xref: /linux/fs/exec.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 
57 #ifdef CONFIG_KMOD
58 #include <linux/kmod.h>
59 #endif
60 
61 int core_uses_pid;
62 char core_pattern[65] = "core";
63 int suid_dumpable = 0;
64 
65 EXPORT_SYMBOL(suid_dumpable);
66 /* The maximal length of core_pattern is also specified in sysctl.c */
67 
68 static struct linux_binfmt *formats;
69 static DEFINE_RWLOCK(binfmt_lock);
70 
71 int register_binfmt(struct linux_binfmt * fmt)
72 {
73 	struct linux_binfmt ** tmp = &formats;
74 
75 	if (!fmt)
76 		return -EINVAL;
77 	if (fmt->next)
78 		return -EBUSY;
79 	write_lock(&binfmt_lock);
80 	while (*tmp) {
81 		if (fmt == *tmp) {
82 			write_unlock(&binfmt_lock);
83 			return -EBUSY;
84 		}
85 		tmp = &(*tmp)->next;
86 	}
87 	fmt->next = formats;
88 	formats = fmt;
89 	write_unlock(&binfmt_lock);
90 	return 0;
91 }
92 
93 EXPORT_SYMBOL(register_binfmt);
94 
95 int unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	struct linux_binfmt ** tmp = &formats;
98 
99 	write_lock(&binfmt_lock);
100 	while (*tmp) {
101 		if (fmt == *tmp) {
102 			*tmp = fmt->next;
103 			write_unlock(&binfmt_lock);
104 			return 0;
105 		}
106 		tmp = &(*tmp)->next;
107 	}
108 	write_unlock(&binfmt_lock);
109 	return -EINVAL;
110 }
111 
112 EXPORT_SYMBOL(unregister_binfmt);
113 
114 static inline void put_binfmt(struct linux_binfmt * fmt)
115 {
116 	module_put(fmt->module);
117 }
118 
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from from the file itself.
124  */
125 asmlinkage long sys_uselib(const char __user * library)
126 {
127 	struct file * file;
128 	struct nameidata nd;
129 	int error;
130 
131 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
132 	if (error)
133 		goto out;
134 
135 	error = -EINVAL;
136 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
137 		goto exit;
138 
139 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
140 	if (error)
141 		goto exit;
142 
143 	file = nameidata_to_filp(&nd, O_RDONLY);
144 	error = PTR_ERR(file);
145 	if (IS_ERR(file))
146 		goto out;
147 
148 	error = -ENOEXEC;
149 	if(file->f_op) {
150 		struct linux_binfmt * fmt;
151 
152 		read_lock(&binfmt_lock);
153 		for (fmt = formats ; fmt ; fmt = fmt->next) {
154 			if (!fmt->load_shlib)
155 				continue;
156 			if (!try_module_get(fmt->module))
157 				continue;
158 			read_unlock(&binfmt_lock);
159 			error = fmt->load_shlib(file);
160 			read_lock(&binfmt_lock);
161 			put_binfmt(fmt);
162 			if (error != -ENOEXEC)
163 				break;
164 		}
165 		read_unlock(&binfmt_lock);
166 	}
167 	fput(file);
168 out:
169   	return error;
170 exit:
171 	release_open_intent(&nd);
172 	path_release(&nd);
173 	goto out;
174 }
175 
176 /*
177  * count() counts the number of strings in array ARGV.
178  */
179 static int count(char __user * __user * argv, int max)
180 {
181 	int i = 0;
182 
183 	if (argv != NULL) {
184 		for (;;) {
185 			char __user * p;
186 
187 			if (get_user(p, argv))
188 				return -EFAULT;
189 			if (!p)
190 				break;
191 			argv++;
192 			if(++i > max)
193 				return -E2BIG;
194 			cond_resched();
195 		}
196 	}
197 	return i;
198 }
199 
200 /*
201  * 'copy_strings()' copies argument/environment strings from user
202  * memory to free pages in kernel mem. These are in a format ready
203  * to be put directly into the top of new user memory.
204  */
205 static int copy_strings(int argc, char __user * __user * argv,
206 			struct linux_binprm *bprm)
207 {
208 	struct page *kmapped_page = NULL;
209 	char *kaddr = NULL;
210 	int ret;
211 
212 	while (argc-- > 0) {
213 		char __user *str;
214 		int len;
215 		unsigned long pos;
216 
217 		if (get_user(str, argv+argc) ||
218 				!(len = strnlen_user(str, bprm->p))) {
219 			ret = -EFAULT;
220 			goto out;
221 		}
222 
223 		if (bprm->p < len)  {
224 			ret = -E2BIG;
225 			goto out;
226 		}
227 
228 		bprm->p -= len;
229 		/* XXX: add architecture specific overflow check here. */
230 		pos = bprm->p;
231 
232 		while (len > 0) {
233 			int i, new, err;
234 			int offset, bytes_to_copy;
235 			struct page *page;
236 
237 			offset = pos % PAGE_SIZE;
238 			i = pos/PAGE_SIZE;
239 			page = bprm->page[i];
240 			new = 0;
241 			if (!page) {
242 				page = alloc_page(GFP_HIGHUSER);
243 				bprm->page[i] = page;
244 				if (!page) {
245 					ret = -ENOMEM;
246 					goto out;
247 				}
248 				new = 1;
249 			}
250 
251 			if (page != kmapped_page) {
252 				if (kmapped_page)
253 					kunmap(kmapped_page);
254 				kmapped_page = page;
255 				kaddr = kmap(kmapped_page);
256 			}
257 			if (new && offset)
258 				memset(kaddr, 0, offset);
259 			bytes_to_copy = PAGE_SIZE - offset;
260 			if (bytes_to_copy > len) {
261 				bytes_to_copy = len;
262 				if (new)
263 					memset(kaddr+offset+len, 0,
264 						PAGE_SIZE-offset-len);
265 			}
266 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
267 			if (err) {
268 				ret = -EFAULT;
269 				goto out;
270 			}
271 
272 			pos += bytes_to_copy;
273 			str += bytes_to_copy;
274 			len -= bytes_to_copy;
275 		}
276 	}
277 	ret = 0;
278 out:
279 	if (kmapped_page)
280 		kunmap(kmapped_page);
281 	return ret;
282 }
283 
284 /*
285  * Like copy_strings, but get argv and its values from kernel memory.
