xref: /linux/fs/exec.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
54 
55 #ifdef CONFIG_KMOD
56 #include <linux/kmod.h>
57 #endif
58 
59 int core_uses_pid;
60 char core_pattern[65] = "core";
61 int suid_dumpable = 0;
62 
63 EXPORT_SYMBOL(suid_dumpable);
64 /* The maximal length of core_pattern is also specified in sysctl.c */
65 
66 static struct linux_binfmt *formats;
67 static DEFINE_RWLOCK(binfmt_lock);
68 
69 int register_binfmt(struct linux_binfmt * fmt)
70 {
71 	struct linux_binfmt ** tmp = &formats;
72 
73 	if (!fmt)
74 		return -EINVAL;
75 	if (fmt->next)
76 		return -EBUSY;
77 	write_lock(&binfmt_lock);
78 	while (*tmp) {
79 		if (fmt == *tmp) {
80 			write_unlock(&binfmt_lock);
81 			return -EBUSY;
82 		}
83 		tmp = &(*tmp)->next;
84 	}
85 	fmt->next = formats;
86 	formats = fmt;
87 	write_unlock(&binfmt_lock);
88 	return 0;
89 }
90 
91 EXPORT_SYMBOL(register_binfmt);
92 
93 int unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	struct linux_binfmt ** tmp = &formats;
96 
97 	write_lock(&binfmt_lock);
98 	while (*tmp) {
99 		if (fmt == *tmp) {
100 			*tmp = fmt->next;
101 			write_unlock(&binfmt_lock);
102 			return 0;
103 		}
104 		tmp = &(*tmp)->next;
105 	}
106 	write_unlock(&binfmt_lock);
107 	return -EINVAL;
108 }
109 
110 EXPORT_SYMBOL(unregister_binfmt);
111 
112 static inline void put_binfmt(struct linux_binfmt * fmt)
113 {
114 	module_put(fmt->module);
115 }
116 
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from from the file itself.
122  */
123 asmlinkage long sys_uselib(const char __user * library)
124 {
125 	struct file * file;
126 	struct nameidata nd;
127 	int error;
128 
129 	nd.intent.open.flags = FMODE_READ;
130 	error = __user_walk(library, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
131 	if (error)
132 		goto out;
133 
134 	error = -EINVAL;
135 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
136 		goto exit;
137 
138 	error = permission(nd.dentry->d_inode, MAY_READ | MAY_EXEC, &nd);
139 	if (error)
140 		goto exit;
141 
142 	file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	error = -ENOEXEC;
148 	if(file->f_op) {
149 		struct linux_binfmt * fmt;
150 
151 		read_lock(&binfmt_lock);
152 		for (fmt = formats ; fmt ; fmt = fmt->next) {
153 			if (!fmt->load_shlib)
154 				continue;
155 			if (!try_module_get(fmt->module))
156 				continue;
157 			read_unlock(&binfmt_lock);
158 			error = fmt->load_shlib(file);
159 			read_lock(&binfmt_lock);
160 			put_binfmt(fmt);
161 			if (error != -ENOEXEC)
162 				break;
163 		}
164 		read_unlock(&binfmt_lock);
165 	}
166 	fput(file);
167 out:
168   	return error;
169 exit:
170 	path_release(&nd);
171 	goto out;
172 }
173 
174 /*
175  * count() counts the number of strings in array ARGV.
176  */
177 static int count(char __user * __user * argv, int max)
178 {
179 	int i = 0;
180 
181 	if (argv != NULL) {
182 		for (;;) {
183 			char __user * p;
184 
185 			if (get_user(p, argv))
186 				return -EFAULT;
187 			if (!p)
188 				break;
189 			argv++;
190 			if(++i > max)
191 				return -E2BIG;
192 			cond_resched();
193 		}
194 	}
195 	return i;
196 }
197 
198 /*
199  * 'copy_strings()' copies argument/environment strings from user
200  * memory to free pages in kernel mem. These are in a format ready
201  * to be put directly into the top of new user memory.
202  */
203 static int copy_strings(int argc, char __user * __user * argv,
204 			struct linux_binprm *bprm)
205 {
206 	struct page *kmapped_page = NULL;
207 	char *kaddr = NULL;
208 	int ret;
209 
210 	while (argc-- > 0) {
211 		char __user *str;
212 		int len;
213 		unsigned long pos;
214 
215 		if (get_user(str, argv+argc) ||
216 				!(len = strnlen_user(str, bprm->p))) {
217 			ret = -EFAULT;
218 			goto out;
219 		}
220 
221 		if (bprm->p < len)  {
222 			ret = -E2BIG;
223 			goto out;
224 		}
225 
226 		bprm->p -= len;
227 		/* XXX: add architecture specific overflow check here. */
228 		pos = bprm->p;
229 
230 		while (len > 0) {
231 			int i, new, err;
232 			int offset, bytes_to_copy;
233 			struct page *page;
234 
235 			offset = pos % PAGE_SIZE;
236 			i = pos/PAGE_SIZE;
237 			page = bprm->page[i];
238 			new = 0;
239 			if (!page) {
240 				page = alloc_page(GFP_HIGHUSER);
241 				bprm->page[i] = page;
242 				if (!page) {
243 					ret = -ENOMEM;
244 					goto out;
245 				}
246 				new = 1;
247 			}
248 
249 			if (page != kmapped_page) {
250 				if (kmapped_page)
251 					kunmap(kmapped_page);
252 				kmapped_page = page;
253 				kaddr = kmap(kmapped_page);
254 			}
255 			if (new && offset)
256 				memset(kaddr, 0, offset);
257 			bytes_to_copy = PAGE_SIZE - offset;
258 			if (bytes_to_copy > len) {
259 				bytes_to_copy = len;
260 				if (new)
261 					memset(kaddr+offset+len, 0,
262 						PAGE_SIZE-offset-len);
263 			}
264 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
265 			if (err) {
266 				ret = -EFAULT;
267 				goto out;
268 			}
269 
270 			pos += bytes_to_copy;
271 			str += bytes_to_copy;
272 			len -= bytes_to_copy;
273 		}
274 	}
275 	ret = 0;
276 out:
277 	if (kmapped_page)
278 		kunmap(kmapped_page);
279 	return ret;
280 }
281 
282 /*
283  * Like copy_strings, but get argv and its values from kernel memory.
