1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = le16_to_cpu(raw->i_checksum_lo); 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = le16_to_cpu(raw->i_checksum_hi); 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = cpu_to_le16(csum_lo); 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = cpu_to_le16(csum_hi); 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !ext4_has_metadata_csum(inode->i_sb)) 85 return 1; 86 87 provided = le16_to_cpu(raw->i_checksum_lo); 88 calculated = ext4_inode_csum(inode, raw, ei); 89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 92 else 93 calculated &= 0xFFFF; 94 95 return provided == calculated; 96 } 97 98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 99 struct ext4_inode_info *ei) 100 { 101 __u32 csum; 102 103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 104 cpu_to_le32(EXT4_OS_LINUX) || 105 !ext4_has_metadata_csum(inode->i_sb)) 106 return; 107 108 csum = ext4_inode_csum(inode, raw, ei); 109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 112 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 113 } 114 115 static inline int ext4_begin_ordered_truncate(struct inode *inode, 116 loff_t new_size) 117 { 118 trace_ext4_begin_ordered_truncate(inode, new_size); 119 /* 120 * If jinode is zero, then we never opened the file for 121 * writing, so there's no need to call 122 * jbd2_journal_begin_ordered_truncate() since there's no 123 * outstanding writes we need to flush. 124 */ 125 if (!EXT4_I(inode)->jinode) 126 return 0; 127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 128 EXT4_I(inode)->jinode, 129 new_size); 130 } 131 132 static void ext4_invalidatepage(struct page *page, unsigned int offset, 133 unsigned int length); 134 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 137 int pextents); 138 139 /* 140 * Test whether an inode is a fast symlink. 141 */ 142 int ext4_inode_is_fast_symlink(struct inode *inode) 143 { 144 int ea_blocks = EXT4_I(inode)->i_file_acl ? 145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 146 147 if (ext4_has_inline_data(inode)) 148 return 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages_final(&inode->i_data); 218 219 goto no_delete; 220 } 221 222 if (is_bad_inode(inode)) 223 goto no_delete; 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages_final(&inode->i_data); 229 230 /* 231 * Protect us against freezing - iput() caller didn't have to have any 232 * protection against it 233 */ 234 sb_start_intwrite(inode->i_sb); 235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 236 ext4_blocks_for_truncate(inode)+3); 237 if (IS_ERR(handle)) { 238 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 239 /* 240 * If we're going to skip the normal cleanup, we still need to 241 * make sure that the in-core orphan linked list is properly 242 * cleaned up. 243 */ 244 ext4_orphan_del(NULL, inode); 245 sb_end_intwrite(inode->i_sb); 246 goto no_delete; 247 } 248 249 if (IS_SYNC(inode)) 250 ext4_handle_sync(handle); 251 inode->i_size = 0; 252 err = ext4_mark_inode_dirty(handle, inode); 253 if (err) { 254 ext4_warning(inode->i_sb, 255 "couldn't mark inode dirty (err %d)", err); 256 goto stop_handle; 257 } 258 if (inode->i_blocks) 259 ext4_truncate(inode); 260 261 /* 262 * ext4_ext_truncate() doesn't reserve any slop when it 263 * restarts journal transactions; therefore there may not be 264 * enough credits left in the handle to remove the inode from 265 * the orphan list and set the dtime field. 266 */ 267 if (!ext4_handle_has_enough_credits(handle, 3)) { 268 err = ext4_journal_extend(handle, 3); 269 if (err > 0) 270 err = ext4_journal_restart(handle, 3); 271 if (err != 0) { 272 ext4_warning(inode->i_sb, 273 "couldn't extend journal (err %d)", err); 274 stop_handle: 275 ext4_journal_stop(handle); 276 ext4_orphan_del(NULL, inode); 277 sb_end_intwrite(inode->i_sb); 278 goto no_delete; 279 } 280 } 281 282 /* 283 * Kill off the orphan record which ext4_truncate created. 284 * AKPM: I think this can be inside the above `if'. 285 * Note that ext4_orphan_del() has to be able to cope with the 286 * deletion of a non-existent orphan - this is because we don't 287 * know if ext4_truncate() actually created an orphan record. 288 * (Well, we could do this if we need to, but heck - it works) 289 */ 290 ext4_orphan_del(handle, inode); 291 EXT4_I(inode)->i_dtime = get_seconds(); 292 293 /* 294 * One subtle ordering requirement: if anything has gone wrong 295 * (transaction abort, IO errors, whatever), then we can still 296 * do these next steps (the fs will already have been marked as 297 * having errors), but we can't free the inode if the mark_dirty 298 * fails. 299 */ 300 if (ext4_mark_inode_dirty(handle, inode)) 301 /* If that failed, just do the required in-core inode clear. */ 302 ext4_clear_inode(inode); 303 else 304 ext4_free_inode(handle, inode); 305 ext4_journal_stop(handle); 306 sb_end_intwrite(inode->i_sb); 307 return; 308 no_delete: 309 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 310 } 311 312 #ifdef CONFIG_QUOTA 313 qsize_t *ext4_get_reserved_space(struct inode *inode) 314 { 315 return &EXT4_I(inode)->i_reserved_quota; 316 } 317 #endif 318 319 /* 320 * Called with i_data_sem down, which is important since we can call 321 * ext4_discard_preallocations() from here. 322 */ 323 void ext4_da_update_reserve_space(struct inode *inode, 324 int used, int quota_claim) 325 { 326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 327 struct ext4_inode_info *ei = EXT4_I(inode); 328 329 spin_lock(&ei->i_block_reservation_lock); 330 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 331 if (unlikely(used > ei->i_reserved_data_blocks)) { 332 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 333 "with only %d reserved data blocks", 334 __func__, inode->i_ino, used, 335 ei->i_reserved_data_blocks); 336 WARN_ON(1); 337 used = ei->i_reserved_data_blocks; 338 } 339 340 /* Update per-inode reservations */ 341 ei->i_reserved_data_blocks -= used; 342 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 343 344 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 345 346 /* Update quota subsystem for data blocks */ 347 if (quota_claim) 348 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 349 else { 350 /* 351 * We did fallocate with an offset that is already delayed 352 * allocated. So on delayed allocated writeback we should 353 * not re-claim the quota for fallocated blocks. 354 */ 355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 356 } 357 358 /* 359 * If we have done all the pending block allocations and if 360 * there aren't any writers on the inode, we can discard the 361 * inode's preallocations. 362 */ 363 if ((ei->i_reserved_data_blocks == 0) && 364 (atomic_read(&inode->i_writecount) == 0)) 365 ext4_discard_preallocations(inode); 366 } 367 368 static int __check_block_validity(struct inode *inode, const char *func, 369 unsigned int line, 370 struct ext4_map_blocks *map) 371 { 372 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 373 map->m_len)) { 374 ext4_error_inode(inode, func, line, map->m_pblk, 375 "lblock %lu mapped to illegal pblock " 376 "(length %d)", (unsigned long) map->m_lblk, 377 map->m_len); 378 return -EFSCORRUPTED; 379 } 380 return 0; 381 } 382 383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 384 ext4_lblk_t len) 385 { 386 int ret; 387 388 if (ext4_encrypted_inode(inode)) 389 return ext4_encrypted_zeroout(inode, lblk, pblk, len); 390 391 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 392 if (ret > 0) 393 ret = 0; 394 395 return ret; 396 } 397 398 #define check_block_validity(inode, map) \ 399 __check_block_validity((inode), __func__, __LINE__, (map)) 400 401 #ifdef ES_AGGRESSIVE_TEST 402 static void ext4_map_blocks_es_recheck(handle_t *handle, 403 struct inode *inode, 404 struct ext4_map_blocks *es_map, 405 struct ext4_map_blocks *map, 406 int flags) 407 { 408 int retval; 409 410 map->m_flags = 0; 411 /* 412 * There is a race window that the result is not the same. 413 * e.g. xfstests #223 when dioread_nolock enables. The reason 414 * is that we lookup a block mapping in extent status tree with 415 * out taking i_data_sem. So at the time the unwritten extent 416 * could be converted. 417 */ 418 down_read(&EXT4_I(inode)->i_data_sem); 419 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 420 retval = ext4_ext_map_blocks(handle, inode, map, flags & 421 EXT4_GET_BLOCKS_KEEP_SIZE); 422 } else { 423 retval = ext4_ind_map_blocks(handle, inode, map, flags & 424 EXT4_GET_BLOCKS_KEEP_SIZE); 425 } 426 up_read((&EXT4_I(inode)->i_data_sem)); 427 428 /* 429 * We don't check m_len because extent will be collpased in status 430 * tree. So the m_len might not equal. 431 */ 432 if (es_map->m_lblk != map->m_lblk || 433 es_map->m_flags != map->m_flags || 434 es_map->m_pblk != map->m_pblk) { 435 printk("ES cache assertion failed for inode: %lu " 436 "es_cached ex [%d/%d/%llu/%x] != " 437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 438 inode->i_ino, es_map->m_lblk, es_map->m_len, 439 es_map->m_pblk, es_map->m_flags, map->m_lblk, 440 map->m_len, map->m_pblk, map->m_flags, 441 retval, flags); 442 } 443 } 444 #endif /* ES_AGGRESSIVE_TEST */ 445 446 /* 447 * The ext4_map_blocks() function tries to look up the requested blocks, 448 * and returns if the blocks are already mapped. 449 * 450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 451 * and store the allocated blocks in the result buffer head and mark it 452 * mapped. 453 * 454 * If file type is extents based, it will call ext4_ext_map_blocks(), 455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 456 * based files 457 * 458 * On success, it returns the number of blocks being mapped or allocated. if 459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 460 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 461 * 462 * It returns 0 if plain look up failed (blocks have not been allocated), in 463 * that case, @map is returned as unmapped but we still do fill map->m_len to 464 * indicate the length of a hole starting at map->m_lblk. 465 * 466 * It returns the error in case of allocation failure. 467 */ 468 int ext4_map_blocks(handle_t *handle, struct inode *inode, 469 struct ext4_map_blocks *map, int flags) 470 { 471 struct extent_status es; 472 int retval; 473 int ret = 0; 474 #ifdef ES_AGGRESSIVE_TEST 475 struct ext4_map_blocks orig_map; 476 477 memcpy(&orig_map, map, sizeof(*map)); 478 #endif 479 480 map->m_flags = 0; 481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 482 "logical block %lu\n", inode->i_ino, flags, map->m_len, 483 (unsigned long) map->m_lblk); 484 485 /* 486 * ext4_map_blocks returns an int, and m_len is an unsigned int 487 */ 488 if (unlikely(map->m_len > INT_MAX)) 489 map->m_len = INT_MAX; 490 491 /* We can handle the block number less than EXT_MAX_BLOCKS */ 492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 493 return -EFSCORRUPTED; 494 495 /* Lookup extent status tree firstly */ 496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 498 map->m_pblk = ext4_es_pblock(&es) + 499 map->m_lblk - es.es_lblk; 500 map->m_flags |= ext4_es_is_written(&es) ? 501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 502 retval = es.es_len - (map->m_lblk - es.es_lblk); 503 if (retval > map->m_len) 504 retval = map->m_len; 505 map->m_len = retval; 506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 507 map->m_pblk = 0; 508 retval = es.es_len - (map->m_lblk - es.es_lblk); 509 if (retval > map->m_len) 510 retval = map->m_len; 511 map->m_len = retval; 512 retval = 0; 513 } else { 514 BUG_ON(1); 515 } 516 #ifdef ES_AGGRESSIVE_TEST 517 ext4_map_blocks_es_recheck(handle, inode, map, 518 &orig_map, flags); 519 #endif 520 goto found; 521 } 522 523 /* 524 * Try to see if we can get the block without requesting a new 525 * file system block. 526 */ 527 down_read(&EXT4_I(inode)->i_data_sem); 528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 529 retval = ext4_ext_map_blocks(handle, inode, map, flags & 530 EXT4_GET_BLOCKS_KEEP_SIZE); 531 } else { 532 retval = ext4_ind_map_blocks(handle, inode, map, flags & 533 EXT4_GET_BLOCKS_KEEP_SIZE); 534 } 535 if (retval > 0) { 536 unsigned int status; 537 538 if (unlikely(retval != map->m_len)) { 539 ext4_warning(inode->i_sb, 540 "ES len assertion failed for inode " 541 "%lu: retval %d != map->m_len %d", 542 inode->i_ino, retval, map->m_len); 543 WARN_ON(1); 544 } 545 546 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 547 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 548 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 549 !(status & EXTENT_STATUS_WRITTEN) && 550 ext4_find_delalloc_range(inode, map->m_lblk, 551 map->m_lblk + map->m_len - 1)) 552 status |= EXTENT_STATUS_DELAYED; 553 ret = ext4_es_insert_extent(inode, map->m_lblk, 554 map->m_len, map->m_pblk, status); 555 if (ret < 0) 556 retval = ret; 557 } 558 up_read((&EXT4_I(inode)->i_data_sem)); 559 560 found: 561 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 562 ret = check_block_validity(inode, map); 563 if (ret != 0) 564 return ret; 565 } 566 567 /* If it is only a block(s) look up */ 568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 569 return retval; 570 571 /* 572 * Returns if the blocks have already allocated 573 * 574 * Note that if blocks have been preallocated 575 * ext4_ext_get_block() returns the create = 0 576 * with buffer head unmapped. 577 */ 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 579 /* 580 * If we need to convert extent to unwritten 581 * we continue and do the actual work in 582 * ext4_ext_map_blocks() 583 */ 584 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 585 return retval; 586 587 /* 588 * Here we clear m_flags because after allocating an new extent, 589 * it will be set again. 590 */ 591 map->m_flags &= ~EXT4_MAP_FLAGS; 592 593 /* 594 * New blocks allocate and/or writing to unwritten extent 595 * will possibly result in updating i_data, so we take 596 * the write lock of i_data_sem, and call get_block() 597 * with create == 1 flag. 598 */ 599 down_write(&EXT4_I(inode)->i_data_sem); 600 601 /* 602 * We need to check for EXT4 here because migrate 603 * could have changed the inode type in between 604 */ 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 606 retval = ext4_ext_map_blocks(handle, inode, map, flags); 607 } else { 608 retval = ext4_ind_map_blocks(handle, inode, map, flags); 609 610 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 611 /* 612 * We allocated new blocks which will result in 613 * i_data's format changing. Force the migrate 614 * to fail by clearing migrate flags 615 */ 616 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 617 } 618 619 /* 620 * Update reserved blocks/metadata blocks after successful 621 * block allocation which had been deferred till now. We don't 622 * support fallocate for non extent files. So we can update 623 * reserve space here. 624 */ 625 if ((retval > 0) && 626 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 627 ext4_da_update_reserve_space(inode, retval, 1); 628 } 629 630 if (retval > 0) { 631 unsigned int status; 632 633 if (unlikely(retval != map->m_len)) { 634 ext4_warning(inode->i_sb, 635 "ES len assertion failed for inode " 636 "%lu: retval %d != map->m_len %d", 637 inode->i_ino, retval, map->m_len); 638 WARN_ON(1); 639 } 640 641 /* 642 * We have to zeroout blocks before inserting them into extent 643 * status tree. Otherwise someone could look them up there and 644 * use them before they are really zeroed. 645 */ 646 if (flags & EXT4_GET_BLOCKS_ZERO && 647 map->m_flags & EXT4_MAP_MAPPED && 648 map->m_flags & EXT4_MAP_NEW) { 649 ret = ext4_issue_zeroout(inode, map->m_lblk, 650 map->m_pblk, map->m_len); 651 if (ret) { 652 retval = ret; 653 goto out_sem; 654 } 655 } 656 657 /* 658 * If the extent has been zeroed out, we don't need to update 659 * extent status tree. 660 */ 661 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 662 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 663 if (ext4_es_is_written(&es)) 664 goto out_sem; 665 } 666 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 667 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 668 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 669 !(status & EXTENT_STATUS_WRITTEN) && 670 ext4_find_delalloc_range(inode, map->m_lblk, 671 map->m_lblk + map->m_len - 1)) 672 status |= EXTENT_STATUS_DELAYED; 673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 674 map->m_pblk, status); 675 if (ret < 0) { 676 retval = ret; 677 goto out_sem; 678 } 679 } 680 681 out_sem: 682 up_write((&EXT4_I(inode)->i_data_sem)); 683 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 684 ret = check_block_validity(inode, map); 685 if (ret != 0) 686 return ret; 687 } 688 return retval; 689 } 690 691 /* 692 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 693 * we have to be careful as someone else may be manipulating b_state as well. 694 */ 695 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 696 { 697 unsigned long old_state; 698 unsigned long new_state; 699 700 flags &= EXT4_MAP_FLAGS; 701 702 /* Dummy buffer_head? Set non-atomically. */ 703 if (!bh->b_page) { 704 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 705 return; 706 } 707 /* 708 * Someone else may be modifying b_state. Be careful! This is ugly but 709 * once we get rid of using bh as a container for mapping information 710 * to pass to / from get_block functions, this can go away. 711 */ 712 do { 713 old_state = READ_ONCE(bh->b_state); 714 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 715 } while (unlikely( 716 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 717 } 718 719 static int _ext4_get_block(struct inode *inode, sector_t iblock, 720 struct buffer_head *bh, int flags) 721 { 722 struct ext4_map_blocks map; 723 int ret = 0; 724 725 if (ext4_has_inline_data(inode)) 726 return -ERANGE; 727 728 map.m_lblk = iblock; 729 map.m_len = bh->b_size >> inode->i_blkbits; 730 731 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 732 flags); 733 if (ret > 0) { 734 map_bh(bh, inode->i_sb, map.m_pblk); 735 ext4_update_bh_state(bh, map.m_flags); 736 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 737 ret = 0; 738 } 739 return ret; 740 } 741 742 int ext4_get_block(struct inode *inode, sector_t iblock, 743 struct buffer_head *bh, int create) 744 { 745 return _ext4_get_block(inode, iblock, bh, 746 create ? EXT4_GET_BLOCKS_CREATE : 0); 747 } 748 749 /* 750 * Get block function used when preparing for buffered write if we require 751 * creating an unwritten extent if blocks haven't been allocated. The extent 752 * will be converted to written after the IO is complete. 753 */ 754 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 755 struct buffer_head *bh_result, int create) 756 { 757 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 758 inode->i_ino, create); 759 return _ext4_get_block(inode, iblock, bh_result, 760 EXT4_GET_BLOCKS_IO_CREATE_EXT); 761 } 762 763 /* Maximum number of blocks we map for direct IO at once. */ 764 #define DIO_MAX_BLOCKS 4096 765 766 static handle_t *start_dio_trans(struct inode *inode, 767 struct buffer_head *bh_result) 768 { 769 int dio_credits; 770 771 /* Trim mapping request to maximum we can map at once for DIO */ 772 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 773 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 774 dio_credits = ext4_chunk_trans_blocks(inode, 775 bh_result->b_size >> inode->i_blkbits); 776 return ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 777 } 778 779 /* Get block function for DIO reads and writes to inodes without extents */ 780 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 781 struct buffer_head *bh, int create) 782 { 783 handle_t *handle; 784 int ret; 785 786 /* We don't expect handle for direct IO */ 787 WARN_ON_ONCE(ext4_journal_current_handle()); 788 789 if (create) { 790 handle = start_dio_trans(inode, bh); 791 if (IS_ERR(handle)) 792 return PTR_ERR(handle); 793 } 794 ret = _ext4_get_block(inode, iblock, bh, 795 create ? EXT4_GET_BLOCKS_CREATE : 0); 796 if (create) 797 ext4_journal_stop(handle); 798 return ret; 799 } 800 801 /* 802 * Get block function for AIO DIO writes when we create unwritten extent if 803 * blocks are not allocated yet. The extent will be converted to written 804 * after IO is complete. 805 */ 806 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 807 sector_t iblock, struct buffer_head *bh_result, int create) 808 { 809 handle_t *handle; 810 int ret; 811 812 /* We don't expect handle for direct IO */ 813 WARN_ON_ONCE(ext4_journal_current_handle()); 814 815 handle = start_dio_trans(inode, bh_result); 816 if (IS_ERR(handle)) 817 return PTR_ERR(handle); 818 ret = _ext4_get_block(inode, iblock, bh_result, 819 EXT4_GET_BLOCKS_IO_CREATE_EXT); 820 ext4_journal_stop(handle); 821 822 /* 823 * When doing DIO using unwritten extents, we need io_end to convert 824 * unwritten extents to written on IO completion. We allocate io_end 825 * once we spot unwritten extent and store it in b_private. Generic 826 * DIO code keeps b_private set and furthermore passes the value to 827 * our completion callback in 'private' argument. 828 */ 829 if (!ret && buffer_unwritten(bh_result)) { 830 if (!bh_result->b_private) { 831 ext4_io_end_t *io_end; 832 833 io_end = ext4_init_io_end(inode, GFP_KERNEL); 834 if (!io_end) 835 return -ENOMEM; 836 bh_result->b_private = io_end; 837 ext4_set_io_unwritten_flag(inode, io_end); 838 } 839 set_buffer_defer_completion(bh_result); 840 } 841 842 return ret; 843 } 844 845 /* 846 * Get block function for non-AIO DIO writes when we create unwritten extent if 847 * blocks are not allocated yet. The extent will be converted to written 848 * after IO is complete from ext4_ext_direct_IO() function. 849 */ 850 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 851 sector_t iblock, struct buffer_head *bh_result, int create) 852 { 853 handle_t *handle; 854 int ret; 855 856 /* We don't expect handle for direct IO */ 857 WARN_ON_ONCE(ext4_journal_current_handle()); 858 859 handle = start_dio_trans(inode, bh_result); 860 if (IS_ERR(handle)) 861 return PTR_ERR(handle); 862 ret = _ext4_get_block(inode, iblock, bh_result, 863 EXT4_GET_BLOCKS_IO_CREATE_EXT); 864 ext4_journal_stop(handle); 865 866 /* 867 * Mark inode as having pending DIO writes to unwritten extents. 