1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/bitops.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u16 csum_lo; 56 __u16 csum_hi = 0; 57 __u32 csum; 58 59 csum_lo = le16_to_cpu(raw->i_checksum_lo); 60 raw->i_checksum_lo = 0; 61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 63 csum_hi = le16_to_cpu(raw->i_checksum_hi); 64 raw->i_checksum_hi = 0; 65 } 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 68 EXT4_INODE_SIZE(inode->i_sb)); 69 70 raw->i_checksum_lo = cpu_to_le16(csum_lo); 71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 73 raw->i_checksum_hi = cpu_to_le16(csum_hi); 74 75 return csum; 76 } 77 78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 79 struct ext4_inode_info *ei) 80 { 81 __u32 provided, calculated; 82 83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 84 cpu_to_le32(EXT4_OS_LINUX) || 85 !ext4_has_metadata_csum(inode->i_sb)) 86 return 1; 87 88 provided = le16_to_cpu(raw->i_checksum_lo); 89 calculated = ext4_inode_csum(inode, raw, ei); 90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 93 else 94 calculated &= 0xFFFF; 95 96 return provided == calculated; 97 } 98 99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 100 struct ext4_inode_info *ei) 101 { 102 __u32 csum; 103 104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 105 cpu_to_le32(EXT4_OS_LINUX) || 106 !ext4_has_metadata_csum(inode->i_sb)) 107 return; 108 109 csum = ext4_inode_csum(inode, raw, ei); 110 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 111 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 112 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 113 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 114 } 115 116 static inline int ext4_begin_ordered_truncate(struct inode *inode, 117 loff_t new_size) 118 { 119 trace_ext4_begin_ordered_truncate(inode, new_size); 120 /* 121 * If jinode is zero, then we never opened the file for 122 * writing, so there's no need to call 123 * jbd2_journal_begin_ordered_truncate() since there's no 124 * outstanding writes we need to flush. 125 */ 126 if (!EXT4_I(inode)->jinode) 127 return 0; 128 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 129 EXT4_I(inode)->jinode, 130 new_size); 131 } 132 133 static void ext4_invalidatepage(struct page *page, unsigned int offset, 134 unsigned int length); 135 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 137 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 138 int pextents); 139 140 /* 141 * Test whether an inode is a fast symlink. 142 */ 143 static int ext4_inode_is_fast_symlink(struct inode *inode) 144 { 145 int ea_blocks = EXT4_I(inode)->i_file_acl ? 146 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 147 148 if (ext4_has_inline_data(inode)) 149 return 0; 150 151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 152 } 153 154 /* 155 * Restart the transaction associated with *handle. This does a commit, 156 * so before we call here everything must be consistently dirtied against 157 * this transaction. 158 */ 159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 160 int nblocks) 161 { 162 int ret; 163 164 /* 165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 166 * moment, get_block can be called only for blocks inside i_size since 167 * page cache has been already dropped and writes are blocked by 168 * i_mutex. So we can safely drop the i_data_sem here. 169 */ 170 BUG_ON(EXT4_JOURNAL(inode) == NULL); 171 jbd_debug(2, "restarting handle %p\n", handle); 172 up_write(&EXT4_I(inode)->i_data_sem); 173 ret = ext4_journal_restart(handle, nblocks); 174 down_write(&EXT4_I(inode)->i_data_sem); 175 ext4_discard_preallocations(inode); 176 177 return ret; 178 } 179 180 /* 181 * Called at the last iput() if i_nlink is zero. 182 */ 183 void ext4_evict_inode(struct inode *inode) 184 { 185 handle_t *handle; 186 int err; 187 188 trace_ext4_evict_inode(inode); 189 190 if (inode->i_nlink) { 191 /* 192 * When journalling data dirty buffers are tracked only in the 193 * journal. So although mm thinks everything is clean and 194 * ready for reaping the inode might still have some pages to 195 * write in the running transaction or waiting to be 196 * checkpointed. Thus calling jbd2_journal_invalidatepage() 197 * (via truncate_inode_pages()) to discard these buffers can 198 * cause data loss. Also even if we did not discard these 199 * buffers, we would have no way to find them after the inode 200 * is reaped and thus user could see stale data if he tries to 201 * read them before the transaction is checkpointed. So be 202 * careful and force everything to disk here... We use 203 * ei->i_datasync_tid to store the newest transaction 204 * containing inode's data. 205 * 206 * Note that directories do not have this problem because they 207 * don't use page cache. 208 */ 209 if (ext4_should_journal_data(inode) && 210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 211 inode->i_ino != EXT4_JOURNAL_INO) { 212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 214 215 jbd2_complete_transaction(journal, commit_tid); 216 filemap_write_and_wait(&inode->i_data); 217 } 218 truncate_inode_pages_final(&inode->i_data); 219 220 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 221 goto no_delete; 222 } 223 224 if (is_bad_inode(inode)) 225 goto no_delete; 226 dquot_initialize(inode); 227 228 if (ext4_should_order_data(inode)) 229 ext4_begin_ordered_truncate(inode, 0); 230 truncate_inode_pages_final(&inode->i_data); 231 232 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it 237 */ 238 sb_start_intwrite(inode->i_sb); 239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 240 ext4_blocks_for_truncate(inode)+3); 241 if (IS_ERR(handle)) { 242 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 243 /* 244 * If we're going to skip the normal cleanup, we still need to 245 * make sure that the in-core orphan linked list is properly 246 * cleaned up. 247 */ 248 ext4_orphan_del(NULL, inode); 249 sb_end_intwrite(inode->i_sb); 250 goto no_delete; 251 } 252 253 if (IS_SYNC(inode)) 254 ext4_handle_sync(handle); 255 inode->i_size = 0; 256 err = ext4_mark_inode_dirty(handle, inode); 257 if (err) { 258 ext4_warning(inode->i_sb, 259 "couldn't mark inode dirty (err %d)", err); 260 goto stop_handle; 261 } 262 if (inode->i_blocks) 263 ext4_truncate(inode); 264 265 /* 266 * ext4_ext_truncate() doesn't reserve any slop when it 267 * restarts journal transactions; therefore there may not be 268 * enough credits left in the handle to remove the inode from 269 * the orphan list and set the dtime field. 270 */ 271 if (!ext4_handle_has_enough_credits(handle, 3)) { 272 err = ext4_journal_extend(handle, 3); 273 if (err > 0) 274 err = ext4_journal_restart(handle, 3); 275 if (err != 0) { 276 ext4_warning(inode->i_sb, 277 "couldn't extend journal (err %d)", err); 278 stop_handle: 279 ext4_journal_stop(handle); 280 ext4_orphan_del(NULL, inode); 281 sb_end_intwrite(inode->i_sb); 282 goto no_delete; 283 } 284 } 285 286 /* 287 * Kill off the orphan record which ext4_truncate created. 288 * AKPM: I think this can be inside the above `if'. 289 * Note that ext4_orphan_del() has to be able to cope with the 290 * deletion of a non-existent orphan - this is because we don't 291 * know if ext4_truncate() actually created an orphan record. 292 * (Well, we could do this if we need to, but heck - it works) 293 */ 294 ext4_orphan_del(handle, inode); 295 EXT4_I(inode)->i_dtime = get_seconds(); 296 297 /* 298 * One subtle ordering requirement: if anything has gone wrong 299 * (transaction abort, IO errors, whatever), then we can still 300 * do these next steps (the fs will already have been marked as 301 * having errors), but we can't free the inode if the mark_dirty 302 * fails. 303 */ 304 if (ext4_mark_inode_dirty(handle, inode)) 305 /* If that failed, just do the required in-core inode clear. */ 306 ext4_clear_inode(inode); 307 else 308 ext4_free_inode(handle, inode); 309 ext4_journal_stop(handle); 310 sb_end_intwrite(inode->i_sb); 311 return; 312 no_delete: 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 314 } 315 316 #ifdef CONFIG_QUOTA 317 qsize_t *ext4_get_reserved_space(struct inode *inode) 318 { 319 return &EXT4_I(inode)->i_reserved_quota; 320 } 321 #endif 322 323 /* 324 * Called with i_data_sem down, which is important since we can call 325 * ext4_discard_preallocations() from here. 326 */ 327 void ext4_da_update_reserve_space(struct inode *inode, 328 int used, int quota_claim) 329 { 330 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 331 struct ext4_inode_info *ei = EXT4_I(inode); 332 333 spin_lock(&ei->i_block_reservation_lock); 334 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 335 if (unlikely(used > ei->i_reserved_data_blocks)) { 336 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 337 "with only %d reserved data blocks", 338 __func__, inode->i_ino, used, 339 ei->i_reserved_data_blocks); 340 WARN_ON(1); 341 used = ei->i_reserved_data_blocks; 342 } 343 344 /* Update per-inode reservations */ 345 ei->i_reserved_data_blocks -= used; 346 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 347 348 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 349 350 /* Update quota subsystem for data blocks */ 351 if (quota_claim) 352 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 353 else { 354 /* 355 * We did fallocate with an offset that is already delayed 356 * allocated. So on delayed allocated writeback we should 357 * not re-claim the quota for fallocated blocks. 358 */ 359 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 360 } 361 362 /* 363 * If we have done all the pending block allocations and if 364 * there aren't any writers on the inode, we can discard the 365 * inode's preallocations. 366 */ 367 if ((ei->i_reserved_data_blocks == 0) && 368 (atomic_read(&inode->i_writecount) == 0)) 369 ext4_discard_preallocations(inode); 370 } 371 372 static int __check_block_validity(struct inode *inode, const char *func, 373 unsigned int line, 374 struct ext4_map_blocks *map) 375 { 376 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 377 map->m_len)) { 378 ext4_error_inode(inode, func, line, map->m_pblk, 379 "lblock %lu mapped to illegal pblock " 380 "(length %d)", (unsigned long) map->m_lblk, 381 map->m_len); 382 return -EIO; 383 } 384 return 0; 385 } 386 387 #define check_block_validity(inode, map) \ 388 __check_block_validity((inode), __func__, __LINE__, (map)) 389 390 #ifdef ES_AGGRESSIVE_TEST 391 static void ext4_map_blocks_es_recheck(handle_t *handle, 392 struct inode *inode, 393 struct ext4_map_blocks *es_map, 394 struct ext4_map_blocks *map, 395 int flags) 396 { 397 int retval; 398 399 map->m_flags = 0; 400 /* 401 * There is a race window that the result is not the same. 402 * e.g. xfstests #223 when dioread_nolock enables. The reason 403 * is that we lookup a block mapping in extent status tree with 404 * out taking i_data_sem. So at the time the unwritten extent 405 * could be converted. 406 */ 407 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 408 down_read(&EXT4_I(inode)->i_data_sem); 409 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 410 retval = ext4_ext_map_blocks(handle, inode, map, flags & 411 EXT4_GET_BLOCKS_KEEP_SIZE); 412 } else { 413 retval = ext4_ind_map_blocks(handle, inode, map, flags & 414 EXT4_GET_BLOCKS_KEEP_SIZE); 415 } 416 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 417 up_read((&EXT4_I(inode)->i_data_sem)); 418 419 /* 420 * We don't check m_len because extent will be collpased in status 421 * tree. So the m_len might not equal. 422 */ 423 if (es_map->m_lblk != map->m_lblk || 424 es_map->m_flags != map->m_flags || 425 es_map->m_pblk != map->m_pblk) { 426 printk("ES cache assertion failed for inode: %lu " 427 "es_cached ex [%d/%d/%llu/%x] != " 428 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 429 inode->i_ino, es_map->m_lblk, es_map->m_len, 430 es_map->m_pblk, es_map->m_flags, map->m_lblk, 431 map->m_len, map->m_pblk, map->m_flags, 432 retval, flags); 433 } 434 } 435 #endif /* ES_AGGRESSIVE_TEST */ 436 437 /* 438 * The ext4_map_blocks() function tries to look up the requested blocks, 439 * and returns if the blocks are already mapped. 440 * 441 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 442 * and store the allocated blocks in the result buffer head and mark it 443 * mapped. 444 * 445 * If file type is extents based, it will call ext4_ext_map_blocks(), 446 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 447 * based files 448 * 449 * On success, it returns the number of blocks being mapped or allocated. 450 * if create==0 and the blocks are pre-allocated and unwritten block, 451 * the result buffer head is unmapped. If the create ==1, it will make sure 452 * the buffer head is mapped. 453 * 454 * It returns 0 if plain look up failed (blocks have not been allocated), in 455 * that case, buffer head is unmapped 456 * 457 * It returns the error in case of allocation failure. 458 */ 459 int ext4_map_blocks(handle_t *handle, struct inode *inode, 460 struct ext4_map_blocks *map, int flags) 461 { 462 struct extent_status es; 463 int retval; 464 int ret = 0; 465 #ifdef ES_AGGRESSIVE_TEST 466 struct ext4_map_blocks orig_map; 467 468 memcpy(&orig_map, map, sizeof(*map)); 469 #endif 470 471 map->m_flags = 0; 472 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 473 "logical block %lu\n", inode->i_ino, flags, map->m_len, 474 (unsigned long) map->m_lblk); 475 476 /* 477 * ext4_map_blocks returns an int, and m_len is an unsigned int 478 */ 479 if (unlikely(map->m_len > INT_MAX)) 480 map->m_len = INT_MAX; 481 482 /* We can handle the block number less than EXT_MAX_BLOCKS */ 483 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 484 return -EIO; 485 486 /* Lookup extent status tree firstly */ 487 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 488 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 489 map->m_pblk = ext4_es_pblock(&es) + 490 map->m_lblk - es.es_lblk; 491 map->m_flags |= ext4_es_is_written(&es) ? 492 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 493 retval = es.es_len - (map->m_lblk - es.es_lblk); 494 if (retval > map->m_len) 495 retval = map->m_len; 496 map->m_len = retval; 497 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 498 retval = 0; 499 } else { 500 BUG_ON(1); 501 } 502 #ifdef ES_AGGRESSIVE_TEST 503 ext4_map_blocks_es_recheck(handle, inode, map, 504 &orig_map, flags); 505 #endif 506 goto found; 507 } 508 509 /* 510 * Try to see if we can get the block without requesting a new 511 * file system block. 512 */ 513 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 514 down_read(&EXT4_I(inode)->i_data_sem); 515 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 516 retval = ext4_ext_map_blocks(handle, inode, map, flags & 517 EXT4_GET_BLOCKS_KEEP_SIZE); 518 } else { 519 retval = ext4_ind_map_blocks(handle, inode, map, flags & 520 EXT4_GET_BLOCKS_KEEP_SIZE); 521 } 522 if (retval > 0) { 523 unsigned int status; 524 525 if (unlikely(retval != map->m_len)) { 526 ext4_warning(inode->i_sb, 527 "ES len assertion failed for inode " 528 "%lu: retval %d != map->m_len %d", 529 inode->i_ino, retval, map->m_len); 530 WARN_ON(1); 531 } 532 533 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 534 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 535 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 536 ext4_find_delalloc_range(inode, map->m_lblk, 537 map->m_lblk + map->m_len - 1)) 538 status |= EXTENT_STATUS_DELAYED; 539 ret = ext4_es_insert_extent(inode, map->m_lblk, 540 map->m_len, map->m_pblk, status); 541 if (ret < 0) 542 retval = ret; 543 } 544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 545 up_read((&EXT4_I(inode)->i_data_sem)); 546 547 found: 548 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 549 ret = check_block_validity(inode, map); 550 if (ret != 0) 551 return ret; 552 } 553 554 /* If it is only a block(s) look up */ 555 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 556 return retval; 557 558 /* 559 * Returns if the blocks have already allocated 560 * 561 * Note that if blocks have been preallocated 562 * ext4_ext_get_block() returns the create = 0 563 * with buffer head unmapped. 564 */ 565 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 566 /* 567 * If we need to convert extent to unwritten 568 * we continue and do the actual work in 569 * ext4_ext_map_blocks() 570 */ 571 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 572 return retval; 573 574 /* 575 * Here we clear m_flags because after allocating an new extent, 576 * it will be set again. 577 */ 578 map->m_flags &= ~EXT4_MAP_FLAGS; 579 580 /* 581 * New blocks allocate and/or writing to unwritten extent 582 * will possibly result in updating i_data, so we take 583 * the write lock of i_data_sem, and call get_block() 584 * with create == 1 flag. 585 */ 586 down_write(&EXT4_I(inode)->i_data_sem); 587 588 /* 589 * We need to check for EXT4 here because migrate 590 * could have changed the inode type in between 591 */ 592 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 593 retval = ext4_ext_map_blocks(handle, inode, map, flags); 594 } else { 595 retval = ext4_ind_map_blocks(handle, inode, map, flags); 596 597 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 598 /* 599 * We allocated new blocks which will result in 600 * i_data's format changing. Force the migrate 601 * to fail by clearing migrate flags 602 */ 603 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 604 } 605 606 /* 607 * Update reserved blocks/metadata blocks after successful 608 * block allocation which had been deferred till now. We don't 609 * support fallocate for non extent files. So we can update 610 * reserve space here. 611 */ 612 if ((retval > 0) && 613 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 614 ext4_da_update_reserve_space(inode, retval, 1); 615 } 616 617 if (retval > 0) { 618 unsigned int status; 619 620 if (unlikely(retval != map->m_len)) { 621 ext4_warning(inode->i_sb, 622 "ES len assertion failed for inode " 623 "%lu: retval %d != map->m_len %d", 624 inode->i_ino, retval, map->m_len); 625 WARN_ON(1); 626 } 627 628 /* 629 * If the extent has been zeroed out, we don't need to update 630 * extent status tree. 631 */ 632 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 633 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 634 if (ext4_es_is_written(&es)) 635 goto has_zeroout; 636 } 637 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 638 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 639 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 640 ext4_find_delalloc_range(inode, map->m_lblk, 641 map->m_lblk + map->m_len - 1)) 642 status |= EXTENT_STATUS_DELAYED; 643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 644 map->m_pblk, status); 645 if (ret < 0) 646 retval = ret; 647 } 648 649 has_zeroout: 650 up_write((&EXT4_I(inode)->i_data_sem)); 651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 652 ret = check_block_validity(inode, map); 653 if (ret != 0) 654 return ret; 655 } 656 return retval; 657 } 658 659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate) 660 { 661 struct inode *inode = bh->b_assoc_map->host; 662 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */ 663 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits; 664 int err; 665 if (!uptodate) 666 return; 667 WARN_ON(!buffer_unwritten(bh)); 668 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size); 669 } 670 671 /* Maximum number of blocks we map for direct IO at once. */ 672 #define DIO_MAX_BLOCKS 4096 673 674 static int _ext4_get_block(struct inode *inode, sector_t iblock, 675 struct buffer_head *bh, int flags) 676 { 677 handle_t *handle = ext4_journal_current_handle(); 678 struct ext4_map_blocks map; 679 int ret = 0, started = 0; 680 int dio_credits; 681 682 if (ext4_has_inline_data(inode)) 683 return -ERANGE; 684 685 map.m_lblk = iblock; 686 map.m_len = bh->b_size >> inode->i_blkbits; 687 688 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 689 /* Direct IO write... */ 690 if (map.m_len > DIO_MAX_BLOCKS) 691 map.m_len = DIO_MAX_BLOCKS; 692 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 693 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 694 dio_credits); 695 if (IS_ERR(handle)) { 696 ret = PTR_ERR(handle); 697 return ret; 698 } 699 started = 1; 700 } 701 702 ret = ext4_map_blocks(handle, inode, &map, flags); 703 if (ret > 0) { 704 ext4_io_end_t *io_end = ext4_inode_aio(inode); 705 706 map_bh(bh, inode->i_sb, map.m_pblk); 707 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 708 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) { 709 bh->b_assoc_map = inode->i_mapping; 710 bh->b_private = (void *)(unsigned long)iblock; 711 bh->b_end_io = ext4_end_io_unwritten; 712 } 713 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 714 set_buffer_defer_completion(bh); 715 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 716 ret = 0; 717 } 718 if (started) 719 ext4_journal_stop(handle); 720 return ret; 721 } 722 723 int ext4_get_block(struct inode *inode, sector_t iblock, 724 struct buffer_head *bh, int create) 725 { 726 return _ext4_get_block(inode, iblock, bh, 727 create ? EXT4_GET_BLOCKS_CREATE : 0); 728 } 729 730 /* 731 * `handle' can be NULL if create is zero 732 */ 733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 734 ext4_lblk_t block, int create) 735 { 736 struct ext4_map_blocks map; 737 struct buffer_head *bh; 738 int err; 739 740 J_ASSERT(handle != NULL || create == 0); 741 742 map.m_lblk = block; 743 map.m_len = 1; 744 err = ext4_map_blocks(handle, inode, &map, 745 create ? EXT4_GET_BLOCKS_CREATE : 0); 746 747 if (err == 0) 748 return create ? ERR_PTR(-ENOSPC) : NULL; 749 if (err < 0) 750 return ERR_PTR(err); 751 752 bh = sb_getblk(inode->i_sb, map.m_pblk); 753 if (unlikely(!bh)) 754 return ERR_PTR(-ENOMEM); 755 if (map.m_flags & EXT4_MAP_NEW) { 756 J_ASSERT(create != 0); 757 J_ASSERT(handle != NULL); 758 759 /* 760 * Now that we do not always journal data, we should 761 * keep in mind whether this should always journal the 762 * new buffer as metadata. For now, regular file 763 * writes use ext4_get_block instead, so it's not a 764 * problem. 