1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/buffer_head.h> 28 #include <linux/writeback.h> 29 #include <linux/pagevec.h> 30 #include <linux/mpage.h> 31 #include <linux/namei.h> 32 #include <linux/uio.h> 33 #include <linux/bio.h> 34 #include <linux/workqueue.h> 35 #include <linux/kernel.h> 36 #include <linux/printk.h> 37 #include <linux/slab.h> 38 #include <linux/bitops.h> 39 40 #include "ext4_jbd2.h" 41 #include "xattr.h" 42 #include "acl.h" 43 #include "truncate.h" 44 45 #include <trace/events/ext4.h> 46 47 #define MPAGE_DA_EXTENT_TAIL 0x01 48 49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 50 struct ext4_inode_info *ei) 51 { 52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 53 __u16 csum_lo; 54 __u16 csum_hi = 0; 55 __u32 csum; 56 57 csum_lo = le16_to_cpu(raw->i_checksum_lo); 58 raw->i_checksum_lo = 0; 59 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 60 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 61 csum_hi = le16_to_cpu(raw->i_checksum_hi); 62 raw->i_checksum_hi = 0; 63 } 64 65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 66 EXT4_INODE_SIZE(inode->i_sb)); 67 68 raw->i_checksum_lo = cpu_to_le16(csum_lo); 69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 70 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 71 raw->i_checksum_hi = cpu_to_le16(csum_hi); 72 73 return csum; 74 } 75 76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 77 struct ext4_inode_info *ei) 78 { 79 __u32 provided, calculated; 80 81 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 82 cpu_to_le32(EXT4_OS_LINUX) || 83 !ext4_has_metadata_csum(inode->i_sb)) 84 return 1; 85 86 provided = le16_to_cpu(raw->i_checksum_lo); 87 calculated = ext4_inode_csum(inode, raw, ei); 88 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 89 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 90 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 91 else 92 calculated &= 0xFFFF; 93 94 return provided == calculated; 95 } 96 97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 98 struct ext4_inode_info *ei) 99 { 100 __u32 csum; 101 102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 103 cpu_to_le32(EXT4_OS_LINUX) || 104 !ext4_has_metadata_csum(inode->i_sb)) 105 return; 106 107 csum = ext4_inode_csum(inode, raw, ei); 108 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 110 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 111 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 112 } 113 114 static inline int ext4_begin_ordered_truncate(struct inode *inode, 115 loff_t new_size) 116 { 117 trace_ext4_begin_ordered_truncate(inode, new_size); 118 /* 119 * If jinode is zero, then we never opened the file for 120 * writing, so there's no need to call 121 * jbd2_journal_begin_ordered_truncate() since there's no 122 * outstanding writes we need to flush. 123 */ 124 if (!EXT4_I(inode)->jinode) 125 return 0; 126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 127 EXT4_I(inode)->jinode, 128 new_size); 129 } 130 131 static void ext4_invalidatepage(struct page *page, unsigned int offset, 132 unsigned int length); 133 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 136 int pextents); 137 138 /* 139 * Test whether an inode is a fast symlink. 140 */ 141 int ext4_inode_is_fast_symlink(struct inode *inode) 142 { 143 int ea_blocks = EXT4_I(inode)->i_file_acl ? 144 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 145 146 if (ext4_has_inline_data(inode)) 147 return 0; 148 149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 150 } 151 152 /* 153 * Restart the transaction associated with *handle. This does a commit, 154 * so before we call here everything must be consistently dirtied against 155 * this transaction. 156 */ 157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 158 int nblocks) 159 { 160 int ret; 161 162 /* 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 164 * moment, get_block can be called only for blocks inside i_size since 165 * page cache has been already dropped and writes are blocked by 166 * i_mutex. So we can safely drop the i_data_sem here. 167 */ 168 BUG_ON(EXT4_JOURNAL(inode) == NULL); 169 jbd_debug(2, "restarting handle %p\n", handle); 170 up_write(&EXT4_I(inode)->i_data_sem); 171 ret = ext4_journal_restart(handle, nblocks); 172 down_write(&EXT4_I(inode)->i_data_sem); 173 ext4_discard_preallocations(inode); 174 175 return ret; 176 } 177 178 /* 179 * Called at the last iput() if i_nlink is zero. 180 */ 181 void ext4_evict_inode(struct inode *inode) 182 { 183 handle_t *handle; 184 int err; 185 186 trace_ext4_evict_inode(inode); 187 188 if (inode->i_nlink) { 189 /* 190 * When journalling data dirty buffers are tracked only in the 191 * journal. So although mm thinks everything is clean and 192 * ready for reaping the inode might still have some pages to 193 * write in the running transaction or waiting to be 194 * checkpointed. Thus calling jbd2_journal_invalidatepage() 195 * (via truncate_inode_pages()) to discard these buffers can 196 * cause data loss. Also even if we did not discard these 197 * buffers, we would have no way to find them after the inode 198 * is reaped and thus user could see stale data if he tries to 199 * read them before the transaction is checkpointed. So be 200 * careful and force everything to disk here... We use 201 * ei->i_datasync_tid to store the newest transaction 202 * containing inode's data. 203 * 204 * Note that directories do not have this problem because they 205 * don't use page cache. 206 */ 207 if (ext4_should_journal_data(inode) && 208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 209 inode->i_ino != EXT4_JOURNAL_INO) { 210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 212 213 jbd2_complete_transaction(journal, commit_tid); 214 filemap_write_and_wait(&inode->i_data); 215 } 216 truncate_inode_pages_final(&inode->i_data); 217 218 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 219 goto no_delete; 220 } 221 222 if (is_bad_inode(inode)) 223 goto no_delete; 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages_final(&inode->i_data); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 232 /* 233 * Protect us against freezing - iput() caller didn't have to have any 234 * protection against it 235 */ 236 sb_start_intwrite(inode->i_sb); 237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 238 ext4_blocks_for_truncate(inode)+3); 239 if (IS_ERR(handle)) { 240 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 241 /* 242 * If we're going to skip the normal cleanup, we still need to 243 * make sure that the in-core orphan linked list is properly 244 * cleaned up. 245 */ 246 ext4_orphan_del(NULL, inode); 247 sb_end_intwrite(inode->i_sb); 248 goto no_delete; 249 } 250 251 if (IS_SYNC(inode)) 252 ext4_handle_sync(handle); 253 inode->i_size = 0; 254 err = ext4_mark_inode_dirty(handle, inode); 255 if (err) { 256 ext4_warning(inode->i_sb, 257 "couldn't mark inode dirty (err %d)", err); 258 goto stop_handle; 259 } 260 if (inode->i_blocks) 261 ext4_truncate(inode); 262 263 /* 264 * ext4_ext_truncate() doesn't reserve any slop when it 265 * restarts journal transactions; therefore there may not be 266 * enough credits left in the handle to remove the inode from 267 * the orphan list and set the dtime field. 268 */ 269 if (!ext4_handle_has_enough_credits(handle, 3)) { 270 err = ext4_journal_extend(handle, 3); 271 if (err > 0) 272 err = ext4_journal_restart(handle, 3); 273 if (err != 0) { 274 ext4_warning(inode->i_sb, 275 "couldn't extend journal (err %d)", err); 276 stop_handle: 277 ext4_journal_stop(handle); 278 ext4_orphan_del(NULL, inode); 279 sb_end_intwrite(inode->i_sb); 280 goto no_delete; 281 } 282 } 283 284 /* 285 * Kill off the orphan record which ext4_truncate created. 286 * AKPM: I think this can be inside the above `if'. 287 * Note that ext4_orphan_del() has to be able to cope with the 288 * deletion of a non-existent orphan - this is because we don't 289 * know if ext4_truncate() actually created an orphan record. 290 * (Well, we could do this if we need to, but heck - it works) 291 */ 292 ext4_orphan_del(handle, inode); 293 EXT4_I(inode)->i_dtime = get_seconds(); 294 295 /* 296 * One subtle ordering requirement: if anything has gone wrong 297 * (transaction abort, IO errors, whatever), then we can still 298 * do these next steps (the fs will already have been marked as 299 * having errors), but we can't free the inode if the mark_dirty 300 * fails. 301 */ 302 if (ext4_mark_inode_dirty(handle, inode)) 303 /* If that failed, just do the required in-core inode clear. */ 304 ext4_clear_inode(inode); 305 else 306 ext4_free_inode(handle, inode); 307 ext4_journal_stop(handle); 308 sb_end_intwrite(inode->i_sb); 309 return; 310 no_delete: 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 312 } 313 314 #ifdef CONFIG_QUOTA 315 qsize_t *ext4_get_reserved_space(struct inode *inode) 316 { 317 return &EXT4_I(inode)->i_reserved_quota; 318 } 319 #endif 320 321 /* 322 * Called with i_data_sem down, which is important since we can call 323 * ext4_discard_preallocations() from here. 324 */ 325 void ext4_da_update_reserve_space(struct inode *inode, 326 int used, int quota_claim) 327 { 328 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 329 struct ext4_inode_info *ei = EXT4_I(inode); 330 331 spin_lock(&ei->i_block_reservation_lock); 332 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 333 if (unlikely(used > ei->i_reserved_data_blocks)) { 334 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 335 "with only %d reserved data blocks", 336 __func__, inode->i_ino, used, 337 ei->i_reserved_data_blocks); 338 WARN_ON(1); 339 used = ei->i_reserved_data_blocks; 340 } 341 342 /* Update per-inode reservations */ 343 ei->i_reserved_data_blocks -= used; 344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 345 346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 347 348 /* Update quota subsystem for data blocks */ 349 if (quota_claim) 350 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 351 else { 352 /* 353 * We did fallocate with an offset that is already delayed 354 * allocated. So on delayed allocated writeback we should 355 * not re-claim the quota for fallocated blocks. 356 */ 357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 358 } 359 360 /* 361 * If we have done all the pending block allocations and if 362 * there aren't any writers on the inode, we can discard the 363 * inode's preallocations. 364 */ 365 if ((ei->i_reserved_data_blocks == 0) && 366 (atomic_read(&inode->i_writecount) == 0)) 367 ext4_discard_preallocations(inode); 368 } 369 370 static int __check_block_validity(struct inode *inode, const char *func, 371 unsigned int line, 372 struct ext4_map_blocks *map) 373 { 374 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 375 map->m_len)) { 376 ext4_error_inode(inode, func, line, map->m_pblk, 377 "lblock %lu mapped to illegal pblock " 378 "(length %d)", (unsigned long) map->m_lblk, 379 map->m_len); 380 return -EIO; 381 } 382 return 0; 383 } 384 385 #define check_block_validity(inode, map) \ 386 __check_block_validity((inode), __func__, __LINE__, (map)) 387 388 #ifdef ES_AGGRESSIVE_TEST 389 static void ext4_map_blocks_es_recheck(handle_t *handle, 390 struct inode *inode, 391 struct ext4_map_blocks *es_map, 392 struct ext4_map_blocks *map, 393 int flags) 394 { 395 int retval; 396 397 map->m_flags = 0; 398 /* 399 * There is a race window that the result is not the same. 400 * e.g. xfstests #223 when dioread_nolock enables. The reason 401 * is that we lookup a block mapping in extent status tree with 402 * out taking i_data_sem. So at the time the unwritten extent 403 * could be converted. 404 */ 405 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 406 down_read(&EXT4_I(inode)->i_data_sem); 407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 408 retval = ext4_ext_map_blocks(handle, inode, map, flags & 409 EXT4_GET_BLOCKS_KEEP_SIZE); 410 } else { 411 retval = ext4_ind_map_blocks(handle, inode, map, flags & 412 EXT4_GET_BLOCKS_KEEP_SIZE); 413 } 414 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 415 up_read((&EXT4_I(inode)->i_data_sem)); 416 417 /* 418 * We don't check m_len because extent will be collpased in status 419 * tree. So the m_len might not equal. 420 */ 421 if (es_map->m_lblk != map->m_lblk || 422 es_map->m_flags != map->m_flags || 423 es_map->m_pblk != map->m_pblk) { 424 printk("ES cache assertion failed for inode: %lu " 425 "es_cached ex [%d/%d/%llu/%x] != " 426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 427 inode->i_ino, es_map->m_lblk, es_map->m_len, 428 es_map->m_pblk, es_map->m_flags, map->m_lblk, 429 map->m_len, map->m_pblk, map->m_flags, 430 retval, flags); 431 } 432 } 433 #endif /* ES_AGGRESSIVE_TEST */ 434 435 /* 436 * The ext4_map_blocks() function tries to look up the requested blocks, 437 * and returns if the blocks are already mapped. 438 * 439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 440 * and store the allocated blocks in the result buffer head and mark it 441 * mapped. 442 * 443 * If file type is extents based, it will call ext4_ext_map_blocks(), 444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 445 * based files 446 * 447 * On success, it returns the number of blocks being mapped or allocated. 448 * if create==0 and the blocks are pre-allocated and unwritten block, 449 * the result buffer head is unmapped. If the create ==1, it will make sure 450 * the buffer head is mapped. 451 * 452 * It returns 0 if plain look up failed (blocks have not been allocated), in 453 * that case, buffer head is unmapped 454 * 455 * It returns the error in case of allocation failure. 456 */ 457 int ext4_map_blocks(handle_t *handle, struct inode *inode, 458 struct ext4_map_blocks *map, int flags) 459 { 460 struct extent_status es; 461 int retval; 462 int ret = 0; 463 #ifdef ES_AGGRESSIVE_TEST 464 struct ext4_map_blocks orig_map; 465 466 memcpy(&orig_map, map, sizeof(*map)); 467 #endif 468 469 map->m_flags = 0; 470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 471 "logical block %lu\n", inode->i_ino, flags, map->m_len, 472 (unsigned long) map->m_lblk); 473 474 /* 475 * ext4_map_blocks returns an int, and m_len is an unsigned int 476 */ 477 if (unlikely(map->m_len > INT_MAX)) 478 map->m_len = INT_MAX; 479 480 /* We can handle the block number less than EXT_MAX_BLOCKS */ 481 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 482 return -EIO; 483 484 /* Lookup extent status tree firstly */ 485 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 486 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 487 map->m_pblk = ext4_es_pblock(&es) + 488 map->m_lblk - es.es_lblk; 489 map->m_flags |= ext4_es_is_written(&es) ? 490 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 491 retval = es.es_len - (map->m_lblk - es.es_lblk); 492 if (retval > map->m_len) 493 retval = map->m_len; 494 map->m_len = retval; 495 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 496 retval = 0; 497 } else { 498 BUG_ON(1); 499 } 500 #ifdef ES_AGGRESSIVE_TEST 501 ext4_map_blocks_es_recheck(handle, inode, map, 502 &orig_map, flags); 503 #endif 504 goto found; 505 } 506 507 /* 508 * Try to see if we can get the block without requesting a new 509 * file system block. 510 */ 511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 512 down_read(&EXT4_I(inode)->i_data_sem); 513 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 514 retval = ext4_ext_map_blocks(handle, inode, map, flags & 515 EXT4_GET_BLOCKS_KEEP_SIZE); 516 } else { 517 retval = ext4_ind_map_blocks(handle, inode, map, flags & 518 EXT4_GET_BLOCKS_KEEP_SIZE); 519 } 520 if (retval > 0) { 521 unsigned int status; 522 523 if (unlikely(retval != map->m_len)) { 524 ext4_warning(inode->i_sb, 525 "ES len assertion failed for inode " 526 "%lu: retval %d != map->m_len %d", 527 inode->i_ino, retval, map->m_len); 528 WARN_ON(1); 529 } 530 531 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 532 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 533 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 534 !(status & EXTENT_STATUS_WRITTEN) && 535 ext4_find_delalloc_range(inode, map->m_lblk, 536 map->m_lblk + map->m_len - 1)) 537 status |= EXTENT_STATUS_DELAYED; 538 ret = ext4_es_insert_extent(inode, map->m_lblk, 539 map->m_len, map->m_pblk, status); 540 if (ret < 0) 541 retval = ret; 542 } 543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 544 up_read((&EXT4_I(inode)->i_data_sem)); 545 546 found: 547 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 548 ret = check_block_validity(inode, map); 549 if (ret != 0) 550 return ret; 551 } 552 553 /* If it is only a block(s) look up */ 554 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 555 return retval; 556 557 /* 558 * Returns if the blocks have already allocated 559 * 560 * Note that if blocks have been preallocated 561 * ext4_ext_get_block() returns the create = 0 562 * with buffer head unmapped. 563 */ 564 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 565 /* 566 * If we need to convert extent to unwritten 567 * we continue and do the actual work in 568 * ext4_ext_map_blocks() 569 */ 570 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 571 return retval; 572 573 /* 574 * Here we clear m_flags because after allocating an new extent, 575 * it will be set again. 576 */ 577 map->m_flags &= ~EXT4_MAP_FLAGS; 578 579 /* 580 * New blocks allocate and/or writing to unwritten extent 581 * will possibly result in updating i_data, so we take 582 * the write lock of i_data_sem, and call get_block() 583 * with create == 1 flag. 584 */ 585 down_write(&EXT4_I(inode)->i_data_sem); 586 587 /* 588 * We need to check for EXT4 here because migrate 589 * could have changed the inode type in between 590 */ 591 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 592 retval = ext4_ext_map_blocks(handle, inode, map, flags); 593 } else { 594 retval = ext4_ind_map_blocks(handle, inode, map, flags); 595 596 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 597 /* 598 * We allocated new blocks which will result in 599 * i_data's format changing. Force the migrate 600 * to fail by clearing migrate flags 601 */ 602 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 603 } 604 605 /* 606 * Update reserved blocks/metadata blocks after successful 607 * block allocation which had been deferred till now. We don't 608 * support fallocate for non extent files. So we can update 609 * reserve space here. 610 */ 611 if ((retval > 0) && 612 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 613 ext4_da_update_reserve_space(inode, retval, 1); 614 } 615 616 if (retval > 0) { 617 unsigned int status; 618 619 if (unlikely(retval != map->m_len)) { 620 ext4_warning(inode->i_sb, 621 "ES len assertion failed for inode " 622 "%lu: retval %d != map->m_len %d", 623 inode->i_ino, retval, map->m_len); 624 WARN_ON(1); 625 } 626 627 /* 628 * If the extent has been zeroed out, we don't need to update 629 * extent status tree. 630 */ 631 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 632 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 633 if (ext4_es_is_written(&es)) 634 goto has_zeroout; 635 } 636 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 637 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 638 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 639 !