284  */
285 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
286 {
287 	int r;
288 	mm_segment_t oldfs = get_fs();
289 	set_fs(KERNEL_DS);
290 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
291 	set_fs(oldfs);
292 	return r;
293 }
294 
295 EXPORT_SYMBOL(copy_strings_kernel);
296 
297 #ifdef CONFIG_MMU
298 /*
299  * This routine is used to map in a page into an address space: needed by
300  * execve() for the initial stack and environment pages.
301  *
302  * vma->vm_mm->mmap_sem is held for writing.
303  */
304 void install_arg_page(struct vm_area_struct *vma,
305 			struct page *page, unsigned long address)
306 {
307 	struct mm_struct *mm = vma->vm_mm;
308 	pgd_t * pgd;
309 	pud_t * pud;
310 	pmd_t * pmd;
311 	pte_t * pte;
312 
313 	if (unlikely(anon_vma_prepare(vma)))
314 		goto out_sig;
315 
316 	flush_dcache_page(page);
317 	pgd = pgd_offset(mm, address);
318 
319 	spin_lock(&mm->page_table_lock);
320 	pud = pud_alloc(mm, pgd, address);
321 	if (!pud)
322 		goto out;
323 	pmd = pmd_alloc(mm, pud, address);
324 	if (!pmd)
325 		goto out;
326 	pte = pte_alloc_map(mm, pmd, address);
327 	if (!pte)
328 		goto out;
329 	if (!pte_none(*pte)) {
330 		pte_unmap(pte);
331 		goto out;
332 	}
333 	inc_mm_counter(mm, rss);
334 	lru_cache_add_active(page);
335 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
336 					page, vma->vm_page_prot))));
337 	page_add_anon_rmap(page, vma, address);
338 	pte_unmap(pte);
339 	spin_unlock(&mm->page_table_lock);
340 
341 	/* no need for flush_tlb */
342 	return;
343 out:
344 	spin_unlock(&mm->page_table_lock);
345 out_sig:
346 	__free_page(page);
347 	force_sig(SIGKILL, current);
348 }
349 
350 #define EXTRA_STACK_VM_PAGES	20	/* random */
351 
352 int setup_arg_pages(struct linux_binprm *bprm,
353 		    unsigned long stack_top,
354 		    int executable_stack)
355 {
356 	unsigned long stack_base;
357 	struct vm_area_struct *mpnt;
358 	struct mm_struct *mm = current->mm;
359 	int i, ret;
360 	long arg_size;
361 
362 #ifdef CONFIG_STACK_GROWSUP
363 	/* Move the argument and environment strings to the bottom of the
364 	 * stack space.
365 	 */
366 	int offset, j;
367 	char *to, *from;
368 
369 	/* Start by shifting all the pages down */
370 	i = 0;
371 	for (j = 0; j < MAX_ARG_PAGES; j++) {
372 		struct page *page = bprm->page[j];
373 		if (!page)
374 			continue;
375 		bprm->page[i++] = page;
376 	}
377 
378 	/* Now move them within their pages */
379 	offset = bprm->p % PAGE_SIZE;
380 	to = kmap(bprm->page[0]);
381 	for (j = 1; j < i; j++) {
382 		memmove(to, to + offset, PAGE_SIZE - offset);
383 		from = kmap(bprm->page[j]);
384 		memcpy(to + PAGE_SIZE - offset, from, offset);
385 		kunmap(bprm->page[j - 1]);
386 		to = from;
387 	}
388 	memmove(to, to + offset, PAGE_SIZE - offset);
389 	kunmap(bprm->page[j - 1]);
390 
391 	/* Limit stack size to 1GB */
392 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
393 	if (stack_base > (1 << 30))
394 		stack_base = 1 << 30;
395 	stack_base = PAGE_ALIGN(stack_top - stack_base);
396 
397 	/* Adjust bprm->p to point to the end of the strings. */
398 	bprm->p = stack_base + PAGE_SIZE * i - offset;
399 
400 	mm->arg_start = stack_base;
401 	arg_size = i << PAGE_SHIFT;
402 
403 	/* zero pages that were copied above */
404 	while (i < MAX_ARG_PAGES)
405 		bprm->page[i++] = NULL;
406 #else
407 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
408 	stack_base = PAGE_ALIGN(stack_base);
409 	bprm->p += stack_base;
410 	mm->arg_start = bprm->p;
411 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
412 #endif
413 
414 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
415 
416 	if (bprm->loader)
417 		bprm->loader += stack_base;
418 	bprm->exec += stack_base;
419 
420 	mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
421 	if (!mpnt)
422 		return -ENOMEM;
423 
424 	memset(mpnt, 0, sizeof(*mpnt));
425 
426 	down_write(&mm->mmap_sem);
427 	{
428 		mpnt->vm_mm = mm;
429 #ifdef CONFIG_STACK_GROWSUP
430 		mpnt->vm_start = stack_base;
431 		mpnt->vm_end = stack_base + arg_size;
432 #else
433 		mpnt->vm_end = stack_top;
434 		mpnt->vm_start = mpnt->vm_end - arg_size;
435 #endif
436 		/* Adjust stack execute permissions; explicitly enable
437 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
438 		 * and leave alone (arch default) otherwise. */
439 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
440 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
