1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/jbd2.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <asm/byteorder.h> 26 27 #include "ext4.h" 28 #include "ext4_jbd2.h" 29 #include "xattr.h" 30 #include "acl.h" 31 32 #include <trace/events/ext4.h> 33 34 /* 35 * ialloc.c contains the inodes allocation and deallocation routines 36 */ 37 38 /* 39 * The free inodes are managed by bitmaps. A file system contains several 40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 41 * block for inodes, N blocks for the inode table and data blocks. 42 * 43 * The file system contains group descriptors which are located after the 44 * super block. Each descriptor contains the number of the bitmap block and 45 * the free blocks count in the block. 46 */ 47 48 /* 49 * To avoid calling the atomic setbit hundreds or thousands of times, we only 50 * need to use it within a single byte (to ensure we get endianness right). 51 * We can use memset for the rest of the bitmap as there are no other users. 52 */ 53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 54 { 55 int i; 56 57 if (start_bit >= end_bit) 58 return; 59 60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 62 ext4_set_bit(i, bitmap); 63 if (i < end_bit) 64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 65 } 66 67 /* Initializes an uninitialized inode bitmap */ 68 static unsigned ext4_init_inode_bitmap(struct super_block *sb, 69 struct buffer_head *bh, 70 ext4_group_t block_group, 71 struct ext4_group_desc *gdp) 72 { 73 struct ext4_sb_info *sbi = EXT4_SB(sb); 74 75 J_ASSERT_BH(bh, buffer_locked(bh)); 76 77 /* If checksum is bad mark all blocks and inodes use to prevent 78 * allocation, essentially implementing a per-group read-only flag. */ 79 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) { 80 ext4_error(sb, "Checksum bad for group %u", block_group); 81 ext4_free_group_clusters_set(sb, gdp, 0); 82 ext4_free_inodes_set(sb, gdp, 0); 83 ext4_itable_unused_set(sb, gdp, 0); 84 memset(bh->b_data, 0xff, sb->s_blocksize); 85 return 0; 86 } 87 88 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 90 bh->b_data); 91 92 return EXT4_INODES_PER_GROUP(sb); 93 } 94 95 /* 96 * Read the inode allocation bitmap for a given block_group, reading 97 * into the specified slot in the superblock's bitmap cache. 98 * 99 * Return buffer_head of bitmap on success or NULL. 100 */ 101 static struct buffer_head * 102 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 103 { 104 struct ext4_group_desc *desc; 105 struct buffer_head *bh = NULL; 106 ext4_fsblk_t bitmap_blk; 107 108 desc = ext4_get_group_desc(sb, block_group, NULL); 109 if (!desc) 110 return NULL; 111 112 bitmap_blk = ext4_inode_bitmap(sb, desc); 113 bh = sb_getblk(sb, bitmap_blk); 114 if (unlikely(!bh)) { 115 ext4_error(sb, "Cannot read inode bitmap - " 116 "block_group = %u, inode_bitmap = %llu", 117 block_group, bitmap_blk); 118 return NULL; 119 } 120 if (bitmap_uptodate(bh)) 121 return bh; 122 123 lock_buffer(bh); 124 if (bitmap_uptodate(bh)) { 125 unlock_buffer(bh); 126 return bh; 127 } 128 129 ext4_lock_group(sb, block_group); 130 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 131 ext4_init_inode_bitmap(sb, bh, block_group, desc); 132 set_bitmap_uptodate(bh); 133 set_buffer_uptodate(bh); 134 ext4_unlock_group(sb, block_group); 135 unlock_buffer(bh); 136 return bh; 137 } 138 ext4_unlock_group(sb, block_group); 139 140 if (buffer_uptodate(bh)) { 141 /* 142 * if not uninit if bh is uptodate, 143 * bitmap is also uptodate 144 */ 145 set_bitmap_uptodate(bh); 146 unlock_buffer(bh); 147 return bh; 148 } 149 /* 150 * submit the buffer_head for read. We can 151 * safely mark the bitmap as uptodate now. 152 * We do it here so the bitmap uptodate bit 153 * get set with buffer lock held. 154 */ 155 trace_ext4_load_inode_bitmap(sb, block_group); 156 set_bitmap_uptodate(bh); 157 if (bh_submit_read(bh) < 0) { 158 put_bh(bh); 159 ext4_error(sb, "Cannot read inode bitmap - " 160 "block_group = %u, inode_bitmap = %llu", 161 block_group, bitmap_blk); 162 return NULL; 163 } 164 return bh; 165 } 166 167 /* 168 * NOTE! When we get the inode, we're the only people 169 * that have access to it, and as such there are no 170 * race conditions we have to worry about. The inode 171 * is not on the hash-lists, and it cannot be reached 172 * through the filesystem because the directory entry 173 * has been deleted earlier. 