1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/perf_event.h> 37 #include <linux/highmem.h> 38 #include <linux/spinlock.h> 39 #include <linux/key.h> 40 #include <linux/personality.h> 41 #include <linux/binfmts.h> 42 #include <linux/utsname.h> 43 #include <linux/pid_namespace.h> 44 #include <linux/module.h> 45 #include <linux/namei.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 #include <linux/oom.h> 58 #include <linux/compat.h> 59 #include <linux/vmalloc.h> 60 61 #include <asm/uaccess.h> 62 #include <asm/mmu_context.h> 63 #include <asm/tlb.h> 64 65 #include <trace/events/task.h> 66 #include "internal.h" 67 68 #include <trace/events/sched.h> 69 70 int suid_dumpable = 0; 71 72 static LIST_HEAD(formats); 73 static DEFINE_RWLOCK(binfmt_lock); 74 75 void __register_binfmt(struct linux_binfmt * fmt, int insert) 76 { 77 BUG_ON(!fmt); 78 if (WARN_ON(!fmt->load_binary)) 79 return; 80 write_lock(&binfmt_lock); 81 insert ? list_add(&fmt->lh, &formats) : 82 list_add_tail(&fmt->lh, &formats); 83 write_unlock(&binfmt_lock); 84 } 85 86 EXPORT_SYMBOL(__register_binfmt); 87 88 void unregister_binfmt(struct linux_binfmt * fmt) 89 { 90 write_lock(&binfmt_lock); 91 list_del(&fmt->lh); 92 write_unlock(&binfmt_lock); 93 } 94 95 EXPORT_SYMBOL(unregister_binfmt); 96 97 static inline void put_binfmt(struct linux_binfmt * fmt) 98 { 99 module_put(fmt->module); 100 } 101 102 bool path_noexec(const struct path *path) 103 { 104 return (path->mnt->mnt_flags & MNT_NOEXEC) || 105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 106 } 107 108 #ifdef CONFIG_USELIB 109 /* 110 * Note that a shared library must be both readable and executable due to 111 * security reasons. 112 * 113 * Also note that we take the address to load from from the file itself. 114 */ 115 SYSCALL_DEFINE1(uselib, const char __user *, library) 116 { 117 struct linux_binfmt *fmt; 118 struct file *file; 119 struct filename *tmp = getname(library); 120 int error = PTR_ERR(tmp); 121 static const struct open_flags uselib_flags = { 122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 123 .acc_mode = MAY_READ | MAY_EXEC, 124 .intent = LOOKUP_OPEN, 125 .lookup_flags = LOOKUP_FOLLOW, 126 }; 127 128 if (IS_ERR(tmp)) 129 goto out; 130 131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 132 putname(tmp); 133 error = PTR_ERR(file); 134 if (IS_ERR(file)) 135 goto out; 136 137 error = -EINVAL; 138 if (!S_ISREG(file_inode(file)->i_mode)) 139 goto exit; 140 141 error = -EACCES; 142 if (path_noexec(&file->f_path)) 143 goto exit; 144 145 fsnotify_open(file); 146 147 error = -ENOEXEC; 148 149 read_lock(&binfmt_lock); 150 list_for_each_entry(fmt, &formats, lh) { 151 if (!fmt->load_shlib) 152 continue; 153 if (!try_module_get(fmt->module)) 154 continue; 155 read_unlock(&binfmt_lock); 156 error = fmt->load_shlib(file); 157 read_lock(&binfmt_lock); 158 put_binfmt(fmt); 159 if (error != -ENOEXEC) 160 break; 161 } 162 read_unlock(&binfmt_lock); 163 exit: 164 fput(file); 165 out: 166 return error; 167 } 168 #endif /* #ifdef CONFIG_USELIB */ 169 170 #ifdef CONFIG_MMU 171 /* 172 * The nascent bprm->mm is not visible until exec_mmap() but it can 173 * use a lot of memory, account these pages in current->mm temporary 174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 175 * change the counter back via acct_arg_size(0). 176 */ 177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 178 { 179 struct mm_struct *mm = current->mm; 180 long diff = (long)(pages - bprm->vma_pages); 181 182 if (!mm || !diff) 183 return; 184 185 bprm->vma_pages = pages; 186 add_mm_counter(mm, MM_ANONPAGES, diff); 187 } 188 189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 190 int write) 191 { 192 struct page *page; 193 int ret; 194 195 #ifdef CONFIG_STACK_GROWSUP 196 if (write) { 197 ret = expand_downwards(bprm->vma, pos); 198 if (ret < 0) 199 return NULL; 200 } 201 #endif 202 ret = get_user_pages(current, bprm->mm, pos, 203 1, write, 1, &page, NULL); 204 if (ret <= 0) 205 return NULL; 206 207 if (write) { 208 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 209 struct rlimit *rlim; 210 211 acct_arg_size(bprm, size / PAGE_SIZE); 212 213 /* 214 * We've historically supported up to 32 pages (ARG_MAX) 215 * of argument strings even with small stacks 216 */ 217 if (size <= ARG_MAX) 218 return page; 219 220 /* 221 * Limit to 1/4-th the stack size for the argv+env strings. 222 * This ensures that: 223 * - the remaining binfmt code will not run out of stack space, 224 * - the program will have a reasonable amount of stack left 225 * to work from. 226 */ 227 rlim = current->signal->rlim; 228 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 229 put_page(page); 230 return NULL; 231 } 232 } 233 234 return page; 235 } 236 237 static void put_arg_page(struct page *page) 238 { 239 put_page(page); 240 } 241 242 static void free_arg_page(struct linux_binprm *bprm, int i) 243 { 244 } 245 246 static void free_arg_pages(struct linux_binprm *bprm) 247 { 248 } 249 250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 251 struct page *page) 252 { 253 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 254 } 255 256 static int __bprm_mm_init(struct linux_binprm *bprm) 257 { 258 int err; 259 struct vm_area_struct *vma = NULL; 260 struct mm_struct *mm = bprm->mm; 261 262 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 263 if (!vma) 264 return -ENOMEM; 265 266 down_write(&mm->mmap_sem); 267 vma->vm_mm = mm; 268 269 /* 270 * Place the stack at the largest stack address the architecture 271 * supports. Later, we'll move this to an appropriate place. We don't 272 * use STACK_TOP because that can depend on attributes which aren't 273 * configured yet. 274 */ 275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 276 vma->vm_end = STACK_TOP_MAX; 277 vma->vm_start = vma->vm_end - PAGE_SIZE; 278 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 280 