(status & EXTENT_STATUS_WRITTEN) && 640 ext4_find_delalloc_range(inode, map->m_lblk, 641 map->m_lblk + map->m_len - 1)) 642 status |= EXTENT_STATUS_DELAYED; 643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 644 map->m_pblk, status); 645 if (ret < 0) 646 retval = ret; 647 } 648 649 has_zeroout: 650 up_write((&EXT4_I(inode)->i_data_sem)); 651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 652 ret = check_block_validity(inode, map); 653 if (ret != 0) 654 return ret; 655 } 656 return retval; 657 } 658 659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate) 660 { 661 struct inode *inode = bh->b_assoc_map->host; 662 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */ 663 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits; 664 int err; 665 if (!uptodate) 666 return; 667 WARN_ON(!buffer_unwritten(bh)); 668 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size); 669 } 670 671 /* Maximum number of blocks we map for direct IO at once. */ 672 #define DIO_MAX_BLOCKS 4096 673 674 static int _ext4_get_block(struct inode *inode, sector_t iblock, 675 struct buffer_head *bh, int flags) 676 { 677 handle_t *handle = ext4_journal_current_handle(); 678 struct ext4_map_blocks map; 679 int ret = 0, started = 0; 680 int dio_credits; 681 682 if (ext4_has_inline_data(inode)) 683 return -ERANGE; 684 685 map.m_lblk = iblock; 686 map.m_len = bh->b_size >> inode->i_blkbits; 687 688 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 689 /* Direct IO write... */ 690 if (map.m_len > DIO_MAX_BLOCKS) 691 map.m_len = DIO_MAX_BLOCKS; 692 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 693 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 694 dio_credits); 695 if (IS_ERR(handle)) { 696 ret = PTR_ERR(handle); 697 return ret; 698 } 699 started = 1; 700 } 701 702 ret = ext4_map_blocks(handle, inode, &map, flags); 703 if (ret > 0) { 704 ext4_io_end_t *io_end = ext4_inode_aio(inode); 705 706 map_bh(bh, inode->i_sb, map.m_pblk); 707 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 708 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) { 709 bh->b_assoc_map = inode->i_mapping; 710 bh->b_private = (void *)(unsigned long)iblock; 711 bh->b_end_io = ext4_end_io_unwritten; 712 } 713 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 714 set_buffer_defer_completion(bh); 715 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 716 ret = 0; 717 } 718 if (started) 719 ext4_journal_stop(handle); 720 return ret; 721 } 722 723 int ext4_get_block(struct inode *inode, sector_t iblock, 724 struct buffer_head *bh, int create) 725 { 726 return _ext4_get_block(inode, iblock, bh, 727 create ? EXT4_GET_BLOCKS_CREATE : 0); 728 } 729 730 /* 731 * `handle' can be NULL if create is zero 732 */ 733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 734 ext4_lblk_t block, int map_flags) 735 { 736 struct ext4_map_blocks map; 737 struct buffer_head *bh; 738 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 739 int err; 740 741 J_ASSERT(handle != NULL || create == 0); 742 743 map.m_lblk = block; 744 map.m_len = 1; 745 err = ext4_map_blocks(handle, inode, &map, map_flags); 746 747 if (err == 0) 748 return create ? ERR_PTR(-ENOSPC) : NULL; 749 if (err < 0) 750 return ERR_PTR(err); 751 752 bh = sb_getblk(inode->i_sb, map.m_pblk); 753 if (unlikely(!bh)) 754 return ERR_PTR(-ENOMEM); 755 if (map.m_flags & EXT4_MAP_NEW) { 756 J_ASSERT(create != 0); 757 J_ASSERT(handle != NULL); 758 759 /* 760 * Now that we do not always journal data, we should 761 * keep in mind whether this should always journal the 762 * new buffer as metadata. For now, regular file 763 * writes use ext4_get_block instead, so it's not a 764 * problem. 765 */ 766 lock_buffer(bh); 767 BUFFER_TRACE(bh, "call get_create_access"); 768 err = ext4_journal_get_create_access(handle, bh); 769 if (unlikely(err)) { 770 unlock_buffer(bh); 771 goto errout; 772 } 773 if (!buffer_uptodate(bh)) { 774 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 775 set_buffer_uptodate(bh); 776 } 777 unlock_buffer(bh); 778 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 779 err = ext4_handle_dirty_metadata(handle, inode, bh); 780 if (unlikely(err)) 781 goto errout; 782 } else 783 BUFFER_TRACE(bh, "not a new buffer"); 784 return bh; 785 errout: 786 brelse(bh); 787 return ERR_PTR(err); 788 } 789 790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 791 ext4_lblk_t block, int map_flags) 792 { 793 struct buffer_head *bh; 794 795 bh = ext4_getblk(handle, inode, block, map_flags); 796 if (IS_ERR(bh)) 797 return bh; 798 if (!bh || buffer_uptodate(bh)) 799 return bh; 800 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 801 wait_on_buffer(bh); 802 if (buffer_uptodate(bh)) 803 return bh; 804 put_bh(bh); 805 return ERR_PTR(-EIO); 806 } 807 808 int ext4_walk_page_buffers(handle_t *handle, 809 struct buffer_head *head, 810 unsigned from, 811 unsigned to, 812 int *partial, 813 int (*fn)(handle_t *handle, 814 struct buffer_head *bh)) 815 { 816 struct buffer_head *bh; 817 unsigned block_start, block_end; 818 unsigned blocksize = head->b_size; 819 int err, ret = 0; 820 struct buffer_head *next; 821 822 for (bh = head, block_start = 0; 823 ret == 0 && (bh != head || !block_start); 824 block_start = block_end, bh = next) { 825 next = bh->b_this_page; 826 block_end = block_start + blocksize; 827 if (block_end <= from || block_start >= to) { 828 if (partial && !buffer_uptodate(bh)) 829 *partial = 1; 830 continue; 831 } 832 err = (*fn)(handle, bh); 833 if (!ret) 834 ret = err; 835 } 836 return ret; 837 } 838 839 /* 840 * To preserve ordering, it is essential that the hole instantiation and 841 * the data write be encapsulated in a single transaction. We cannot 842 * close off a transaction and start a new one between the ext4_get_block() 843 * and the commit_write(). So doing the jbd2_journal_start at the start of 844 * prepare_write() is the right place. 845 * 846 * Also, this function can nest inside ext4_writepage(). In that case, we 847 * *know* that ext4_writepage() has generated enough buffer credits to do the 848 * whole page. So we won't block on the journal in that case, which is good, 849 * because the caller may be PF_MEMALLOC. 850 * 851 * By accident, ext4 can be reentered when a transaction is open via 852 * quota file writes. If we were to commit the transaction while thus 853 * reentered, there can be a deadlock - we would be holding a quota 854 * lock, and the commit would never complete if another thread had a 855 * transaction open and was blocking on the quota lock - a ranking 856 * violation. 857 * 858 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 859 * will _not_ run commit under these circumstances because handle->h_ref 860 * is elevated. We'll still have enough credits for the tiny quotafile 861 * write. 862 */ 863 int do_journal_get_write_access(handle_t *handle, 864 struct buffer_head *bh) 865 { 866 int dirty = buffer_dirty(bh); 867 int ret; 868 869 if (!buffer_mapped(bh) || buffer_freed(bh)) 870 return 0; 871 /* 872 * __block_write_begin() could have dirtied some buffers. Clean 873 * the dirty bit as jbd2_journal_get_write_access() could complain 874 * otherwise about fs integrity issues. Setting of the dirty bit 875 * by __block_write_begin() isn't a real problem here as we clear 876 * the bit before releasing a page lock and thus writeback cannot 877 * ever write the buffer. 878 */ 879 if (dirty) 880 clear_buffer_dirty(bh); 881 BUFFER_TRACE(bh, "get write access"); 882 ret = ext4_journal_get_write_access(handle, bh); 883 if (!ret && dirty) 884 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 885 return ret; 886 } 887 888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 889 struct buffer_head *bh_result, int create); 890 891 #ifdef CONFIG_EXT4_FS_ENCRYPTION 892 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 893 get_block_t *get_block) 894 { 895 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 896 unsigned to = from + len; 897 struct inode *inode = page->mapping->host; 898 unsigned block_start, block_end; 899 sector_t block; 900 int err = 0; 901 unsigned blocksize = inode->i_sb->s_blocksize; 902 unsigned bbits; 903 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 904 bool decrypt = false; 905 906 BUG_ON(!PageLocked(page)); 907 BUG_ON(from > PAGE_CACHE_SIZE); 908 BUG_ON(to > PAGE_CACHE_SIZE); 909 BUG_ON(from > to); 910 911 if (!page_has_buffers(page)) 912 create_empty_buffers(page, blocksize, 0); 913 head = page_buffers(page); 914 bbits = ilog2(blocksize); 915 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 916 917 for (bh = head, block_start = 0; bh != head || !block_start; 918 block++, block_start = block_end, bh = bh->b_this_page) { 919 block_end = block_start + blocksize; 920 if (block_end <= from || block_start >= to) { 921 if (PageUptodate(page)) { 922 if (!buffer_uptodate(bh)) 923 set_buffer_uptodate(bh); 924 } 925 continue; 926 } 927 if (buffer_new(bh)) 928 clear_buffer_new(bh); 929 if (!buffer_mapped(bh)) { 930 WARN_ON(bh->b_size != blocksize); 931 err = get_block(inode, block, bh, 1); 932 if (err) 933 break; 934 if (buffer_new(bh)) { 935 unmap_underlying_metadata(bh->b_bdev, 936 bh->b_blocknr); 937 if (PageUptodate(page)) { 938 clear_buffer_new(bh); 939 set_buffer_uptodate(bh); 940 mark_buffer_dirty(bh); 941 continue; 942 } 943 if (block_end > to || block_start < from) 944 zero_user_segments(page, to, block_end, 945 block_start, from); 946 continue; 947 } 948 } 949 if (PageUptodate(page)) { 950 if (!buffer_uptodate(bh)) 951 set_buffer_uptodate(bh); 952 continue; 953 } 954 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 955 !buffer_unwritten(bh) && 956 (block_start < from || block_end > to)) { 957 ll_rw_block(READ, 1, &bh); 958 *wait_bh++ = bh; 959 decrypt = ext4_encrypted_inode(inode) && 960 S_ISREG(inode->i_mode); 961 } 962 } 963 /* 964 * If we issued read requests, let them complete. 965 */ 966 while (wait_bh > wait) { 967 wait_on_buffer(*--wait_bh); 968 if (!buffer_uptodate(*wait_bh)) 969 err = -EIO; 970 } 971 if (unlikely(err)) 972 page_zero_new_buffers(page, from, to); 973 else if (decrypt) 974 err = ext4_decrypt_one(inode, page); 975 return err; 976 } 977 #endif 978 979 static int ext4_write_begin(struct file *file, struct address_space *mapping, 980 loff_t pos, unsigned len, unsigned flags, 981 struct page **pagep, void **fsdata) 982 { 983 struct inode *inode = mapping->host; 984 int ret, needed_blocks; 985 handle_t *handle; 986 int retries = 0; 987 struct page *page; 988 pgoff_t index; 989 unsigned from, to; 990 991 trace_ext4_write_begin(inode, pos, len, flags); 992 /* 993 * Reserve one block more for addition to orphan list in case 994 * we allocate blocks but write fails for some reason 995 */ 996 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 997 index = pos >> PAGE_CACHE_SHIFT; 998 from = pos & (PAGE_CACHE_SIZE - 1); 999 to = from + len; 1000 1001 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1002 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1003 flags, pagep); 1004 if (ret < 0) 1005 return ret; 1006 if (ret == 1) 1007 return 0; 1008 } 1009 1010 /* 1011 * grab_cache_page_write_begin() can take a long time if the 1012 * system is thrashing due to memory pressure, or if the page 1013 * is being written back. So grab it first before we start 1014 * the transaction handle. This also allows us to allocate 1015 * the page (if needed) without using GFP_NOFS. 1016 */ 1017 retry_grab: 1018 page = grab_cache_page_write_begin(mapping, index, flags); 1019 if (!page) 1020 return -ENOMEM; 1021 unlock_page(page); 1022 1023 retry_journal: 1024 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1025 if (IS_ERR(handle)) { 1026 page_cache_release(page); 1027 return PTR_ERR(handle); 1028 } 1029 1030 lock_page(page); 1031 if (page->mapping != mapping) { 1032 /* The page got truncated from under us */ 1033 unlock_page(page); 1034 page_cache_release(page); 1035 ext4_journal_stop(handle); 1036 goto retry_grab; 1037 } 1038 /* In case writeback began while the page was unlocked */ 1039 wait_for_stable_page(page); 1040 1041 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1042 if (ext4_should_dioread_nolock(inode)) 1043 ret = ext4_block_write_begin(page, pos, len, 1044 ext4_get_block_write); 1045 else 1046 ret = ext4_block_write_begin(page, pos, len, 1047 ext4_get_block); 1048 #else 1049 if (ext4_should_dioread_nolock(inode)) 1050 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1051 else 1052 ret = __block_write_begin(page, pos, len, ext4_get_block); 1053 #endif 1054 if (!ret && ext4_should_journal_data(inode)) { 1055 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1056 from, to, NULL, 1057 do_journal_get_write_access); 1058 } 1059 1060 if (ret) { 1061 unlock_page(page); 1062 /* 1063 * __block_write_begin may have instantiated a few blocks 1064 * outside i_size. Trim these off again. Don't need 1065 * i_size_read because we hold i_mutex. 1066 * 1067 * Add inode to orphan list in case we crash before 1068 * truncate finishes 1069 */ 1070 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1071 ext4_orphan_add(handle, inode); 1072 1073 ext4_journal_stop(handle); 1074 if (pos + len > inode->i_size) { 1075 ext4_truncate_failed_write(inode); 1076 /* 1077 * If truncate failed early the inode might 1078 * still be on the orphan list; we need to 1079 * make sure the inode is removed from the 1080 * orphan list in that case. 1081 */ 1082 if (inode->i_nlink) 1083 ext4_orphan_del(NULL, inode); 1084 } 1085 1086 if (ret == -ENOSPC && 1087 ext4_should_retry_alloc(inode->i_sb, &retries)) 1088 goto retry_journal; 1089 page_cache_release(page); 1090 return ret; 1091 } 1092 *pagep = page; 1093 return ret; 1094 } 1095 1096 /* For write_end() in data=journal mode */ 1097 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1098 { 1099 int ret; 1100 if (!buffer_mapped(bh) || buffer_freed(bh)) 1101 return 0; 1102 set_buffer_uptodate(bh); 1103 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1104 clear_buffer_meta(bh); 1105 clear_buffer_prio(bh); 1106 return ret; 1107 } 1108 1109 /* 1110 * We need to pick up the new inode size which generic_commit_write gave us 1111 * `file' can be NULL - eg, when called from page_symlink(). 1112 * 1113 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1114 * buffers are managed internally. 1115 */ 1116 static int ext4_write_end(struct file *file, 1117 struct address_space *mapping, 1118 loff_t pos, unsigned len, unsigned copied, 1119 struct page *page, void *fsdata) 1120 { 1121 handle_t *handle = ext4_journal_current_handle(); 1122 struct inode *inode = mapping->host; 1123 loff_t old_size = inode->i_size; 1124 int ret = 0, ret2; 1125 int i_size_changed = 0; 1126 1127 trace_ext4_write_end(inode, pos, len, copied); 1128 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1129 ret = ext4_jbd2_file_inode(handle, inode); 1130 if (ret) { 1131 unlock_page(page); 1132 page_cache_release(page); 1133 goto errout; 1134 } 1135 } 1136 1137 if (ext4_has_inline_data(inode)) { 1138 ret = ext4_write_inline_data_end(inode, pos, len, 1139 copied, page); 1140 if (ret < 0) 1141 goto errout; 1142 copied = ret; 1143 } else 1144 copied = block_write_end(file, mapping, pos, 1145 len, copied, page, fsdata); 1146 /* 1147 * it's important to update i_size while still holding page lock: 1148 * page writeout could otherwise come in and zero beyond i_size. 1149 */ 1150 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1151 unlock_page(page); 1152 page_cache_release(page); 1153 1154 if (old_size < pos) 1155 pagecache_isize_extended(inode, old_size, pos); 1156 /* 1157 * Don't mark the inode dirty under page lock. First, it unnecessarily 1158 * makes the holding time of page lock longer. Second, it forces lock 1159 * ordering of page lock and transaction start for journaling 1160 * filesystems. 1161 */ 1162 if (i_size_changed) 1163 ext4_mark_inode_dirty(handle, inode); 1164 1165 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1166 /* if we have allocated more blocks and copied 1167 * less. We will have blocks allocated outside 1168 * inode->i_size. So truncate them 1169 */ 1170 ext4_orphan_add(handle, inode); 1171 errout: 1172 ret2 = ext4_journal_stop(handle); 1173 if (!ret) 1174 ret = ret2; 1175 1176 if (pos + len > inode->i_size) { 1177 ext4_truncate_failed_write(inode); 1178 /* 1179 * If truncate failed early the inode might still be 1180 * on the orphan list; we need to make sure the inode 1181 * is removed from the orphan list in that case. 1182 */ 1183 if (inode->i_nlink) 1184 ext4_orphan_del(NULL, inode); 1185 } 1186 1187 return ret ? ret : copied; 1188 } 1189 1190 static int ext4_journalled_write_end(struct file *file, 1191 struct address_space *mapping, 1192 loff_t pos, unsigned len, unsigned copied, 1193 struct page *page, void *fsdata) 1194 { 1195 handle_t *handle = ext4_journal_current_handle(); 1196 struct inode *inode = mapping->host; 1197 loff_t old_size = inode->i_size; 1198 int ret = 0, ret2; 1199 int partial = 0; 1200 unsigned from, to; 1201 int size_changed = 0; 1202 1203 trace_ext4_journalled_write_end(inode, pos, len, copied); 1204 from = pos & (PAGE_CACHE_SIZE - 1); 1205 to = from + len; 1206 1207 BUG_ON(!ext4_handle_valid(handle)); 1208 1209 if (ext4_has_inline_data(inode)) 1210 copied = ext4_write_inline_data_end(inode, pos, len, 1211 copied, page); 1212 else { 1213 if (copied < len) { 1214 if (!PageUptodate(page)) 1215 copied = 0; 1216 page_zero_new_buffers(page, from+copied, to); 1217 } 1218 1219 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1220 to, &partial, write_end_fn); 1221 if (!partial) 1222 SetPageUptodate(page); 1223 } 1224 size_changed = ext4_update_inode_size(inode, pos + copied); 1225 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1226 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1227 unlock_page(page); 1228 page_cache_release(page); 1229 1230 if (old_size < pos) 1231 pagecache_isize_extended(inode, old_size, pos); 1232 1233 if (size_changed) { 1234 ret2 = ext4_mark_inode_dirty(handle, inode); 1235 if (!ret) 1236 ret = ret2; 1237 } 1238 1239 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1240 /* if we have allocated more blocks and copied 1241 * less. We will have blocks allocated outside 1242 * inode->i_size. So truncate them 1243 */ 1244 ext4_orphan_add(handle, inode); 1245 1246 ret2 = ext4_journal_stop(handle); 1247 if (!ret) 1248 ret = ret2; 1249 if (pos + len > inode->i_size) { 1250 ext4_truncate_failed_write(inode); 1251 /* 1252 * If truncate failed early the inode might still be 1253 * on the orphan list; we need to make sure the inode 1254 * is removed from the orphan list in that case. 1255 */ 1256 if (inode->i_nlink) 1257 ext4_orphan_del(NULL, inode); 1258 } 1259 1260 return ret ? ret : copied; 1261 } 1262 1263 /* 1264 * Reserve space for a single cluster 1265 */ 1266 static int ext4_da_reserve_space(struct inode *inode) 1267 { 1268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1269 struct ext4_inode_info *ei = EXT4_I(inode); 1270 int ret; 1271 1272 /* 1273 * We will charge metadata quota at writeout time; this saves 1274 * us from metadata over-estimation, though we may go over by 1275 * a small amount in the end. Here we just reserve for data. 1276 */ 1277 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1278 if (ret) 1279 return ret; 1280 1281 spin_lock(&ei->i_block_reservation_lock); 1282 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1283 spin_unlock(&ei->i_block_reservation_lock); 1284 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1285 return -ENOSPC; 1286 } 1287 ei->i_reserved_data_blocks++; 1288 trace_ext4_da_reserve_space(inode); 1289 spin_unlock(&ei->i_block_reservation_lock); 1290 1291 return 0; /* success */ 1292 } 1293 1294 static void ext4_da_release_space(struct inode *inode, int to_free) 1295 { 1296 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1297 struct ext4_inode_info *ei = EXT4_I(inode); 1298 1299 if (!to_free) 1300 return; /* Nothing to release, exit */ 1301 1302 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1303 1304 trace_ext4_da_release_space(inode, to_free); 1305 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1306 /* 1307 * if there aren't enough reserved blocks, then the 1308 * counter is messed up somewhere. Since this 1309 * function is called from invalidate page, it's 1310 * harmless to return without any action. 1311 */ 1312 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1313 "ino %lu, to_free %d with only %d reserved " 1314 "data blocks", inode->i_ino, to_free, 1315 ei->i_reserved_data_blocks); 1316 WARN_ON(1); 1317 to_free = ei->i_reserved_data_blocks; 1318 } 1319 ei->i_reserved_data_blocks -= to_free; 1320 1321 /* update fs dirty data blocks counter */ 1322 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1323 1324 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1325 1326 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1327 } 1328 1329 static void ext4_da_page_release_reservation(struct page *page, 1330 unsigned int offset, 1331 unsigned int length) 1332 { 1333 int to_release = 0; 1334 struct buffer_head *head, *bh; 1335 unsigned int curr_off = 0; 1336 struct inode *inode = page->mapping->host; 1337 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1338 unsigned int stop = offset + length; 1339 int num_clusters; 1340 ext4_fsblk_t lblk; 1341 1342 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1343 1344 head = page_buffers(page); 1345 bh = head; 1346 do { 1347 unsigned int next_off = curr_off + bh->b_size; 1348 1349 if (next_off > stop) 1350 break; 1351 1352 if ((offset <= curr_off) && (buffer_delay(bh))) { 1353 to_release++; 1354 clear_buffer_delay(bh); 1355 } 1356 curr_off = next_off; 1357 } while ((bh = bh->b_this_page) != head); 1358 1359 if (to_release) { 1360 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1361 ext4_es_remove_extent(inode, lblk, to_release); 1362 } 1363 1364 /* If we have released all the blocks belonging to a cluster, then we 1365 * need to release the reserved space for that cluster. */ 1366 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1367 while (num_clusters > 0) { 1368 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1369 ((num_clusters - 1) << sbi->s_cluster_bits); 1370 if (sbi->s_cluster_ratio == 1 || 1371 !ext4_find_delalloc_cluster(inode, lblk)) 1372 ext4_da_release_space(inode, 1); 1373 1374 num_clusters--; 1375 } 1376 } 1377 1378 /* 1379 * Delayed allocation stuff 1380 */ 1381 1382 struct mpage_da_data { 1383 struct inode *inode; 1384 struct writeback_control *wbc; 1385 1386 pgoff_t first_page; /* The first page to write */ 1387 pgoff_t next_page; /* Current page to examine */ 1388 pgoff_t last_page; /* Last page to examine */ 1389 /* 1390 * Extent to map - this can be after first_page because that can be 1391 * fully mapped. We somewhat abuse m_flags to store whether the extent 1392 * is delalloc or unwritten. 