868 * ext4_ext_direct_IO() checks this flag and converts extents to 869 * written. 870 */ 871 if (!ret && buffer_unwritten(bh_result)) 872 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 873 874 return ret; 875 } 876 877 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 878 struct buffer_head *bh_result, int create) 879 { 880 int ret; 881 882 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 883 inode->i_ino, create); 884 /* We don't expect handle for direct IO */ 885 WARN_ON_ONCE(ext4_journal_current_handle()); 886 887 ret = _ext4_get_block(inode, iblock, bh_result, 0); 888 /* 889 * Blocks should have been preallocated! ext4_file_write_iter() checks 890 * that. 891 */ 892 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 893 894 return ret; 895 } 896 897 898 /* 899 * `handle' can be NULL if create is zero 900 */ 901 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 902 ext4_lblk_t block, int map_flags) 903 { 904 struct ext4_map_blocks map; 905 struct buffer_head *bh; 906 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 907 int err; 908 909 J_ASSERT(handle != NULL || create == 0); 910 911 map.m_lblk = block; 912 map.m_len = 1; 913 err = ext4_map_blocks(handle, inode, &map, map_flags); 914 915 if (err == 0) 916 return create ? ERR_PTR(-ENOSPC) : NULL; 917 if (err < 0) 918 return ERR_PTR(err); 919 920 bh = sb_getblk(inode->i_sb, map.m_pblk); 921 if (unlikely(!bh)) 922 return ERR_PTR(-ENOMEM); 923 if (map.m_flags & EXT4_MAP_NEW) { 924 J_ASSERT(create != 0); 925 J_ASSERT(handle != NULL); 926 927 /* 928 * Now that we do not always journal data, we should 929 * keep in mind whether this should always journal the 930 * new buffer as metadata. For now, regular file 931 * writes use ext4_get_block instead, so it's not a 932 * problem. 933 */ 934 lock_buffer(bh); 935 BUFFER_TRACE(bh, "call get_create_access"); 936 err = ext4_journal_get_create_access(handle, bh); 937 if (unlikely(err)) { 938 unlock_buffer(bh); 939 goto errout; 940 } 941 if (!buffer_uptodate(bh)) { 942 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 943 set_buffer_uptodate(bh); 944 } 945 unlock_buffer(bh); 946 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 947 err = ext4_handle_dirty_metadata(handle, inode, bh); 948 if (unlikely(err)) 949 goto errout; 950 } else 951 BUFFER_TRACE(bh, "not a new buffer"); 952 return bh; 953 errout: 954 brelse(bh); 955 return ERR_PTR(err); 956 } 957 958 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 959 ext4_lblk_t block, int map_flags) 960 { 961 struct buffer_head *bh; 962 963 bh = ext4_getblk(handle, inode, block, map_flags); 964 if (IS_ERR(bh)) 965 return bh; 966 if (!bh || buffer_uptodate(bh)) 967 return bh; 968 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 969 wait_on_buffer(bh); 970 if (buffer_uptodate(bh)) 971 return bh; 972 put_bh(bh); 973 return ERR_PTR(-EIO); 974 } 975 976 int ext4_walk_page_buffers(handle_t *handle, 977 struct buffer_head *head, 978 unsigned from, 979 unsigned to, 980 int *partial, 981 int (*fn)(handle_t *handle, 982 struct buffer_head *bh)) 983 { 984 struct buffer_head *bh; 985 unsigned block_start, block_end; 986 unsigned blocksize = head->b_size; 987 int err, ret = 0; 988 struct buffer_head *next; 989 990 for (bh = head, block_start = 0; 991 ret == 0 && (bh != head || !block_start); 992 block_start = block_end, bh = next) { 993 next = bh->b_this_page; 994 block_end = block_start + blocksize; 995 if (block_end <= from || block_start >= to) { 996 if (partial && !buffer_uptodate(bh)) 997 *partial = 1; 998 continue; 999 } 1000 err = (*fn)(handle, bh); 1001 if (!ret) 1002 ret = err; 1003 } 1004 return ret; 1005 } 1006 1007 /* 1008 * To preserve ordering, it is essential that the hole instantiation and 1009 * the data write be encapsulated in a single transaction. We cannot 1010 * close off a transaction and start a new one between the ext4_get_block() 1011 * and the commit_write(). So doing the jbd2_journal_start at the start of 1012 * prepare_write() is the right place. 1013 * 1014 * Also, this function can nest inside ext4_writepage(). In that case, we 1015 * *know* that ext4_writepage() has generated enough buffer credits to do the 1016 * whole page. So we won't block on the journal in that case, which is good, 1017 * because the caller may be PF_MEMALLOC. 1018 * 1019 * By accident, ext4 can be reentered when a transaction is open via 1020 * quota file writes. If we were to commit the transaction while thus 1021 * reentered, there can be a deadlock - we would be holding a quota 1022 * lock, and the commit would never complete if another thread had a 1023 * transaction open and was blocking on the quota lock - a ranking 1024 * violation. 1025 * 1026 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1027 * will _not_ run commit under these circumstances because handle->h_ref 1028 * is elevated. We'll still have enough credits for the tiny quotafile 1029 * write. 1030 */ 1031 int do_journal_get_write_access(handle_t *handle, 1032 struct buffer_head *bh) 1033 { 1034 int dirty = buffer_dirty(bh); 1035 int ret; 1036 1037 if (!buffer_mapped(bh) || buffer_freed(bh)) 1038 return 0; 1039 /* 1040 * __block_write_begin() could have dirtied some buffers. Clean 1041 * the dirty bit as jbd2_journal_get_write_access() could complain 1042 * otherwise about fs integrity issues. Setting of the dirty bit 1043 * by __block_write_begin() isn't a real problem here as we clear 1044 * the bit before releasing a page lock and thus writeback cannot 1045 * ever write the buffer. 1046 */ 1047 if (dirty) 1048 clear_buffer_dirty(bh); 1049 BUFFER_TRACE(bh, "get write access"); 1050 ret = ext4_journal_get_write_access(handle, bh); 1051 if (!ret && dirty) 1052 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1053 return ret; 1054 } 1055 1056 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1057 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1058 get_block_t *get_block) 1059 { 1060 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1061 unsigned to = from + len; 1062 struct inode *inode = page->mapping->host; 1063 unsigned block_start, block_end; 1064 sector_t block; 1065 int err = 0; 1066 unsigned blocksize = inode->i_sb->s_blocksize; 1067 unsigned bbits; 1068 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1069 bool decrypt = false; 1070 1071 BUG_ON(!PageLocked(page)); 1072 BUG_ON(from > PAGE_CACHE_SIZE); 1073 BUG_ON(to > PAGE_CACHE_SIZE); 1074 BUG_ON(from > to); 1075 1076 if (!page_has_buffers(page)) 1077 create_empty_buffers(page, blocksize, 0); 1078 head = page_buffers(page); 1079 bbits = ilog2(blocksize); 1080 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1081 1082 for (bh = head, block_start = 0; bh != head || !block_start; 1083 block++, block_start = block_end, bh = bh->b_this_page) { 1084 block_end = block_start + blocksize; 1085 if (block_end <= from || block_start >= to) { 1086 if (PageUptodate(page)) { 1087 if (!buffer_uptodate(bh)) 1088 set_buffer_uptodate(bh); 1089 } 1090 continue; 1091 } 1092 if (buffer_new(bh)) 1093 clear_buffer_new(bh); 1094 if (!buffer_mapped(bh)) { 1095 WARN_ON(bh->b_size != blocksize); 1096 err = get_block(inode, block, bh, 1); 1097 if (err) 1098 break; 1099 if (buffer_new(bh)) { 1100 unmap_underlying_metadata(bh->b_bdev, 1101 bh->b_blocknr); 1102 if (PageUptodate(page)) { 1103 clear_buffer_new(bh); 1104 set_buffer_uptodate(bh); 1105 mark_buffer_dirty(bh); 1106 continue; 1107 } 1108 if (block_end > to || block_start < from) 1109 zero_user_segments(page, to, block_end, 1110 block_start, from); 1111 continue; 1112 } 1113 } 1114 if (PageUptodate(page)) { 1115 if (!buffer_uptodate(bh)) 1116 set_buffer_uptodate(bh); 1117 continue; 1118 } 1119 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1120 !buffer_unwritten(bh) && 1121 (block_start < from || block_end > to)) { 1122 ll_rw_block(READ, 1, &bh); 1123 *wait_bh++ = bh; 1124 decrypt = ext4_encrypted_inode(inode) && 1125 S_ISREG(inode->i_mode); 1126 } 1127 } 1128 /* 1129 * If we issued read requests, let them complete. 1130 */ 1131 while (wait_bh > wait) { 1132 wait_on_buffer(*--wait_bh); 1133 if (!buffer_uptodate(*wait_bh)) 1134 err = -EIO; 1135 } 1136 if (unlikely(err)) 1137 page_zero_new_buffers(page, from, to); 1138 else if (decrypt) 1139 err = ext4_decrypt(page); 1140 return err; 1141 } 1142 #endif 1143 1144 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1145 loff_t pos, unsigned len, unsigned flags, 1146 struct page **pagep, void **fsdata) 1147 { 1148 struct inode *inode = mapping->host; 1149 int ret, needed_blocks; 1150 handle_t *handle; 1151 int retries = 0; 1152 struct page *page; 1153 pgoff_t index; 1154 unsigned from, to; 1155 1156 trace_ext4_write_begin(inode, pos, len, flags); 1157 /* 1158 * Reserve one block more for addition to orphan list in case 1159 * we allocate blocks but write fails for some reason 1160 */ 1161 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1162 index = pos >> PAGE_CACHE_SHIFT; 1163 from = pos & (PAGE_CACHE_SIZE - 1); 1164 to = from + len; 1165 1166 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1167 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1168 flags, pagep); 1169 if (ret < 0) 1170 return ret; 1171 if (ret == 1) 1172 return 0; 1173 } 1174 1175 /* 1176 * grab_cache_page_write_begin() can take a long time if the 1177 * system is thrashing due to memory pressure, or if the page 1178 * is being written back. So grab it first before we start 1179 * the transaction handle. This also allows us to allocate 1180 * the page (if needed) without using GFP_NOFS. 1181 */ 1182 retry_grab: 1183 page = grab_cache_page_write_begin(mapping, index, flags); 1184 if (!page) 1185 return -ENOMEM; 1186 unlock_page(page); 1187 1188 retry_journal: 1189 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1190 if (IS_ERR(handle)) { 1191 page_cache_release(page); 1192 return PTR_ERR(handle); 1193 } 1194 1195 lock_page(page); 1196 if (page->mapping != mapping) { 1197 /* The page got truncated from under us */ 1198 unlock_page(page); 1199 page_cache_release(page); 1200 ext4_journal_stop(handle); 1201 goto retry_grab; 1202 } 1203 /* In case writeback began while the page was unlocked */ 1204 wait_for_stable_page(page); 1205 1206 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1207 if (ext4_should_dioread_nolock(inode)) 1208 ret = ext4_block_write_begin(page, pos, len, 1209 ext4_get_block_unwritten); 1210 else 1211 ret = ext4_block_write_begin(page, pos, len, 1212 ext4_get_block); 1213 #else 1214 if (ext4_should_dioread_nolock(inode)) 1215 ret = __block_write_begin(page, pos, len, 1216 ext4_get_block_unwritten); 1217 else 1218 ret = __block_write_begin(page, pos, len, ext4_get_block); 1219 #endif 1220 if (!ret && ext4_should_journal_data(inode)) { 1221 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1222 from, to, NULL, 1223 do_journal_get_write_access); 1224 } 1225 1226 if (ret) { 1227 unlock_page(page); 1228 /* 1229 * __block_write_begin may have instantiated a few blocks 1230 * outside i_size. Trim these off again. Don't need 1231 * i_size_read because we hold i_mutex. 1232 * 1233 * Add inode to orphan list in case we crash before 1234 * truncate finishes 1235 */ 1236 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1237 ext4_orphan_add(handle, inode); 1238 1239 ext4_journal_stop(handle); 1240 if (pos + len > inode->i_size) { 1241 ext4_truncate_failed_write(inode); 1242 /* 1243 * If truncate failed early the inode might 1244 * still be on the orphan list; we need to 1245 * make sure the inode is removed from the 1246 * orphan list in that case. 1247 */ 1248 if (inode->i_nlink) 1249 ext4_orphan_del(NULL, inode); 1250 } 1251 1252 if (ret == -ENOSPC && 1253 ext4_should_retry_alloc(inode->i_sb, &retries)) 1254 goto retry_journal; 1255 page_cache_release(page); 1256 return ret; 1257 } 1258 *pagep = page; 1259 return ret; 1260 } 1261 1262 /* For write_end() in data=journal mode */ 1263 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1264 { 1265 int ret; 1266 if (!buffer_mapped(bh) || buffer_freed(bh)) 1267 return 0; 1268 set_buffer_uptodate(bh); 1269 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1270 clear_buffer_meta(bh); 1271 clear_buffer_prio(bh); 1272 return ret; 1273 } 1274 1275 /* 1276 * We need to pick up the new inode size which generic_commit_write gave us 1277 * `file' can be NULL - eg, when called from page_symlink(). 1278 * 1279 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1280 * buffers are managed internally. 1281 */ 1282 static int ext4_write_end(struct file *file, 1283 struct address_space *mapping, 1284 loff_t pos, unsigned len, unsigned copied, 1285 struct page *page, void *fsdata) 1286 { 1287 handle_t *handle = ext4_journal_current_handle(); 1288 struct inode *inode = mapping->host; 1289 loff_t old_size = inode->i_size; 1290 int ret = 0, ret2; 1291 int i_size_changed = 0; 1292 1293 trace_ext4_write_end(inode, pos, len, copied); 1294 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1295 ret = ext4_jbd2_file_inode(handle, inode); 1296 if (ret) { 1297 unlock_page(page); 1298 page_cache_release(page); 1299 goto errout; 1300 } 1301 } 1302 1303 if (ext4_has_inline_data(inode)) { 1304 ret = ext4_write_inline_data_end(inode, pos, len, 1305 copied, page); 1306 if (ret < 0) 1307 goto errout; 1308 copied = ret; 1309 } else 1310 copied = block_write_end(file, mapping, pos, 1311 len, copied, page, fsdata); 1312 /* 1313 * it's important to update i_size while still holding page lock: 1314 * page writeout could otherwise come in and zero beyond i_size. 1315 */ 1316 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1317 unlock_page(page); 1318 page_cache_release(page); 1319 1320 if (old_size < pos) 1321 pagecache_isize_extended(inode, old_size, pos); 1322 /* 1323 * Don't mark the inode dirty under page lock. First, it unnecessarily 1324 * makes the holding time of page lock longer. Second, it forces lock 1325 * ordering of page lock and transaction start for journaling 1326 * filesystems. 1327 */ 1328 if (i_size_changed) 1329 ext4_mark_inode_dirty(handle, inode); 1330 1331 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1332 /* if we have allocated more blocks and copied 1333 * less. We will have blocks allocated outside 1334 * inode->i_size. So truncate them 1335 */ 1336 ext4_orphan_add(handle, inode); 1337 errout: 1338 ret2 = ext4_journal_stop(handle); 1339 if (!ret) 1340 ret = ret2; 1341 1342 if (pos + len > inode->i_size) { 1343 ext4_truncate_failed_write(inode); 1344 /* 1345 * If truncate failed early the inode might still be 1346 * on the orphan list; we need to make sure the inode 1347 * is removed from the orphan list in that case. 1348 */ 1349 if (inode->i_nlink) 1350 ext4_orphan_del(NULL, inode); 1351 } 1352 1353 return ret ? ret : copied; 1354 } 1355 1356 /* 1357 * This is a private version of page_zero_new_buffers() which doesn't 1358 * set the buffer to be dirty, since in data=journalled mode we need 1359 * to call ext4_handle_dirty_metadata() instead. 1360 */ 1361 static void zero_new_buffers(struct page *page, unsigned from, unsigned to) 1362 { 1363 unsigned int block_start = 0, block_end; 1364 struct buffer_head *head, *bh; 1365 1366 bh = head = page_buffers(page); 1367 do { 1368 block_end = block_start + bh->b_size; 1369 if (buffer_new(bh)) { 1370 if (block_end > from && block_start < to) { 1371 if (!PageUptodate(page)) { 1372 unsigned start, size; 1373 1374 start = max(from, block_start); 1375 size = min(to, block_end) - start; 1376 1377 zero_user(page, start, size); 1378 set_buffer_uptodate(bh); 1379 } 1380 clear_buffer_new(bh); 1381 } 1382 } 1383 block_start = block_end; 1384 bh = bh->b_this_page; 1385 } while (bh != head); 1386 } 1387 1388 static int ext4_journalled_write_end(struct file *file, 1389 struct address_space *mapping, 1390 loff_t pos, unsigned len, unsigned copied, 1391 struct page *page, void *fsdata) 1392 { 1393 handle_t *handle = ext4_journal_current_handle(); 1394 struct inode *inode = mapping->host; 1395 loff_t old_size = inode->i_size; 1396 int ret = 0, ret2; 1397 int partial = 0; 1398 unsigned from, to; 1399 int size_changed = 0; 1400 1401 trace_ext4_journalled_write_end(inode, pos, len, copied); 1402 from = pos & (PAGE_CACHE_SIZE - 1); 1403 to = from + len; 1404 1405 BUG_ON(!ext4_handle_valid(handle)); 1406 1407 if (ext4_has_inline_data(inode)) 1408 copied = ext4_write_inline_data_end(inode, pos, len, 1409 copied, page); 1410 else { 1411 if (copied < len) { 1412 if (!PageUptodate(page)) 1413 copied = 0; 1414 zero_new_buffers(page, from+copied, to); 1415 } 1416 1417 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1418 to, &partial, write_end_fn); 1419 if (!partial) 1420 SetPageUptodate(page); 1421 } 1422 size_changed = ext4_update_inode_size(inode, pos + copied); 1423 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1424 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1425 unlock_page(page); 1426 page_cache_release(page); 1427 1428 if (old_size < pos) 1429 pagecache_isize_extended(inode, old_size, pos); 1430 1431 if (size_changed) { 1432 ret2 = ext4_mark_inode_dirty(handle, inode); 1433 if (!ret) 1434 ret = ret2; 1435 } 1436 1437 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1438 /* if we have allocated more blocks and copied 1439 * less. We will have blocks allocated outside 1440 * inode->i_size. So truncate them 1441 */ 1442 ext4_orphan_add(handle, inode); 1443 1444 ret2 = ext4_journal_stop(handle); 1445 if (!ret) 1446 ret = ret2; 1447 if (pos + len > inode->i_size) { 1448 ext4_truncate_failed_write(inode); 1449 /* 1450 * If truncate failed early the inode might still be 1451 * on the orphan list; we need to make sure the inode 1452 * is removed from the orphan list in that case. 1453 */ 1454 if (inode->i_nlink) 1455 ext4_orphan_del(NULL, inode); 1456 } 1457 1458 return ret ? ret : copied; 1459 } 1460 1461 /* 1462 * Reserve space for a single cluster 1463 */ 1464 static int ext4_da_reserve_space(struct inode *inode) 1465 { 1466 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1467 struct ext4_inode_info *ei = EXT4_I(inode); 1468 int ret; 1469 1470 /* 1471 * We will charge metadata quota at writeout time; this saves 1472 * us from metadata over-estimation, though we may go over by 1473 * a small amount in the end. Here we just reserve for data. 1474 */ 1475 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1476 if (ret) 1477 return ret; 1478 1479 spin_lock(&ei->i_block_reservation_lock); 1480 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1481 spin_unlock(&ei->i_block_reservation_lock); 1482 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1483 return -ENOSPC; 1484 } 1485 ei->i_reserved_data_blocks++; 1486 trace_ext4_da_reserve_space(inode); 1487 spin_unlock(&ei->i_block_reservation_lock); 1488 1489 return 0; /* success */ 1490 } 1491 1492 static void ext4_da_release_space(struct inode *inode, int to_free) 1493 { 1494 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1495 struct ext4_inode_info *ei = EXT4_I(inode); 1496 1497 if (!to_free) 1498 return; /* Nothing to release, exit */ 1499 1500 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1501 1502 trace_ext4_da_release_space(inode, to_free); 1503 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1504 /* 1505 * if there aren't enough reserved blocks, then the 1506 * counter is messed up somewhere. Since this 1507 * function is called from invalidate page, it's 1508 * harmless to return without any action. 1509 */ 1510 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1511 "ino %lu, to_free %d with only %d reserved " 1512 "data blocks", inode->i_ino, to_free, 1513 ei->i_reserved_data_blocks); 1514 WARN_ON(1); 1515 to_free = ei->i_reserved_data_blocks; 1516 } 1517 ei->i_reserved_data_blocks -= to_free; 1518 1519 /* update fs dirty data blocks counter */ 1520 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1521 1522 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1523 1524 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1525 } 1526 1527 static void ext4_da_page_release_reservation(struct page *page, 1528 unsigned int offset, 1529 unsigned int length) 1530 { 1531 int to_release = 0, contiguous_blks = 0; 1532 struct buffer_head *head, *bh; 1533 unsigned int curr_off = 0; 1534 struct inode *inode = page->mapping->host; 1535 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1536 unsigned int stop = offset + length; 1537 int num_clusters; 1538 ext4_fsblk_t lblk; 1539 1540 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1541 1542 head = page_buffers(page); 1543 bh = head; 1544 do { 1545 unsigned int next_off = curr_off + bh->b_size; 1546 1547 if (next_off > stop) 1548 break; 1549 1550 if ((offset <= curr_off) && (buffer_delay(bh))) { 1551 to_release++; 1552 contiguous_blks++; 1553 clear_buffer_delay(bh); 1554 } else if (contiguous_blks) { 1555 lblk = page->index << 1556 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1557 lblk += (curr_off >> inode->i_blkbits) - 1558 contiguous_blks; 1559 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1560 contiguous_blks = 0; 1561 } 1562 curr_off = next_off; 1563 } while ((bh = bh->b_this_page) != head); 1564 1565 if (contiguous_blks) { 1566 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1567 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1568 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1569 } 1570 1571 /* If we have released all the blocks belonging to a cluster, then we 1572 * need to release the reserved space for that cluster. */ 1573 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1574 while (num_clusters > 0) { 1575 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1576 ((num_clusters - 1) << sbi->s_cluster_bits); 1577 if (sbi->s_cluster_ratio == 1 || 1578 !ext4_find_delalloc_cluster(inode, lblk)) 1579 ext4_da_release_space(inode, 1); 1580 1581 num_clusters--; 1582 } 1583 } 1584 1585 /* 1586 * Delayed allocation stuff 1587 */ 1588 1589 struct mpage_da_data { 1590 struct inode *inode; 1591 struct writeback_control *wbc; 1592 1593 pgoff_t first_page; /* The first page to write */ 1594 pgoff_t next_page; /* Current page to examine */ 1595 pgoff_t last_page; /* Last page to examine */ 1596 /* 1597 * Extent to map - this can be after first_page because that can be 1598 * fully mapped. We somewhat abuse m_flags to store whether the extent 1599 * is delalloc or unwritten. 