441 		else if (executable_stack == EXSTACK_DISABLE_X)
442 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
443 		else
444 			mpnt->vm_flags = VM_STACK_FLAGS;
445 		mpnt->vm_flags |= mm->def_flags;
446 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
447 		if ((ret = insert_vm_struct(mm, mpnt))) {
448 			up_write(&mm->mmap_sem);
449 			kmem_cache_free(vm_area_cachep, mpnt);
450 			return ret;
451 		}
452 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
453 	}
454 
455 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
456 		struct page *page = bprm->page[i];
457 		if (page) {
458 			bprm->page[i] = NULL;
459 			install_arg_page(mpnt, page, stack_base);
460 		}
461 		stack_base += PAGE_SIZE;
462 	}
463 	up_write(&mm->mmap_sem);
464 
465 	return 0;
466 }
467 
468 EXPORT_SYMBOL(setup_arg_pages);
469 
470 #define free_arg_pages(bprm) do { } while (0)
471 
472 #else
473 
474 static inline void free_arg_pages(struct linux_binprm *bprm)
475 {
476 	int i;
477 
478 	for (i = 0; i < MAX_ARG_PAGES; i++) {
479 		if (bprm->page[i])
480 			__free_page(bprm->page[i]);
481 		bprm->page[i] = NULL;
482 	}
483 }
484 
485 #endif /* CONFIG_MMU */
486 
487 struct file *open_exec(const char *name)
488 {
489 	struct nameidata nd;
490 	int err;
491 	struct file *file;
492 
493 	nd.intent.open.flags = FMODE_READ;
494 	err = path_lookup(name, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
495 	file = ERR_PTR(err);
496 
497 	if (!err) {
498 		struct inode *inode = nd.dentry->d_inode;
499 		file = ERR_PTR(-EACCES);
500 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
501 		    S_ISREG(inode->i_mode)) {
502 			int err = permission(inode, MAY_EXEC, &nd);
503 			if (!err && !(inode->i_mode & 0111))
504 				err = -EACCES;
505 			file = ERR_PTR(err);
506 			if (!err) {
507 				file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
508 				if (!IS_ERR(file)) {
509 					err = deny_write_access(file);
510 					if (err) {
511 						fput(file);
512 						file = ERR_PTR(err);
513 					}
514 				}
515 out:
516 				return file;
517 			}
518 		}
519 		path_release(&nd);
520 	}
521 	goto out;
522 }
523 
524 EXPORT_SYMBOL(open_exec);
525 
526 int kernel_read(struct file *file, unsigned long offset,
527 	char *addr, unsigned long count)
528 {
529 	mm_segment_t old_fs;
530 	loff_t pos = offset;
531 	int result;
532 
533 	old_fs = get_fs();
534 	set_fs(get_ds());
535 	/* The cast to a user pointer is valid due to the set_fs() */
536 	result = vfs_read(file, (void __user *)addr, count, &pos);
537 	set_fs(old_fs);
538 	return result;
539 }
540 
541 EXPORT_SYMBOL(kernel_read);
542 
543 static int exec_mmap(struct mm_struct *mm)
544 {
545 	struct task_struct *tsk;
546 	struct mm_struct * old_mm, *active_mm;
547 
548 	/* Notify parent that we're no longer interested in the old VM */
549 	tsk = current;
550 	old_mm = current->mm;
551 	mm_release(tsk, old_mm);
552 
553 	if (old_mm) {
554 		/*
555 		 * Make sure that if there is a core dump in progress
556 		 * for the old mm, we get out and die instead of going
557 		 * through with the exec.  We must hold mmap_sem around
558 		 * checking core_waiters and changing tsk->mm.  The
559 		 * core-inducing thread will increment core_waiters for
560 		 * each thread whose ->mm == old_mm.
561 		 */
562 		down_read(&old_mm->mmap_sem);
563 		if (unlikely(old_mm->core_waiters)) {
564 			up_read(&old_mm->mmap_sem);
565 			return -EINTR;
566 		}
567 	}
568 	task_lock(tsk);
569 	active_mm = tsk->active_mm;
570 	tsk->mm = mm;
571 	tsk->active_mm = mm;
572 	activate_mm(active_mm, mm);
573 	task_unlock(tsk);
574 	arch_pick_mmap_layout(mm);
575 	if (old_mm) {
576 		up_read(&old_mm->mmap_sem);
577 		if (active_mm != old_mm) BUG();
578 		mmput(old_mm);
579 		return 0;
580 	}
581 	mmdrop(active_mm);
582 	return 0;
583 }
584 
585 /*
586  * This function makes sure the current process has its own signal table,
587  * so that flush_signal_handlers can later reset the handlers without
588  * disturbing other processes.  (Other processes might share the signal
589  * table via the CLONE_SIGHAND option to clone().)
590  */
591 static inline int de_thread(struct task_struct *tsk)
592 {
593 	struct signal_struct *sig = tsk->signal;
594 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
595 	spinlock_t *lock = &oldsighand->siglock;
596 	int count;
597 
598 	/*
599 	 * If we don't share sighandlers, then we aren't sharing anything
600 	 * and we can just re-use it all.