1393 */ 1394 struct ext4_map_blocks map; 1395 struct ext4_io_submit io_submit; /* IO submission data */ 1396 }; 1397 1398 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1399 bool invalidate) 1400 { 1401 int nr_pages, i; 1402 pgoff_t index, end; 1403 struct pagevec pvec; 1404 struct inode *inode = mpd->inode; 1405 struct address_space *mapping = inode->i_mapping; 1406 1407 /* This is necessary when next_page == 0. */ 1408 if (mpd->first_page >= mpd->next_page) 1409 return; 1410 1411 index = mpd->first_page; 1412 end = mpd->next_page - 1; 1413 if (invalidate) { 1414 ext4_lblk_t start, last; 1415 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1416 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1417 ext4_es_remove_extent(inode, start, last - start + 1); 1418 } 1419 1420 pagevec_init(&pvec, 0); 1421 while (index <= end) { 1422 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1423 if (nr_pages == 0) 1424 break; 1425 for (i = 0; i < nr_pages; i++) { 1426 struct page *page = pvec.pages[i]; 1427 if (page->index > end) 1428 break; 1429 BUG_ON(!PageLocked(page)); 1430 BUG_ON(PageWriteback(page)); 1431 if (invalidate) { 1432 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1433 ClearPageUptodate(page); 1434 } 1435 unlock_page(page); 1436 } 1437 index = pvec.pages[nr_pages - 1]->index + 1; 1438 pagevec_release(&pvec); 1439 } 1440 } 1441 1442 static void ext4_print_free_blocks(struct inode *inode) 1443 { 1444 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1445 struct super_block *sb = inode->i_sb; 1446 struct ext4_inode_info *ei = EXT4_I(inode); 1447 1448 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1449 EXT4_C2B(EXT4_SB(inode->i_sb), 1450 ext4_count_free_clusters(sb))); 1451 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1452 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1453 (long long) EXT4_C2B(EXT4_SB(sb), 1454 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1455 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1456 (long long) EXT4_C2B(EXT4_SB(sb), 1457 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1458 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1459 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1460 ei->i_reserved_data_blocks); 1461 return; 1462 } 1463 1464 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1465 { 1466 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1467 } 1468 1469 /* 1470 * This function is grabs code from the very beginning of 1471 * ext4_map_blocks, but assumes that the caller is from delayed write 1472 * time. This function looks up the requested blocks and sets the 1473 * buffer delay bit under the protection of i_data_sem. 1474 */ 1475 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1476 struct ext4_map_blocks *map, 1477 struct buffer_head *bh) 1478 { 1479 struct extent_status es; 1480 int retval; 1481 sector_t invalid_block = ~((sector_t) 0xffff); 1482 #ifdef ES_AGGRESSIVE_TEST 1483 struct ext4_map_blocks orig_map; 1484 1485 memcpy(&orig_map, map, sizeof(*map)); 1486 #endif 1487 1488 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1489 invalid_block = ~0; 1490 1491 map->m_flags = 0; 1492 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1493 "logical block %lu\n", inode->i_ino, map->m_len, 1494 (unsigned long) map->m_lblk); 1495 1496 /* Lookup extent status tree firstly */ 1497 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1498 if (ext4_es_is_hole(&es)) { 1499 retval = 0; 1500 down_read(&EXT4_I(inode)->i_data_sem); 1501 goto add_delayed; 1502 } 1503 1504 /* 1505 * Delayed extent could be allocated by fallocate. 1506 * So we need to check it. 1507 */ 1508 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1509 map_bh(bh, inode->i_sb, invalid_block); 1510 set_buffer_new(bh); 1511 set_buffer_delay(bh); 1512 return 0; 1513 } 1514 1515 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1516 retval = es.es_len - (iblock - es.es_lblk); 1517 if (retval > map->m_len) 1518 retval = map->m_len; 1519 map->m_len = retval; 1520 if (ext4_es_is_written(&es)) 1521 map->m_flags |= EXT4_MAP_MAPPED; 1522 else if (ext4_es_is_unwritten(&es)) 1523 map->m_flags |= EXT4_MAP_UNWRITTEN; 1524 else 1525 BUG_ON(1); 1526 1527 #ifdef ES_AGGRESSIVE_TEST 1528 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1529 #endif 1530 return retval; 1531 } 1532 1533 /* 1534 * Try to see if we can get the block without requesting a new 1535 * file system block. 1536 */ 1537 down_read(&EXT4_I(inode)->i_data_sem); 1538 if (ext4_has_inline_data(inode)) 1539 retval = 0; 1540 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1541 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1542 else 1543 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1544 1545 add_delayed: 1546 if (retval == 0) { 1547 int ret; 1548 /* 1549 * XXX: __block_prepare_write() unmaps passed block, 1550 * is it OK? 1551 */ 1552 /* 1553 * If the block was allocated from previously allocated cluster, 1554 * then we don't need to reserve it again. However we still need 1555 * to reserve metadata for every block we're going to write. 1556 */ 1557 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1558 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1559 ret = ext4_da_reserve_space(inode); 1560 if (ret) { 1561 /* not enough space to reserve */ 1562 retval = ret; 1563 goto out_unlock; 1564 } 1565 } 1566 1567 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1568 ~0, EXTENT_STATUS_DELAYED); 1569 if (ret) { 1570 retval = ret; 1571 goto out_unlock; 1572 } 1573 1574 map_bh(bh, inode->i_sb, invalid_block); 1575 set_buffer_new(bh); 1576 set_buffer_delay(bh); 1577 } else if (retval > 0) { 1578 int ret; 1579 unsigned int status; 1580 1581 if (unlikely(retval != map->m_len)) { 1582 ext4_warning(inode->i_sb, 1583 "ES len assertion failed for inode " 1584 "%lu: retval %d != map->m_len %d", 1585 inode->i_ino, retval, map->m_len); 1586 WARN_ON(1); 1587 } 1588 1589 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1590 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1591 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1592 map->m_pblk, status); 1593 if (ret != 0) 1594 retval = ret; 1595 } 1596 1597 out_unlock: 1598 up_read((&EXT4_I(inode)->i_data_sem)); 1599 1600 return retval; 1601 } 1602 1603 /* 1604 * This is a special get_block_t callback which is used by 1605 * ext4_da_write_begin(). It will either return mapped block or 1606 * reserve space for a single block. 1607 * 1608 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1609 * We also have b_blocknr = -1 and b_bdev initialized properly 1610 * 1611 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1612 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1613 * initialized properly. 1614 */ 1615 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1616 struct buffer_head *bh, int create) 1617 { 1618 struct ext4_map_blocks map; 1619 int ret = 0; 1620 1621 BUG_ON(create == 0); 1622 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1623 1624 map.m_lblk = iblock; 1625 map.m_len = 1; 1626 1627 /* 1628 * first, we need to know whether the block is allocated already 1629 * preallocated blocks are unmapped but should treated 1630 * the same as allocated blocks. 1631 */ 1632 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1633 if (ret <= 0) 1634 return ret; 1635 1636 map_bh(bh, inode->i_sb, map.m_pblk); 1637 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1638 1639 if (buffer_unwritten(bh)) { 1640 /* A delayed write to unwritten bh should be marked 1641 * new and mapped. Mapped ensures that we don't do 1642 * get_block multiple times when we write to the same 1643 * offset and new ensures that we do proper zero out 1644 * for partial write. 1645 */ 1646 set_buffer_new(bh); 1647 set_buffer_mapped(bh); 1648 } 1649 return 0; 1650 } 1651 1652 static int bget_one(handle_t *handle, struct buffer_head *bh) 1653 { 1654 get_bh(bh); 1655 return 0; 1656 } 1657 1658 static int bput_one(handle_t *handle, struct buffer_head *bh) 1659 { 1660 put_bh(bh); 1661 return 0; 1662 } 1663 1664 static int __ext4_journalled_writepage(struct page *page, 1665 unsigned int len) 1666 { 1667 struct address_space *mapping = page->mapping; 1668 struct inode *inode = mapping->host; 1669 struct buffer_head *page_bufs = NULL; 1670 handle_t *handle = NULL; 1671 int ret = 0, err = 0; 1672 int inline_data = ext4_has_inline_data(inode); 1673 struct buffer_head *inode_bh = NULL; 1674 1675 ClearPageChecked(page); 1676 1677 if (inline_data) { 1678 BUG_ON(page->index != 0); 1679 BUG_ON(len > ext4_get_max_inline_size(inode)); 1680 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1681 if (inode_bh == NULL) 1682 goto out; 1683 } else { 1684 page_bufs = page_buffers(page); 1685 if (!page_bufs) { 1686 BUG(); 1687 goto out; 1688 } 1689 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1690 NULL, bget_one); 1691 } 1692 /* 1693 * We need to release the page lock before we start the 1694 * journal, so grab a reference so the page won't disappear 1695 * out from under us. 1696 */ 1697 get_page(page); 1698 unlock_page(page); 1699 1700 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1701 ext4_writepage_trans_blocks(inode)); 1702 if (IS_ERR(handle)) { 1703 ret = PTR_ERR(handle); 1704 put_page(page); 1705 goto out_no_pagelock; 1706 } 1707 BUG_ON(!ext4_handle_valid(handle)); 1708 1709 lock_page(page); 1710 put_page(page); 1711 if (page->mapping != mapping) { 1712 /* The page got truncated from under us */ 1713 ext4_journal_stop(handle); 1714 ret = 0; 1715 goto out; 1716 } 1717 1718 if (inline_data) { 1719 BUFFER_TRACE(inode_bh, "get write access"); 1720 ret = ext4_journal_get_write_access(handle, inode_bh); 1721 1722 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1723 1724 } else { 1725 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1726 do_journal_get_write_access); 1727 1728 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1729 write_end_fn); 1730 } 1731 if (ret == 0) 1732 ret = err; 1733 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1734 err = ext4_journal_stop(handle); 1735 if (!ret) 1736 ret = err; 1737 1738 if (!ext4_has_inline_data(inode)) 1739 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1740 NULL, bput_one); 1741 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1742 out: 1743 unlock_page(page); 1744 out_no_pagelock: 1745 brelse(inode_bh); 1746 return ret; 1747 } 1748 1749 /* 1750 * Note that we don't need to start a transaction unless we're journaling data 1751 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1752 * need to file the inode to the transaction's list in ordered mode because if 1753 * we are writing back data added by write(), the inode is already there and if 1754 * we are writing back data modified via mmap(), no one guarantees in which 1755 * transaction the data will hit the disk. In case we are journaling data, we 1756 * cannot start transaction directly because transaction start ranks above page 1757 * lock so we have to do some magic. 1758 * 1759 * This function can get called via... 1760 * - ext4_writepages after taking page lock (have journal handle) 1761 * - journal_submit_inode_data_buffers (no journal handle) 1762 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1763 * - grab_page_cache when doing write_begin (have journal handle) 1764 * 1765 * We don't do any block allocation in this function. If we have page with 1766 * multiple blocks we need to write those buffer_heads that are mapped. This 1767 * is important for mmaped based write. So if we do with blocksize 1K 1768 * truncate(f, 1024); 1769 * a = mmap(f, 0, 4096); 1770 * a[0] = 'a'; 1771 * truncate(f, 4096); 1772 * we have in the page first buffer_head mapped via page_mkwrite call back 1773 * but other buffer_heads would be unmapped but dirty (dirty done via the 1774 * do_wp_page). So writepage should write the first block. If we modify 1775 * the mmap area beyond 1024 we will again get a page_fault and the 1776 * page_mkwrite callback will do the block allocation and mark the 1777 * buffer_heads mapped. 1778 * 1779 * We redirty the page if we have any buffer_heads that is either delay or 1780 * unwritten in the page. 1781 * 1782 * We can get recursively called as show below. 1783 * 1784 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1785 * ext4_writepage() 1786 * 1787 * But since we don't do any block allocation we should not deadlock. 1788 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1789 */ 1790 static int ext4_writepage(struct page *page, 1791 struct writeback_control *wbc) 1792 { 1793 int ret = 0; 1794 loff_t size; 1795 unsigned int len; 1796 struct buffer_head *page_bufs = NULL; 1797 struct inode *inode = page->mapping->host; 1798 struct ext4_io_submit io_submit; 1799 bool keep_towrite = false; 1800 1801 trace_ext4_writepage(page); 1802 size = i_size_read(inode); 1803 if (page->index == size >> PAGE_CACHE_SHIFT) 1804 len = size & ~PAGE_CACHE_MASK; 1805 else 1806 len = PAGE_CACHE_SIZE; 1807 1808 page_bufs = page_buffers(page); 1809 /* 1810 * We cannot do block allocation or other extent handling in this 1811 * function. If there are buffers needing that, we have to redirty 1812 * the page. But we may reach here when we do a journal commit via 1813 * journal_submit_inode_data_buffers() and in that case we must write 1814 * allocated buffers to achieve data=ordered mode guarantees. 1815 */ 1816 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1817 ext4_bh_delay_or_unwritten)) { 1818 redirty_page_for_writepage(wbc, page); 1819 if (current->flags & PF_MEMALLOC) { 1820 /* 1821 * For memory cleaning there's no point in writing only 1822 * some buffers. So just bail out. Warn if we came here 1823 * from direct reclaim. 1824 */ 1825 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1826 == PF_MEMALLOC); 1827 unlock_page(page); 1828 return 0; 1829 } 1830 keep_towrite = true; 1831 } 1832 1833 if (PageChecked(page) && ext4_should_journal_data(inode)) 1834 /* 1835 * It's mmapped pagecache. Add buffers and journal it. There 1836 * doesn't seem much point in redirtying the page here. 1837 */ 1838 return __ext4_journalled_writepage(page, len); 1839 1840 ext4_io_submit_init(&io_submit, wbc); 1841 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1842 if (!io_submit.io_end) { 1843 redirty_page_for_writepage(wbc, page); 1844 unlock_page(page); 1845 return -ENOMEM; 1846 } 1847 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1848 ext4_io_submit(&io_submit); 1849 /* Drop io_end reference we got from init */ 1850 ext4_put_io_end_defer(io_submit.io_end); 1851 return ret; 1852 } 1853 1854 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1855 { 1856 int len; 1857 loff_t size = i_size_read(mpd->inode); 1858 int err; 1859 1860 BUG_ON(page->index != mpd->first_page); 1861 if (page->index == size >> PAGE_CACHE_SHIFT) 1862 len = size & ~PAGE_CACHE_MASK; 1863 else 1864 len = PAGE_CACHE_SIZE; 1865 clear_page_dirty_for_io(page); 1866 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1867 if (!err) 1868 mpd->wbc->nr_to_write--; 1869 mpd->first_page++; 1870 1871 return err; 1872 } 1873 1874 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1875 1876 /* 1877 * mballoc gives us at most this number of blocks... 1878 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1879 * The rest of mballoc seems to handle chunks up to full group size. 1880 */ 1881 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1882 1883 /* 1884 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1885 * 1886 * @mpd - extent of blocks 1887 * @lblk - logical number of the block in the file 1888 * @bh - buffer head we want to add to the extent 1889 * 1890 * The function is used to collect contig. blocks in the same state. If the 1891 * buffer doesn't require mapping for writeback and we haven't started the 1892 * extent of buffers to map yet, the function returns 'true' immediately - the 1893 * caller can write the buffer right away. Otherwise the function returns true 1894 * if the block has been added to the extent, false if the block couldn't be 1895 * added. 1896 */ 1897 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1898 struct buffer_head *bh) 1899 { 1900 struct ext4_map_blocks *map = &mpd->map; 1901 1902 /* Buffer that doesn't need mapping for writeback? */ 1903 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1904 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1905 /* So far no extent to map => we write the buffer right away */ 1906 if (map->m_len == 0) 1907 return true; 1908 return false; 1909 } 1910 1911 /* First block in the extent? */ 1912 if (map->m_len == 0) { 1913 map->m_lblk = lblk; 1914 map->m_len = 1; 1915 map->m_flags = bh->b_state & BH_FLAGS; 1916 return true; 1917 } 1918 1919 /* Don't go larger than mballoc is willing to allocate */ 1920 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1921 return false; 1922 1923 /* Can we merge the block to our big extent? */ 1924 if (lblk == map->m_lblk + map->m_len && 1925 (bh->b_state & BH_FLAGS) == map->m_flags) { 1926 map->m_len++; 1927 return true; 1928 } 1929 return false; 1930 } 1931 1932 /* 1933 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1934 * 1935 * @mpd - extent of blocks for mapping 1936 * @head - the first buffer in the page 1937 * @bh - buffer we should start processing from 1938 * @lblk - logical number of the block in the file corresponding to @bh 1939 * 1940 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1941 * the page for IO if all buffers in this page were mapped and there's no 1942 * accumulated extent of buffers to map or add buffers in the page to the 1943 * extent of buffers to map. The function returns 1 if the caller can continue 1944 * by processing the next page, 0 if it should stop adding buffers to the 1945 * extent to map because we cannot extend it anymore. It can also return value 1946 * < 0 in case of error during IO submission. 1947 */ 1948 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1949 struct buffer_head *head, 1950 struct buffer_head *bh, 1951 ext4_lblk_t lblk) 1952 { 1953 struct inode *inode = mpd->inode; 1954 int err; 1955 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1956 >> inode->i_blkbits; 1957 1958 do { 1959 BUG_ON(buffer_locked(bh)); 1960 1961 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1962 /* Found extent to map? */ 1963 if (mpd->map.m_len) 1964 return 0; 1965 /* Everything mapped so far and we hit EOF */ 1966 break; 1967 } 1968 } while (lblk++, (bh = bh->b_this_page) != head); 1969 /* So far everything mapped? Submit the page for IO. */ 1970 if (mpd->map.m_len == 0) { 1971 err = mpage_submit_page(mpd, head->b_page); 1972 if (err < 0) 1973 return err; 1974 } 1975 return lblk < blocks; 1976 } 1977 1978 /* 1979 * mpage_map_buffers - update buffers corresponding to changed extent and 1980 * submit fully mapped pages for IO 1981 * 1982 * @mpd - description of extent to map, on return next extent to map 1983 * 1984 * Scan buffers corresponding to changed extent (we expect corresponding pages 1985 * to be already locked) and update buffer state according to new extent state. 1986 * We map delalloc buffers to their physical location, clear unwritten bits, 1987 * and mark buffers as uninit when we perform writes to unwritten extents 1988 * and do extent conversion after IO is finished. If the last page is not fully 1989 * mapped, we update @map to the next extent in the last page that needs 1990 * mapping. Otherwise we submit the page for IO. 1991 */ 1992 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 1993 { 1994 struct pagevec pvec; 1995 int nr_pages, i; 1996 struct inode *inode = mpd->inode; 1997 struct buffer_head *head, *bh; 1998 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 1999 pgoff_t start, end; 2000 ext4_lblk_t lblk; 2001 sector_t pblock; 2002 int err; 2003 2004 start = mpd->map.m_lblk >> bpp_bits; 2005 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2006 lblk = start << bpp_bits; 2007 pblock = mpd->map.m_pblk; 2008 2009 pagevec_init(&pvec, 0); 2010 while (start <= end) { 2011 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2012 PAGEVEC_SIZE); 2013 if (nr_pages == 0) 2014 break; 2015 for (i = 0; i < nr_pages; i++) { 2016 struct page *page = pvec.pages[i]; 2017 2018 if (page->index > end) 2019 break; 2020 /* Up to 'end' pages must be contiguous */ 2021 BUG_ON(page->index != start); 2022 bh = head = page_buffers(page); 2023 do { 2024 if (lblk < mpd->map.m_lblk) 2025 continue; 2026 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2027 /* 2028 * Buffer after end of mapped extent. 2029 * Find next buffer in the page to map. 2030 */ 2031 mpd->map.m_len = 0; 2032 mpd->map.m_flags = 0; 2033 /* 2034 * FIXME: If dioread_nolock supports 2035 * blocksize < pagesize, we need to make 2036 * sure we add size mapped so far to 2037 * io_end->size as the following call 2038 * can submit the page for IO. 2039 */ 2040 err = mpage_process_page_bufs(mpd, head, 2041 bh, lblk); 2042 pagevec_release(&pvec); 2043 if (err > 0) 2044 err = 0; 2045 return err; 2046 } 2047 if (buffer_delay(bh)) { 2048 clear_buffer_delay(bh); 2049 bh->b_blocknr = pblock++; 2050 } 2051 clear_buffer_unwritten(bh); 2052 } while (lblk++, (bh = bh->b_this_page) != head); 2053 2054 /* 2055 * FIXME: This is going to break if dioread_nolock 2056 * supports blocksize < pagesize as we will try to 2057 * convert potentially unmapped parts of inode. 