286  */
287 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
288 {
289 	int r;
290 	mm_segment_t oldfs = get_fs();
291 	set_fs(KERNEL_DS);
292 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
293 	set_fs(oldfs);
294 	return r;
295 }
296 
297 EXPORT_SYMBOL(copy_strings_kernel);
298 
299 #ifdef CONFIG_MMU
300 /*
301  * This routine is used to map in a page into an address space: needed by
302  * execve() for the initial stack and environment pages.
303  *
304  * vma->vm_mm->mmap_sem is held for writing.
305  */
306 void install_arg_page(struct vm_area_struct *vma,
307 			struct page *page, unsigned long address)
308 {
309 	struct mm_struct *mm = vma->vm_mm;
310 	pte_t * pte;
311 	spinlock_t *ptl;
312 
313 	if (unlikely(anon_vma_prepare(vma)))
314 		goto out;
315 
316 	flush_dcache_page(page);
317 	pte = get_locked_pte(mm, address, &ptl);
318 	if (!pte)
319 		goto out;
320 	if (!pte_none(*pte)) {
321 		pte_unmap_unlock(pte, ptl);
322 		goto out;
323 	}
324 	inc_mm_counter(mm, anon_rss);
325 	lru_cache_add_active(page);
326 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
327 					page, vma->vm_page_prot))));
328 	page_add_new_anon_rmap(page, vma, address);
329 	pte_unmap_unlock(pte, ptl);
330 
331 	/* no need for flush_tlb */
332 	return;
333 out:
334 	__free_page(page);
335 	force_sig(SIGKILL, current);
336 }
337 
338 #define EXTRA_STACK_VM_PAGES	20	/* random */
339 
340 int setup_arg_pages(struct linux_binprm *bprm,
341 		    unsigned long stack_top,
342 		    int executable_stack)
343 {
344 	unsigned long stack_base;
345 	struct vm_area_struct *mpnt;
346 	struct mm_struct *mm = current->mm;
347 	int i, ret;
348 	long arg_size;
349 
350 #ifdef CONFIG_STACK_GROWSUP
351 	/* Move the argument and environment strings to the bottom of the
352 	 * stack space.
353 	 */
354 	int offset, j;
355 	char *to, *from;
356 
357 	/* Start by shifting all the pages down */
358 	i = 0;
359 	for (j = 0; j < MAX_ARG_PAGES; j++) {
360 		struct page *page = bprm->page[j];
361 		if (!page)
362 			continue;
363 		bprm->page[i++] = page;
364 	}
365 
366 	/* Now move them within their pages */
367 	offset = bprm->p % PAGE_SIZE;
368 	to = kmap(bprm->page[0]);
369 	for (j = 1; j < i; j++) {
370 		memmove(to, to + offset, PAGE_SIZE - offset);
371 		from = kmap(bprm->page[j]);
372 		memcpy(to + PAGE_SIZE - offset, from, offset);
373 		kunmap(bprm->page[j - 1]);
374 		to = from;
375 	}
376 	memmove(to, to + offset, PAGE_SIZE - offset);
377 	kunmap(bprm->page[j - 1]);
378 
379 	/* Limit stack size to 1GB */
380 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
381 	if (stack_base > (1 << 30))
382 		stack_base = 1 << 30;
383 	stack_base = PAGE_ALIGN(stack_top - stack_base);
384 
385 	/* Adjust bprm->p to point to the end of the strings. */
386 	bprm->p = stack_base + PAGE_SIZE * i - offset;
387 
388 	mm->arg_start = stack_base;
389 	arg_size = i << PAGE_SHIFT;
390 
391 	/* zero pages that were copied above */
392 	while (i < MAX_ARG_PAGES)
393 		bprm->page[i++] = NULL;
394 #else
395 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
396 	stack_base = PAGE_ALIGN(stack_base);
397 	bprm->p += stack_base;
398 	mm->arg_start = bprm->p;
399 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
400 #endif
401 
402 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
403 
404 	if (bprm->loader)
405 		bprm->loader += stack_base;
406 	bprm->exec += stack_base;
407 
408 	mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
409 	if (!mpnt)
410 		return -ENOMEM;
411 
412 	memset(mpnt, 0, sizeof(*mpnt));
413 
414 	down_write(&mm->mmap_sem);
415 	{
416 		mpnt->vm_mm = mm;
417 #ifdef CONFIG_STACK_GROWSUP
418 		mpnt->vm_start = stack_base;
419 		mpnt->vm_end = stack_base + arg_size;
420 #else
421 		mpnt->vm_end = stack_top;
422 		mpnt->vm_start = mpnt->vm_end - arg_size;
423 #endif
424 		/* Adjust stack execute permissions; explicitly enable
425 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
426 		 * and leave alone (arch default) otherwise. */
427 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
428 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
429 		else if (executable_stack == EXSTACK_DISABLE_X)
430 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
431 		else
432 			mpnt->vm_flags = VM_STACK_FLAGS;
433 		mpnt->vm_flags |= mm->def_flags;
434 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
435 		if ((ret = insert_vm_struct(mm, mpnt))) {
436 			up_write(&mm->mmap_sem);
437 			kmem_cache_free(vm_area_cachep, mpnt);
438 			return ret;
439 		}
440 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
441 	}
442 
443 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
444 		struct page *page = bprm->page[i];
445 		if (page) {
446 			bprm->page[i] = NULL;
447 			install_arg_page(mpnt, page, stack_base);