INIT_LIST_HEAD(&vma->anon_vma_chain); 281 282 err = insert_vm_struct(mm, vma); 283 if (err) 284 goto err; 285 286 mm->stack_vm = mm->total_vm = 1; 287 arch_bprm_mm_init(mm, vma); 288 up_write(&mm->mmap_sem); 289 bprm->p = vma->vm_end - sizeof(void *); 290 return 0; 291 err: 292 up_write(&mm->mmap_sem); 293 bprm->vma = NULL; 294 kmem_cache_free(vm_area_cachep, vma); 295 return err; 296 } 297 298 static bool valid_arg_len(struct linux_binprm *bprm, long len) 299 { 300 return len <= MAX_ARG_STRLEN; 301 } 302 303 #else 304 305 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 306 { 307 } 308 309 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 310 int write) 311 { 312 struct page *page; 313 314 page = bprm->page[pos / PAGE_SIZE]; 315 if (!page && write) { 316 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 317 if (!page) 318 return NULL; 319 bprm->page[pos / PAGE_SIZE] = page; 320 } 321 322 return page; 323 } 324 325 static void put_arg_page(struct page *page) 326 { 327 } 328 329 static void free_arg_page(struct linux_binprm *bprm, int i) 330 { 331 if (bprm->page[i]) { 332 __free_page(bprm->page[i]); 333 bprm->page[i] = NULL; 334 } 335 } 336 337 static void free_arg_pages(struct linux_binprm *bprm) 338 { 339 int i; 340 341 for (i = 0; i < MAX_ARG_PAGES; i++) 342 free_arg_page(bprm, i); 343 } 344 345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 346 struct page *page) 347 { 348 } 349 350 static int __bprm_mm_init(struct linux_binprm *bprm) 351 { 352 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 353 return 0; 354 } 355 356 static bool valid_arg_len(struct linux_binprm *bprm, long len) 357 { 358 return len <= bprm->p; 359 } 360 361 #endif /* CONFIG_MMU */ 362 363 /* 364 * Create a new mm_struct and populate it with a temporary stack 365 * vm_area_struct. We don't have enough context at this point to set the stack 366 * flags, permissions, and offset, so we use temporary values. We'll update 367 * them later in setup_arg_pages(). 368 */ 369 static int bprm_mm_init(struct linux_binprm *bprm) 370 { 371 int err; 372 struct mm_struct *mm = NULL; 373 374 bprm->mm = mm = mm_alloc(); 375 err = -ENOMEM; 376 if (!mm) 377 goto err; 378 379 err = __bprm_mm_init(bprm); 380 if (err) 381 goto err; 382 383 return 0; 384 385 err: 386 if (mm) { 387 bprm->mm = NULL; 388 mmdrop(mm); 389 } 390 391 return err; 392 } 393 394 struct user_arg_ptr { 395 #ifdef CONFIG_COMPAT 396 bool is_compat; 397 #endif 398 union { 399 const char __user *const __user *native; 400 #ifdef CONFIG_COMPAT 401 const compat_uptr_t __user *compat; 402 #endif 403 } ptr; 404 }; 405 406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 407 { 408 const char __user *native; 409 410 #ifdef CONFIG_COMPAT 411 if (unlikely(argv.is_compat)) { 412 compat_uptr_t compat; 413 414 if (get_user(compat, argv.ptr.compat + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return compat_ptr(compat); 418 } 419 #endif 420 421 if (get_user(native, argv.ptr.native + nr)) 422 return ERR_PTR(-EFAULT); 423 424 return native; 425 } 426 427 /* 428 * count() counts the number of strings in array ARGV. 429 */ 430 static int count(struct user_arg_ptr argv, int max) 431 { 432 int i = 0; 433 434 if (argv.ptr.native != NULL) { 435 for (;;) { 436 const char __user *p = get_user_arg_ptr(argv, i); 437 438 if (!p) 439 break; 440 441 if (IS_ERR(p)) 442 return -EFAULT; 443 444 if (i >= max) 445 return -E2BIG; 446 ++i; 447 448 if (fatal_signal_pending(current)) 449 return -ERESTARTNOHAND; 450 cond_resched(); 451 } 452 } 453 return i; 454 } 455 456 /* 457 * 'copy_strings()' copies argument/environment strings from the old 458 * processes's memory to the new process's stack. The call to get_user_pages() 459 * ensures the destination page is created and not swapped out. 460 */ 461 static int copy_strings(int argc, struct user_arg_ptr argv, 462 struct linux_binprm *bprm) 463 { 464 struct page *kmapped_page = NULL; 465 char *kaddr = NULL; 466 unsigned long kpos = 0; 467 int ret; 468 469 while (argc-- > 0) { 470 const char __user *str; 471 int len; 472 unsigned long pos; 473 474 ret = -EFAULT; 475 str = get_user_arg_ptr(argv, argc); 476 if (IS_ERR(str)) 477 goto out; 478 479 len = strnlen_user(str, MAX_ARG_STRLEN); 480 if (!len) 481 goto out; 482 483 ret = -E2BIG; 484 if (!valid_arg_len(bprm, len)) 485 goto out; 486 487 /* We're going to work our way backwords. */ 488 pos = bprm->p; 489 str += len; 490 bprm->p -= len; 491 492 while (len > 0) { 493 int offset, bytes_to_copy; 494 495 if (fatal_signal_pending(current)) { 496 ret = -ERESTARTNOHAND; 497 goto out; 498 } 499 cond_resched(); 500 501 offset = pos % PAGE_SIZE; 502 if (offset == 0) 503 offset = PAGE_SIZE; 504 505 bytes_to_copy = offset; 506 if (bytes_to_copy > len) 507 bytes_to_copy = len; 508 509 offset -= bytes_to_copy; 510 pos -= bytes_to_copy; 511 str -= bytes_to_copy; 512 len -= bytes_to_copy; 513 514 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 515 struct page *page; 516 517 page = get_arg_page(bprm, pos, 1); 518 if (!page) { 519 ret = -E2BIG; 520 goto out; 521 } 522 523 if (kmapped_page) { 524 flush_kernel_dcache_page(kmapped_page); 525 kunmap(kmapped_page); 526 put_arg_page(kmapped_page); 527 } 528 kmapped_page = page; 529 kaddr = kmap(kmapped_page); 530 kpos = pos & PAGE_MASK; 531 flush_arg_page(bprm, kpos, kmapped_page); 532 } 533 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 534 ret = -EFAULT; 535 goto out; 536 } 537 } 538 } 539 ret = 0; 540 out: 541 if (kmapped_page) { 542 flush_kernel_dcache_page(kmapped_page); 543 kunmap(kmapped_page); 544 put_arg_page(kmapped_page); 545 } 546 return ret; 547 } 548 549 /* 550 * Like copy_strings, but get argv and its values from kernel memory. 