2058 */ 2059 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2060 /* Page fully mapped - let IO run! */ 2061 err = mpage_submit_page(mpd, page); 2062 if (err < 0) { 2063 pagevec_release(&pvec); 2064 return err; 2065 } 2066 start++; 2067 } 2068 pagevec_release(&pvec); 2069 } 2070 /* Extent fully mapped and matches with page boundary. We are done. */ 2071 mpd->map.m_len = 0; 2072 mpd->map.m_flags = 0; 2073 return 0; 2074 } 2075 2076 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2077 { 2078 struct inode *inode = mpd->inode; 2079 struct ext4_map_blocks *map = &mpd->map; 2080 int get_blocks_flags; 2081 int err, dioread_nolock; 2082 2083 trace_ext4_da_write_pages_extent(inode, map); 2084 /* 2085 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2086 * to convert an unwritten extent to be initialized (in the case 2087 * where we have written into one or more preallocated blocks). It is 2088 * possible that we're going to need more metadata blocks than 2089 * previously reserved. However we must not fail because we're in 2090 * writeback and there is nothing we can do about it so it might result 2091 * in data loss. So use reserved blocks to allocate metadata if 2092 * possible. 2093 * 2094 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2095 * the blocks in question are delalloc blocks. This indicates 2096 * that the blocks and quotas has already been checked when 2097 * the data was copied into the page cache. 2098 */ 2099 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2100 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2101 dioread_nolock = ext4_should_dioread_nolock(inode); 2102 if (dioread_nolock) 2103 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2104 if (map->m_flags & (1 << BH_Delay)) 2105 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2106 2107 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2108 if (err < 0) 2109 return err; 2110 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2111 if (!mpd->io_submit.io_end->handle && 2112 ext4_handle_valid(handle)) { 2113 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2114 handle->h_rsv_handle = NULL; 2115 } 2116 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2117 } 2118 2119 BUG_ON(map->m_len == 0); 2120 if (map->m_flags & EXT4_MAP_NEW) { 2121 struct block_device *bdev = inode->i_sb->s_bdev; 2122 int i; 2123 2124 for (i = 0; i < map->m_len; i++) 2125 unmap_underlying_metadata(bdev, map->m_pblk + i); 2126 } 2127 return 0; 2128 } 2129 2130 /* 2131 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2132 * mpd->len and submit pages underlying it for IO 2133 * 2134 * @handle - handle for journal operations 2135 * @mpd - extent to map 2136 * @give_up_on_write - we set this to true iff there is a fatal error and there 2137 * is no hope of writing the data. The caller should discard 2138 * dirty pages to avoid infinite loops. 2139 * 2140 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2141 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2142 * them to initialized or split the described range from larger unwritten 2143 * extent. Note that we need not map all the described range since allocation 2144 * can return less blocks or the range is covered by more unwritten extents. We 2145 * cannot map more because we are limited by reserved transaction credits. On 2146 * the other hand we always make sure that the last touched page is fully 2147 * mapped so that it can be written out (and thus forward progress is 2148 * guaranteed). After mapping we submit all mapped pages for IO. 2149 */ 2150 static int mpage_map_and_submit_extent(handle_t *handle, 2151 struct mpage_da_data *mpd, 2152 bool *give_up_on_write) 2153 { 2154 struct inode *inode = mpd->inode; 2155 struct ext4_map_blocks *map = &mpd->map; 2156 int err; 2157 loff_t disksize; 2158 int progress = 0; 2159 2160 mpd->io_submit.io_end->offset = 2161 ((loff_t)map->m_lblk) << inode->i_blkbits; 2162 do { 2163 err = mpage_map_one_extent(handle, mpd); 2164 if (err < 0) { 2165 struct super_block *sb = inode->i_sb; 2166 2167 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2168 goto invalidate_dirty_pages; 2169 /* 2170 * Let the uper layers retry transient errors. 2171 * In the case of ENOSPC, if ext4_count_free_blocks() 2172 * is non-zero, a commit should free up blocks. 2173 */ 2174 if ((err == -ENOMEM) || 2175 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2176 if (progress) 2177 goto update_disksize; 2178 return err; 2179 } 2180 ext4_msg(sb, KERN_CRIT, 2181 "Delayed block allocation failed for " 2182 "inode %lu at logical offset %llu with" 2183 " max blocks %u with error %d", 2184 inode->i_ino, 2185 (unsigned long long)map->m_lblk, 2186 (unsigned)map->m_len, -err); 2187 ext4_msg(sb, KERN_CRIT, 2188 "This should not happen!! Data will " 2189 "be lost\n"); 2190 if (err == -ENOSPC) 2191 ext4_print_free_blocks(inode); 2192 invalidate_dirty_pages: 2193 *give_up_on_write = true; 2194 return err; 2195 } 2196 progress = 1; 2197 /* 2198 * Update buffer state, submit mapped pages, and get us new 2199 * extent to map 2200 */ 2201 err = mpage_map_and_submit_buffers(mpd); 2202 if (err < 0) 2203 goto update_disksize; 2204 } while (map->m_len); 2205 2206 update_disksize: 2207 /* 2208 * Update on-disk size after IO is submitted. Races with 2209 * truncate are avoided by checking i_size under i_data_sem. 2210 */ 2211 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2212 if (disksize > EXT4_I(inode)->i_disksize) { 2213 int err2; 2214 loff_t i_size; 2215 2216 down_write(&EXT4_I(inode)->i_data_sem); 2217 i_size = i_size_read(inode); 2218 if (disksize > i_size) 2219 disksize = i_size; 2220 if (disksize > EXT4_I(inode)->i_disksize) 2221 EXT4_I(inode)->i_disksize = disksize; 2222 err2 = ext4_mark_inode_dirty(handle, inode); 2223 up_write(&EXT4_I(inode)->i_data_sem); 2224 if (err2) 2225 ext4_error(inode->i_sb, 2226 "Failed to mark inode %lu dirty", 2227 inode->i_ino); 2228 if (!err) 2229 err = err2; 2230 } 2231 return err; 2232 } 2233 2234 /* 2235 * Calculate the total number of credits to reserve for one writepages 2236 * iteration. This is called from ext4_writepages(). We map an extent of 2237 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2238 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2239 * bpp - 1 blocks in bpp different extents. 2240 */ 2241 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2242 { 2243 int bpp = ext4_journal_blocks_per_page(inode); 2244 2245 return ext4_meta_trans_blocks(inode, 2246 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2247 } 2248 2249 /* 2250 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2251 * and underlying extent to map 2252 * 2253 * @mpd - where to look for pages 2254 * 2255 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2256 * IO immediately. When we find a page which isn't mapped we start accumulating 2257 * extent of buffers underlying these pages that needs mapping (formed by 2258 * either delayed or unwritten buffers). We also lock the pages containing 2259 * these buffers. The extent found is returned in @mpd structure (starting at 2260 * mpd->lblk with length mpd->len blocks). 2261 * 2262 * Note that this function can attach bios to one io_end structure which are 2263 * neither logically nor physically contiguous. Although it may seem as an 2264 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2265 * case as we need to track IO to all buffers underlying a page in one io_end. 2266 */ 2267 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2268 { 2269 struct address_space *mapping = mpd->inode->i_mapping; 2270 struct pagevec pvec; 2271 unsigned int nr_pages; 2272 long left = mpd->wbc->nr_to_write; 2273 pgoff_t index = mpd->first_page; 2274 pgoff_t end = mpd->last_page; 2275 int tag; 2276 int i, err = 0; 2277 int blkbits = mpd->inode->i_blkbits; 2278 ext4_lblk_t lblk; 2279 struct buffer_head *head; 2280 2281 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2282 tag = PAGECACHE_TAG_TOWRITE; 2283 else 2284 tag = PAGECACHE_TAG_DIRTY; 2285 2286 pagevec_init(&pvec, 0); 2287 mpd->map.m_len = 0; 2288 mpd->next_page = index; 2289 while (index <= end) { 2290 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2291 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2292 if (nr_pages == 0) 2293 goto out; 2294 2295 for (i = 0; i < nr_pages; i++) { 2296 struct page *page = pvec.pages[i]; 2297 2298 /* 2299 * At this point, the page may be truncated or 2300 * invalidated (changing page->mapping to NULL), or 2301 * even swizzled back from swapper_space to tmpfs file 2302 * mapping. However, page->index will not change 2303 * because we have a reference on the page. 2304 */ 2305 if (page->index > end) 2306 goto out; 2307 2308 /* 2309 * Accumulated enough dirty pages? This doesn't apply 2310 * to WB_SYNC_ALL mode. For integrity sync we have to 2311 * keep going because someone may be concurrently 2312 * dirtying pages, and we might have synced a lot of 2313 * newly appeared dirty pages, but have not synced all 2314 * of the old dirty pages. 2315 */ 2316 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2317 goto out; 2318 2319 /* If we can't merge this page, we are done. */ 2320 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2321 goto out; 2322 2323 lock_page(page); 2324 /* 2325 * If the page is no longer dirty, or its mapping no 2326 * longer corresponds to inode we are writing (which 2327 * means it has been truncated or invalidated), or the 2328 * page is already under writeback and we are not doing 2329 * a data integrity writeback, skip the page 2330 */ 2331 if (!PageDirty(page) || 2332 (PageWriteback(page) && 2333 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2334 unlikely(page->mapping != mapping)) { 2335 unlock_page(page); 2336 continue; 2337 } 2338 2339 wait_on_page_writeback(page); 2340 BUG_ON(PageWriteback(page)); 2341 2342 if (mpd->map.m_len == 0) 2343 mpd->first_page = page->index; 2344 mpd->next_page = page->index + 1; 2345 /* Add all dirty buffers to mpd */ 2346 lblk = ((ext4_lblk_t)page->index) << 2347 (PAGE_CACHE_SHIFT - blkbits); 2348 head = page_buffers(page); 2349 err = mpage_process_page_bufs(mpd, head, head, lblk); 2350 if (err <= 0) 2351 goto out; 2352 err = 0; 2353 left--; 2354 } 2355 pagevec_release(&pvec); 2356 cond_resched(); 2357 } 2358 return 0; 2359 out: 2360 pagevec_release(&pvec); 2361 return err; 2362 } 2363 2364 static int __writepage(struct page *page, struct writeback_control *wbc, 2365 void *data) 2366 { 2367 struct address_space *mapping = data; 2368 int ret = ext4_writepage(page, wbc); 2369 mapping_set_error(mapping, ret); 2370 return ret; 2371 } 2372 2373 static int ext4_writepages(struct address_space *mapping, 2374 struct writeback_control *wbc) 2375 { 2376 pgoff_t writeback_index = 0; 2377 long nr_to_write = wbc->nr_to_write; 2378 int range_whole = 0; 2379 int cycled = 1; 2380 handle_t *handle = NULL; 2381 struct mpage_da_data mpd; 2382 struct inode *inode = mapping->host; 2383 int needed_blocks, rsv_blocks = 0, ret = 0; 2384 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2385 bool done; 2386 struct blk_plug plug; 2387 bool give_up_on_write = false; 2388 2389 trace_ext4_writepages(inode, wbc); 2390 2391 /* 2392 * No pages to write? This is mainly a kludge to avoid starting 2393 * a transaction for special inodes like journal inode on last iput() 2394 * because that could violate lock ordering on umount 2395 */ 2396 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2397 goto out_writepages; 2398 2399 if (ext4_should_journal_data(inode)) { 2400 struct blk_plug plug; 2401 2402 blk_start_plug(&plug); 2403 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2404 blk_finish_plug(&plug); 2405 goto out_writepages; 2406 } 2407 2408 /* 2409 * If the filesystem has aborted, it is read-only, so return 2410 * right away instead of dumping stack traces later on that 2411 * will obscure the real source of the problem. We test 2412 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2413 * the latter could be true if the filesystem is mounted 2414 * read-only, and in that case, ext4_writepages should 2415 * *never* be called, so if that ever happens, we would want 2416 * the stack trace. 2417 */ 2418 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2419 ret = -EROFS; 2420 goto out_writepages; 2421 } 2422 2423 if (ext4_should_dioread_nolock(inode)) { 2424 /* 2425 * We may need to convert up to one extent per block in 2426 * the page and we may dirty the inode. 2427 */ 2428 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2429 } 2430 2431 /* 2432 * If we have inline data and arrive here, it means that 2433 * we will soon create the block for the 1st page, so 2434 * we'd better clear the inline data here. 2435 */ 2436 if (ext4_has_inline_data(inode)) { 2437 /* Just inode will be modified... */ 2438 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2439 if (IS_ERR(handle)) { 2440 ret = PTR_ERR(handle); 2441 goto out_writepages; 2442 } 2443 BUG_ON(ext4_test_inode_state(inode, 2444 EXT4_STATE_MAY_INLINE_DATA)); 2445 ext4_destroy_inline_data(handle, inode); 2446 ext4_journal_stop(handle); 2447 } 2448 2449 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2450 range_whole = 1; 2451 2452 if (wbc->range_cyclic) { 2453 writeback_index = mapping->writeback_index; 2454 if (writeback_index) 2455 cycled = 0; 2456 mpd.first_page = writeback_index; 2457 mpd.last_page = -1; 2458 } else { 2459 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2460 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2461 } 2462 2463 mpd.inode = inode; 2464 mpd.wbc = wbc; 2465 ext4_io_submit_init(&mpd.io_submit, wbc); 2466 retry: 2467 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2468 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2469 done = false; 2470 blk_start_plug(&plug); 2471 while (!done && mpd.first_page <= mpd.last_page) { 2472 /* For each extent of pages we use new io_end */ 2473 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2474 if (!mpd.io_submit.io_end) { 2475 ret = -ENOMEM; 2476 break; 2477 } 2478 2479 /* 2480 * We have two constraints: We find one extent to map and we 2481 * must always write out whole page (makes a difference when 2482 * blocksize < pagesize) so that we don't block on IO when we 2483 * try to write out the rest of the page. Journalled mode is 2484 * not supported by delalloc. 2485 */ 2486 BUG_ON(ext4_should_journal_data(inode)); 2487 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2488 2489 /* start a new transaction */ 2490 handle = ext4_journal_start_with_reserve(inode, 2491 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2492 if (IS_ERR(handle)) { 2493 ret = PTR_ERR(handle); 2494 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2495 "%ld pages, ino %lu; err %d", __func__, 2496 wbc->nr_to_write, inode->i_ino, ret); 2497 /* Release allocated io_end */ 2498 ext4_put_io_end(mpd.io_submit.io_end); 2499 break; 2500 } 2501 2502 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2503 ret = mpage_prepare_extent_to_map(&mpd); 2504 if (!ret) { 2505 if (mpd.map.m_len) 2506 ret = mpage_map_and_submit_extent(handle, &mpd, 2507 &give_up_on_write); 2508 else { 2509 /* 2510 * We scanned the whole range (or exhausted 2511 * nr_to_write), submitted what was mapped and 2512 * didn't find anything needing mapping. We are 2513 * done. 2514 */ 2515 done = true; 2516 } 2517 } 2518 ext4_journal_stop(handle); 2519 /* Submit prepared bio */ 2520 ext4_io_submit(&mpd.io_submit); 2521 /* Unlock pages we didn't use */ 2522 mpage_release_unused_pages(&mpd, give_up_on_write); 2523 /* Drop our io_end reference we got from init */ 2524 ext4_put_io_end(mpd.io_submit.io_end); 2525 2526 if (ret == -ENOSPC && sbi->s_journal) { 2527 /* 2528 * Commit the transaction which would 2529 * free blocks released in the transaction 2530 * and try again 2531 */ 2532 jbd2_journal_force_commit_nested(sbi->s_journal); 2533 ret = 0; 2534 continue; 2535 } 2536 /* Fatal error - ENOMEM, EIO... */ 2537 if (ret) 2538 break; 2539 } 2540 blk_finish_plug(&plug); 2541 if (!ret && !cycled && wbc->nr_to_write > 0) { 2542 cycled = 1; 2543 mpd.last_page = writeback_index - 1; 2544 mpd.first_page = 0; 2545 goto retry; 2546 } 2547 2548 /* Update index */ 2549 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2550 /* 2551 * Set the writeback_index so that range_cyclic 2552 * mode will write it back later 2553 */ 2554 mapping->writeback_index = mpd.first_page; 2555 2556 out_writepages: 2557 trace_ext4_writepages_result(inode, wbc, ret, 2558 nr_to_write - wbc->nr_to_write); 2559 return ret; 2560 } 2561 2562 static int ext4_nonda_switch(struct super_block *sb) 2563 { 2564 s64 free_clusters, dirty_clusters; 2565 struct ext4_sb_info *sbi = EXT4_SB(sb); 2566 2567 /* 2568 * switch to non delalloc mode if we are running low 2569 * on free block. The free block accounting via percpu 2570 * counters can get slightly wrong with percpu_counter_batch getting 2571 * accumulated on each CPU without updating global counters 2572 * Delalloc need an accurate free block accounting. So switch 2573 * to non delalloc when we are near to error range. 2574 */ 2575 free_clusters = 2576 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2577 dirty_clusters = 2578 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2579 /* 2580 * Start pushing delalloc when 1/2 of free blocks are dirty. 2581 */ 2582 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2583 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2584 2585 if (2 * free_clusters < 3 * dirty_clusters || 2586 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2587 /* 2588 * free block count is less than 150% of dirty blocks 2589 * or free blocks is less than watermark 2590 */ 2591 return 1; 2592 } 2593 return 0; 2594 } 2595 2596 /* We always reserve for an inode update; the superblock could be there too */ 2597 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2598 { 2599 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 2600 EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) 2601 return 1; 2602 2603 if (pos + len <= 0x7fffffffULL) 2604 return 1; 2605 2606 /* We might need to update the superblock to set LARGE_FILE */ 2607 return 2; 2608 } 2609 2610 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2611 loff_t pos, unsigned len, unsigned flags, 2612 struct page **pagep, void **fsdata) 2613 { 2614 int ret, retries = 0; 2615 struct page *page; 2616 pgoff_t index; 2617 struct inode *inode = mapping->host; 2618 handle_t *handle; 2619 2620 index = pos >> PAGE_CACHE_SHIFT; 2621 2622 if (ext4_nonda_switch(inode->i_sb)) { 2623 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2624 return ext4_write_begin(file, mapping, pos, 2625 len, flags, pagep, fsdata); 2626 } 2627 *fsdata = (void *)0; 2628 trace_ext4_da_write_begin(inode, pos, len, flags); 2629 2630 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2631 ret = ext4_da_write_inline_data_begin(mapping, inode, 2632 pos, len, flags, 2633 pagep, fsdata); 2634 if (ret < 0) 2635 return ret; 2636 if (ret == 1) 2637 return 0; 2638 } 2639 2640 /* 2641 * grab_cache_page_write_begin() can take a long time if the 2642 * system is thrashing due to memory pressure, or if the page 2643 * is being written back. So grab it first before we start 2644 * the transaction handle. This also allows us to allocate 2645 * the page (if needed) without using GFP_NOFS. 2646 */ 2647 retry_grab: 2648 page = grab_cache_page_write_begin(mapping, index, flags); 2649 if (!page) 2650 return -ENOMEM; 2651 unlock_page(page); 2652 2653 /* 2654 * With delayed allocation, we don't log the i_disksize update 2655 * if there is delayed block allocation. But we still need 2656 * to journalling the i_disksize update if writes to the end 2657 * of file which has an already mapped buffer. 2658 */ 2659 retry_journal: 2660 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2661 ext4_da_write_credits(inode, pos, len)); 2662 if (IS_ERR(handle)) { 2663 page_cache_release(page); 2664 return PTR_ERR(handle); 2665 } 2666 2667 lock_page(page); 2668 if (page->mapping != mapping) { 2669 /* The page got truncated from under us */ 2670 unlock_page(page); 2671 page_cache_release(page); 2672 ext4_journal_stop(handle); 2673 goto retry_grab; 2674 } 2675 /* In case writeback began while the page was unlocked */ 2676 wait_for_stable_page(page); 2677 2678 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2679 ret = ext4_block_write_begin(page, pos, len, 2680 ext4_da_get_block_prep); 2681 #else 2682 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2683 #endif 2684 if (ret < 0) { 2685 unlock_page(page); 2686 ext4_journal_stop(handle); 2687 /* 2688 * block_write_begin may have instantiated a few blocks 2689 * outside i_size. Trim these off again. Don't need 2690 * i_size_read because we hold i_mutex. 