448 		}
449 		stack_base += PAGE_SIZE;
450 	}
451 	up_write(&mm->mmap_sem);
452 
453 	return 0;
454 }
455 
456 EXPORT_SYMBOL(setup_arg_pages);
457 
458 #define free_arg_pages(bprm) do { } while (0)
459 
460 #else
461 
462 static inline void free_arg_pages(struct linux_binprm *bprm)
463 {
464 	int i;
465 
466 	for (i = 0; i < MAX_ARG_PAGES; i++) {
467 		if (bprm->page[i])
468 			__free_page(bprm->page[i]);
469 		bprm->page[i] = NULL;
470 	}
471 }
472 
473 #endif /* CONFIG_MMU */
474 
475 struct file *open_exec(const char *name)
476 {
477 	struct nameidata nd;
478 	int err;
479 	struct file *file;
480 
481 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
482 	file = ERR_PTR(err);
483 
484 	if (!err) {
485 		struct inode *inode = nd.dentry->d_inode;
486 		file = ERR_PTR(-EACCES);
487 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
488 		    S_ISREG(inode->i_mode)) {
489 			int err = vfs_permission(&nd, MAY_EXEC);
490 			if (!err && !(inode->i_mode & 0111))
491 				err = -EACCES;
492 			file = ERR_PTR(err);
493 			if (!err) {
494 				file = nameidata_to_filp(&nd, O_RDONLY);
495 				if (!IS_ERR(file)) {
496 					err = deny_write_access(file);
497 					if (err) {
498 						fput(file);
499 						file = ERR_PTR(err);
500 					}
501 				}
502 out:
503 				return file;
504 			}
505 		}
506 		release_open_intent(&nd);
507 		path_release(&nd);
508 	}
509 	goto out;
510 }
511 
512 EXPORT_SYMBOL(open_exec);
513 
514 int kernel_read(struct file *file, unsigned long offset,
515 	char *addr, unsigned long count)
516 {
517 	mm_segment_t old_fs;
518 	loff_t pos = offset;
519 	int result;
520 
521 	old_fs = get_fs();
522 	set_fs(get_ds());
523 	/* The cast to a user pointer is valid due to the set_fs() */
524 	result = vfs_read(file, (void __user *)addr, count, &pos);
525 	set_fs(old_fs);
526 	return result;
527 }
528 
529 EXPORT_SYMBOL(kernel_read);
530 
531 static int exec_mmap(struct mm_struct *mm)
532 {
533 	struct task_struct *tsk;
534 	struct mm_struct * old_mm, *active_mm;
535 
536 	/* Notify parent that we're no longer interested in the old VM */
537 	tsk = current;
538 	old_mm = current->mm;
539 	mm_release(tsk, old_mm);
540 
541 	if (old_mm) {
542 		/*
543 		 * Make sure that if there is a core dump in progress
544 		 * for the old mm, we get out and die instead of going
545 		 * through with the exec.  We must hold mmap_sem around
546 		 * checking core_waiters and changing tsk->mm.  The
547 		 * core-inducing thread will increment core_waiters for
548 		 * each thread whose ->mm == old_mm.
549 		 */
550 		down_read(&old_mm->mmap_sem);
551 		if (unlikely(old_mm->core_waiters)) {
552 			up_read(&old_mm->mmap_sem);
553 			return -EINTR;
554 		}
555 	}
556 	task_lock(tsk);
557 	active_mm = tsk->active_mm;
558 	tsk->mm = mm;
559 	tsk->active_mm = mm;
560 	activate_mm(active_mm, mm);
561 	task_unlock(tsk);
562 	arch_pick_mmap_layout(mm);
563 	if (old_mm) {
564 		up_read(&old_mm->mmap_sem);
565 		BUG_ON(active_mm != old_mm);
566 		mmput(old_mm);
567 		return 0;
568 	}
569 	mmdrop(active_mm);
570 	return 0;
571 }
572 
573 /*
574  * This function makes sure the current process has its own signal table,
575  * so that flush_signal_handlers can later reset the handlers without
576  * disturbing other processes.  (Other processes might share the signal
577  * table via the CLONE_SIGHAND option to clone().)
578  */
579 static int de_thread(struct task_struct *tsk)
580 {
581 	struct signal_struct *sig = tsk->signal;
582 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
583 	spinlock_t *lock = &oldsighand->siglock;
584 	struct task_struct *leader = NULL;
585 	int count;
586 
587 	/*
588 	 * If we don't share sighandlers, then we aren't sharing anything
589 	 * and we can just re-use it all.
590 	 */
591 	if (atomic_read(&oldsighand->count) <= 1) {
592 		BUG_ON(atomic_read(&sig->count) != 1);
593 		exit_itimers(sig);
594 		return 0;
595 	}
596 
597 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
598 	if (!newsighand)
599 		return -ENOMEM;
600 
601 	if (thread_group_empty(current))
602 		goto no_thread_group;
603 
604 	/*
605 	 * Kill all other threads in the thread group.
606 	 * We must hold tasklist_lock to call zap_other_threads.
607 	 */
608 	read_lock(&tasklist_lock);
609 	spin_lock_irq(lock);
610 	if (sig->flags & SIGNAL_GROUP_EXIT) {
611 		/*
612 		 * Another group action in progress, just
613 		 * return so that the signal is processed.
614 		 */
615 		spin_unlock_irq(lock);
616 		read_unlock(&tasklist_lock);
617 		kmem_cache_free(sighand_cachep, newsighand);
618 		return -EAGAIN;
619 	}
620 
621 	/*
622 	 * child_reaper ignores SIGKILL, change it now.
623 	 * Reparenting needs write_lock on tasklist_lock,
624 	 * so it is safe to do it under read_lock.