551 */ 552 int copy_strings_kernel(int argc, const char *const *__argv, 553 struct linux_binprm *bprm) 554 { 555 int r; 556 mm_segment_t oldfs = get_fs(); 557 struct user_arg_ptr argv = { 558 .ptr.native = (const char __user *const __user *)__argv, 559 }; 560 561 set_fs(KERNEL_DS); 562 r = copy_strings(argc, argv, bprm); 563 set_fs(oldfs); 564 565 return r; 566 } 567 EXPORT_SYMBOL(copy_strings_kernel); 568 569 #ifdef CONFIG_MMU 570 571 /* 572 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 573 * the binfmt code determines where the new stack should reside, we shift it to 574 * its final location. The process proceeds as follows: 575 * 576 * 1) Use shift to calculate the new vma endpoints. 577 * 2) Extend vma to cover both the old and new ranges. This ensures the 578 * arguments passed to subsequent functions are consistent. 579 * 3) Move vma's page tables to the new range. 580 * 4) Free up any cleared pgd range. 581 * 5) Shrink the vma to cover only the new range. 582 */ 583 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 584 { 585 struct mm_struct *mm = vma->vm_mm; 586 unsigned long old_start = vma->vm_start; 587 unsigned long old_end = vma->vm_end; 588 unsigned long length = old_end - old_start; 589 unsigned long new_start = old_start - shift; 590 unsigned long new_end = old_end - shift; 591 struct mmu_gather tlb; 592 593 BUG_ON(new_start > new_end); 594 595 /* 596 * ensure there are no vmas between where we want to go 597 * and where we are 598 */ 599 if (vma != find_vma(mm, new_start)) 600 return -EFAULT; 601 602 /* 603 * cover the whole range: [new_start, old_end) 604 */ 605 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 606 return -ENOMEM; 607 608 /* 609 * move the page tables downwards, on failure we rely on 610 * process cleanup to remove whatever mess we made. 611 */ 612 if (length != move_page_tables(vma, old_start, 613 vma, new_start, length, false)) 614 return -ENOMEM; 615 616 lru_add_drain(); 617 tlb_gather_mmu(&tlb, mm, old_start, old_end); 618 if (new_end > old_start) { 619 /* 620 * when the old and new regions overlap clear from new_end. 621 */ 622 free_pgd_range(&tlb, new_end, old_end, new_end, 623 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 624 } else { 625 /* 626 * otherwise, clean from old_start; this is done to not touch 627 * the address space in [new_end, old_start) some architectures 628 * have constraints on va-space that make this illegal (IA64) - 629 * for the others its just a little faster. 630 */ 631 free_pgd_range(&tlb, old_start, old_end, new_end, 632 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 633 } 634 tlb_finish_mmu(&tlb, old_start, old_end); 635 636 /* 637 * Shrink the vma to just the new range. Always succeeds. 638 */ 639 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 640 641 return 0; 642 } 643 644 /* 645 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 646 * the stack is optionally relocated, and some extra space is added. 647 */ 648 int setup_arg_pages(struct linux_binprm *bprm, 649 unsigned long stack_top, 650 int executable_stack) 651 { 652 unsigned long ret; 653 unsigned long stack_shift; 654 struct mm_struct *mm = current->mm; 655 struct vm_area_struct *vma = bprm->vma; 656 struct vm_area_struct *prev = NULL; 657 unsigned long vm_flags; 658 unsigned long stack_base; 659 unsigned long stack_size; 660 unsigned long stack_expand; 661 unsigned long rlim_stack; 662 663 #ifdef CONFIG_STACK_GROWSUP 664 /* Limit stack size */ 665 stack_base = rlimit_max(RLIMIT_STACK); 666 if (stack_base > STACK_SIZE_MAX) 667 stack_base = STACK_SIZE_MAX; 668 669 /* Add space for stack randomization. */ 670 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 671 672 /* Make sure we didn't let the argument array grow too large. */ 673 if (vma->vm_end - vma->vm_start > stack_base) 674 return -ENOMEM; 675 676 stack_base = PAGE_ALIGN(stack_top - stack_base); 677 678 stack_shift = vma->vm_start - stack_base; 679 mm->arg_start = bprm->p - stack_shift; 680 bprm->p = vma->vm_end - stack_shift; 681 #else 682 stack_top = arch_align_stack(stack_top); 683 stack_top = PAGE_ALIGN(stack_top); 684 685 if (unlikely(stack_top < mmap_min_addr) || 686 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 687 return -ENOMEM; 688 689 stack_shift = vma->vm_end - stack_top; 690 691 bprm->p -= stack_shift; 692 mm->arg_start = bprm->p; 693 #endif 694 695 if (bprm->loader) 696 bprm->loader -= stack_shift; 697 bprm->exec -= stack_shift; 698 699 down_write(&mm->mmap_sem); 700 vm_flags = VM_STACK_FLAGS; 701 702 /* 703 * Adjust stack execute permissions; explicitly enable for 704 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 705 * (arch default) otherwise. 706 */ 707 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 708 vm_flags |= VM_EXEC; 709 else if (executable_stack == EXSTACK_DISABLE_X) 710 vm_flags &= ~VM_EXEC; 711 vm_flags |= mm->def_flags; 712 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 713 714 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 715 vm_flags); 716 if (ret) 717 goto out_unlock; 718 BUG_ON(prev != vma); 719 720 /* Move stack pages down in memory. */ 721 if (stack_shift) { 722 ret = shift_arg_pages(vma, stack_shift); 723 if (ret) 724 goto out_unlock; 725 } 726 727 /* mprotect_fixup is overkill to remove the temporary stack flags */ 728 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 729 730 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 731 stack_size = vma->vm_end - vma->vm_start; 732 /* 733 * Align this down to a page boundary as expand_stack 734 * will align it up. 735 */ 736 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 737 #ifdef CONFIG_STACK_GROWSUP 738 if (stack_size + stack_expand > rlim_stack) 739 stack_base = vma->vm_start + rlim_stack; 740 else 741 stack_base = vma->vm_end + stack_expand; 742 #else 743 if (stack_size + stack_expand > rlim_stack) 744 stack_base = vma->vm_end - rlim_stack; 745 else 746 stack_base = vma->vm_start - stack_expand; 747 #endif 748 current->mm->start_stack = bprm->p; 749 ret = expand_stack(vma, stack_base); 750 if (ret) 751 ret = -EFAULT; 752 753 out_unlock: 754 up_write(&mm->mmap_sem); 755 return ret; 756 } 757 EXPORT_SYMBOL(setup_arg_pages); 758 759 #endif /* CONFIG_MMU */ 760 761 static struct file *do_open_execat(int fd, struct filename *name, int flags) 762 { 763 struct file *file; 764 int err; 765 struct open_flags open_exec_flags = { 766 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 767 .acc_mode = MAY_EXEC, 768 .intent = LOOKUP_OPEN, 769 .lookup_flags = LOOKUP_FOLLOW, 770 }; 771 772 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 773 return ERR_PTR(-EINVAL); 774 if (flags & AT_SYMLINK_NOFOLLOW) 775 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 776 if (flags & AT_EMPTY_PATH) 777 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 778 779 file = do_filp_open(fd, name, &open_exec_flags); 780 if (IS_ERR(file)) 781 goto out; 782 783 err = -EACCES; 784 if (!S_ISREG(file_inode(file)->i_mode)) 785 goto exit; 786 787 if (path_noexec(&file->f_path)) 788 goto exit; 789 790 err = deny_write_access(file); 791 if (err) 792 goto exit; 793 794 if (name->name[0] != '\0') 795 fsnotify_open(file); 796 797 out: 798 return file; 799 800 exit: 801 fput(file); 802 return ERR_PTR(err); 803 } 804 805 struct file *open_exec(const char *name) 806 { 807 struct filename *filename = getname_kernel(name); 808 struct file *f = ERR_CAST(filename); 809 810 if (!IS_ERR(filename)) { 811 f = do_open_execat(AT_FDCWD, filename, 0); 812 putname(filename); 813 } 814 return f; 815 } 816 EXPORT_SYMBOL(open_exec); 817 818 int kernel_read(struct file *file, loff_t offset, 819 char *addr, unsigned long count) 820 { 821 mm_segment_t old_fs; 822 loff_t pos = offset; 823 int result; 824 825 old_fs = get_fs(); 826 set_fs(get_ds()); 827 /* The cast to a user pointer is valid due to the set_fs() */ 828 result = vfs_read(file, (void __user *)addr, count, &pos); 829 set_fs(old_fs); 830 return result; 831 } 832 833 EXPORT_SYMBOL(kernel_read); 834 835 int kernel_read_file(struct file *file, void **buf, loff_t *size, 836 loff_t max_size, enum kernel_read_file_id id) 837 { 838 loff_t i_size, pos; 839 ssize_t bytes = 0; 840 int ret; 841 842 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 843 return -EINVAL; 844 845 ret = security_kernel_read_file(file, id); 846 if (ret) 847 return ret; 848 849 i_size = i_size_read(file_inode(file)); 850 if (max_size > 0 && i_size > max_size) 851 return -EFBIG; 852 if (i_size <= 0) 853 return -EINVAL; 854 855 *buf = vmalloc(i_size); 856 if (!*buf) 857 return -ENOMEM; 858 859 pos = 0; 860 while (pos < i_size) { 861 bytes = kernel_read(file, pos, (char *)(*buf) + pos, 862 i_size - pos); 863 if (bytes < 0) { 864 ret = bytes; 865 goto out; 866 } 867 868 if (bytes == 0) 869 break; 870 pos += bytes; 871 } 872 873 if (pos != i_size) { 874 ret = -EIO; 875 goto out; 876 } 877 878 ret = security_kernel_post_read_file(file, *buf, i_size, id); 879 if (!ret) 880 *size = pos; 881 882 out: 883 if (ret < 0) { 884 vfree(*buf); 885 *buf = NULL; 886 } 887 return ret; 888 } 889 EXPORT_SYMBOL_GPL(kernel_read_file); 890 891 int kernel_read_file_from_path(char *path, void **buf, loff_t *size, 892 loff_t max_size, enum kernel_read_file_id id) 893 { 894 struct file *file; 895 int ret; 896 897 if (!path || !*path) 898 return -EINVAL; 899 900 file = filp_open(path, O_RDONLY, 0); 901 if (IS_ERR(file)) 902 return PTR_ERR(file); 903 904 ret = kernel_read_file(file, buf, size, max_size, id); 905 fput(file); 906 return ret; 907 } 908 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 909 910 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 911 enum kernel_read_file_id id) 912 { 913 struct fd f = fdget(fd); 914 int ret = -EBADF; 915 916 if (!f.file) 917 goto out; 918 919 ret = kernel_read_file(f.file, buf, size, max_size, id); 920 out: 921 fdput(f); 922 return ret; 923 } 924 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 925 926 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 927 { 928 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 929 if (res > 0) 930 flush_icache_range(addr, addr + len); 931 return res; 932 } 933 EXPORT_SYMBOL(read_code); 934 935 static int exec_mmap(struct mm_struct *mm) 936 { 937 struct task_struct *tsk; 938 struct mm_struct *old_mm, *active_mm; 939 940 /* Notify parent that we're no longer interested in the old VM */ 941 tsk = current; 942 old_mm = current->mm; 943 mm_release(tsk, old_mm); 944 945 if (old_mm) { 946 sync_mm_rss(old_mm); 947 /* 948 * Make sure that if there is a core dump in progress 949 * for the old mm, we get out and die instead of going 950 * through with the exec. We must hold mmap_sem around 951 * checking core_state and changing tsk->mm. 952 */ 953 down_read(&old_mm->mmap_sem); 954 if (unlikely(old_mm->core_state)) { 955 up_read(&old_mm->mmap_sem); 956 return -EINTR; 957 } 958 } 959 task_lock(tsk); 960 active_mm = tsk->active_mm; 961 tsk->mm = mm; 962 tsk->active_mm = mm; 963 activate_mm(active_mm, mm); 964 tsk->mm->vmacache_seqnum = 0; 965 vmacache_flush(tsk); 966 task_unlock(tsk); 967 if (old_mm) { 968 up_read(&old_mm->mmap_sem); 969 BUG_ON(active_mm != old_mm); 970 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 971 mm_update_next_owner(old_mm); 972 mmput(old_mm); 973 return 0; 974 } 975 mmdrop(active_mm); 976 return 0; 977 } 978 979 /* 980 * This function makes sure the current process has its own signal table, 981 * so that flush_signal_handlers can later reset the handlers without 982 * disturbing other processes. (Other processes might share the signal 983 * table via the CLONE_SIGHAND option to clone().) 984 */ 985 static int de_thread(struct task_struct *tsk) 986 { 987 struct signal_struct *sig = tsk->signal; 988 struct sighand_struct *oldsighand = tsk->sighand; 989 spinlock_t *lock = &oldsighand->siglock; 990 991 if (thread_group_empty(tsk)) 992 goto no_thread_group; 993 994 /* 995 * Kill all other threads in the thread group. 