1600 */ 1601 struct ext4_map_blocks map; 1602 struct ext4_io_submit io_submit; /* IO submission data */ 1603 }; 1604 1605 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1606 bool invalidate) 1607 { 1608 int nr_pages, i; 1609 pgoff_t index, end; 1610 struct pagevec pvec; 1611 struct inode *inode = mpd->inode; 1612 struct address_space *mapping = inode->i_mapping; 1613 1614 /* This is necessary when next_page == 0. */ 1615 if (mpd->first_page >= mpd->next_page) 1616 return; 1617 1618 index = mpd->first_page; 1619 end = mpd->next_page - 1; 1620 if (invalidate) { 1621 ext4_lblk_t start, last; 1622 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1623 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1624 ext4_es_remove_extent(inode, start, last - start + 1); 1625 } 1626 1627 pagevec_init(&pvec, 0); 1628 while (index <= end) { 1629 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1630 if (nr_pages == 0) 1631 break; 1632 for (i = 0; i < nr_pages; i++) { 1633 struct page *page = pvec.pages[i]; 1634 if (page->index > end) 1635 break; 1636 BUG_ON(!PageLocked(page)); 1637 BUG_ON(PageWriteback(page)); 1638 if (invalidate) { 1639 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1640 ClearPageUptodate(page); 1641 } 1642 unlock_page(page); 1643 } 1644 index = pvec.pages[nr_pages - 1]->index + 1; 1645 pagevec_release(&pvec); 1646 } 1647 } 1648 1649 static void ext4_print_free_blocks(struct inode *inode) 1650 { 1651 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1652 struct super_block *sb = inode->i_sb; 1653 struct ext4_inode_info *ei = EXT4_I(inode); 1654 1655 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1656 EXT4_C2B(EXT4_SB(inode->i_sb), 1657 ext4_count_free_clusters(sb))); 1658 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1659 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1660 (long long) EXT4_C2B(EXT4_SB(sb), 1661 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1662 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1663 (long long) EXT4_C2B(EXT4_SB(sb), 1664 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1665 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1666 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1667 ei->i_reserved_data_blocks); 1668 return; 1669 } 1670 1671 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1672 { 1673 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1674 } 1675 1676 /* 1677 * This function is grabs code from the very beginning of 1678 * ext4_map_blocks, but assumes that the caller is from delayed write 1679 * time. This function looks up the requested blocks and sets the 1680 * buffer delay bit under the protection of i_data_sem. 1681 */ 1682 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1683 struct ext4_map_blocks *map, 1684 struct buffer_head *bh) 1685 { 1686 struct extent_status es; 1687 int retval; 1688 sector_t invalid_block = ~((sector_t) 0xffff); 1689 #ifdef ES_AGGRESSIVE_TEST 1690 struct ext4_map_blocks orig_map; 1691 1692 memcpy(&orig_map, map, sizeof(*map)); 1693 #endif 1694 1695 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1696 invalid_block = ~0; 1697 1698 map->m_flags = 0; 1699 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1700 "logical block %lu\n", inode->i_ino, map->m_len, 1701 (unsigned long) map->m_lblk); 1702 1703 /* Lookup extent status tree firstly */ 1704 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1705 if (ext4_es_is_hole(&es)) { 1706 retval = 0; 1707 down_read(&EXT4_I(inode)->i_data_sem); 1708 goto add_delayed; 1709 } 1710 1711 /* 1712 * Delayed extent could be allocated by fallocate. 1713 * So we need to check it. 1714 */ 1715 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1716 map_bh(bh, inode->i_sb, invalid_block); 1717 set_buffer_new(bh); 1718 set_buffer_delay(bh); 1719 return 0; 1720 } 1721 1722 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1723 retval = es.es_len - (iblock - es.es_lblk); 1724 if (retval > map->m_len) 1725 retval = map->m_len; 1726 map->m_len = retval; 1727 if (ext4_es_is_written(&es)) 1728 map->m_flags |= EXT4_MAP_MAPPED; 1729 else if (ext4_es_is_unwritten(&es)) 1730 map->m_flags |= EXT4_MAP_UNWRITTEN; 1731 else 1732 BUG_ON(1); 1733 1734 #ifdef ES_AGGRESSIVE_TEST 1735 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1736 #endif 1737 return retval; 1738 } 1739 1740 /* 1741 * Try to see if we can get the block without requesting a new 1742 * file system block. 1743 */ 1744 down_read(&EXT4_I(inode)->i_data_sem); 1745 if (ext4_has_inline_data(inode)) 1746 retval = 0; 1747 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1748 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1749 else 1750 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1751 1752 add_delayed: 1753 if (retval == 0) { 1754 int ret; 1755 /* 1756 * XXX: __block_prepare_write() unmaps passed block, 1757 * is it OK? 1758 */ 1759 /* 1760 * If the block was allocated from previously allocated cluster, 1761 * then we don't need to reserve it again. However we still need 1762 * to reserve metadata for every block we're going to write. 1763 */ 1764 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1765 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1766 ret = ext4_da_reserve_space(inode); 1767 if (ret) { 1768 /* not enough space to reserve */ 1769 retval = ret; 1770 goto out_unlock; 1771 } 1772 } 1773 1774 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1775 ~0, EXTENT_STATUS_DELAYED); 1776 if (ret) { 1777 retval = ret; 1778 goto out_unlock; 1779 } 1780 1781 map_bh(bh, inode->i_sb, invalid_block); 1782 set_buffer_new(bh); 1783 set_buffer_delay(bh); 1784 } else if (retval > 0) { 1785 int ret; 1786 unsigned int status; 1787 1788 if (unlikely(retval != map->m_len)) { 1789 ext4_warning(inode->i_sb, 1790 "ES len assertion failed for inode " 1791 "%lu: retval %d != map->m_len %d", 1792 inode->i_ino, retval, map->m_len); 1793 WARN_ON(1); 1794 } 1795 1796 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1797 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1798 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1799 map->m_pblk, status); 1800 if (ret != 0) 1801 retval = ret; 1802 } 1803 1804 out_unlock: 1805 up_read((&EXT4_I(inode)->i_data_sem)); 1806 1807 return retval; 1808 } 1809 1810 /* 1811 * This is a special get_block_t callback which is used by 1812 * ext4_da_write_begin(). It will either return mapped block or 1813 * reserve space for a single block. 1814 * 1815 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1816 * We also have b_blocknr = -1 and b_bdev initialized properly 1817 * 1818 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1819 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1820 * initialized properly. 1821 */ 1822 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1823 struct buffer_head *bh, int create) 1824 { 1825 struct ext4_map_blocks map; 1826 int ret = 0; 1827 1828 BUG_ON(create == 0); 1829 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1830 1831 map.m_lblk = iblock; 1832 map.m_len = 1; 1833 1834 /* 1835 * first, we need to know whether the block is allocated already 1836 * preallocated blocks are unmapped but should treated 1837 * the same as allocated blocks. 1838 */ 1839 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1840 if (ret <= 0) 1841 return ret; 1842 1843 map_bh(bh, inode->i_sb, map.m_pblk); 1844 ext4_update_bh_state(bh, map.m_flags); 1845 1846 if (buffer_unwritten(bh)) { 1847 /* A delayed write to unwritten bh should be marked 1848 * new and mapped. Mapped ensures that we don't do 1849 * get_block multiple times when we write to the same 1850 * offset and new ensures that we do proper zero out 1851 * for partial write. 1852 */ 1853 set_buffer_new(bh); 1854 set_buffer_mapped(bh); 1855 } 1856 return 0; 1857 } 1858 1859 static int bget_one(handle_t *handle, struct buffer_head *bh) 1860 { 1861 get_bh(bh); 1862 return 0; 1863 } 1864 1865 static int bput_one(handle_t *handle, struct buffer_head *bh) 1866 { 1867 put_bh(bh); 1868 return 0; 1869 } 1870 1871 static int __ext4_journalled_writepage(struct page *page, 1872 unsigned int len) 1873 { 1874 struct address_space *mapping = page->mapping; 1875 struct inode *inode = mapping->host; 1876 struct buffer_head *page_bufs = NULL; 1877 handle_t *handle = NULL; 1878 int ret = 0, err = 0; 1879 int inline_data = ext4_has_inline_data(inode); 1880 struct buffer_head *inode_bh = NULL; 1881 1882 ClearPageChecked(page); 1883 1884 if (inline_data) { 1885 BUG_ON(page->index != 0); 1886 BUG_ON(len > ext4_get_max_inline_size(inode)); 1887 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1888 if (inode_bh == NULL) 1889 goto out; 1890 } else { 1891 page_bufs = page_buffers(page); 1892 if (!page_bufs) { 1893 BUG(); 1894 goto out; 1895 } 1896 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1897 NULL, bget_one); 1898 } 1899 /* 1900 * We need to release the page lock before we start the 1901 * journal, so grab a reference so the page won't disappear 1902 * out from under us. 1903 */ 1904 get_page(page); 1905 unlock_page(page); 1906 1907 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1908 ext4_writepage_trans_blocks(inode)); 1909 if (IS_ERR(handle)) { 1910 ret = PTR_ERR(handle); 1911 put_page(page); 1912 goto out_no_pagelock; 1913 } 1914 BUG_ON(!ext4_handle_valid(handle)); 1915 1916 lock_page(page); 1917 put_page(page); 1918 if (page->mapping != mapping) { 1919 /* The page got truncated from under us */ 1920 ext4_journal_stop(handle); 1921 ret = 0; 1922 goto out; 1923 } 1924 1925 if (inline_data) { 1926 BUFFER_TRACE(inode_bh, "get write access"); 1927 ret = ext4_journal_get_write_access(handle, inode_bh); 1928 1929 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1930 1931 } else { 1932 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1933 do_journal_get_write_access); 1934 1935 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1936 write_end_fn); 1937 } 1938 if (ret == 0) 1939 ret = err; 1940 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1941 err = ext4_journal_stop(handle); 1942 if (!ret) 1943 ret = err; 1944 1945 if (!ext4_has_inline_data(inode)) 1946 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1947 NULL, bput_one); 1948 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1949 out: 1950 unlock_page(page); 1951 out_no_pagelock: 1952 brelse(inode_bh); 1953 return ret; 1954 } 1955 1956 /* 1957 * Note that we don't need to start a transaction unless we're journaling data 1958 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1959 * need to file the inode to the transaction's list in ordered mode because if 1960 * we are writing back data added by write(), the inode is already there and if 1961 * we are writing back data modified via mmap(), no one guarantees in which 1962 * transaction the data will hit the disk. In case we are journaling data, we 1963 * cannot start transaction directly because transaction start ranks above page 1964 * lock so we have to do some magic. 1965 * 1966 * This function can get called via... 1967 * - ext4_writepages after taking page lock (have journal handle) 1968 * - journal_submit_inode_data_buffers (no journal handle) 1969 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1970 * - grab_page_cache when doing write_begin (have journal handle) 1971 * 1972 * We don't do any block allocation in this function. If we have page with 1973 * multiple blocks we need to write those buffer_heads that are mapped. This 1974 * is important for mmaped based write. So if we do with blocksize 1K 1975 * truncate(f, 1024); 1976 * a = mmap(f, 0, 4096); 1977 * a[0] = 'a'; 1978 * truncate(f, 4096); 1979 * we have in the page first buffer_head mapped via page_mkwrite call back 1980 * but other buffer_heads would be unmapped but dirty (dirty done via the 1981 * do_wp_page). So writepage should write the first block. If we modify 1982 * the mmap area beyond 1024 we will again get a page_fault and the 1983 * page_mkwrite callback will do the block allocation and mark the 1984 * buffer_heads mapped. 1985 * 1986 * We redirty the page if we have any buffer_heads that is either delay or 1987 * unwritten in the page. 1988 * 1989 * We can get recursively called as show below. 1990 * 1991 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1992 * ext4_writepage() 1993 * 1994 * But since we don't do any block allocation we should not deadlock. 1995 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1996 */ 1997 static int ext4_writepage(struct page *page, 1998 struct writeback_control *wbc) 1999 { 2000 int ret = 0; 2001 loff_t size; 2002 unsigned int len; 2003 struct buffer_head *page_bufs = NULL; 2004 struct inode *inode = page->mapping->host; 2005 struct ext4_io_submit io_submit; 2006 bool keep_towrite = false; 2007 2008 trace_ext4_writepage(page); 2009 size = i_size_read(inode); 2010 if (page->index == size >> PAGE_CACHE_SHIFT) 2011 len = size & ~PAGE_CACHE_MASK; 2012 else 2013 len = PAGE_CACHE_SIZE; 2014 2015 page_bufs = page_buffers(page); 2016 /* 2017 * We cannot do block allocation or other extent handling in this 2018 * function. If there are buffers needing that, we have to redirty 2019 * the page. But we may reach here when we do a journal commit via 2020 * journal_submit_inode_data_buffers() and in that case we must write 2021 * allocated buffers to achieve data=ordered mode guarantees. 2022 * 2023 * Also, if there is only one buffer per page (the fs block 2024 * size == the page size), if one buffer needs block 2025 * allocation or needs to modify the extent tree to clear the 2026 * unwritten flag, we know that the page can't be written at 2027 * all, so we might as well refuse the write immediately. 2028 * Unfortunately if the block size != page size, we can't as 2029 * easily detect this case using ext4_walk_page_buffers(), but 2030 * for the extremely common case, this is an optimization that 2031 * skips a useless round trip through ext4_bio_write_page(). 2032 */ 2033 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2034 ext4_bh_delay_or_unwritten)) { 2035 redirty_page_for_writepage(wbc, page); 2036 if ((current->flags & PF_MEMALLOC) || 2037 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) { 2038 /* 2039 * For memory cleaning there's no point in writing only 2040 * some buffers. So just bail out. Warn if we came here 2041 * from direct reclaim. 2042 */ 2043 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2044 == PF_MEMALLOC); 2045 unlock_page(page); 2046 return 0; 2047 } 2048 keep_towrite = true; 2049 } 2050 2051 if (PageChecked(page) && ext4_should_journal_data(inode)) 2052 /* 2053 * It's mmapped pagecache. Add buffers and journal it. There 2054 * doesn't seem much point in redirtying the page here. 2055 */ 2056 return __ext4_journalled_writepage(page, len); 2057 2058 ext4_io_submit_init(&io_submit, wbc); 2059 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2060 if (!io_submit.io_end) { 2061 redirty_page_for_writepage(wbc, page); 2062 unlock_page(page); 2063 return -ENOMEM; 2064 } 2065 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2066 ext4_io_submit(&io_submit); 2067 /* Drop io_end reference we got from init */ 2068 ext4_put_io_end_defer(io_submit.io_end); 2069 return ret; 2070 } 2071 2072 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2073 { 2074 int len; 2075 loff_t size = i_size_read(mpd->inode); 2076 int err; 2077 2078 BUG_ON(page->index != mpd->first_page); 2079 if (page->index == size >> PAGE_CACHE_SHIFT) 2080 len = size & ~PAGE_CACHE_MASK; 2081 else 2082 len = PAGE_CACHE_SIZE; 2083 clear_page_dirty_for_io(page); 2084 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2085 if (!err) 2086 mpd->wbc->nr_to_write--; 2087 mpd->first_page++; 2088 2089 return err; 2090 } 2091 2092 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2093 2094 /* 2095 * mballoc gives us at most this number of blocks... 2096 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2097 * The rest of mballoc seems to handle chunks up to full group size. 2098 */ 2099 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2100 2101 /* 2102 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2103 * 2104 * @mpd - extent of blocks 2105 * @lblk - logical number of the block in the file 2106 * @bh - buffer head we want to add to the extent 2107 * 2108 * The function is used to collect contig. blocks in the same state. If the 2109 * buffer doesn't require mapping for writeback and we haven't started the 2110 * extent of buffers to map yet, the function returns 'true' immediately - the 2111 * caller can write the buffer right away. Otherwise the function returns true 2112 * if the block has been added to the extent, false if the block couldn't be 2113 * added. 2114 */ 2115 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2116 struct buffer_head *bh) 2117 { 2118 struct ext4_map_blocks *map = &mpd->map; 2119 2120 /* Buffer that doesn't need mapping for writeback? */ 2121 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2122 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2123 /* So far no extent to map => we write the buffer right away */ 2124 if (map->m_len == 0) 2125 return true; 2126 return false; 2127 } 2128 2129 /* First block in the extent? */ 2130 if (map->m_len == 0) { 2131 map->m_lblk = lblk; 2132 map->m_len = 1; 2133 map->m_flags = bh->b_state & BH_FLAGS; 2134 return true; 2135 } 2136 2137 /* Don't go larger than mballoc is willing to allocate */ 2138 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2139 return false; 2140 2141 /* Can we merge the block to our big extent? */ 2142 if (lblk == map->m_lblk + map->m_len && 2143 (bh->b_state & BH_FLAGS) == map->m_flags) { 2144 map->m_len++; 2145 return true; 2146 } 2147 return false; 2148 } 2149 2150 /* 2151 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2152 * 2153 * @mpd - extent of blocks for mapping 2154 * @head - the first buffer in the page 2155 * @bh - buffer we should start processing from 2156 * @lblk - logical number of the block in the file corresponding to @bh 2157 * 2158 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2159 * the page for IO if all buffers in this page were mapped and there's no 2160 * accumulated extent of buffers to map or add buffers in the page to the 2161 * extent of buffers to map. The function returns 1 if the caller can continue 2162 * by processing the next page, 0 if it should stop adding buffers to the 2163 * extent to map because we cannot extend it anymore. It can also return value 2164 * < 0 in case of error during IO submission. 2165 */ 2166 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2167 struct buffer_head *head, 2168 struct buffer_head *bh, 2169 ext4_lblk_t lblk) 2170 { 2171 struct inode *inode = mpd->inode; 2172 int err; 2173 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2174 >> inode->i_blkbits; 2175 2176 do { 2177 BUG_ON(buffer_locked(bh)); 2178 2179 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2180 /* Found extent to map? */ 2181 if (mpd->map.m_len) 2182 return 0; 2183 /* Everything mapped so far and we hit EOF */ 2184 break; 2185 } 2186 } while (lblk++, (bh = bh->b_this_page) != head); 2187 /* So far everything mapped? Submit the page for IO. */ 2188 if (mpd->map.m_len == 0) { 2189 err = mpage_submit_page(mpd, head->b_page); 2190 if (err < 0) 2191 return err; 2192 } 2193 return lblk < blocks; 2194 } 2195 2196 /* 2197 * mpage_map_buffers - update buffers corresponding to changed extent and 2198 * submit fully mapped pages for IO 2199 * 2200 * @mpd - description of extent to map, on return next extent to map 2201 * 2202 * Scan buffers corresponding to changed extent (we expect corresponding pages 2203 * to be already locked) and update buffer state according to new extent state. 2204 * We map delalloc buffers to their physical location, clear unwritten bits, 2205 * and mark buffers as uninit when we perform writes to unwritten extents 2206 * and do extent conversion after IO is finished. If the last page is not fully 2207 * mapped, we update @map to the next extent in the last page that needs 2208 * mapping. Otherwise we submit the page for IO. 2209 */ 2210 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2211 { 2212 struct pagevec pvec; 2213 int nr_pages, i; 2214 struct inode *inode = mpd->inode; 2215 struct buffer_head *head, *bh; 2216 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2217 pgoff_t start, end; 2218 ext4_lblk_t lblk; 2219 sector_t pblock; 2220 int err; 2221 2222 start = mpd->map.m_lblk >> bpp_bits; 2223 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2224 lblk = start << bpp_bits; 2225 pblock = mpd->map.m_pblk; 2226 2227 pagevec_init(&pvec, 0); 2228 while (start <= end) { 2229 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2230 PAGEVEC_SIZE); 2231 if (nr_pages == 0) 2232 break; 2233 for (i = 0; i < nr_pages; i++) { 2234 struct page *page = pvec.pages[i]; 2235 2236 if (page->index > end) 2237 break; 2238 /* Up to 'end' pages must be contiguous */ 2239 BUG_ON(page->index != start); 2240 bh = head = page_buffers(page); 2241 do { 2242 if (lblk < mpd->map.m_lblk) 2243 continue; 2244 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2245 /* 2246 * Buffer after end of mapped extent. 