174 * 175 * HOWEVER: we must make sure that we get no aliases, 176 * which means that we have to call "clear_inode()" 177 * _before_ we mark the inode not in use in the inode 178 * bitmaps. Otherwise a newly created file might use 179 * the same inode number (not actually the same pointer 180 * though), and then we'd have two inodes sharing the 181 * same inode number and space on the harddisk. 182 */ 183 void ext4_free_inode(handle_t *handle, struct inode *inode) 184 { 185 struct super_block *sb = inode->i_sb; 186 int is_directory; 187 unsigned long ino; 188 struct buffer_head *bitmap_bh = NULL; 189 struct buffer_head *bh2; 190 ext4_group_t block_group; 191 unsigned long bit; 192 struct ext4_group_desc *gdp; 193 struct ext4_super_block *es; 194 struct ext4_sb_info *sbi; 195 int fatal = 0, err, count, cleared; 196 197 if (atomic_read(&inode->i_count) > 1) { 198 printk(KERN_ERR "ext4_free_inode: inode has count=%d\n", 199 atomic_read(&inode->i_count)); 200 return; 201 } 202 if (inode->i_nlink) { 203 printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n", 204 inode->i_nlink); 205 return; 206 } 207 if (!sb) { 208 printk(KERN_ERR "ext4_free_inode: inode on " 209 "nonexistent device\n"); 210 return; 211 } 212 sbi = EXT4_SB(sb); 213 214 ino = inode->i_ino; 215 ext4_debug("freeing inode %lu\n", ino); 216 trace_ext4_free_inode(inode); 217 218 /* 219 * Note: we must free any quota before locking the superblock, 220 * as writing the quota to disk may need the lock as well. 221 */ 222 dquot_initialize(inode); 223 ext4_xattr_delete_inode(handle, inode); 224 dquot_free_inode(inode); 225 dquot_drop(inode); 226 227 is_directory = S_ISDIR(inode->i_mode); 228 229 /* Do this BEFORE marking the inode not in use or returning an error */ 230 ext4_clear_inode(inode); 231 232 es = EXT4_SB(sb)->s_es; 233 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 234 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 235 goto error_return; 236 } 237 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 238 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 239 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 240 if (!bitmap_bh) 241 goto error_return; 242 243 BUFFER_TRACE(bitmap_bh, "get_write_access"); 244 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 245 if (fatal) 246 goto error_return; 247 248 fatal = -ESRCH; 249 gdp = ext4_get_group_desc(sb, block_group, &bh2); 250 if (gdp) { 251 BUFFER_TRACE(bh2, "get_write_access"); 252 fatal = ext4_journal_get_write_access(handle, bh2); 253 } 254 ext4_lock_group(sb, block_group); 255 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 256 if (fatal || !cleared) { 257 ext4_unlock_group(sb, block_group); 258 goto out; 259 } 260 261 count = ext4_free_inodes_count(sb, gdp) + 1; 262 ext4_free_inodes_set(sb, gdp, count); 263 if (is_directory) { 264 count = ext4_used_dirs_count(sb, gdp) - 1; 265 ext4_used_dirs_set(sb, gdp, count); 266 percpu_counter_dec(&sbi->s_dirs_counter); 267 } 268 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp); 269 ext4_unlock_group(sb, block_group); 270 271 percpu_counter_inc(&sbi->s_freeinodes_counter); 272 if (sbi->s_log_groups_per_flex) { 273 ext4_group_t f = ext4_flex_group(sbi, block_group); 274 275 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 276 if (is_directory) 277 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 278 } 279 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 280 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 281 out: 282 if (cleared) { 283 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 284 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 285 if (!fatal) 286 fatal = err; 287 ext4_mark_super_dirty(sb); 288 } else 289 ext4_error(sb, "bit already cleared for inode %lu", ino); 290 291 error_return: 292 brelse(bitmap_bh); 293 ext4_std_error(sb, fatal); 294 } 295 296 struct orlov_stats { 297 __u32 free_inodes; 298 __u32 free_clusters; 299 __u32 used_dirs; 300 }; 301 302 /* 303 * Helper function for Orlov's allocator; returns critical information 304 * for a particular block group or flex_bg. If flex_size is 1, then g 305 * is a block group number; otherwise it is flex_bg number. 306 */ 307 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 308 int flex_size, struct orlov_stats *stats) 309 { 310 struct ext4_group_desc *desc; 311 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 312 313 if (flex_size > 1) { 314 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 315 stats->free_clusters = atomic_read(&flex_group[g].free_clusters); 316 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 317 return; 318 } 319 320 desc = ext4_get_group_desc(sb, g, NULL); 321 if (desc) { 322 stats->free_inodes = ext4_free_inodes_count(sb, desc); 323 stats->free_clusters = ext4_free_group_clusters(sb, desc); 324 stats->used_dirs = ext4_used_dirs_count(sb, desc); 325 } else { 326 stats->free_inodes = 0; 327 stats->free_clusters = 0; 328 stats->used_dirs = 0; 329 } 330 } 331 332 /* 333 * Orlov's allocator for directories. 