527 	const unsigned int ia_valid = attr->ia_valid;
4528 
4529 	error = inode_change_ok(inode, attr);
4530 	if (error)
4531 		return error;
4532 
4533 	if (is_quota_modification(inode, attr))
4534 		dquot_initialize(inode);
4535 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4536 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4537 		handle_t *handle;
4538 
4539 		/* (user+group)*(old+new) structure, inode write (sb,
4540 		 * inode block, ? - but truncate inode update has it) */
4541 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4542 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4543 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4544 		if (IS_ERR(handle)) {
4545 			error = PTR_ERR(handle);
4546 			goto err_out;
4547 		}
4548 		error = dquot_transfer(inode, attr);
4549 		if (error) {
4550 			ext4_journal_stop(handle);
4551 			return error;
4552 		}
4553 		/* Update corresponding info in inode so that everything is in
4554 		 * one transaction */
4555 		if (attr->ia_valid & ATTR_UID)
4556 			inode->i_uid = attr->ia_uid;
4557 		if (attr->ia_valid & ATTR_GID)
4558 			inode->i_gid = attr->ia_gid;
4559 		error = ext4_mark_inode_dirty(handle, inode);
4560 		ext4_journal_stop(handle);
4561 	}
4562 
4563 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4564 		handle_t *handle;
4565 
4566 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4567 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4568 
4569 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4570 				return -EFBIG;
4571 		}
4572 
4573 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4574 			inode_inc_iversion(inode);
4575 
4576 		if (S_ISREG(inode->i_mode) &&
4577 		    (attr->ia_size < inode->i_size)) {
4578 			if (ext4_should_order_data(inode)) {
4579 				error = ext4_begin_ordered_truncate(inode,
4580 							    attr->ia_size);
4581 				if (error)
4582 					goto err_out;
4583 			}
4584 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4585 			if (IS_ERR(handle)) {
4586 				error = PTR_ERR(handle);
4587 				goto err_out;
4588 			}
4589 			if (ext4_handle_valid(handle)) {
4590 				error = ext4_orphan_add(handle, inode);
4591 				orphan = 1;
4592 			}
4593 			down_write(&EXT4_I(inode)->i_data_sem);
4594 			EXT4_I(inode)->i_disksize = attr->ia_size;
4595 			rc = ext4_mark_inode_dirty(handle, inode);
4596 			if (!error)
4597 				error = rc;
4598 			/*
4599 			 * We have to update i_size under i_data_sem together
4600 			 * with i_disksize to avoid races with writeback code
4601 			 * running ext4_wb_update_i_disksize().
4602 			 */
4603 			if (!error)
4604 				i_size_write(inode, attr->ia_size);
4605 			up_write(&EXT4_I(inode)->i_data_sem);
4606 			ext4_journal_stop(handle);
4607 			if (error) {
4608 				ext4_orphan_del(NULL, inode);
4609 				goto err_out;
4610 			}
4611 		} else {
4612 			loff_t oldsize = inode->i_size;
4613 
4614 			i_size_write(inode, attr->ia_size);
4615 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4616 		}
4617 
4618 		/*
4619 		 * Blocks are going to be removed from the inode. Wait
4620 		 * for dio in flight.  Temporarily disable
4621 		 * dioread_nolock to prevent livelock.
4622 		 */
4623 		if (orphan) {
4624 			if (!ext4_should_journal_data(inode)) {
4625 				ext4_inode_block_unlocked_dio(inode);
4626 				inode_dio_wait(inode);
4627 				ext4_inode_resume_unlocked_dio(inode);
4628 			} else
4629 				ext4_wait_for_tail_page_commit(inode);
4630 		}
4631 		/*
4632 		 * Truncate pagecache after we've waited for commit
4633 		 * in data=journal mode to make pages freeable.
4634 		 */
4635 		truncate_pagecache(inode, inode->i_size);
4636 	}
4637 	/*
4638 	 * We want to call ext4_truncate() even if attr->ia_size ==
4639 	 * inode->i_size for cases like truncation of fallocated space
4640 	 */
4641 	if (attr->ia_valid & ATTR_SIZE)
4642 		ext4_truncate(inode);
4643 
4644 	if (!rc) {
4645 		setattr_copy(inode, attr);
4646 		mark_inode_dirty(inode);
4647 	}
4648 
4649 	/*
4650 	 * If the call to ext4_truncate failed to get a transaction handle at
4651 	 * all, we need to clean up the in-core orphan list manually.