2247 * Find next buffer in the page to map. 2248 */ 2249 mpd->map.m_len = 0; 2250 mpd->map.m_flags = 0; 2251 /* 2252 * FIXME: If dioread_nolock supports 2253 * blocksize < pagesize, we need to make 2254 * sure we add size mapped so far to 2255 * io_end->size as the following call 2256 * can submit the page for IO. 2257 */ 2258 err = mpage_process_page_bufs(mpd, head, 2259 bh, lblk); 2260 pagevec_release(&pvec); 2261 if (err > 0) 2262 err = 0; 2263 return err; 2264 } 2265 if (buffer_delay(bh)) { 2266 clear_buffer_delay(bh); 2267 bh->b_blocknr = pblock++; 2268 } 2269 clear_buffer_unwritten(bh); 2270 } while (lblk++, (bh = bh->b_this_page) != head); 2271 2272 /* 2273 * FIXME: This is going to break if dioread_nolock 2274 * supports blocksize < pagesize as we will try to 2275 * convert potentially unmapped parts of inode. 2276 */ 2277 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2278 /* Page fully mapped - let IO run! */ 2279 err = mpage_submit_page(mpd, page); 2280 if (err < 0) { 2281 pagevec_release(&pvec); 2282 return err; 2283 } 2284 start++; 2285 } 2286 pagevec_release(&pvec); 2287 } 2288 /* Extent fully mapped and matches with page boundary. We are done. */ 2289 mpd->map.m_len = 0; 2290 mpd->map.m_flags = 0; 2291 return 0; 2292 } 2293 2294 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2295 { 2296 struct inode *inode = mpd->inode; 2297 struct ext4_map_blocks *map = &mpd->map; 2298 int get_blocks_flags; 2299 int err, dioread_nolock; 2300 2301 trace_ext4_da_write_pages_extent(inode, map); 2302 /* 2303 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2304 * to convert an unwritten extent to be initialized (in the case 2305 * where we have written into one or more preallocated blocks). It is 2306 * possible that we're going to need more metadata blocks than 2307 * previously reserved. However we must not fail because we're in 2308 * writeback and there is nothing we can do about it so it might result 2309 * in data loss. So use reserved blocks to allocate metadata if 2310 * possible. 2311 * 2312 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2313 * the blocks in question are delalloc blocks. This indicates 2314 * that the blocks and quotas has already been checked when 2315 * the data was copied into the page cache. 2316 */ 2317 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2318 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2319 dioread_nolock = ext4_should_dioread_nolock(inode); 2320 if (dioread_nolock) 2321 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2322 if (map->m_flags & (1 << BH_Delay)) 2323 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2324 2325 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2326 if (err < 0) 2327 return err; 2328 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2329 if (!mpd->io_submit.io_end->handle && 2330 ext4_handle_valid(handle)) { 2331 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2332 handle->h_rsv_handle = NULL; 2333 } 2334 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2335 } 2336 2337 BUG_ON(map->m_len == 0); 2338 if (map->m_flags & EXT4_MAP_NEW) { 2339 struct block_device *bdev = inode->i_sb->s_bdev; 2340 int i; 2341 2342 for (i = 0; i < map->m_len; i++) 2343 unmap_underlying_metadata(bdev, map->m_pblk + i); 2344 } 2345 return 0; 2346 } 2347 2348 /* 2349 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2350 * mpd->len and submit pages underlying it for IO 2351 * 2352 * @handle - handle for journal operations 2353 * @mpd - extent to map 2354 * @give_up_on_write - we set this to true iff there is a fatal error and there 2355 * is no hope of writing the data. The caller should discard 2356 * dirty pages to avoid infinite loops. 2357 * 2358 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2359 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2360 * them to initialized or split the described range from larger unwritten 2361 * extent. Note that we need not map all the described range since allocation 2362 * can return less blocks or the range is covered by more unwritten extents. We 2363 * cannot map more because we are limited by reserved transaction credits. On 2364 * the other hand we always make sure that the last touched page is fully 2365 * mapped so that it can be written out (and thus forward progress is 2366 * guaranteed). After mapping we submit all mapped pages for IO. 2367 */ 2368 static int mpage_map_and_submit_extent(handle_t *handle, 2369 struct mpage_da_data *mpd, 2370 bool *give_up_on_write) 2371 { 2372 struct inode *inode = mpd->inode; 2373 struct ext4_map_blocks *map = &mpd->map; 2374 int err; 2375 loff_t disksize; 2376 int progress = 0; 2377 2378 mpd->io_submit.io_end->offset = 2379 ((loff_t)map->m_lblk) << inode->i_blkbits; 2380 do { 2381 err = mpage_map_one_extent(handle, mpd); 2382 if (err < 0) { 2383 struct super_block *sb = inode->i_sb; 2384 2385 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2386 goto invalidate_dirty_pages; 2387 /* 2388 * Let the uper layers retry transient errors. 2389 * In the case of ENOSPC, if ext4_count_free_blocks() 2390 * is non-zero, a commit should free up blocks. 2391 */ 2392 if ((err == -ENOMEM) || 2393 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2394 if (progress) 2395 goto update_disksize; 2396 return err; 2397 } 2398 ext4_msg(sb, KERN_CRIT, 2399 "Delayed block allocation failed for " 2400 "inode %lu at logical offset %llu with" 2401 " max blocks %u with error %d", 2402 inode->i_ino, 2403 (unsigned long long)map->m_lblk, 2404 (unsigned)map->m_len, -err); 2405 ext4_msg(sb, KERN_CRIT, 2406 "This should not happen!! Data will " 2407 "be lost\n"); 2408 if (err == -ENOSPC) 2409 ext4_print_free_blocks(inode); 2410 invalidate_dirty_pages: 2411 *give_up_on_write = true; 2412 return err; 2413 } 2414 progress = 1; 2415 /* 2416 * Update buffer state, submit mapped pages, and get us new 2417 * extent to map 2418 */ 2419 err = mpage_map_and_submit_buffers(mpd); 2420 if (err < 0) 2421 goto update_disksize; 2422 } while (map->m_len); 2423 2424 update_disksize: 2425 /* 2426 * Update on-disk size after IO is submitted. Races with 2427 * truncate are avoided by checking i_size under i_data_sem. 2428 */ 2429 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2430 if (disksize > EXT4_I(inode)->i_disksize) { 2431 int err2; 2432 loff_t i_size; 2433 2434 down_write(&EXT4_I(inode)->i_data_sem); 2435 i_size = i_size_read(inode); 2436 if (disksize > i_size) 2437 disksize = i_size; 2438 if (disksize > EXT4_I(inode)->i_disksize) 2439 EXT4_I(inode)->i_disksize = disksize; 2440 err2 = ext4_mark_inode_dirty(handle, inode); 2441 up_write(&EXT4_I(inode)->i_data_sem); 2442 if (err2) 2443 ext4_error(inode->i_sb, 2444 "Failed to mark inode %lu dirty", 2445 inode->i_ino); 2446 if (!err) 2447 err = err2; 2448 } 2449 return err; 2450 } 2451 2452 /* 2453 * Calculate the total number of credits to reserve for one writepages 2454 * iteration. This is called from ext4_writepages(). We map an extent of 2455 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2456 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2457 * bpp - 1 blocks in bpp different extents. 2458 */ 2459 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2460 { 2461 int bpp = ext4_journal_blocks_per_page(inode); 2462 2463 return ext4_meta_trans_blocks(inode, 2464 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2465 } 2466 2467 /* 2468 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2469 * and underlying extent to map 2470 * 2471 * @mpd - where to look for pages 2472 * 2473 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2474 * IO immediately. When we find a page which isn't mapped we start accumulating 2475 * extent of buffers underlying these pages that needs mapping (formed by 2476 * either delayed or unwritten buffers). We also lock the pages containing 2477 * these buffers. The extent found is returned in @mpd structure (starting at 2478 * mpd->lblk with length mpd->len blocks). 2479 * 2480 * Note that this function can attach bios to one io_end structure which are 2481 * neither logically nor physically contiguous. Although it may seem as an 2482 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2483 * case as we need to track IO to all buffers underlying a page in one io_end. 2484 */ 2485 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2486 { 2487 struct address_space *mapping = mpd->inode->i_mapping; 2488 struct pagevec pvec; 2489 unsigned int nr_pages; 2490 long left = mpd->wbc->nr_to_write; 2491 pgoff_t index = mpd->first_page; 2492 pgoff_t end = mpd->last_page; 2493 int tag; 2494 int i, err = 0; 2495 int blkbits = mpd->inode->i_blkbits; 2496 ext4_lblk_t lblk; 2497 struct buffer_head *head; 2498 2499 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2500 tag = PAGECACHE_TAG_TOWRITE; 2501 else 2502 tag = PAGECACHE_TAG_DIRTY; 2503 2504 pagevec_init(&pvec, 0); 2505 mpd->map.m_len = 0; 2506 mpd->next_page = index; 2507 while (index <= end) { 2508 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2509 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2510 if (nr_pages == 0) 2511 goto out; 2512 2513 for (i = 0; i < nr_pages; i++) { 2514 struct page *page = pvec.pages[i]; 2515 2516 /* 2517 * At this point, the page may be truncated or 2518 * invalidated (changing page->mapping to NULL), or 2519 * even swizzled back from swapper_space to tmpfs file 2520 * mapping. However, page->index will not change 2521 * because we have a reference on the page. 2522 */ 2523 if (page->index > end) 2524 goto out; 2525 2526 /* 2527 * Accumulated enough dirty pages? This doesn't apply 2528 * to WB_SYNC_ALL mode. For integrity sync we have to 2529 * keep going because someone may be concurrently 2530 * dirtying pages, and we might have synced a lot of 2531 * newly appeared dirty pages, but have not synced all 2532 * of the old dirty pages. 2533 */ 2534 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2535 goto out; 2536 2537 /* If we can't merge this page, we are done. */ 2538 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2539 goto out; 2540 2541 lock_page(page); 2542 /* 2543 * If the page is no longer dirty, or its mapping no 2544 * longer corresponds to inode we are writing (which 2545 * means it has been truncated or invalidated), or the 2546 * page is already under writeback and we are not doing 2547 * a data integrity writeback, skip the page 2548 */ 2549 if (!PageDirty(page) || 2550 (PageWriteback(page) && 2551 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2552 unlikely(page->mapping != mapping)) { 2553 unlock_page(page); 2554 continue; 2555 } 2556 2557 wait_on_page_writeback(page); 2558 BUG_ON(PageWriteback(page)); 2559 2560 if (mpd->map.m_len == 0) 2561 mpd->first_page = page->index; 2562 mpd->next_page = page->index + 1; 2563 /* Add all dirty buffers to mpd */ 2564 lblk = ((ext4_lblk_t)page->index) << 2565 (PAGE_CACHE_SHIFT - blkbits); 2566 head = page_buffers(page); 2567 err = mpage_process_page_bufs(mpd, head, head, lblk); 2568 if (err <= 0) 2569 goto out; 2570 err = 0; 2571 left--; 2572 } 2573 pagevec_release(&pvec); 2574 cond_resched(); 2575 } 2576 return 0; 2577 out: 2578 pagevec_release(&pvec); 2579 return err; 2580 } 2581 2582 static int __writepage(struct page *page, struct writeback_control *wbc, 2583 void *data) 2584 { 2585 struct address_space *mapping = data; 2586 int ret = ext4_writepage(page, wbc); 2587 mapping_set_error(mapping, ret); 2588 return ret; 2589 } 2590 2591 static int ext4_writepages(struct address_space *mapping, 2592 struct writeback_control *wbc) 2593 { 2594 pgoff_t writeback_index = 0; 2595 long nr_to_write = wbc->nr_to_write; 2596 int range_whole = 0; 2597 int cycled = 1; 2598 handle_t *handle = NULL; 2599 struct mpage_da_data mpd; 2600 struct inode *inode = mapping->host; 2601 int needed_blocks, rsv_blocks = 0, ret = 0; 2602 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2603 bool done; 2604 struct blk_plug plug; 2605 bool give_up_on_write = false; 2606 2607 trace_ext4_writepages(inode, wbc); 2608 2609 if (dax_mapping(mapping)) 2610 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2611 wbc); 2612 2613 /* 2614 * No pages to write? This is mainly a kludge to avoid starting 2615 * a transaction for special inodes like journal inode on last iput() 2616 * because that could violate lock ordering on umount 2617 */ 2618 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2619 goto out_writepages; 2620 2621 if (ext4_should_journal_data(inode)) { 2622 struct blk_plug plug; 2623 2624 blk_start_plug(&plug); 2625 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2626 blk_finish_plug(&plug); 2627 goto out_writepages; 2628 } 2629 2630 /* 2631 * If the filesystem has aborted, it is read-only, so return 2632 * right away instead of dumping stack traces later on that 2633 * will obscure the real source of the problem. We test 2634 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2635 * the latter could be true if the filesystem is mounted 2636 * read-only, and in that case, ext4_writepages should 2637 * *never* be called, so if that ever happens, we would want 2638 * the stack trace. 2639 */ 2640 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2641 ret = -EROFS; 2642 goto out_writepages; 2643 } 2644 2645 if (ext4_should_dioread_nolock(inode)) { 2646 /* 2647 * We may need to convert up to one extent per block in 2648 * the page and we may dirty the inode. 2649 */ 2650 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2651 } 2652 2653 /* 2654 * If we have inline data and arrive here, it means that 2655 * we will soon create the block for the 1st page, so 2656 * we'd better clear the inline data here. 2657 */ 2658 if (ext4_has_inline_data(inode)) { 2659 /* Just inode will be modified... */ 2660 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2661 if (IS_ERR(handle)) { 2662 ret = PTR_ERR(handle); 2663 goto out_writepages; 2664 } 2665 BUG_ON(ext4_test_inode_state(inode, 2666 EXT4_STATE_MAY_INLINE_DATA)); 2667 ext4_destroy_inline_data(handle, inode); 2668 ext4_journal_stop(handle); 2669 } 2670 2671 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2672 range_whole = 1; 2673 2674 if (wbc->range_cyclic) { 2675 writeback_index = mapping->writeback_index; 2676 if (writeback_index) 2677 cycled = 0; 2678 mpd.first_page = writeback_index; 2679 mpd.last_page = -1; 2680 } else { 2681 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2682 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2683 } 2684 2685 mpd.inode = inode; 2686 mpd.wbc = wbc; 2687 ext4_io_submit_init(&mpd.io_submit, wbc); 2688 retry: 2689 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2690 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2691 done = false; 2692 blk_start_plug(&plug); 2693 while (!done && mpd.first_page <= mpd.last_page) { 2694 /* For each extent of pages we use new io_end */ 2695 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2696 if (!mpd.io_submit.io_end) { 2697 ret = -ENOMEM; 2698 break; 2699 } 2700 2701 /* 2702 * We have two constraints: We find one extent to map and we 2703 * must always write out whole page (makes a difference when 2704 * blocksize < pagesize) so that we don't block on IO when we 2705 * try to write out the rest of the page. Journalled mode is 2706 * not supported by delalloc. 2707 */ 2708 BUG_ON(ext4_should_journal_data(inode)); 2709 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2710 2711 /* start a new transaction */ 2712 handle = ext4_journal_start_with_reserve(inode, 2713 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2714 if (IS_ERR(handle)) { 2715 ret = PTR_ERR(handle); 2716 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2717 "%ld pages, ino %lu; err %d", __func__, 2718 wbc->nr_to_write, inode->i_ino, ret); 2719 /* Release allocated io_end */ 2720 ext4_put_io_end(mpd.io_submit.io_end); 2721 break; 2722 } 2723 2724 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2725 ret = mpage_prepare_extent_to_map(&mpd); 2726 if (!ret) { 2727 if (mpd.map.m_len) 2728 ret = mpage_map_and_submit_extent(handle, &mpd, 2729 &give_up_on_write); 2730 else { 2731 /* 2732 * We scanned the whole range (or exhausted 2733 * nr_to_write), submitted what was mapped and 2734 * didn't find anything needing mapping. We are 2735 * done. 2736 */ 2737 done = true; 2738 } 2739 } 2740 ext4_journal_stop(handle); 2741 /* Submit prepared bio */ 2742 ext4_io_submit(&mpd.io_submit); 2743 /* Unlock pages we didn't use */ 2744 mpage_release_unused_pages(&mpd, give_up_on_write); 2745 /* Drop our io_end reference we got from init */ 2746 ext4_put_io_end(mpd.io_submit.io_end); 2747 2748 if (ret == -ENOSPC && sbi->s_journal) { 2749 /* 2750 * Commit the transaction which would 2751 * free blocks released in the transaction 2752 * and try again 2753 */ 2754 jbd2_journal_force_commit_nested(sbi->s_journal); 2755 ret = 0; 2756 continue; 2757 } 2758 /* Fatal error - ENOMEM, EIO... */ 2759 if (ret) 2760 break; 2761 } 2762 blk_finish_plug(&plug); 2763 if (!ret && !cycled && wbc->nr_to_write > 0) { 2764 cycled = 1; 2765 mpd.last_page = writeback_index - 1; 2766 mpd.first_page = 0; 2767 goto retry; 2768 } 2769 2770 /* Update index */ 2771 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2772 /* 2773 * Set the writeback_index so that range_cyclic 2774 * mode will write it back later 2775 */ 2776 mapping->writeback_index = mpd.first_page; 2777 2778 out_writepages: 2779 trace_ext4_writepages_result(inode, wbc, ret, 2780 nr_to_write - wbc->nr_to_write); 2781 return ret; 2782 } 2783 2784 static int ext4_nonda_switch(struct super_block *sb) 2785 { 2786 s64 free_clusters, dirty_clusters; 2787 struct ext4_sb_info *sbi = EXT4_SB(sb); 2788 2789 /* 2790 * switch to non delalloc mode if we are running low 2791 * on free block. The free block accounting via percpu 2792 * counters can get slightly wrong with percpu_counter_batch getting 2793 * accumulated on each CPU without updating global counters 2794 * Delalloc need an accurate free block accounting. So switch 2795 * to non delalloc when we are near to error range. 2796 */ 2797 free_clusters = 2798 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2799 dirty_clusters = 2800 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2801 /* 2802 * Start pushing delalloc when 1/2 of free blocks are dirty. 2803 */ 2804 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2805 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2806 2807 if (2 * free_clusters < 3 * dirty_clusters || 2808 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2809 /* 2810 * free block count is less than 150% of dirty blocks 2811 * or free blocks is less than watermark 2812 */ 2813 return 1; 2814 } 2815 return 0; 2816 } 2817 2818 /* We always reserve for an inode update; the superblock could be there too */ 2819 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2820 { 2821 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2822 return 1; 2823 2824 if (pos + len <= 0x7fffffffULL) 2825 return 1; 2826 2827 /* We might need to update the superblock to set LARGE_FILE */ 2828 return 2; 2829 } 2830 2831 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2832 loff_t pos, unsigned len, unsigned flags, 2833 struct page **pagep, void **fsdata) 2834 { 2835 int ret, retries = 0; 2836 struct page *page; 2837 pgoff_t index; 2838 struct inode *inode = mapping->host; 2839 handle_t *handle; 2840 2841 index = pos >> PAGE_CACHE_SHIFT; 2842 2843 if (ext4_nonda_switch(inode->i_sb)) { 2844 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2845 return ext4_write_begin(file, mapping, pos, 2846 len, flags, pagep, fsdata); 2847 } 2848 *fsdata = (void *)0; 2849 trace_ext4_da_write_begin(inode, pos, len, flags); 2850 2851 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2852 ret = ext4_da_write_inline_data_begin(mapping, inode, 2853 pos, len, flags, 2854 pagep, fsdata); 2855 if (ret < 0) 2856 return ret; 2857 if (ret == 1) 2858 return 0; 2859 } 2860 2861 /* 2862 * grab_cache_page_write_begin() can take a long time if the 2863 * system is thrashing due to memory pressure, or if the page 2864 * is being written back. So grab it first before we start 2865 * the transaction handle. This also allows us to allocate 2866 * the page (if needed) without using GFP_NOFS. 2867 */ 2868 retry_grab: 2869 page = grab_cache_page_write_begin(mapping, index, flags); 2870 if (!page) 2871 return -ENOMEM; 2872 unlock_page(page); 2873 2874 /* 2875 * With delayed allocation, we don't log the i_disksize update 2876 * if there is delayed block allocation. But we still need 2877 * to journalling the i_disksize update if writes to the end 2878 * of file which has an already mapped buffer. 2879 */ 2880 retry_journal: 2881 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2882 ext4_da_write_credits(inode, pos, len)); 2883 if (IS_ERR(handle)) { 2884 page_cache_release(page); 2885 return PTR_ERR(handle); 2886 } 2887 2888 lock_page(page); 2889 if (page->mapping != mapping) { 2890 /* The page got truncated from under us */ 2891 unlock_page(page); 2892 page_cache_release(page); 2893 ext4_journal_stop(handle); 2894 goto retry_grab; 2895 } 2896 /* In case writeback began while the page was unlocked */ 2897 wait_for_stable_page(page); 2898 2899 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2900 ret = ext4_block_write_begin(page, pos, len, 2901 ext4_da_get_block_prep); 2902 #else 2903 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2904 #endif 2905 if (ret < 0) { 2906 unlock_page(page); 2907 ext4_journal_stop(handle); 2908 /* 2909 * block_write_begin may have instantiated a few blocks 2910 * outside i_size. Trim these off again. Don't need 2911 * i_size_read because we hold i_mutex. 