996 */ 997 spin_lock_irq(lock); 998 if (signal_group_exit(sig)) { 999 /* 1000 * Another group action in progress, just 1001 * return so that the signal is processed. 1002 */ 1003 spin_unlock_irq(lock); 1004 return -EAGAIN; 1005 } 1006 1007 sig->group_exit_task = tsk; 1008 sig->notify_count = zap_other_threads(tsk); 1009 if (!thread_group_leader(tsk)) 1010 sig->notify_count--; 1011 1012 while (sig->notify_count) { 1013 __set_current_state(TASK_KILLABLE); 1014 spin_unlock_irq(lock); 1015 schedule(); 1016 if (unlikely(__fatal_signal_pending(tsk))) 1017 goto killed; 1018 spin_lock_irq(lock); 1019 } 1020 spin_unlock_irq(lock); 1021 1022 /* 1023 * At this point all other threads have exited, all we have to 1024 * do is to wait for the thread group leader to become inactive, 1025 * and to assume its PID: 1026 */ 1027 if (!thread_group_leader(tsk)) { 1028 struct task_struct *leader = tsk->group_leader; 1029 1030 for (;;) { 1031 threadgroup_change_begin(tsk); 1032 write_lock_irq(&tasklist_lock); 1033 /* 1034 * Do this under tasklist_lock to ensure that 1035 * exit_notify() can't miss ->group_exit_task 1036 */ 1037 sig->notify_count = -1; 1038 if (likely(leader->exit_state)) 1039 break; 1040 __set_current_state(TASK_KILLABLE); 1041 write_unlock_irq(&tasklist_lock); 1042 threadgroup_change_end(tsk); 1043 schedule(); 1044 if (unlikely(__fatal_signal_pending(tsk))) 1045 goto killed; 1046 } 1047 1048 /* 1049 * The only record we have of the real-time age of a 1050 * process, regardless of execs it's done, is start_time. 1051 * All the past CPU time is accumulated in signal_struct 1052 * from sister threads now dead. But in this non-leader 1053 * exec, nothing survives from the original leader thread, 1054 * whose birth marks the true age of this process now. 1055 * When we take on its identity by switching to its PID, we 1056 * also take its birthdate (always earlier than our own). 1057 */ 1058 tsk->start_time = leader->start_time; 1059 tsk->real_start_time = leader->real_start_time; 1060 1061 BUG_ON(!same_thread_group(leader, tsk)); 1062 BUG_ON(has_group_leader_pid(tsk)); 1063 /* 1064 * An exec() starts a new thread group with the 1065 * TGID of the previous thread group. Rehash the 1066 * two threads with a switched PID, and release 1067 * the former thread group leader: 1068 */ 1069 1070 /* Become a process group leader with the old leader's pid. 1071 * The old leader becomes a thread of the this thread group. 1072 * Note: The old leader also uses this pid until release_task 1073 * is called. Odd but simple and correct. 1074 */ 1075 tsk->pid = leader->pid; 1076 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1077 transfer_pid(leader, tsk, PIDTYPE_PGID); 1078 transfer_pid(leader, tsk, PIDTYPE_SID); 1079 1080 list_replace_rcu(&leader->tasks, &tsk->tasks); 1081 list_replace_init(&leader->sibling, &tsk->sibling); 1082 1083 tsk->group_leader = tsk; 1084 leader->group_leader = tsk; 1085 1086 tsk->exit_signal = SIGCHLD; 1087 leader->exit_signal = -1; 1088 1089 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1090 leader->exit_state = EXIT_DEAD; 1091 1092 /* 1093 * We are going to release_task()->ptrace_unlink() silently, 1094 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1095 * the tracer wont't block again waiting for this thread. 1096 */ 1097 if (unlikely(leader->ptrace)) 1098 __wake_up_parent(leader, leader->parent); 1099 write_unlock_irq(&tasklist_lock); 1100 threadgroup_change_end(tsk); 1101 1102 release_task(leader); 1103 } 1104 1105 sig->group_exit_task = NULL; 1106 sig->notify_count = 0; 1107 1108 no_thread_group: 1109 /* we have changed execution domain */ 1110 tsk->exit_signal = SIGCHLD; 1111 1112 exit_itimers(sig); 1113 flush_itimer_signals(); 1114 1115 if (atomic_read(&oldsighand->count) != 1) { 1116 struct sighand_struct *newsighand; 1117 /* 1118 * This ->sighand is shared with the CLONE_SIGHAND 1119 * but not CLONE_THREAD task, switch to the new one. 1120 */ 1121 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1122 if (!newsighand) 1123 return -ENOMEM; 1124 1125 atomic_set(&newsighand->count, 1); 1126 memcpy(newsighand->action, oldsighand->action, 1127 sizeof(newsighand->action)); 1128 1129 write_lock_irq(&tasklist_lock); 1130 spin_lock(&oldsighand->siglock); 1131 rcu_assign_pointer(tsk->sighand, newsighand); 1132 spin_unlock(&oldsighand->siglock); 1133 write_unlock_irq(&tasklist_lock); 1134 1135 __cleanup_sighand(oldsighand); 1136 } 1137 1138 BUG_ON(!thread_group_leader(tsk)); 1139 return 0; 1140 1141 killed: 1142 /* protects against exit_notify() and __exit_signal() */ 1143 read_lock(&tasklist_lock); 1144 sig->group_exit_task = NULL; 1145 sig->notify_count = 0; 1146 read_unlock(&tasklist_lock); 1147 return -EAGAIN; 1148 } 1149 1150 char *get_task_comm(char *buf, struct task_struct *tsk) 1151 { 1152 /* buf must be at least sizeof(tsk->comm) in size */ 1153 task_lock(tsk); 1154 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1155 task_unlock(tsk); 1156 return buf; 1157 } 1158 EXPORT_SYMBOL_GPL(get_task_comm); 1159 1160 /* 1161 * These functions flushes out all traces of the currently running executable 1162 * so that a new one can be started 1163 */ 1164 1165 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1166 { 1167 task_lock(tsk); 1168 trace_task_rename(tsk, buf); 1169 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1170 task_unlock(tsk); 1171 perf_event_comm(tsk, exec); 1172 } 1173 1174 int flush_old_exec(struct linux_binprm * bprm) 1175 { 1176 int retval; 1177 1178 /* 1179 * Make sure we have a private signal table and that 1180 * we are unassociated from the previous thread group. 1181 */ 1182 retval = de_thread(current); 1183 if (retval) 1184 goto out; 1185 1186 /* 1187 * Must be called _before_ exec_mmap() as bprm->mm is 1188 * not visibile until then. This also enables the update 1189 * to be lockless. 