4652 	 */
4653 	if (orphan && inode->i_nlink)
4654 		ext4_orphan_del(NULL, inode);
4655 
4656 	if (!rc && (ia_valid & ATTR_MODE))
4657 		rc = posix_acl_chmod(inode, inode->i_mode);
4658 
4659 err_out:
4660 	ext4_std_error(inode->i_sb, error);
4661 	if (!error)
4662 		error = rc;
4663 	return error;
4664 }
4665 
4666 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4667 		 struct kstat *stat)
4668 {
4669 	struct inode *inode;
4670 	unsigned long long delalloc_blocks;
4671 
4672 	inode = dentry->d_inode;
4673 	generic_fillattr(inode, stat);
4674 
4675 	/*
4676 	 * If there is inline data in the inode, the inode will normally not
4677 	 * have data blocks allocated (it may have an external xattr block).
4678 	 * Report at least one sector for such files, so tools like tar, rsync,
4679 	 * others doen't incorrectly think the file is completely sparse.
4680 	 */
4681 	if (unlikely(ext4_has_inline_data(inode)))
4682 		stat->blocks += (stat->size + 511) >> 9;
4683 
4684 	/*
4685 	 * We can't update i_blocks if the block allocation is delayed
4686 	 * otherwise in the case of system crash before the real block
4687 	 * allocation is done, we will have i_blocks inconsistent with
4688 	 * on-disk file blocks.
4689 	 * We always keep i_blocks updated together with real
4690 	 * allocation. But to not confuse with user, stat
4691 	 * will return the blocks that include the delayed allocation
4692 	 * blocks for this file.
4693 	 */
4694 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4695 				   EXT4_I(inode)->i_reserved_data_blocks);
4696 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4697 	return 0;
4698 }
4699 
4700 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4701 				   int pextents)
4702 {
4703 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4704 		return ext4_ind_trans_blocks(inode, lblocks);
4705 	return ext4_ext_index_trans_blocks(inode, pextents);
4706 }
4707 
4708 /*
4709  * Account for index blocks, block groups bitmaps and block group
4710  * descriptor blocks if modify datablocks and index blocks
4711  * worse case, the indexs blocks spread over different block groups
4712  *
4713  * If datablocks are discontiguous, they are possible to spread over
4714  * different block groups too. If they are contiguous, with flexbg,
4715  * they could still across block group boundary.
4716  *
4717  * Also account for superblock, inode, quota and xattr blocks
4718  */
4719 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4720 				  int pextents)
4721 {
4722 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4723 	int gdpblocks;
4724 	int idxblocks;
4725 	int ret = 0;
4726 
4727 	/*
4728 	 * How many index blocks need to touch to map @lblocks logical blocks
4729 	 * to @pextents physical extents?
4730 	 */
4731 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4732 
4733 	ret = idxblocks;
4734 
4735 	/*
4736 	 * Now let's see how many group bitmaps and group descriptors need
4737 	 * to account
4738 	 */
4739 	groups = idxblocks + pextents;
4740 	gdpblocks = groups;
4741 	if (groups > ngroups)
4742 		groups = ngroups;
4743 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4744 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4745 
4746 	/* bitmaps and block group descriptor blocks */
4747 	ret += groups + gdpblocks;
4748 
4749 	/* Blocks for super block, inode, quota and xattr blocks */
4750 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4751 
4752 	return ret;
4753 }
4754 
4755 /*
4756  * Calculate the total number of credits to reserve to fit
4757  * the modification of a single pages into a single transaction,
4758  * which may include multiple chunks of block allocations.
4759  *
4760  * This could be called via ext4_write_begin()
4761  *
4762  * We need to consider the worse case, when
4763  * one new block per extent.
4764  */
4765 int ext4_writepage_trans_blocks(struct inode *inode)
4766 {
4767 	int bpp = ext4_journal_blocks_per_page(inode);
4768 	int ret;
4769 
4770 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4771 
4772 	/* Account for data blocks for journalled mode */
4773 	if (ext4_should_journal_data(inode))
4774 		ret += bpp;
4775 	return ret;
4776 }
4777 
4778 /*
4779  * Calculate the journal credits for a chunk of data modification.