601 	 */
602 	if (atomic_read(&oldsighand->count) <= 1) {
603 		BUG_ON(atomic_read(&sig->count) != 1);
604 		exit_itimers(sig);
605 		return 0;
606 	}
607 
608 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
609 	if (!newsighand)
610 		return -ENOMEM;
611 
612 	if (thread_group_empty(current))
613 		goto no_thread_group;
614 
615 	/*
616 	 * Kill all other threads in the thread group.
617 	 * We must hold tasklist_lock to call zap_other_threads.
618 	 */
619 	read_lock(&tasklist_lock);
620 	spin_lock_irq(lock);
621 	if (sig->flags & SIGNAL_GROUP_EXIT) {
622 		/*
623 		 * Another group action in progress, just
624 		 * return so that the signal is processed.
625 		 */
626 		spin_unlock_irq(lock);
627 		read_unlock(&tasklist_lock);
628 		kmem_cache_free(sighand_cachep, newsighand);
629 		return -EAGAIN;
630 	}
631 	zap_other_threads(current);
632 	read_unlock(&tasklist_lock);
633 
634 	/*
635 	 * Account for the thread group leader hanging around:
636 	 */
637 	count = 2;
638 	if (thread_group_leader(current))
639 		count = 1;
640 	else {
641 		/*
642 		 * The SIGALRM timer survives the exec, but needs to point
643 		 * at us as the new group leader now.  We have a race with
644 		 * a timer firing now getting the old leader, so we need to
645 		 * synchronize with any firing (by calling del_timer_sync)
646 		 * before we can safely let the old group leader die.
647 		 */
648 		sig->real_timer.data = (unsigned long)current;
649 		if (del_timer_sync(&sig->real_timer))
650 			add_timer(&sig->real_timer);
651 	}
652 	while (atomic_read(&sig->count) > count) {
653 		sig->group_exit_task = current;
654 		sig->notify_count = count;
655 		__set_current_state(TASK_UNINTERRUPTIBLE);
656 		spin_unlock_irq(lock);
657 		schedule();
658 		spin_lock_irq(lock);
659 	}
660 	sig->group_exit_task = NULL;
661 	sig->notify_count = 0;
662 	sig->real_timer.data = (unsigned long)current;
663 	spin_unlock_irq(lock);
664 
665 	/*
666 	 * At this point all other threads have exited, all we have to
667 	 * do is to wait for the thread group leader to become inactive,
668 	 * and to assume its PID:
669 	 */
670 	if (!thread_group_leader(current)) {
671 		struct task_struct *leader = current->group_leader, *parent;
672 		struct dentry *proc_dentry1, *proc_dentry2;
673 		unsigned long exit_state, ptrace;
674 
675 		/*
676 		 * Wait for the thread group leader to be a zombie.
677 		 * It should already be zombie at this point, most
678 		 * of the time.
679 		 */
680 		while (leader->exit_state != EXIT_ZOMBIE)
681 			yield();
682 
683 		spin_lock(&leader->proc_lock);
684 		spin_lock(&current->proc_lock);
685 		proc_dentry1 = proc_pid_unhash(current);
686 		proc_dentry2 = proc_pid_unhash(leader);
687 		write_lock_irq(&tasklist_lock);
688 
689 		BUG_ON(leader->tgid != current->tgid);
690 		BUG_ON(current->pid == current->tgid);
691 		/*
692 		 * An exec() starts a new thread group with the
693 		 * TGID of the previous thread group. Rehash the
694 		 * two threads with a switched PID, and release
695 		 * the former thread group leader:
696 		 */
697 		ptrace = leader->ptrace;
698 		parent = leader->parent;
699 		if (unlikely(ptrace) && unlikely(parent == current)) {
700 			/*
701 			 * Joker was ptracing his own group leader,
702 			 * and now he wants to be his own parent!
703 			 * We can't have that.
704 			 */
705 			ptrace = 0;
706 		}
707 
708 		ptrace_unlink(current);
709 		ptrace_unlink(leader);
710 		remove_parent(current);
711 		remove_parent(leader);
712 
713 		switch_exec_pids(leader, current);
714 
715 		current->parent = current->real_parent = leader->real_parent;
716 		leader->parent = leader->real_parent = child_reaper;
717 		current->group_leader = current;
718 		leader->group_leader = leader;
719 
720 		add_parent(current, current->parent);
721 		add_parent(leader, leader->parent);
722 		if (ptrace) {
723 			current->ptrace = ptrace;
724 			__ptrace_link(current, parent);
725 		}
726 
727 		list_del(&current->tasks);
728 		list_add_tail(&current->tasks, &init_task.tasks);
729 		current->exit_signal = SIGCHLD;
730 		exit_state = leader->exit_state;
731 
732 		write_unlock_irq(&tasklist_lock);
733 		spin_unlock(&leader->proc_lock);
734 		spin_unlock(&current->proc_lock);
735 		proc_pid_flush(proc_dentry1);
736 		proc_pid_flush(proc_dentry2);
737 
738 		BUG_ON(exit_state != EXIT_ZOMBIE);
739 		release_task(leader);
740         }
741 
742 	/*
743 	 * There may be one thread left which is just exiting,
744 	 * but it's safe to stop telling the group to kill themselves.
745 	 */
746 	sig->flags = 0;
747 
748 no_thread_group:
749 	BUG_ON(atomic_read(&sig->count) != 1);
750 	exit_itimers(sig);
751 
752 	if (atomic_read(&oldsighand->count) == 1) {
753 		/*
754 		 * Now that we nuked the rest of the thread group,
755 		 * it turns out we are not sharing sighand any more either.