2912 */ 2913 if (pos + len > inode->i_size) 2914 ext4_truncate_failed_write(inode); 2915 2916 if (ret == -ENOSPC && 2917 ext4_should_retry_alloc(inode->i_sb, &retries)) 2918 goto retry_journal; 2919 2920 page_cache_release(page); 2921 return ret; 2922 } 2923 2924 *pagep = page; 2925 return ret; 2926 } 2927 2928 /* 2929 * Check if we should update i_disksize 2930 * when write to the end of file but not require block allocation 2931 */ 2932 static int ext4_da_should_update_i_disksize(struct page *page, 2933 unsigned long offset) 2934 { 2935 struct buffer_head *bh; 2936 struct inode *inode = page->mapping->host; 2937 unsigned int idx; 2938 int i; 2939 2940 bh = page_buffers(page); 2941 idx = offset >> inode->i_blkbits; 2942 2943 for (i = 0; i < idx; i++) 2944 bh = bh->b_this_page; 2945 2946 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2947 return 0; 2948 return 1; 2949 } 2950 2951 static int ext4_da_write_end(struct file *file, 2952 struct address_space *mapping, 2953 loff_t pos, unsigned len, unsigned copied, 2954 struct page *page, void *fsdata) 2955 { 2956 struct inode *inode = mapping->host; 2957 int ret = 0, ret2; 2958 handle_t *handle = ext4_journal_current_handle(); 2959 loff_t new_i_size; 2960 unsigned long start, end; 2961 int write_mode = (int)(unsigned long)fsdata; 2962 2963 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2964 return ext4_write_end(file, mapping, pos, 2965 len, copied, page, fsdata); 2966 2967 trace_ext4_da_write_end(inode, pos, len, copied); 2968 start = pos & (PAGE_CACHE_SIZE - 1); 2969 end = start + copied - 1; 2970 2971 /* 2972 * generic_write_end() will run mark_inode_dirty() if i_size 2973 * changes. So let's piggyback the i_disksize mark_inode_dirty 2974 * into that. 2975 */ 2976 new_i_size = pos + copied; 2977 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2978 if (ext4_has_inline_data(inode) || 2979 ext4_da_should_update_i_disksize(page, end)) { 2980 ext4_update_i_disksize(inode, new_i_size); 2981 /* We need to mark inode dirty even if 2982 * new_i_size is less that inode->i_size 2983 * bu greater than i_disksize.(hint delalloc) 2984 */ 2985 ext4_mark_inode_dirty(handle, inode); 2986 } 2987 } 2988 2989 if (write_mode != CONVERT_INLINE_DATA && 2990 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2991 ext4_has_inline_data(inode)) 2992 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2993 page); 2994 else 2995 ret2 = generic_write_end(file, mapping, pos, len, copied, 2996 page, fsdata); 2997 2998 copied = ret2; 2999 if (ret2 < 0) 3000 ret = ret2; 3001 ret2 = ext4_journal_stop(handle); 3002 if (!ret) 3003 ret = ret2; 3004 3005 return ret ? ret : copied; 3006 } 3007 3008 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3009 unsigned int length) 3010 { 3011 /* 3012 * Drop reserved blocks 3013 */ 3014 BUG_ON(!PageLocked(page)); 3015 if (!page_has_buffers(page)) 3016 goto out; 3017 3018 ext4_da_page_release_reservation(page, offset, length); 3019 3020 out: 3021 ext4_invalidatepage(page, offset, length); 3022 3023 return; 3024 } 3025 3026 /* 3027 * Force all delayed allocation blocks to be allocated for a given inode. 3028 */ 3029 int ext4_alloc_da_blocks(struct inode *inode) 3030 { 3031 trace_ext4_alloc_da_blocks(inode); 3032 3033 if (!EXT4_I(inode)->i_reserved_data_blocks) 3034 return 0; 3035 3036 /* 3037 * We do something simple for now. The filemap_flush() will 3038 * also start triggering a write of the data blocks, which is 3039 * not strictly speaking necessary (and for users of 3040 * laptop_mode, not even desirable). However, to do otherwise 3041 * would require replicating code paths in: 3042 * 3043 * ext4_writepages() -> 3044 * write_cache_pages() ---> (via passed in callback function) 3045 * __mpage_da_writepage() --> 3046 * mpage_add_bh_to_extent() 3047 * mpage_da_map_blocks() 3048 * 3049 * The problem is that write_cache_pages(), located in 3050 * mm/page-writeback.c, marks pages clean in preparation for 3051 * doing I/O, which is not desirable if we're not planning on 3052 * doing I/O at all. 3053 * 3054 * We could call write_cache_pages(), and then redirty all of 3055 * the pages by calling redirty_page_for_writepage() but that 3056 * would be ugly in the extreme. So instead we would need to 3057 * replicate parts of the code in the above functions, 3058 * simplifying them because we wouldn't actually intend to 3059 * write out the pages, but rather only collect contiguous 3060 * logical block extents, call the multi-block allocator, and 3061 * then update the buffer heads with the block allocations. 3062 * 3063 * For now, though, we'll cheat by calling filemap_flush(), 3064 * which will map the blocks, and start the I/O, but not 3065 * actually wait for the I/O to complete. 3066 */ 3067 return filemap_flush(inode->i_mapping); 3068 } 3069 3070 /* 3071 * bmap() is special. It gets used by applications such as lilo and by 3072 * the swapper to find the on-disk block of a specific piece of data. 3073 * 3074 * Naturally, this is dangerous if the block concerned is still in the 3075 * journal. If somebody makes a swapfile on an ext4 data-journaling 3076 * filesystem and enables swap, then they may get a nasty shock when the 3077 * data getting swapped to that swapfile suddenly gets overwritten by 3078 * the original zero's written out previously to the journal and 3079 * awaiting writeback in the kernel's buffer cache. 3080 * 3081 * So, if we see any bmap calls here on a modified, data-journaled file, 3082 * take extra steps to flush any blocks which might be in the cache. 3083 */ 3084 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3085 { 3086 struct inode *inode = mapping->host; 3087 journal_t *journal; 3088 int err; 3089 3090 /* 3091 * We can get here for an inline file via the FIBMAP ioctl 3092 */ 3093 if (ext4_has_inline_data(inode)) 3094 return 0; 3095 3096 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3097 test_opt(inode->i_sb, DELALLOC)) { 3098 /* 3099 * With delalloc we want to sync the file 3100 * so that we can make sure we allocate 3101 * blocks for file 3102 */ 3103 filemap_write_and_wait(mapping); 3104 } 3105 3106 if (EXT4_JOURNAL(inode) && 3107 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3108 /* 3109 * This is a REALLY heavyweight approach, but the use of 3110 * bmap on dirty files is expected to be extremely rare: 3111 * only if we run lilo or swapon on a freshly made file 3112 * do we expect this to happen. 3113 * 3114 * (bmap requires CAP_SYS_RAWIO so this does not 3115 * represent an unprivileged user DOS attack --- we'd be 3116 * in trouble if mortal users could trigger this path at 3117 * will.) 3118 * 3119 * NB. EXT4_STATE_JDATA is not set on files other than 3120 * regular files. If somebody wants to bmap a directory 3121 * or symlink and gets confused because the buffer 3122 * hasn't yet been flushed to disk, they deserve 3123 * everything they get. 3124 */ 3125 3126 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3127 journal = EXT4_JOURNAL(inode); 3128 jbd2_journal_lock_updates(journal); 3129 err = jbd2_journal_flush(journal); 3130 jbd2_journal_unlock_updates(journal); 3131 3132 if (err) 3133 return 0; 3134 } 3135 3136 return generic_block_bmap(mapping, block, ext4_get_block); 3137 } 3138 3139 static int ext4_readpage(struct file *file, struct page *page) 3140 { 3141 int ret = -EAGAIN; 3142 struct inode *inode = page->mapping->host; 3143 3144 trace_ext4_readpage(page); 3145 3146 if (ext4_has_inline_data(inode)) 3147 ret = ext4_readpage_inline(inode, page); 3148 3149 if (ret == -EAGAIN) 3150 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3151 3152 return ret; 3153 } 3154 3155 static int 3156 ext4_readpages(struct file *file, struct address_space *mapping, 3157 struct list_head *pages, unsigned nr_pages) 3158 { 3159 struct inode *inode = mapping->host; 3160 3161 /* If the file has inline data, no need to do readpages. */ 3162 if (ext4_has_inline_data(inode)) 3163 return 0; 3164 3165 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3166 } 3167 3168 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3169 unsigned int length) 3170 { 3171 trace_ext4_invalidatepage(page, offset, length); 3172 3173 /* No journalling happens on data buffers when this function is used */ 3174 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3175 3176 block_invalidatepage(page, offset, length); 3177 } 3178 3179 static int __ext4_journalled_invalidatepage(struct page *page, 3180 unsigned int offset, 3181 unsigned int length) 3182 { 3183 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3184 3185 trace_ext4_journalled_invalidatepage(page, offset, length); 3186 3187 /* 3188 * If it's a full truncate we just forget about the pending dirtying 3189 */ 3190 if (offset == 0 && length == PAGE_CACHE_SIZE) 3191 ClearPageChecked(page); 3192 3193 return jbd2_journal_invalidatepage(journal, page, offset, length); 3194 } 3195 3196 /* Wrapper for aops... */ 3197 static void ext4_journalled_invalidatepage(struct page *page, 3198 unsigned int offset, 3199 unsigned int length) 3200 { 3201 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3202 } 3203 3204 static int ext4_releasepage(struct page *page, gfp_t wait) 3205 { 3206 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3207 3208 trace_ext4_releasepage(page); 3209 3210 /* Page has dirty journalled data -> cannot release */ 3211 if (PageChecked(page)) 3212 return 0; 3213 if (journal) 3214 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3215 else 3216 return try_to_free_buffers(page); 3217 } 3218 3219 #ifdef CONFIG_FS_DAX 3220 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock, 3221 struct buffer_head *bh_result, int create) 3222 { 3223 int ret, err; 3224 int credits; 3225 struct ext4_map_blocks map; 3226 handle_t *handle = NULL; 3227 int flags = 0; 3228 3229 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n", 3230 inode->i_ino, create); 3231 map.m_lblk = iblock; 3232 map.m_len = bh_result->b_size >> inode->i_blkbits; 3233 credits = ext4_chunk_trans_blocks(inode, map.m_len); 3234 if (create) { 3235 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO; 3236 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); 3237 if (IS_ERR(handle)) { 3238 ret = PTR_ERR(handle); 3239 return ret; 3240 } 3241 } 3242 3243 ret = ext4_map_blocks(handle, inode, &map, flags); 3244 if (create) { 3245 err = ext4_journal_stop(handle); 3246 if (ret >= 0 && err < 0) 3247 ret = err; 3248 } 3249 if (ret <= 0) 3250 goto out; 3251 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3252 int err2; 3253 3254 /* 3255 * We are protected by i_mmap_sem so we know block cannot go 3256 * away from under us even though we dropped i_data_sem. 3257 * Convert extent to written and write zeros there. 3258 * 3259 * Note: We may get here even when create == 0. 3260 */ 3261 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); 3262 if (IS_ERR(handle)) { 3263 ret = PTR_ERR(handle); 3264 goto out; 3265 } 3266 3267 err = ext4_map_blocks(handle, inode, &map, 3268 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO); 3269 if (err < 0) 3270 ret = err; 3271 err2 = ext4_journal_stop(handle); 3272 if (err2 < 0 && ret > 0) 3273 ret = err2; 3274 } 3275 out: 3276 WARN_ON_ONCE(ret == 0 && create); 3277 if (ret > 0) { 3278 map_bh(bh_result, inode->i_sb, map.m_pblk); 3279 /* 3280 * At least for now we have to clear BH_New so that DAX code 3281 * doesn't attempt to zero blocks again in a racy way. 3282 */ 3283 map.m_flags &= ~EXT4_MAP_NEW; 3284 ext4_update_bh_state(bh_result, map.m_flags); 3285 bh_result->b_size = map.m_len << inode->i_blkbits; 3286 ret = 0; 3287 } 3288 return ret; 3289 } 3290 #endif 3291 3292 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3293 ssize_t size, void *private) 3294 { 3295 ext4_io_end_t *io_end = private; 3296 3297 /* if not async direct IO just return */ 3298 if (!io_end) 3299 return; 3300 3301 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3302 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3303 io_end, io_end->inode->i_ino, iocb, offset, size); 3304 3305 io_end->offset = offset; 3306 io_end->size = size; 3307 ext4_put_io_end(io_end); 3308 } 3309 3310 /* 3311 * For ext4 extent files, ext4 will do direct-io write to holes, 3312 * preallocated extents, and those write extend the file, no need to 3313 * fall back to buffered IO. 3314 * 3315 * For holes, we fallocate those blocks, mark them as unwritten 3316 * If those blocks were preallocated, we mark sure they are split, but 3317 * still keep the range to write as unwritten. 3318 * 3319 * The unwritten extents will be converted to written when DIO is completed. 3320 * For async direct IO, since the IO may still pending when return, we 3321 * set up an end_io call back function, which will do the conversion 3322 * when async direct IO completed. 3323 * 3324 * If the O_DIRECT write will extend the file then add this inode to the 3325 * orphan list. So recovery will truncate it back to the original size 3326 * if the machine crashes during the write. 3327 * 3328 */ 3329 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3330 loff_t offset) 3331 { 3332 struct file *file = iocb->ki_filp; 3333 struct inode *inode = file->f_mapping->host; 3334 ssize_t ret; 3335 size_t count = iov_iter_count(iter); 3336 int overwrite = 0; 3337 get_block_t *get_block_func = NULL; 3338 int dio_flags = 0; 3339 loff_t final_size = offset + count; 3340 3341 /* Use the old path for reads and writes beyond i_size. */ 3342 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3343 return ext4_ind_direct_IO(iocb, iter, offset); 3344 3345 BUG_ON(iocb->private == NULL); 3346 3347 /* 3348 * Make all waiters for direct IO properly wait also for extent 3349 * conversion. This also disallows race between truncate() and 3350 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3351 */ 3352 if (iov_iter_rw(iter) == WRITE) 3353 inode_dio_begin(inode); 3354 3355 /* If we do a overwrite dio, i_mutex locking can be released */ 3356 overwrite = *((int *)iocb->private); 3357 3358 if (overwrite) 3359 inode_unlock(inode); 3360 3361 /* 3362 * We could direct write to holes and fallocate. 3363 * 3364 * Allocated blocks to fill the hole are marked as unwritten to prevent 3365 * parallel buffered read to expose the stale data before DIO complete 3366 * the data IO. 3367 * 3368 * As to previously fallocated extents, ext4 get_block will just simply 3369 * mark the buffer mapped but still keep the extents unwritten. 3370 * 3371 * For non AIO case, we will convert those unwritten extents to written 3372 * after return back from blockdev_direct_IO. That way we save us from 3373 * allocating io_end structure and also the overhead of offloading 3374 * the extent convertion to a workqueue. 3375 * 3376 * For async DIO, the conversion needs to be deferred when the 3377 * IO is completed. The ext4 end_io callback function will be 3378 * called to take care of the conversion work. Here for async 3379 * case, we allocate an io_end structure to hook to the iocb. 3380 */ 3381 iocb->private = NULL; 3382 if (overwrite) 3383 get_block_func = ext4_dio_get_block_overwrite; 3384 else if (is_sync_kiocb(iocb)) { 3385 get_block_func = ext4_dio_get_block_unwritten_sync; 3386 dio_flags = DIO_LOCKING; 3387 } else { 3388 get_block_func = ext4_dio_get_block_unwritten_async; 3389 dio_flags = DIO_LOCKING; 3390 } 3391 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3392 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3393 #endif 3394 if (IS_DAX(inode)) 3395 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3396 ext4_end_io_dio, dio_flags); 3397 else 3398 ret = __blockdev_direct_IO(iocb, inode, 3399 inode->i_sb->s_bdev, iter, offset, 3400 get_block_func, 3401 ext4_end_io_dio, NULL, dio_flags); 3402 3403 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3404 EXT4_STATE_DIO_UNWRITTEN)) { 3405 int err; 3406 /* 3407 * for non AIO case, since the IO is already 3408 * completed, we could do the conversion right here 3409 */ 3410 err = ext4_convert_unwritten_extents(NULL, inode, 3411 offset, ret); 3412 if (err < 0) 3413 ret = err; 3414 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3415 } 3416 3417 if (iov_iter_rw(iter) == WRITE) 3418 inode_dio_end(inode); 3419 /* take i_mutex locking again if we do a ovewrite dio */ 3420 if (overwrite) 3421 inode_lock(inode); 3422 3423 return ret; 3424 } 3425 3426 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3427 loff_t offset) 3428 { 3429 struct file *file = iocb->ki_filp; 3430 struct inode *inode = file->f_mapping->host; 3431 size_t count = iov_iter_count(iter); 3432 ssize_t ret; 3433 3434 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3435 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3436 return 0; 3437 #endif 3438 3439 /* 3440 * If we are doing data journalling we don't support O_DIRECT 3441 */ 3442 if (ext4_should_journal_data(inode)) 3443 return 0; 3444 3445 /* Let buffer I/O handle the inline data case. */ 3446 if (ext4_has_inline_data(inode)) 3447 return 0; 3448 3449 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3450 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3451 ret = ext4_ext_direct_IO(iocb, iter, offset); 3452 else 3453 ret = ext4_ind_direct_IO(iocb, iter, offset); 3454 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3455 return ret; 3456 } 3457 3458 /* 3459 * Pages can be marked dirty completely asynchronously from ext4's journalling 3460 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3461 * much here because ->set_page_dirty is called under VFS locks. The page is 3462 * not necessarily locked. 3463 * 3464 * We cannot just dirty the page and leave attached buffers clean, because the 3465 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3466 * or jbddirty because all the journalling code will explode. 3467 * 3468 * So what we do is to mark the page "pending dirty" and next time writepage 3469 * is called, propagate that into the buffers appropriately. 3470 */ 3471 static int ext4_journalled_set_page_dirty(struct page *page) 3472 { 3473 SetPageChecked(page); 3474 return __set_page_dirty_nobuffers(page); 3475 } 3476 3477 static const struct address_space_operations ext4_aops = { 3478 .readpage = ext4_readpage, 3479 .readpages = ext4_readpages, 3480 .writepage = ext4_writepage, 3481 .writepages = ext4_writepages, 3482 .write_begin = ext4_write_begin, 3483 .write_end = ext4_write_end, 3484 .bmap = ext4_bmap, 3485 .invalidatepage = ext4_invalidatepage, 3486 .releasepage = ext4_releasepage, 3487 .direct_IO = ext4_direct_IO, 3488 .migratepage = buffer_migrate_page, 3489 .is_partially_uptodate = block_is_partially_uptodate, 3490 .error_remove_page = generic_error_remove_page, 3491 }; 3492 3493 static const struct address_space_operations ext4_journalled_aops = { 3494 .readpage = ext4_readpage, 3495 .readpages = ext4_readpages, 3496 .writepage = ext4_writepage, 3497 .writepages = ext4_writepages, 3498 .write_begin = ext4_write_begin, 3499 .write_end = ext4_journalled_write_end, 3500 .set_page_dirty = ext4_journalled_set_page_dirty, 3501 .bmap = ext4_bmap, 3502 .invalidatepage = ext4_journalled_invalidatepage, 3503 .releasepage = ext4_releasepage, 3504 .direct_IO = ext4_direct_IO, 3505 .is_partially_uptodate = block_is_partially_uptodate, 3506 .error_remove_page = generic_error_remove_page, 3507 }; 3508 3509 static const struct address_space_operations ext4_da_aops = { 3510 .readpage = ext4_readpage, 3511 .readpages = ext4_readpages, 3512 .writepage = ext4_writepage, 3513 .writepages = ext4_writepages, 3514 .write_begin = ext4_da_write_begin, 3515 .write_end = ext4_da_write_end, 3516 .bmap = ext4_bmap, 3517 .invalidatepage = ext4_da_invalidatepage, 3518 .releasepage = ext4_releasepage, 3519 .direct_IO = ext4_direct_IO, 3520 .migratepage = buffer_migrate_page, 3521 .is_partially_uptodate = block_is_partially_uptodate, 3522 .error_remove_page = generic_error_remove_page, 3523 }; 3524 3525 void ext4_set_aops(struct inode *inode) 3526 { 3527 switch (ext4_inode_journal_mode(inode)) { 3528 case EXT4_INODE_ORDERED_DATA_MODE: 3529 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3530 break; 3531 case EXT4_INODE_WRITEBACK_DATA_MODE: 3532 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3533 break; 3534 case EXT4_INODE_JOURNAL_DATA_MODE: 3535 inode->i_mapping->a_ops = &ext4_journalled_aops; 3536 return; 3537 default: 3538 BUG(); 3539 } 3540 if (test_opt(inode->i_sb, DELALLOC)) 3541 inode->i_mapping->a_ops = &ext4_da_aops; 3542 else 3543 inode->i_mapping->a_ops = &ext4_aops; 3544 } 3545 3546 static int __ext4_block_zero_page_range(handle_t *handle, 3547 struct address_space *mapping, loff_t from, loff_t length) 3548 { 3549 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3550 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3551 unsigned blocksize, pos; 3552 ext4_lblk_t iblock; 3553 struct inode *inode = mapping->host; 3554 struct buffer_head *bh; 3555 struct page *page; 3556 int err = 0; 3557 3558 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3559 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3560 if (!page) 3561 return -ENOMEM; 3562 3563 blocksize = inode->i_sb->s_blocksize; 3564 3565 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3566 3567 if (!page_has_buffers(page)) 3568 create_empty_buffers(page, blocksize, 0); 3569 3570 /* Find the buffer that contains "offset" */ 3571 bh = page_buffers(page); 3572 pos = blocksize; 3573 while (offset >= pos) { 3574 bh = bh->b_this_page; 3575 iblock++; 3576 pos += blocksize; 3577 } 3578 if (buffer_freed(bh)) { 3579 BUFFER_TRACE(bh, "freed: skip"); 3580 goto unlock; 3581 } 3582 if (!buffer_mapped(bh)) { 3583 BUFFER_TRACE(bh, "unmapped"); 3584 ext4_get_block(inode, iblock, bh, 0); 3585 /* unmapped? It's a hole - nothing to do */ 3586 if (!buffer_mapped(bh)) { 3587 BUFFER_TRACE(bh, "still unmapped"); 3588 goto unlock; 3589 } 3590 } 3591 3592 /* Ok, it's mapped. Make sure it's up-to-date */ 3593 if (PageUptodate(page)) 3594 set_buffer_uptodate(bh); 3595 3596 if (!buffer_uptodate(bh)) { 3597 err = -EIO; 3598 ll_rw_block(READ, 1, &bh); 3599 wait_on_buffer(bh); 3600 /* Uhhuh. Read error. Complain and punt. */ 3601 if (!buffer_uptodate(bh)) 3602 goto unlock; 3603 if (S_ISREG(inode->i_mode) && 3604 ext4_encrypted_inode(inode)) { 3605 /* We expect the key to be set. */ 3606 BUG_ON(!ext4_has_encryption_key(inode)); 3607 BUG_ON(blocksize != PAGE_CACHE_SIZE); 3608 WARN_ON_ONCE(ext4_decrypt(page)); 3609 } 3610 } 3611 if (ext4_should_journal_data(inode)) { 3612 BUFFER_TRACE(bh, "get write access"); 3613 err = ext4_journal_get_write_access(handle, bh); 3614 if (err) 3615 goto unlock; 3616 } 3617 zero_user(page, offset, length); 3618 BUFFER_TRACE(bh, "zeroed end of block"); 3619 3620 if (ext4_should_journal_data(inode)) { 3621 err = ext4_handle_dirty_metadata(handle, inode, bh); 3622 } else { 3623 err = 0; 3624 mark_buffer_dirty(bh); 3625 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3626 err = ext4_jbd2_file_inode(handle, inode); 3627 } 3628 3629 unlock: 3630 unlock_page(page); 3631 page_cache_release(page); 3632 return err; 3633 } 3634 3635 /* 3636 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3637 * starting from file offset 'from'. The range to be zero'd must 3638 * be contained with in one block. If the specified range exceeds 3639 * the end of the block it will be shortened to end of the block 3640 * that cooresponds to 'from' 3641 */ 3642 static int ext4_block_zero_page_range(handle_t *handle, 3643 struct address_space *mapping, loff_t from, loff_t length) 3644 { 3645 struct inode *inode = mapping->host; 3646 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3647 unsigned blocksize = inode->i_sb->s_blocksize; 3648 unsigned max = blocksize - (offset & (blocksize - 1)); 3649 3650 /* 3651 * correct length if it does not fall between 3652 * 'from' and the end of the block 3653 */ 3654 if (length > max || length < 0) 3655 length = max; 3656 3657 if (IS_DAX(inode)) 3658 return dax_zero_page_range(inode, from, length, ext4_get_block); 3659 return __ext4_block_zero_page_range(handle, mapping, from, length); 3660 } 3661 3662 /* 3663 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3664 * up to the end of the block which corresponds to `from'. 