765 */ 766 lock_buffer(bh); 767 BUFFER_TRACE(bh, "call get_create_access"); 768 err = ext4_journal_get_create_access(handle, bh); 769 if (unlikely(err)) { 770 unlock_buffer(bh); 771 goto errout; 772 } 773 if (!buffer_uptodate(bh)) { 774 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 775 set_buffer_uptodate(bh); 776 } 777 unlock_buffer(bh); 778 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 779 err = ext4_handle_dirty_metadata(handle, inode, bh); 780 if (unlikely(err)) 781 goto errout; 782 } else 783 BUFFER_TRACE(bh, "not a new buffer"); 784 return bh; 785 errout: 786 brelse(bh); 787 return ERR_PTR(err); 788 } 789 790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 791 ext4_lblk_t block, int create) 792 { 793 struct buffer_head *bh; 794 795 bh = ext4_getblk(handle, inode, block, create); 796 if (IS_ERR(bh)) 797 return bh; 798 if (!bh || buffer_uptodate(bh)) 799 return bh; 800 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 801 wait_on_buffer(bh); 802 if (buffer_uptodate(bh)) 803 return bh; 804 put_bh(bh); 805 return ERR_PTR(-EIO); 806 } 807 808 int ext4_walk_page_buffers(handle_t *handle, 809 struct buffer_head *head, 810 unsigned from, 811 unsigned to, 812 int *partial, 813 int (*fn)(handle_t *handle, 814 struct buffer_head *bh)) 815 { 816 struct buffer_head *bh; 817 unsigned block_start, block_end; 818 unsigned blocksize = head->b_size; 819 int err, ret = 0; 820 struct buffer_head *next; 821 822 for (bh = head, block_start = 0; 823 ret == 0 && (bh != head || !block_start); 824 block_start = block_end, bh = next) { 825 next = bh->b_this_page; 826 block_end = block_start + blocksize; 827 if (block_end <= from || block_start >= to) { 828 if (partial && !buffer_uptodate(bh)) 829 *partial = 1; 830 continue; 831 } 832 err = (*fn)(handle, bh); 833 if (!ret) 834 ret = err; 835 } 836 return ret; 837 } 838 839 /* 840 * To preserve ordering, it is essential that the hole instantiation and 841 * the data write be encapsulated in a single transaction. We cannot 842 * close off a transaction and start a new one between the ext4_get_block() 843 * and the commit_write(). So doing the jbd2_journal_start at the start of 844 * prepare_write() is the right place. 845 * 846 * Also, this function can nest inside ext4_writepage(). In that case, we 847 * *know* that ext4_writepage() has generated enough buffer credits to do the 848 * whole page. So we won't block on the journal in that case, which is good, 849 * because the caller may be PF_MEMALLOC. 850 * 851 * By accident, ext4 can be reentered when a transaction is open via 852 * quota file writes. If we were to commit the transaction while thus 853 * reentered, there can be a deadlock - we would be holding a quota 854 * lock, and the commit would never complete if another thread had a 855 * transaction open and was blocking on the quota lock - a ranking 856 * violation. 857 * 858 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 859 * will _not_ run commit under these circumstances because handle->h_ref 860 * is elevated. We'll still have enough credits for the tiny quotafile 861 * write. 862 */ 863 int do_journal_get_write_access(handle_t *handle, 864 struct buffer_head *bh) 865 { 866 int dirty = buffer_dirty(bh); 867 int ret; 868 869 if (!buffer_mapped(bh) || buffer_freed(bh)) 870 return 0; 871 /* 872 * __block_write_begin() could have dirtied some buffers. Clean 873 * the dirty bit as jbd2_journal_get_write_access() could complain 874 * otherwise about fs integrity issues. Setting of the dirty bit 875 * by __block_write_begin() isn't a real problem here as we clear 876 * the bit before releasing a page lock and thus writeback cannot 877 * ever write the buffer. 878 */ 879 if (dirty) 880 clear_buffer_dirty(bh); 881 BUFFER_TRACE(bh, "get write access"); 882 ret = ext4_journal_get_write_access(handle, bh); 883 if (!ret && dirty) 884 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 885 return ret; 886 } 887 888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 889 struct buffer_head *bh_result, int create); 890 static int ext4_write_begin(struct file *file, struct address_space *mapping, 891 loff_t pos, unsigned len, unsigned flags, 892 struct page **pagep, void **fsdata) 893 { 894 struct inode *inode = mapping->host; 895 int ret, needed_blocks; 896 handle_t *handle; 897 int retries = 0; 898 struct page *page; 899 pgoff_t index; 900 unsigned from, to; 901 902 trace_ext4_write_begin(inode, pos, len, flags); 903 /* 904 * Reserve one block more for addition to orphan list in case 905 * we allocate blocks but write fails for some reason 906 */ 907 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 908 index = pos >> PAGE_CACHE_SHIFT; 909 from = pos & (PAGE_CACHE_SIZE - 1); 910 to = from + len; 911 912 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 913 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 914 flags, pagep); 915 if (ret < 0) 916 return ret; 917 if (ret == 1) 918 return 0; 919 } 920 921 /* 922 * grab_cache_page_write_begin() can take a long time if the 923 * system is thrashing due to memory pressure, or if the page 924 * is being written back. So grab it first before we start 925 * the transaction handle. This also allows us to allocate 926 * the page (if needed) without using GFP_NOFS. 927 */ 928 retry_grab: 929 page = grab_cache_page_write_begin(mapping, index, flags); 930 if (!page) 931 return -ENOMEM; 932 unlock_page(page); 933 934 retry_journal: 935 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 936 if (IS_ERR(handle)) { 937 page_cache_release(page); 938 return PTR_ERR(handle); 939 } 940 941 lock_page(page); 942 if (page->mapping != mapping) { 943 /* The page got truncated from under us */ 944 unlock_page(page); 945 page_cache_release(page); 946 ext4_journal_stop(handle); 947 goto retry_grab; 948 } 949 /* In case writeback began while the page was unlocked */ 950 wait_for_stable_page(page); 951 952 if (ext4_should_dioread_nolock(inode)) 953 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 954 else 955 ret = __block_write_begin(page, pos, len, ext4_get_block); 956 957 if (!ret && ext4_should_journal_data(inode)) { 958 ret = ext4_walk_page_buffers(handle, page_buffers(page), 959 from, to, NULL, 960 do_journal_get_write_access); 961 } 962 963 if (ret) { 964 unlock_page(page); 965 /* 966 * __block_write_begin may have instantiated a few blocks 967 * outside i_size. Trim these off again. Don't need 968 * i_size_read because we hold i_mutex. 969 * 970 * Add inode to orphan list in case we crash before 971 * truncate finishes 972 */ 973 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 974 ext4_orphan_add(handle, inode); 975 976 ext4_journal_stop(handle); 977 if (pos + len > inode->i_size) { 978 ext4_truncate_failed_write(inode); 979 /* 980 * If truncate failed early the inode might 981 * still be on the orphan list; we need to 982 * make sure the inode is removed from the 983 * orphan list in that case. 984 */ 985 if (inode->i_nlink) 986 ext4_orphan_del(NULL, inode); 987 } 988 989 if (ret == -ENOSPC && 990 ext4_should_retry_alloc(inode->i_sb, &retries)) 991 goto retry_journal; 992 page_cache_release(page); 993 return ret; 994 } 995 *pagep = page; 996 return ret; 997 } 998 999 /* For write_end() in data=journal mode */ 1000 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1001 { 1002 int ret; 1003 if (!buffer_mapped(bh) || buffer_freed(bh)) 1004 return 0; 1005 set_buffer_uptodate(bh); 1006 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1007 clear_buffer_meta(bh); 1008 clear_buffer_prio(bh); 1009 return ret; 1010 } 1011 1012 /* 1013 * We need to pick up the new inode size which generic_commit_write gave us 1014 * `file' can be NULL - eg, when called from page_symlink(). 1015 * 1016 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1017 * buffers are managed internally. 1018 */ 1019 static int ext4_write_end(struct file *file, 1020 struct address_space *mapping, 1021 loff_t pos, unsigned len, unsigned copied, 1022 struct page *page, void *fsdata) 1023 { 1024 handle_t *handle = ext4_journal_current_handle(); 1025 struct inode *inode = mapping->host; 1026 loff_t old_size = inode->i_size; 1027 int ret = 0, ret2; 1028 int i_size_changed = 0; 1029 1030 trace_ext4_write_end(inode, pos, len, copied); 1031 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1032 ret = ext4_jbd2_file_inode(handle, inode); 1033 if (ret) { 1034 unlock_page(page); 1035 page_cache_release(page); 1036 goto errout; 1037 } 1038 } 1039 1040 if (ext4_has_inline_data(inode)) { 1041 ret = ext4_write_inline_data_end(inode, pos, len, 1042 copied, page); 1043 if (ret < 0) 1044 goto errout; 1045 copied = ret; 1046 } else 1047 copied = block_write_end(file, mapping, pos, 1048 len, copied, page, fsdata); 1049 /* 1050 * it's important to update i_size while still holding page lock: 1051 * page writeout could otherwise come in and zero beyond i_size. 1052 */ 1053 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1054 unlock_page(page); 1055 page_cache_release(page); 1056 1057 if (old_size < pos) 1058 pagecache_isize_extended(inode, old_size, pos); 1059 /* 1060 * Don't mark the inode dirty under page lock. First, it unnecessarily 1061 * makes the holding time of page lock longer. Second, it forces lock 1062 * ordering of page lock and transaction start for journaling 1063 * filesystems. 1064 */ 1065 if (i_size_changed) 1066 ext4_mark_inode_dirty(handle, inode); 1067 1068 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1069 /* if we have allocated more blocks and copied 1070 * less. We will have blocks allocated outside 1071 * inode->i_size. So truncate them 1072 */ 1073 ext4_orphan_add(handle, inode); 1074 errout: 1075 ret2 = ext4_journal_stop(handle); 1076 if (!ret) 1077 ret = ret2; 1078 1079 if (pos + len > inode->i_size) { 1080 ext4_truncate_failed_write(inode); 1081 /* 1082 * If truncate failed early the inode might still be 1083 * on the orphan list; we need to make sure the inode 1084 * is removed from the orphan list in that case. 1085 */ 1086 if (inode->i_nlink) 1087 ext4_orphan_del(NULL, inode); 1088 } 1089 1090 return ret ? ret : copied; 1091 } 1092 1093 static int ext4_journalled_write_end(struct file *file, 1094 struct address_space *mapping, 1095 loff_t pos, unsigned len, unsigned copied, 1096 struct page *page, void *fsdata) 1097 { 1098 handle_t *handle = ext4_journal_current_handle(); 1099 struct inode *inode = mapping->host; 1100 loff_t old_size = inode->i_size; 1101 int ret = 0, ret2; 1102 int partial = 0; 1103 unsigned from, to; 1104 int size_changed = 0; 1105 1106 trace_ext4_journalled_write_end(inode, pos, len, copied); 1107 from = pos & (PAGE_CACHE_SIZE - 1); 1108 to = from + len; 1109 1110 BUG_ON(!ext4_handle_valid(handle)); 1111 1112 if (ext4_has_inline_data(inode)) 1113 copied = ext4_write_inline_data_end(inode, pos, len, 1114 copied, page); 1115 else { 1116 if (copied < len) { 1117 if (!PageUptodate(page)) 1118 copied = 0; 1119 page_zero_new_buffers(page, from+copied, to); 1120 } 1121 1122 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1123 to, &partial, write_end_fn); 1124 if (!partial) 1125 SetPageUptodate(page); 1126 } 1127 size_changed = ext4_update_inode_size(inode, pos + copied); 1128 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1129 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1130 unlock_page(page); 1131 page_cache_release(page); 1132 1133 if (old_size < pos) 1134 pagecache_isize_extended(inode, old_size, pos); 1135 1136 if (size_changed) { 1137 ret2 = ext4_mark_inode_dirty(handle, inode); 1138 if (!ret) 1139 ret = ret2; 1140 } 1141 1142 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1143 /* if we have allocated more blocks and copied 1144 * less. We will have blocks allocated outside 1145 * inode->i_size. So truncate them 1146 */ 1147 ext4_orphan_add(handle, inode); 1148 1149 ret2 = ext4_journal_stop(handle); 1150 if (!ret) 1151 ret = ret2; 1152 if (pos + len > inode->i_size) { 1153 ext4_truncate_failed_write(inode); 1154 /* 1155 * If truncate failed early the inode might still be 1156 * on the orphan list; we need to make sure the inode 1157 * is removed from the orphan list in that case. 1158 */ 1159 if (inode->i_nlink) 1160 ext4_orphan_del(NULL, inode); 1161 } 1162 1163 return ret ? ret : copied; 1164 } 1165 1166 /* 1167 * Reserve a single cluster located at lblock 1168 */ 1169 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1170 { 1171 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1172 struct ext4_inode_info *ei = EXT4_I(inode); 1173 unsigned int md_needed; 1174 int ret; 1175 1176 /* 1177 * We will charge metadata quota at writeout time; this saves 1178 * us from metadata over-estimation, though we may go over by 1179 * a small amount in the end. Here we just reserve for data. 1180 */ 1181 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1182 if (ret) 1183 return ret; 1184 1185 /* 1186 * recalculate the amount of metadata blocks to reserve 1187 * in order to allocate nrblocks 1188 * worse case is one extent per block 1189 */ 1190 spin_lock(&ei->i_block_reservation_lock); 1191 /* 1192 * ext4_calc_metadata_amount() has side effects, which we have 1193 * to be prepared undo if we fail to claim space. 1194 */ 1195 md_needed = 0; 1196 trace_ext4_da_reserve_space(inode, 0); 1197 1198 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1199 spin_unlock(&ei->i_block_reservation_lock); 1200 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1201 return -ENOSPC; 1202 } 1203 ei->i_reserved_data_blocks++; 1204 spin_unlock(&ei->i_block_reservation_lock); 1205 1206 return 0; /* success */ 1207 } 1208 1209 static void ext4_da_release_space(struct inode *inode, int to_free) 1210 { 1211 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1212 struct ext4_inode_info *ei = EXT4_I(inode); 1213 1214 if (!to_free) 1215 return; /* Nothing to release, exit */ 1216 1217 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1218 1219 trace_ext4_da_release_space(inode, to_free); 1220 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1221 /* 1222 * if there aren't enough reserved blocks, then the 1223 * counter is messed up somewhere. Since this 1224 * function is called from invalidate page, it's 1225 * harmless to return without any action. 1226 */ 1227 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1228 "ino %lu, to_free %d with only %d reserved " 1229 "data blocks", inode->i_ino, to_free, 1230 ei->i_reserved_data_blocks); 1231 WARN_ON(1); 1232 to_free = ei->i_reserved_data_blocks; 1233 } 1234 ei->i_reserved_data_blocks -= to_free; 1235 1236 /* update fs dirty data blocks counter */ 1237 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1238 1239 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1240 1241 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1242 } 1243 1244 static void ext4_da_page_release_reservation(struct page *page, 1245 unsigned int offset, 1246 unsigned int length) 1247 { 1248 int to_release = 0; 1249 struct buffer_head *head, *bh; 1250 unsigned int curr_off = 0; 1251 struct inode *inode = page->mapping->host; 1252 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1253 unsigned int stop = offset + length; 1254 int num_clusters; 1255 ext4_fsblk_t lblk; 1256 1257 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1258 1259 head = page_buffers(page); 1260 bh = head; 1261 do { 1262 unsigned int next_off = curr_off + bh->b_size; 1263 1264 if (next_off > stop) 1265 break; 1266 1267 if ((offset <= curr_off) && (buffer_delay(bh))) { 1268 to_release++; 1269 clear_buffer_delay(bh); 1270 } 1271 curr_off = next_off; 1272 } while ((bh = bh->b_this_page) != head); 1273 1274 if (to_release) { 1275 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1276 ext4_es_remove_extent(inode, lblk, to_release); 1277 } 1278 1279 /* If we have released all the blocks belonging to a cluster, then we 1280 * need to release the reserved space for that cluster. */ 1281 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1282 while (num_clusters > 0) { 1283 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1284 ((num_clusters - 1) << sbi->s_cluster_bits); 1285 if (sbi->s_cluster_ratio == 1 || 1286 !ext4_find_delalloc_cluster(inode, lblk)) 1287 ext4_da_release_space(inode, 1); 1288 1289 num_clusters--; 1290 } 1291 } 1292 1293 /* 1294 * Delayed allocation stuff 1295 */ 1296 1297 struct mpage_da_data { 1298 struct inode *inode; 1299 struct writeback_control *wbc; 1300 1301 pgoff_t first_page; /* The first page to write */ 1302 pgoff_t next_page; /* Current page to examine */ 1303 pgoff_t last_page; /* Last page to examine */ 1304 /* 1305 * Extent to map - this can be after first_page because that can be 1306 * fully mapped. We somewhat abuse m_flags to store whether the extent 1307 * is delalloc or unwritten. 1308 */ 1309 struct ext4_map_blocks map; 1310 struct ext4_io_submit io_submit; /* IO submission data */ 1311 }; 1312 1313 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1314 bool invalidate) 1315 { 1316 int nr_pages, i; 1317 pgoff_t index, end; 1318 struct pagevec pvec; 1319 struct inode *inode = mpd->inode; 1320 struct address_space *mapping = inode->i_mapping; 1321 1322 /* This is necessary when next_page == 0. */ 1323 if (mpd->first_page >= mpd->next_page) 1324 return; 1325 1326 index = mpd->first_page; 1327 end = mpd->next_page - 1; 1328 if (invalidate) { 1329 ext4_lblk_t start, last; 1330 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1331 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1332 ext4_es_remove_extent(inode, start, last - start + 1); 1333 } 1334 1335 pagevec_init(&pvec, 0); 1336 while (index <= end) { 1337 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1338 if (nr_pages == 0) 1339 break; 1340 for (i = 0; i < nr_pages; i++) { 1341 struct page *page = pvec.pages[i]; 1342 if (page->index > end) 1343 break; 1344 BUG_ON(!PageLocked(page)); 1345 BUG_ON(PageWriteback(page)); 1346 if (invalidate) { 1347 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1348 ClearPageUptodate(page); 1349 } 1350 unlock_page(page); 1351 } 1352 index = pvec.pages[nr_pages - 1]->index + 1; 1353 pagevec_release(&pvec); 1354 } 1355 } 1356 1357 static void ext4_print_free_blocks(struct inode *inode) 1358 { 1359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1360 struct super_block *sb = inode->i_sb; 1361 struct ext4_inode_info *ei = EXT4_I(inode); 1362 1363 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1364 EXT4_C2B(EXT4_SB(inode->i_sb), 1365 ext4_count_free_clusters(sb))); 1366 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1367 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1368 (long long) EXT4_C2B(EXT4_SB(sb), 1369 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1370 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1371 (long long) EXT4_C2B(EXT4_SB(sb), 1372 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1373 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1374 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1375 ei->i_reserved_data_blocks); 1376 return; 1377 } 1378 1379 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1380 { 1381 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1382 } 1383 1384 /* 1385 * This function is grabs code from the very beginning of 1386 * ext4_map_blocks, but assumes that the caller is from delayed write 1387 * time. This function looks up the requested blocks and sets the 1388 * buffer delay bit under the protection of i_data_sem. 1389 */ 1390 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1391 struct ext4_map_blocks *map, 1392 struct buffer_head *bh) 1393 { 1394 struct extent_status es; 1395 int retval; 1396 sector_t invalid_block = ~((sector_t) 0xffff); 1397 #ifdef ES_AGGRESSIVE_TEST 1398 struct ext4_map_blocks orig_map; 1399 1400 memcpy(&orig_map, map, sizeof(*map)); 1401 #endif 1402 1403 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1404 invalid_block = ~0; 1405 1406 map->m_flags = 0; 1407 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1408 "logical block %lu\n", inode->i_ino, map->m_len, 1409 (unsigned long) map->m_lblk); 1410 1411 /* Lookup extent status tree firstly */ 1412 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1413 if (ext4_es_is_hole(&es)) { 1414 retval = 0; 1415 down_read(&EXT4_I(inode)->i_data_sem); 1416 goto add_delayed; 1417 } 1418 1419 /* 1420 * Delayed extent could be allocated by fallocate. 