1190 */ 1191 set_mm_exe_file(bprm->mm, bprm->file); 1192 1193 /* 1194 * Release all of the old mmap stuff 1195 */ 1196 acct_arg_size(bprm, 0); 1197 retval = exec_mmap(bprm->mm); 1198 if (retval) 1199 goto out; 1200 1201 bprm->mm = NULL; /* We're using it now */ 1202 1203 set_fs(USER_DS); 1204 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1205 PF_NOFREEZE | PF_NO_SETAFFINITY); 1206 flush_thread(); 1207 current->personality &= ~bprm->per_clear; 1208 1209 return 0; 1210 1211 out: 1212 return retval; 1213 } 1214 EXPORT_SYMBOL(flush_old_exec); 1215 1216 void would_dump(struct linux_binprm *bprm, struct file *file) 1217 { 1218 if (inode_permission(file_inode(file), MAY_READ) < 0) 1219 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1220 } 1221 EXPORT_SYMBOL(would_dump); 1222 1223 void setup_new_exec(struct linux_binprm * bprm) 1224 { 1225 arch_pick_mmap_layout(current->mm); 1226 1227 /* This is the point of no return */ 1228 current->sas_ss_sp = current->sas_ss_size = 0; 1229 1230 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1231 set_dumpable(current->mm, SUID_DUMP_USER); 1232 else 1233 set_dumpable(current->mm, suid_dumpable); 1234 1235 perf_event_exec(); 1236 __set_task_comm(current, kbasename(bprm->filename), true); 1237 1238 /* Set the new mm task size. We have to do that late because it may 1239 * depend on TIF_32BIT which is only updated in flush_thread() on 1240 * some architectures like powerpc 1241 */ 1242 current->mm->task_size = TASK_SIZE; 1243 1244 /* install the new credentials */ 1245 if (!uid_eq(bprm->cred->uid, current_euid()) || 1246 !gid_eq(bprm->cred->gid, current_egid())) { 1247 current->pdeath_signal = 0; 1248 } else { 1249 would_dump(bprm, bprm->file); 1250 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1251 set_dumpable(current->mm, suid_dumpable); 1252 } 1253 1254 /* An exec changes our domain. We are no longer part of the thread 1255 group */ 1256 current->self_exec_id++; 1257 flush_signal_handlers(current, 0); 1258 do_close_on_exec(current->files); 1259 } 1260 EXPORT_SYMBOL(setup_new_exec); 1261 1262 /* 1263 * Prepare credentials and lock ->cred_guard_mutex. 1264 * install_exec_creds() commits the new creds and drops the lock. 1265 * Or, if exec fails before, free_bprm() should release ->cred and 1266 * and unlock. 1267 */ 1268 int prepare_bprm_creds(struct linux_binprm *bprm) 1269 { 1270 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1271 return -ERESTARTNOINTR; 1272 1273 bprm->cred = prepare_exec_creds(); 1274 if (likely(bprm->cred)) 1275 return 0; 1276 1277 mutex_unlock(¤t->signal->cred_guard_mutex); 1278 return -ENOMEM; 1279 } 1280 1281 static void free_bprm(struct linux_binprm *bprm) 1282 { 1283 free_arg_pages(bprm); 1284 if (bprm->cred) { 1285 mutex_unlock(¤t->signal->cred_guard_mutex); 1286 abort_creds(bprm->cred); 1287 } 1288 if (bprm->file) { 1289 allow_write_access(bprm->file); 1290 fput(bprm->file); 1291 } 1292 /* If a binfmt changed the interp, free it. */ 1293 if (bprm->interp != bprm->filename) 1294 kfree(bprm->interp); 1295 kfree(bprm); 1296 } 1297 1298 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1299 { 1300 /* If a binfmt changed the interp, free it first. */ 1301 if (bprm->interp != bprm->filename) 1302 kfree(bprm->interp); 1303 bprm->interp = kstrdup(interp, GFP_KERNEL); 1304 if (!bprm->interp) 1305 return -ENOMEM; 1306 return 0; 1307 } 1308 EXPORT_SYMBOL(bprm_change_interp); 1309 1310 /* 1311 * install the new credentials for this executable 1312 */ 1313 void install_exec_creds(struct linux_binprm *bprm) 1314 { 1315 security_bprm_committing_creds(bprm); 1316 1317 commit_creds(bprm->cred); 1318 bprm->cred = NULL; 1319 1320 /* 1321 * Disable monitoring for regular users 1322 * when executing setuid binaries. Must 1323 * wait until new credentials are committed 1324 * by commit_creds() above 1325 */ 1326 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1327 perf_event_exit_task(current); 1328 /* 1329 * cred_guard_mutex must be held at least to this point to prevent 1330 * ptrace_attach() from altering our determination of the task's 1331 * credentials; any time after this it may be unlocked. 1332 */ 1333 security_bprm_committed_creds(bprm); 1334 mutex_unlock(¤t->signal->cred_guard_mutex); 1335 } 1336 EXPORT_SYMBOL(install_exec_creds); 1337 1338 /* 1339 * determine how safe it is to execute the proposed program 1340 * - the caller must hold ->cred_guard_mutex to protect against 1341 * PTRACE_ATTACH or seccomp thread-sync 1342 */ 1343 static void check_unsafe_exec(struct linux_binprm *bprm) 1344 { 1345 struct task_struct *p = current, *t; 1346 unsigned n_fs; 1347 1348 if (p->ptrace) { 1349 if (p->ptrace & PT_PTRACE_CAP) 1350 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1351 else 1352 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1353 } 1354 1355 /* 1356 * This isn't strictly necessary, but it makes it harder for LSMs to 1357 * mess up. 1358 */ 1359 if (task_no_new_privs(current)) 1360 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1361 1362 t = p; 1363 n_fs = 1; 1364 spin_lock(&p->fs->lock); 1365 rcu_read_lock(); 1366 while_each_thread(p, t) { 1367 if (t->fs == p->fs) 1368 n_fs++; 1369 } 1370 rcu_read_unlock(); 1371 1372 if (p->fs->users > n_fs) 1373 bprm->unsafe |= LSM_UNSAFE_SHARE; 1374 else 1375 p->fs->in_exec = 1; 1376 spin_unlock(&p->fs->lock); 1377 } 1378 1379 static void bprm_fill_uid(struct linux_binprm *bprm) 1380 { 1381 struct inode *inode; 1382 unsigned int mode; 1383 kuid_t uid; 1384 kgid_t gid; 1385 1386 /* clear any previous set[ug]id data from a previous binary */ 1387 bprm->cred->euid = current_euid(); 1388 bprm->cred->egid = current_egid(); 1389 1390 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 1391 return; 1392 1393 if (task_no_new_privs(current)) 1394 return; 1395 1396 inode = file_inode(bprm->file); 1397 mode = READ_ONCE(inode->i_mode); 1398 if (!