625 	 */
626 	if (unlikely(current->group_leader == child_reaper))
627 		child_reaper = current;
628 
629 	zap_other_threads(current);
630 	read_unlock(&tasklist_lock);
631 
632 	/*
633 	 * Account for the thread group leader hanging around:
634 	 */
635 	count = 1;
636 	if (!thread_group_leader(current)) {
637 		count = 2;
638 		/*
639 		 * The SIGALRM timer survives the exec, but needs to point
640 		 * at us as the new group leader now.  We have a race with
641 		 * a timer firing now getting the old leader, so we need to
642 		 * synchronize with any firing (by calling del_timer_sync)
643 		 * before we can safely let the old group leader die.
644 		 */
645 		sig->tsk = current;
646 		spin_unlock_irq(lock);
647 		if (hrtimer_cancel(&sig->real_timer))
648 			hrtimer_restart(&sig->real_timer);
649 		spin_lock_irq(lock);
650 	}
651 	while (atomic_read(&sig->count) > count) {
652 		sig->group_exit_task = current;
653 		sig->notify_count = count;
654 		__set_current_state(TASK_UNINTERRUPTIBLE);
655 		spin_unlock_irq(lock);
656 		schedule();
657 		spin_lock_irq(lock);
658 	}
659 	sig->group_exit_task = NULL;
660 	sig->notify_count = 0;
661 	spin_unlock_irq(lock);
662 
663 	/*
664 	 * At this point all other threads have exited, all we have to
665 	 * do is to wait for the thread group leader to become inactive,
666 	 * and to assume its PID:
667 	 */
668 	if (!thread_group_leader(current)) {
669 		/*
670 		 * Wait for the thread group leader to be a zombie.
671 		 * It should already be zombie at this point, most
672 		 * of the time.
673 		 */
674 		leader = current->group_leader;
675 		while (leader->exit_state != EXIT_ZOMBIE)
676 			yield();
677 
678 		/*
679 		 * The only record we have of the real-time age of a
680 		 * process, regardless of execs it's done, is start_time.
681 		 * All the past CPU time is accumulated in signal_struct
682 		 * from sister threads now dead.  But in this non-leader
683 		 * exec, nothing survives from the original leader thread,
684 		 * whose birth marks the true age of this process now.
685 		 * When we take on its identity by switching to its PID, we
686 		 * also take its birthdate (always earlier than our own).
687 		 */
688 		current->start_time = leader->start_time;
689 
690 		write_lock_irq(&tasklist_lock);
691 
692 		BUG_ON(leader->tgid != current->tgid);
693 		BUG_ON(current->pid == current->tgid);
694 		/*
695 		 * An exec() starts a new thread group with the
696 		 * TGID of the previous thread group. Rehash the
697 		 * two threads with a switched PID, and release
698 		 * the former thread group leader:
699 		 */
700 
701 		/* Become a process group leader with the old leader's pid.
702 		 * Note: The old leader also uses thispid until release_task
703 		 *       is called.  Odd but simple and correct.
704 		 */
705 		detach_pid(current, PIDTYPE_PID);
706 		current->pid = leader->pid;
707 		attach_pid(current, PIDTYPE_PID,  current->pid);
708 		attach_pid(current, PIDTYPE_PGID, current->signal->pgrp);
709 		attach_pid(current, PIDTYPE_SID,  current->signal->session);
710 		list_replace_rcu(&leader->tasks, &current->tasks);
711 
712 		current->group_leader = current;
713 		leader->group_leader = current;
714 
715 		/* Reduce leader to a thread */
716 		detach_pid(leader, PIDTYPE_PGID);
717 		detach_pid(leader, PIDTYPE_SID);
718 
719 		current->exit_signal = SIGCHLD;
720 
721 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
722 		leader->exit_state = EXIT_DEAD;
723 
724 		write_unlock_irq(&tasklist_lock);
725         }
726 
727 	/*
728 	 * There may be one thread left which is just exiting,
729 	 * but it's safe to stop telling the group to kill themselves.
730 	 */
731 	sig->flags = 0;
732 
733 no_thread_group:
734 	exit_itimers(sig);
735 	if (leader)
736 		release_task(leader);
737 
738 	BUG_ON(atomic_read(&sig->count) != 1);
739 
740 	if (atomic_read(&oldsighand->count) == 1) {
741 		/*
742 		 * Now that we nuked the rest of the thread group,
743 		 * it turns out we are not sharing sighand any more either.
744 		 * So we can just keep it.
745 		 */
746 		kmem_cache_free(sighand_cachep, newsighand);
747 	} else {
748 		/*
749 		 * Move our state over to newsighand and switch it in.
750 		 */
751 		atomic_set(&newsighand->count, 1);
752 		memcpy(newsighand->action, oldsighand->action,
753 		       sizeof(newsighand->action));
754 
755 		write_lock_irq(&tasklist_lock);
756 		spin_lock(&oldsighand->siglock);
757 		spin_lock(&newsighand->siglock);
758 
759 		rcu_assign_pointer(current->sighand, newsighand);
760 		recalc_sigpending();
761 
762 		spin_unlock(&newsighand->siglock);
763 		spin_unlock(&oldsighand->siglock);
764 		write_unlock_irq(&tasklist_lock);
765 
766 		if (atomic_dec_and_test(&oldsighand->count))
767 			kmem_cache_free(sighand_cachep, oldsighand);
768 	}
769 
770 	BUG_ON(!thread_group_leader(current));
771 	return 0;
772 }
773 
774 /*
775  * These functions flushes out all traces of the currently running executable
776  * so that a new one can be started
777  */
778 
779 static void flush_old_files(struct files_struct * files)
780 {
781 	long j = -1;
782 	struct fdtable *fdt;
783 
784 	spin_lock(&files->file_lock);
785 	for (;;) {
786 		unsigned long set, i;
787 
788 		j++;
789 		i = j * __NFDBITS;
790 		fdt = files_fdtable(files);
791 		if (i >= fdt->max_fds || i >= fdt->max_fdset)
792 			break;
793 		set = fdt->close_on_exec->fds_bits[j];
794 		if (!set)
795 			continue;
796 		fdt->close_on_exec->fds_bits[j] = 0;
797 		spin_unlock(&files->file_lock);
798 		for ( ; set ; i++,set >>= 1) {
799 			if (set & 1) {
800 				sys_close(i);
801 			}
802 		}
803 		spin_lock(&files->file_lock);
804 
805 	}
806 	spin_unlock(&files->file_lock);
807 }
808 
809 void get_task_comm(char *buf, struct task_struct *tsk)
810 {
811 	/* buf must be at least sizeof(tsk->comm) in size */
812 	task_lock(tsk);
813 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
814 	task_unlock(tsk);
815 }
816 
817 void set_task_comm(struct task_struct *tsk, char *buf)
818 {
819 	task_lock(tsk);
820 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
821 	task_unlock(tsk);
822 }
823 
824 int flush_old_exec(struct linux_binprm * bprm)
825 {
826 	char * name;
827 	int i, ch, retval;
828 	struct files_struct *files;
829 	char tcomm[sizeof(current->comm)];
830 
831 	/*
832 	 * Make sure we have a private signal table and that
833 	 * we are unassociated from the previous thread group.