3665 * This required during truncate. We need to physically zero the tail end 3666 * of that block so it doesn't yield old data if the file is later grown. 3667 */ 3668 static int ext4_block_truncate_page(handle_t *handle, 3669 struct address_space *mapping, loff_t from) 3670 { 3671 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3672 unsigned length; 3673 unsigned blocksize; 3674 struct inode *inode = mapping->host; 3675 3676 blocksize = inode->i_sb->s_blocksize; 3677 length = blocksize - (offset & (blocksize - 1)); 3678 3679 return ext4_block_zero_page_range(handle, mapping, from, length); 3680 } 3681 3682 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3683 loff_t lstart, loff_t length) 3684 { 3685 struct super_block *sb = inode->i_sb; 3686 struct address_space *mapping = inode->i_mapping; 3687 unsigned partial_start, partial_end; 3688 ext4_fsblk_t start, end; 3689 loff_t byte_end = (lstart + length - 1); 3690 int err = 0; 3691 3692 partial_start = lstart & (sb->s_blocksize - 1); 3693 partial_end = byte_end & (sb->s_blocksize - 1); 3694 3695 start = lstart >> sb->s_blocksize_bits; 3696 end = byte_end >> sb->s_blocksize_bits; 3697 3698 /* Handle partial zero within the single block */ 3699 if (start == end && 3700 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3701 err = ext4_block_zero_page_range(handle, mapping, 3702 lstart, length); 3703 return err; 3704 } 3705 /* Handle partial zero out on the start of the range */ 3706 if (partial_start) { 3707 err = ext4_block_zero_page_range(handle, mapping, 3708 lstart, sb->s_blocksize); 3709 if (err) 3710 return err; 3711 } 3712 /* Handle partial zero out on the end of the range */ 3713 if (partial_end != sb->s_blocksize - 1) 3714 err = ext4_block_zero_page_range(handle, mapping, 3715 byte_end - partial_end, 3716 partial_end + 1); 3717 return err; 3718 } 3719 3720 int ext4_can_truncate(struct inode *inode) 3721 { 3722 if (S_ISREG(inode->i_mode)) 3723 return 1; 3724 if (S_ISDIR(inode->i_mode)) 3725 return 1; 3726 if (S_ISLNK(inode->i_mode)) 3727 return !ext4_inode_is_fast_symlink(inode); 3728 return 0; 3729 } 3730 3731 /* 3732 * We have to make sure i_disksize gets properly updated before we truncate 3733 * page cache due to hole punching or zero range. Otherwise i_disksize update 3734 * can get lost as it may have been postponed to submission of writeback but 3735 * that will never happen after we truncate page cache. 3736 */ 3737 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3738 loff_t len) 3739 { 3740 handle_t *handle; 3741 loff_t size = i_size_read(inode); 3742 3743 WARN_ON(!inode_is_locked(inode)); 3744 if (offset > size || offset + len < size) 3745 return 0; 3746 3747 if (EXT4_I(inode)->i_disksize >= size) 3748 return 0; 3749 3750 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3751 if (IS_ERR(handle)) 3752 return PTR_ERR(handle); 3753 ext4_update_i_disksize(inode, size); 3754 ext4_mark_inode_dirty(handle, inode); 3755 ext4_journal_stop(handle); 3756 3757 return 0; 3758 } 3759 3760 /* 3761 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3762 * associated with the given offset and length 3763 * 3764 * @inode: File inode 3765 * @offset: The offset where the hole will begin 3766 * @len: The length of the hole 3767 * 3768 * Returns: 0 on success or negative on failure 3769 */ 3770 3771 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3772 { 3773 struct super_block *sb = inode->i_sb; 3774 ext4_lblk_t first_block, stop_block; 3775 struct address_space *mapping = inode->i_mapping; 3776 loff_t first_block_offset, last_block_offset; 3777 handle_t *handle; 3778 unsigned int credits; 3779 int ret = 0; 3780 3781 if (!S_ISREG(inode->i_mode)) 3782 return -EOPNOTSUPP; 3783 3784 trace_ext4_punch_hole(inode, offset, length, 0); 3785 3786 /* 3787 * Write out all dirty pages to avoid race conditions 3788 * Then release them. 3789 */ 3790 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3791 ret = filemap_write_and_wait_range(mapping, offset, 3792 offset + length - 1); 3793 if (ret) 3794 return ret; 3795 } 3796 3797 inode_lock(inode); 3798 3799 /* No need to punch hole beyond i_size */ 3800 if (offset >= inode->i_size) 3801 goto out_mutex; 3802 3803 /* 3804 * If the hole extends beyond i_size, set the hole 3805 * to end after the page that contains i_size 3806 */ 3807 if (offset + length > inode->i_size) { 3808 length = inode->i_size + 3809 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3810 offset; 3811 } 3812 3813 if (offset & (sb->s_blocksize - 1) || 3814 (offset + length) & (sb->s_blocksize - 1)) { 3815 /* 3816 * Attach jinode to inode for jbd2 if we do any zeroing of 3817 * partial block 3818 */ 3819 ret = ext4_inode_attach_jinode(inode); 3820 if (ret < 0) 3821 goto out_mutex; 3822 3823 } 3824 3825 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3826 ext4_inode_block_unlocked_dio(inode); 3827 inode_dio_wait(inode); 3828 3829 /* 3830 * Prevent page faults from reinstantiating pages we have released from 3831 * page cache. 3832 */ 3833 down_write(&EXT4_I(inode)->i_mmap_sem); 3834 first_block_offset = round_up(offset, sb->s_blocksize); 3835 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3836 3837 /* Now release the pages and zero block aligned part of pages*/ 3838 if (last_block_offset > first_block_offset) { 3839 ret = ext4_update_disksize_before_punch(inode, offset, length); 3840 if (ret) 3841 goto out_dio; 3842 truncate_pagecache_range(inode, first_block_offset, 3843 last_block_offset); 3844 } 3845 3846 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3847 credits = ext4_writepage_trans_blocks(inode); 3848 else 3849 credits = ext4_blocks_for_truncate(inode); 3850 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3851 if (IS_ERR(handle)) { 3852 ret = PTR_ERR(handle); 3853 ext4_std_error(sb, ret); 3854 goto out_dio; 3855 } 3856 3857 ret = ext4_zero_partial_blocks(handle, inode, offset, 3858 length); 3859 if (ret) 3860 goto out_stop; 3861 3862 first_block = (offset + sb->s_blocksize - 1) >> 3863 EXT4_BLOCK_SIZE_BITS(sb); 3864 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3865 3866 /* If there are no blocks to remove, return now */ 3867 if (first_block >= stop_block) 3868 goto out_stop; 3869 3870 down_write(&EXT4_I(inode)->i_data_sem); 3871 ext4_discard_preallocations(inode); 3872 3873 ret = ext4_es_remove_extent(inode, first_block, 3874 stop_block - first_block); 3875 if (ret) { 3876 up_write(&EXT4_I(inode)->i_data_sem); 3877 goto out_stop; 3878 } 3879 3880 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3881 ret = ext4_ext_remove_space(inode, first_block, 3882 stop_block - 1); 3883 else 3884 ret = ext4_ind_remove_space(handle, inode, first_block, 3885 stop_block); 3886 3887 up_write(&EXT4_I(inode)->i_data_sem); 3888 if (IS_SYNC(inode)) 3889 ext4_handle_sync(handle); 3890 3891 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3892 ext4_mark_inode_dirty(handle, inode); 3893 out_stop: 3894 ext4_journal_stop(handle); 3895 out_dio: 3896 up_write(&EXT4_I(inode)->i_mmap_sem); 3897 ext4_inode_resume_unlocked_dio(inode); 3898 out_mutex: 3899 inode_unlock(inode); 3900 return ret; 3901 } 3902 3903 int ext4_inode_attach_jinode(struct inode *inode) 3904 { 3905 struct ext4_inode_info *ei = EXT4_I(inode); 3906 struct jbd2_inode *jinode; 3907 3908 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3909 return 0; 3910 3911 jinode = jbd2_alloc_inode(GFP_KERNEL); 3912 spin_lock(&inode->i_lock); 3913 if (!ei->jinode) { 3914 if (!jinode) { 3915 spin_unlock(&inode->i_lock); 3916 return -ENOMEM; 3917 } 3918 ei->jinode = jinode; 3919 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3920 jinode = NULL; 3921 } 3922 spin_unlock(&inode->i_lock); 3923 if (unlikely(jinode != NULL)) 3924 jbd2_free_inode(jinode); 3925 return 0; 3926 } 3927 3928 /* 3929 * ext4_truncate() 3930 * 3931 * We block out ext4_get_block() block instantiations across the entire 3932 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3933 * simultaneously on behalf of the same inode. 3934 * 3935 * As we work through the truncate and commit bits of it to the journal there 3936 * is one core, guiding principle: the file's tree must always be consistent on 3937 * disk. We must be able to restart the truncate after a crash. 3938 * 3939 * The file's tree may be transiently inconsistent in memory (although it 3940 * probably isn't), but whenever we close off and commit a journal transaction, 3941 * the contents of (the filesystem + the journal) must be consistent and 3942 * restartable. It's pretty simple, really: bottom up, right to left (although 3943 * left-to-right works OK too). 3944 * 3945 * Note that at recovery time, journal replay occurs *before* the restart of 3946 * truncate against the orphan inode list. 3947 * 3948 * The committed inode has the new, desired i_size (which is the same as 3949 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3950 * that this inode's truncate did not complete and it will again call 3951 * ext4_truncate() to have another go. So there will be instantiated blocks 3952 * to the right of the truncation point in a crashed ext4 filesystem. But 3953 * that's fine - as long as they are linked from the inode, the post-crash 3954 * ext4_truncate() run will find them and release them. 3955 */ 3956 void ext4_truncate(struct inode *inode) 3957 { 3958 struct ext4_inode_info *ei = EXT4_I(inode); 3959 unsigned int credits; 3960 handle_t *handle; 3961 struct address_space *mapping = inode->i_mapping; 3962 3963 /* 3964 * There is a possibility that we're either freeing the inode 3965 * or it's a completely new inode. In those cases we might not 3966 * have i_mutex locked because it's not necessary. 3967 */ 3968 if (!(inode->i_state & (I_NEW|I_FREEING))) 3969 WARN_ON(!inode_is_locked(inode)); 3970 trace_ext4_truncate_enter(inode); 3971 3972 if (!ext4_can_truncate(inode)) 3973 return; 3974 3975 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3976 3977 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3978 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3979 3980 if (ext4_has_inline_data(inode)) { 3981 int has_inline = 1; 3982 3983 ext4_inline_data_truncate(inode, &has_inline); 3984 if (has_inline) 3985 return; 3986 } 3987 3988 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3989 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3990 if (ext4_inode_attach_jinode(inode) < 0) 3991 return; 3992 } 3993 3994 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3995 credits = ext4_writepage_trans_blocks(inode); 3996 else 3997 credits = ext4_blocks_for_truncate(inode); 3998 3999 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4000 if (IS_ERR(handle)) { 4001 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 4002 return; 4003 } 4004 4005 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4006 ext4_block_truncate_page(handle, mapping, inode->i_size); 4007 4008 /* 4009 * We add the inode to the orphan list, so that if this 4010 * truncate spans multiple transactions, and we crash, we will 4011 * resume the truncate when the filesystem recovers. It also 4012 * marks the inode dirty, to catch the new size. 4013 * 4014 * Implication: the file must always be in a sane, consistent 4015 * truncatable state while each transaction commits. 4016 */ 4017 if (ext4_orphan_add(handle, inode)) 4018 goto out_stop; 4019 4020 down_write(&EXT4_I(inode)->i_data_sem); 4021 4022 ext4_discard_preallocations(inode); 4023 4024 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4025 ext4_ext_truncate(handle, inode); 4026 else 4027 ext4_ind_truncate(handle, inode); 4028 4029 up_write(&ei->i_data_sem); 4030 4031 if (IS_SYNC(inode)) 4032 ext4_handle_sync(handle); 4033 4034 out_stop: 4035 /* 4036 * If this was a simple ftruncate() and the file will remain alive, 4037 * then we need to clear up the orphan record which we created above. 4038 * However, if this was a real unlink then we were called by 4039 * ext4_evict_inode(), and we allow that function to clean up the 4040 * orphan info for us. 4041 */ 4042 if (inode->i_nlink) 4043 ext4_orphan_del(handle, inode); 4044 4045 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4046 ext4_mark_inode_dirty(handle, inode); 4047 ext4_journal_stop(handle); 4048 4049 trace_ext4_truncate_exit(inode); 4050 } 4051 4052 /* 4053 * ext4_get_inode_loc returns with an extra refcount against the inode's 4054 * underlying buffer_head on success. If 'in_mem' is true, we have all 4055 * data in memory that is needed to recreate the on-disk version of this 4056 * inode. 4057 */ 4058 static int __ext4_get_inode_loc(struct inode *inode, 4059 struct ext4_iloc *iloc, int in_mem) 4060 { 4061 struct ext4_group_desc *gdp; 4062 struct buffer_head *bh; 4063 struct super_block *sb = inode->i_sb; 4064 ext4_fsblk_t block; 4065 int inodes_per_block, inode_offset; 4066 4067 iloc->bh = NULL; 4068 if (!ext4_valid_inum(sb, inode->i_ino)) 4069 return -EFSCORRUPTED; 4070 4071 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4072 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4073 if (!gdp) 4074 return -EIO; 4075 4076 /* 4077 * Figure out the offset within the block group inode table 4078 */ 4079 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4080 inode_offset = ((inode->i_ino - 1) % 4081 EXT4_INODES_PER_GROUP(sb)); 4082 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4083 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4084 4085 bh = sb_getblk(sb, block); 4086 if (unlikely(!bh)) 4087 return -ENOMEM; 4088 if (!buffer_uptodate(bh)) { 4089 lock_buffer(bh); 4090 4091 /* 4092 * If the buffer has the write error flag, we have failed 4093 * to write out another inode in the same block. In this 4094 * case, we don't have to read the block because we may 4095 * read the old inode data successfully. 4096 */ 4097 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4098 set_buffer_uptodate(bh); 4099 4100 if (buffer_uptodate(bh)) { 4101 /* someone brought it uptodate while we waited */ 4102 unlock_buffer(bh); 4103 goto has_buffer; 4104 } 4105 4106 /* 4107 * If we have all information of the inode in memory and this 4108 * is the only valid inode in the block, we need not read the 4109 * block. 4110 */ 4111 if (in_mem) { 4112 struct buffer_head *bitmap_bh; 4113 int i, start; 4114 4115 start = inode_offset & ~(inodes_per_block - 1); 4116 4117 /* Is the inode bitmap in cache? */ 4118 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4119 if (unlikely(!bitmap_bh)) 4120 goto make_io; 4121 4122 /* 4123 * If the inode bitmap isn't in cache then the 4124 * optimisation may end up performing two reads instead 4125 * of one, so skip it. 4126 */ 4127 if (!buffer_uptodate(bitmap_bh)) { 4128 brelse(bitmap_bh); 4129 goto make_io; 4130 } 4131 for (i = start; i < start + inodes_per_block; i++) { 4132 if (i == inode_offset) 4133 continue; 4134 if (ext4_test_bit(i, bitmap_bh->b_data)) 4135 break; 4136 } 4137 brelse(bitmap_bh); 4138 if (i == start + inodes_per_block) { 4139 /* all other inodes are free, so skip I/O */ 4140 memset(bh->b_data, 0, bh->b_size); 4141 set_buffer_uptodate(bh); 4142 unlock_buffer(bh); 4143 goto has_buffer; 4144 } 4145 } 4146 4147 make_io: 4148 /* 4149 * If we need to do any I/O, try to pre-readahead extra 4150 * blocks from the inode table. 4151 */ 4152 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4153 ext4_fsblk_t b, end, table; 4154 unsigned num; 4155 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4156 4157 table = ext4_inode_table(sb, gdp); 4158 /* s_inode_readahead_blks is always a power of 2 */ 4159 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4160 if (table > b) 4161 b = table; 4162 end = b + ra_blks; 4163 num = EXT4_INODES_PER_GROUP(sb); 4164 if (ext4_has_group_desc_csum(sb)) 4165 num -= ext4_itable_unused_count(sb, gdp); 4166 table += num / inodes_per_block; 4167 if (end > table) 4168 end = table; 4169 while (b <= end) 4170 sb_breadahead(sb, b++); 4171 } 4172 4173 /* 4174 * There are other valid inodes in the buffer, this inode 4175 * has in-inode xattrs, or we don't have this inode in memory. 4176 * Read the block from disk. 4177 */ 4178 trace_ext4_load_inode(inode); 4179 get_bh(bh); 4180 bh->b_end_io = end_buffer_read_sync; 4181 submit_bh(READ | REQ_META | REQ_PRIO, bh); 4182 wait_on_buffer(bh); 4183 if (!buffer_uptodate(bh)) { 4184 EXT4_ERROR_INODE_BLOCK(inode, block, 4185 "unable to read itable block"); 4186 brelse(bh); 4187 return -EIO; 4188 } 4189 } 4190 has_buffer: 4191 iloc->bh = bh; 4192 return 0; 4193 } 4194 4195 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4196 { 4197 /* We have all inode data except xattrs in memory here. */ 4198 return __ext4_get_inode_loc(inode, iloc, 4199 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4200 } 4201 4202 void ext4_set_inode_flags(struct inode *inode) 4203 { 4204 unsigned int flags = EXT4_I(inode)->i_flags; 4205 unsigned int new_fl = 0; 4206 4207 if (flags & EXT4_SYNC_FL) 4208 new_fl |= S_SYNC; 4209 if (flags & EXT4_APPEND_FL) 4210 new_fl |= S_APPEND; 4211 if (flags & EXT4_IMMUTABLE_FL) 4212 new_fl |= S_IMMUTABLE; 4213 if (flags & EXT4_NOATIME_FL) 4214 new_fl |= S_NOATIME; 4215 if (flags & EXT4_DIRSYNC_FL) 4216 new_fl |= S_DIRSYNC; 4217 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode)) 4218 new_fl |= S_DAX; 4219 inode_set_flags(inode, new_fl, 4220 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4221 } 4222 4223 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4224 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4225 { 4226 unsigned int vfs_fl; 4227 unsigned long old_fl, new_fl; 4228 4229 do { 4230 vfs_fl = ei->vfs_inode.i_flags; 4231 old_fl = ei->i_flags; 4232 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4233 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4234 EXT4_DIRSYNC_FL); 4235 if (vfs_fl & S_SYNC) 4236 new_fl |= EXT4_SYNC_FL; 4237 if (vfs_fl & S_APPEND) 4238 new_fl |= EXT4_APPEND_FL; 4239 if (vfs_fl & S_IMMUTABLE) 4240 new_fl |= EXT4_IMMUTABLE_FL; 4241 if (vfs_fl & S_NOATIME) 4242 new_fl |= EXT4_NOATIME_FL; 4243 if (vfs_fl & S_DIRSYNC) 4244 new_fl |= EXT4_DIRSYNC_FL; 4245 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4246 } 4247 4248 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4249 struct ext4_inode_info *ei) 4250 { 4251 blkcnt_t i_blocks ; 4252 struct inode *inode = &(ei->vfs_inode); 4253 struct super_block *sb = inode->i_sb; 4254 4255 if (ext4_has_feature_huge_file(sb)) { 4256 /* we are using combined 48 bit field */ 4257 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4258 le32_to_cpu(raw_inode->i_blocks_lo); 4259 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4260 /* i_blocks represent file system block size */ 4261 return i_blocks << (inode->i_blkbits - 9); 4262 } else { 4263 return i_blocks; 4264 } 4265 } else { 4266 return le32_to_cpu(raw_inode->i_blocks_lo); 4267 } 4268 } 4269 4270 static inline void ext4_iget_extra_inode(struct inode *inode, 4271 struct ext4_inode *raw_inode, 4272 struct ext4_inode_info *ei) 4273 { 4274 __le32 *magic = (void *)raw_inode + 4275 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4276 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4277 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4278 ext4_find_inline_data_nolock(inode); 4279 } else 4280 EXT4_I(inode)->i_inline_off = 0; 4281 } 4282 4283 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4284 { 4285 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT)) 4286 return -EOPNOTSUPP; 4287 *projid = EXT4_I(inode)->i_projid; 4288 return 0; 4289 } 4290 4291 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4292 { 4293 struct ext4_iloc iloc; 4294 struct ext4_inode *raw_inode; 4295 struct ext4_inode_info *ei; 4296 struct inode *inode; 4297 journal_t *journal = EXT4_SB(sb)->s_journal; 4298 long ret; 4299 int block; 4300 uid_t i_uid; 4301 gid_t i_gid; 4302 projid_t i_projid; 4303 4304 inode = iget_locked(sb, ino); 4305 if (!inode) 4306 return ERR_PTR(-ENOMEM); 4307 if (!