1421 * So we need to check it. 1422 */ 1423 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1424 map_bh(bh, inode->i_sb, invalid_block); 1425 set_buffer_new(bh); 1426 set_buffer_delay(bh); 1427 return 0; 1428 } 1429 1430 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1431 retval = es.es_len - (iblock - es.es_lblk); 1432 if (retval > map->m_len) 1433 retval = map->m_len; 1434 map->m_len = retval; 1435 if (ext4_es_is_written(&es)) 1436 map->m_flags |= EXT4_MAP_MAPPED; 1437 else if (ext4_es_is_unwritten(&es)) 1438 map->m_flags |= EXT4_MAP_UNWRITTEN; 1439 else 1440 BUG_ON(1); 1441 1442 #ifdef ES_AGGRESSIVE_TEST 1443 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1444 #endif 1445 return retval; 1446 } 1447 1448 /* 1449 * Try to see if we can get the block without requesting a new 1450 * file system block. 1451 */ 1452 down_read(&EXT4_I(inode)->i_data_sem); 1453 if (ext4_has_inline_data(inode)) 1454 retval = 0; 1455 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1456 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1457 else 1458 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1459 1460 add_delayed: 1461 if (retval == 0) { 1462 int ret; 1463 /* 1464 * XXX: __block_prepare_write() unmaps passed block, 1465 * is it OK? 1466 */ 1467 /* 1468 * If the block was allocated from previously allocated cluster, 1469 * then we don't need to reserve it again. However we still need 1470 * to reserve metadata for every block we're going to write. 1471 */ 1472 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 || 1473 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1474 ret = ext4_da_reserve_space(inode, iblock); 1475 if (ret) { 1476 /* not enough space to reserve */ 1477 retval = ret; 1478 goto out_unlock; 1479 } 1480 } 1481 1482 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1483 ~0, EXTENT_STATUS_DELAYED); 1484 if (ret) { 1485 retval = ret; 1486 goto out_unlock; 1487 } 1488 1489 map_bh(bh, inode->i_sb, invalid_block); 1490 set_buffer_new(bh); 1491 set_buffer_delay(bh); 1492 } else if (retval > 0) { 1493 int ret; 1494 unsigned int status; 1495 1496 if (unlikely(retval != map->m_len)) { 1497 ext4_warning(inode->i_sb, 1498 "ES len assertion failed for inode " 1499 "%lu: retval %d != map->m_len %d", 1500 inode->i_ino, retval, map->m_len); 1501 WARN_ON(1); 1502 } 1503 1504 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1505 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1506 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1507 map->m_pblk, status); 1508 if (ret != 0) 1509 retval = ret; 1510 } 1511 1512 out_unlock: 1513 up_read((&EXT4_I(inode)->i_data_sem)); 1514 1515 return retval; 1516 } 1517 1518 /* 1519 * This is a special get_block_t callback which is used by 1520 * ext4_da_write_begin(). It will either return mapped block or 1521 * reserve space for a single block. 1522 * 1523 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1524 * We also have b_blocknr = -1 and b_bdev initialized properly 1525 * 1526 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1527 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1528 * initialized properly. 1529 */ 1530 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1531 struct buffer_head *bh, int create) 1532 { 1533 struct ext4_map_blocks map; 1534 int ret = 0; 1535 1536 BUG_ON(create == 0); 1537 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1538 1539 map.m_lblk = iblock; 1540 map.m_len = 1; 1541 1542 /* 1543 * first, we need to know whether the block is allocated already 1544 * preallocated blocks are unmapped but should treated 1545 * the same as allocated blocks. 1546 */ 1547 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1548 if (ret <= 0) 1549 return ret; 1550 1551 map_bh(bh, inode->i_sb, map.m_pblk); 1552 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1553 1554 if (buffer_unwritten(bh)) { 1555 /* A delayed write to unwritten bh should be marked 1556 * new and mapped. Mapped ensures that we don't do 1557 * get_block multiple times when we write to the same 1558 * offset and new ensures that we do proper zero out 1559 * for partial write. 1560 */ 1561 set_buffer_new(bh); 1562 set_buffer_mapped(bh); 1563 } 1564 return 0; 1565 } 1566 1567 static int bget_one(handle_t *handle, struct buffer_head *bh) 1568 { 1569 get_bh(bh); 1570 return 0; 1571 } 1572 1573 static int bput_one(handle_t *handle, struct buffer_head *bh) 1574 { 1575 put_bh(bh); 1576 return 0; 1577 } 1578 1579 static int __ext4_journalled_writepage(struct page *page, 1580 unsigned int len) 1581 { 1582 struct address_space *mapping = page->mapping; 1583 struct inode *inode = mapping->host; 1584 struct buffer_head *page_bufs = NULL; 1585 handle_t *handle = NULL; 1586 int ret = 0, err = 0; 1587 int inline_data = ext4_has_inline_data(inode); 1588 struct buffer_head *inode_bh = NULL; 1589 1590 ClearPageChecked(page); 1591 1592 if (inline_data) { 1593 BUG_ON(page->index != 0); 1594 BUG_ON(len > ext4_get_max_inline_size(inode)); 1595 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1596 if (inode_bh == NULL) 1597 goto out; 1598 } else { 1599 page_bufs = page_buffers(page); 1600 if (!page_bufs) { 1601 BUG(); 1602 goto out; 1603 } 1604 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1605 NULL, bget_one); 1606 } 1607 /* As soon as we unlock the page, it can go away, but we have 1608 * references to buffers so we are safe */ 1609 unlock_page(page); 1610 1611 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1612 ext4_writepage_trans_blocks(inode)); 1613 if (IS_ERR(handle)) { 1614 ret = PTR_ERR(handle); 1615 goto out; 1616 } 1617 1618 BUG_ON(!ext4_handle_valid(handle)); 1619 1620 if (inline_data) { 1621 BUFFER_TRACE(inode_bh, "get write access"); 1622 ret = ext4_journal_get_write_access(handle, inode_bh); 1623 1624 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1625 1626 } else { 1627 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1628 do_journal_get_write_access); 1629 1630 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1631 write_end_fn); 1632 } 1633 if (ret == 0) 1634 ret = err; 1635 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1636 err = ext4_journal_stop(handle); 1637 if (!ret) 1638 ret = err; 1639 1640 if (!ext4_has_inline_data(inode)) 1641 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1642 NULL, bput_one); 1643 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1644 out: 1645 brelse(inode_bh); 1646 return ret; 1647 } 1648 1649 /* 1650 * Note that we don't need to start a transaction unless we're journaling data 1651 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1652 * need to file the inode to the transaction's list in ordered mode because if 1653 * we are writing back data added by write(), the inode is already there and if 1654 * we are writing back data modified via mmap(), no one guarantees in which 1655 * transaction the data will hit the disk. In case we are journaling data, we 1656 * cannot start transaction directly because transaction start ranks above page 1657 * lock so we have to do some magic. 1658 * 1659 * This function can get called via... 1660 * - ext4_writepages after taking page lock (have journal handle) 1661 * - journal_submit_inode_data_buffers (no journal handle) 1662 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1663 * - grab_page_cache when doing write_begin (have journal handle) 1664 * 1665 * We don't do any block allocation in this function. If we have page with 1666 * multiple blocks we need to write those buffer_heads that are mapped. This 1667 * is important for mmaped based write. So if we do with blocksize 1K 1668 * truncate(f, 1024); 1669 * a = mmap(f, 0, 4096); 1670 * a[0] = 'a'; 1671 * truncate(f, 4096); 1672 * we have in the page first buffer_head mapped via page_mkwrite call back 1673 * but other buffer_heads would be unmapped but dirty (dirty done via the 1674 * do_wp_page). So writepage should write the first block. If we modify 1675 * the mmap area beyond 1024 we will again get a page_fault and the 1676 * page_mkwrite callback will do the block allocation and mark the 1677 * buffer_heads mapped. 1678 * 1679 * We redirty the page if we have any buffer_heads that is either delay or 1680 * unwritten in the page. 1681 * 1682 * We can get recursively called as show below. 1683 * 1684 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1685 * ext4_writepage() 1686 * 1687 * But since we don't do any block allocation we should not deadlock. 1688 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1689 */ 1690 static int ext4_writepage(struct page *page, 1691 struct writeback_control *wbc) 1692 { 1693 int ret = 0; 1694 loff_t size; 1695 unsigned int len; 1696 struct buffer_head *page_bufs = NULL; 1697 struct inode *inode = page->mapping->host; 1698 struct ext4_io_submit io_submit; 1699 bool keep_towrite = false; 1700 1701 trace_ext4_writepage(page); 1702 size = i_size_read(inode); 1703 if (page->index == size >> PAGE_CACHE_SHIFT) 1704 len = size & ~PAGE_CACHE_MASK; 1705 else 1706 len = PAGE_CACHE_SIZE; 1707 1708 page_bufs = page_buffers(page); 1709 /* 1710 * We cannot do block allocation or other extent handling in this 1711 * function. If there are buffers needing that, we have to redirty 1712 * the page. But we may reach here when we do a journal commit via 1713 * journal_submit_inode_data_buffers() and in that case we must write 1714 * allocated buffers to achieve data=ordered mode guarantees. 1715 */ 1716 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1717 ext4_bh_delay_or_unwritten)) { 1718 redirty_page_for_writepage(wbc, page); 1719 if (current->flags & PF_MEMALLOC) { 1720 /* 1721 * For memory cleaning there's no point in writing only 1722 * some buffers. So just bail out. Warn if we came here 1723 * from direct reclaim. 1724 */ 1725 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1726 == PF_MEMALLOC); 1727 unlock_page(page); 1728 return 0; 1729 } 1730 keep_towrite = true; 1731 } 1732 1733 if (PageChecked(page) && ext4_should_journal_data(inode)) 1734 /* 1735 * It's mmapped pagecache. Add buffers and journal it. There 1736 * doesn't seem much point in redirtying the page here. 1737 */ 1738 return __ext4_journalled_writepage(page, len); 1739 1740 ext4_io_submit_init(&io_submit, wbc); 1741 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1742 if (!io_submit.io_end) { 1743 redirty_page_for_writepage(wbc, page); 1744 unlock_page(page); 1745 return -ENOMEM; 1746 } 1747 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1748 ext4_io_submit(&io_submit); 1749 /* Drop io_end reference we got from init */ 1750 ext4_put_io_end_defer(io_submit.io_end); 1751 return ret; 1752 } 1753 1754 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1755 { 1756 int len; 1757 loff_t size = i_size_read(mpd->inode); 1758 int err; 1759 1760 BUG_ON(page->index != mpd->first_page); 1761 if (page->index == size >> PAGE_CACHE_SHIFT) 1762 len = size & ~PAGE_CACHE_MASK; 1763 else 1764 len = PAGE_CACHE_SIZE; 1765 clear_page_dirty_for_io(page); 1766 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1767 if (!err) 1768 mpd->wbc->nr_to_write--; 1769 mpd->first_page++; 1770 1771 return err; 1772 } 1773 1774 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1775 1776 /* 1777 * mballoc gives us at most this number of blocks... 1778 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1779 * The rest of mballoc seems to handle chunks up to full group size. 1780 */ 1781 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1782 1783 /* 1784 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1785 * 1786 * @mpd - extent of blocks 1787 * @lblk - logical number of the block in the file 1788 * @bh - buffer head we want to add to the extent 1789 * 1790 * The function is used to collect contig. blocks in the same state. If the 1791 * buffer doesn't require mapping for writeback and we haven't started the 1792 * extent of buffers to map yet, the function returns 'true' immediately - the 1793 * caller can write the buffer right away. Otherwise the function returns true 1794 * if the block has been added to the extent, false if the block couldn't be 1795 * added. 1796 */ 1797 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1798 struct buffer_head *bh) 1799 { 1800 struct ext4_map_blocks *map = &mpd->map; 1801 1802 /* Buffer that doesn't need mapping for writeback? */ 1803 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1804 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1805 /* So far no extent to map => we write the buffer right away */ 1806 if (map->m_len == 0) 1807 return true; 1808 return false; 1809 } 1810 1811 /* First block in the extent? */ 1812 if (map->m_len == 0) { 1813 map->m_lblk = lblk; 1814 map->m_len = 1; 1815 map->m_flags = bh->b_state & BH_FLAGS; 1816 return true; 1817 } 1818 1819 /* Don't go larger than mballoc is willing to allocate */ 1820 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1821 return false; 1822 1823 /* Can we merge the block to our big extent? */ 1824 if (lblk == map->m_lblk + map->m_len && 1825 (bh->b_state & BH_FLAGS) == map->m_flags) { 1826 map->m_len++; 1827 return true; 1828 } 1829 return false; 1830 } 1831 1832 /* 1833 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1834 * 1835 * @mpd - extent of blocks for mapping 1836 * @head - the first buffer in the page 1837 * @bh - buffer we should start processing from 1838 * @lblk - logical number of the block in the file corresponding to @bh 1839 * 1840 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1841 * the page for IO if all buffers in this page were mapped and there's no 1842 * accumulated extent of buffers to map or add buffers in the page to the 1843 * extent of buffers to map. The function returns 1 if the caller can continue 1844 * by processing the next page, 0 if it should stop adding buffers to the 1845 * extent to map because we cannot extend it anymore. It can also return value 1846 * < 0 in case of error during IO submission. 1847 */ 1848 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1849 struct buffer_head *head, 1850 struct buffer_head *bh, 1851 ext4_lblk_t lblk) 1852 { 1853 struct inode *inode = mpd->inode; 1854 int err; 1855 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1856 >> inode->i_blkbits; 1857 1858 do { 1859 BUG_ON(buffer_locked(bh)); 1860 1861 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1862 /* Found extent to map? */ 1863 if (mpd->map.m_len) 1864 return 0; 1865 /* Everything mapped so far and we hit EOF */ 1866 break; 1867 } 1868 } while (lblk++, (bh = bh->b_this_page) != head); 1869 /* So far everything mapped? Submit the page for IO. */ 1870 if (mpd->map.m_len == 0) { 1871 err = mpage_submit_page(mpd, head->b_page); 1872 if (err < 0) 1873 return err; 1874 } 1875 return lblk < blocks; 1876 } 1877 1878 /* 1879 * mpage_map_buffers - update buffers corresponding to changed extent and 1880 * submit fully mapped pages for IO 1881 * 1882 * @mpd - description of extent to map, on return next extent to map 1883 * 1884 * Scan buffers corresponding to changed extent (we expect corresponding pages 1885 * to be already locked) and update buffer state according to new extent state. 1886 * We map delalloc buffers to their physical location, clear unwritten bits, 1887 * and mark buffers as uninit when we perform writes to unwritten extents 1888 * and do extent conversion after IO is finished. If the last page is not fully 1889 * mapped, we update @map to the next extent in the last page that needs 1890 * mapping. Otherwise we submit the page for IO. 1891 */ 1892 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 1893 { 1894 struct pagevec pvec; 1895 int nr_pages, i; 1896 struct inode *inode = mpd->inode; 1897 struct buffer_head *head, *bh; 1898 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 1899 pgoff_t start, end; 1900 ext4_lblk_t lblk; 1901 sector_t pblock; 1902 int err; 1903 1904 start = mpd->map.m_lblk >> bpp_bits; 1905 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 1906 lblk = start << bpp_bits; 1907 pblock = mpd->map.m_pblk; 1908 1909 pagevec_init(&pvec, 0); 1910 while (start <= end) { 1911 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 1912 PAGEVEC_SIZE); 1913 if (nr_pages == 0) 1914 break; 1915 for (i = 0; i < nr_pages; i++) { 1916 struct page *page = pvec.pages[i]; 1917 1918 if (page->index > end) 1919 break; 1920 /* Up to 'end' pages must be contiguous */ 1921 BUG_ON(page->index != start); 1922 bh = head = page_buffers(page); 1923 do { 1924 if (lblk < mpd->map.m_lblk) 1925 continue; 1926 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 1927 /* 1928 * Buffer after end of mapped extent. 1929 * Find next buffer in the page to map. 1930 */ 1931 mpd->map.m_len = 0; 1932 mpd->map.m_flags = 0; 1933 /* 1934 * FIXME: If dioread_nolock supports 1935 * blocksize < pagesize, we need to make 1936 * sure we add size mapped so far to 1937 * io_end->size as the following call 1938 * can submit the page for IO. 1939 */ 1940 err = mpage_process_page_bufs(mpd, head, 1941 bh, lblk); 1942 pagevec_release(&pvec); 1943 if (err > 0) 1944 err = 0; 1945 return err; 1946 } 1947 if (buffer_delay(bh)) { 1948 clear_buffer_delay(bh); 1949 bh->b_blocknr = pblock++; 1950 } 1951 clear_buffer_unwritten(bh); 1952 } while (lblk++, (bh = bh->b_this_page) != head); 1953 1954 /* 1955 * FIXME: This is going to break if dioread_nolock 1956 * supports blocksize < pagesize as we will try to 1957 * convert potentially unmapped parts of inode. 1958 */ 1959 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 1960 /* Page fully mapped - let IO run! */ 1961 err = mpage_submit_page(mpd, page); 1962 if (err < 0) { 1963 pagevec_release(&pvec); 1964 return err; 1965 } 1966 start++; 1967 } 1968 pagevec_release(&pvec); 1969 } 1970 /* Extent fully mapped and matches with page boundary. We are done. */ 1971 mpd->map.m_len = 0; 1972 mpd->map.m_flags = 0; 1973 return 0; 1974 } 1975 1976 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 1977 { 1978 struct inode *inode = mpd->inode; 1979 struct ext4_map_blocks *map = &mpd->map; 1980 int get_blocks_flags; 1981 int err, dioread_nolock; 1982 1983 trace_ext4_da_write_pages_extent(inode, map); 1984 /* 1985 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 1986 * to convert an unwritten extent to be initialized (in the case 1987 * where we have written into one or more preallocated blocks). It is 1988 * possible that we're going to need more metadata blocks than 1989 * previously reserved. However we must not fail because we're in 1990 * writeback and there is nothing we can do about it so it might result 1991 * in data loss. So use reserved blocks to allocate metadata if 1992 * possible. 1993 * 1994 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 1995 * the blocks in question are delalloc blocks. This indicates 1996 * that the blocks and quotas has already been checked when 1997 * the data was copied into the page cache. 