834 	 */
835 	retval = de_thread(current);
836 	if (retval)
837 		goto out;
838 
839 	/*
840 	 * Make sure we have private file handles. Ask the
841 	 * fork helper to do the work for us and the exit
842 	 * helper to do the cleanup of the old one.
843 	 */
844 	files = current->files;		/* refcounted so safe to hold */
845 	retval = unshare_files();
846 	if (retval)
847 		goto out;
848 	/*
849 	 * Release all of the old mmap stuff
850 	 */
851 	retval = exec_mmap(bprm->mm);
852 	if (retval)
853 		goto mmap_failed;
854 
855 	bprm->mm = NULL;		/* We're using it now */
856 
857 	/* This is the point of no return */
858 	put_files_struct(files);
859 
860 	current->sas_ss_sp = current->sas_ss_size = 0;
861 
862 	if (current->euid == current->uid && current->egid == current->gid)
863 		current->mm->dumpable = 1;
864 	else
865 		current->mm->dumpable = suid_dumpable;
866 
867 	name = bprm->filename;
868 
869 	/* Copies the binary name from after last slash */
870 	for (i=0; (ch = *(name++)) != '\0';) {
871 		if (ch == '/')
872 			i = 0; /* overwrite what we wrote */
873 		else
874 			if (i < (sizeof(tcomm) - 1))
875 				tcomm[i++] = ch;
876 	}
877 	tcomm[i] = '\0';
878 	set_task_comm(current, tcomm);
879 
880 	current->flags &= ~PF_RANDOMIZE;
881 	flush_thread();
882 
883 	/* Set the new mm task size. We have to do that late because it may
884 	 * depend on TIF_32BIT which is only updated in flush_thread() on
885 	 * some architectures like powerpc
886 	 */
887 	current->mm->task_size = TASK_SIZE;
888 
889 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
890 	    file_permission(bprm->file, MAY_READ) ||
891 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
892 		suid_keys(current);
893 		current->mm->dumpable = suid_dumpable;
894 	}
895 
896 	/* An exec changes our domain. We are no longer part of the thread
897 	   group */
898 
899 	current->self_exec_id++;
900 
901 	flush_signal_handlers(current, 0);
902 	flush_old_files(current->files);
903 
904 	return 0;
905 
906 mmap_failed:
907 	put_files_struct(current->files);
908 	current->files = files;
909 out:
910 	return retval;
911 }
912 
913 EXPORT_SYMBOL(flush_old_exec);
914 
915 /*
916  * Fill the binprm structure from the inode.
917  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
918  */
919 int prepare_binprm(struct linux_binprm *bprm)
920 {
921 	int mode;
922 	struct inode * inode = bprm->file->f_dentry->d_inode;
923 	int retval;
924 
925 	mode = inode->i_mode;
926 	/*
927 	 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
928 	 * generic_permission lets a non-executable through
929 	 */
930 	if (!(mode & 0111))	/* with at least _one_ execute bit set */
931 		return -EACCES;
932 	if (bprm->file->f_op == NULL)
933 		return -EACCES;
934 
935 	bprm->e_uid = current->euid;
936 	bprm->e_gid = current->egid;
937 
938 	if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
939 		/* Set-uid? */
940 		if (mode & S_ISUID) {
941 			current->personality &= ~PER_CLEAR_ON_SETID;
942 			bprm->e_uid = inode->i_uid;
943 		}
944 
945 		/* Set-gid? */
946 		/*
947 		 * If setgid is set but no group execute bit then this
948 		 * is a candidate for mandatory locking, not a setgid
949 		 * executable.