2691 */ 2692 if (pos + len > inode->i_size) 2693 ext4_truncate_failed_write(inode); 2694 2695 if (ret == -ENOSPC && 2696 ext4_should_retry_alloc(inode->i_sb, &retries)) 2697 goto retry_journal; 2698 2699 page_cache_release(page); 2700 return ret; 2701 } 2702 2703 *pagep = page; 2704 return ret; 2705 } 2706 2707 /* 2708 * Check if we should update i_disksize 2709 * when write to the end of file but not require block allocation 2710 */ 2711 static int ext4_da_should_update_i_disksize(struct page *page, 2712 unsigned long offset) 2713 { 2714 struct buffer_head *bh; 2715 struct inode *inode = page->mapping->host; 2716 unsigned int idx; 2717 int i; 2718 2719 bh = page_buffers(page); 2720 idx = offset >> inode->i_blkbits; 2721 2722 for (i = 0; i < idx; i++) 2723 bh = bh->b_this_page; 2724 2725 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2726 return 0; 2727 return 1; 2728 } 2729 2730 static int ext4_da_write_end(struct file *file, 2731 struct address_space *mapping, 2732 loff_t pos, unsigned len, unsigned copied, 2733 struct page *page, void *fsdata) 2734 { 2735 struct inode *inode = mapping->host; 2736 int ret = 0, ret2; 2737 handle_t *handle = ext4_journal_current_handle(); 2738 loff_t new_i_size; 2739 unsigned long start, end; 2740 int write_mode = (int)(unsigned long)fsdata; 2741 2742 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2743 return ext4_write_end(file, mapping, pos, 2744 len, copied, page, fsdata); 2745 2746 trace_ext4_da_write_end(inode, pos, len, copied); 2747 start = pos & (PAGE_CACHE_SIZE - 1); 2748 end = start + copied - 1; 2749 2750 /* 2751 * generic_write_end() will run mark_inode_dirty() if i_size 2752 * changes. So let's piggyback the i_disksize mark_inode_dirty 2753 * into that. 2754 */ 2755 new_i_size = pos + copied; 2756 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2757 if (ext4_has_inline_data(inode) || 2758 ext4_da_should_update_i_disksize(page, end)) { 2759 ext4_update_i_disksize(inode, new_i_size); 2760 /* We need to mark inode dirty even if 2761 * new_i_size is less that inode->i_size 2762 * bu greater than i_disksize.(hint delalloc) 2763 */ 2764 ext4_mark_inode_dirty(handle, inode); 2765 } 2766 } 2767 2768 if (write_mode != CONVERT_INLINE_DATA && 2769 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2770 ext4_has_inline_data(inode)) 2771 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2772 page); 2773 else 2774 ret2 = generic_write_end(file, mapping, pos, len, copied, 2775 page, fsdata); 2776 2777 copied = ret2; 2778 if (ret2 < 0) 2779 ret = ret2; 2780 ret2 = ext4_journal_stop(handle); 2781 if (!ret) 2782 ret = ret2; 2783 2784 return ret ? ret : copied; 2785 } 2786 2787 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2788 unsigned int length) 2789 { 2790 /* 2791 * Drop reserved blocks 2792 */ 2793 BUG_ON(!PageLocked(page)); 2794 if (!page_has_buffers(page)) 2795 goto out; 2796 2797 ext4_da_page_release_reservation(page, offset, length); 2798 2799 out: 2800 ext4_invalidatepage(page, offset, length); 2801 2802 return; 2803 } 2804 2805 /* 2806 * Force all delayed allocation blocks to be allocated for a given inode. 2807 */ 2808 int ext4_alloc_da_blocks(struct inode *inode) 2809 { 2810 trace_ext4_alloc_da_blocks(inode); 2811 2812 if (!EXT4_I(inode)->i_reserved_data_blocks) 2813 return 0; 2814 2815 /* 2816 * We do something simple for now. The filemap_flush() will 2817 * also start triggering a write of the data blocks, which is 2818 * not strictly speaking necessary (and for users of 2819 * laptop_mode, not even desirable). However, to do otherwise 2820 * would require replicating code paths in: 2821 * 2822 * ext4_writepages() -> 2823 * write_cache_pages() ---> (via passed in callback function) 2824 * __mpage_da_writepage() --> 2825 * mpage_add_bh_to_extent() 2826 * mpage_da_map_blocks() 2827 * 2828 * The problem is that write_cache_pages(), located in 2829 * mm/page-writeback.c, marks pages clean in preparation for 2830 * doing I/O, which is not desirable if we're not planning on 2831 * doing I/O at all. 2832 * 2833 * We could call write_cache_pages(), and then redirty all of 2834 * the pages by calling redirty_page_for_writepage() but that 2835 * would be ugly in the extreme. So instead we would need to 2836 * replicate parts of the code in the above functions, 2837 * simplifying them because we wouldn't actually intend to 2838 * write out the pages, but rather only collect contiguous 2839 * logical block extents, call the multi-block allocator, and 2840 * then update the buffer heads with the block allocations. 2841 * 2842 * For now, though, we'll cheat by calling filemap_flush(), 2843 * which will map the blocks, and start the I/O, but not 2844 * actually wait for the I/O to complete. 2845 */ 2846 return filemap_flush(inode->i_mapping); 2847 } 2848 2849 /* 2850 * bmap() is special. It gets used by applications such as lilo and by 2851 * the swapper to find the on-disk block of a specific piece of data. 2852 * 2853 * Naturally, this is dangerous if the block concerned is still in the 2854 * journal. If somebody makes a swapfile on an ext4 data-journaling 2855 * filesystem and enables swap, then they may get a nasty shock when the 2856 * data getting swapped to that swapfile suddenly gets overwritten by 2857 * the original zero's written out previously to the journal and 2858 * awaiting writeback in the kernel's buffer cache. 2859 * 2860 * So, if we see any bmap calls here on a modified, data-journaled file, 2861 * take extra steps to flush any blocks which might be in the cache. 2862 */ 2863 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2864 { 2865 struct inode *inode = mapping->host; 2866 journal_t *journal; 2867 int err; 2868 2869 /* 2870 * We can get here for an inline file via the FIBMAP ioctl 2871 */ 2872 if (ext4_has_inline_data(inode)) 2873 return 0; 2874 2875 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2876 test_opt(inode->i_sb, DELALLOC)) { 2877 /* 2878 * With delalloc we want to sync the file 2879 * so that we can make sure we allocate 2880 * blocks for file 2881 */ 2882 filemap_write_and_wait(mapping); 2883 } 2884 2885 if (EXT4_JOURNAL(inode) && 2886 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2887 /* 2888 * This is a REALLY heavyweight approach, but the use of 2889 * bmap on dirty files is expected to be extremely rare: 2890 * only if we run lilo or swapon on a freshly made file 2891 * do we expect this to happen. 2892 * 2893 * (bmap requires CAP_SYS_RAWIO so this does not 2894 * represent an unprivileged user DOS attack --- we'd be 2895 * in trouble if mortal users could trigger this path at 2896 * will.) 2897 * 2898 * NB. EXT4_STATE_JDATA is not set on files other than 2899 * regular files. If somebody wants to bmap a directory 2900 * or symlink and gets confused because the buffer 2901 * hasn't yet been flushed to disk, they deserve 2902 * everything they get. 2903 */ 2904 2905 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2906 journal = EXT4_JOURNAL(inode); 2907 jbd2_journal_lock_updates(journal); 2908 err = jbd2_journal_flush(journal); 2909 jbd2_journal_unlock_updates(journal); 2910 2911 if (err) 2912 return 0; 2913 } 2914 2915 return generic_block_bmap(mapping, block, ext4_get_block); 2916 } 2917 2918 static int ext4_readpage(struct file *file, struct page *page) 2919 { 2920 int ret = -EAGAIN; 2921 struct inode *inode = page->mapping->host; 2922 2923 trace_ext4_readpage(page); 2924 2925 if (ext4_has_inline_data(inode)) 2926 ret = ext4_readpage_inline(inode, page); 2927 2928 if (ret == -EAGAIN) 2929 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 2930 2931 return ret; 2932 } 2933 2934 static int 2935 ext4_readpages(struct file *file, struct address_space *mapping, 2936 struct list_head *pages, unsigned nr_pages) 2937 { 2938 struct inode *inode = mapping->host; 2939 2940 /* If the file has inline data, no need to do readpages. */ 2941 if (ext4_has_inline_data(inode)) 2942 return 0; 2943 2944 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 2945 } 2946 2947 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2948 unsigned int length) 2949 { 2950 trace_ext4_invalidatepage(page, offset, length); 2951 2952 /* No journalling happens on data buffers when this function is used */ 2953 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2954 2955 block_invalidatepage(page, offset, length); 2956 } 2957 2958 static int __ext4_journalled_invalidatepage(struct page *page, 2959 unsigned int offset, 2960 unsigned int length) 2961 { 2962 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2963 2964 trace_ext4_journalled_invalidatepage(page, offset, length); 2965 2966 /* 2967 * If it's a full truncate we just forget about the pending dirtying 2968 */ 2969 if (offset == 0 && length == PAGE_CACHE_SIZE) 2970 ClearPageChecked(page); 2971 2972 return jbd2_journal_invalidatepage(journal, page, offset, length); 2973 } 2974 2975 /* Wrapper for aops... */ 2976 static void ext4_journalled_invalidatepage(struct page *page, 2977 unsigned int offset, 2978 unsigned int length) 2979 { 2980 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2981 } 2982 2983 static int ext4_releasepage(struct page *page, gfp_t wait) 2984 { 2985 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2986 2987 trace_ext4_releasepage(page); 2988 2989 /* Page has dirty journalled data -> cannot release */ 2990 if (PageChecked(page)) 2991 return 0; 2992 if (journal) 2993 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2994 else 2995 return try_to_free_buffers(page); 2996 } 2997 2998 /* 2999 * ext4_get_block used when preparing for a DIO write or buffer write. 3000 * We allocate an uinitialized extent if blocks haven't been allocated. 3001 * The extent will be converted to initialized after the IO is complete. 3002 */ 3003 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3004 struct buffer_head *bh_result, int create) 3005 { 3006 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3007 inode->i_ino, create); 3008 return _ext4_get_block(inode, iblock, bh_result, 3009 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3010 } 3011 3012 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3013 struct buffer_head *bh_result, int create) 3014 { 3015 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3016 inode->i_ino, create); 3017 return _ext4_get_block(inode, iblock, bh_result, 3018 EXT4_GET_BLOCKS_NO_LOCK); 3019 } 3020 3021 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3022 ssize_t size, void *private) 3023 { 3024 ext4_io_end_t *io_end = iocb->private; 3025 3026 /* if not async direct IO just return */ 3027 if (!io_end) 3028 return; 3029 3030 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3031 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3032 iocb->private, io_end->inode->i_ino, iocb, offset, 3033 size); 3034 3035 iocb->private = NULL; 3036 io_end->offset = offset; 3037 io_end->size = size; 3038 ext4_put_io_end(io_end); 3039 } 3040 3041 /* 3042 * For ext4 extent files, ext4 will do direct-io write to holes, 3043 * preallocated extents, and those write extend the file, no need to 3044 * fall back to buffered IO. 3045 * 3046 * For holes, we fallocate those blocks, mark them as unwritten 3047 * If those blocks were preallocated, we mark sure they are split, but 3048 * still keep the range to write as unwritten. 3049 * 3050 * The unwritten extents will be converted to written when DIO is completed. 3051 * For async direct IO, since the IO may still pending when return, we 3052 * set up an end_io call back function, which will do the conversion 3053 * when async direct IO completed. 3054 * 3055 * If the O_DIRECT write will extend the file then add this inode to the 3056 * orphan list. So recovery will truncate it back to the original size 3057 * if the machine crashes during the write. 3058 * 3059 */ 3060 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3061 loff_t offset) 3062 { 3063 struct file *file = iocb->ki_filp; 3064 struct inode *inode = file->f_mapping->host; 3065 ssize_t ret; 3066 size_t count = iov_iter_count(iter); 3067 int overwrite = 0; 3068 get_block_t *get_block_func = NULL; 3069 int dio_flags = 0; 3070 loff_t final_size = offset + count; 3071 ext4_io_end_t *io_end = NULL; 3072 3073 /* Use the old path for reads and writes beyond i_size. */ 3074 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3075 return ext4_ind_direct_IO(iocb, iter, offset); 3076 3077 BUG_ON(iocb->private == NULL); 3078 3079 /* 3080 * Make all waiters for direct IO properly wait also for extent 3081 * conversion. This also disallows race between truncate() and 3082 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3083 */ 3084 if (iov_iter_rw(iter) == WRITE) 3085 inode_dio_begin(inode); 3086 3087 /* If we do a overwrite dio, i_mutex locking can be released */ 3088 overwrite = *((int *)iocb->private); 3089 3090 if (overwrite) { 3091 down_read(&EXT4_I(inode)->i_data_sem); 3092 mutex_unlock(&inode->i_mutex); 3093 } 3094 3095 /* 3096 * We could direct write to holes and fallocate. 3097 * 3098 * Allocated blocks to fill the hole are marked as 3099 * unwritten to prevent parallel buffered read to expose 3100 * the stale data before DIO complete the data IO. 3101 * 3102 * As to previously fallocated extents, ext4 get_block will 3103 * just simply mark the buffer mapped but still keep the 3104 * extents unwritten. 3105 * 3106 * For non AIO case, we will convert those unwritten extents 3107 * to written after return back from blockdev_direct_IO. 3108 * 3109 * For async DIO, the conversion needs to be deferred when the 3110 * IO is completed. The ext4 end_io callback function will be 3111 * called to take care of the conversion work. Here for async 3112 * case, we allocate an io_end structure to hook to the iocb. 3113 */ 3114 iocb->private = NULL; 3115 ext4_inode_aio_set(inode, NULL); 3116 if (!is_sync_kiocb(iocb)) { 3117 io_end = ext4_init_io_end(inode, GFP_NOFS); 3118 if (!io_end) { 3119 ret = -ENOMEM; 3120 goto retake_lock; 3121 } 3122 /* 3123 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3124 */ 3125 iocb->private = ext4_get_io_end(io_end); 3126 /* 3127 * we save the io structure for current async direct 3128 * IO, so that later ext4_map_blocks() could flag the 3129 * io structure whether there is a unwritten extents 3130 * needs to be converted when IO is completed. 3131 */ 3132 ext4_inode_aio_set(inode, io_end); 3133 } 3134 3135 if (overwrite) { 3136 get_block_func = ext4_get_block_write_nolock; 3137 } else { 3138 get_block_func = ext4_get_block_write; 3139 dio_flags = DIO_LOCKING; 3140 } 3141 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3142 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3143 #endif 3144 if (IS_DAX(inode)) 3145 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3146 ext4_end_io_dio, dio_flags); 3147 else 3148 ret = __blockdev_direct_IO(iocb, inode, 3149 inode->i_sb->s_bdev, iter, offset, 3150 get_block_func, 3151 ext4_end_io_dio, NULL, dio_flags); 3152 3153 /* 3154 * Put our reference to io_end. This can free the io_end structure e.g. 3155 * in sync IO case or in case of error. It can even perform extent 3156 * conversion if all bios we submitted finished before we got here. 3157 * Note that in that case iocb->private can be already set to NULL 3158 * here. 3159 */ 3160 if (io_end) { 3161 ext4_inode_aio_set(inode, NULL); 3162 ext4_put_io_end(io_end); 3163 /* 3164 * When no IO was submitted ext4_end_io_dio() was not 3165 * called so we have to put iocb's reference. 3166 */ 3167 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3168 WARN_ON(iocb->private != io_end); 3169 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3170 ext4_put_io_end(io_end); 3171 iocb->private = NULL; 3172 } 3173 } 3174 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3175 EXT4_STATE_DIO_UNWRITTEN)) { 3176 int err; 3177 /* 3178 * for non AIO case, since the IO is already 3179 * completed, we could do the conversion right here 3180 */ 3181 err = ext4_convert_unwritten_extents(NULL, inode, 3182 offset, ret); 3183 if (err < 0) 3184 ret = err; 3185 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3186 } 3187 3188 retake_lock: 3189 if (iov_iter_rw(iter) == WRITE) 3190 inode_dio_end(inode); 3191 /* take i_mutex locking again if we do a ovewrite dio */ 3192 if (overwrite) { 3193 up_read(&EXT4_I(inode)->i_data_sem); 3194 mutex_lock(&inode->i_mutex); 3195 } 3196 3197 return ret; 3198 } 3199 3200 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3201 loff_t offset) 3202 { 3203 struct file *file = iocb->ki_filp; 3204 struct inode *inode = file->f_mapping->host; 3205 size_t count = iov_iter_count(iter); 3206 ssize_t ret; 3207 3208 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3209 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3210 return 0; 3211 #endif 3212 3213 /* 3214 * If we are doing data journalling we don't support O_DIRECT 3215 */ 3216 if (ext4_should_journal_data(inode)) 3217 return 0; 3218 3219 /* Let buffer I/O handle the inline data case. */ 3220 if (ext4_has_inline_data(inode)) 3221 return 0; 3222 3223 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3224 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3225 ret = ext4_ext_direct_IO(iocb, iter, offset); 3226 else 3227 ret = ext4_ind_direct_IO(iocb, iter, offset); 3228 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3229 return ret; 3230 } 3231 3232 /* 3233 * Pages can be marked dirty completely asynchronously from ext4's journalling 3234 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3235 * much here because ->set_page_dirty is called under VFS locks. The page is 3236 * not necessarily locked. 3237 * 3238 * We cannot just dirty the page and leave attached buffers clean, because the 3239 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3240 * or jbddirty because all the journalling code will explode. 3241 * 3242 * So what we do is to mark the page "pending dirty" and next time writepage 3243 * is called, propagate that into the buffers appropriately. 