1998 */ 1999 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2000 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2001 dioread_nolock = ext4_should_dioread_nolock(inode); 2002 if (dioread_nolock) 2003 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2004 if (map->m_flags & (1 << BH_Delay)) 2005 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2006 2007 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2008 if (err < 0) 2009 return err; 2010 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2011 if (!mpd->io_submit.io_end->handle && 2012 ext4_handle_valid(handle)) { 2013 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2014 handle->h_rsv_handle = NULL; 2015 } 2016 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2017 } 2018 2019 BUG_ON(map->m_len == 0); 2020 if (map->m_flags & EXT4_MAP_NEW) { 2021 struct block_device *bdev = inode->i_sb->s_bdev; 2022 int i; 2023 2024 for (i = 0; i < map->m_len; i++) 2025 unmap_underlying_metadata(bdev, map->m_pblk + i); 2026 } 2027 return 0; 2028 } 2029 2030 /* 2031 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2032 * mpd->len and submit pages underlying it for IO 2033 * 2034 * @handle - handle for journal operations 2035 * @mpd - extent to map 2036 * @give_up_on_write - we set this to true iff there is a fatal error and there 2037 * is no hope of writing the data. The caller should discard 2038 * dirty pages to avoid infinite loops. 2039 * 2040 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2041 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2042 * them to initialized or split the described range from larger unwritten 2043 * extent. Note that we need not map all the described range since allocation 2044 * can return less blocks or the range is covered by more unwritten extents. We 2045 * cannot map more because we are limited by reserved transaction credits. On 2046 * the other hand we always make sure that the last touched page is fully 2047 * mapped so that it can be written out (and thus forward progress is 2048 * guaranteed). After mapping we submit all mapped pages for IO. 2049 */ 2050 static int mpage_map_and_submit_extent(handle_t *handle, 2051 struct mpage_da_data *mpd, 2052 bool *give_up_on_write) 2053 { 2054 struct inode *inode = mpd->inode; 2055 struct ext4_map_blocks *map = &mpd->map; 2056 int err; 2057 loff_t disksize; 2058 int progress = 0; 2059 2060 mpd->io_submit.io_end->offset = 2061 ((loff_t)map->m_lblk) << inode->i_blkbits; 2062 do { 2063 err = mpage_map_one_extent(handle, mpd); 2064 if (err < 0) { 2065 struct super_block *sb = inode->i_sb; 2066 2067 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2068 goto invalidate_dirty_pages; 2069 /* 2070 * Let the uper layers retry transient errors. 2071 * In the case of ENOSPC, if ext4_count_free_blocks() 2072 * is non-zero, a commit should free up blocks. 2073 */ 2074 if ((err == -ENOMEM) || 2075 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2076 if (progress) 2077 goto update_disksize; 2078 return err; 2079 } 2080 ext4_msg(sb, KERN_CRIT, 2081 "Delayed block allocation failed for " 2082 "inode %lu at logical offset %llu with" 2083 " max blocks %u with error %d", 2084 inode->i_ino, 2085 (unsigned long long)map->m_lblk, 2086 (unsigned)map->m_len, -err); 2087 ext4_msg(sb, KERN_CRIT, 2088 "This should not happen!! Data will " 2089 "be lost\n"); 2090 if (err == -ENOSPC) 2091 ext4_print_free_blocks(inode); 2092 invalidate_dirty_pages: 2093 *give_up_on_write = true; 2094 return err; 2095 } 2096 progress = 1; 2097 /* 2098 * Update buffer state, submit mapped pages, and get us new 2099 * extent to map 2100 */ 2101 err = mpage_map_and_submit_buffers(mpd); 2102 if (err < 0) 2103 goto update_disksize; 2104 } while (map->m_len); 2105 2106 update_disksize: 2107 /* 2108 * Update on-disk size after IO is submitted. Races with 2109 * truncate are avoided by checking i_size under i_data_sem. 2110 */ 2111 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2112 if (disksize > EXT4_I(inode)->i_disksize) { 2113 int err2; 2114 loff_t i_size; 2115 2116 down_write(&EXT4_I(inode)->i_data_sem); 2117 i_size = i_size_read(inode); 2118 if (disksize > i_size) 2119 disksize = i_size; 2120 if (disksize > EXT4_I(inode)->i_disksize) 2121 EXT4_I(inode)->i_disksize = disksize; 2122 err2 = ext4_mark_inode_dirty(handle, inode); 2123 up_write(&EXT4_I(inode)->i_data_sem); 2124 if (err2) 2125 ext4_error(inode->i_sb, 2126 "Failed to mark inode %lu dirty", 2127 inode->i_ino); 2128 if (!err) 2129 err = err2; 2130 } 2131 return err; 2132 } 2133 2134 /* 2135 * Calculate the total number of credits to reserve for one writepages 2136 * iteration. This is called from ext4_writepages(). We map an extent of 2137 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2138 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2139 * bpp - 1 blocks in bpp different extents. 2140 */ 2141 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2142 { 2143 int bpp = ext4_journal_blocks_per_page(inode); 2144 2145 return ext4_meta_trans_blocks(inode, 2146 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2147 } 2148 2149 /* 2150 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2151 * and underlying extent to map 2152 * 2153 * @mpd - where to look for pages 2154 * 2155 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2156 * IO immediately. When we find a page which isn't mapped we start accumulating 2157 * extent of buffers underlying these pages that needs mapping (formed by 2158 * either delayed or unwritten buffers). We also lock the pages containing 2159 * these buffers. The extent found is returned in @mpd structure (starting at 2160 * mpd->lblk with length mpd->len blocks). 2161 * 2162 * Note that this function can attach bios to one io_end structure which are 2163 * neither logically nor physically contiguous. Although it may seem as an 2164 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2165 * case as we need to track IO to all buffers underlying a page in one io_end. 2166 */ 2167 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2168 { 2169 struct address_space *mapping = mpd->inode->i_mapping; 2170 struct pagevec pvec; 2171 unsigned int nr_pages; 2172 long left = mpd->wbc->nr_to_write; 2173 pgoff_t index = mpd->first_page; 2174 pgoff_t end = mpd->last_page; 2175 int tag; 2176 int i, err = 0; 2177 int blkbits = mpd->inode->i_blkbits; 2178 ext4_lblk_t lblk; 2179 struct buffer_head *head; 2180 2181 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2182 tag = PAGECACHE_TAG_TOWRITE; 2183 else 2184 tag = PAGECACHE_TAG_DIRTY; 2185 2186 pagevec_init(&pvec, 0); 2187 mpd->map.m_len = 0; 2188 mpd->next_page = index; 2189 while (index <= end) { 2190 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2191 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2192 if (nr_pages == 0) 2193 goto out; 2194 2195 for (i = 0; i < nr_pages; i++) { 2196 struct page *page = pvec.pages[i]; 2197 2198 /* 2199 * At this point, the page may be truncated or 2200 * invalidated (changing page->mapping to NULL), or 2201 * even swizzled back from swapper_space to tmpfs file 2202 * mapping. However, page->index will not change 2203 * because we have a reference on the page. 2204 */ 2205 if (page->index > end) 2206 goto out; 2207 2208 /* 2209 * Accumulated enough dirty pages? This doesn't apply 2210 * to WB_SYNC_ALL mode. For integrity sync we have to 2211 * keep going because someone may be concurrently 2212 * dirtying pages, and we might have synced a lot of 2213 * newly appeared dirty pages, but have not synced all 2214 * of the old dirty pages. 2215 */ 2216 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2217 goto out; 2218 2219 /* If we can't merge this page, we are done. */ 2220 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2221 goto out; 2222 2223 lock_page(page); 2224 /* 2225 * If the page is no longer dirty, or its mapping no 2226 * longer corresponds to inode we are writing (which 2227 * means it has been truncated or invalidated), or the 2228 * page is already under writeback and we are not doing 2229 * a data integrity writeback, skip the page 2230 */ 2231 if (!PageDirty(page) || 2232 (PageWriteback(page) && 2233 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2234 unlikely(page->mapping != mapping)) { 2235 unlock_page(page); 2236 continue; 2237 } 2238 2239 wait_on_page_writeback(page); 2240 BUG_ON(PageWriteback(page)); 2241 2242 if (mpd->map.m_len == 0) 2243 mpd->first_page = page->index; 2244 mpd->next_page = page->index + 1; 2245 /* Add all dirty buffers to mpd */ 2246 lblk = ((ext4_lblk_t)page->index) << 2247 (PAGE_CACHE_SHIFT - blkbits); 2248 head = page_buffers(page); 2249 err = mpage_process_page_bufs(mpd, head, head, lblk); 2250 if (err <= 0) 2251 goto out; 2252 err = 0; 2253 left--; 2254 } 2255 pagevec_release(&pvec); 2256 cond_resched(); 2257 } 2258 return 0; 2259 out: 2260 pagevec_release(&pvec); 2261 return err; 2262 } 2263 2264 static int __writepage(struct page *page, struct writeback_control *wbc, 2265 void *data) 2266 { 2267 struct address_space *mapping = data; 2268 int ret = ext4_writepage(page, wbc); 2269 mapping_set_error(mapping, ret); 2270 return ret; 2271 } 2272 2273 static int ext4_writepages(struct address_space *mapping, 2274 struct writeback_control *wbc) 2275 { 2276 pgoff_t writeback_index = 0; 2277 long nr_to_write = wbc->nr_to_write; 2278 int range_whole = 0; 2279 int cycled = 1; 2280 handle_t *handle = NULL; 2281 struct mpage_da_data mpd; 2282 struct inode *inode = mapping->host; 2283 int needed_blocks, rsv_blocks = 0, ret = 0; 2284 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2285 bool done; 2286 struct blk_plug plug; 2287 bool give_up_on_write = false; 2288 2289 trace_ext4_writepages(inode, wbc); 2290 2291 /* 2292 * No pages to write? This is mainly a kludge to avoid starting 2293 * a transaction for special inodes like journal inode on last iput() 2294 * because that could violate lock ordering on umount 2295 */ 2296 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2297 goto out_writepages; 2298 2299 if (ext4_should_journal_data(inode)) { 2300 struct blk_plug plug; 2301 2302 blk_start_plug(&plug); 2303 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2304 blk_finish_plug(&plug); 2305 goto out_writepages; 2306 } 2307 2308 /* 2309 * If the filesystem has aborted, it is read-only, so return 2310 * right away instead of dumping stack traces later on that 2311 * will obscure the real source of the problem. We test 2312 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2313 * the latter could be true if the filesystem is mounted 2314 * read-only, and in that case, ext4_writepages should 2315 * *never* be called, so if that ever happens, we would want 2316 * the stack trace. 2317 */ 2318 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2319 ret = -EROFS; 2320 goto out_writepages; 2321 } 2322 2323 if (ext4_should_dioread_nolock(inode)) { 2324 /* 2325 * We may need to convert up to one extent per block in 2326 * the page and we may dirty the inode. 2327 */ 2328 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2329 } 2330 2331 /* 2332 * If we have inline data and arrive here, it means that 2333 * we will soon create the block for the 1st page, so 2334 * we'd better clear the inline data here. 2335 */ 2336 if (ext4_has_inline_data(inode)) { 2337 /* Just inode will be modified... */ 2338 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2339 if (IS_ERR(handle)) { 2340 ret = PTR_ERR(handle); 2341 goto out_writepages; 2342 } 2343 BUG_ON(ext4_test_inode_state(inode, 2344 EXT4_STATE_MAY_INLINE_DATA)); 2345 ext4_destroy_inline_data(handle, inode); 2346 ext4_journal_stop(handle); 2347 } 2348 2349 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2350 range_whole = 1; 2351 2352 if (wbc->range_cyclic) { 2353 writeback_index = mapping->writeback_index; 2354 if (writeback_index) 2355 cycled = 0; 2356 mpd.first_page = writeback_index; 2357 mpd.last_page = -1; 2358 } else { 2359 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2360 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2361 } 2362 2363 mpd.inode = inode; 2364 mpd.wbc = wbc; 2365 ext4_io_submit_init(&mpd.io_submit, wbc); 2366 retry: 2367 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2368 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2369 done = false; 2370 blk_start_plug(&plug); 2371 while (!done && mpd.first_page <= mpd.last_page) { 2372 /* For each extent of pages we use new io_end */ 2373 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2374 if (!mpd.io_submit.io_end) { 2375 ret = -ENOMEM; 2376 break; 2377 } 2378 2379 /* 2380 * We have two constraints: We find one extent to map and we 2381 * must always write out whole page (makes a difference when 2382 * blocksize < pagesize) so that we don't block on IO when we 2383 * try to write out the rest of the page. Journalled mode is 2384 * not supported by delalloc. 2385 */ 2386 BUG_ON(ext4_should_journal_data(inode)); 2387 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2388 2389 /* start a new transaction */ 2390 handle = ext4_journal_start_with_reserve(inode, 2391 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2392 if (IS_ERR(handle)) { 2393 ret = PTR_ERR(handle); 2394 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2395 "%ld pages, ino %lu; err %d", __func__, 2396 wbc->nr_to_write, inode->i_ino, ret); 2397 /* Release allocated io_end */ 2398 ext4_put_io_end(mpd.io_submit.io_end); 2399 break; 2400 } 2401 2402 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2403 ret = mpage_prepare_extent_to_map(&mpd); 2404 if (!ret) { 2405 if (mpd.map.m_len) 2406 ret = mpage_map_and_submit_extent(handle, &mpd, 2407 &give_up_on_write); 2408 else { 2409 /* 2410 * We scanned the whole range (or exhausted 2411 * nr_to_write), submitted what was mapped and 2412 * didn't find anything needing mapping. We are 2413 * done. 2414 */ 2415 done = true; 2416 } 2417 } 2418 ext4_journal_stop(handle); 2419 /* Submit prepared bio */ 2420 ext4_io_submit(&mpd.io_submit); 2421 /* Unlock pages we didn't use */ 2422 mpage_release_unused_pages(&mpd, give_up_on_write); 2423 /* Drop our io_end reference we got from init */ 2424 ext4_put_io_end(mpd.io_submit.io_end); 2425 2426 if (ret == -ENOSPC && sbi->s_journal) { 2427 /* 2428 * Commit the transaction which would 2429 * free blocks released in the transaction 2430 * and try again 2431 */ 2432 jbd2_journal_force_commit_nested(sbi->s_journal); 2433 ret = 0; 2434 continue; 2435 } 2436 /* Fatal error - ENOMEM, EIO... */ 2437 if (ret) 2438 break; 2439 } 2440 blk_finish_plug(&plug); 2441 if (!ret && !cycled && wbc->nr_to_write > 0) { 2442 cycled = 1; 2443 mpd.last_page = writeback_index - 1; 2444 mpd.first_page = 0; 2445 goto retry; 2446 } 2447 2448 /* Update index */ 2449 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2450 /* 2451 * Set the writeback_index so that range_cyclic 2452 * mode will write it back later 2453 */ 2454 mapping->writeback_index = mpd.first_page; 2455 2456 out_writepages: 2457 trace_ext4_writepages_result(inode, wbc, ret, 2458 nr_to_write - wbc->nr_to_write); 2459 return ret; 2460 } 2461 2462 static int ext4_nonda_switch(struct super_block *sb) 2463 { 2464 s64 free_clusters, dirty_clusters; 2465 struct ext4_sb_info *sbi = EXT4_SB(sb); 2466 2467 /* 2468 * switch to non delalloc mode if we are running low 2469 * on free block. The free block accounting via percpu 2470 * counters can get slightly wrong with percpu_counter_batch getting 2471 * accumulated on each CPU without updating global counters 2472 * Delalloc need an accurate free block accounting. So switch 2473 * to non delalloc when we are near to error range. 2474 */ 2475 free_clusters = 2476 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2477 dirty_clusters = 2478 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2479 /* 2480 * Start pushing delalloc when 1/2 of free blocks are dirty. 2481 */ 2482 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2483 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2484 2485 if (2 * free_clusters < 3 * dirty_clusters || 2486 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2487 /* 2488 * free block count is less than 150% of dirty blocks 2489 * or free blocks is less than watermark 2490 */ 2491 return 1; 2492 } 2493 return 0; 2494 } 2495 2496 /* We always reserve for an inode update; the superblock could be there too */ 2497 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2498 { 2499 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 2500 EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) 2501 return 1; 2502 2503 if (pos + len <= 0x7fffffffULL) 2504 return 1; 2505 2506 /* We might need to update the superblock to set LARGE_FILE */ 2507 return 2; 2508 } 2509 2510 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2511 loff_t pos, unsigned len, unsigned flags, 2512 struct page **pagep, void **fsdata) 2513 { 2514 int ret, retries = 0; 2515 struct page *page; 2516 pgoff_t index; 2517 struct inode *inode = mapping->host; 2518 handle_t *handle; 2519 2520 index = pos >> PAGE_CACHE_SHIFT; 2521 2522 if (ext4_nonda_switch(inode->i_sb)) { 2523 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2524 return ext4_write_begin(file, mapping, pos, 2525 len, flags, pagep, fsdata); 2526 } 2527 *fsdata = (void *)0; 2528 trace_ext4_da_write_begin(inode, pos, len, flags); 2529 2530 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2531 ret = ext4_da_write_inline_data_begin(mapping, inode, 2532 pos, len, flags, 2533 pagep, fsdata); 2534 if (ret < 0) 2535 return ret; 2536 if (ret == 1) 2537 return 0; 2538 } 2539 2540 /* 2541 * grab_cache_page_write_begin() can take a long time if the 2542 * system is thrashing due to memory pressure, or if the page 2543 * is being written back. So grab it first before we start 2544 * the transaction handle. This also allows us to allocate 2545 * the page (if needed) without using GFP_NOFS. 2546 */ 2547 retry_grab: 2548 page = grab_cache_page_write_begin(mapping, index, flags); 2549 if (!page) 2550 return -ENOMEM; 2551 unlock_page(page); 2552 2553 /* 2554 * With delayed allocation, we don't log the i_disksize update 2555 * if there is delayed block allocation. But we still need 2556 * to journalling the i_disksize update if writes to the end 2557 * of file which has an already mapped buffer. 2558 */ 2559 retry_journal: 2560 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2561 ext4_da_write_credits(inode, pos, len)); 2562 if (IS_ERR(handle)) { 2563 page_cache_release(page); 2564 return PTR_ERR(handle); 2565 } 2566 2567 lock_page(page); 2568 if (page->mapping != mapping) { 2569 /* The page got truncated from under us */ 2570 unlock_page(page); 2571 page_cache_release(page); 2572 ext4_journal_stop(handle); 2573 goto retry_grab; 2574 } 2575 /* In case writeback began while the page was unlocked */ 2576 wait_for_stable_page(page); 2577 2578 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2579 if (ret < 0) { 2580 unlock_page(page); 2581 ext4_journal_stop(handle); 2582 /* 2583 * block_write_begin may have instantiated a few blocks 2584 * outside i_size. Trim these off again. Don't need 2585 * i_size_read because we hold i_mutex. 2586 */ 2587 if (pos + len > inode->i_size) 2588 ext4_truncate_failed_write(inode); 2589 2590 if (ret == -ENOSPC && 2591 ext4_should_retry_alloc(inode->i_sb, &retries)) 2592 goto retry_journal; 2593 2594 page_cache_release(page); 2595 return ret; 2596 } 2597 2598 *pagep = page; 2599 return ret; 2600 } 2601 2602 /* 2603 * Check if we should update i_disksize 2604 * when write to the end of file but not require block allocation 2605 */ 2606 static int ext4_da_should_update_i_disksize(struct page *page, 2607 unsigned long offset) 2608 { 2609 struct buffer_head *bh; 2610 struct inode *inode = page->mapping->host; 2611 unsigned int idx; 2612 int i; 2613 2614 bh = page_buffers(page); 2615 idx = offset >> inode->i_blkbits; 2616 2617 for (i = 0; i < idx; i++) 2618 bh = bh->b_this_page; 2619 2620 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2621 return 0; 2622 return 1; 2623 } 2624 2625 static int ext4_da_write_end(struct file *file, 2626 struct address_space *mapping, 2627 loff_t pos, unsigned len, unsigned copied, 2628 struct page *page, void *fsdata) 2629 { 2630 struct inode *inode = mapping->host; 2631 int ret = 0, ret2; 2632 handle_t *handle = ext4_journal_current_handle(); 2633 loff_t new_i_size; 2634 unsigned long start, end; 2635 int write_mode = (int)(unsigned long)fsdata; 2636 2637 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2638 return ext4_write_end(file, mapping, pos, 2639 len, copied, page, fsdata); 2640 2641 trace_ext4_da_write_end(inode, pos, len, copied); 2642 start = pos & (PAGE_CACHE_SIZE - 1); 2643 end = start + copied - 1; 2644 2645 /* 2646 * generic_write_end() will run mark_inode_dirty() if i_size 2647 * changes. So let's piggyback the i_disksize mark_inode_dirty 2648 * into that. 2649 */ 2650 new_i_size = pos + copied; 2651 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2652 if (ext4_has_inline_data(inode) || 2653 ext4_da_should_update_i_disksize(page, end)) { 2654 ext4_update_i_disksize(inode, new_i_size); 2655 /* We need to mark inode dirty even if 2656 * new_i_size is less that inode->i_size 2657 * bu greater than i_disksize.