950 		 */
951 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
952 			current->personality &= ~PER_CLEAR_ON_SETID;
953 			bprm->e_gid = inode->i_gid;
954 		}
955 	}
956 
957 	/* fill in binprm security blob */
958 	retval = security_bprm_set(bprm);
959 	if (retval)
960 		return retval;
961 
962 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
963 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
964 }
965 
966 EXPORT_SYMBOL(prepare_binprm);
967 
968 static int unsafe_exec(struct task_struct *p)
969 {
970 	int unsafe = 0;
971 	if (p->ptrace & PT_PTRACED) {
972 		if (p->ptrace & PT_PTRACE_CAP)
973 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
974 		else
975 			unsafe |= LSM_UNSAFE_PTRACE;
976 	}
977 	if (atomic_read(&p->fs->count) > 1 ||
978 	    atomic_read(&p->files->count) > 1 ||
979 	    atomic_read(&p->sighand->count) > 1)
980 		unsafe |= LSM_UNSAFE_SHARE;
981 
982 	return unsafe;
983 }
984 
985 void compute_creds(struct linux_binprm *bprm)
986 {
987 	int unsafe;
988 
989 	if (bprm->e_uid != current->uid)
990 		suid_keys(current);
991 	exec_keys(current);
992 
993 	task_lock(current);
994 	unsafe = unsafe_exec(current);
995 	security_bprm_apply_creds(bprm, unsafe);
996 	task_unlock(current);
997 	security_bprm_post_apply_creds(bprm);
998 }
999 
1000 EXPORT_SYMBOL(compute_creds);
1001 
1002 void remove_arg_zero(struct linux_binprm *bprm)
1003 {
1004 	if (bprm->argc) {
1005 		unsigned long offset;
1006 		char * kaddr;
1007 		struct page *page;
1008 
1009 		offset = bprm->p % PAGE_SIZE;
1010 		goto inside;
1011 
1012 		while (bprm->p++, *(kaddr+offset++)) {
1013 			if (offset != PAGE_SIZE)
1014 				continue;
1015 			offset = 0;
1016 			kunmap_atomic(kaddr, KM_USER0);
1017 inside:
1018 			page = bprm->page[bprm->p/PAGE_SIZE];
1019 			kaddr = kmap_atomic(page, KM_USER0);
1020 		}
1021 		kunmap_atomic(kaddr, KM_USER0);
1022 		bprm->argc--;
1023 	}
1024 }
1025 
1026 EXPORT_SYMBOL(remove_arg_zero);
1027 
1028 /*
1029  * cycle the list of binary formats handler, until one recognizes the image
1030  */
1031 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1032 {
1033 	int try,retval;
1034 	struct linux_binfmt *fmt;
1035 #ifdef __alpha__
1036 	/* handle /sbin/loader.. */
1037 	{
1038 	    struct exec * eh = (struct exec *) bprm->buf;
1039 
1040 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1041 		(eh->fh.f_flags & 0x3000) == 0x3000)
1042 	    {
1043 		struct file * file;
1044 		unsigned long loader;
1045 
1046 		allow_write_access(bprm->file);
1047 		fput(bprm->file);
1048 		bprm->file = NULL;
1049 
1050 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1051 
1052 		file = open_exec("/sbin/loader");
1053 		retval = PTR_ERR(file);
1054 		if (IS_ERR(file))
1055 			return retval;
1056 
1057 		/* Remember if the application is TASO.  */
1058 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1059 
1060 		bprm->file = file;
1061 		bprm->loader = loader;
1062 		retval = prepare_binprm(bprm);
1063 		if (retval<0)
1064 			return retval;
1065 		/* should call search_binary_handler recursively here,
1066 		   but it does not matter */
1067 	    }
1068 	}
1069 #endif
1070 	retval = security_bprm_check(bprm);
1071 	if (retval)
1072 		return retval;
1073 
1074 	/* kernel module loader fixup */
1075 	/* so we don't try to load run modprobe in kernel space. */
1076 	set_fs(USER_DS);
1077 
1078 	retval = audit_bprm(bprm);
1079 	if (retval)
1080 		return retval;
1081 
1082 	retval = -ENOENT;
1083 	for (try=0; try<2; try++) {
1084 		read_lock(&binfmt_lock);
1085 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1086 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1087 			if (!fn)
1088 				continue;
1089 			if (!try_module_get(fmt->module))
1090 				continue;
1091 			read_unlock(&binfmt_lock);
1092 			retval = fn(bprm, regs);
1093 			if (retval >= 0) {
1094 				put_binfmt(fmt);
1095 				allow_write_access(bprm->file);
1096 				if (bprm->file)
1097 					fput(bprm->file);
1098 				bprm->file = NULL;
1099 				current->did_exec = 1;
1100 				proc_exec_connector(current);
1101 				return retval;
1102 			}
1103 			read_lock(&binfmt_lock);
1104 			put_binfmt(fmt);
1105 			if (retval != -ENOEXEC || bprm->mm == NULL)
1106 				break;
1107 			if (!bprm->file) {
1108 				read_unlock(&binfmt_lock);
1109 				return retval;
1110 			}
1111 		}
1112 		read_unlock(&binfmt_lock);
1113 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1114 			break;
1115 #ifdef CONFIG_KMOD
1116 		}else{
1117 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1118 			if (printable(bprm->buf[0]) &&
1119 			    printable(bprm->buf[1]) &&
1120 			    printable(bprm->buf[2]) &&
1121 			    printable(bprm->buf[3]))
1122 				break; /* -ENOEXEC */
1123 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1124 #endif
1125 		}
1126 	}
1127 	return retval;
1128 }
1129 
1130 EXPORT_SYMBOL(search_binary_handler);
1131 
1132 /*
1133  * sys_execve() executes a new program.