4780  *
4781  * This is called from DIO, fallocate or whoever calling
4782  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4783  *
4784  * journal buffers for data blocks are not included here, as DIO
4785  * and fallocate do no need to journal data buffers.
4786  */
4787 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4788 {
4789 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4790 }
4791 
4792 /*
4793  * The caller must have previously called ext4_reserve_inode_write().
4794  * Give this, we know that the caller already has write access to iloc->bh.
4795  */
4796 int ext4_mark_iloc_dirty(handle_t *handle,
4797 			 struct inode *inode, struct ext4_iloc *iloc)
4798 {
4799 	int err = 0;
4800 
4801 	if (IS_I_VERSION(inode))
4802 		inode_inc_iversion(inode);
4803 
4804 	/* the do_update_inode consumes one bh->b_count */
4805 	get_bh(iloc->bh);
4806 
4807 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4808 	err = ext4_do_update_inode(handle, inode, iloc);
4809 	put_bh(iloc->bh);
4810 	return err;
4811 }
4812 
4813 /*
4814  * On success, We end up with an outstanding reference count against
4815  * iloc->bh.  This _must_ be cleaned up later.
4816  */
4817 
4818 int
4819 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4820 			 struct ext4_iloc *iloc)
4821 {
4822 	int err;
4823 
4824 	err = ext4_get_inode_loc(inode, iloc);
4825 	if (!err) {
4826 		BUFFER_TRACE(iloc->bh, "get_write_access");
4827 		err = ext4_journal_get_write_access(handle, iloc->bh);
4828 		if (err) {
4829 			brelse(iloc->bh);
4830 			iloc->bh = NULL;
4831 		}
4832 	}
4833 	ext4_std_error(inode->i_sb, err);
4834 	return err;
4835 }
4836 
4837 /*
4838  * Expand an inode by new_extra_isize bytes.
4839  * Returns 0 on success or negative error number on failure.
4840  */
4841 static int ext4_expand_extra_isize(struct inode *inode,
4842 				   unsigned int new_extra_isize,
4843 				   struct ext4_iloc iloc,
4844 				   handle_t *handle)
4845 {
4846 	struct ext4_inode *raw_inode;
4847 	struct ext4_xattr_ibody_header *header;
4848 
4849 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4850 		return 0;
4851 
4852 	raw_inode = ext4_raw_inode(&iloc);
4853 
4854 	header = IHDR(inode, raw_inode);
4855 
4856 	/* No extended attributes present */
4857 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4858 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4859 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4860 			new_extra_isize);
4861 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4862 		return 0;
4863 	}
4864 
4865 	/* try to expand with EAs present */
4866 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4867 					  raw_inode, handle);
4868 }
4869 
4870 /*
4871  * What we do here is to mark the in-core inode as clean with respect to inode
4872  * dirtiness (it may still be data-dirty).
4873  * This means that the in-core inode may be reaped by prune_icache
4874  * without having to perform any I/O.  This is a very good thing,
4875  * because *any* task may call prune_icache - even ones which
4876  * have a transaction open against a different journal.
4877  *
4878  * Is this cheating?  Not really.  Sure, we haven't written the
4879  * inode out, but prune_icache isn't a user-visible syncing function.
4880  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4881  * we start and wait on commits.
4882  */
4883 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4884 {
4885 	struct ext4_iloc iloc;
4886 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4887 	static unsigned int mnt_count;
4888 	int err, ret;
4889 
4890 	might_sleep();
4891 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4892 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4893 	if (ext4_handle_valid(handle) &&
4894 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4895 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4896 		/*
4897 		 * We need extra buffer credits since we may write into EA block
4898 		 * with this same handle. If journal_extend fails, then it will
4899 		 * only result in a minor loss of functionality for that inode.
4900 		 * If this is felt to be critical, then e2fsck should be run to
4901 		 * force a large enough s_min_extra_isize.