(inode->i_state & I_NEW)) 4308 return inode; 4309 4310 ei = EXT4_I(inode); 4311 iloc.bh = NULL; 4312 4313 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4314 if (ret < 0) 4315 goto bad_inode; 4316 raw_inode = ext4_raw_inode(&iloc); 4317 4318 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4319 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4320 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4321 EXT4_INODE_SIZE(inode->i_sb)) { 4322 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4323 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4324 EXT4_INODE_SIZE(inode->i_sb)); 4325 ret = -EFSCORRUPTED; 4326 goto bad_inode; 4327 } 4328 } else 4329 ei->i_extra_isize = 0; 4330 4331 /* Precompute checksum seed for inode metadata */ 4332 if (ext4_has_metadata_csum(sb)) { 4333 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4334 __u32 csum; 4335 __le32 inum = cpu_to_le32(inode->i_ino); 4336 __le32 gen = raw_inode->i_generation; 4337 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4338 sizeof(inum)); 4339 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4340 sizeof(gen)); 4341 } 4342 4343 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4344 EXT4_ERROR_INODE(inode, "checksum invalid"); 4345 ret = -EFSBADCRC; 4346 goto bad_inode; 4347 } 4348 4349 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4350 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4351 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4352 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) && 4353 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4354 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4355 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4356 else 4357 i_projid = EXT4_DEF_PROJID; 4358 4359 if (!(test_opt(inode->i_sb, NO_UID32))) { 4360 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4361 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4362 } 4363 i_uid_write(inode, i_uid); 4364 i_gid_write(inode, i_gid); 4365 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4366 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4367 4368 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4369 ei->i_inline_off = 0; 4370 ei->i_dir_start_lookup = 0; 4371 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4372 /* We now have enough fields to check if the inode was active or not. 4373 * This is needed because nfsd might try to access dead inodes 4374 * the test is that same one that e2fsck uses 4375 * NeilBrown 1999oct15 4376 */ 4377 if (inode->i_nlink == 0) { 4378 if ((inode->i_mode == 0 || 4379 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4380 ino != EXT4_BOOT_LOADER_INO) { 4381 /* this inode is deleted */ 4382 ret = -ESTALE; 4383 goto bad_inode; 4384 } 4385 /* The only unlinked inodes we let through here have 4386 * valid i_mode and are being read by the orphan 4387 * recovery code: that's fine, we're about to complete 4388 * the process of deleting those. 4389 * OR it is the EXT4_BOOT_LOADER_INO which is 4390 * not initialized on a new filesystem. */ 4391 } 4392 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4393 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4394 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4395 if (ext4_has_feature_64bit(sb)) 4396 ei->i_file_acl |= 4397 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4398 inode->i_size = ext4_isize(raw_inode); 4399 ei->i_disksize = inode->i_size; 4400 #ifdef CONFIG_QUOTA 4401 ei->i_reserved_quota = 0; 4402 #endif 4403 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4404 ei->i_block_group = iloc.block_group; 4405 ei->i_last_alloc_group = ~0; 4406 /* 4407 * NOTE! The in-memory inode i_data array is in little-endian order 4408 * even on big-endian machines: we do NOT byteswap the block numbers! 4409 */ 4410 for (block = 0; block < EXT4_N_BLOCKS; block++) 4411 ei->i_data[block] = raw_inode->i_block[block]; 4412 INIT_LIST_HEAD(&ei->i_orphan); 4413 4414 /* 4415 * Set transaction id's of transactions that have to be committed 4416 * to finish f[data]sync. We set them to currently running transaction 4417 * as we cannot be sure that the inode or some of its metadata isn't 4418 * part of the transaction - the inode could have been reclaimed and 4419 * now it is reread from disk. 4420 */ 4421 if (journal) { 4422 transaction_t *transaction; 4423 tid_t tid; 4424 4425 read_lock(&journal->j_state_lock); 4426 if (journal->j_running_transaction) 4427 transaction = journal->j_running_transaction; 4428 else 4429 transaction = journal->j_committing_transaction; 4430 if (transaction) 4431 tid = transaction->t_tid; 4432 else 4433 tid = journal->j_commit_sequence; 4434 read_unlock(&journal->j_state_lock); 4435 ei->i_sync_tid = tid; 4436 ei->i_datasync_tid = tid; 4437 } 4438 4439 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4440 if (ei->i_extra_isize == 0) { 4441 /* The extra space is currently unused. Use it. */ 4442 ei->i_extra_isize = sizeof(struct ext4_inode) - 4443 EXT4_GOOD_OLD_INODE_SIZE; 4444 } else { 4445 ext4_iget_extra_inode(inode, raw_inode, ei); 4446 } 4447 } 4448 4449 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4450 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4451 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4452 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4453 4454 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4455 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4456 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4457 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4458 inode->i_version |= 4459 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4460 } 4461 } 4462 4463 ret = 0; 4464 if (ei->i_file_acl && 4465 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4466 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4467 ei->i_file_acl); 4468 ret = -EFSCORRUPTED; 4469 goto bad_inode; 4470 } else if (!ext4_has_inline_data(inode)) { 4471 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4472 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4473 (S_ISLNK(inode->i_mode) && 4474 !ext4_inode_is_fast_symlink(inode)))) 4475 /* Validate extent which is part of inode */ 4476 ret = ext4_ext_check_inode(inode); 4477 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4478 (S_ISLNK(inode->i_mode) && 4479 !ext4_inode_is_fast_symlink(inode))) { 4480 /* Validate block references which are part of inode */ 4481 ret = ext4_ind_check_inode(inode); 4482 } 4483 } 4484 if (ret) 4485 goto bad_inode; 4486 4487 if (S_ISREG(inode->i_mode)) { 4488 inode->i_op = &ext4_file_inode_operations; 4489 inode->i_fop = &ext4_file_operations; 4490 ext4_set_aops(inode); 4491 } else if (S_ISDIR(inode->i_mode)) { 4492 inode->i_op = &ext4_dir_inode_operations; 4493 inode->i_fop = &ext4_dir_operations; 4494 } else if (S_ISLNK(inode->i_mode)) { 4495 if (ext4_encrypted_inode(inode)) { 4496 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4497 ext4_set_aops(inode); 4498 } else if (ext4_inode_is_fast_symlink(inode)) { 4499 inode->i_link = (char *)ei->i_data; 4500 inode->i_op = &ext4_fast_symlink_inode_operations; 4501 nd_terminate_link(ei->i_data, inode->i_size, 4502 sizeof(ei->i_data) - 1); 4503 } else { 4504 inode->i_op = &ext4_symlink_inode_operations; 4505 ext4_set_aops(inode); 4506 } 4507 inode_nohighmem(inode); 4508 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4509 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4510 inode->i_op = &ext4_special_inode_operations; 4511 if (raw_inode->i_block[0]) 4512 init_special_inode(inode, inode->i_mode, 4513 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4514 else 4515 init_special_inode(inode, inode->i_mode, 4516 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4517 } else if (ino == EXT4_BOOT_LOADER_INO) { 4518 make_bad_inode(inode); 4519 } else { 4520 ret = -EFSCORRUPTED; 4521 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4522 goto bad_inode; 4523 } 4524 brelse(iloc.bh); 4525 ext4_set_inode_flags(inode); 4526 unlock_new_inode(inode); 4527 return inode; 4528 4529 bad_inode: 4530 brelse(iloc.bh); 4531 iget_failed(inode); 4532 return ERR_PTR(ret); 4533 } 4534 4535 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4536 { 4537 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4538 return ERR_PTR(-EFSCORRUPTED); 4539 return ext4_iget(sb, ino); 4540 } 4541 4542 static int ext4_inode_blocks_set(handle_t *handle, 4543 struct ext4_inode *raw_inode, 4544 struct ext4_inode_info *ei) 4545 { 4546 struct inode *inode = &(ei->vfs_inode); 4547 u64 i_blocks = inode->i_blocks; 4548 struct super_block *sb = inode->i_sb; 4549 4550 if (i_blocks <= ~0U) { 4551 /* 4552 * i_blocks can be represented in a 32 bit variable 4553 * as multiple of 512 bytes 4554 */ 4555 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4556 raw_inode->i_blocks_high = 0; 4557 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4558 return 0; 4559 } 4560 if (!ext4_has_feature_huge_file(sb)) 4561 return -EFBIG; 4562 4563 if (i_blocks <= 0xffffffffffffULL) { 4564 /* 4565 * i_blocks can be represented in a 48 bit variable 4566 * as multiple of 512 bytes 4567 */ 4568 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4569 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4570 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4571 } else { 4572 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4573 /* i_block is stored in file system block size */ 4574 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4575 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4576 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4577 } 4578 return 0; 4579 } 4580 4581 struct other_inode { 4582 unsigned long orig_ino; 4583 struct ext4_inode *raw_inode; 4584 }; 4585 4586 static int other_inode_match(struct inode * inode, unsigned long ino, 4587 void *data) 4588 { 4589 struct other_inode *oi = (struct other_inode *) data; 4590 4591 if ((inode->i_ino != ino) || 4592 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4593 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4594 ((inode->i_state & I_DIRTY_TIME) == 0)) 4595 return 0; 4596 spin_lock(&inode->i_lock); 4597 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4598 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4599 (inode->i_state & I_DIRTY_TIME)) { 4600 struct ext4_inode_info *ei = EXT4_I(inode); 4601 4602 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4603 spin_unlock(&inode->i_lock); 4604 4605 spin_lock(&ei->i_raw_lock); 4606 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4607 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4608 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4609 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4610 spin_unlock(&ei->i_raw_lock); 4611 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4612 return -1; 4613 } 4614 spin_unlock(&inode->i_lock); 4615 return -1; 4616 } 4617 4618 /* 4619 * Opportunistically update the other time fields for other inodes in 4620 * the same inode table block. 4621 */ 4622 static void ext4_update_other_inodes_time(struct super_block *sb, 4623 unsigned long orig_ino, char *buf) 4624 { 4625 struct other_inode oi; 4626 unsigned long ino; 4627 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4628 int inode_size = EXT4_INODE_SIZE(sb); 4629 4630 oi.orig_ino = orig_ino; 4631 /* 4632 * Calculate the first inode in the inode table block. Inode 4633 * numbers are one-based. That is, the first inode in a block 4634 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4635 */ 4636 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4637 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4638 if (ino == orig_ino) 4639 continue; 4640 oi.raw_inode = (struct ext4_inode *) buf; 4641 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4642 } 4643 } 4644 4645 /* 4646 * Post the struct inode info into an on-disk inode location in the 4647 * buffer-cache. This gobbles the caller's reference to the 4648 * buffer_head in the inode location struct. 4649 * 4650 * The caller must have write access to iloc->bh. 4651 */ 4652 static int ext4_do_update_inode(handle_t *handle, 4653 struct inode *inode, 4654 struct ext4_iloc *iloc) 4655 { 4656 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4657 struct ext4_inode_info *ei = EXT4_I(inode); 4658 struct buffer_head *bh = iloc->bh; 4659 struct super_block *sb = inode->i_sb; 4660 int err = 0, rc, block; 4661 int need_datasync = 0, set_large_file = 0; 4662 uid_t i_uid; 4663 gid_t i_gid; 4664 projid_t i_projid; 4665 4666 spin_lock(&ei->i_raw_lock); 4667 4668 /* For fields not tracked in the in-memory inode, 4669 * initialise them to zero for new inodes. */ 4670 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4671 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4672 4673 ext4_get_inode_flags(ei); 4674 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4675 i_uid = i_uid_read(inode); 4676 i_gid = i_gid_read(inode); 4677 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4678 if (!(test_opt(inode->i_sb, NO_UID32))) { 4679 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4680 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4681 /* 4682 * Fix up interoperability with old kernels. Otherwise, old inodes get 4683 * re-used with the upper 16 bits of the uid/gid intact 4684 */ 4685 if (!ei->i_dtime) { 4686 raw_inode->i_uid_high = 4687 cpu_to_le16(high_16_bits(i_uid)); 4688 raw_inode->i_gid_high = 4689 cpu_to_le16(high_16_bits(i_gid)); 4690 } else { 4691 raw_inode->i_uid_high = 0; 4692 raw_inode->i_gid_high = 0; 4693 } 4694 } else { 4695 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4696 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4697 raw_inode->i_uid_high = 0; 4698 raw_inode->i_gid_high = 0; 4699 } 4700 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4701 4702 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4703 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4704 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4705 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4706 4707 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4708 if (err) { 4709 spin_unlock(&ei->i_raw_lock); 4710 goto out_brelse; 4711 } 4712 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4713 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4714 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4715 raw_inode->i_file_acl_high = 4716 cpu_to_le16(ei->i_file_acl >> 32); 4717 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4718 if (ei->i_disksize != ext4_isize(raw_inode)) { 4719 ext4_isize_set(raw_inode, ei->i_disksize); 4720 need_datasync = 1; 4721 } 4722 if (ei->i_disksize > 0x7fffffffULL) { 4723 if (!ext4_has_feature_large_file(sb) || 4724 EXT4_SB(sb)->s_es->s_rev_level == 4725 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4726 set_large_file = 1; 4727 } 4728 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4729 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4730 if (old_valid_dev(inode->i_rdev)) { 4731 raw_inode->i_block[0] = 4732 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4733 raw_inode->i_block[1] = 0; 4734 } else { 4735 raw_inode->i_block[0] = 0; 4736 raw_inode->i_block[1] = 4737 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4738 raw_inode->i_block[2] = 0; 4739 } 4740 } else if (!ext4_has_inline_data(inode)) { 4741 for (block = 0; block < EXT4_N_BLOCKS; block++) 4742 raw_inode->i_block[block] = ei->i_data[block]; 4743 } 4744 4745 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4746 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4747 if (ei->i_extra_isize) { 4748 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4749 raw_inode->i_version_hi = 4750 cpu_to_le32(inode->i_version >> 32); 4751 raw_inode->i_extra_isize = 4752 cpu_to_le16(ei->i_extra_isize); 4753 } 4754 } 4755 4756 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 4757 EXT4_FEATURE_RO_COMPAT_PROJECT) && 4758 i_projid != EXT4_DEF_PROJID); 4759 4760 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4761 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4762 raw_inode->i_projid = cpu_to_le32(i_projid); 4763 4764 ext4_inode_csum_set(inode, raw_inode, ei); 4765 spin_unlock(&ei->i_raw_lock); 4766 if (inode->i_sb->s_flags & MS_LAZYTIME) 4767 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4768 bh->b_data); 4769 4770 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4771 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4772 if (!err) 4773 err = rc; 4774 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4775 if (set_large_file) { 4776 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4777 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4778 if (err) 4779 goto out_brelse; 4780 ext4_update_dynamic_rev(sb); 4781 ext4_set_feature_large_file(sb); 4782 ext4_handle_sync(handle); 4783 err = ext4_handle_dirty_super(handle, sb); 4784 } 4785 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4786 out_brelse: 4787 brelse(bh); 4788 ext4_std_error(inode->i_sb, err); 4789 return err; 4790 } 4791 4792 /* 4793 * ext4_write_inode() 4794 * 4795 * We are called from a few places: 4796 * 4797 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4798 * Here, there will be no transaction running. We wait for any running 4799 * transaction to commit. 4800 * 4801 * - Within flush work (sys_sync(), kupdate and such). 4802 * We wait on commit, if told to. 4803 * 4804 * - Within iput_final() -> write_inode_now() 4805 * We wait on commit, if told to. 4806 * 4807 * In all cases it is actually safe for us to return without doing anything, 4808 * because the inode has been copied into a raw inode buffer in 4809 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4810 * writeback. 4811 * 4812 * Note that we are absolutely dependent upon all inode dirtiers doing the 4813 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4814 * which we are interested. 4815 * 4816 * It would be a bug for them to not do this. The code: 4817 * 4818 * mark_inode_dirty(inode) 4819 * stuff(); 4820 * inode->i_size = expr; 4821 * 4822 * is in error because write_inode() could occur while `stuff()' is running, 4823 * and the new i_size will be lost. Plus the inode will no longer be on the 4824 * superblock's dirty inode list. 4825 */ 4826 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4827 { 4828 int err; 4829 4830 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4831 return 0; 4832 4833 if (EXT4_SB(inode->i_sb)->s_journal) { 4834 if (ext4_journal_current_handle()) { 4835 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4836 dump_stack(); 4837 return -EIO; 4838 } 4839 4840 /* 4841 * No need to force transaction in WB_SYNC_NONE mode. Also 4842 * ext4_sync_fs() will force the commit after everything is 4843 * written. 4844 */ 4845 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4846 return 0; 4847 4848 err = ext4_force_commit(inode->i_sb); 4849 } else { 4850 struct ext4_iloc iloc; 4851 4852 err = __ext4_get_inode_loc(inode, &iloc, 0); 4853 if (err) 4854 return err; 4855 /* 4856 * sync(2) will flush the whole buffer cache. No need to do 4857 * it here separately for each inode. 4858 */ 4859 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4860 sync_dirty_buffer(iloc.bh); 4861 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4862 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4863 "IO error syncing inode"); 4864 err = -EIO; 4865 } 4866 brelse(iloc.bh); 4867 } 4868 return err; 4869 } 4870 4871 /* 4872 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4873 * buffers that are attached to a page stradding i_size and are undergoing 4874 * commit. In that case we have to wait for commit to finish and try again. 4875 */ 4876 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4877 { 4878 struct page *page; 4879 unsigned offset; 4880 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4881 tid_t commit_tid = 0; 4882 int ret; 4883 4884 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4885 /* 4886 * All buffers in the last page remain valid? Then there's nothing to 4887 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4888 * blocksize case 4889 */ 4890 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4891 return; 4892 while (1) { 4893 page = find_lock_page(inode->i_mapping, 4894 inode->i_size >> PAGE_CACHE_SHIFT); 4895 if (!page) 4896 return; 4897 ret = __ext4_journalled_invalidatepage(page, offset, 4898 PAGE_CACHE_SIZE - offset); 4899 unlock_page(page); 4900 page_cache_release(page); 4901 if (ret != -EBUSY) 4902 return; 4903 commit_tid = 0; 4904 read_lock(&journal->j_state_lock); 4905 if (journal->j_committing_transaction) 4906 commit_tid = journal->j_committing_transaction->t_tid; 4907 read_unlock(&journal->j_state_lock); 4908 if (commit_tid) 4909 jbd2_log_wait_commit(journal, commit_tid); 4910 } 4911 } 4912 4913 /* 4914 * ext4_setattr() 4915 * 4916 * Called from notify_change. 4917 * 4918 * We want to trap VFS attempts to truncate the file as soon as 4919 * possible. In particular, we want to make sure that when the VFS 4920 * shrinks i_size, we put the inode on the orphan list and modify 4921 * i_disksize immediately, so that during the subsequent flushing of 4922 * dirty pages and freeing of disk blocks, we can guarantee that any 4923 * commit will leave the blocks being flushed in an unused state on 4924 * disk. (On recovery, the inode will get truncated and the blocks will 4925 * be freed, so we have a strong guarantee that no future commit will 4926 * leave these blocks visible to the user.) 4927 * 4928 * Another thing we have to assure is that if we are in ordered mode 4929 * and inode is still attached to the committing transaction, we must 4930 * we start writeout of all the dirty pages which are being truncated. 4931 * This way we are sure that all the data written in the previous 4932 * transaction are already on disk (truncate waits for pages under 4933 * writeback). 