3244 */ 3245 static int ext4_journalled_set_page_dirty(struct page *page) 3246 { 3247 SetPageChecked(page); 3248 return __set_page_dirty_nobuffers(page); 3249 } 3250 3251 static const struct address_space_operations ext4_aops = { 3252 .readpage = ext4_readpage, 3253 .readpages = ext4_readpages, 3254 .writepage = ext4_writepage, 3255 .writepages = ext4_writepages, 3256 .write_begin = ext4_write_begin, 3257 .write_end = ext4_write_end, 3258 .bmap = ext4_bmap, 3259 .invalidatepage = ext4_invalidatepage, 3260 .releasepage = ext4_releasepage, 3261 .direct_IO = ext4_direct_IO, 3262 .migratepage = buffer_migrate_page, 3263 .is_partially_uptodate = block_is_partially_uptodate, 3264 .error_remove_page = generic_error_remove_page, 3265 }; 3266 3267 static const struct address_space_operations ext4_journalled_aops = { 3268 .readpage = ext4_readpage, 3269 .readpages = ext4_readpages, 3270 .writepage = ext4_writepage, 3271 .writepages = ext4_writepages, 3272 .write_begin = ext4_write_begin, 3273 .write_end = ext4_journalled_write_end, 3274 .set_page_dirty = ext4_journalled_set_page_dirty, 3275 .bmap = ext4_bmap, 3276 .invalidatepage = ext4_journalled_invalidatepage, 3277 .releasepage = ext4_releasepage, 3278 .direct_IO = ext4_direct_IO, 3279 .is_partially_uptodate = block_is_partially_uptodate, 3280 .error_remove_page = generic_error_remove_page, 3281 }; 3282 3283 static const struct address_space_operations ext4_da_aops = { 3284 .readpage = ext4_readpage, 3285 .readpages = ext4_readpages, 3286 .writepage = ext4_writepage, 3287 .writepages = ext4_writepages, 3288 .write_begin = ext4_da_write_begin, 3289 .write_end = ext4_da_write_end, 3290 .bmap = ext4_bmap, 3291 .invalidatepage = ext4_da_invalidatepage, 3292 .releasepage = ext4_releasepage, 3293 .direct_IO = ext4_direct_IO, 3294 .migratepage = buffer_migrate_page, 3295 .is_partially_uptodate = block_is_partially_uptodate, 3296 .error_remove_page = generic_error_remove_page, 3297 }; 3298 3299 void ext4_set_aops(struct inode *inode) 3300 { 3301 switch (ext4_inode_journal_mode(inode)) { 3302 case EXT4_INODE_ORDERED_DATA_MODE: 3303 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3304 break; 3305 case EXT4_INODE_WRITEBACK_DATA_MODE: 3306 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3307 break; 3308 case EXT4_INODE_JOURNAL_DATA_MODE: 3309 inode->i_mapping->a_ops = &ext4_journalled_aops; 3310 return; 3311 default: 3312 BUG(); 3313 } 3314 if (test_opt(inode->i_sb, DELALLOC)) 3315 inode->i_mapping->a_ops = &ext4_da_aops; 3316 else 3317 inode->i_mapping->a_ops = &ext4_aops; 3318 } 3319 3320 static int __ext4_block_zero_page_range(handle_t *handle, 3321 struct address_space *mapping, loff_t from, loff_t length) 3322 { 3323 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3324 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3325 unsigned blocksize, pos; 3326 ext4_lblk_t iblock; 3327 struct inode *inode = mapping->host; 3328 struct buffer_head *bh; 3329 struct page *page; 3330 int err = 0; 3331 3332 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3333 mapping_gfp_mask(mapping) & ~__GFP_FS); 3334 if (!page) 3335 return -ENOMEM; 3336 3337 blocksize = inode->i_sb->s_blocksize; 3338 3339 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3340 3341 if (!page_has_buffers(page)) 3342 create_empty_buffers(page, blocksize, 0); 3343 3344 /* Find the buffer that contains "offset" */ 3345 bh = page_buffers(page); 3346 pos = blocksize; 3347 while (offset >= pos) { 3348 bh = bh->b_this_page; 3349 iblock++; 3350 pos += blocksize; 3351 } 3352 if (buffer_freed(bh)) { 3353 BUFFER_TRACE(bh, "freed: skip"); 3354 goto unlock; 3355 } 3356 if (!buffer_mapped(bh)) { 3357 BUFFER_TRACE(bh, "unmapped"); 3358 ext4_get_block(inode, iblock, bh, 0); 3359 /* unmapped? It's a hole - nothing to do */ 3360 if (!buffer_mapped(bh)) { 3361 BUFFER_TRACE(bh, "still unmapped"); 3362 goto unlock; 3363 } 3364 } 3365 3366 /* Ok, it's mapped. Make sure it's up-to-date */ 3367 if (PageUptodate(page)) 3368 set_buffer_uptodate(bh); 3369 3370 if (!buffer_uptodate(bh)) { 3371 err = -EIO; 3372 ll_rw_block(READ, 1, &bh); 3373 wait_on_buffer(bh); 3374 /* Uhhuh. Read error. Complain and punt. */ 3375 if (!buffer_uptodate(bh)) 3376 goto unlock; 3377 if (S_ISREG(inode->i_mode) && 3378 ext4_encrypted_inode(inode)) { 3379 /* We expect the key to be set. */ 3380 BUG_ON(!ext4_has_encryption_key(inode)); 3381 BUG_ON(blocksize != PAGE_CACHE_SIZE); 3382 WARN_ON_ONCE(ext4_decrypt_one(inode, page)); 3383 } 3384 } 3385 if (ext4_should_journal_data(inode)) { 3386 BUFFER_TRACE(bh, "get write access"); 3387 err = ext4_journal_get_write_access(handle, bh); 3388 if (err) 3389 goto unlock; 3390 } 3391 zero_user(page, offset, length); 3392 BUFFER_TRACE(bh, "zeroed end of block"); 3393 3394 if (ext4_should_journal_data(inode)) { 3395 err = ext4_handle_dirty_metadata(handle, inode, bh); 3396 } else { 3397 err = 0; 3398 mark_buffer_dirty(bh); 3399 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3400 err = ext4_jbd2_file_inode(handle, inode); 3401 } 3402 3403 unlock: 3404 unlock_page(page); 3405 page_cache_release(page); 3406 return err; 3407 } 3408 3409 /* 3410 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3411 * starting from file offset 'from'. The range to be zero'd must 3412 * be contained with in one block. If the specified range exceeds 3413 * the end of the block it will be shortened to end of the block 3414 * that cooresponds to 'from' 3415 */ 3416 static int ext4_block_zero_page_range(handle_t *handle, 3417 struct address_space *mapping, loff_t from, loff_t length) 3418 { 3419 struct inode *inode = mapping->host; 3420 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3421 unsigned blocksize = inode->i_sb->s_blocksize; 3422 unsigned max = blocksize - (offset & (blocksize - 1)); 3423 3424 /* 3425 * correct length if it does not fall between 3426 * 'from' and the end of the block 3427 */ 3428 if (length > max || length < 0) 3429 length = max; 3430 3431 if (IS_DAX(inode)) 3432 return dax_zero_page_range(inode, from, length, ext4_get_block); 3433 return __ext4_block_zero_page_range(handle, mapping, from, length); 3434 } 3435 3436 /* 3437 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3438 * up to the end of the block which corresponds to `from'. 3439 * This required during truncate. We need to physically zero the tail end 3440 * of that block so it doesn't yield old data if the file is later grown. 3441 */ 3442 static int ext4_block_truncate_page(handle_t *handle, 3443 struct address_space *mapping, loff_t from) 3444 { 3445 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3446 unsigned length; 3447 unsigned blocksize; 3448 struct inode *inode = mapping->host; 3449 3450 blocksize = inode->i_sb->s_blocksize; 3451 length = blocksize - (offset & (blocksize - 1)); 3452 3453 return ext4_block_zero_page_range(handle, mapping, from, length); 3454 } 3455 3456 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3457 loff_t lstart, loff_t length) 3458 { 3459 struct super_block *sb = inode->i_sb; 3460 struct address_space *mapping = inode->i_mapping; 3461 unsigned partial_start, partial_end; 3462 ext4_fsblk_t start, end; 3463 loff_t byte_end = (lstart + length - 1); 3464 int err = 0; 3465 3466 partial_start = lstart & (sb->s_blocksize - 1); 3467 partial_end = byte_end & (sb->s_blocksize - 1); 3468 3469 start = lstart >> sb->s_blocksize_bits; 3470 end = byte_end >> sb->s_blocksize_bits; 3471 3472 /* Handle partial zero within the single block */ 3473 if (start == end && 3474 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3475 err = ext4_block_zero_page_range(handle, mapping, 3476 lstart, length); 3477 return err; 3478 } 3479 /* Handle partial zero out on the start of the range */ 3480 if (partial_start) { 3481 err = ext4_block_zero_page_range(handle, mapping, 3482 lstart, sb->s_blocksize); 3483 if (err) 3484 return err; 3485 } 3486 /* Handle partial zero out on the end of the range */ 3487 if (partial_end != sb->s_blocksize - 1) 3488 err = ext4_block_zero_page_range(handle, mapping, 3489 byte_end - partial_end, 3490 partial_end + 1); 3491 return err; 3492 } 3493 3494 int ext4_can_truncate(struct inode *inode) 3495 { 3496 if (S_ISREG(inode->i_mode)) 3497 return 1; 3498 if (S_ISDIR(inode->i_mode)) 3499 return 1; 3500 if (S_ISLNK(inode->i_mode)) 3501 return !ext4_inode_is_fast_symlink(inode); 3502 return 0; 3503 } 3504 3505 /* 3506 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3507 * associated with the given offset and length 3508 * 3509 * @inode: File inode 3510 * @offset: The offset where the hole will begin 3511 * @len: The length of the hole 3512 * 3513 * Returns: 0 on success or negative on failure 3514 */ 3515 3516 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3517 { 3518 struct super_block *sb = inode->i_sb; 3519 ext4_lblk_t first_block, stop_block; 3520 struct address_space *mapping = inode->i_mapping; 3521 loff_t first_block_offset, last_block_offset; 3522 handle_t *handle; 3523 unsigned int credits; 3524 int ret = 0; 3525 3526 if (!S_ISREG(inode->i_mode)) 3527 return -EOPNOTSUPP; 3528 3529 trace_ext4_punch_hole(inode, offset, length, 0); 3530 3531 /* 3532 * Write out all dirty pages to avoid race conditions 3533 * Then release them. 3534 */ 3535 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3536 ret = filemap_write_and_wait_range(mapping, offset, 3537 offset + length - 1); 3538 if (ret) 3539 return ret; 3540 } 3541 3542 mutex_lock(&inode->i_mutex); 3543 3544 /* No need to punch hole beyond i_size */ 3545 if (offset >= inode->i_size) 3546 goto out_mutex; 3547 3548 /* 3549 * If the hole extends beyond i_size, set the hole 3550 * to end after the page that contains i_size 3551 */ 3552 if (offset + length > inode->i_size) { 3553 length = inode->i_size + 3554 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3555 offset; 3556 } 3557 3558 if (offset & (sb->s_blocksize - 1) || 3559 (offset + length) & (sb->s_blocksize - 1)) { 3560 /* 3561 * Attach jinode to inode for jbd2 if we do any zeroing of 3562 * partial block 3563 */ 3564 ret = ext4_inode_attach_jinode(inode); 3565 if (ret < 0) 3566 goto out_mutex; 3567 3568 } 3569 3570 first_block_offset = round_up(offset, sb->s_blocksize); 3571 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3572 3573 /* Now release the pages and zero block aligned part of pages*/ 3574 if (last_block_offset > first_block_offset) 3575 truncate_pagecache_range(inode, first_block_offset, 3576 last_block_offset); 3577 3578 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3579 ext4_inode_block_unlocked_dio(inode); 3580 inode_dio_wait(inode); 3581 3582 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3583 credits = ext4_writepage_trans_blocks(inode); 3584 else 3585 credits = ext4_blocks_for_truncate(inode); 3586 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3587 if (IS_ERR(handle)) { 3588 ret = PTR_ERR(handle); 3589 ext4_std_error(sb, ret); 3590 goto out_dio; 3591 } 3592 3593 ret = ext4_zero_partial_blocks(handle, inode, offset, 3594 length); 3595 if (ret) 3596 goto out_stop; 3597 3598 first_block = (offset + sb->s_blocksize - 1) >> 3599 EXT4_BLOCK_SIZE_BITS(sb); 3600 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3601 3602 /* If there are no blocks to remove, return now */ 3603 if (first_block >= stop_block) 3604 goto out_stop; 3605 3606 down_write(&EXT4_I(inode)->i_data_sem); 3607 ext4_discard_preallocations(inode); 3608 3609 ret = ext4_es_remove_extent(inode, first_block, 3610 stop_block - first_block); 3611 if (ret) { 3612 up_write(&EXT4_I(inode)->i_data_sem); 3613 goto out_stop; 3614 } 3615 3616 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3617 ret = ext4_ext_remove_space(inode, first_block, 3618 stop_block - 1); 3619 else 3620 ret = ext4_ind_remove_space(handle, inode, first_block, 3621 stop_block); 3622 3623 up_write(&EXT4_I(inode)->i_data_sem); 3624 if (IS_SYNC(inode)) 3625 ext4_handle_sync(handle); 3626 3627 /* Now release the pages again to reduce race window */ 3628 if (last_block_offset > first_block_offset) 3629 truncate_pagecache_range(inode, first_block_offset, 3630 last_block_offset); 3631 3632 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3633 ext4_mark_inode_dirty(handle, inode); 3634 out_stop: 3635 ext4_journal_stop(handle); 3636 out_dio: 3637 ext4_inode_resume_unlocked_dio(inode); 3638 out_mutex: 3639 mutex_unlock(&inode->i_mutex); 3640 return ret; 3641 } 3642 3643 int ext4_inode_attach_jinode(struct inode *inode) 3644 { 3645 struct ext4_inode_info *ei = EXT4_I(inode); 3646 struct jbd2_inode *jinode; 3647 3648 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3649 return 0; 3650 3651 jinode = jbd2_alloc_inode(GFP_KERNEL); 3652 spin_lock(&inode->i_lock); 3653 if (!ei->jinode) { 3654 if (!jinode) { 3655 spin_unlock(&inode->i_lock); 3656 return -ENOMEM; 3657 } 3658 ei->jinode = jinode; 3659 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3660 jinode = NULL; 3661 } 3662 spin_unlock(&inode->i_lock); 3663 if (unlikely(jinode != NULL)) 3664 jbd2_free_inode(jinode); 3665 return 0; 3666 } 3667 3668 /* 3669 * ext4_truncate() 3670 * 3671 * We block out ext4_get_block() block instantiations across the entire 3672 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3673 * simultaneously on behalf of the same inode. 3674 * 3675 * As we work through the truncate and commit bits of it to the journal there 3676 * is one core, guiding principle: the file's tree must always be consistent on 3677 * disk. We must be able to restart the truncate after a crash. 3678 * 3679 * The file's tree may be transiently inconsistent in memory (although it 3680 * probably isn't), but whenever we close off and commit a journal transaction, 3681 * the contents of (the filesystem + the journal) must be consistent and 3682 * restartable. It's pretty simple, really: bottom up, right to left (although 3683 * left-to-right works OK too). 3684 * 3685 * Note that at recovery time, journal replay occurs *before* the restart of 3686 * truncate against the orphan inode list. 3687 * 3688 * The committed inode has the new, desired i_size (which is the same as 3689 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3690 * that this inode's truncate did not complete and it will again call 3691 * ext4_truncate() to have another go. So there will be instantiated blocks 3692 * to the right of the truncation point in a crashed ext4 filesystem. But 3693 * that's fine - as long as they are linked from the inode, the post-crash 3694 * ext4_truncate() run will find them and release them. 3695 */ 3696 void ext4_truncate(struct inode *inode) 3697 { 3698 struct ext4_inode_info *ei = EXT4_I(inode); 3699 unsigned int credits; 3700 handle_t *handle; 3701 struct address_space *mapping = inode->i_mapping; 3702 3703 /* 3704 * There is a possibility that we're either freeing the inode 3705 * or it's a completely new inode. In those cases we might not 3706 * have i_mutex locked because it's not necessary. 3707 */ 3708 if (!(inode->i_state & (I_NEW|I_FREEING))) 3709 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3710 trace_ext4_truncate_enter(inode); 3711 3712 if (!ext4_can_truncate(inode)) 3713 return; 3714 3715 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3716 3717 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3718 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3719 3720 if (ext4_has_inline_data(inode)) { 3721 int has_inline = 1; 3722 3723 ext4_inline_data_truncate(inode, &has_inline); 3724 if (has_inline) 3725 return; 3726 } 3727 3728 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3729 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3730 if (ext4_inode_attach_jinode(inode) < 0) 3731 return; 3732 } 3733 3734 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3735 credits = ext4_writepage_trans_blocks(inode); 3736 else 3737 credits = ext4_blocks_for_truncate(inode); 3738 3739 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3740 if (IS_ERR(handle)) { 3741 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3742 return; 3743 } 3744 3745 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3746 ext4_block_truncate_page(handle, mapping, inode->i_size); 3747 3748 /* 3749 * We add the inode to the orphan list, so that if this 3750 * truncate spans multiple transactions, and we crash, we will 3751 * resume the truncate when the filesystem recovers. It also 3752 * marks the inode dirty, to catch the new size. 3753 * 3754 * Implication: the file must always be in a sane, consistent 3755 * truncatable state while each transaction commits. 3756 */ 3757 if (ext4_orphan_add(handle, inode)) 3758 goto out_stop; 3759 3760 down_write(&EXT4_I(inode)->i_data_sem); 3761 3762 ext4_discard_preallocations(inode); 3763 3764 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3765 ext4_ext_truncate(handle, inode); 3766 else 3767 ext4_ind_truncate(handle, inode); 3768 3769 up_write(&ei->i_data_sem); 3770 3771 if (IS_SYNC(inode)) 3772 ext4_handle_sync(handle); 3773 3774 out_stop: 3775 /* 3776 * If this was a simple ftruncate() and the file will remain alive, 3777 * then we need to clear up the orphan record which we created above. 3778 * However, if this was a real unlink then we were called by 3779 * ext4_evict_inode(), and we allow that function to clean up the 3780 * orphan info for us. 3781 */ 3782 if (inode->i_nlink) 3783 ext4_orphan_del(handle, inode); 3784 3785 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3786 ext4_mark_inode_dirty(handle, inode); 3787 ext4_journal_stop(handle); 3788 3789 trace_ext4_truncate_exit(inode); 3790 } 3791 3792 /* 3793 * ext4_get_inode_loc returns with an extra refcount against the inode's 3794 * underlying buffer_head on success. If 'in_mem' is true, we have all 3795 * data in memory that is needed to recreate the on-disk version of this 3796 * inode. 3797 */ 3798 static int __ext4_get_inode_loc(struct inode *inode, 3799 struct ext4_iloc *iloc, int in_mem) 3800 { 3801 struct ext4_group_desc *gdp; 3802 struct buffer_head *bh; 3803 struct super_block *sb = inode->i_sb; 3804 ext4_fsblk_t block; 3805 int inodes_per_block, inode_offset; 3806 3807 iloc->bh = NULL; 3808 if (!ext4_valid_inum(sb, inode->i_ino)) 3809 return -EIO; 3810 3811 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3812 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3813 if (!gdp) 3814 return -EIO; 3815 3816 /* 3817 * Figure out the offset within the block group inode table 3818 */ 3819 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3820 inode_offset = ((inode->i_ino - 1) % 3821 EXT4_INODES_PER_GROUP(sb)); 3822 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3823 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3824 3825 bh = sb_getblk(sb, block); 3826 if (unlikely(!bh)) 3827 return -ENOMEM; 3828 if (!buffer_uptodate(bh)) { 3829 lock_buffer(bh); 3830 3831 /* 3832 * If the buffer has the write error flag, we have failed 3833 * to write out another inode in the same block. In this 3834 * case, we don't have to read the block because we may 3835 * read the old inode data successfully. 3836 */ 3837 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3838 set_buffer_uptodate(bh); 3839 3840 if (buffer_uptodate(bh)) { 3841 /* someone brought it uptodate while we waited */ 3842 unlock_buffer(bh); 3843 goto has_buffer; 3844 } 3845 3846 /* 3847 * If we have all information of the inode in memory and this 3848 * is the only valid inode in the block, we need not read the 3849 * block. 3850 */ 3851 if (in_mem) { 3852 struct buffer_head *bitmap_bh; 3853 int i, start; 3854 3855 start = inode_offset & ~(inodes_per_block - 1); 3856 3857 /* Is the inode bitmap in cache? */ 3858 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3859 if (unlikely(!bitmap_bh)) 3860 goto make_io; 3861 3862 /* 3863 * If the inode bitmap isn't in cache then the 3864 * optimisation may end up performing two reads instead 3865 * of one, so skip it. 3866 */ 3867 if (!buffer_uptodate(bitmap_bh)) { 3868 brelse(bitmap_bh); 3869 goto make_io; 3870 } 3871 for (i = start; i < start + inodes_per_block; i++) { 3872 if (i == inode_offset) 3873 continue; 3874 if (ext4_test_bit(i, bitmap_bh->b_data)) 3875 break; 3876 } 3877 brelse(bitmap_bh); 3878 if (i == start + inodes_per_block) { 3879 /* all other inodes are free, so skip I/O */ 3880 memset(bh->b_data, 0, bh->b_size); 3881 set_buffer_uptodate(bh); 3882 unlock_buffer(bh); 3883 goto has_buffer; 3884 } 3885 } 3886 3887 make_io: 3888 /* 3889 * If we need to do any I/O, try to pre-readahead extra 3890 * blocks from the inode table. 3891 */ 3892 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3893 ext4_fsblk_t b, end, table; 3894 unsigned num; 3895 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3896 3897 table = ext4_inode_table(sb, gdp); 3898 /* s_inode_readahead_blks is always a power of 2 */ 3899 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3900 if (table > b) 3901 b = table; 3902 end = b + ra_blks; 3903 num = EXT4_INODES_PER_GROUP(sb); 3904 if (ext4_has_group_desc_csum(sb)) 3905 num -= ext4_itable_unused_count(sb, gdp); 3906 table += num / inodes_per_block; 3907 if (end > table) 3908 end = table; 3909 while (b <= end) 3910 sb_breadahead(sb, b++); 3911 } 3912 3913 /* 3914 * There are other valid inodes in the buffer, this inode 3915 * has in-inode xattrs, or we don't have this inode in memory. 3916 * Read the block from disk. 3917 */ 3918 trace_ext4_load_inode(inode); 3919 get_bh(bh); 3920 bh->b_end_io = end_buffer_read_sync; 3921 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3922 wait_on_buffer(bh); 3923 if (!buffer_uptodate(bh)) { 3924 EXT4_ERROR_INODE_BLOCK(inode, block, 3925 "unable to read itable block"); 3926 brelse(bh); 3927 return -EIO; 3928 } 3929 } 3930 has_buffer: 3931 iloc->bh = bh; 3932 return 0; 3933 } 3934 3935 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3936 { 3937 /* We have all inode data except xattrs in memory here. */ 3938 return __ext4_get_inode_loc(inode, iloc, 3939 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3940 } 3941 3942 void ext4_set_inode_flags(struct inode *inode) 3943 { 3944 unsigned int flags = EXT4_I(inode)->i_flags; 3945 unsigned int new_fl = 0; 3946 3947 if (flags & EXT4_SYNC_FL) 3948 new_fl |= S_SYNC; 3949 if (flags & EXT4_APPEND_FL) 3950 new_fl |= S_APPEND; 3951 if (flags & EXT4_IMMUTABLE_FL) 3952 new_fl |= S_IMMUTABLE; 3953 if (flags & EXT4_NOATIME_FL) 3954 new_fl |= S_NOATIME; 3955 if (flags & EXT4_DIRSYNC_FL) 3956 new_fl |= S_DIRSYNC; 3957 if (test_opt(inode->i_sb, DAX)) 3958 new_fl |= S_DAX; 3959 inode_set_flags(inode, new_fl, 3960 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 3961 } 3962 3963 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3964 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3965 { 3966 unsigned int vfs_fl; 3967 unsigned long old_fl, new_fl; 3968 3969 do { 3970 vfs_fl = ei->vfs_inode.i_flags; 3971 old_fl = ei->i_flags; 3972 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3973 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3974 EXT4_DIRSYNC_FL); 3975 if (vfs_fl & S_SYNC) 3976 new_fl |= EXT4_SYNC_FL; 3977 if (vfs_fl & S_APPEND) 3978 new_fl |= EXT4_APPEND_FL; 3979 if (vfs_fl & S_IMMUTABLE) 3980 new_fl |= EXT4_IMMUTABLE_FL; 3981 if (vfs_fl & S_NOATIME) 3982 new_fl |= EXT4_NOATIME_FL; 3983 if (vfs_fl & S_DIRSYNC) 3984 new_fl |= EXT4_DIRSYNC_FL; 3985 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3986 } 3987 3988 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3989 struct ext4_inode_info *ei) 3990 { 3991 blkcnt_t i_blocks ; 3992 struct inode *inode = &(ei->vfs_inode); 3993 struct super_block *sb = inode->i_sb; 3994 3995 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3996 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3997 /* we are using combined 48 bit field */ 3998 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3999 le32_to_cpu(raw_inode->i_blocks_lo); 4000 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4001 /* i_blocks represent file system block size */ 4002 return i_blocks << (inode->i_blkbits - 9); 4003 } else { 4004 return i_blocks; 4005 } 4006 } else { 4007 return le32_to_cpu(raw_inode->i_blocks_lo); 4008 } 4009 } 4010 4011 static inline void ext4_iget_extra_inode(struct inode *inode, 4012 struct ext4_inode *raw_inode, 4013 struct ext4_inode_info *ei) 4014 { 4015 __le32 *magic = (void *)raw_inode + 4016 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4017 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4018 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4019 ext4_find_inline_data_nolock(inode); 4020 } else 4021 EXT4_I(inode)->i_inline_off = 0; 4022 } 4023 4024 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4025 { 4026 struct ext4_iloc iloc; 4027 struct ext4_inode *raw_inode; 4028 struct ext4_inode_info *ei; 4029 struct inode *inode; 4030 journal_t *journal = EXT4_SB(sb)->s_journal; 4031 long ret; 4032 int block; 4033 uid_t i_uid; 4034 gid_t i_gid; 4035 4036 inode = iget_locked(sb, ino); 4037 if (!inode) 4038 return ERR_PTR(-ENOMEM); 4039 if (!