334 * 335 * We always try to spread first-level directories. 336 * 337 * If there are blockgroups with both free inodes and free blocks counts 338 * not worse than average we return one with smallest directory count. 339 * Otherwise we simply return a random group. 340 * 341 * For the rest rules look so: 342 * 343 * It's OK to put directory into a group unless 344 * it has too many directories already (max_dirs) or 345 * it has too few free inodes left (min_inodes) or 346 * it has too few free blocks left (min_blocks) or 347 * Parent's group is preferred, if it doesn't satisfy these 348 * conditions we search cyclically through the rest. If none 349 * of the groups look good we just look for a group with more 350 * free inodes than average (starting at parent's group). 351 */ 352 353 static int find_group_orlov(struct super_block *sb, struct inode *parent, 354 ext4_group_t *group, umode_t mode, 355 const struct qstr *qstr) 356 { 357 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 358 struct ext4_sb_info *sbi = EXT4_SB(sb); 359 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 360 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 361 unsigned int freei, avefreei, grp_free; 362 ext4_fsblk_t freeb, avefreec; 363 unsigned int ndirs; 364 int max_dirs, min_inodes; 365 ext4_grpblk_t min_clusters; 366 ext4_group_t i, grp, g, ngroups; 367 struct ext4_group_desc *desc; 368 struct orlov_stats stats; 369 int flex_size = ext4_flex_bg_size(sbi); 370 struct dx_hash_info hinfo; 371 372 ngroups = real_ngroups; 373 if (flex_size > 1) { 374 ngroups = (real_ngroups + flex_size - 1) >> 375 sbi->s_log_groups_per_flex; 376 parent_group >>= sbi->s_log_groups_per_flex; 377 } 378 379 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 380 avefreei = freei / ngroups; 381 freeb = EXT4_C2B(sbi, 382 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 383 avefreec = freeb; 384 do_div(avefreec, ngroups); 385 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 386 387 if (S_ISDIR(mode) && 388 ((parent == sb->s_root->d_inode) || 389 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 390 int best_ndir = inodes_per_group; 391 int ret = -1; 392 393 if (qstr) { 394 hinfo.hash_version = DX_HASH_HALF_MD4; 395 hinfo.seed = sbi->s_hash_seed; 396 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 397 grp = hinfo.hash; 398 } else 399 get_random_bytes(&grp, sizeof(grp)); 400 parent_group = (unsigned)grp % ngroups; 401 for (i = 0; i < ngroups; i++) { 402 g = (parent_group + i) % ngroups; 403 get_orlov_stats(sb, g, flex_size, &stats); 404 if (!stats.free_inodes) 405 continue; 406 if (stats.used_dirs >= best_ndir) 407 continue; 408 if (stats.free_inodes < avefreei) 409 continue; 410 if (stats.free_clusters < avefreec) 411 continue; 412 grp = g; 413 ret = 0; 414 best_ndir = stats.used_dirs; 415 } 416 if (ret) 417 goto fallback; 418 found_flex_bg: 419 if (flex_size == 1) { 420 *group = grp; 421 return 0; 422 } 423 424 /* 425 * We pack inodes at the beginning of the flexgroup's 426 * inode tables. Block allocation decisions will do 427 * something similar, although regular files will 428 * start at 2nd block group of the flexgroup. See 429 * ext4_ext_find_goal() and ext4_find_near(). 430 */ 431 grp *= flex_size; 432 for (i = 0; i < flex_size; i++) { 433 if (grp+i >= real_ngroups) 434 break; 435 desc = ext4_get_group_desc(sb, grp+i, NULL); 436 if (desc && ext4_free_inodes_count(sb, desc)) { 437 *group = grp+i; 438 return 0; 439 } 440 } 441 goto fallback; 442 } 443 444 max_dirs = ndirs / ngroups + inodes_per_group / 16; 445 min_inodes = avefreei - inodes_per_group*flex_size / 4; 446 if (min_inodes < 1) 447 min_inodes = 1; 448 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 449 450 /* 451 * Start looking in the flex group where we last allocated an 452 * inode for this parent directory 453 */ 454 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 455 parent_group = EXT4_I(parent)->i_last_alloc_group; 456 if (flex_size > 1) 457 parent_group >>= sbi->s_log_groups_per_flex; 458 } 459 460 for (i = 0; i < ngroups; i++) { 461 grp = (parent_group + i) % ngroups; 462 get_orlov_stats(sb, grp, flex_size, &stats); 463 if (stats.used_dirs >= max_dirs) 464 continue; 465 if (stats.free_inodes < min_inodes) 466 continue; 467 if (stats.free_clusters < min_clusters) 468 continue; 469 goto found_flex_bg; 470 } 471 472 fallback: 473 ngroups = real_ngroups; 474 avefreei = freei / ngroups; 475 fallback_retry: 476 parent_group = EXT4_I(parent)->i_block_group; 477 for (i = 0; i < ngroups; i++) { 478 grp = (parent_group + i) % ngroups; 479 desc = ext4_get_group_desc(sb, grp, NULL); 480 grp_free = ext4_free_inodes_count(sb, desc); 481 if (desc && grp_free && grp_free >= avefreei) { 482 *group = grp; 483 return 0; 484 } 485 } 486 487 if (avefreei) { 488 /* 489 * The free-inodes counter is approximate, and for really small 490 * filesystems the above test can fail to find any blockgroups 491 */ 492 avefreei = 0; 493 goto fallback_retry; 494 } 495 496 return -1; 497 } 498 499 static int find_group_other(struct super_block *sb, struct inode *parent, 500 ext4_group_t *group, umode_t mode) 501 { 502 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 503 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 504 struct ext4_group_desc *desc; 505 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 506 507 /* 508 * Try to place the inode is the same flex group as its 509 * parent. If we can't find space, use the Orlov algorithm to 510 * find another flex group, and store that information in the 511 * parent directory's inode information so that use that flex 512 * group for future allocations. 513 */ 514 if (flex_size > 1) { 515 int retry = 0; 516 517 try_again: 518 parent_group &= ~(flex_size-1); 519 last = parent_group + flex_size; 520 if (last > ngroups) 521 last = ngroups; 522 for (i = parent_group; i < last; i++) { 523 desc = ext4_get_group_desc(sb, i, NULL); 524 if (desc && ext4_free_inodes_count(sb, desc)) { 525 *group = i; 526 return 0; 527 } 528 } 529 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 530 retry = 1; 531 parent_group = EXT4_I(parent)->i_last_alloc_group; 532 goto try_again; 533 } 534 /* 535 * If this didn't work, use the Orlov search algorithm 536 * to find a new flex group; we pass in the mode to 537 * avoid the topdir algorithms. 538 */ 539 *group = parent_group + flex_size; 540 if (*group > ngroups) 541 *group = 0; 542 return find_group_orlov(sb, parent, group, mode, NULL); 543 } 544 545 /* 546 * Try to place the inode in its parent directory 547 */ 548 *group = parent_group; 549 desc = ext4_get_group_desc(sb, *group, NULL); 550 if (desc && ext4_free_inodes_count(sb, desc) && 551 ext4_free_group_clusters(sb, desc)) 552 return 0; 553 554 /* 555 * We're going to place this inode in a different blockgroup from its 556 * parent. We want to cause files in a common directory to all land in 557 * the same blockgroup. But we want files which are in a different 558 * directory which shares a blockgroup with our parent to land in a 559 * different blockgroup. 560 * 561 * So add our directory's i_ino into the starting point for the hash. 562 */ 563 *group = (*group + parent->i_ino) % ngroups; 564 565 /* 566 * Use a quadratic hash to find a group with a free inode and some free 567 * blocks. 568 */ 569 for (i = 1; i < ngroups; i <<= 1) { 570 *group += i; 571 if (*group >= ngroups) 572 *group -= ngroups; 573 desc = ext4_get_group_desc(sb, *group, NULL); 574 if (desc && ext4_free_inodes_count(sb, desc) && 575 ext4_free_group_clusters(sb, desc)) 576 return 0; 577 } 578 579 /* 580 * That failed: try linear search for a free inode, even if that group 581 * has no free blocks. 582 */ 583 *group = parent_group; 584 for (i = 0; i < ngroups; i++) { 585 if (++*group >= ngroups) 586 *group = 0; 587 desc = ext4_get_group_desc(sb, *group, NULL); 588 if (desc && ext4_free_inodes_count(sb, desc)) 589 return 0; 590 } 591 592 return -1; 593 } 594 595 /* 596 * claim the inode from the inode bitmap. If the group 597 * is uninit we need to take the groups's ext4_group_lock 598 * and clear the uninit flag. The inode bitmap update 599 * and group desc uninit flag clear should be done 600 * after holding ext4_group_lock so that ext4_read_inode_bitmap 601 * doesn't race with the ext4_claim_inode 602 */ 603 static int ext4_claim_inode(struct super_block *sb, 604 struct buffer_head *inode_bitmap_bh, 605 unsigned long ino, ext4_group_t group, umode_t mode) 606 { 607 int free = 0, retval = 0, count; 608 struct ext4_sb_info *sbi = EXT4_SB(sb); 609 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 