4934 * 4935 * Called with inode->i_mutex down. 4936 */ 4937 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4938 { 4939 struct inode *inode = d_inode(dentry); 4940 int error, rc = 0; 4941 int orphan = 0; 4942 const unsigned int ia_valid = attr->ia_valid; 4943 4944 error = inode_change_ok(inode, attr); 4945 if (error) 4946 return error; 4947 4948 if (is_quota_modification(inode, attr)) { 4949 error = dquot_initialize(inode); 4950 if (error) 4951 return error; 4952 } 4953 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4954 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4955 handle_t *handle; 4956 4957 /* (user+group)*(old+new) structure, inode write (sb, 4958 * inode block, ? - but truncate inode update has it) */ 4959 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4960 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4961 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4962 if (IS_ERR(handle)) { 4963 error = PTR_ERR(handle); 4964 goto err_out; 4965 } 4966 error = dquot_transfer(inode, attr); 4967 if (error) { 4968 ext4_journal_stop(handle); 4969 return error; 4970 } 4971 /* Update corresponding info in inode so that everything is in 4972 * one transaction */ 4973 if (attr->ia_valid & ATTR_UID) 4974 inode->i_uid = attr->ia_uid; 4975 if (attr->ia_valid & ATTR_GID) 4976 inode->i_gid = attr->ia_gid; 4977 error = ext4_mark_inode_dirty(handle, inode); 4978 ext4_journal_stop(handle); 4979 } 4980 4981 if (attr->ia_valid & ATTR_SIZE) { 4982 handle_t *handle; 4983 loff_t oldsize = inode->i_size; 4984 int shrink = (attr->ia_size <= inode->i_size); 4985 4986 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4987 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4988 4989 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4990 return -EFBIG; 4991 } 4992 if (!S_ISREG(inode->i_mode)) 4993 return -EINVAL; 4994 4995 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4996 inode_inc_iversion(inode); 4997 4998 if (ext4_should_order_data(inode) && 4999 (attr->ia_size < inode->i_size)) { 5000 error = ext4_begin_ordered_truncate(inode, 5001 attr->ia_size); 5002 if (error) 5003 goto err_out; 5004 } 5005 if (attr->ia_size != inode->i_size) { 5006 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5007 if (IS_ERR(handle)) { 5008 error = PTR_ERR(handle); 5009 goto err_out; 5010 } 5011 if (ext4_handle_valid(handle) && shrink) { 5012 error = ext4_orphan_add(handle, inode); 5013 orphan = 1; 5014 } 5015 /* 5016 * Update c/mtime on truncate up, ext4_truncate() will 5017 * update c/mtime in shrink case below 5018 */ 5019 if (!shrink) { 5020 inode->i_mtime = ext4_current_time(inode); 5021 inode->i_ctime = inode->i_mtime; 5022 } 5023 down_write(&EXT4_I(inode)->i_data_sem); 5024 EXT4_I(inode)->i_disksize = attr->ia_size; 5025 rc = ext4_mark_inode_dirty(handle, inode); 5026 if (!error) 5027 error = rc; 5028 /* 5029 * We have to update i_size under i_data_sem together 5030 * with i_disksize to avoid races with writeback code 5031 * running ext4_wb_update_i_disksize(). 5032 */ 5033 if (!error) 5034 i_size_write(inode, attr->ia_size); 5035 up_write(&EXT4_I(inode)->i_data_sem); 5036 ext4_journal_stop(handle); 5037 if (error) { 5038 if (orphan) 5039 ext4_orphan_del(NULL, inode); 5040 goto err_out; 5041 } 5042 } 5043 if (!shrink) 5044 pagecache_isize_extended(inode, oldsize, inode->i_size); 5045 5046 /* 5047 * Blocks are going to be removed from the inode. Wait 5048 * for dio in flight. Temporarily disable 5049 * dioread_nolock to prevent livelock. 5050 */ 5051 if (orphan) { 5052 if (!ext4_should_journal_data(inode)) { 5053 ext4_inode_block_unlocked_dio(inode); 5054 inode_dio_wait(inode); 5055 ext4_inode_resume_unlocked_dio(inode); 5056 } else 5057 ext4_wait_for_tail_page_commit(inode); 5058 } 5059 down_write(&EXT4_I(inode)->i_mmap_sem); 5060 /* 5061 * Truncate pagecache after we've waited for commit 5062 * in data=journal mode to make pages freeable. 5063 */ 5064 truncate_pagecache(inode, inode->i_size); 5065 if (shrink) 5066 ext4_truncate(inode); 5067 up_write(&EXT4_I(inode)->i_mmap_sem); 5068 } 5069 5070 if (!rc) { 5071 setattr_copy(inode, attr); 5072 mark_inode_dirty(inode); 5073 } 5074 5075 /* 5076 * If the call to ext4_truncate failed to get a transaction handle at 5077 * all, we need to clean up the in-core orphan list manually. 5078 */ 5079 if (orphan && inode->i_nlink) 5080 ext4_orphan_del(NULL, inode); 5081 5082 if (!rc && (ia_valid & ATTR_MODE)) 5083 rc = posix_acl_chmod(inode, inode->i_mode); 5084 5085 err_out: 5086 ext4_std_error(inode->i_sb, error); 5087 if (!error) 5088 error = rc; 5089 return error; 5090 } 5091 5092 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5093 struct kstat *stat) 5094 { 5095 struct inode *inode; 5096 unsigned long long delalloc_blocks; 5097 5098 inode = d_inode(dentry); 5099 generic_fillattr(inode, stat); 5100 5101 /* 5102 * If there is inline data in the inode, the inode will normally not 5103 * have data blocks allocated (it may have an external xattr block). 5104 * Report at least one sector for such files, so tools like tar, rsync, 5105 * others doen't incorrectly think the file is completely sparse. 5106 */ 5107 if (unlikely(ext4_has_inline_data(inode))) 5108 stat->blocks += (stat->size + 511) >> 9; 5109 5110 /* 5111 * We can't update i_blocks if the block allocation is delayed 5112 * otherwise in the case of system crash before the real block 5113 * allocation is done, we will have i_blocks inconsistent with 5114 * on-disk file blocks. 5115 * We always keep i_blocks updated together with real 5116 * allocation. But to not confuse with user, stat 5117 * will return the blocks that include the delayed allocation 5118 * blocks for this file. 5119 */ 5120 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5121 EXT4_I(inode)->i_reserved_data_blocks); 5122 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5123 return 0; 5124 } 5125 5126 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5127 int pextents) 5128 { 5129 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5130 return ext4_ind_trans_blocks(inode, lblocks); 5131 return ext4_ext_index_trans_blocks(inode, pextents); 5132 } 5133 5134 /* 5135 * Account for index blocks, block groups bitmaps and block group 5136 * descriptor blocks if modify datablocks and index blocks 5137 * worse case, the indexs blocks spread over different block groups 5138 * 5139 * If datablocks are discontiguous, they are possible to spread over 5140 * different block groups too. If they are contiguous, with flexbg, 5141 * they could still across block group boundary. 5142 * 5143 * Also account for superblock, inode, quota and xattr blocks 5144 */ 5145 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5146 int pextents) 5147 { 5148 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5149 int gdpblocks; 5150 int idxblocks; 5151 int ret = 0; 5152 5153 /* 5154 * How many index blocks need to touch to map @lblocks logical blocks 5155 * to @pextents physical extents? 5156 */ 5157 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5158 5159 ret = idxblocks; 5160 5161 /* 5162 * Now let's see how many group bitmaps and group descriptors need 5163 * to account 5164 */ 5165 groups = idxblocks + pextents; 5166 gdpblocks = groups; 5167 if (groups > ngroups) 5168 groups = ngroups; 5169 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5170 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5171 5172 /* bitmaps and block group descriptor blocks */ 5173 ret += groups + gdpblocks; 5174 5175 /* Blocks for super block, inode, quota and xattr blocks */ 5176 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5177 5178 return ret; 5179 } 5180 5181 /* 5182 * Calculate the total number of credits to reserve to fit 5183 * the modification of a single pages into a single transaction, 5184 * which may include multiple chunks of block allocations. 5185 * 5186 * This could be called via ext4_write_begin() 5187 * 5188 * We need to consider the worse case, when 5189 * one new block per extent. 5190 */ 5191 int ext4_writepage_trans_blocks(struct inode *inode) 5192 { 5193 int bpp = ext4_journal_blocks_per_page(inode); 5194 int ret; 5195 5196 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5197 5198 /* Account for data blocks for journalled mode */ 5199 if (ext4_should_journal_data(inode)) 5200 ret += bpp; 5201 return ret; 5202 } 5203 5204 /* 5205 * Calculate the journal credits for a chunk of data modification. 5206 * 5207 * This is called from DIO, fallocate or whoever calling 5208 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5209 * 5210 * journal buffers for data blocks are not included here, as DIO 5211 * and fallocate do no need to journal data buffers. 5212 */ 5213 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5214 { 5215 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5216 } 5217 5218 /* 5219 * The caller must have previously called ext4_reserve_inode_write(). 5220 * Give this, we know that the caller already has write access to iloc->bh. 5221 */ 5222 int ext4_mark_iloc_dirty(handle_t *handle, 5223 struct inode *inode, struct ext4_iloc *iloc) 5224 { 5225 int err = 0; 5226 5227 if (IS_I_VERSION(inode)) 5228 inode_inc_iversion(inode); 5229 5230 /* the do_update_inode consumes one bh->b_count */ 5231 get_bh(iloc->bh); 5232 5233 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5234 err = ext4_do_update_inode(handle, inode, iloc); 5235 put_bh(iloc->bh); 5236 return err; 5237 } 5238 5239 /* 5240 * On success, We end up with an outstanding reference count against 5241 * iloc->bh. This _must_ be cleaned up later. 5242 */ 5243 5244 int 5245 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5246 struct ext4_iloc *iloc) 5247 { 5248 int err; 5249 5250 err = ext4_get_inode_loc(inode, iloc); 5251 if (!err) { 5252 BUFFER_TRACE(iloc->bh, "get_write_access"); 5253 err = ext4_journal_get_write_access(handle, iloc->bh); 5254 if (err) { 5255 brelse(iloc->bh); 5256 iloc->bh = NULL; 5257 } 5258 } 5259 ext4_std_error(inode->i_sb, err); 5260 return err; 5261 } 5262 5263 /* 5264 * Expand an inode by new_extra_isize bytes. 5265 * Returns 0 on success or negative error number on failure. 5266 */ 5267 static int ext4_expand_extra_isize(struct inode *inode, 5268 unsigned int new_extra_isize, 5269 struct ext4_iloc iloc, 5270 handle_t *handle) 5271 { 5272 struct ext4_inode *raw_inode; 5273 struct ext4_xattr_ibody_header *header; 5274 5275 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5276 return 0; 5277 5278 raw_inode = ext4_raw_inode(&iloc); 5279 5280 header = IHDR(inode, raw_inode); 5281 5282 /* No extended attributes present */ 5283 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5284 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5285 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5286 new_extra_isize); 5287 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5288 return 0; 5289 } 5290 5291 /* try to expand with EAs present */ 5292 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5293 raw_inode, handle); 5294 } 5295 5296 /* 5297 * What we do here is to mark the in-core inode as clean with respect to inode 5298 * dirtiness (it may still be data-dirty). 5299 * This means that the in-core inode may be reaped by prune_icache 5300 * without having to perform any I/O. This is a very good thing, 5301 * because *any* task may call prune_icache - even ones which 5302 * have a transaction open against a different journal. 5303 * 5304 * Is this cheating? Not really. Sure, we haven't written the 5305 * inode out, but prune_icache isn't a user-visible syncing function. 5306 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5307 * we start and wait on commits. 5308 */ 5309 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5310 { 5311 struct ext4_iloc iloc; 5312 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5313 static unsigned int mnt_count; 5314 int err, ret; 5315 5316 might_sleep(); 5317 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5318 err = ext4_reserve_inode_write(handle, inode, &iloc); 5319 if (err) 5320 return err; 5321 if (ext4_handle_valid(handle) && 5322 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5323 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5324 /* 5325 * We need extra buffer credits since we may write into EA block 5326 * with this same handle. If journal_extend fails, then it will 5327 * only result in a minor loss of functionality for that inode. 5328 * If this is felt to be critical, then e2fsck should be run to 5329 * force a large enough s_min_extra_isize. 5330 */ 5331 if ((jbd2_journal_extend(handle, 5332 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5333 ret = ext4_expand_extra_isize(inode, 5334 sbi->s_want_extra_isize, 5335 iloc, handle); 5336 if (ret) { 5337 ext4_set_inode_state(inode, 5338 EXT4_STATE_NO_EXPAND); 5339 if (mnt_count != 5340 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5341 ext4_warning(inode->i_sb, 5342 "Unable to expand inode %lu. Delete" 5343 " some EAs or run e2fsck.", 5344 inode->i_ino); 5345 mnt_count = 5346 le16_to_cpu(sbi->s_es->s_mnt_count); 5347 } 5348 } 5349 } 5350 } 5351 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5352 } 5353 5354 /* 5355 * ext4_dirty_inode() is called from __mark_inode_dirty() 5356 * 5357 * We're really interested in the case where a file is being extended. 5358 * i_size has been changed by generic_commit_write() and we thus need 5359 * to include the updated inode in the current transaction. 5360 * 5361 * Also, dquot_alloc_block() will always dirty the inode when blocks 5362 * are allocated to the file. 5363 * 5364 * If the inode is marked synchronous, we don't honour that here - doing 5365 * so would cause a commit on atime updates, which we don't bother doing. 5366 * We handle synchronous inodes at the highest possible level. 5367 * 5368 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5369 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5370 * to copy into the on-disk inode structure are the timestamp files. 5371 */ 5372 void ext4_dirty_inode(struct inode *inode, int flags) 5373 { 5374 handle_t *handle; 5375 5376 if (flags == I_DIRTY_TIME) 5377 return; 5378 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5379 if (IS_ERR(handle)) 5380 goto out; 5381 5382 ext4_mark_inode_dirty(handle, inode); 5383 5384 ext4_journal_stop(handle); 5385 out: 5386 return; 5387 } 5388 5389 #if 0 5390 /* 5391 * Bind an inode's backing buffer_head into this transaction, to prevent 5392 * it from being flushed to disk early. Unlike 5393 * ext4_reserve_inode_write, this leaves behind no bh reference and 5394 * returns no iloc structure, so the caller needs to repeat the iloc 5395 * lookup to mark the inode dirty later. 5396 */ 5397 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5398 { 5399 struct ext4_iloc iloc; 5400 5401 int err = 0; 5402 if (handle) { 5403 err = ext4_get_inode_loc(inode, &iloc); 5404 if (!err) { 5405 BUFFER_TRACE(iloc.bh, "get_write_access"); 5406 err = jbd2_journal_get_write_access(handle, iloc.bh); 5407 if (!err) 5408 err = ext4_handle_dirty_metadata(handle, 5409 NULL, 5410 iloc.bh); 5411 brelse(iloc.bh); 5412 } 5413 } 5414 ext4_std_error(inode->i_sb, err); 5415 return err; 5416 } 5417 #endif 5418 5419 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5420 { 5421 journal_t *journal; 5422 handle_t *handle; 5423 int err; 5424 5425 /* 5426 * We have to be very careful here: changing a data block's 5427 * journaling status dynamically is dangerous. If we write a 5428 * data block to the journal, change the status and then delete 5429 * that block, we risk forgetting to revoke the old log record 5430 * from the journal and so a subsequent replay can corrupt data. 5431 * So, first we make sure that the journal is empty and that 5432 * nobody is changing anything. 5433 */ 5434 5435 journal = EXT4_JOURNAL(inode); 5436 if (!journal) 5437 return 0; 5438 if (is_journal_aborted(journal)) 5439 return -EROFS; 5440 /* We have to allocate physical blocks for delalloc blocks 5441 * before flushing journal. otherwise delalloc blocks can not 5442 * be allocated any more. even more truncate on delalloc blocks 5443 * could trigger BUG by flushing delalloc blocks in journal. 5444 * There is no delalloc block in non-journal data mode. 5445 */ 5446 if (val && test_opt(inode->i_sb, DELALLOC)) { 5447 err = ext4_alloc_da_blocks(inode); 5448 if (err < 0) 5449 return err; 5450 } 5451 5452 /* Wait for all existing dio workers */ 5453 ext4_inode_block_unlocked_dio(inode); 5454 inode_dio_wait(inode); 5455 5456 jbd2_journal_lock_updates(journal); 5457 5458 /* 5459 * OK, there are no updates running now, and all cached data is 5460 * synced to disk. We are now in a completely consistent state 5461 * which doesn't have anything in the journal, and we know that 5462 * no filesystem updates are running, so it is safe to modify 5463 * the inode's in-core data-journaling state flag now. 5464 */ 5465 5466 if (val) 5467 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5468 else { 5469 err = jbd2_journal_flush(journal); 5470 if (err < 0) { 5471 jbd2_journal_unlock_updates(journal); 5472 ext4_inode_resume_unlocked_dio(inode); 5473 return err; 5474 } 5475 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5476 } 5477 ext4_set_aops(inode); 5478 5479 jbd2_journal_unlock_updates(journal); 5480 ext4_inode_resume_unlocked_dio(inode); 5481 5482 /* Finally we can mark the inode as dirty. */ 5483 5484 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5485 if (IS_ERR(handle)) 5486 return PTR_ERR(handle); 5487 5488 err = ext4_mark_inode_dirty(handle, inode); 5489 ext4_handle_sync(handle); 5490 ext4_journal_stop(handle); 5491 ext4_std_error(inode->i_sb, err); 5492 5493 return err; 5494 } 5495 5496 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5497 { 5498 return !buffer_mapped(bh); 5499 } 5500 5501 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5502 { 5503 struct page *page = vmf->page; 5504 loff_t size; 5505 unsigned long len; 5506 int ret; 5507 struct file *file = vma->vm_file; 5508 struct inode *inode = file_inode(file); 5509 struct address_space *mapping = inode->i_mapping; 5510 handle_t *handle; 5511 get_block_t *get_block; 5512 int retries = 0; 5513 5514 sb_start_pagefault(inode->i_sb); 5515 file_update_time(vma->vm_file); 5516 5517 down_read(&EXT4_I(inode)->i_mmap_sem); 5518 /* Delalloc case is easy... */ 5519 if (test_opt(inode->i_sb, DELALLOC) && 5520 !ext4_should_journal_data(inode) && 5521 !ext4_nonda_switch(inode->i_sb)) { 5522 do { 5523 ret = block_page_mkwrite(vma, vmf, 5524 ext4_da_get_block_prep); 5525 } while (ret == -ENOSPC && 5526 ext4_should_retry_alloc(inode->i_sb, &retries)); 5527 goto out_ret; 5528 } 5529 5530 lock_page(page); 5531 size = i_size_read(inode); 5532 /* Page got truncated from under us? */ 5533 if (page->mapping != mapping || page_offset(page) > size) { 5534 unlock_page(page); 5535 ret = VM_FAULT_NOPAGE; 5536 goto out; 5537 } 5538 5539 if (page->index == size >> PAGE_CACHE_SHIFT) 5540 len = size & ~PAGE_CACHE_MASK; 5541 else 5542 len = PAGE_CACHE_SIZE; 5543 /* 5544 * Return if we have all the buffers mapped. This avoids the need to do 5545 * journal_start/journal_stop which can block and take a long time 5546 */ 5547 if (page_has_buffers(page)) { 5548 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5549 0, len, NULL, 5550 ext4_bh_unmapped)) { 5551 /* Wait so that we don't change page under IO */ 5552 wait_for_stable_page(page); 5553 ret = VM_FAULT_LOCKED; 5554 goto out; 5555 } 5556 } 5557 unlock_page(page); 5558 /* OK, we need to fill the hole... */ 5559 if (ext4_should_dioread_nolock(inode)) 5560 get_block = ext4_get_block_unwritten; 5561 else 5562 get_block = ext4_get_block; 5563 retry_alloc: 5564 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5565 ext4_writepage_trans_blocks(inode)); 5566 if (IS_ERR(handle)) { 5567 ret = VM_FAULT_SIGBUS; 5568 goto out; 5569 } 5570 ret = block_page_mkwrite(vma, vmf, get_block); 5571 if (!ret && ext4_should_journal_data(inode)) { 5572 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5573 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5574 unlock_page(page); 5575 ret = VM_FAULT_SIGBUS; 5576 ext4_journal_stop(handle); 5577 goto out; 5578 } 5579 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5580 } 5581 ext4_journal_stop(handle); 5582 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5583 goto retry_alloc; 5584 out_ret: 5585 ret = block_page_mkwrite_return(ret); 5586 out: 5587 up_read(&EXT4_I(inode)->i_mmap_sem); 5588 sb_end_pagefault(inode->i_sb); 5589 return ret; 5590 } 5591 5592 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 5593 { 5594 struct inode *inode = file_inode(vma->vm_file); 5595 int err; 5596 5597 down_read(&EXT4_I(inode)->i_mmap_sem); 5598 err = filemap_fault(vma, vmf); 5599 up_read(&EXT4_I(inode)->i_mmap_sem); 5600 5601 return err; 5602 } 5603 5604 /* 5605 * Find the first extent at or after @lblk in an inode that is not a hole. 5606 * Search for @map_len blocks at most. The extent is returned in @result. 5607 * 5608 * The function returns 1 if we found an extent. The function returns 0 in 5609 * case there is no extent at or after @lblk and in that case also sets 5610 * @result->es_len to 0. In case of error, the error code is returned. 5611 */ 5612 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 5613 unsigned int map_len, struct extent_status *result) 5614 { 5615 struct ext4_map_blocks map; 5616 struct extent_status es = {}; 5617 int ret; 5618 5619 map.m_lblk = lblk; 5620 map.m_len = map_len; 5621 5622 /* 5623 * For non-extent based files this loop may iterate several times since 5624 * we do not determine full hole size. 5625 */ 5626 while (map.m_len > 0) { 5627 ret = ext4_map_blocks(NULL, inode, &map, 0); 5628 if (ret < 0) 5629 return ret; 5630 /* There's extent covering m_lblk? Just return it. */ 5631 if (ret > 0) { 5632 int status; 5633 5634 ext4_es_store_pblock(result, map.m_pblk); 5635 result->es_lblk = map.m_lblk; 5636 result->es_len = map.m_len; 5637 if (map.m_flags & EXT4_MAP_UNWRITTEN) 5638 status = EXTENT_STATUS_UNWRITTEN; 5639 else 5640 status = EXTENT_STATUS_WRITTEN; 5641 ext4_es_store_status(result, status); 5642 return 1; 5643 } 5644 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 5645 map.m_lblk + map.m_len - 1, 5646 &es); 5647 /* Is delalloc data before next block in extent tree? */ 5648 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 5649 ext4_lblk_t offset = 0; 5650 5651 if (es.es_lblk < lblk) 5652 offset = lblk - es.es_lblk; 5653 result->es_lblk = es.es_lblk + offset; 5654 ext4_es_store_pblock(result, 5655 ext4_es_pblock(&es) + offset); 5656 result->es_len = es.es_len - offset; 5657 ext4_es_store_status(result, ext4_es_status(&es)); 5658 5659 return 1; 5660 } 5661 /* There's a hole at m_lblk, advance us after it */ 5662 map.m_lblk += map.m_len; 5663 map_len -= map.m_len; 5664 map.m_len = map_len; 5665 cond_resched(); 5666 } 5667 result->es_len = 0; 5668 return 0; 5669 } 5670