4902 		 */
4903 		if ((jbd2_journal_extend(handle,
4904 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4905 			ret = ext4_expand_extra_isize(inode,
4906 						      sbi->s_want_extra_isize,
4907 						      iloc, handle);
4908 			if (ret) {
4909 				ext4_set_inode_state(inode,
4910 						     EXT4_STATE_NO_EXPAND);
4911 				if (mnt_count !=
4912 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4913 					ext4_warning(inode->i_sb,
4914 					"Unable to expand inode %lu. Delete"
4915 					" some EAs or run e2fsck.",
4916 					inode->i_ino);
4917 					mnt_count =
4918 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4919 				}
4920 			}
4921 		}
4922 	}
4923 	if (!err)
4924 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4925 	return err;
4926 }
4927 
4928 /*
4929  * ext4_dirty_inode() is called from __mark_inode_dirty()
4930  *
4931  * We're really interested in the case where a file is being extended.
4932  * i_size has been changed by generic_commit_write() and we thus need
4933  * to include the updated inode in the current transaction.
4934  *
4935  * Also, dquot_alloc_block() will always dirty the inode when blocks
4936  * are allocated to the file.
4937  *
4938  * If the inode is marked synchronous, we don't honour that here - doing
4939  * so would cause a commit on atime updates, which we don't bother doing.
4940  * We handle synchronous inodes at the highest possible level.
4941  *
4942  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
4943  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
4944  * to copy into the on-disk inode structure are the timestamp files.
4945  */
4946 void ext4_dirty_inode(struct inode *inode, int flags)
4947 {
4948 	handle_t *handle;
4949 
4950 	if (flags == I_DIRTY_TIME)
4951 		return;
4952 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4953 	if (IS_ERR(handle))
4954 		goto out;
4955 
4956 	ext4_mark_inode_dirty(handle, inode);
4957 
4958 	ext4_journal_stop(handle);
4959 out:
4960 	return;
4961 }
4962 
4963 #if 0
4964 /*
4965  * Bind an inode's backing buffer_head into this transaction, to prevent
4966  * it from being flushed to disk early.  Unlike
4967  * ext4_reserve_inode_write, this leaves behind no bh reference and
4968  * returns no iloc structure, so the caller needs to repeat the iloc
4969  * lookup to mark the inode dirty later.
4970  */
4971 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4972 {
4973 	struct ext4_iloc iloc;
4974 
4975 	int err = 0;
4976 	if (handle) {
4977 		err = ext4_get_inode_loc(inode, &iloc);
4978 		if (!err) {
4979 			BUFFER_TRACE(iloc.bh, "get_write_access");
4980 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4981 			if (!err)
4982 				err = ext4_handle_dirty_metadata(handle,
4983 								 NULL,
4984 								 iloc.bh);
4985 			brelse(iloc.bh);
4986 		}
4987 	}
4988 	ext4_std_error(inode->i_sb, err);
4989 	return err;
4990 }
4991 #endif
4992 
4993 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4994 {
4995 	journal_t *journal;
4996 	handle_t *handle;
4997 	int err;
4998 
4999 	/*
5000 	 * We have to be very careful here: changing a data block's
5001 	 * journaling status dynamically is dangerous.  If we write a
5002 	 * data block to the journal, change the status and then delete
5003 	 * that block, we risk forgetting to revoke the old log record
5004 	 * from the journal and so a subsequent replay can corrupt data.
5005 	 * So, first we make sure that the journal is empty and that
5006 	 * nobody is changing anything.
5007 	 */
5008 
5009 	journal = EXT4_JOURNAL(inode);
5010 	if (!journal)
5011 		return 0;
5012 	if (is_journal_aborted(journal))
5013 		return -EROFS;
5014 	/* We have to allocate physical blocks for delalloc blocks
5015 	 * before flushing journal. otherwise delalloc blocks can not
5016 	 * be allocated any more. even more truncate on delalloc blocks
5017 	 * could trigger BUG by flushing delalloc blocks in journal.
5018 	 * There is no delalloc block in non-journal data mode.
5019 	 */
5020 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5021 		err = ext4_alloc_da_blocks(inode);
5022 		if (err < 0)
5023 			return err;
5024 	}
5025 
5026 	/* Wait for all existing dio workers */
5027 	ext4_inode_block_unlocked_dio(inode);
5028 	inode_dio_wait(inode);
5029 
5030 	jbd2_journal_lock_updates(journal);
5031 
5032 	/*
5033 	 * OK, there are no updates running now, and all cached data is
5034 	 * synced to disk.  We are now in a completely consistent state
5035 	 * which doesn't have anything in the journal, and we know that
5036 	 * no filesystem updates are running, so it is safe to modify
5037 	 * the inode's in-core data-journaling state flag now.