610 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 611 612 /* 613 * We have to be sure that new inode allocation does not race with 614 * inode table initialization, because otherwise we may end up 615 * allocating and writing new inode right before sb_issue_zeroout 616 * takes place and overwriting our new inode with zeroes. So we 617 * take alloc_sem to prevent it. 618 */ 619 down_read(&grp->alloc_sem); 620 ext4_lock_group(sb, group); 621 if (ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data)) { 622 /* not a free inode */ 623 retval = 1; 624 goto err_ret; 625 } 626 ino++; 627 if ((group == 0 && ino < EXT4_FIRST_INO(sb)) || 628 ino > EXT4_INODES_PER_GROUP(sb)) { 629 ext4_unlock_group(sb, group); 630 up_read(&grp->alloc_sem); 631 ext4_error(sb, "reserved inode or inode > inodes count - " 632 "block_group = %u, inode=%lu", group, 633 ino + group * EXT4_INODES_PER_GROUP(sb)); 634 return 1; 635 } 636 /* If we didn't allocate from within the initialized part of the inode 637 * table then we need to initialize up to this inode. */ 638 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 639 640 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 641 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 642 /* When marking the block group with 643 * ~EXT4_BG_INODE_UNINIT we don't want to depend 644 * on the value of bg_itable_unused even though 645 * mke2fs could have initialized the same for us. 646 * Instead we calculated the value below 647 */ 648 649 free = 0; 650 } else { 651 free = EXT4_INODES_PER_GROUP(sb) - 652 ext4_itable_unused_count(sb, gdp); 653 } 654 655 /* 656 * Check the relative inode number against the last used 657 * relative inode number in this group. if it is greater 658 * we need to update the bg_itable_unused count 659 * 660 */ 661 if (ino > free) 662 ext4_itable_unused_set(sb, gdp, 663 (EXT4_INODES_PER_GROUP(sb) - ino)); 664 } 665 count = ext4_free_inodes_count(sb, gdp) - 1; 666 ext4_free_inodes_set(sb, gdp, count); 667 if (S_ISDIR(mode)) { 668 count = ext4_used_dirs_count(sb, gdp) + 1; 669 ext4_used_dirs_set(sb, gdp, count); 670 if (sbi->s_log_groups_per_flex) { 671 ext4_group_t f = ext4_flex_group(sbi, group); 672 673 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 674 } 675 } 676 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp); 677 err_ret: 678 ext4_unlock_group(sb, group); 679 up_read(&grp->alloc_sem); 680 return retval; 681 } 682 683 /* 684 * There are two policies for allocating an inode. If the new inode is 685 * a directory, then a forward search is made for a block group with both 686 * free space and a low directory-to-inode ratio; if that fails, then of 687 * the groups with above-average free space, that group with the fewest 688 * directories already is chosen. 689 * 690 * For other inodes, search forward from the parent directory's block 691 * group to find a free inode. 692 */ 693 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, umode_t mode, 694 const struct qstr *qstr, __u32 goal, uid_t *owner) 695 { 696 struct super_block *sb; 697 struct buffer_head *inode_bitmap_bh = NULL; 698 struct buffer_head *group_desc_bh; 699 ext4_group_t ngroups, group = 0; 700 unsigned long ino = 0; 701 struct inode *inode; 702 struct ext4_group_desc *gdp = NULL; 703 struct ext4_inode_info *ei; 704 struct ext4_sb_info *sbi; 705 int ret2, err = 0; 706 struct inode *ret; 707 ext4_group_t i; 708 ext4_group_t flex_group; 709 710 /* Cannot create files in a deleted directory */ 711 if (!dir || !dir->i_nlink) 712 return ERR_PTR(-EPERM); 713 714 sb = dir->i_sb; 715 ngroups = ext4_get_groups_count(sb); 716 trace_ext4_request_inode(dir, mode); 717 inode = new_inode(sb); 718 if (!inode) 719 return ERR_PTR(-ENOMEM); 720 ei = EXT4_I(inode); 721 sbi = EXT4_SB(sb); 722 723 if (!goal) 724 goal = sbi->s_inode_goal; 725 726 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 727 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 728 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 729 ret2 = 0; 730 goto got_group; 731 } 732 733 if (S_ISDIR(mode)) 734 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 735 else 736 ret2 = find_group_other(sb, dir, &group, mode); 737 738 got_group: 739 EXT4_I(dir)->i_last_alloc_group = group; 740 err = -ENOSPC; 741 if (ret2 == -1) 742 goto out; 743 744 for (i = 0; i < ngroups; i++, ino = 0) { 745 err = -EIO; 746 747 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 748 if (!gdp) 749 goto fail; 750 751 brelse(inode_bitmap_bh); 