756 		 * So we can just keep it.
757 		 */
758 		kmem_cache_free(sighand_cachep, newsighand);
759 	} else {
760 		/*
761 		 * Move our state over to newsighand and switch it in.
762 		 */
763 		spin_lock_init(&newsighand->siglock);
764 		atomic_set(&newsighand->count, 1);
765 		memcpy(newsighand->action, oldsighand->action,
766 		       sizeof(newsighand->action));
767 
768 		write_lock_irq(&tasklist_lock);
769 		spin_lock(&oldsighand->siglock);
770 		spin_lock(&newsighand->siglock);
771 
772 		current->sighand = newsighand;
773 		recalc_sigpending();
774 
775 		spin_unlock(&newsighand->siglock);
776 		spin_unlock(&oldsighand->siglock);
777 		write_unlock_irq(&tasklist_lock);
778 
779 		if (atomic_dec_and_test(&oldsighand->count))
780 			kmem_cache_free(sighand_cachep, oldsighand);
781 	}
782 
783 	BUG_ON(!thread_group_leader(current));
784 	return 0;
785 }
786 
787 /*
788  * These functions flushes out all traces of the currently running executable
789  * so that a new one can be started
790  */
791 
792 static inline void flush_old_files(struct files_struct * files)
793 {
794 	long j = -1;
795 	struct fdtable *fdt;
796 
797 	spin_lock(&files->file_lock);
798 	for (;;) {
799 		unsigned long set, i;
800 
801 		j++;
802 		i = j * __NFDBITS;
803 		fdt = files_fdtable(files);
804 		if (i >= fdt->max_fds || i >= fdt->max_fdset)
805 			break;
806 		set = fdt->close_on_exec->fds_bits[j];
807 		if (!set)
808 			continue;
809 		fdt->close_on_exec->fds_bits[j] = 0;
810 		spin_unlock(&files->file_lock);
811 		for ( ; set ; i++,set >>= 1) {
812 			if (set & 1) {
813 				sys_close(i);
814 			}
815 		}
816 		spin_lock(&files->file_lock);
817 
818 	}
819 	spin_unlock(&files->file_lock);
820 }
821 
822 void get_task_comm(char *buf, struct task_struct *tsk)
823 {
824 	/* buf must be at least sizeof(tsk->comm) in size */
825 	task_lock(tsk);
826 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
827 	task_unlock(tsk);
828 }
829 
830 void set_task_comm(struct task_struct *tsk, char *buf)
831 {
832 	task_lock(tsk);
833 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
834 	task_unlock(tsk);
835 }
836 
837 int flush_old_exec(struct linux_binprm * bprm)
838 {
839 	char * name;
840 	int i, ch, retval;
841 	struct files_struct *files;
842 	char tcomm[sizeof(current->comm)];
843 
844 	/*
845 	 * Make sure we have a private signal table and that
846 	 * we are unassociated from the previous thread group.
847 	 */
848 	retval = de_thread(current);
849 	if (retval)
850 		goto out;
851 
852 	/*
853 	 * Make sure we have private file handles. Ask the
854 	 * fork helper to do the work for us and the exit
855 	 * helper to do the cleanup of the old one.
856 	 */
857 	files = current->files;		/* refcounted so safe to hold */
858 	retval = unshare_files();
859 	if (retval)
860 		goto out;
861 	/*
862 	 * Release all of the old mmap stuff
863 	 */
864 	retval = exec_mmap(bprm->mm);
865 	if (retval)
866 		goto mmap_failed;
867 
868 	bprm->mm = NULL;		/* We're using it now */
869 
870 	/* This is the point of no return */
871 	steal_locks(files);
872 	put_files_struct(files);
873 
874 	current->sas_ss_sp = current->sas_ss_size = 0;
875 
876 	if (current->euid == current->uid && current->egid == current->gid)
877 		current->mm->dumpable = 1;
878 	else
879 		current->mm->dumpable = suid_dumpable;
880 
881 	name = bprm->filename;
882 
883 	/* Copies the binary name from after last slash */
884 	for (i=0; (ch = *(name++)) != '\0';) {
885 		if (ch == '/')
886 			i = 0; /* overwrite what we wrote */
887 		else
888 			if (i < (sizeof(tcomm) - 1))
889 				tcomm[i++] = ch;
890 	}
891 	tcomm[i] = '\0';
892 	set_task_comm(current, tcomm);
893 
894 	current->flags &= ~PF_RANDOMIZE;
895 	flush_thread();
896 
897 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
898 	    permission(bprm->file->f_dentry->d_inode,MAY_READ, NULL) ||
899 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
900 		suid_keys(current);
901 		current->mm->dumpable = suid_dumpable;
902 	}
903 
904 	/* An exec changes our domain. We are no longer part of the thread
905 	   group */
906 
907 	current->self_exec_id++;
908 
909 	flush_signal_handlers(current, 0);
910 	flush_old_files(current->files);
911 
912 	return 0;
913 
914 mmap_failed:
915 	put_files_struct(current->files);
916 	current->files = files;
917 out:
918 	return retval;
919 }
920 
921 EXPORT_SYMBOL(flush_old_exec);
922 
923 /*
924  * Fill the binprm structure from the inode.