(inode->i_state & I_NEW)) 4040 return inode; 4041 4042 ei = EXT4_I(inode); 4043 iloc.bh = NULL; 4044 4045 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4046 if (ret < 0) 4047 goto bad_inode; 4048 raw_inode = ext4_raw_inode(&iloc); 4049 4050 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4051 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4052 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4053 EXT4_INODE_SIZE(inode->i_sb)) { 4054 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4055 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4056 EXT4_INODE_SIZE(inode->i_sb)); 4057 ret = -EIO; 4058 goto bad_inode; 4059 } 4060 } else 4061 ei->i_extra_isize = 0; 4062 4063 /* Precompute checksum seed for inode metadata */ 4064 if (ext4_has_metadata_csum(sb)) { 4065 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4066 __u32 csum; 4067 __le32 inum = cpu_to_le32(inode->i_ino); 4068 __le32 gen = raw_inode->i_generation; 4069 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4070 sizeof(inum)); 4071 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4072 sizeof(gen)); 4073 } 4074 4075 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4076 EXT4_ERROR_INODE(inode, "checksum invalid"); 4077 ret = -EIO; 4078 goto bad_inode; 4079 } 4080 4081 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4082 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4083 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4084 if (!(test_opt(inode->i_sb, NO_UID32))) { 4085 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4086 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4087 } 4088 i_uid_write(inode, i_uid); 4089 i_gid_write(inode, i_gid); 4090 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4091 4092 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4093 ei->i_inline_off = 0; 4094 ei->i_dir_start_lookup = 0; 4095 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4096 /* We now have enough fields to check if the inode was active or not. 4097 * This is needed because nfsd might try to access dead inodes 4098 * the test is that same one that e2fsck uses 4099 * NeilBrown 1999oct15 4100 */ 4101 if (inode->i_nlink == 0) { 4102 if ((inode->i_mode == 0 || 4103 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4104 ino != EXT4_BOOT_LOADER_INO) { 4105 /* this inode is deleted */ 4106 ret = -ESTALE; 4107 goto bad_inode; 4108 } 4109 /* The only unlinked inodes we let through here have 4110 * valid i_mode and are being read by the orphan 4111 * recovery code: that's fine, we're about to complete 4112 * the process of deleting those. 4113 * OR it is the EXT4_BOOT_LOADER_INO which is 4114 * not initialized on a new filesystem. */ 4115 } 4116 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4117 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4118 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4119 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4120 ei->i_file_acl |= 4121 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4122 inode->i_size = ext4_isize(raw_inode); 4123 ei->i_disksize = inode->i_size; 4124 #ifdef CONFIG_QUOTA 4125 ei->i_reserved_quota = 0; 4126 #endif 4127 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4128 ei->i_block_group = iloc.block_group; 4129 ei->i_last_alloc_group = ~0; 4130 /* 4131 * NOTE! The in-memory inode i_data array is in little-endian order 4132 * even on big-endian machines: we do NOT byteswap the block numbers! 4133 */ 4134 for (block = 0; block < EXT4_N_BLOCKS; block++) 4135 ei->i_data[block] = raw_inode->i_block[block]; 4136 INIT_LIST_HEAD(&ei->i_orphan); 4137 4138 /* 4139 * Set transaction id's of transactions that have to be committed 4140 * to finish f[data]sync. We set them to currently running transaction 4141 * as we cannot be sure that the inode or some of its metadata isn't 4142 * part of the transaction - the inode could have been reclaimed and 4143 * now it is reread from disk. 4144 */ 4145 if (journal) { 4146 transaction_t *transaction; 4147 tid_t tid; 4148 4149 read_lock(&journal->j_state_lock); 4150 if (journal->j_running_transaction) 4151 transaction = journal->j_running_transaction; 4152 else 4153 transaction = journal->j_committing_transaction; 4154 if (transaction) 4155 tid = transaction->t_tid; 4156 else 4157 tid = journal->j_commit_sequence; 4158 read_unlock(&journal->j_state_lock); 4159 ei->i_sync_tid = tid; 4160 ei->i_datasync_tid = tid; 4161 } 4162 4163 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4164 if (ei->i_extra_isize == 0) { 4165 /* The extra space is currently unused. Use it. */ 4166 ei->i_extra_isize = sizeof(struct ext4_inode) - 4167 EXT4_GOOD_OLD_INODE_SIZE; 4168 } else { 4169 ext4_iget_extra_inode(inode, raw_inode, ei); 4170 } 4171 } 4172 4173 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4174 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4175 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4176 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4177 4178 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4179 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4180 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4181 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4182 inode->i_version |= 4183 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4184 } 4185 } 4186 4187 ret = 0; 4188 if (ei->i_file_acl && 4189 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4190 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4191 ei->i_file_acl); 4192 ret = -EIO; 4193 goto bad_inode; 4194 } else if (!ext4_has_inline_data(inode)) { 4195 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4196 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4197 (S_ISLNK(inode->i_mode) && 4198 !ext4_inode_is_fast_symlink(inode)))) 4199 /* Validate extent which is part of inode */ 4200 ret = ext4_ext_check_inode(inode); 4201 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4202 (S_ISLNK(inode->i_mode) && 4203 !ext4_inode_is_fast_symlink(inode))) { 4204 /* Validate block references which are part of inode */ 4205 ret = ext4_ind_check_inode(inode); 4206 } 4207 } 4208 if (ret) 4209 goto bad_inode; 4210 4211 if (S_ISREG(inode->i_mode)) { 4212 inode->i_op = &ext4_file_inode_operations; 4213 inode->i_fop = &ext4_file_operations; 4214 ext4_set_aops(inode); 4215 } else if (S_ISDIR(inode->i_mode)) { 4216 inode->i_op = &ext4_dir_inode_operations; 4217 inode->i_fop = &ext4_dir_operations; 4218 } else if (S_ISLNK(inode->i_mode)) { 4219 if (ext4_encrypted_inode(inode)) { 4220 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4221 ext4_set_aops(inode); 4222 } else if (ext4_inode_is_fast_symlink(inode)) { 4223 inode->i_link = (char *)ei->i_data; 4224 inode->i_op = &ext4_fast_symlink_inode_operations; 4225 nd_terminate_link(ei->i_data, inode->i_size, 4226 sizeof(ei->i_data) - 1); 4227 } else { 4228 inode->i_op = &ext4_symlink_inode_operations; 4229 ext4_set_aops(inode); 4230 } 4231 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4232 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4233 inode->i_op = &ext4_special_inode_operations; 4234 if (raw_inode->i_block[0]) 4235 init_special_inode(inode, inode->i_mode, 4236 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4237 else 4238 init_special_inode(inode, inode->i_mode, 4239 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4240 } else if (ino == EXT4_BOOT_LOADER_INO) { 4241 make_bad_inode(inode); 4242 } else { 4243 ret = -EIO; 4244 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4245 goto bad_inode; 4246 } 4247 brelse(iloc.bh); 4248 ext4_set_inode_flags(inode); 4249 unlock_new_inode(inode); 4250 return inode; 4251 4252 bad_inode: 4253 brelse(iloc.bh); 4254 iget_failed(inode); 4255 return ERR_PTR(ret); 4256 } 4257 4258 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4259 { 4260 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4261 return ERR_PTR(-EIO); 4262 return ext4_iget(sb, ino); 4263 } 4264 4265 static int ext4_inode_blocks_set(handle_t *handle, 4266 struct ext4_inode *raw_inode, 4267 struct ext4_inode_info *ei) 4268 { 4269 struct inode *inode = &(ei->vfs_inode); 4270 u64 i_blocks = inode->i_blocks; 4271 struct super_block *sb = inode->i_sb; 4272 4273 if (i_blocks <= ~0U) { 4274 /* 4275 * i_blocks can be represented in a 32 bit variable 4276 * as multiple of 512 bytes 4277 */ 4278 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4279 raw_inode->i_blocks_high = 0; 4280 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4281 return 0; 4282 } 4283 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4284 return -EFBIG; 4285 4286 if (i_blocks <= 0xffffffffffffULL) { 4287 /* 4288 * i_blocks can be represented in a 48 bit variable 4289 * as multiple of 512 bytes 4290 */ 4291 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4292 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4293 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4294 } else { 4295 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4296 /* i_block is stored in file system block size */ 4297 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4298 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4299 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4300 } 4301 return 0; 4302 } 4303 4304 struct other_inode { 4305 unsigned long orig_ino; 4306 struct ext4_inode *raw_inode; 4307 }; 4308 4309 static int other_inode_match(struct inode * inode, unsigned long ino, 4310 void *data) 4311 { 4312 struct other_inode *oi = (struct other_inode *) data; 4313 4314 if ((inode->i_ino != ino) || 4315 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4316 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4317 ((inode->i_state & I_DIRTY_TIME) == 0)) 4318 return 0; 4319 spin_lock(&inode->i_lock); 4320 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4321 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4322 (inode->i_state & I_DIRTY_TIME)) { 4323 struct ext4_inode_info *ei = EXT4_I(inode); 4324 4325 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4326 spin_unlock(&inode->i_lock); 4327 4328 spin_lock(&ei->i_raw_lock); 4329 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4330 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4331 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4332 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4333 spin_unlock(&ei->i_raw_lock); 4334 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4335 return -1; 4336 } 4337 spin_unlock(&inode->i_lock); 4338 return -1; 4339 } 4340 4341 /* 4342 * Opportunistically update the other time fields for other inodes in 4343 * the same inode table block. 4344 */ 4345 static void ext4_update_other_inodes_time(struct super_block *sb, 4346 unsigned long orig_ino, char *buf) 4347 { 4348 struct other_inode oi; 4349 unsigned long ino; 4350 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4351 int inode_size = EXT4_INODE_SIZE(sb); 4352 4353 oi.orig_ino = orig_ino; 4354 ino = (orig_ino & ~(inodes_per_block - 1)) + 1; 4355 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4356 if (ino == orig_ino) 4357 continue; 4358 oi.raw_inode = (struct ext4_inode *) buf; 4359 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4360 } 4361 } 4362 4363 /* 4364 * Post the struct inode info into an on-disk inode location in the 4365 * buffer-cache. This gobbles the caller's reference to the 4366 * buffer_head in the inode location struct. 4367 * 4368 * The caller must have write access to iloc->bh. 4369 */ 4370 static int ext4_do_update_inode(handle_t *handle, 4371 struct inode *inode, 4372 struct ext4_iloc *iloc) 4373 { 4374 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4375 struct ext4_inode_info *ei = EXT4_I(inode); 4376 struct buffer_head *bh = iloc->bh; 4377 struct super_block *sb = inode->i_sb; 4378 int err = 0, rc, block; 4379 int need_datasync = 0, set_large_file = 0; 4380 uid_t i_uid; 4381 gid_t i_gid; 4382 4383 spin_lock(&ei->i_raw_lock); 4384 4385 /* For fields not tracked in the in-memory inode, 4386 * initialise them to zero for new inodes. */ 4387 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4388 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4389 4390 ext4_get_inode_flags(ei); 4391 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4392 i_uid = i_uid_read(inode); 4393 i_gid = i_gid_read(inode); 4394 if (!(test_opt(inode->i_sb, NO_UID32))) { 4395 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4396 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4397 /* 4398 * Fix up interoperability with old kernels. Otherwise, old inodes get 4399 * re-used with the upper 16 bits of the uid/gid intact 4400 */ 4401 if (!ei->i_dtime) { 4402 raw_inode->i_uid_high = 4403 cpu_to_le16(high_16_bits(i_uid)); 4404 raw_inode->i_gid_high = 4405 cpu_to_le16(high_16_bits(i_gid)); 4406 } else { 4407 raw_inode->i_uid_high = 0; 4408 raw_inode->i_gid_high = 0; 4409 } 4410 } else { 4411 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4412 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4413 raw_inode->i_uid_high = 0; 4414 raw_inode->i_gid_high = 0; 4415 } 4416 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4417 4418 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4419 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4420 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4421 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4422 4423 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4424 if (err) { 4425 spin_unlock(&ei->i_raw_lock); 4426 goto out_brelse; 4427 } 4428 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4429 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4430 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4431 raw_inode->i_file_acl_high = 4432 cpu_to_le16(ei->i_file_acl >> 32); 4433 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4434 if (ei->i_disksize != ext4_isize(raw_inode)) { 4435 ext4_isize_set(raw_inode, ei->i_disksize); 4436 need_datasync = 1; 4437 } 4438 if (ei->i_disksize > 0x7fffffffULL) { 4439 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4440 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4441 EXT4_SB(sb)->s_es->s_rev_level == 4442 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4443 set_large_file = 1; 4444 } 4445 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4446 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4447 if (old_valid_dev(inode->i_rdev)) { 4448 raw_inode->i_block[0] = 4449 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4450 raw_inode->i_block[1] = 0; 4451 } else { 4452 raw_inode->i_block[0] = 0; 4453 raw_inode->i_block[1] = 4454 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4455 raw_inode->i_block[2] = 0; 4456 } 4457 } else if (!ext4_has_inline_data(inode)) { 4458 for (block = 0; block < EXT4_N_BLOCKS; block++) 4459 raw_inode->i_block[block] = ei->i_data[block]; 4460 } 4461 4462 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4463 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4464 if (ei->i_extra_isize) { 4465 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4466 raw_inode->i_version_hi = 4467 cpu_to_le32(inode->i_version >> 32); 4468 raw_inode->i_extra_isize = 4469 cpu_to_le16(ei->i_extra_isize); 4470 } 4471 } 4472 ext4_inode_csum_set(inode, raw_inode, ei); 4473 spin_unlock(&ei->i_raw_lock); 4474 if (inode->i_sb->s_flags & MS_LAZYTIME) 4475 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4476 bh->b_data); 4477 4478 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4479 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4480 if (!err) 4481 err = rc; 4482 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4483 if (set_large_file) { 4484 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4485 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4486 if (err) 4487 goto out_brelse; 4488 ext4_update_dynamic_rev(sb); 4489 EXT4_SET_RO_COMPAT_FEATURE(sb, 4490 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4491 ext4_handle_sync(handle); 4492 err = ext4_handle_dirty_super(handle, sb); 4493 } 4494 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4495 out_brelse: 4496 brelse(bh); 4497 ext4_std_error(inode->i_sb, err); 4498 return err; 4499 } 4500 4501 /* 4502 * ext4_write_inode() 4503 * 4504 * We are called from a few places: 4505 * 4506 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4507 * Here, there will be no transaction running. We wait for any running 4508 * transaction to commit. 4509 * 4510 * - Within flush work (sys_sync(), kupdate and such). 4511 * We wait on commit, if told to. 4512 * 4513 * - Within iput_final() -> write_inode_now() 4514 * We wait on commit, if told to. 4515 * 4516 * In all cases it is actually safe for us to return without doing anything, 4517 * because the inode has been copied into a raw inode buffer in 4518 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4519 * writeback. 4520 * 4521 * Note that we are absolutely dependent upon all inode dirtiers doing the 4522 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4523 * which we are interested. 4524 * 4525 * It would be a bug for them to not do this. The code: 4526 * 4527 * mark_inode_dirty(inode) 4528 * stuff(); 4529 * inode->i_size = expr; 4530 * 4531 * is in error because write_inode() could occur while `stuff()' is running, 4532 * and the new i_size will be lost. Plus the inode will no longer be on the 4533 * superblock's dirty inode list. 4534 */ 4535 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4536 { 4537 int err; 4538 4539 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4540 return 0; 4541 4542 if (EXT4_SB(inode->i_sb)->s_journal) { 4543 if (ext4_journal_current_handle()) { 4544 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4545 dump_stack(); 4546 return -EIO; 4547 } 4548 4549 /* 4550 * No need to force transaction in WB_SYNC_NONE mode. Also 4551 * ext4_sync_fs() will force the commit after everything is 4552 * written. 4553 */ 4554 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4555 return 0; 4556 4557 err = ext4_force_commit(inode->i_sb); 4558 } else { 4559 struct ext4_iloc iloc; 4560 4561 err = __ext4_get_inode_loc(inode, &iloc, 0); 4562 if (err) 4563 return err; 4564 /* 4565 * sync(2) will flush the whole buffer cache. No need to do 4566 * it here separately for each inode. 4567 */ 4568 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4569 sync_dirty_buffer(iloc.bh); 4570 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4571 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4572 "IO error syncing inode"); 4573 err = -EIO; 4574 } 4575 brelse(iloc.bh); 4576 } 4577 return err; 4578 } 4579 4580 /* 4581 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4582 * buffers that are attached to a page stradding i_size and are undergoing 4583 * commit. In that case we have to wait for commit to finish and try again. 4584 */ 4585 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4586 { 4587 struct page *page; 4588 unsigned offset; 4589 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4590 tid_t commit_tid = 0; 4591 int ret; 4592 4593 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4594 /* 4595 * All buffers in the last page remain valid? Then there's nothing to 4596 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4597 * blocksize case 4598 */ 4599 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4600 return; 4601 while (1) { 4602 page = find_lock_page(inode->i_mapping, 4603 inode->i_size >> PAGE_CACHE_SHIFT); 4604 if (!page) 4605 return; 4606 ret = __ext4_journalled_invalidatepage(page, offset, 4607 PAGE_CACHE_SIZE - offset); 4608 unlock_page(page); 4609 page_cache_release(page); 4610 if (ret != -EBUSY) 4611 return; 4612 commit_tid = 0; 4613 read_lock(&journal->j_state_lock); 4614 if (journal->j_committing_transaction) 4615 commit_tid = journal->j_committing_transaction->t_tid; 4616 read_unlock(&journal->j_state_lock); 4617 if (commit_tid) 4618 jbd2_log_wait_commit(journal, commit_tid); 4619 } 4620 } 4621 4622 /* 4623 * ext4_setattr() 4624 * 4625 * Called from notify_change. 