(hint delalloc) 2658 */ 2659 ext4_mark_inode_dirty(handle, inode); 2660 } 2661 } 2662 2663 if (write_mode != CONVERT_INLINE_DATA && 2664 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2665 ext4_has_inline_data(inode)) 2666 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2667 page); 2668 else 2669 ret2 = generic_write_end(file, mapping, pos, len, copied, 2670 page, fsdata); 2671 2672 copied = ret2; 2673 if (ret2 < 0) 2674 ret = ret2; 2675 ret2 = ext4_journal_stop(handle); 2676 if (!ret) 2677 ret = ret2; 2678 2679 return ret ? ret : copied; 2680 } 2681 2682 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2683 unsigned int length) 2684 { 2685 /* 2686 * Drop reserved blocks 2687 */ 2688 BUG_ON(!PageLocked(page)); 2689 if (!page_has_buffers(page)) 2690 goto out; 2691 2692 ext4_da_page_release_reservation(page, offset, length); 2693 2694 out: 2695 ext4_invalidatepage(page, offset, length); 2696 2697 return; 2698 } 2699 2700 /* 2701 * Force all delayed allocation blocks to be allocated for a given inode. 2702 */ 2703 int ext4_alloc_da_blocks(struct inode *inode) 2704 { 2705 trace_ext4_alloc_da_blocks(inode); 2706 2707 if (!EXT4_I(inode)->i_reserved_data_blocks) 2708 return 0; 2709 2710 /* 2711 * We do something simple for now. The filemap_flush() will 2712 * also start triggering a write of the data blocks, which is 2713 * not strictly speaking necessary (and for users of 2714 * laptop_mode, not even desirable). However, to do otherwise 2715 * would require replicating code paths in: 2716 * 2717 * ext4_writepages() -> 2718 * write_cache_pages() ---> (via passed in callback function) 2719 * __mpage_da_writepage() --> 2720 * mpage_add_bh_to_extent() 2721 * mpage_da_map_blocks() 2722 * 2723 * The problem is that write_cache_pages(), located in 2724 * mm/page-writeback.c, marks pages clean in preparation for 2725 * doing I/O, which is not desirable if we're not planning on 2726 * doing I/O at all. 2727 * 2728 * We could call write_cache_pages(), and then redirty all of 2729 * the pages by calling redirty_page_for_writepage() but that 2730 * would be ugly in the extreme. So instead we would need to 2731 * replicate parts of the code in the above functions, 2732 * simplifying them because we wouldn't actually intend to 2733 * write out the pages, but rather only collect contiguous 2734 * logical block extents, call the multi-block allocator, and 2735 * then update the buffer heads with the block allocations. 2736 * 2737 * For now, though, we'll cheat by calling filemap_flush(), 2738 * which will map the blocks, and start the I/O, but not 2739 * actually wait for the I/O to complete. 2740 */ 2741 return filemap_flush(inode->i_mapping); 2742 } 2743 2744 /* 2745 * bmap() is special. It gets used by applications such as lilo and by 2746 * the swapper to find the on-disk block of a specific piece of data. 2747 * 2748 * Naturally, this is dangerous if the block concerned is still in the 2749 * journal. If somebody makes a swapfile on an ext4 data-journaling 2750 * filesystem and enables swap, then they may get a nasty shock when the 2751 * data getting swapped to that swapfile suddenly gets overwritten by 2752 * the original zero's written out previously to the journal and 2753 * awaiting writeback in the kernel's buffer cache. 2754 * 2755 * So, if we see any bmap calls here on a modified, data-journaled file, 2756 * take extra steps to flush any blocks which might be in the cache. 2757 */ 2758 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2759 { 2760 struct inode *inode = mapping->host; 2761 journal_t *journal; 2762 int err; 2763 2764 /* 2765 * We can get here for an inline file via the FIBMAP ioctl 2766 */ 2767 if (ext4_has_inline_data(inode)) 2768 return 0; 2769 2770 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2771 test_opt(inode->i_sb, DELALLOC)) { 2772 /* 2773 * With delalloc we want to sync the file 2774 * so that we can make sure we allocate 2775 * blocks for file 2776 */ 2777 filemap_write_and_wait(mapping); 2778 } 2779 2780 if (EXT4_JOURNAL(inode) && 2781 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2782 /* 2783 * This is a REALLY heavyweight approach, but the use of 2784 * bmap on dirty files is expected to be extremely rare: 2785 * only if we run lilo or swapon on a freshly made file 2786 * do we expect this to happen. 2787 * 2788 * (bmap requires CAP_SYS_RAWIO so this does not 2789 * represent an unprivileged user DOS attack --- we'd be 2790 * in trouble if mortal users could trigger this path at 2791 * will.) 2792 * 2793 * NB. EXT4_STATE_JDATA is not set on files other than 2794 * regular files. If somebody wants to bmap a directory 2795 * or symlink and gets confused because the buffer 2796 * hasn't yet been flushed to disk, they deserve 2797 * everything they get. 2798 */ 2799 2800 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2801 journal = EXT4_JOURNAL(inode); 2802 jbd2_journal_lock_updates(journal); 2803 err = jbd2_journal_flush(journal); 2804 jbd2_journal_unlock_updates(journal); 2805 2806 if (err) 2807 return 0; 2808 } 2809 2810 return generic_block_bmap(mapping, block, ext4_get_block); 2811 } 2812 2813 static int ext4_readpage(struct file *file, struct page *page) 2814 { 2815 int ret = -EAGAIN; 2816 struct inode *inode = page->mapping->host; 2817 2818 trace_ext4_readpage(page); 2819 2820 if (ext4_has_inline_data(inode)) 2821 ret = ext4_readpage_inline(inode, page); 2822 2823 if (ret == -EAGAIN) 2824 return mpage_readpage(page, ext4_get_block); 2825 2826 return ret; 2827 } 2828 2829 static int 2830 ext4_readpages(struct file *file, struct address_space *mapping, 2831 struct list_head *pages, unsigned nr_pages) 2832 { 2833 struct inode *inode = mapping->host; 2834 2835 /* If the file has inline data, no need to do readpages. */ 2836 if (ext4_has_inline_data(inode)) 2837 return 0; 2838 2839 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2840 } 2841 2842 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2843 unsigned int length) 2844 { 2845 trace_ext4_invalidatepage(page, offset, length); 2846 2847 /* No journalling happens on data buffers when this function is used */ 2848 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2849 2850 block_invalidatepage(page, offset, length); 2851 } 2852 2853 static int __ext4_journalled_invalidatepage(struct page *page, 2854 unsigned int offset, 2855 unsigned int length) 2856 { 2857 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2858 2859 trace_ext4_journalled_invalidatepage(page, offset, length); 2860 2861 /* 2862 * If it's a full truncate we just forget about the pending dirtying 2863 */ 2864 if (offset == 0 && length == PAGE_CACHE_SIZE) 2865 ClearPageChecked(page); 2866 2867 return jbd2_journal_invalidatepage(journal, page, offset, length); 2868 } 2869 2870 /* Wrapper for aops... */ 2871 static void ext4_journalled_invalidatepage(struct page *page, 2872 unsigned int offset, 2873 unsigned int length) 2874 { 2875 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2876 } 2877 2878 static int ext4_releasepage(struct page *page, gfp_t wait) 2879 { 2880 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2881 2882 trace_ext4_releasepage(page); 2883 2884 /* Page has dirty journalled data -> cannot release */ 2885 if (PageChecked(page)) 2886 return 0; 2887 if (journal) 2888 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2889 else 2890 return try_to_free_buffers(page); 2891 } 2892 2893 /* 2894 * ext4_get_block used when preparing for a DIO write or buffer write. 2895 * We allocate an uinitialized extent if blocks haven't been allocated. 2896 * The extent will be converted to initialized after the IO is complete. 2897 */ 2898 int ext4_get_block_write(struct inode *inode, sector_t iblock, 2899 struct buffer_head *bh_result, int create) 2900 { 2901 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2902 inode->i_ino, create); 2903 return _ext4_get_block(inode, iblock, bh_result, 2904 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2905 } 2906 2907 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2908 struct buffer_head *bh_result, int create) 2909 { 2910 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 2911 inode->i_ino, create); 2912 return _ext4_get_block(inode, iblock, bh_result, 2913 EXT4_GET_BLOCKS_NO_LOCK); 2914 } 2915 2916 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2917 ssize_t size, void *private) 2918 { 2919 ext4_io_end_t *io_end = iocb->private; 2920 2921 /* if not async direct IO just return */ 2922 if (!io_end) 2923 return; 2924 2925 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2926 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2927 iocb->private, io_end->inode->i_ino, iocb, offset, 2928 size); 2929 2930 iocb->private = NULL; 2931 io_end->offset = offset; 2932 io_end->size = size; 2933 ext4_put_io_end(io_end); 2934 } 2935 2936 /* 2937 * For ext4 extent files, ext4 will do direct-io write to holes, 2938 * preallocated extents, and those write extend the file, no need to 2939 * fall back to buffered IO. 2940 * 2941 * For holes, we fallocate those blocks, mark them as unwritten 2942 * If those blocks were preallocated, we mark sure they are split, but 2943 * still keep the range to write as unwritten. 2944 * 2945 * The unwritten extents will be converted to written when DIO is completed. 2946 * For async direct IO, since the IO may still pending when return, we 2947 * set up an end_io call back function, which will do the conversion 2948 * when async direct IO completed. 2949 * 2950 * If the O_DIRECT write will extend the file then add this inode to the 2951 * orphan list. So recovery will truncate it back to the original size 2952 * if the machine crashes during the write. 2953 * 2954 */ 2955 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2956 struct iov_iter *iter, loff_t offset) 2957 { 2958 struct file *file = iocb->ki_filp; 2959 struct inode *inode = file->f_mapping->host; 2960 ssize_t ret; 2961 size_t count = iov_iter_count(iter); 2962 int overwrite = 0; 2963 get_block_t *get_block_func = NULL; 2964 int dio_flags = 0; 2965 loff_t final_size = offset + count; 2966 ext4_io_end_t *io_end = NULL; 2967 2968 /* Use the old path for reads and writes beyond i_size. */ 2969 if (rw != WRITE || final_size > inode->i_size) 2970 return ext4_ind_direct_IO(rw, iocb, iter, offset); 2971 2972 BUG_ON(iocb->private == NULL); 2973 2974 /* 2975 * Make all waiters for direct IO properly wait also for extent 2976 * conversion. This also disallows race between truncate() and 2977 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 2978 */ 2979 if (rw == WRITE) 2980 atomic_inc(&inode->i_dio_count); 2981 2982 /* If we do a overwrite dio, i_mutex locking can be released */ 2983 overwrite = *((int *)iocb->private); 2984 2985 if (overwrite) { 2986 down_read(&EXT4_I(inode)->i_data_sem); 2987 mutex_unlock(&inode->i_mutex); 2988 } 2989 2990 /* 2991 * We could direct write to holes and fallocate. 2992 * 2993 * Allocated blocks to fill the hole are marked as 2994 * unwritten to prevent parallel buffered read to expose 2995 * the stale data before DIO complete the data IO. 2996 * 2997 * As to previously fallocated extents, ext4 get_block will 2998 * just simply mark the buffer mapped but still keep the 2999 * extents unwritten. 3000 * 3001 * For non AIO case, we will convert those unwritten extents 3002 * to written after return back from blockdev_direct_IO. 3003 * 3004 * For async DIO, the conversion needs to be deferred when the 3005 * IO is completed. The ext4 end_io callback function will be 3006 * called to take care of the conversion work. Here for async 3007 * case, we allocate an io_end structure to hook to the iocb. 3008 */ 3009 iocb->private = NULL; 3010 ext4_inode_aio_set(inode, NULL); 3011 if (!is_sync_kiocb(iocb)) { 3012 io_end = ext4_init_io_end(inode, GFP_NOFS); 3013 if (!io_end) { 3014 ret = -ENOMEM; 3015 goto retake_lock; 3016 } 3017 /* 3018 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3019 */ 3020 iocb->private = ext4_get_io_end(io_end); 3021 /* 3022 * we save the io structure for current async direct 3023 * IO, so that later ext4_map_blocks() could flag the 3024 * io structure whether there is a unwritten extents 3025 * needs to be converted when IO is completed. 3026 */ 3027 ext4_inode_aio_set(inode, io_end); 3028 } 3029 3030 if (overwrite) { 3031 get_block_func = ext4_get_block_write_nolock; 3032 } else { 3033 get_block_func = ext4_get_block_write; 3034 dio_flags = DIO_LOCKING; 3035 } 3036 if (IS_DAX(inode)) 3037 ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func, 3038 ext4_end_io_dio, dio_flags); 3039 else 3040 ret = __blockdev_direct_IO(rw, iocb, inode, 3041 inode->i_sb->s_bdev, iter, offset, 3042 get_block_func, 3043 ext4_end_io_dio, NULL, dio_flags); 3044 3045 /* 3046 * Put our reference to io_end. This can free the io_end structure e.g. 3047 * in sync IO case or in case of error. It can even perform extent 3048 * conversion if all bios we submitted finished before we got here. 3049 * Note that in that case iocb->private can be already set to NULL 3050 * here. 3051 */ 3052 if (io_end) { 3053 ext4_inode_aio_set(inode, NULL); 3054 ext4_put_io_end(io_end); 3055 /* 3056 * When no IO was submitted ext4_end_io_dio() was not 3057 * called so we have to put iocb's reference. 3058 */ 3059 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3060 WARN_ON(iocb->private != io_end); 3061 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3062 ext4_put_io_end(io_end); 3063 iocb->private = NULL; 3064 } 3065 } 3066 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3067 EXT4_STATE_DIO_UNWRITTEN)) { 3068 int err; 3069 /* 3070 * for non AIO case, since the IO is already 3071 * completed, we could do the conversion right here 3072 */ 3073 err = ext4_convert_unwritten_extents(NULL, inode, 3074 offset, ret); 3075 if (err < 0) 3076 ret = err; 3077 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3078 } 3079 3080 retake_lock: 3081 if (rw == WRITE) 3082 inode_dio_done(inode); 3083 /* take i_mutex locking again if we do a ovewrite dio */ 3084 if (overwrite) { 3085 up_read(&EXT4_I(inode)->i_data_sem); 3086 mutex_lock(&inode->i_mutex); 3087 } 3088 3089 return ret; 3090 } 3091 3092 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3093 struct iov_iter *iter, loff_t offset) 3094 { 3095 struct file *file = iocb->ki_filp; 3096 struct inode *inode = file->f_mapping->host; 3097 size_t count = iov_iter_count(iter); 3098 ssize_t ret; 3099 3100 /* 3101 * If we are doing data journalling we don't support O_DIRECT 3102 */ 3103 if (ext4_should_journal_data(inode)) 3104 return 0; 3105 3106 /* Let buffer I/O handle the inline data case. */ 3107 if (ext4_has_inline_data(inode)) 3108 return 0; 3109 3110 trace_ext4_direct_IO_enter(inode, offset, count, rw); 3111 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3112 ret = ext4_ext_direct_IO(rw, iocb, iter, offset); 3113 else 3114 ret = ext4_ind_direct_IO(rw, iocb, iter, offset); 3115 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret); 3116 return ret; 3117 } 3118 3119 /* 3120 * Pages can be marked dirty completely asynchronously from ext4's journalling 3121 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3122 * much here because ->set_page_dirty is called under VFS locks. The page is 3123 * not necessarily locked. 3124 * 3125 * We cannot just dirty the page and leave attached buffers clean, because the 3126 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3127 * or jbddirty because all the journalling code will explode. 3128 * 3129 * So what we do is to mark the page "pending dirty" and next time writepage 3130 * is called, propagate that into the buffers appropriately. 3131 */ 3132 static int ext4_journalled_set_page_dirty(struct page *page) 3133 { 3134 SetPageChecked(page); 3135 return __set_page_dirty_nobuffers(page); 3136 } 3137 3138 static const struct address_space_operations ext4_aops = { 3139 .readpage = ext4_readpage, 3140 .readpages = ext4_readpages, 3141 .writepage = ext4_writepage, 3142 .writepages = ext4_writepages, 3143 .write_begin = ext4_write_begin, 3144 .write_end = ext4_write_end, 3145 .bmap = ext4_bmap, 3146 .invalidatepage = ext4_invalidatepage, 3147 .releasepage = ext4_releasepage, 3148 .direct_IO = ext4_direct_IO, 3149 .migratepage = buffer_migrate_page, 3150 .is_partially_uptodate = block_is_partially_uptodate, 3151 .error_remove_page = generic_error_remove_page, 3152 }; 3153 3154 static const struct address_space_operations ext4_journalled_aops = { 3155 .readpage = ext4_readpage, 3156 .readpages = ext4_readpages, 3157 .writepage = ext4_writepage, 3158 .writepages = ext4_writepages, 3159 .write_begin = ext4_write_begin, 3160 .write_end = ext4_journalled_write_end, 3161 .set_page_dirty = ext4_journalled_set_page_dirty, 3162 .bmap = ext4_bmap, 3163 .invalidatepage = ext4_journalled_invalidatepage, 3164 .releasepage = ext4_releasepage, 3165 .direct_IO = ext4_direct_IO, 3166 .is_partially_uptodate = block_is_partially_uptodate, 3167 .error_remove_page = generic_error_remove_page, 3168 }; 3169 3170 static const struct address_space_operations ext4_da_aops = { 3171 .readpage = ext4_readpage, 3172 .readpages = ext4_readpages, 3173 .writepage = ext4_writepage, 3174 .writepages = ext4_writepages, 3175 .write_begin = ext4_da_write_begin, 3176 .write_end = ext4_da_write_end, 3177 .bmap = ext4_bmap, 3178 .invalidatepage = ext4_da_invalidatepage, 3179 .releasepage = ext4_releasepage, 3180 .direct_IO = ext4_direct_IO, 3181 .migratepage = buffer_migrate_page, 3182 .is_partially_uptodate = block_is_partially_uptodate, 3183 .error_remove_page = generic_error_remove_page, 3184 }; 3185 3186 void ext4_set_aops(struct inode *inode) 3187 { 3188 switch (ext4_inode_journal_mode(inode)) { 3189 case EXT4_INODE_ORDERED_DATA_MODE: 3190 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3191 break; 3192 case EXT4_INODE_WRITEBACK_DATA_MODE: 3193 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3194 break; 3195 case EXT4_INODE_JOURNAL_DATA_MODE: 3196 inode->i_mapping->a_ops = &ext4_journalled_aops; 3197 return; 3198 default: 3199 BUG(); 3200 } 3201 if (test_opt(inode->i_sb, DELALLOC)) 3202 inode->i_mapping->a_ops = &ext4_da_aops; 3203 else 3204 inode->i_mapping->a_ops = &ext4_aops; 3205 } 3206 3207 static int __ext4_block_zero_page_range(handle_t *handle, 3208 struct address_space *mapping, loff_t from, loff_t length) 3209 { 3210 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3211 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3212 unsigned blocksize, pos; 3213 ext4_lblk_t iblock; 3214 struct inode *inode = mapping->host; 3215 struct buffer_head *bh; 3216 struct page *page; 3217 int err = 0; 3218 3219 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3220 mapping_gfp_mask(mapping) & ~__GFP_FS); 3221 if (!page) 3222 return -ENOMEM; 3223 3224 blocksize = inode->i_sb->s_blocksize; 3225 3226 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3227 3228 if (!page_has_buffers(page)) 3229 create_empty_buffers(page, blocksize, 0); 3230 3231 /* Find the buffer that contains "offset" */ 3232 bh = page_buffers(page); 3233 pos = blocksize; 3234 while (offset >= pos) { 3235 bh = bh->b_this_page; 3236 iblock++; 3237 pos += blocksize; 3238 } 3239 if (buffer_freed(bh)) { 3240 BUFFER_TRACE(bh, "freed: skip"); 3241 goto unlock; 3242 } 3243 if (!buffer_mapped(bh)) { 3244 BUFFER_TRACE(bh, "unmapped"); 3245 ext4_get_block(inode, iblock, bh, 0); 3246 /* unmapped? It's a hole - nothing to do */ 3247 if (!buffer_mapped(bh)) { 3248 BUFFER_TRACE(bh, "still unmapped"); 3249 goto unlock; 3250 } 3251 } 3252 3253 /* Ok, it's mapped. Make sure it's up-to-date */ 3254 if (PageUptodate(page)) 3255 set_buffer_uptodate(bh); 3256 3257 if (!buffer_uptodate(bh)) { 3258 err = -EIO; 3259 ll_rw_block(READ, 1, &bh); 3260 wait_on_buffer(bh); 3261 /* Uhhuh. Read error. Complain and punt. */ 3262 if (!buffer_uptodate(bh)) 3263 goto unlock; 3264 } 3265 if (ext4_should_journal_data(inode)) { 3266 BUFFER_TRACE(bh, "get write access"); 3267 err = ext4_journal_get_write_access(handle, bh); 3268 if (err) 3269 goto unlock; 3270 } 3271 zero_user(page, offset, length); 3272 BUFFER_TRACE(bh, "zeroed end of block"); 3273 3274 if (ext4_should_journal_data(inode)) { 3275 err = ext4_handle_dirty_metadata(handle, inode, bh); 3276 } else { 3277 err = 0; 3278 mark_buffer_dirty(bh); 3279 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3280 err = ext4_jbd2_file_inode(handle, inode); 3281 } 3282 3283 unlock: 3284 unlock_page(page); 3285 page_cache_release(page); 3286 return err; 3287 } 3288 3289 /* 3290 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3291 * starting from file offset 'from'. The range to be zero'd must 3292 * be contained with in one block. If the specified range exceeds 3293 * the end of the block it will be shortened to end of the block 3294 * that cooresponds to 'from' 3295 */ 3296 static int ext4_block_zero_page_range(handle_t *handle, 3297 struct address_space *mapping, loff_t from, loff_t length) 3298 { 3299 struct inode *inode = mapping->host; 3300 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3301 unsigned blocksize = inode->i_sb->s_blocksize; 3302 unsigned max = blocksize - (offset & (blocksize - 1)); 3303 3304 /* 3305 * correct length if it does not fall between 3306 * 'from' and the end of the block 3307 */ 3308 if (length > max || length < 0) 3309 length = max; 3310 3311 if (IS_DAX(inode)) 3312 return dax_zero_page_range(inode, from, length, ext4_get_block); 3313 return __ext4_block_zero_page_range(handle, mapping, from, length); 3314 } 3315 3316 /* 3317 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3318 * up to the end of the block which corresponds to `from'. 