925  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
926  */
927 int prepare_binprm(struct linux_binprm *bprm)
928 {
929 	int mode;
930 	struct inode * inode = bprm->file->f_dentry->d_inode;
931 	int retval;
932 
933 	mode = inode->i_mode;
934 	/*
935 	 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
936 	 * generic_permission lets a non-executable through
937 	 */
938 	if (!(mode & 0111))	/* with at least _one_ execute bit set */
939 		return -EACCES;
940 	if (bprm->file->f_op == NULL)
941 		return -EACCES;
942 
943 	bprm->e_uid = current->euid;
944 	bprm->e_gid = current->egid;
945 
946 	if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
947 		/* Set-uid? */
948 		if (mode & S_ISUID) {
949 			current->personality &= ~PER_CLEAR_ON_SETID;
950 			bprm->e_uid = inode->i_uid;
951 		}
952 
953 		/* Set-gid? */
954 		/*
955 		 * If setgid is set but no group execute bit then this
956 		 * is a candidate for mandatory locking, not a setgid
957 		 * executable.
958 		 */
959 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
960 			current->personality &= ~PER_CLEAR_ON_SETID;
961 			bprm->e_gid = inode->i_gid;
962 		}
963 	}
964 
965 	/* fill in binprm security blob */
966 	retval = security_bprm_set(bprm);
967 	if (retval)
968 		return retval;
969 
970 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
971 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
972 }
973 
974 EXPORT_SYMBOL(prepare_binprm);
975 
976 static inline int unsafe_exec(struct task_struct *p)
977 {
978 	int unsafe = 0;
979 	if (p->ptrace & PT_PTRACED) {
980 		if (p->ptrace & PT_PTRACE_CAP)
981 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
982 		else
983 			unsafe |= LSM_UNSAFE_PTRACE;
984 	}
985 	if (atomic_read(&p->fs->count) > 1 ||
986 	    atomic_read(&p->files->count) > 1 ||
987 	    atomic_read(&p->sighand->count) > 1)
988 		unsafe |= LSM_UNSAFE_SHARE;
989 
990 	return unsafe;
991 }
992 
993 void compute_creds(struct linux_binprm *bprm)
994 {
995 	int unsafe;
996 
997 	if (bprm->e_uid != current->uid)
998 		suid_keys(current);
999 	exec_keys(current);
1000 
1001 	task_lock(current);
1002 	unsafe = unsafe_exec(current);
1003 	security_bprm_apply_creds(bprm, unsafe);
1004 	task_unlock(current);
1005 	security_bprm_post_apply_creds(bprm);
1006 }
1007 
1008 EXPORT_SYMBOL(compute_creds);
1009 
1010 void remove_arg_zero(struct linux_binprm *bprm)
1011 {
1012 	if (bprm->argc) {
1013 		unsigned long offset;
1014 		char * kaddr;
1015 		struct page *page;
1016 
1017 		offset = bprm->p % PAGE_SIZE;
1018 		goto inside;
1019 
1020 		while (bprm->p++, *(kaddr+offset++)) {
1021 			if (offset != PAGE_SIZE)
1022 				continue;
1023 			offset = 0;
1024 			kunmap_atomic(kaddr, KM_USER0);
1025 inside:
1026 			page = bprm->page[bprm->p/PAGE_SIZE];
1027 			kaddr = kmap_atomic(page, KM_USER0);
1028 		}
1029 		kunmap_atomic(kaddr, KM_USER0);
1030 		bprm->argc--;
1031 	}
1032 }
1033 
1034 EXPORT_SYMBOL(remove_arg_zero);
1035 
1036 /*
1037  * cycle the list of binary formats handler, until one recognizes the image
1038  */
1039 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1040 {
1041 	int try,retval;
1042 	struct linux_binfmt *fmt;
1043 #ifdef __alpha__
1044 	/* handle /sbin/loader.. */
1045 	{
1046 	    struct exec * eh = (struct exec *) bprm->buf;
1047 
1048 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1049 		(eh->fh.f_flags & 0x3000) == 0x3000)
1050 	    {
1051 		struct file * file;
1052 		unsigned long loader;
1053 
1054 		allow_write_access(bprm->file);
1055 		fput(bprm->file);
1056 		bprm->file = NULL;
1057 
1058 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1059 
1060 		file = open_exec("/sbin/loader");
1061 		retval = PTR_ERR(file);
1062 		if (IS_ERR(file))
1063 			return retval;
1064 
1065 		/* Remember if the application is TASO.  */
1066 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1067 
1068 		bprm->file = file;
1069 		bprm->loader = loader;
1070 		retval = prepare_binprm(bprm);
1071 		if (retval<0)
1072 			return retval;
1073 		/* should call search_binary_handler recursively here,
1074 		   but it does not matter */
1075 	    }
1076 	}
1077 #endif
1078 	retval = security_bprm_check(bprm);
1079 	if (retval)
1080 		return retval;
1081 
1082 	/* kernel module loader fixup */
1083 	/* so we don't try to load run modprobe in kernel space. */
1084 	set_fs(USER_DS);
1085 	retval = -ENOENT;
1086 	for (try=0; try<2; try++) {
1087 		read_lock(&binfmt_lock);
1088 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1089 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1090 			if (!fn)
1091 				continue;
1092 			if (!try_module_get(fmt->module))
1093 				continue;
1094 			read_unlock(&binfmt_lock);
1095 			retval = fn(bprm, regs);
1096 			if (retval >= 0) {
1097 				put_binfmt(fmt);
1098 				allow_write_access(bprm->file);
1099 				if (bprm->file)
1100 					fput(bprm->file);
1101 				bprm->file = NULL;
1102 				current->did_exec = 1;
1103 				return retval;
1104 			}
1105 			read_lock(&binfmt_lock);
1106 			put_binfmt(fmt);
1107 			if (retval != -ENOEXEC || bprm->mm == NULL)
1108 				break;
1109 			if (!bprm->file) {
1110 				read_unlock(&binfmt_lock);
1111 				return retval;
1112 			}
1113 		}
1114 		read_unlock(&binfmt_lock);
1115 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1116 			break;
1117 #ifdef CONFIG_KMOD
1118 		}else{
1119 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1120 			if (printable(bprm->buf[0]) &&
1121 			    printable(bprm->buf[1]) &&
1122 			    printable(bprm->buf[2]) &&
1123 			    printable(bprm->buf[3]))
1124 				break; /* -ENOEXEC */
1125 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1126 #endif
1127 		}
1128 	}
1129 	return retval;
1130 }
1131 
1132 EXPORT_SYMBOL(search_binary_handler);
1133 
1134 /*
1135  * sys_execve() executes a new program.