(mode & (S_ISUID|S_ISGID))) 1399 return; 1400 1401 /* Be careful if suid/sgid is set */ 1402 inode_lock(inode); 1403 1404 /* reload atomically mode/uid/gid now that lock held */ 1405 mode = inode->i_mode; 1406 uid = inode->i_uid; 1407 gid = inode->i_gid; 1408 inode_unlock(inode); 1409 1410 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1411 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1412 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1413 return; 1414 1415 if (mode & S_ISUID) { 1416 bprm->per_clear |= PER_CLEAR_ON_SETID; 1417 bprm->cred->euid = uid; 1418 } 1419 1420 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1421 bprm->per_clear |= PER_CLEAR_ON_SETID; 1422 bprm->cred->egid = gid; 1423 } 1424 } 1425 1426 /* 1427 * Fill the binprm structure from the inode. 1428 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1429 * 1430 * This may be called multiple times for binary chains (scripts for example). 1431 */ 1432 int prepare_binprm(struct linux_binprm *bprm) 1433 { 1434 int retval; 1435 1436 bprm_fill_uid(bprm); 1437 1438 /* fill in binprm security blob */ 1439 retval = security_bprm_set_creds(bprm); 1440 if (retval) 1441 return retval; 1442 bprm->cred_prepared = 1; 1443 1444 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1445 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1446 } 1447 1448 EXPORT_SYMBOL(prepare_binprm); 1449 1450 /* 1451 * Arguments are '\0' separated strings found at the location bprm->p 1452 * points to; chop off the first by relocating brpm->p to right after 1453 * the first '\0' encountered. 1454 */ 1455 int remove_arg_zero(struct linux_binprm *bprm) 1456 { 1457 int ret = 0; 1458 unsigned long offset; 1459 char *kaddr; 1460 struct page *page; 1461 1462 if (!bprm->argc) 1463 return 0; 1464 1465 do { 1466 offset = bprm->p & ~PAGE_MASK; 1467 page = get_arg_page(bprm, bprm->p, 0); 1468 if (!page) { 1469 ret = -EFAULT; 1470 goto out; 1471 } 1472 kaddr = kmap_atomic(page); 1473 1474 for (; offset < PAGE_SIZE && kaddr[offset]; 1475 offset++, bprm->p++) 1476 ; 1477 1478 kunmap_atomic(kaddr); 1479 put_arg_page(page); 1480 1481 if (offset == PAGE_SIZE) 1482 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1483 } while (offset == PAGE_SIZE); 1484 1485 bprm->p++; 1486 bprm->argc--; 1487 ret = 0; 1488 1489 out: 1490 return ret; 1491 } 1492 EXPORT_SYMBOL(remove_arg_zero); 1493 1494 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1495 /* 1496 * cycle the list of binary formats handler, until one recognizes the image 1497 */ 1498 int search_binary_handler(struct linux_binprm *bprm) 1499 { 1500 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1501 struct linux_binfmt *fmt; 1502 int retval; 1503 1504 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1505 if (bprm->recursion_depth > 5) 1506 return -ELOOP; 1507 1508 retval = security_bprm_check(bprm); 1509 if (retval) 1510 return retval; 1511 1512 retval = -ENOENT; 1513 retry: 1514 read_lock(&binfmt_lock); 1515 list_for_each_entry(fmt, &formats, lh) { 1516 if (!try_module_get(fmt->module)) 1517 continue; 1518 read_unlock(&binfmt_lock); 1519 bprm->recursion_depth++; 1520 retval = fmt->load_binary(bprm); 1521 read_lock(&binfmt_lock); 1522 put_binfmt(fmt); 1523 bprm->recursion_depth--; 1524 if (retval < 0 && !bprm->mm) { 1525 /* we got to flush_old_exec() and failed after it */ 1526 read_unlock(&binfmt_lock); 1527 force_sigsegv(SIGSEGV, current); 1528 return retval; 1529 } 1530 if (retval != -ENOEXEC || !bprm->file) { 1531 read_unlock(&binfmt_lock); 1532 return retval; 1533 } 1534 } 1535 read_unlock(&binfmt_lock); 1536 1537 if (need_retry) { 1538 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1539 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1540 return retval; 1541 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1542 return retval; 1543 need_retry = false; 1544 goto retry; 1545 } 1546 1547 return retval; 1548 } 1549 EXPORT_SYMBOL(search_binary_handler); 1550 1551 static int exec_binprm(struct linux_binprm *bprm) 1552 { 1553 pid_t old_pid, old_vpid; 1554 int ret; 1555 1556 /* Need to fetch pid before load_binary changes it */ 1557 old_pid = current->pid; 1558 rcu_read_lock(); 1559 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1560 rcu_read_unlock(); 1561 1562 ret = search_binary_handler(bprm); 1563 if (ret >= 0) { 1564 audit_bprm(bprm); 1565 trace_sched_process_exec(current, old_pid, bprm); 1566 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1567 proc_exec_connector(current); 1568 } 1569 1570 return ret; 1571 } 1572 1573 /* 1574 * sys_execve() executes a new program. 1575 */ 1576 static int do_execveat_common(int fd, struct filename *filename, 1577 struct user_arg_ptr argv, 1578 struct user_arg_ptr envp, 1579 int flags) 1580 { 1581 char *pathbuf = NULL; 1582 struct linux_binprm *bprm; 1583 struct file *file; 1584 struct files_struct *displaced; 1585 int retval; 1586 1587 if (IS_ERR(filename)) 1588 return PTR_ERR(filename); 1589 1590 /* 1591 * We move the actual failure in case of RLIMIT_NPROC excess from 1592 * set*uid() to execve() because too many poorly written programs 1593 * don't check setuid() return code. Here we additionally recheck 1594 * whether NPROC limit is still exceeded. 