752 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 753 if (!inode_bitmap_bh) 754 goto fail; 755 756 repeat_in_this_group: 757 ino = ext4_find_next_zero_bit((unsigned long *) 758 inode_bitmap_bh->b_data, 759 EXT4_INODES_PER_GROUP(sb), ino); 760 761 if (ino < EXT4_INODES_PER_GROUP(sb)) { 762 763 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 764 err = ext4_journal_get_write_access(handle, 765 inode_bitmap_bh); 766 if (err) 767 goto fail; 768 769 BUFFER_TRACE(group_desc_bh, "get_write_access"); 770 err = ext4_journal_get_write_access(handle, 771 group_desc_bh); 772 if (err) 773 goto fail; 774 if (!ext4_claim_inode(sb, inode_bitmap_bh, 775 ino, group, mode)) { 776 /* we won it */ 777 BUFFER_TRACE(inode_bitmap_bh, 778 "call ext4_handle_dirty_metadata"); 779 err = ext4_handle_dirty_metadata(handle, 780 NULL, 781 inode_bitmap_bh); 782 if (err) 783 goto fail; 784 /* zero bit is inode number 1*/ 785 ino++; 786 goto got; 787 } 788 /* we lost it */ 789 ext4_handle_release_buffer(handle, inode_bitmap_bh); 790 ext4_handle_release_buffer(handle, group_desc_bh); 791 792 if (++ino < EXT4_INODES_PER_GROUP(sb)) 793 goto repeat_in_this_group; 794 } 795 796 /* 797 * This case is possible in concurrent environment. It is very 798 * rare. We cannot repeat the find_group_xxx() call because 799 * that will simply return the same blockgroup, because the 800 * group descriptor metadata has not yet been updated. 801 * So we just go onto the next blockgroup. 802 */ 803 if (++group == ngroups) 804 group = 0; 805 } 806 err = -ENOSPC; 807 goto out; 808 809 got: 810 /* We may have to initialize the block bitmap if it isn't already */ 811 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) && 812 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 813 struct buffer_head *block_bitmap_bh; 814 815 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 816 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 817 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 818 if (err) { 819 brelse(block_bitmap_bh); 820 goto fail; 821 } 822 823 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 824 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 825 brelse(block_bitmap_bh); 826 827 /* recheck and clear flag under lock if we still need to */ 828 ext4_lock_group(sb, group); 829 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 830 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 831 ext4_free_group_clusters_set(sb, gdp, 832 ext4_free_clusters_after_init(sb, group, gdp)); 833 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, 834 gdp); 835 } 836 ext4_unlock_group(sb, group); 837 838 if (err) 839 goto fail; 840 } 841 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 842 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 843 if (err) 844 goto fail; 845 846 percpu_counter_dec(&sbi->s_freeinodes_counter); 847 if (S_ISDIR(mode)) 848 percpu_counter_inc(&sbi->s_dirs_counter); 849 ext4_mark_super_dirty(sb); 850 851 if (sbi->s_log_groups_per_flex) { 852 flex_group = ext4_flex_group(sbi, group); 853 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 854 } 855 if (owner) { 856 inode->i_mode = mode; 857 inode->i_uid = owner[0]; 858 inode->i_gid = owner[1]; 859 } else if (test_opt(sb, GRPID)) { 860 inode->i_mode = mode; 861 inode->i_uid = current_fsuid(); 862 inode->i_gid = dir->i_gid; 863 } else 864 inode_init_owner(inode, dir, mode); 865 866 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 867 /* This is the optimal IO size (for stat), not the fs block size */ 868 inode->i_blocks = 0; 869 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 870 ext4_current_time(inode); 871 872 memset(ei->i_data, 0, sizeof(ei->i_data)); 873 ei->i_dir_start_lookup = 0; 874 ei->i_disksize = 0; 875 876 /* Don't inherit extent flag from directory, amongst others. */ 877 ei->i_flags = 878 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 879 ei->i_file_acl = 0; 880 ei->i_dtime = 0; 881 ei->i_block_group = group; 882 ei->i_last_alloc_group = ~0; 883 884 ext4_set_inode_flags(inode); 885 if (IS_DIRSYNC(inode)) 886 ext4_handle_sync(handle); 887 if (insert_inode_locked(inode) < 0) { 888 /* 889 * Likely a bitmap corruption causing inode to be allocated 890 * twice. 