1136  */
1137 int do_execve(char * filename,
1138 	char __user *__user *argv,
1139 	char __user *__user *envp,
1140 	struct pt_regs * regs)
1141 {
1142 	struct linux_binprm *bprm;
1143 	struct file *file;
1144 	int retval;
1145 	int i;
1146 
1147 	retval = -ENOMEM;
1148 	bprm = kmalloc(sizeof(*bprm), GFP_KERNEL);
1149 	if (!bprm)
1150 		goto out_ret;
1151 	memset(bprm, 0, sizeof(*bprm));
1152 
1153 	file = open_exec(filename);
1154 	retval = PTR_ERR(file);
1155 	if (IS_ERR(file))
1156 		goto out_kfree;
1157 
1158 	sched_exec();
1159 
1160 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1161 
1162 	bprm->file = file;
1163 	bprm->filename = filename;
1164 	bprm->interp = filename;
1165 	bprm->mm = mm_alloc();
1166 	retval = -ENOMEM;
1167 	if (!bprm->mm)
1168 		goto out_file;
1169 
1170 	retval = init_new_context(current, bprm->mm);
1171 	if (retval < 0)
1172 		goto out_mm;
1173 
1174 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1175 	if ((retval = bprm->argc) < 0)
1176 		goto out_mm;
1177 
1178 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1179 	if ((retval = bprm->envc) < 0)
1180 		goto out_mm;
1181 
1182 	retval = security_bprm_alloc(bprm);
1183 	if (retval)
1184 		goto out;
1185 
1186 	retval = prepare_binprm(bprm);
1187 	if (retval < 0)
1188 		goto out;
1189 
1190 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1191 	if (retval < 0)
1192 		goto out;
1193 
1194 	bprm->exec = bprm->p;
1195 	retval = copy_strings(bprm->envc, envp, bprm);
1196 	if (retval < 0)
1197 		goto out;
1198 
1199 	retval = copy_strings(bprm->argc, argv, bprm);
1200 	if (retval < 0)
1201 		goto out;
1202 
1203 	retval = search_binary_handler(bprm,regs);
1204 	if (retval >= 0) {
1205 		free_arg_pages(bprm);
1206 
1207 		/* execve success */
1208 		security_bprm_free(bprm);
1209 		acct_update_integrals(current);
1210 		update_mem_hiwater(current);
1211 		kfree(bprm);
1212 		return retval;
1213 	}
1214 
1215 out:
1216 	/* Something went wrong, return the inode and free the argument pages*/
1217 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1218 		struct page * page = bprm->page[i];
1219 		if (page)
1220 			__free_page(page);
1221 	}
1222 
1223 	if (bprm->security)
1224 		security_bprm_free(bprm);
1225 
1226 out_mm:
1227 	if (bprm->mm)
1228 		mmdrop(bprm->mm);
1229 
1230 out_file:
1231 	if (bprm->file) {
1232 		allow_write_access(bprm->file);
1233 		fput(bprm->file);
1234 	}
1235 
1236 out_kfree:
1237 	kfree(bprm);
1238 
1239 out_ret:
1240 	return retval;
1241 }
1242 
1243 int set_binfmt(struct linux_binfmt *new)
1244 {
1245 	struct linux_binfmt *old = current->binfmt;
1246 
1247 	if (new) {
1248 		if (!try_module_get(new->module))
1249 			return -1;
1250 	}
1251 	current->binfmt = new;
1252 	if (old)
1253 		module_put(old->module);
1254 	return 0;
1255 }
1256 
1257 EXPORT_SYMBOL(set_binfmt);
1258 
1259 #define CORENAME_MAX_SIZE 64
1260 
1261 /* format_corename will inspect the pattern parameter, and output a
1262  * name into corename, which must have space for at least
1263  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1264  */
1265 static void format_corename(char *corename, const char *pattern, long signr)
1266 {
1267 	const char *pat_ptr = pattern;
1268 	char *out_ptr = corename;
1269 	char *const out_end = corename + CORENAME_MAX_SIZE;
1270 	int rc;
1271 	int pid_in_pattern = 0;
1272 
1273 	/* Repeat as long as we have more pattern to process and more output
1274 	   space */
1275 	while (*pat_ptr) {
1276 		if (*pat_ptr != '%') {
1277 			if (out_ptr == out_end)
1278 				goto out;
1279 			*out_ptr++ = *pat_ptr++;
1280 		} else {
1281 			switch (*++pat_ptr) {
1282 			case 0:
1283 				goto out;
1284 			/* Double percent, output one percent */
1285 			case '%':
1286 				if (out_ptr == out_end)
1287 					goto out;
1288 				*out_ptr++ = '%';
1289 				break;
1290 			/* pid */
1291 			case 'p':
1292 				pid_in_pattern = 1;
1293 				rc = snprintf(out_ptr, out_end - out_ptr,
1294 					      "%d", current->tgid);
1295 				if (rc > out_end - out_ptr)
1296 					goto out;
1297 				out_ptr += rc;
1298 				break;
1299 			/* uid */