1134  */
1135 int do_execve(char * filename,
1136 	char __user *__user *argv,
1137 	char __user *__user *envp,
1138 	struct pt_regs * regs)
1139 {
1140 	struct linux_binprm *bprm;
1141 	struct file *file;
1142 	int retval;
1143 	int i;
1144 
1145 	retval = -ENOMEM;
1146 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1147 	if (!bprm)
1148 		goto out_ret;
1149 
1150 	file = open_exec(filename);
1151 	retval = PTR_ERR(file);
1152 	if (IS_ERR(file))
1153 		goto out_kfree;
1154 
1155 	sched_exec();
1156 
1157 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1158 
1159 	bprm->file = file;
1160 	bprm->filename = filename;
1161 	bprm->interp = filename;
1162 	bprm->mm = mm_alloc();
1163 	retval = -ENOMEM;
1164 	if (!bprm->mm)
1165 		goto out_file;
1166 
1167 	retval = init_new_context(current, bprm->mm);
1168 	if (retval < 0)
1169 		goto out_mm;
1170 
1171 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1172 	if ((retval = bprm->argc) < 0)
1173 		goto out_mm;
1174 
1175 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1176 	if ((retval = bprm->envc) < 0)
1177 		goto out_mm;
1178 
1179 	retval = security_bprm_alloc(bprm);
1180 	if (retval)
1181 		goto out;
1182 
1183 	retval = prepare_binprm(bprm);
1184 	if (retval < 0)
1185 		goto out;
1186 
1187 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1188 	if (retval < 0)
1189 		goto out;
1190 
1191 	bprm->exec = bprm->p;
1192 	retval = copy_strings(bprm->envc, envp, bprm);
1193 	if (retval < 0)
1194 		goto out;
1195 
1196 	retval = copy_strings(bprm->argc, argv, bprm);
1197 	if (retval < 0)
1198 		goto out;
1199 
1200 	retval = search_binary_handler(bprm,regs);
1201 	if (retval >= 0) {
1202 		free_arg_pages(bprm);
1203 
1204 		/* execve success */
1205 		security_bprm_free(bprm);
1206 		acct_update_integrals(current);
1207 		kfree(bprm);
1208 		return retval;
1209 	}
1210 
1211 out:
1212 	/* Something went wrong, return the inode and free the argument pages*/
1213 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1214 		struct page * page = bprm->page[i];
1215 		if (page)
1216 			__free_page(page);
1217 	}
1218 
1219 	if (bprm->security)
1220 		security_bprm_free(bprm);
1221 
1222 out_mm:
1223 	if (bprm->mm)
1224 		mmdrop(bprm->mm);
1225 
1226 out_file:
1227 	if (bprm->file) {
1228 		allow_write_access(bprm->file);
1229 		fput(bprm->file);
1230 	}
1231 
1232 out_kfree:
1233 	kfree(bprm);
1234 
1235 out_ret:
1236 	return retval;
1237 }
1238 
1239 int set_binfmt(struct linux_binfmt *new)
1240 {
1241 	struct linux_binfmt *old = current->binfmt;
1242 
1243 	if (new) {
1244 		if (!try_module_get(new->module))
1245 			return -1;
1246 	}
1247 	current->binfmt = new;
1248 	if (old)
1249 		module_put(old->module);
1250 	return 0;
1251 }
1252 
1253 EXPORT_SYMBOL(set_binfmt);
1254 
1255 #define CORENAME_MAX_SIZE 64
1256 
1257 /* format_corename will inspect the pattern parameter, and output a
1258  * name into corename, which must have space for at least
1259  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1260  */
1261 static void format_corename(char *corename, const char *pattern, long signr)
1262 {
1263 	const char *pat_ptr = pattern;
1264 	char *out_ptr = corename;
1265 	char *const out_end = corename + CORENAME_MAX_SIZE;
1266 	int rc;
1267 	int pid_in_pattern = 0;
1268 
1269 	/* Repeat as long as we have more pattern to process and more output
1270 	   space */
1271 	while (*pat_ptr) {
1272 		if (*pat_ptr != '%') {
1273 			if (out_ptr == out_end)
1274 				goto out;
1275 			*out_ptr++ = *pat_ptr++;
1276 		} else {
1277 			switch (*++pat_ptr) {
1278 			case 0:
1279 				goto out;
1280 			/* Double percent, output one percent */
1281 			case '%':
1282 				if (out_ptr == out_end)
1283 					goto out;
1284 				*out_ptr++ = '%';
1285 				break;
1286 			/* pid */
1287 			case 'p':
1288 				pid_in_pattern = 1;
1289 				rc = snprintf(out_ptr, out_end - out_ptr,
1290 					      "%d", current->tgid);
1291 				if (rc > out_end - out_ptr)
1292 					goto out;
1293 				out_ptr += rc;
1294 				break;
1295 			/* uid */
1296 			case 'u':
1297 				rc = snprintf(out_ptr, out_end - out_ptr,
1298 					      "%d", current->uid);
1299 				if (rc > out_end - out_ptr)
1300 					goto out;
1301 				out_ptr += rc;
1302 				break;
1303 			/* gid */
1304 			case 'g':
1305 				rc = snprintf(out_ptr, out_end - out_ptr,
1306 					      "%d", current->gid);
1307 				if (rc > out_end - out_ptr)
1308 					goto out;
1309 				out_ptr += rc;
1310 				break;
1311 			/* signal that caused the coredump */
1312 			case 's':
1313 				rc = snprintf(out_ptr, out_end - out_ptr,
1314 					      "%ld", signr);
1315 				if (rc > out_end - out_ptr)
1316 					goto out;
1317 				out_ptr += rc;
1318 				break;
1319 			/* UNIX time of coredump */
1320 			case 't': {
1321 				struct timeval tv;
1322 				do_gettimeofday(&tv);
1323 				rc = snprintf(out_ptr, out_end - out_ptr,
1324 					      "%lu", tv.tv_sec);
1325 				if (rc > out_end - out_ptr)
1326 					goto out;
1327 				out_ptr += rc;
1328 				break;
1329 			}
1330 			/* hostname */
1331 			case 'h':
1332 				down_read(&uts_sem);
1333 				rc = snprintf(out_ptr, out_end - out_ptr,
1334 					      "%s", system_utsname.nodename);
1335 				up_read(&uts_sem);
1336 				if (rc > out_end - out_ptr)
1337 					goto out;
1338 				out_ptr += rc;
1339 				break;
1340 			/* executable */
1341 			case 'e':
1342 				rc = snprintf(out_ptr, out_end - out_ptr,
1343 					      "%s", current->comm);
1344 				if (rc > out_end - out_ptr)
1345 					goto out;
1346 				out_ptr += rc;