5038 	 */
5039 
5040 	if (val)
5041 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5042 	else {
5043 		err = jbd2_journal_flush(journal);
5044 		if (err < 0) {
5045 			jbd2_journal_unlock_updates(journal);
5046 			ext4_inode_resume_unlocked_dio(inode);
5047 			return err;
5048 		}
5049 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5050 	}
5051 	ext4_set_aops(inode);
5052 
5053 	jbd2_journal_unlock_updates(journal);
5054 	ext4_inode_resume_unlocked_dio(inode);
5055 
5056 	/* Finally we can mark the inode as dirty. */
5057 
5058 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5059 	if (IS_ERR(handle))
5060 		return PTR_ERR(handle);
5061 
5062 	err = ext4_mark_inode_dirty(handle, inode);
5063 	ext4_handle_sync(handle);
5064 	ext4_journal_stop(handle);
5065 	ext4_std_error(inode->i_sb, err);
5066 
5067 	return err;
5068 }
5069 
5070 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5071 {
5072 	return !buffer_mapped(bh);
5073 }
5074 
5075 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5076 {
5077 	struct page *page = vmf->page;
5078 	loff_t size;
5079 	unsigned long len;
5080 	int ret;
5081 	struct file *file = vma->vm_file;
5082 	struct inode *inode = file_inode(file);
5083 	struct address_space *mapping = inode->i_mapping;
5084 	handle_t *handle;
5085 	get_block_t *get_block;
5086 	int retries = 0;
5087 
5088 	sb_start_pagefault(inode->i_sb);
5089 	file_update_time(vma->vm_file);
5090 	/* Delalloc case is easy... */
5091 	if (test_opt(inode->i_sb, DELALLOC) &&
5092 	    !ext4_should_journal_data(inode) &&
5093 	    !ext4_nonda_switch(inode->i_sb)) {
5094 		do {
5095 			ret = __block_page_mkwrite(vma, vmf,
5096 						   ext4_da_get_block_prep);
5097 		} while (ret == -ENOSPC &&
5098 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5099 		goto out_ret;
5100 	}
5101 
5102 	lock_page(page);
5103 	size = i_size_read(inode);
5104 	/* Page got truncated from under us? */
5105 	if (page->mapping != mapping || page_offset(page) > size) {
5106 		unlock_page(page);
5107 		ret = VM_FAULT_NOPAGE;
5108 		goto out;
5109 	}
5110 
5111 	if (page->index == size >> PAGE_CACHE_SHIFT)
5112 		len = size & ~PAGE_CACHE_MASK;
5113 	else
5114 		len = PAGE_CACHE_SIZE;
5115 	/*
5116 	 * Return if we have all the buffers mapped. This avoids the need to do
5117 	 * journal_start/journal_stop which can block and take a long time
5118 	 */
5119 	if (page_has_buffers(page)) {
5120 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5121 					    0, len, NULL,
5122 					    ext4_bh_unmapped)) {
5123 			/* Wait so that we don't change page under IO */
5124 			wait_for_stable_page(page);
5125 			ret = VM_FAULT_LOCKED;
5126 			goto out;
5127 		}
5128 	}
5129 	unlock_page(page);
5130 	/* OK, we need to fill the hole... */
5131 	if (ext4_should_dioread_nolock(inode))
5132 		get_block = ext4_get_block_write;
5133 	else
5134 		get_block = ext4_get_block;
5135 retry_alloc:
5136 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5137 				    ext4_writepage_trans_blocks(inode));
5138 	if (IS_ERR(handle)) {
5139 		ret = VM_FAULT_SIGBUS;
5140 		goto out;
5141 	}
5142 	ret = __block_page_mkwrite(vma, vmf, get_block);
5143 	if (!ret && ext4_should_journal_data(inode)) {
5144 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5145 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5146 			unlock_page(page);
5147 			ret = VM_FAULT_SIGBUS;
5148 			ext4_journal_stop(handle);
5149 			goto out;
5150 		}
5151 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5152 	}
5153 	ext4_journal_stop(handle);
5154 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5155 		goto retry_alloc;
5156 out_ret:
5157 	ret = block_page_mkwrite_return(ret);
5158 out:
5159 	sb_end_pagefault(inode->i_sb);
5160 	return ret;
5161 }
5162