3319 * This required during truncate. We need to physically zero the tail end 3320 * of that block so it doesn't yield old data if the file is later grown. 3321 */ 3322 static int ext4_block_truncate_page(handle_t *handle, 3323 struct address_space *mapping, loff_t from) 3324 { 3325 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3326 unsigned length; 3327 unsigned blocksize; 3328 struct inode *inode = mapping->host; 3329 3330 blocksize = inode->i_sb->s_blocksize; 3331 length = blocksize - (offset & (blocksize - 1)); 3332 3333 return ext4_block_zero_page_range(handle, mapping, from, length); 3334 } 3335 3336 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3337 loff_t lstart, loff_t length) 3338 { 3339 struct super_block *sb = inode->i_sb; 3340 struct address_space *mapping = inode->i_mapping; 3341 unsigned partial_start, partial_end; 3342 ext4_fsblk_t start, end; 3343 loff_t byte_end = (lstart + length - 1); 3344 int err = 0; 3345 3346 partial_start = lstart & (sb->s_blocksize - 1); 3347 partial_end = byte_end & (sb->s_blocksize - 1); 3348 3349 start = lstart >> sb->s_blocksize_bits; 3350 end = byte_end >> sb->s_blocksize_bits; 3351 3352 /* Handle partial zero within the single block */ 3353 if (start == end && 3354 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3355 err = ext4_block_zero_page_range(handle, mapping, 3356 lstart, length); 3357 return err; 3358 } 3359 /* Handle partial zero out on the start of the range */ 3360 if (partial_start) { 3361 err = ext4_block_zero_page_range(handle, mapping, 3362 lstart, sb->s_blocksize); 3363 if (err) 3364 return err; 3365 } 3366 /* Handle partial zero out on the end of the range */ 3367 if (partial_end != sb->s_blocksize - 1) 3368 err = ext4_block_zero_page_range(handle, mapping, 3369 byte_end - partial_end, 3370 partial_end + 1); 3371 return err; 3372 } 3373 3374 int ext4_can_truncate(struct inode *inode) 3375 { 3376 if (S_ISREG(inode->i_mode)) 3377 return 1; 3378 if (S_ISDIR(inode->i_mode)) 3379 return 1; 3380 if (S_ISLNK(inode->i_mode)) 3381 return !ext4_inode_is_fast_symlink(inode); 3382 return 0; 3383 } 3384 3385 /* 3386 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3387 * associated with the given offset and length 3388 * 3389 * @inode: File inode 3390 * @offset: The offset where the hole will begin 3391 * @len: The length of the hole 3392 * 3393 * Returns: 0 on success or negative on failure 3394 */ 3395 3396 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3397 { 3398 struct super_block *sb = inode->i_sb; 3399 ext4_lblk_t first_block, stop_block; 3400 struct address_space *mapping = inode->i_mapping; 3401 loff_t first_block_offset, last_block_offset; 3402 handle_t *handle; 3403 unsigned int credits; 3404 int ret = 0; 3405 3406 if (!S_ISREG(inode->i_mode)) 3407 return -EOPNOTSUPP; 3408 3409 trace_ext4_punch_hole(inode, offset, length, 0); 3410 3411 /* 3412 * Write out all dirty pages to avoid race conditions 3413 * Then release them. 3414 */ 3415 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3416 ret = filemap_write_and_wait_range(mapping, offset, 3417 offset + length - 1); 3418 if (ret) 3419 return ret; 3420 } 3421 3422 mutex_lock(&inode->i_mutex); 3423 3424 /* No need to punch hole beyond i_size */ 3425 if (offset >= inode->i_size) 3426 goto out_mutex; 3427 3428 /* 3429 * If the hole extends beyond i_size, set the hole 3430 * to end after the page that contains i_size 3431 */ 3432 if (offset + length > inode->i_size) { 3433 length = inode->i_size + 3434 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3435 offset; 3436 } 3437 3438 if (offset & (sb->s_blocksize - 1) || 3439 (offset + length) & (sb->s_blocksize - 1)) { 3440 /* 3441 * Attach jinode to inode for jbd2 if we do any zeroing of 3442 * partial block 3443 */ 3444 ret = ext4_inode_attach_jinode(inode); 3445 if (ret < 0) 3446 goto out_mutex; 3447 3448 } 3449 3450 first_block_offset = round_up(offset, sb->s_blocksize); 3451 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3452 3453 /* Now release the pages and zero block aligned part of pages*/ 3454 if (last_block_offset > first_block_offset) 3455 truncate_pagecache_range(inode, first_block_offset, 3456 last_block_offset); 3457 3458 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3459 ext4_inode_block_unlocked_dio(inode); 3460 inode_dio_wait(inode); 3461 3462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3463 credits = ext4_writepage_trans_blocks(inode); 3464 else 3465 credits = ext4_blocks_for_truncate(inode); 3466 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3467 if (IS_ERR(handle)) { 3468 ret = PTR_ERR(handle); 3469 ext4_std_error(sb, ret); 3470 goto out_dio; 3471 } 3472 3473 ret = ext4_zero_partial_blocks(handle, inode, offset, 3474 length); 3475 if (ret) 3476 goto out_stop; 3477 3478 first_block = (offset + sb->s_blocksize - 1) >> 3479 EXT4_BLOCK_SIZE_BITS(sb); 3480 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3481 3482 /* If there are no blocks to remove, return now */ 3483 if (first_block >= stop_block) 3484 goto out_stop; 3485 3486 down_write(&EXT4_I(inode)->i_data_sem); 3487 ext4_discard_preallocations(inode); 3488 3489 ret = ext4_es_remove_extent(inode, first_block, 3490 stop_block - first_block); 3491 if (ret) { 3492 up_write(&EXT4_I(inode)->i_data_sem); 3493 goto out_stop; 3494 } 3495 3496 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3497 ret = ext4_ext_remove_space(inode, first_block, 3498 stop_block - 1); 3499 else 3500 ret = ext4_ind_remove_space(handle, inode, first_block, 3501 stop_block); 3502 3503 up_write(&EXT4_I(inode)->i_data_sem); 3504 if (IS_SYNC(inode)) 3505 ext4_handle_sync(handle); 3506 3507 /* Now release the pages again to reduce race window */ 3508 if (last_block_offset > first_block_offset) 3509 truncate_pagecache_range(inode, first_block_offset, 3510 last_block_offset); 3511 3512 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3513 ext4_mark_inode_dirty(handle, inode); 3514 out_stop: 3515 ext4_journal_stop(handle); 3516 out_dio: 3517 ext4_inode_resume_unlocked_dio(inode); 3518 out_mutex: 3519 mutex_unlock(&inode->i_mutex); 3520 return ret; 3521 } 3522 3523 int ext4_inode_attach_jinode(struct inode *inode) 3524 { 3525 struct ext4_inode_info *ei = EXT4_I(inode); 3526 struct jbd2_inode *jinode; 3527 3528 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3529 return 0; 3530 3531 jinode = jbd2_alloc_inode(GFP_KERNEL); 3532 spin_lock(&inode->i_lock); 3533 if (!ei->jinode) { 3534 if (!jinode) { 3535 spin_unlock(&inode->i_lock); 3536 return -ENOMEM; 3537 } 3538 ei->jinode = jinode; 3539 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3540 jinode = NULL; 3541 } 3542 spin_unlock(&inode->i_lock); 3543 if (unlikely(jinode != NULL)) 3544 jbd2_free_inode(jinode); 3545 return 0; 3546 } 3547 3548 /* 3549 * ext4_truncate() 3550 * 3551 * We block out ext4_get_block() block instantiations across the entire 3552 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3553 * simultaneously on behalf of the same inode. 3554 * 3555 * As we work through the truncate and commit bits of it to the journal there 3556 * is one core, guiding principle: the file's tree must always be consistent on 3557 * disk. We must be able to restart the truncate after a crash. 3558 * 3559 * The file's tree may be transiently inconsistent in memory (although it 3560 * probably isn't), but whenever we close off and commit a journal transaction, 3561 * the contents of (the filesystem + the journal) must be consistent and 3562 * restartable. It's pretty simple, really: bottom up, right to left (although 3563 * left-to-right works OK too). 3564 * 3565 * Note that at recovery time, journal replay occurs *before* the restart of 3566 * truncate against the orphan inode list. 3567 * 3568 * The committed inode has the new, desired i_size (which is the same as 3569 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3570 * that this inode's truncate did not complete and it will again call 3571 * ext4_truncate() to have another go. So there will be instantiated blocks 3572 * to the right of the truncation point in a crashed ext4 filesystem. But 3573 * that's fine - as long as they are linked from the inode, the post-crash 3574 * ext4_truncate() run will find them and release them. 3575 */ 3576 void ext4_truncate(struct inode *inode) 3577 { 3578 struct ext4_inode_info *ei = EXT4_I(inode); 3579 unsigned int credits; 3580 handle_t *handle; 3581 struct address_space *mapping = inode->i_mapping; 3582 3583 /* 3584 * There is a possibility that we're either freeing the inode 3585 * or it's a completely new inode. In those cases we might not 3586 * have i_mutex locked because it's not necessary. 3587 */ 3588 if (!(inode->i_state & (I_NEW|I_FREEING))) 3589 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3590 trace_ext4_truncate_enter(inode); 3591 3592 if (!ext4_can_truncate(inode)) 3593 return; 3594 3595 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3596 3597 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3598 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3599 3600 if (ext4_has_inline_data(inode)) { 3601 int has_inline = 1; 3602 3603 ext4_inline_data_truncate(inode, &has_inline); 3604 if (has_inline) 3605 return; 3606 } 3607 3608 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3609 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3610 if (ext4_inode_attach_jinode(inode) < 0) 3611 return; 3612 } 3613 3614 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3615 credits = ext4_writepage_trans_blocks(inode); 3616 else 3617 credits = ext4_blocks_for_truncate(inode); 3618 3619 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3620 if (IS_ERR(handle)) { 3621 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3622 return; 3623 } 3624 3625 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3626 ext4_block_truncate_page(handle, mapping, inode->i_size); 3627 3628 /* 3629 * We add the inode to the orphan list, so that if this 3630 * truncate spans multiple transactions, and we crash, we will 3631 * resume the truncate when the filesystem recovers. It also 3632 * marks the inode dirty, to catch the new size. 3633 * 3634 * Implication: the file must always be in a sane, consistent 3635 * truncatable state while each transaction commits. 3636 */ 3637 if (ext4_orphan_add(handle, inode)) 3638 goto out_stop; 3639 3640 down_write(&EXT4_I(inode)->i_data_sem); 3641 3642 ext4_discard_preallocations(inode); 3643 3644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3645 ext4_ext_truncate(handle, inode); 3646 else 3647 ext4_ind_truncate(handle, inode); 3648 3649 up_write(&ei->i_data_sem); 3650 3651 if (IS_SYNC(inode)) 3652 ext4_handle_sync(handle); 3653 3654 out_stop: 3655 /* 3656 * If this was a simple ftruncate() and the file will remain alive, 3657 * then we need to clear up the orphan record which we created above. 3658 * However, if this was a real unlink then we were called by 3659 * ext4_evict_inode(), and we allow that function to clean up the 3660 * orphan info for us. 3661 */ 3662 if (inode->i_nlink) 3663 ext4_orphan_del(handle, inode); 3664 3665 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3666 ext4_mark_inode_dirty(handle, inode); 3667 ext4_journal_stop(handle); 3668 3669 trace_ext4_truncate_exit(inode); 3670 } 3671 3672 /* 3673 * ext4_get_inode_loc returns with an extra refcount against the inode's 3674 * underlying buffer_head on success. If 'in_mem' is true, we have all 3675 * data in memory that is needed to recreate the on-disk version of this 3676 * inode. 3677 */ 3678 static int __ext4_get_inode_loc(struct inode *inode, 3679 struct ext4_iloc *iloc, int in_mem) 3680 { 3681 struct ext4_group_desc *gdp; 3682 struct buffer_head *bh; 3683 struct super_block *sb = inode->i_sb; 3684 ext4_fsblk_t block; 3685 int inodes_per_block, inode_offset; 3686 3687 iloc->bh = NULL; 3688 if (!ext4_valid_inum(sb, inode->i_ino)) 3689 return -EIO; 3690 3691 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3692 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3693 if (!gdp) 3694 return -EIO; 3695 3696 /* 3697 * Figure out the offset within the block group inode table 3698 */ 3699 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3700 inode_offset = ((inode->i_ino - 1) % 3701 EXT4_INODES_PER_GROUP(sb)); 3702 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3703 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3704 3705 bh = sb_getblk(sb, block); 3706 if (unlikely(!bh)) 3707 return -ENOMEM; 3708 if (!buffer_uptodate(bh)) { 3709 lock_buffer(bh); 3710 3711 /* 3712 * If the buffer has the write error flag, we have failed 3713 * to write out another inode in the same block. In this 3714 * case, we don't have to read the block because we may 3715 * read the old inode data successfully. 3716 */ 3717 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3718 set_buffer_uptodate(bh); 3719 3720 if (buffer_uptodate(bh)) { 3721 /* someone brought it uptodate while we waited */ 3722 unlock_buffer(bh); 3723 goto has_buffer; 3724 } 3725 3726 /* 3727 * If we have all information of the inode in memory and this 3728 * is the only valid inode in the block, we need not read the 3729 * block. 3730 */ 3731 if (in_mem) { 3732 struct buffer_head *bitmap_bh; 3733 int i, start; 3734 3735 start = inode_offset & ~(inodes_per_block - 1); 3736 3737 /* Is the inode bitmap in cache? */ 3738 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3739 if (unlikely(!bitmap_bh)) 3740 goto make_io; 3741 3742 /* 3743 * If the inode bitmap isn't in cache then the 3744 * optimisation may end up performing two reads instead 3745 * of one, so skip it. 3746 */ 3747 if (!buffer_uptodate(bitmap_bh)) { 3748 brelse(bitmap_bh); 3749 goto make_io; 3750 } 3751 for (i = start; i < start + inodes_per_block; i++) { 3752 if (i == inode_offset) 3753 continue; 3754 if (ext4_test_bit(i, bitmap_bh->b_data)) 3755 break; 3756 } 3757 brelse(bitmap_bh); 3758 if (i == start + inodes_per_block) { 3759 /* all other inodes are free, so skip I/O */ 3760 memset(bh->b_data, 0, bh->b_size); 3761 set_buffer_uptodate(bh); 3762 unlock_buffer(bh); 3763 goto has_buffer; 3764 } 3765 } 3766 3767 make_io: 3768 /* 3769 * If we need to do any I/O, try to pre-readahead extra 3770 * blocks from the inode table. 3771 */ 3772 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3773 ext4_fsblk_t b, end, table; 3774 unsigned num; 3775 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3776 3777 table = ext4_inode_table(sb, gdp); 3778 /* s_inode_readahead_blks is always a power of 2 */ 3779 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3780 if (table > b) 3781 b = table; 3782 end = b + ra_blks; 3783 num = EXT4_INODES_PER_GROUP(sb); 3784 if (ext4_has_group_desc_csum(sb)) 3785 num -= ext4_itable_unused_count(sb, gdp); 3786 table += num / inodes_per_block; 3787 if (end > table) 3788 end = table; 3789 while (b <= end) 3790 sb_breadahead(sb, b++); 3791 } 3792 3793 /* 3794 * There are other valid inodes in the buffer, this inode 3795 * has in-inode xattrs, or we don't have this inode in memory. 3796 * Read the block from disk. 3797 */ 3798 trace_ext4_load_inode(inode); 3799 get_bh(bh); 3800 bh->b_end_io = end_buffer_read_sync; 3801 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3802 wait_on_buffer(bh); 3803 if (!buffer_uptodate(bh)) { 3804 EXT4_ERROR_INODE_BLOCK(inode, block, 3805 "unable to read itable block"); 3806 brelse(bh); 3807 return -EIO; 3808 } 3809 } 3810 has_buffer: 3811 iloc->bh = bh; 3812 return 0; 3813 } 3814 3815 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3816 { 3817 /* We have all inode data except xattrs in memory here. */ 3818 return __ext4_get_inode_loc(inode, iloc, 3819 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3820 } 3821 3822 void ext4_set_inode_flags(struct inode *inode) 3823 { 3824 unsigned int flags = EXT4_I(inode)->i_flags; 3825 unsigned int new_fl = 0; 3826 3827 if (flags & EXT4_SYNC_FL) 3828 new_fl |= S_SYNC; 3829 if (flags & EXT4_APPEND_FL) 3830 new_fl |= S_APPEND; 3831 if (flags & EXT4_IMMUTABLE_FL) 3832 new_fl |= S_IMMUTABLE; 3833 if (flags & EXT4_NOATIME_FL) 3834 new_fl |= S_NOATIME; 3835 if (flags & EXT4_DIRSYNC_FL) 3836 new_fl |= S_DIRSYNC; 3837 if (test_opt(inode->i_sb, DAX)) 3838 new_fl |= S_DAX; 3839 inode_set_flags(inode, new_fl, 3840 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 3841 } 3842 3843 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3844 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3845 { 3846 unsigned int vfs_fl; 3847 unsigned long old_fl, new_fl; 3848 3849 do { 3850 vfs_fl = ei->vfs_inode.i_flags; 3851 old_fl = ei->i_flags; 3852 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3853 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3854 EXT4_DIRSYNC_FL); 3855 if (vfs_fl & S_SYNC) 3856 new_fl |= EXT4_SYNC_FL; 3857 if (vfs_fl & S_APPEND) 3858 new_fl |= EXT4_APPEND_FL; 3859 if (vfs_fl & S_IMMUTABLE) 3860 new_fl |= EXT4_IMMUTABLE_FL; 3861 if (vfs_fl & S_NOATIME) 3862 new_fl |= EXT4_NOATIME_FL; 3863 if (vfs_fl & S_DIRSYNC) 3864 new_fl |= EXT4_DIRSYNC_FL; 3865 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3866 } 3867 3868 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3869 struct ext4_inode_info *ei) 3870 { 3871 blkcnt_t i_blocks ; 3872 struct inode *inode = &(ei->vfs_inode); 3873 struct super_block *sb = inode->i_sb; 3874 3875 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3876 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3877 /* we are using combined 48 bit field */ 3878 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3879 le32_to_cpu(raw_inode->i_blocks_lo); 3880 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3881 /* i_blocks represent file system block size */ 3882 return i_blocks << (inode->i_blkbits - 9); 3883 } else { 3884 return i_blocks; 3885 } 3886 } else { 3887 return le32_to_cpu(raw_inode->i_blocks_lo); 3888 } 3889 } 3890 3891 static inline void ext4_iget_extra_inode(struct inode *inode, 3892 struct ext4_inode *raw_inode, 3893 struct ext4_inode_info *ei) 3894 { 3895 __le32 *magic = (void *)raw_inode + 3896 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3897 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3898 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3899 ext4_find_inline_data_nolock(inode); 3900 } else 3901 EXT4_I(inode)->i_inline_off = 0; 3902 } 3903 3904 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3905 { 3906 struct ext4_iloc iloc; 3907 struct ext4_inode *raw_inode; 3908 struct ext4_inode_info *ei; 3909 struct inode *inode; 3910 journal_t *journal = EXT4_SB(sb)->s_journal; 3911 long ret; 3912 int block; 3913 uid_t i_uid; 3914 gid_t i_gid; 3915 3916 inode = iget_locked(sb, ino); 3917 if (!inode) 3918 return ERR_PTR(-ENOMEM); 3919 if (!