1595 */ 1596 if ((current->flags & PF_NPROC_EXCEEDED) && 1597 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1598 retval = -EAGAIN; 1599 goto out_ret; 1600 } 1601 1602 /* We're below the limit (still or again), so we don't want to make 1603 * further execve() calls fail. */ 1604 current->flags &= ~PF_NPROC_EXCEEDED; 1605 1606 retval = unshare_files(&displaced); 1607 if (retval) 1608 goto out_ret; 1609 1610 retval = -ENOMEM; 1611 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1612 if (!bprm) 1613 goto out_files; 1614 1615 retval = prepare_bprm_creds(bprm); 1616 if (retval) 1617 goto out_free; 1618 1619 check_unsafe_exec(bprm); 1620 current->in_execve = 1; 1621 1622 file = do_open_execat(fd, filename, flags); 1623 retval = PTR_ERR(file); 1624 if (IS_ERR(file)) 1625 goto out_unmark; 1626 1627 sched_exec(); 1628 1629 bprm->file = file; 1630 if (fd == AT_FDCWD || filename->name[0] == '/') { 1631 bprm->filename = filename->name; 1632 } else { 1633 if (filename->name[0] == '\0') 1634 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd); 1635 else 1636 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s", 1637 fd, filename->name); 1638 if (!pathbuf) { 1639 retval = -ENOMEM; 1640 goto out_unmark; 1641 } 1642 /* 1643 * Record that a name derived from an O_CLOEXEC fd will be 1644 * inaccessible after exec. Relies on having exclusive access to 1645 * current->files (due to unshare_files above). 1646 */ 1647 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1648 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1649 bprm->filename = pathbuf; 1650 } 1651 bprm->interp = bprm->filename; 1652 1653 retval = bprm_mm_init(bprm); 1654 if (retval) 1655 goto out_unmark; 1656 1657 bprm->argc = count(argv, MAX_ARG_STRINGS); 1658 if ((retval = bprm->argc) < 0) 1659 goto out; 1660 1661 bprm->envc = count(envp, MAX_ARG_STRINGS); 1662 if ((retval = bprm->envc) < 0) 1663 goto out; 1664 1665 retval = prepare_binprm(bprm); 1666 if (retval < 0) 1667 goto out; 1668 1669 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1670 if (retval < 0) 1671 goto out; 1672 1673 bprm->exec = bprm->p; 1674 retval = copy_strings(bprm->envc, envp, bprm); 1675 if (retval < 0) 1676 goto out; 1677 1678 retval = copy_strings(bprm->argc, argv, bprm); 1679 if (retval < 0) 1680 goto out; 1681 1682 retval = exec_binprm(bprm); 1683 if (retval < 0) 1684 goto out; 1685 1686 /* execve succeeded */ 1687 current->fs->in_exec = 0; 1688 current->in_execve = 0; 1689 acct_update_integrals(current); 1690 task_numa_free(current); 1691 free_bprm(bprm); 1692 kfree(pathbuf); 1693 putname(filename); 1694 if (displaced) 1695 put_files_struct(displaced); 1696 return retval; 1697 1698 out: 1699 if (bprm->mm) { 1700 acct_arg_size(bprm, 0); 1701 mmput(bprm->mm); 1702 } 1703 1704 out_unmark: 1705 current->fs->in_exec = 0; 1706 current->in_execve = 0; 1707 1708 out_free: 1709 free_bprm(bprm); 1710 kfree(pathbuf); 1711 1712 out_files: 1713 if (displaced) 1714 reset_files_struct(displaced); 1715 out_ret: 1716 putname(filename); 1717 return retval; 1718 } 1719 1720 int do_execve(struct filename *filename, 1721 const char __user *const __user *__argv, 1722 const char __user *const __user *__envp) 1723 { 1724 struct user_arg_ptr argv = { .ptr.native = __argv }; 1725 struct user_arg_ptr envp = { .ptr.native = __envp }; 1726 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1727 } 1728 1729 int do_execveat(int fd, struct filename *filename, 1730 const char __user *const __user *__argv, 1731 const char __user *const __user *__envp, 1732 int flags) 1733 { 1734 struct user_arg_ptr argv = { .ptr.native = __argv }; 1735 struct user_arg_ptr envp = { .ptr.native = __envp }; 1736 1737 return do_execveat_common(fd, filename, argv, envp, flags); 1738 } 1739 1740 #ifdef CONFIG_COMPAT 1741 static int compat_do_execve(struct filename *filename, 1742 const compat_uptr_t __user *__argv, 1743 const compat_uptr_t __user *__envp) 1744 { 1745 struct user_arg_ptr argv = { 1746 .is_compat = true, 1747 .ptr.compat = __argv, 1748 }; 1749 struct user_arg_ptr envp = { 1750 .is_compat = true, 1751 .ptr.compat = __envp, 1752 }; 1753 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1754 } 1755 1756 static int compat_do_execveat(int fd, struct filename *filename, 1757 const compat_uptr_t __user *__argv, 1758 const compat_uptr_t __user *__envp, 1759 int flags) 1760 { 1761 struct user_arg_ptr argv = { 1762 .is_compat = true, 1763 .ptr.compat = __argv, 1764 }; 1765 struct user_arg_ptr envp = { 1766 .is_compat = true, 1767 .ptr.compat = __envp, 1768 }; 1769 return do_execveat_common(fd, filename, argv, envp, flags); 1770 } 1771 #endif 1772 1773 void set_binfmt(struct linux_binfmt *new) 1774 { 1775 struct mm_struct *mm = current->mm; 1776 1777 if (mm->binfmt) 1778 module_put(mm->binfmt->module); 1779 1780 mm->binfmt = new; 1781 if (new) 1782 __module_get(new->module); 1783 } 1784 EXPORT_SYMBOL(set_binfmt); 1785 1786 /* 1787 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1788 */ 1789 void set_dumpable(struct mm_struct *mm, int value) 1790 { 1791 unsigned long old, new; 1792 1793 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1794 return; 1795 1796 do { 1797 old = ACCESS_ONCE(mm->flags); 1798 new = (old & ~MMF_DUMPABLE_MASK) | value; 1799 } while (cmpxchg(&mm->flags, old, new) != old); 1800 } 1801 1802 SYSCALL_DEFINE3(execve, 1803 const char __user *, filename, 1804 const char __user *const __user *, argv, 1805 const char __user *const __user *, envp) 1806 { 1807 return do_execve(getname(filename), argv, envp); 1808 } 1809 1810 SYSCALL_DEFINE5(execveat, 1811 int, fd, const char __user *, filename, 1812 const char __user *const __user *, argv, 1813 const char __user *const __user *, envp, 1814 int, flags) 1815 { 1816 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1817 1818 return do_execveat(fd, 1819 getname_flags(filename, lookup_flags, NULL), 1820 argv, envp, flags); 1821 } 1822 1823 #ifdef CONFIG_COMPAT 1824 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1825 const compat_uptr_t __user *, argv, 1826 const compat_uptr_t __user *, envp) 1827 { 1828 return compat_do_execve(getname(filename), argv, envp); 1829 } 1830 1831 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1832 const char __user *, filename, 1833 const compat_uptr_t __user *, argv, 1834 const compat_uptr_t __user *, envp, 1835 int, flags) 1836 { 1837 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1838 1839 return compat_do_execveat(fd, 1840 getname_flags(filename, lookup_flags, NULL), 1841 argv, envp, flags); 1842 } 1843 #endif 1844