1347 				break;
1348 			default:
1349 				break;
1350 			}
1351 			++pat_ptr;
1352 		}
1353 	}
1354 	/* Backward compatibility with core_uses_pid:
1355 	 *
1356 	 * If core_pattern does not include a %p (as is the default)
1357 	 * and core_uses_pid is set, then .%pid will be appended to
1358 	 * the filename */
1359 	if (!pid_in_pattern
1360             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1361 		rc = snprintf(out_ptr, out_end - out_ptr,
1362 			      ".%d", current->tgid);
1363 		if (rc > out_end - out_ptr)
1364 			goto out;
1365 		out_ptr += rc;
1366 	}
1367       out:
1368 	*out_ptr = 0;
1369 }
1370 
1371 static void zap_process(struct task_struct *start)
1372 {
1373 	struct task_struct *t;
1374 
1375 	start->signal->flags = SIGNAL_GROUP_EXIT;
1376 	start->signal->group_stop_count = 0;
1377 
1378 	t = start;
1379 	do {
1380 		if (t != current && t->mm) {
1381 			t->mm->core_waiters++;
1382 			sigaddset(&t->pending.signal, SIGKILL);
1383 			signal_wake_up(t, 1);
1384 		}
1385 	} while ((t = next_thread(t)) != start);
1386 }
1387 
1388 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1389 				int exit_code)
1390 {
1391 	struct task_struct *g, *p;
1392 	unsigned long flags;
1393 	int err = -EAGAIN;
1394 
1395 	spin_lock_irq(&tsk->sighand->siglock);
1396 	if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1397 		tsk->signal->group_exit_code = exit_code;
1398 		zap_process(tsk);
1399 		err = 0;
1400 	}
1401 	spin_unlock_irq(&tsk->sighand->siglock);
1402 	if (err)
1403 		return err;
1404 
1405 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1406 		goto done;
1407 
1408 	rcu_read_lock();
1409 	for_each_process(g) {
1410 		if (g == tsk->group_leader)
1411 			continue;
1412 
1413 		p = g;
1414 		do {
1415 			if (p->mm) {
1416 				if (p->mm == mm) {
1417 					/*
1418 					 * p->sighand can't disappear, but
1419 					 * may be changed by de_thread()
1420 					 */
1421 					lock_task_sighand(p, &flags);
1422 					zap_process(p);
1423 					unlock_task_sighand(p, &flags);
1424 				}
1425 				break;
1426 			}
1427 		} while ((p = next_thread(p)) != g);
1428 	}
1429 	rcu_read_unlock();
1430 done:
1431 	return mm->core_waiters;
1432 }
1433 
1434 static int coredump_wait(int exit_code)
1435 {
1436 	struct task_struct *tsk = current;
1437 	struct mm_struct *mm = tsk->mm;
1438 	struct completion startup_done;
1439 	struct completion *vfork_done;
1440 	int core_waiters;
1441 
1442 	init_completion(&mm->core_done);
1443 	init_completion(&startup_done);
1444 	mm->core_startup_done = &startup_done;
1445 
1446 	core_waiters = zap_threads(tsk, mm, exit_code);
1447 	up_write(&mm->mmap_sem);
1448 
1449 	if (unlikely(core_waiters < 0))
1450 		goto fail;
1451 
1452 	/*
1453 	 * Make sure nobody is waiting for us to release the VM,
1454 	 * otherwise we can deadlock when we wait on each other
1455 	 */
1456 	vfork_done = tsk->vfork_done;
1457 	if (vfork_done) {
1458 		tsk->vfork_done = NULL;
1459 		complete(vfork_done);
1460 	}
1461 
1462 	if (core_waiters)
1463 		wait_for_completion(&startup_done);
1464 fail:
1465 	BUG_ON(mm->core_waiters);
1466 	return core_waiters;
1467 }
1468 
1469 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1470 {
1471 	char corename[CORENAME_MAX_SIZE + 1];
1472 	struct mm_struct *mm = current->mm;
1473 	struct linux_binfmt * binfmt;
1474 	struct inode * inode;
1475 	struct file * file;
1476 	int retval = 0;
1477 	int fsuid = current->fsuid;
1478 	int flag = 0;
1479 
1480 	binfmt = current->binfmt;
1481 	if (!binfmt || !binfmt->core_dump)
1482 		goto fail;
1483 	down_write(&mm->mmap_sem);
1484 	if (!mm->dumpable) {
1485 		up_write(&mm->mmap_sem);
1486 		goto fail;
1487 	}
1488 
1489 	/*
1490 	 *	We cannot trust fsuid as being the "true" uid of the
1491 	 *	process nor do we know its entire history. We only know it
1492 	 *	was tainted so we dump it as root in mode 2.
1493 	 */
1494 	if (mm->dumpable == 2) {	/* Setuid core dump mode */
1495 		flag = O_EXCL;		/* Stop rewrite attacks */
1496 		current->fsuid = 0;	/* Dump root private */
1497 	}
1498 	mm->dumpable = 0;
1499 
1500 	retval = coredump_wait(exit_code);
1501 	if (retval < 0)
1502 		goto fail;
1503 
1504 	/*
1505 	 * Clear any false indication of pending signals that might
1506 	 * be seen by the filesystem code called to write the core file.
1507 	 */
1508 	clear_thread_flag(TIF_SIGPENDING);
1509 
1510 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1511 		goto fail_unlock;
1512 
1513 	/*
1514 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1515 	 * uses lock_kernel()
1516 	 */
1517  	lock_kernel();
1518 	format_corename(corename, core_pattern, signr);
1519 	unlock_kernel();
1520 	file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600);
1521 	if (IS_ERR(file))
1522 		goto fail_unlock;
1523 	inode = file->f_dentry->d_inode;
1524 	if (inode->i_nlink > 1)
1525 		goto close_fail;	/* multiple links - don't dump */
1526 	if (d_unhashed(file->f_dentry))
1527 		goto close_fail;
1528 
1529 	if (!S_ISREG(inode->i_mode))
1530 		goto close_fail;
1531 	if (!file->f_op)
1532 		goto close_fail;
1533 	if (!file->f_op->write)
1534 		goto close_fail;
1535 	if (do_truncate(file->f_dentry, 0, 0, file) != 0)
1536 		goto close_fail;
1537 
1538 	retval = binfmt->core_dump(signr, regs, file);
1539 
1540 	if (retval)
1541 		current->signal->group_exit_code |= 0x80;
1542 close_fail:
1543 	filp_close(file, NULL);
1544 fail_unlock:
1545 	current->fsuid = fsuid;
1546 	complete_all(&mm->core_done);
1547 fail:
1548 	return retval;
1549 }
1550