(inode->i_state & I_NEW)) 3920 return inode; 3921 3922 ei = EXT4_I(inode); 3923 iloc.bh = NULL; 3924 3925 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3926 if (ret < 0) 3927 goto bad_inode; 3928 raw_inode = ext4_raw_inode(&iloc); 3929 3930 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3931 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3932 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3933 EXT4_INODE_SIZE(inode->i_sb)) { 3934 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3935 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3936 EXT4_INODE_SIZE(inode->i_sb)); 3937 ret = -EIO; 3938 goto bad_inode; 3939 } 3940 } else 3941 ei->i_extra_isize = 0; 3942 3943 /* Precompute checksum seed for inode metadata */ 3944 if (ext4_has_metadata_csum(sb)) { 3945 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3946 __u32 csum; 3947 __le32 inum = cpu_to_le32(inode->i_ino); 3948 __le32 gen = raw_inode->i_generation; 3949 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3950 sizeof(inum)); 3951 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3952 sizeof(gen)); 3953 } 3954 3955 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3956 EXT4_ERROR_INODE(inode, "checksum invalid"); 3957 ret = -EIO; 3958 goto bad_inode; 3959 } 3960 3961 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3962 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3963 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3964 if (!(test_opt(inode->i_sb, NO_UID32))) { 3965 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3966 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3967 } 3968 i_uid_write(inode, i_uid); 3969 i_gid_write(inode, i_gid); 3970 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3971 3972 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3973 ei->i_inline_off = 0; 3974 ei->i_dir_start_lookup = 0; 3975 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3976 /* We now have enough fields to check if the inode was active or not. 3977 * This is needed because nfsd might try to access dead inodes 3978 * the test is that same one that e2fsck uses 3979 * NeilBrown 1999oct15 3980 */ 3981 if (inode->i_nlink == 0) { 3982 if ((inode->i_mode == 0 || 3983 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 3984 ino != EXT4_BOOT_LOADER_INO) { 3985 /* this inode is deleted */ 3986 ret = -ESTALE; 3987 goto bad_inode; 3988 } 3989 /* The only unlinked inodes we let through here have 3990 * valid i_mode and are being read by the orphan 3991 * recovery code: that's fine, we're about to complete 3992 * the process of deleting those. 3993 * OR it is the EXT4_BOOT_LOADER_INO which is 3994 * not initialized on a new filesystem. */ 3995 } 3996 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3997 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3998 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3999 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4000 ei->i_file_acl |= 4001 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4002 inode->i_size = ext4_isize(raw_inode); 4003 ei->i_disksize = inode->i_size; 4004 #ifdef CONFIG_QUOTA 4005 ei->i_reserved_quota = 0; 4006 #endif 4007 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4008 ei->i_block_group = iloc.block_group; 4009 ei->i_last_alloc_group = ~0; 4010 /* 4011 * NOTE! The in-memory inode i_data array is in little-endian order 4012 * even on big-endian machines: we do NOT byteswap the block numbers! 4013 */ 4014 for (block = 0; block < EXT4_N_BLOCKS; block++) 4015 ei->i_data[block] = raw_inode->i_block[block]; 4016 INIT_LIST_HEAD(&ei->i_orphan); 4017 4018 /* 4019 * Set transaction id's of transactions that have to be committed 4020 * to finish f[data]sync. We set them to currently running transaction 4021 * as we cannot be sure that the inode or some of its metadata isn't 4022 * part of the transaction - the inode could have been reclaimed and 4023 * now it is reread from disk. 4024 */ 4025 if (journal) { 4026 transaction_t *transaction; 4027 tid_t tid; 4028 4029 read_lock(&journal->j_state_lock); 4030 if (journal->j_running_transaction) 4031 transaction = journal->j_running_transaction; 4032 else 4033 transaction = journal->j_committing_transaction; 4034 if (transaction) 4035 tid = transaction->t_tid; 4036 else 4037 tid = journal->j_commit_sequence; 4038 read_unlock(&journal->j_state_lock); 4039 ei->i_sync_tid = tid; 4040 ei->i_datasync_tid = tid; 4041 } 4042 4043 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4044 if (ei->i_extra_isize == 0) { 4045 /* The extra space is currently unused. Use it. */ 4046 ei->i_extra_isize = sizeof(struct ext4_inode) - 4047 EXT4_GOOD_OLD_INODE_SIZE; 4048 } else { 4049 ext4_iget_extra_inode(inode, raw_inode, ei); 4050 } 4051 } 4052 4053 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4054 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4055 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4056 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4057 4058 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4059 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4060 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4061 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4062 inode->i_version |= 4063 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4064 } 4065 } 4066 4067 ret = 0; 4068 if (ei->i_file_acl && 4069 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4070 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4071 ei->i_file_acl); 4072 ret = -EIO; 4073 goto bad_inode; 4074 } else if (!ext4_has_inline_data(inode)) { 4075 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4076 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4077 (S_ISLNK(inode->i_mode) && 4078 !ext4_inode_is_fast_symlink(inode)))) 4079 /* Validate extent which is part of inode */ 4080 ret = ext4_ext_check_inode(inode); 4081 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4082 (S_ISLNK(inode->i_mode) && 4083 !ext4_inode_is_fast_symlink(inode))) { 4084 /* Validate block references which are part of inode */ 4085 ret = ext4_ind_check_inode(inode); 4086 } 4087 } 4088 if (ret) 4089 goto bad_inode; 4090 4091 if (S_ISREG(inode->i_mode)) { 4092 inode->i_op = &ext4_file_inode_operations; 4093 inode->i_fop = &ext4_file_operations; 4094 ext4_set_aops(inode); 4095 } else if (S_ISDIR(inode->i_mode)) { 4096 inode->i_op = &ext4_dir_inode_operations; 4097 inode->i_fop = &ext4_dir_operations; 4098 } else if (S_ISLNK(inode->i_mode)) { 4099 if (ext4_inode_is_fast_symlink(inode)) { 4100 inode->i_op = &ext4_fast_symlink_inode_operations; 4101 nd_terminate_link(ei->i_data, inode->i_size, 4102 sizeof(ei->i_data) - 1); 4103 } else { 4104 inode->i_op = &ext4_symlink_inode_operations; 4105 ext4_set_aops(inode); 4106 } 4107 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4108 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4109 inode->i_op = &ext4_special_inode_operations; 4110 if (raw_inode->i_block[0]) 4111 init_special_inode(inode, inode->i_mode, 4112 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4113 else 4114 init_special_inode(inode, inode->i_mode, 4115 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4116 } else if (ino == EXT4_BOOT_LOADER_INO) { 4117 make_bad_inode(inode); 4118 } else { 4119 ret = -EIO; 4120 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4121 goto bad_inode; 4122 } 4123 brelse(iloc.bh); 4124 ext4_set_inode_flags(inode); 4125 unlock_new_inode(inode); 4126 return inode; 4127 4128 bad_inode: 4129 brelse(iloc.bh); 4130 iget_failed(inode); 4131 return ERR_PTR(ret); 4132 } 4133 4134 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4135 { 4136 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4137 return ERR_PTR(-EIO); 4138 return ext4_iget(sb, ino); 4139 } 4140 4141 static int ext4_inode_blocks_set(handle_t *handle, 4142 struct ext4_inode *raw_inode, 4143 struct ext4_inode_info *ei) 4144 { 4145 struct inode *inode = &(ei->vfs_inode); 4146 u64 i_blocks = inode->i_blocks; 4147 struct super_block *sb = inode->i_sb; 4148 4149 if (i_blocks <= ~0U) { 4150 /* 4151 * i_blocks can be represented in a 32 bit variable 4152 * as multiple of 512 bytes 4153 */ 4154 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4155 raw_inode->i_blocks_high = 0; 4156 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4157 return 0; 4158 } 4159 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4160 return -EFBIG; 4161 4162 if (i_blocks <= 0xffffffffffffULL) { 4163 /* 4164 * i_blocks can be represented in a 48 bit variable 4165 * as multiple of 512 bytes 4166 */ 4167 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4168 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4169 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4170 } else { 4171 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4172 /* i_block is stored in file system block size */ 4173 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4174 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4175 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4176 } 4177 return 0; 4178 } 4179 4180 struct other_inode { 4181 unsigned long orig_ino; 4182 struct ext4_inode *raw_inode; 4183 }; 4184 4185 static int other_inode_match(struct inode * inode, unsigned long ino, 4186 void *data) 4187 { 4188 struct other_inode *oi = (struct other_inode *) data; 4189 4190 if ((inode->i_ino != ino) || 4191 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4192 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4193 ((inode->i_state & I_DIRTY_TIME) == 0)) 4194 return 0; 4195 spin_lock(&inode->i_lock); 4196 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4197 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4198 (inode->i_state & I_DIRTY_TIME)) { 4199 struct ext4_inode_info *ei = EXT4_I(inode); 4200 4201 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4202 spin_unlock(&inode->i_lock); 4203 4204 spin_lock(&ei->i_raw_lock); 4205 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4206 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4207 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4208 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4209 spin_unlock(&ei->i_raw_lock); 4210 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4211 return -1; 4212 } 4213 spin_unlock(&inode->i_lock); 4214 return -1; 4215 } 4216 4217 /* 4218 * Opportunistically update the other time fields for other inodes in 4219 * the same inode table block. 4220 */ 4221 static void ext4_update_other_inodes_time(struct super_block *sb, 4222 unsigned long orig_ino, char *buf) 4223 { 4224 struct other_inode oi; 4225 unsigned long ino; 4226 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4227 int inode_size = EXT4_INODE_SIZE(sb); 4228 4229 oi.orig_ino = orig_ino; 4230 ino = orig_ino & ~(inodes_per_block - 1); 4231 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4232 if (ino == orig_ino) 4233 continue; 4234 oi.raw_inode = (struct ext4_inode *) buf; 4235 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4236 } 4237 } 4238 4239 /* 4240 * Post the struct inode info into an on-disk inode location in the 4241 * buffer-cache. This gobbles the caller's reference to the 4242 * buffer_head in the inode location struct. 4243 * 4244 * The caller must have write access to iloc->bh. 4245 */ 4246 static int ext4_do_update_inode(handle_t *handle, 4247 struct inode *inode, 4248 struct ext4_iloc *iloc) 4249 { 4250 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4251 struct ext4_inode_info *ei = EXT4_I(inode); 4252 struct buffer_head *bh = iloc->bh; 4253 struct super_block *sb = inode->i_sb; 4254 int err = 0, rc, block; 4255 int need_datasync = 0, set_large_file = 0; 4256 uid_t i_uid; 4257 gid_t i_gid; 4258 4259 spin_lock(&ei->i_raw_lock); 4260 4261 /* For fields not tracked in the in-memory inode, 4262 * initialise them to zero for new inodes. */ 4263 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4264 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4265 4266 ext4_get_inode_flags(ei); 4267 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4268 i_uid = i_uid_read(inode); 4269 i_gid = i_gid_read(inode); 4270 if (!(test_opt(inode->i_sb, NO_UID32))) { 4271 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4272 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4273 /* 4274 * Fix up interoperability with old kernels. Otherwise, old inodes get 4275 * re-used with the upper 16 bits of the uid/gid intact 4276 */ 4277 if (!ei->i_dtime) { 4278 raw_inode->i_uid_high = 4279 cpu_to_le16(high_16_bits(i_uid)); 4280 raw_inode->i_gid_high = 4281 cpu_to_le16(high_16_bits(i_gid)); 4282 } else { 4283 raw_inode->i_uid_high = 0; 4284 raw_inode->i_gid_high = 0; 4285 } 4286 } else { 4287 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4288 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4289 raw_inode->i_uid_high = 0; 4290 raw_inode->i_gid_high = 0; 4291 } 4292 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4293 4294 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4295 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4296 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4297 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4298 4299 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4300 if (err) { 4301 spin_unlock(&ei->i_raw_lock); 4302 goto out_brelse; 4303 } 4304 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4305 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4306 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4307 raw_inode->i_file_acl_high = 4308 cpu_to_le16(ei->i_file_acl >> 32); 4309 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4310 if (ei->i_disksize != ext4_isize(raw_inode)) { 4311 ext4_isize_set(raw_inode, ei->i_disksize); 4312 need_datasync = 1; 4313 } 4314 if (ei->i_disksize > 0x7fffffffULL) { 4315 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4316 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4317 EXT4_SB(sb)->s_es->s_rev_level == 4318 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4319 set_large_file = 1; 4320 } 4321 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4322 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4323 if (old_valid_dev(inode->i_rdev)) { 4324 raw_inode->i_block[0] = 4325 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4326 raw_inode->i_block[1] = 0; 4327 } else { 4328 raw_inode->i_block[0] = 0; 4329 raw_inode->i_block[1] = 4330 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4331 raw_inode->i_block[2] = 0; 4332 } 4333 } else if (!ext4_has_inline_data(inode)) { 4334 for (block = 0; block < EXT4_N_BLOCKS; block++) 4335 raw_inode->i_block[block] = ei->i_data[block]; 4336 } 4337 4338 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4339 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4340 if (ei->i_extra_isize) { 4341 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4342 raw_inode->i_version_hi = 4343 cpu_to_le32(inode->i_version >> 32); 4344 raw_inode->i_extra_isize = 4345 cpu_to_le16(ei->i_extra_isize); 4346 } 4347 } 4348 ext4_inode_csum_set(inode, raw_inode, ei); 4349 spin_unlock(&ei->i_raw_lock); 4350 if (inode->i_sb->s_flags & MS_LAZYTIME) 4351 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4352 bh->b_data); 4353 4354 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4355 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4356 if (!err) 4357 err = rc; 4358 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4359 if (set_large_file) { 4360 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4361 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4362 if (err) 4363 goto out_brelse; 4364 ext4_update_dynamic_rev(sb); 4365 EXT4_SET_RO_COMPAT_FEATURE(sb, 4366 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4367 ext4_handle_sync(handle); 4368 err = ext4_handle_dirty_super(handle, sb); 4369 } 4370 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4371 out_brelse: 4372 brelse(bh); 4373 ext4_std_error(inode->i_sb, err); 4374 return err; 4375 } 4376 4377 /* 4378 * ext4_write_inode() 4379 * 4380 * We are called from a few places: 4381 * 4382 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4383 * Here, there will be no transaction running. We wait for any running 4384 * transaction to commit. 4385 * 4386 * - Within flush work (sys_sync(), kupdate and such). 4387 * We wait on commit, if told to. 4388 * 4389 * - Within iput_final() -> write_inode_now() 4390 * We wait on commit, if told to. 4391 * 4392 * In all cases it is actually safe for us to return without doing anything, 4393 * because the inode has been copied into a raw inode buffer in 4394 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4395 * writeback. 4396 * 4397 * Note that we are absolutely dependent upon all inode dirtiers doing the 4398 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4399 * which we are interested. 4400 * 4401 * It would be a bug for them to not do this. The code: 4402 * 4403 * mark_inode_dirty(inode) 4404 * stuff(); 4405 * inode->i_size = expr; 4406 * 4407 * is in error because write_inode() could occur while `stuff()' is running, 4408 * and the new i_size will be lost. Plus the inode will no longer be on the 4409 * superblock's dirty inode list. 4410 */ 4411 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4412 { 4413 int err; 4414 4415 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4416 return 0; 4417 4418 if (EXT4_SB(inode->i_sb)->s_journal) { 4419 if (ext4_journal_current_handle()) { 4420 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4421 dump_stack(); 4422 return -EIO; 4423 } 4424 4425 /* 4426 * No need to force transaction in WB_SYNC_NONE mode. Also 4427 * ext4_sync_fs() will force the commit after everything is 4428 * written. 4429 */ 4430 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4431 return 0; 4432 4433 err = ext4_force_commit(inode->i_sb); 4434 } else { 4435 struct ext4_iloc iloc; 4436 4437 err = __ext4_get_inode_loc(inode, &iloc, 0); 4438 if (err) 4439 return err; 4440 /* 4441 * sync(2) will flush the whole buffer cache. No need to do 4442 * it here separately for each inode. 4443 */ 4444 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4445 sync_dirty_buffer(iloc.bh); 4446 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4447 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4448 "IO error syncing inode"); 4449 err = -EIO; 4450 } 4451 brelse(iloc.bh); 4452 } 4453 return err; 4454 } 4455 4456 /* 4457 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4458 * buffers that are attached to a page stradding i_size and are undergoing 4459 * commit. In that case we have to wait for commit to finish and try again. 4460 */ 4461 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4462 { 4463 struct page *page; 4464 unsigned offset; 4465 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4466 tid_t commit_tid = 0; 4467 int ret; 4468 4469 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4470 /* 4471 * All buffers in the last page remain valid? Then there's nothing to 4472 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4473 * blocksize case 4474 */ 4475 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4476 return; 4477 while (1) { 4478 page = find_lock_page(inode->i_mapping, 4479 inode->i_size >> PAGE_CACHE_SHIFT); 4480 if (!page) 4481 return; 4482 ret = __ext4_journalled_invalidatepage(page, offset, 4483 PAGE_CACHE_SIZE - offset); 4484 unlock_page(page); 4485 page_cache_release(page); 4486 if (ret != -EBUSY) 4487 return; 4488 commit_tid = 0; 4489 read_lock(&journal->j_state_lock); 4490 if (journal->j_committing_transaction) 4491 commit_tid = journal->j_committing_transaction->t_tid; 4492 read_unlock(&journal->j_state_lock); 4493 if (commit_tid) 4494 jbd2_log_wait_commit(journal, commit_tid); 4495 } 4496 } 4497 4498 /* 4499 * ext4_setattr() 4500 * 4501 * Called from notify_change. 4502 * 4503 * We want to trap VFS attempts to truncate the file as soon as 4504 * possible. In particular, we want to make sure that when the VFS 4505 * shrinks i_size, we put the inode on the orphan list and modify 4506 * i_disksize immediately, so that during the subsequent flushing of 4507 * dirty pages and freeing of disk blocks, we can guarantee that any 4508 * commit will leave the blocks being flushed in an unused state on 4509 * disk. (On recovery, the inode will get truncated and the blocks will 4510 * be freed, so we have a strong guarantee that no future commit will 4511 * leave these blocks visible to the user.) 4512 * 4513 * Another thing we have to assure is that if we are in ordered mode 4514 * and inode is still attached to the committing transaction, we must 4515 * we start writeout of all the dirty pages which are being truncated. 