891 */ 892 err = -EIO; 893 goto fail; 894 } 895 spin_lock(&sbi->s_next_gen_lock); 896 inode->i_generation = sbi->s_next_generation++; 897 spin_unlock(&sbi->s_next_gen_lock); 898 899 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 900 ext4_set_inode_state(inode, EXT4_STATE_NEW); 901 902 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 903 904 ret = inode; 905 dquot_initialize(inode); 906 err = dquot_alloc_inode(inode); 907 if (err) 908 goto fail_drop; 909 910 err = ext4_init_acl(handle, inode, dir); 911 if (err) 912 goto fail_free_drop; 913 914 err = ext4_init_security(handle, inode, dir, qstr); 915 if (err) 916 goto fail_free_drop; 917 918 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 919 /* set extent flag only for directory, file and normal symlink*/ 920 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 921 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 922 ext4_ext_tree_init(handle, inode); 923 } 924 } 925 926 if (ext4_handle_valid(handle)) { 927 ei->i_sync_tid = handle->h_transaction->t_tid; 928 ei->i_datasync_tid = handle->h_transaction->t_tid; 929 } 930 931 err = ext4_mark_inode_dirty(handle, inode); 932 if (err) { 933 ext4_std_error(sb, err); 934 goto fail_free_drop; 935 } 936 937 ext4_debug("allocating inode %lu\n", inode->i_ino); 938 trace_ext4_allocate_inode(inode, dir, mode); 939 goto really_out; 940 fail: 941 ext4_std_error(sb, err); 942 out: 943 iput(inode); 944 ret = ERR_PTR(err); 945 really_out: 946 brelse(inode_bitmap_bh); 947 return ret; 948 949 fail_free_drop: 950 dquot_free_inode(inode); 951 952 fail_drop: 953 dquot_drop(inode); 954 inode->i_flags |= S_NOQUOTA; 955 clear_nlink(inode); 956 unlock_new_inode(inode); 957 iput(inode); 958 brelse(inode_bitmap_bh); 959 return ERR_PTR(err); 960 } 961 962 /* Verify that we are loading a valid orphan from disk */ 963 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 964 { 965 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 966 ext4_group_t block_group; 967 int bit; 968 struct buffer_head *bitmap_bh; 969 struct inode *inode = NULL; 970 long err = -EIO; 971 972 /* Error cases - e2fsck has already cleaned up for us */ 973 if (ino > max_ino) { 974 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino); 975 goto error; 976 } 977 978 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 979 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 980 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 981 if (!bitmap_bh) { 982 ext4_warning(sb, "inode bitmap error for orphan %lu", ino); 983 goto error; 984 } 985 986 /* Having the inode bit set should be a 100% indicator that this 987 * is a valid orphan (no e2fsck run on fs). Orphans also include 988 * inodes that were being truncated, so we can't check i_nlink==0. 989 */ 990 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 991 goto bad_orphan; 992 993 inode = ext4_iget(sb, ino); 994 if (IS_ERR(inode)) 995 goto iget_failed; 996 997 /* 998 * If the orphans has i_nlinks > 0 then it should be able to be 999 * truncated, otherwise it won't be removed from the orphan list 1000 * during processing and an infinite loop will result. 1001 */ 1002 if (inode->i_nlink && !ext4_can_truncate(inode)) 1003 goto bad_orphan; 1004 1005 if (NEXT_ORPHAN(inode) > max_ino) 1006 goto bad_orphan; 1007 brelse(bitmap_bh); 1008 return inode; 1009 1010 iget_failed: 1011 err = PTR_ERR(inode); 1012 inode = NULL; 1013 bad_orphan: 1014 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino); 1015 printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1016 bit, (unsigned long long)bitmap_bh->b_blocknr, 1017 ext4_test_bit(bit, bitmap_bh->b_data)); 1018 printk(KERN_NOTICE "inode=%p\n", inode); 1019 if (inode) { 1020 printk(KERN_NOTICE "is_bad_inode(inode)=%d\n", 1021 is_bad_inode(inode)); 1022 printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n", 1023 NEXT_ORPHAN(inode)); 1024 printk(KERN_NOTICE "max_ino=%lu\n", max_ino); 1025 printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink); 1026 /* Avoid freeing blocks if we got a bad deleted inode */ 1027 if (inode->i_nlink == 0) 1028 inode->i_blocks = 0; 1029 iput(inode); 1030 } 1031 brelse(bitmap_bh); 1032 error: 1033 return ERR_PTR(err); 1034 } 1035 1036 unsigned long ext4_count_free_inodes(struct super_block *sb) 1037 { 1038 unsigned long desc_count; 1039 struct ext4_group_desc *gdp; 1040 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1041 #ifdef EXT4FS_DEBUG 1042 struct ext4_super_block *es; 1043 unsigned long bitmap_count, x; 1044 struct buffer_head *bitmap_bh = NULL; 1045 1046 es = EXT4_SB(sb)->s_es; 1047 desc_count = 0; 1048 bitmap_count = 0; 1049 gdp = NULL; 1050 for (i = 0; i < ngroups; i++) { 1051 gdp = ext4_get_group_desc(sb, i, NULL); 1052 if (!gdp) 1053 continue; 1054 desc_count += ext4_free_inodes_count(sb, gdp); 