4626 * 4627 * We want to trap VFS attempts to truncate the file as soon as 4628 * possible. In particular, we want to make sure that when the VFS 4629 * shrinks i_size, we put the inode on the orphan list and modify 4630 * i_disksize immediately, so that during the subsequent flushing of 4631 * dirty pages and freeing of disk blocks, we can guarantee that any 4632 * commit will leave the blocks being flushed in an unused state on 4633 * disk. (On recovery, the inode will get truncated and the blocks will 4634 * be freed, so we have a strong guarantee that no future commit will 4635 * leave these blocks visible to the user.) 4636 * 4637 * Another thing we have to assure is that if we are in ordered mode 4638 * and inode is still attached to the committing transaction, we must 4639 * we start writeout of all the dirty pages which are being truncated. 4640 * This way we are sure that all the data written in the previous 4641 * transaction are already on disk (truncate waits for pages under 4642 * writeback). 4643 * 4644 * Called with inode->i_mutex down. 4645 */ 4646 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4647 { 4648 struct inode *inode = d_inode(dentry); 4649 int error, rc = 0; 4650 int orphan = 0; 4651 const unsigned int ia_valid = attr->ia_valid; 4652 4653 error = inode_change_ok(inode, attr); 4654 if (error) 4655 return error; 4656 4657 if (is_quota_modification(inode, attr)) 4658 dquot_initialize(inode); 4659 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4660 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4661 handle_t *handle; 4662 4663 /* (user+group)*(old+new) structure, inode write (sb, 4664 * inode block, ? - but truncate inode update has it) */ 4665 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4666 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4667 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4668 if (IS_ERR(handle)) { 4669 error = PTR_ERR(handle); 4670 goto err_out; 4671 } 4672 error = dquot_transfer(inode, attr); 4673 if (error) { 4674 ext4_journal_stop(handle); 4675 return error; 4676 } 4677 /* Update corresponding info in inode so that everything is in 4678 * one transaction */ 4679 if (attr->ia_valid & ATTR_UID) 4680 inode->i_uid = attr->ia_uid; 4681 if (attr->ia_valid & ATTR_GID) 4682 inode->i_gid = attr->ia_gid; 4683 error = ext4_mark_inode_dirty(handle, inode); 4684 ext4_journal_stop(handle); 4685 } 4686 4687 if (attr->ia_valid & ATTR_SIZE) { 4688 handle_t *handle; 4689 loff_t oldsize = inode->i_size; 4690 int shrink = (attr->ia_size <= inode->i_size); 4691 4692 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4693 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4694 4695 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4696 return -EFBIG; 4697 } 4698 if (!S_ISREG(inode->i_mode)) 4699 return -EINVAL; 4700 4701 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4702 inode_inc_iversion(inode); 4703 4704 if (ext4_should_order_data(inode) && 4705 (attr->ia_size < inode->i_size)) { 4706 error = ext4_begin_ordered_truncate(inode, 4707 attr->ia_size); 4708 if (error) 4709 goto err_out; 4710 } 4711 if (attr->ia_size != inode->i_size) { 4712 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4713 if (IS_ERR(handle)) { 4714 error = PTR_ERR(handle); 4715 goto err_out; 4716 } 4717 if (ext4_handle_valid(handle) && shrink) { 4718 error = ext4_orphan_add(handle, inode); 4719 orphan = 1; 4720 } 4721 down_write(&EXT4_I(inode)->i_data_sem); 4722 EXT4_I(inode)->i_disksize = attr->ia_size; 4723 rc = ext4_mark_inode_dirty(handle, inode); 4724 if (!error) 4725 error = rc; 4726 /* 4727 * We have to update i_size under i_data_sem together 4728 * with i_disksize to avoid races with writeback code 4729 * running ext4_wb_update_i_disksize(). 4730 */ 4731 if (!error) 4732 i_size_write(inode, attr->ia_size); 4733 up_write(&EXT4_I(inode)->i_data_sem); 4734 ext4_journal_stop(handle); 4735 if (error) { 4736 if (orphan) 4737 ext4_orphan_del(NULL, inode); 4738 goto err_out; 4739 } 4740 } 4741 if (!shrink) 4742 pagecache_isize_extended(inode, oldsize, inode->i_size); 4743 4744 /* 4745 * Blocks are going to be removed from the inode. Wait 4746 * for dio in flight. Temporarily disable 4747 * dioread_nolock to prevent livelock. 4748 */ 4749 if (orphan) { 4750 if (!ext4_should_journal_data(inode)) { 4751 ext4_inode_block_unlocked_dio(inode); 4752 inode_dio_wait(inode); 4753 ext4_inode_resume_unlocked_dio(inode); 4754 } else 4755 ext4_wait_for_tail_page_commit(inode); 4756 } 4757 /* 4758 * Truncate pagecache after we've waited for commit 4759 * in data=journal mode to make pages freeable. 4760 */ 4761 truncate_pagecache(inode, inode->i_size); 4762 if (shrink) 4763 ext4_truncate(inode); 4764 } 4765 4766 if (!rc) { 4767 setattr_copy(inode, attr); 4768 mark_inode_dirty(inode); 4769 } 4770 4771 /* 4772 * If the call to ext4_truncate failed to get a transaction handle at 4773 * all, we need to clean up the in-core orphan list manually. 4774 */ 4775 if (orphan && inode->i_nlink) 4776 ext4_orphan_del(NULL, inode); 4777 4778 if (!rc && (ia_valid & ATTR_MODE)) 4779 rc = posix_acl_chmod(inode, inode->i_mode); 4780 4781 err_out: 4782 ext4_std_error(inode->i_sb, error); 4783 if (!error) 4784 error = rc; 4785 return error; 4786 } 4787 4788 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4789 struct kstat *stat) 4790 { 4791 struct inode *inode; 4792 unsigned long long delalloc_blocks; 4793 4794 inode = d_inode(dentry); 4795 generic_fillattr(inode, stat); 4796 4797 /* 4798 * If there is inline data in the inode, the inode will normally not 4799 * have data blocks allocated (it may have an external xattr block). 4800 * Report at least one sector for such files, so tools like tar, rsync, 4801 * others doen't incorrectly think the file is completely sparse. 4802 */ 4803 if (unlikely(ext4_has_inline_data(inode))) 4804 stat->blocks += (stat->size + 511) >> 9; 4805 4806 /* 4807 * We can't update i_blocks if the block allocation is delayed 4808 * otherwise in the case of system crash before the real block 4809 * allocation is done, we will have i_blocks inconsistent with 4810 * on-disk file blocks. 4811 * We always keep i_blocks updated together with real 4812 * allocation. But to not confuse with user, stat 4813 * will return the blocks that include the delayed allocation 4814 * blocks for this file. 4815 */ 4816 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4817 EXT4_I(inode)->i_reserved_data_blocks); 4818 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4819 return 0; 4820 } 4821 4822 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4823 int pextents) 4824 { 4825 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4826 return ext4_ind_trans_blocks(inode, lblocks); 4827 return ext4_ext_index_trans_blocks(inode, pextents); 4828 } 4829 4830 /* 4831 * Account for index blocks, block groups bitmaps and block group 4832 * descriptor blocks if modify datablocks and index blocks 4833 * worse case, the indexs blocks spread over different block groups 4834 * 4835 * If datablocks are discontiguous, they are possible to spread over 4836 * different block groups too. If they are contiguous, with flexbg, 4837 * they could still across block group boundary. 4838 * 4839 * Also account for superblock, inode, quota and xattr blocks 4840 */ 4841 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4842 int pextents) 4843 { 4844 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4845 int gdpblocks; 4846 int idxblocks; 4847 int ret = 0; 4848 4849 /* 4850 * How many index blocks need to touch to map @lblocks logical blocks 4851 * to @pextents physical extents? 4852 */ 4853 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4854 4855 ret = idxblocks; 4856 4857 /* 4858 * Now let's see how many group bitmaps and group descriptors need 4859 * to account 4860 */ 4861 groups = idxblocks + pextents; 4862 gdpblocks = groups; 4863 if (groups > ngroups) 4864 groups = ngroups; 4865 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4866 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4867 4868 /* bitmaps and block group descriptor blocks */ 4869 ret += groups + gdpblocks; 4870 4871 /* Blocks for super block, inode, quota and xattr blocks */ 4872 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4873 4874 return ret; 4875 } 4876 4877 /* 4878 * Calculate the total number of credits to reserve to fit 4879 * the modification of a single pages into a single transaction, 4880 * which may include multiple chunks of block allocations. 4881 * 4882 * This could be called via ext4_write_begin() 4883 * 4884 * We need to consider the worse case, when 4885 * one new block per extent. 4886 */ 4887 int ext4_writepage_trans_blocks(struct inode *inode) 4888 { 4889 int bpp = ext4_journal_blocks_per_page(inode); 4890 int ret; 4891 4892 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4893 4894 /* Account for data blocks for journalled mode */ 4895 if (ext4_should_journal_data(inode)) 4896 ret += bpp; 4897 return ret; 4898 } 4899 4900 /* 4901 * Calculate the journal credits for a chunk of data modification. 4902 * 4903 * This is called from DIO, fallocate or whoever calling 4904 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4905 * 4906 * journal buffers for data blocks are not included here, as DIO 4907 * and fallocate do no need to journal data buffers. 4908 */ 4909 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4910 { 4911 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4912 } 4913 4914 /* 4915 * The caller must have previously called ext4_reserve_inode_write(). 4916 * Give this, we know that the caller already has write access to iloc->bh. 4917 */ 4918 int ext4_mark_iloc_dirty(handle_t *handle, 4919 struct inode *inode, struct ext4_iloc *iloc) 4920 { 4921 int err = 0; 4922 4923 if (IS_I_VERSION(inode)) 4924 inode_inc_iversion(inode); 4925 4926 /* the do_update_inode consumes one bh->b_count */ 4927 get_bh(iloc->bh); 4928 4929 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4930 err = ext4_do_update_inode(handle, inode, iloc); 4931 put_bh(iloc->bh); 4932 return err; 4933 } 4934 4935 /* 4936 * On success, We end up with an outstanding reference count against 4937 * iloc->bh. This _must_ be cleaned up later. 4938 */ 4939 4940 int 4941 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4942 struct ext4_iloc *iloc) 4943 { 4944 int err; 4945 4946 err = ext4_get_inode_loc(inode, iloc); 4947 if (!err) { 4948 BUFFER_TRACE(iloc->bh, "get_write_access"); 4949 err = ext4_journal_get_write_access(handle, iloc->bh); 4950 if (err) { 4951 brelse(iloc->bh); 4952 iloc->bh = NULL; 4953 } 4954 } 4955 ext4_std_error(inode->i_sb, err); 4956 return err; 4957 } 4958 4959 /* 4960 * Expand an inode by new_extra_isize bytes. 4961 * Returns 0 on success or negative error number on failure. 4962 */ 4963 static int ext4_expand_extra_isize(struct inode *inode, 4964 unsigned int new_extra_isize, 4965 struct ext4_iloc iloc, 4966 handle_t *handle) 4967 { 4968 struct ext4_inode *raw_inode; 4969 struct ext4_xattr_ibody_header *header; 4970 4971 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4972 return 0; 4973 4974 raw_inode = ext4_raw_inode(&iloc); 4975 4976 header = IHDR(inode, raw_inode); 4977 4978 /* No extended attributes present */ 4979 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4980 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4981 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4982 new_extra_isize); 4983 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4984 return 0; 4985 } 4986 4987 /* try to expand with EAs present */ 4988 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4989 raw_inode, handle); 4990 } 4991 4992 /* 4993 * What we do here is to mark the in-core inode as clean with respect to inode 4994 * dirtiness (it may still be data-dirty). 4995 * This means that the in-core inode may be reaped by prune_icache 4996 * without having to perform any I/O. This is a very good thing, 4997 * because *any* task may call prune_icache - even ones which 4998 * have a transaction open against a different journal. 4999 * 5000 * Is this cheating? Not really. Sure, we haven't written the 5001 * inode out, but prune_icache isn't a user-visible syncing function. 5002 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5003 * we start and wait on commits. 5004 */ 5005 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5006 { 5007 struct ext4_iloc iloc; 5008 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5009 static unsigned int mnt_count; 5010 int err, ret; 5011 5012 might_sleep(); 5013 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5014 err = ext4_reserve_inode_write(handle, inode, &iloc); 5015 if (ext4_handle_valid(handle) && 5016 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5017 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5018 /* 5019 * We need extra buffer credits since we may write into EA block 5020 * with this same handle. If journal_extend fails, then it will 5021 * only result in a minor loss of functionality for that inode. 5022 * If this is felt to be critical, then e2fsck should be run to 5023 * force a large enough s_min_extra_isize. 5024 */ 5025 if ((jbd2_journal_extend(handle, 5026 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5027 ret = ext4_expand_extra_isize(inode, 5028 sbi->s_want_extra_isize, 5029 iloc, handle); 5030 if (ret) { 5031 ext4_set_inode_state(inode, 5032 EXT4_STATE_NO_EXPAND); 5033 if (mnt_count != 5034 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5035 ext4_warning(inode->i_sb, 5036 "Unable to expand inode %lu. Delete" 5037 " some EAs or run e2fsck.", 5038 inode->i_ino); 5039 mnt_count = 5040 le16_to_cpu(sbi->s_es->s_mnt_count); 5041 } 5042 } 5043 } 5044 } 5045 if (!err) 5046 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5047 return err; 5048 } 5049 5050 /* 5051 * ext4_dirty_inode() is called from __mark_inode_dirty() 5052 * 5053 * We're really interested in the case where a file is being extended. 5054 * i_size has been changed by generic_commit_write() and we thus need 5055 * to include the updated inode in the current transaction. 5056 * 5057 * Also, dquot_alloc_block() will always dirty the inode when blocks 5058 * are allocated to the file. 5059 * 5060 * If the inode is marked synchronous, we don't honour that here - doing 5061 * so would cause a commit on atime updates, which we don't bother doing. 5062 * We handle synchronous inodes at the highest possible level. 5063 * 5064 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5065 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5066 * to copy into the on-disk inode structure are the timestamp files. 5067 */ 5068 void ext4_dirty_inode(struct inode *inode, int flags) 5069 { 5070 handle_t *handle; 5071 5072 if (flags == I_DIRTY_TIME) 5073 return; 5074 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5075 if (IS_ERR(handle)) 5076 goto out; 5077 5078 ext4_mark_inode_dirty(handle, inode); 5079 5080 ext4_journal_stop(handle); 5081 out: 5082 return; 5083 } 5084 5085 #if 0 5086 /* 5087 * Bind an inode's backing buffer_head into this transaction, to prevent 5088 * it from being flushed to disk early. Unlike 5089 * ext4_reserve_inode_write, this leaves behind no bh reference and 5090 * returns no iloc structure, so the caller needs to repeat the iloc 5091 * lookup to mark the inode dirty later. 5092 */ 5093 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5094 { 5095 struct ext4_iloc iloc; 5096 5097 int err = 0; 5098 if (handle) { 5099 err = ext4_get_inode_loc(inode, &iloc); 5100 if (!err) { 5101 BUFFER_TRACE(iloc.bh, "get_write_access"); 5102 err = jbd2_journal_get_write_access(handle, iloc.bh); 5103 if (!err) 5104 err = ext4_handle_dirty_metadata(handle, 5105 NULL, 5106 iloc.bh); 5107 brelse(iloc.bh); 5108 } 5109 } 5110 ext4_std_error(inode->i_sb, err); 5111 return err; 5112 } 5113 #endif 5114 5115 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5116 { 5117 journal_t *journal; 5118 handle_t *handle; 5119 int err; 5120 5121 /* 5122 * We have to be very careful here: changing a data block's 5123 * journaling status dynamically is dangerous. If we write a 5124 * data block to the journal, change the status and then delete 5125 * that block, we risk forgetting to revoke the old log record 5126 * from the journal and so a subsequent replay can corrupt data. 5127 * So, first we make sure that the journal is empty and that 5128 * nobody is changing anything. 5129 */ 5130 5131 journal = EXT4_JOURNAL(inode); 5132 if (!journal) 5133 return 0; 5134 if (is_journal_aborted(journal)) 5135 return -EROFS; 5136 /* We have to allocate physical blocks for delalloc blocks 5137 * before flushing journal. otherwise delalloc blocks can not 5138 * be allocated any more. even more truncate on delalloc blocks 5139 * could trigger BUG by flushing delalloc blocks in journal. 5140 * There is no delalloc block in non-journal data mode. 5141 */ 5142 if (val && test_opt(inode->i_sb, DELALLOC)) { 5143 err = ext4_alloc_da_blocks(inode); 5144 if (err < 0) 5145 return err; 5146 } 5147 5148 /* Wait for all existing dio workers */ 5149 ext4_inode_block_unlocked_dio(inode); 5150 inode_dio_wait(inode); 5151 5152 jbd2_journal_lock_updates(journal); 5153 5154 /* 5155 * OK, there are no updates running now, and all cached data is 5156 * synced to disk. We are now in a completely consistent state 5157 * which doesn't have anything in the journal, and we know that 5158 * no filesystem updates are running, so it is safe to modify 5159 * the inode's in-core data-journaling state flag now. 5160 */ 5161 5162 if (val) 5163 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5164 else { 5165 err = jbd2_journal_flush(journal); 5166 if (err < 0) { 5167 jbd2_journal_unlock_updates(journal); 5168 ext4_inode_resume_unlocked_dio(inode); 5169 return err; 5170 } 5171 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5172 } 5173 ext4_set_aops(inode); 5174 5175 jbd2_journal_unlock_updates(journal); 5176 ext4_inode_resume_unlocked_dio(inode); 5177 5178 /* Finally we can mark the inode as dirty. */ 5179 5180 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5181 if (IS_ERR(handle)) 5182 return PTR_ERR(handle); 5183 5184 err = ext4_mark_inode_dirty(handle, inode); 5185 ext4_handle_sync(handle); 5186 ext4_journal_stop(handle); 5187 ext4_std_error(inode->i_sb, err); 5188 5189 return err; 5190 } 5191 5192 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5193 { 5194 return !buffer_mapped(bh); 5195 } 5196 5197 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5198 { 5199 struct page *page = vmf->page; 5200 loff_t size; 5201 unsigned long len; 5202 int ret; 5203 struct file *file = vma->vm_file; 5204 struct inode *inode = file_inode(file); 5205 struct address_space *mapping = inode->i_mapping; 5206 handle_t *handle; 5207 get_block_t *get_block; 5208 int retries = 0; 5209 5210 sb_start_pagefault(inode->i_sb); 5211 file_update_time(vma->vm_file); 5212 /* Delalloc case is easy... */ 5213 if (test_opt(inode->i_sb, DELALLOC) && 5214 !ext4_should_journal_data(inode) && 5215 !ext4_nonda_switch(inode->i_sb)) { 5216 do { 5217 ret = __block_page_mkwrite(vma, vmf, 5218 ext4_da_get_block_prep); 5219 } while (ret == -ENOSPC && 5220 ext4_should_retry_alloc(inode->i_sb, &retries)); 5221 goto out_ret; 5222 } 5223 5224 lock_page(page); 5225 size = i_size_read(inode); 5226 /* Page got truncated from under us? */ 5227 if (page->mapping != mapping || page_offset(page) > size) { 5228 unlock_page(page); 5229 ret = VM_FAULT_NOPAGE; 5230 goto out; 5231 } 5232 5233 if (page->index == size >> PAGE_CACHE_SHIFT) 5234 len = size & ~PAGE_CACHE_MASK; 5235 else 5236 len = PAGE_CACHE_SIZE; 5237 /* 5238 * Return if we have all the buffers mapped. This avoids the need to do 5239 * journal_start/journal_stop which can block and take a long time 5240 */ 5241 if (page_has_buffers(page)) { 5242 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5243 0, len, NULL, 5244 ext4_bh_unmapped)) { 5245 /* Wait so that we don't change page under IO */ 5246 wait_for_stable_page(page); 5247 ret = VM_FAULT_LOCKED; 5248 goto out; 5249 } 5250 } 5251 unlock_page(page); 5252 /* OK, we need to fill the hole... */ 5253 if (ext4_should_dioread_nolock(inode)) 5254 get_block = ext4_get_block_write; 5255 else 5256 get_block = ext4_get_block; 5257 retry_alloc: 5258 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5259 ext4_writepage_trans_blocks(inode)); 5260 if (IS_ERR(handle)) { 5261 ret = VM_FAULT_SIGBUS; 5262 goto out; 5263 } 5264 ret = __block_page_mkwrite(vma, vmf, get_block); 5265 if (!ret && ext4_should_journal_data(inode)) { 5266 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5267 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5268 unlock_page(page); 5269 ret = VM_FAULT_SIGBUS; 5270 ext4_journal_stop(handle); 5271 goto out; 5272 } 5273 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5274 } 5275 ext4_journal_stop(handle); 5276 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5277 goto retry_alloc; 5278 out_ret: 5279 ret = block_page_mkwrite_return(ret); 5280 out: 5281 sb_end_pagefault(inode->i_sb); 5282 return ret; 5283 } 5284