4516 * This way we are sure that all the data written in the previous 4517 * transaction are already on disk (truncate waits for pages under 4518 * writeback). 4519 * 4520 * Called with inode->i_mutex down. 4521 */ 4522 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4523 { 4524 struct inode *inode = dentry->d_inode; 4525 int error, rc = 0; 4526 int orphan = 0; 4527 const unsigned int ia_valid = attr->ia_valid; 4528 4529 error = inode_change_ok(inode, attr); 4530 if (error) 4531 return error; 4532 4533 if (is_quota_modification(inode, attr)) 4534 dquot_initialize(inode); 4535 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4536 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4537 handle_t *handle; 4538 4539 /* (user+group)*(old+new) structure, inode write (sb, 4540 * inode block, ? - but truncate inode update has it) */ 4541 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4542 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4543 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4544 if (IS_ERR(handle)) { 4545 error = PTR_ERR(handle); 4546 goto err_out; 4547 } 4548 error = dquot_transfer(inode, attr); 4549 if (error) { 4550 ext4_journal_stop(handle); 4551 return error; 4552 } 4553 /* Update corresponding info in inode so that everything is in 4554 * one transaction */ 4555 if (attr->ia_valid & ATTR_UID) 4556 inode->i_uid = attr->ia_uid; 4557 if (attr->ia_valid & ATTR_GID) 4558 inode->i_gid = attr->ia_gid; 4559 error = ext4_mark_inode_dirty(handle, inode); 4560 ext4_journal_stop(handle); 4561 } 4562 4563 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4564 handle_t *handle; 4565 4566 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4567 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4568 4569 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4570 return -EFBIG; 4571 } 4572 4573 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4574 inode_inc_iversion(inode); 4575 4576 if (S_ISREG(inode->i_mode) && 4577 (attr->ia_size < inode->i_size)) { 4578 if (ext4_should_order_data(inode)) { 4579 error = ext4_begin_ordered_truncate(inode, 4580 attr->ia_size); 4581 if (error) 4582 goto err_out; 4583 } 4584 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4585 if (IS_ERR(handle)) { 4586 error = PTR_ERR(handle); 4587 goto err_out; 4588 } 4589 if (ext4_handle_valid(handle)) { 4590 error = ext4_orphan_add(handle, inode); 4591 orphan = 1; 4592 } 4593 down_write(&EXT4_I(inode)->i_data_sem); 4594 EXT4_I(inode)->i_disksize = attr->ia_size; 4595 rc = ext4_mark_inode_dirty(handle, inode); 4596 if (!error) 4597 error = rc; 4598 /* 4599 * We have to update i_size under i_data_sem together 4600 * with i_disksize to avoid races with writeback code 4601 * running ext4_wb_update_i_disksize(). 4602 */ 4603 if (!error) 4604 i_size_write(inode, attr->ia_size); 4605 up_write(&EXT4_I(inode)->i_data_sem); 4606 ext4_journal_stop(handle); 4607 if (error) { 4608 ext4_orphan_del(NULL, inode); 4609 goto err_out; 4610 } 4611 } else { 4612 loff_t oldsize = inode->i_size; 4613 4614 i_size_write(inode, attr->ia_size); 4615 pagecache_isize_extended(inode, oldsize, inode->i_size); 4616 } 4617 4618 /* 4619 * Blocks are going to be removed from the inode. Wait 4620 * for dio in flight. Temporarily disable 4621 * dioread_nolock to prevent livelock. 4622 */ 4623 if (orphan) { 4624 if (!ext4_should_journal_data(inode)) { 4625 ext4_inode_block_unlocked_dio(inode); 4626 inode_dio_wait(inode); 4627 ext4_inode_resume_unlocked_dio(inode); 4628 } else 4629 ext4_wait_for_tail_page_commit(inode); 4630 } 4631 /* 4632 * Truncate pagecache after we've waited for commit 4633 * in data=journal mode to make pages freeable. 4634 */ 4635 truncate_pagecache(inode, inode->i_size); 4636 } 4637 /* 4638 * We want to call ext4_truncate() even if attr->ia_size == 4639 * inode->i_size for cases like truncation of fallocated space 4640 */ 4641 if (attr->ia_valid & ATTR_SIZE) 4642 ext4_truncate(inode); 4643 4644 if (!rc) { 4645 setattr_copy(inode, attr); 4646 mark_inode_dirty(inode); 4647 } 4648 4649 /* 4650 * If the call to ext4_truncate failed to get a transaction handle at 4651 * all, we need to clean up the in-core orphan list manually. 4652 */ 4653 if (orphan && inode->i_nlink) 4654 ext4_orphan_del(NULL, inode); 4655 4656 if (!rc && (ia_valid & ATTR_MODE)) 4657 rc = posix_acl_chmod(inode, inode->i_mode); 4658 4659 err_out: 4660 ext4_std_error(inode->i_sb, error); 4661 if (!error) 4662 error = rc; 4663 return error; 4664 } 4665 4666 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4667 struct kstat *stat) 4668 { 4669 struct inode *inode; 4670 unsigned long long delalloc_blocks; 4671 4672 inode = dentry->d_inode; 4673 generic_fillattr(inode, stat); 4674 4675 /* 4676 * If there is inline data in the inode, the inode will normally not 4677 * have data blocks allocated (it may have an external xattr block). 4678 * Report at least one sector for such files, so tools like tar, rsync, 4679 * others doen't incorrectly think the file is completely sparse. 4680 */ 4681 if (unlikely(ext4_has_inline_data(inode))) 4682 stat->blocks += (stat->size + 511) >> 9; 4683 4684 /* 4685 * We can't update i_blocks if the block allocation is delayed 4686 * otherwise in the case of system crash before the real block 4687 * allocation is done, we will have i_blocks inconsistent with 4688 * on-disk file blocks. 4689 * We always keep i_blocks updated together with real 4690 * allocation. But to not confuse with user, stat 4691 * will return the blocks that include the delayed allocation 4692 * blocks for this file. 4693 */ 4694 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4695 EXT4_I(inode)->i_reserved_data_blocks); 4696 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4697 return 0; 4698 } 4699 4700 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4701 int pextents) 4702 { 4703 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4704 return ext4_ind_trans_blocks(inode, lblocks); 4705 return ext4_ext_index_trans_blocks(inode, pextents); 4706 } 4707 4708 /* 4709 * Account for index blocks, block groups bitmaps and block group 4710 * descriptor blocks if modify datablocks and index blocks 4711 * worse case, the indexs blocks spread over different block groups 4712 * 4713 * If datablocks are discontiguous, they are possible to spread over 4714 * different block groups too. If they are contiguous, with flexbg, 4715 * they could still across block group boundary. 4716 * 4717 * Also account for superblock, inode, quota and xattr blocks 4718 */ 4719 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4720 int pextents) 4721 { 4722 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4723 int gdpblocks; 4724 int idxblocks; 4725 int ret = 0; 4726 4727 /* 4728 * How many index blocks need to touch to map @lblocks logical blocks 4729 * to @pextents physical extents? 4730 */ 4731 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4732 4733 ret = idxblocks; 4734 4735 /* 4736 * Now let's see how many group bitmaps and group descriptors need 4737 * to account 4738 */ 4739 groups = idxblocks + pextents; 4740 gdpblocks = groups; 4741 if (groups > ngroups) 4742 groups = ngroups; 4743 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4744 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4745 4746 /* bitmaps and block group descriptor blocks */ 4747 ret += groups + gdpblocks; 4748 4749 /* Blocks for super block, inode, quota and xattr blocks */ 4750 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4751 4752 return ret; 4753 } 4754 4755 /* 4756 * Calculate the total number of credits to reserve to fit 4757 * the modification of a single pages into a single transaction, 4758 * which may include multiple chunks of block allocations. 4759 * 4760 * This could be called via ext4_write_begin() 4761 * 4762 * We need to consider the worse case, when 4763 * one new block per extent. 4764 */ 4765 int ext4_writepage_trans_blocks(struct inode *inode) 4766 { 4767 int bpp = ext4_journal_blocks_per_page(inode); 4768 int ret; 4769 4770 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4771 4772 /* Account for data blocks for journalled mode */ 4773 if (ext4_should_journal_data(inode)) 4774 ret += bpp; 4775 return ret; 4776 } 4777 4778 /* 4779 * Calculate the journal credits for a chunk of data modification. 4780 * 4781 * This is called from DIO, fallocate or whoever calling 4782 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4783 * 4784 * journal buffers for data blocks are not included here, as DIO 4785 * and fallocate do no need to journal data buffers. 4786 */ 4787 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4788 { 4789 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4790 } 4791 4792 /* 4793 * The caller must have previously called ext4_reserve_inode_write(). 4794 * Give this, we know that the caller already has write access to iloc->bh. 4795 */ 4796 int ext4_mark_iloc_dirty(handle_t *handle, 4797 struct inode *inode, struct ext4_iloc *iloc) 4798 { 4799 int err = 0; 4800 4801 if (IS_I_VERSION(inode)) 4802 inode_inc_iversion(inode); 4803 4804 /* the do_update_inode consumes one bh->b_count */ 4805 get_bh(iloc->bh); 4806 4807 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4808 err = ext4_do_update_inode(handle, inode, iloc); 4809 put_bh(iloc->bh); 4810 return err; 4811 } 4812 4813 /* 4814 * On success, We end up with an outstanding reference count against 4815 * iloc->bh. This _must_ be cleaned up later. 4816 */ 4817 4818 int 4819 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4820 struct ext4_iloc *iloc) 4821 { 4822 int err; 4823 4824 err = ext4_get_inode_loc(inode, iloc); 4825 if (!err) { 4826 BUFFER_TRACE(iloc->bh, "get_write_access"); 4827 err = ext4_journal_get_write_access(handle, iloc->bh); 4828 if (err) { 4829 brelse(iloc->bh); 4830 iloc->bh = NULL; 4831 } 4832 } 4833 ext4_std_error(inode->i_sb, err); 4834 return err; 4835 } 4836 4837 /* 4838 * Expand an inode by new_extra_isize bytes. 4839 * Returns 0 on success or negative error number on failure. 4840 */ 4841 static int ext4_expand_extra_isize(struct inode *inode, 4842 unsigned int new_extra_isize, 4843 struct ext4_iloc iloc, 4844 handle_t *handle) 4845 { 4846 struct ext4_inode *raw_inode; 4847 struct ext4_xattr_ibody_header *header; 4848 4849 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4850 return 0; 4851 4852 raw_inode = ext4_raw_inode(&iloc); 4853 4854 header = IHDR(inode, raw_inode); 4855 4856 /* No extended attributes present */ 4857 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4858 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4859 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4860 new_extra_isize); 4861 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4862 return 0; 4863 } 4864 4865 /* try to expand with EAs present */ 4866 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4867 raw_inode, handle); 4868 } 4869 4870 /* 4871 * What we do here is to mark the in-core inode as clean with respect to inode 4872 * dirtiness (it may still be data-dirty). 4873 * This means that the in-core inode may be reaped by prune_icache 4874 * without having to perform any I/O. This is a very good thing, 4875 * because *any* task may call prune_icache - even ones which 4876 * have a transaction open against a different journal. 4877 * 4878 * Is this cheating? Not really. Sure, we haven't written the 4879 * inode out, but prune_icache isn't a user-visible syncing function. 4880 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4881 * we start and wait on commits. 4882 */ 4883 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4884 { 4885 struct ext4_iloc iloc; 4886 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4887 static unsigned int mnt_count; 4888 int err, ret; 4889 4890 might_sleep(); 4891 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4892 err = ext4_reserve_inode_write(handle, inode, &iloc); 4893 if (ext4_handle_valid(handle) && 4894 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4895 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4896 /* 4897 * We need extra buffer credits since we may write into EA block 4898 * with this same handle. If journal_extend fails, then it will 4899 * only result in a minor loss of functionality for that inode. 4900 * If this is felt to be critical, then e2fsck should be run to 4901 * force a large enough s_min_extra_isize. 4902 */ 4903 if ((jbd2_journal_extend(handle, 4904 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4905 ret = ext4_expand_extra_isize(inode, 4906 sbi->s_want_extra_isize, 4907 iloc, handle); 4908 if (ret) { 4909 ext4_set_inode_state(inode, 4910 EXT4_STATE_NO_EXPAND); 4911 if (mnt_count != 4912 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4913 ext4_warning(inode->i_sb, 4914 "Unable to expand inode %lu. Delete" 4915 " some EAs or run e2fsck.", 4916 inode->i_ino); 4917 mnt_count = 4918 le16_to_cpu(sbi->s_es->s_mnt_count); 4919 } 4920 } 4921 } 4922 } 4923 if (!err) 4924 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4925 return err; 4926 } 4927 4928 /* 4929 * ext4_dirty_inode() is called from __mark_inode_dirty() 4930 * 4931 * We're really interested in the case where a file is being extended. 4932 * i_size has been changed by generic_commit_write() and we thus need 4933 * to include the updated inode in the current transaction. 4934 * 4935 * Also, dquot_alloc_block() will always dirty the inode when blocks 4936 * are allocated to the file. 4937 * 4938 * If the inode is marked synchronous, we don't honour that here - doing 4939 * so would cause a commit on atime updates, which we don't bother doing. 4940 * We handle synchronous inodes at the highest possible level. 4941 * 4942 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 4943 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 4944 * to copy into the on-disk inode structure are the timestamp files. 4945 */ 4946 void ext4_dirty_inode(struct inode *inode, int flags) 4947 { 4948 handle_t *handle; 4949 4950 if (flags == I_DIRTY_TIME) 4951 return; 4952 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4953 if (IS_ERR(handle)) 4954 goto out; 4955 4956 ext4_mark_inode_dirty(handle, inode); 4957 4958 ext4_journal_stop(handle); 4959 out: 4960 return; 4961 } 4962 4963 #if 0 4964 /* 4965 * Bind an inode's backing buffer_head into this transaction, to prevent 4966 * it from being flushed to disk early. Unlike 4967 * ext4_reserve_inode_write, this leaves behind no bh reference and 4968 * returns no iloc structure, so the caller needs to repeat the iloc 4969 * lookup to mark the inode dirty later. 4970 */ 4971 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4972 { 4973 struct ext4_iloc iloc; 4974 4975 int err = 0; 4976 if (handle) { 4977 err = ext4_get_inode_loc(inode, &iloc); 4978 if (!err) { 4979 BUFFER_TRACE(iloc.bh, "get_write_access"); 4980 err = jbd2_journal_get_write_access(handle, iloc.bh); 4981 if (!err) 4982 err = ext4_handle_dirty_metadata(handle, 4983 NULL, 4984 iloc.bh); 4985 brelse(iloc.bh); 4986 } 4987 } 4988 ext4_std_error(inode->i_sb, err); 4989 return err; 4990 } 4991 #endif 4992 4993 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4994 { 4995 journal_t *journal; 4996 handle_t *handle; 4997 int err; 4998 4999 /* 5000 * We have to be very careful here: changing a data block's 5001 * journaling status dynamically is dangerous. If we write a 5002 * data block to the journal, change the status and then delete 5003 * that block, we risk forgetting to revoke the old log record 5004 * from the journal and so a subsequent replay can corrupt data. 5005 * So, first we make sure that the journal is empty and that 5006 * nobody is changing anything. 5007 */ 5008 5009 journal = EXT4_JOURNAL(inode); 5010 if (!journal) 5011 return 0; 5012 if (is_journal_aborted(journal)) 5013 return -EROFS; 5014 /* We have to allocate physical blocks for delalloc blocks 5015 * before flushing journal. otherwise delalloc blocks can not 5016 * be allocated any more. even more truncate on delalloc blocks 5017 * could trigger BUG by flushing delalloc blocks in journal. 5018 * There is no delalloc block in non-journal data mode. 5019 */ 5020 if (val && test_opt(inode->i_sb, DELALLOC)) { 5021 err = ext4_alloc_da_blocks(inode); 5022 if (err < 0) 5023 return err; 5024 } 5025 5026 /* Wait for all existing dio workers */ 5027 ext4_inode_block_unlocked_dio(inode); 5028 inode_dio_wait(inode); 5029 5030 jbd2_journal_lock_updates(journal); 5031 5032 /* 5033 * OK, there are no updates running now, and all cached data is 5034 * synced to disk. We are now in a completely consistent state 5035 * which doesn't have anything in the journal, and we know that 5036 * no filesystem updates are running, so it is safe to modify 5037 * the inode's in-core data-journaling state flag now. 5038 */ 5039 5040 if (val) 5041 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5042 else { 5043 err = jbd2_journal_flush(journal); 5044 if (err < 0) { 5045 jbd2_journal_unlock_updates(journal); 5046 ext4_inode_resume_unlocked_dio(inode); 5047 return err; 5048 } 5049 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5050 } 5051 ext4_set_aops(inode); 5052 5053 jbd2_journal_unlock_updates(journal); 5054 ext4_inode_resume_unlocked_dio(inode); 5055 5056 /* Finally we can mark the inode as dirty. */ 5057 5058 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5059 if (IS_ERR(handle)) 5060 return PTR_ERR(handle); 5061 5062 err = ext4_mark_inode_dirty(handle, inode); 5063 ext4_handle_sync(handle); 5064 ext4_journal_stop(handle); 5065 ext4_std_error(inode->i_sb, err); 5066 5067 return err; 5068 } 5069 5070 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5071 { 5072 return !buffer_mapped(bh); 5073 } 5074 5075 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5076 { 5077 struct page *page = vmf->page; 5078 loff_t size; 5079 unsigned long len; 5080 int ret; 5081 struct file *file = vma->vm_file; 5082 struct inode *inode = file_inode(file); 5083 struct address_space *mapping = inode->i_mapping; 5084 handle_t *handle; 5085 get_block_t *get_block; 5086 int retries = 0; 5087 5088 sb_start_pagefault(inode->i_sb); 5089 file_update_time(vma->vm_file); 5090 /* Delalloc case is easy... */ 5091 if (test_opt(inode->i_sb, DELALLOC) && 5092 !ext4_should_journal_data(inode) && 5093 !ext4_nonda_switch(inode->i_sb)) { 5094 do { 5095 ret = __block_page_mkwrite(vma, vmf, 5096 ext4_da_get_block_prep); 5097 } while (ret == -ENOSPC && 5098 ext4_should_retry_alloc(inode->i_sb, &retries)); 5099 goto out_ret; 5100 } 5101 5102 lock_page(page); 5103 size = i_size_read(inode); 5104 /* Page got truncated from under us? */ 5105 if (page->mapping != mapping || page_offset(page) > size) { 5106 unlock_page(page); 5107 ret = VM_FAULT_NOPAGE; 5108 goto out; 5109 } 5110 5111 if (page->index == size >> PAGE_CACHE_SHIFT) 5112 len = size & ~PAGE_CACHE_MASK; 5113 else 5114 len = PAGE_CACHE_SIZE; 5115 /* 5116 * Return if we have all the buffers mapped. This avoids the need to do 5117 * journal_start/journal_stop which can block and take a long time 5118 */ 5119 if (page_has_buffers(page)) { 5120 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5121 0, len, NULL, 5122 ext4_bh_unmapped)) { 5123 /* Wait so that we don't change page under IO */ 5124 wait_for_stable_page(page); 5125 ret = VM_FAULT_LOCKED; 5126 goto out; 5127 } 5128 } 5129 unlock_page(page); 5130 /* OK, we need to fill the hole... */ 5131 if (ext4_should_dioread_nolock(inode)) 5132 get_block = ext4_get_block_write; 5133 else 5134 get_block = ext4_get_block; 5135 retry_alloc: 5136 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5137 ext4_writepage_trans_blocks(inode)); 5138 if (IS_ERR(handle)) { 5139 ret = VM_FAULT_SIGBUS; 5140 goto out; 5141 } 5142 ret = __block_page_mkwrite(vma, vmf, get_block); 5143 if (!ret && ext4_should_journal_data(inode)) { 5144 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5145 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5146 unlock_page(page); 5147 ret = VM_FAULT_SIGBUS; 5148 ext4_journal_stop(handle); 5149 goto out; 5150 } 5151 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5152 } 5153 ext4_journal_stop(handle); 5154 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5155 goto retry_alloc; 5156 out_ret: 5157 ret = block_page_mkwrite_return(ret); 5158 out: 5159 sb_end_pagefault(inode->i_sb); 5160 return ret; 5161 } 5162