1055 brelse(bitmap_bh); 1056 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1057 if (!bitmap_bh) 1058 continue; 1059 1060 x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8); 1061 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1062 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1063 bitmap_count += x; 1064 } 1065 brelse(bitmap_bh); 1066 printk(KERN_DEBUG "ext4_count_free_inodes: " 1067 "stored = %u, computed = %lu, %lu\n", 1068 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1069 return desc_count; 1070 #else 1071 desc_count = 0; 1072 for (i = 0; i < ngroups; i++) { 1073 gdp = ext4_get_group_desc(sb, i, NULL); 1074 if (!gdp) 1075 continue; 1076 desc_count += ext4_free_inodes_count(sb, gdp); 1077 cond_resched(); 1078 } 1079 return desc_count; 1080 #endif 1081 } 1082 1083 /* Called at mount-time, super-block is locked */ 1084 unsigned long ext4_count_dirs(struct super_block * sb) 1085 { 1086 unsigned long count = 0; 1087 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1088 1089 for (i = 0; i < ngroups; i++) { 1090 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1091 if (!gdp) 1092 continue; 1093 count += ext4_used_dirs_count(sb, gdp); 1094 } 1095 return count; 1096 } 1097 1098 /* 1099 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1100 * inode table. Must be called without any spinlock held. The only place 1101 * where it is called from on active part of filesystem is ext4lazyinit 1102 * thread, so we do not need any special locks, however we have to prevent 1103 * inode allocation from the current group, so we take alloc_sem lock, to 1104 * block ext4_claim_inode until we are finished. 1105 */ 1106 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1107 int barrier) 1108 { 1109 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1110 struct ext4_sb_info *sbi = EXT4_SB(sb); 1111 struct ext4_group_desc *gdp = NULL; 1112 struct buffer_head *group_desc_bh; 1113 handle_t *handle; 1114 ext4_fsblk_t blk; 1115 int num, ret = 0, used_blks = 0; 1116 1117 /* This should not happen, but just to be sure check this */ 1118 if (sb->s_flags & MS_RDONLY) { 1119 ret = 1; 1120 goto out; 1121 } 1122 1123 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1124 if (!gdp) 1125 goto out; 1126 1127 /* 1128 * We do not need to lock this, because we are the only one 1129 * handling this flag. 1130 */ 1131 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1132 goto out; 1133 1134 handle = ext4_journal_start_sb(sb, 1); 1135 if (IS_ERR(handle)) { 1136 ret = PTR_ERR(handle); 1137 goto out; 1138 } 1139 1140 down_write(&grp->alloc_sem); 1141 /* 1142 * If inode bitmap was already initialized there may be some 1143 * used inodes so we need to skip blocks with used inodes in 1144 * inode table. 1145 */ 1146 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1147 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1148 ext4_itable_unused_count(sb, gdp)), 1149 sbi->s_inodes_per_block); 1150 1151 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1152 ext4_error(sb, "Something is wrong with group %u\n" 1153 "Used itable blocks: %d" 1154 "itable unused count: %u\n", 1155 group, used_blks, 1156 ext4_itable_unused_count(sb, gdp)); 1157 ret = 1; 1158 goto err_out; 1159 } 1160 1161 blk = ext4_inode_table(sb, gdp) + used_blks; 1162 num = sbi->s_itb_per_group - used_blks; 1163 1164 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1165 ret = ext4_journal_get_write_access(handle, 1166 group_desc_bh); 1167 if (ret) 1168 goto err_out; 1169 1170 /* 1171 * Skip zeroout if the inode table is full. But we set the ZEROED 1172 * flag anyway, because obviously, when it is full it does not need 1173 * further zeroing. 1174 */ 1175 if (unlikely(num == 0)) 1176 goto skip_zeroout; 1177 1178 ext4_debug("going to zero out inode table in group %d\n", 1179 group); 1180 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1181 if (ret < 0) 1182 goto err_out; 1183 if (barrier) 1184 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1185 1186 skip_zeroout: 1187 ext4_lock_group(sb, group); 1188 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1189 gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp); 1190 ext4_unlock_group(sb, group); 1191 1192 BUFFER_TRACE(group_desc_bh, 1193 "call ext4_handle_dirty_metadata"); 1194 ret = ext4_handle_dirty_metadata(handle, NULL, 1195 group_desc_bh); 1196 1197 err_out: 1198 up_write(&grp->alloc_sem); 1199 ext4_journal_stop(handle); 1200 out: 1201 return ret; 1202 } 1203