1300 			case 'u':
1301 				rc = snprintf(out_ptr, out_end - out_ptr,
1302 					      "%d", current->uid);
1303 				if (rc > out_end - out_ptr)
1304 					goto out;
1305 				out_ptr += rc;
1306 				break;
1307 			/* gid */
1308 			case 'g':
1309 				rc = snprintf(out_ptr, out_end - out_ptr,
1310 					      "%d", current->gid);
1311 				if (rc > out_end - out_ptr)
1312 					goto out;
1313 				out_ptr += rc;
1314 				break;
1315 			/* signal that caused the coredump */
1316 			case 's':
1317 				rc = snprintf(out_ptr, out_end - out_ptr,
1318 					      "%ld", signr);
1319 				if (rc > out_end - out_ptr)
1320 					goto out;
1321 				out_ptr += rc;
1322 				break;
1323 			/* UNIX time of coredump */
1324 			case 't': {
1325 				struct timeval tv;
1326 				do_gettimeofday(&tv);
1327 				rc = snprintf(out_ptr, out_end - out_ptr,
1328 					      "%lu", tv.tv_sec);
1329 				if (rc > out_end - out_ptr)
1330 					goto out;
1331 				out_ptr += rc;
1332 				break;
1333 			}
1334 			/* hostname */
1335 			case 'h':
1336 				down_read(&uts_sem);
1337 				rc = snprintf(out_ptr, out_end - out_ptr,
1338 					      "%s", system_utsname.nodename);
1339 				up_read(&uts_sem);
1340 				if (rc > out_end - out_ptr)
1341 					goto out;
1342 				out_ptr += rc;
1343 				break;
1344 			/* executable */
1345 			case 'e':
1346 				rc = snprintf(out_ptr, out_end - out_ptr,
1347 					      "%s", current->comm);
1348 				if (rc > out_end - out_ptr)
1349 					goto out;
1350 				out_ptr += rc;
1351 				break;
1352 			default:
1353 				break;
1354 			}
1355 			++pat_ptr;
1356 		}
1357 	}
1358 	/* Backward compatibility with core_uses_pid:
1359 	 *
1360 	 * If core_pattern does not include a %p (as is the default)
1361 	 * and core_uses_pid is set, then .%pid will be appended to
1362 	 * the filename */
1363 	if (!pid_in_pattern
1364             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1365 		rc = snprintf(out_ptr, out_end - out_ptr,
1366 			      ".%d", current->tgid);
1367 		if (rc > out_end - out_ptr)
1368 			goto out;
1369 		out_ptr += rc;
1370 	}
1371       out:
1372 	*out_ptr = 0;
1373 }
1374 
1375 static void zap_threads (struct mm_struct *mm)
1376 {
1377 	struct task_struct *g, *p;
1378 	struct task_struct *tsk = current;
1379 	struct completion *vfork_done = tsk->vfork_done;
1380 	int traced = 0;
1381 
1382 	/*
1383 	 * Make sure nobody is waiting for us to release the VM,
1384 	 * otherwise we can deadlock when we wait on each other
1385 	 */
1386 	if (vfork_done) {
1387 		tsk->vfork_done = NULL;
1388 		complete(vfork_done);
1389 	}
1390 
1391 	read_lock(&tasklist_lock);
1392 	do_each_thread(g,p)
1393 		if (mm == p->mm && p != tsk) {
1394 			force_sig_specific(SIGKILL, p);
1395 			mm->core_waiters++;
1396 			if (unlikely(p->ptrace) &&
1397 			    unlikely(p->parent->mm == mm))
1398 				traced = 1;
1399 		}
1400 	while_each_thread(g,p);
1401 
1402 	read_unlock(&tasklist_lock);
1403 
1404 	if (unlikely(traced)) {
1405 		/*
1406 		 * We are zapping a thread and the thread it ptraces.
1407 		 * If the tracee went into a ptrace stop for exit tracing,
1408 		 * we could deadlock since the tracer is waiting for this
1409 		 * coredump to finish.  Detach them so they can both die.
1410 		 */
1411 		write_lock_irq(&tasklist_lock);
1412 		do_each_thread(g,p) {
1413 			if (mm == p->mm && p != tsk &&
1414 			    p->ptrace && p->parent->mm == mm) {
1415 				__ptrace_unlink(p);
1416 			}
1417 		} while_each_thread(g,p);
1418 		write_unlock_irq(&tasklist_lock);
1419 	}
1420 }
1421 
1422 static void coredump_wait(struct mm_struct *mm)
1423 {
1424 	DECLARE_COMPLETION(startup_done);
1425 
1426 	mm->core_waiters++; /* let other threads block */
1427 	mm->core_startup_done = &startup_done;
1428 
1429 	/* give other threads a chance to run: */
1430 	yield();
1431 
1432 	zap_threads(mm);
1433 	if (--mm->core_waiters) {
1434 		up_write(&mm->mmap_sem);
1435 		wait_for_completion(&startup_done);
1436 	} else
1437 		up_write(&mm->mmap_sem);
1438 	BUG_ON(mm->core_waiters);
1439 }
1440 
1441 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1442 {
1443 	char corename[CORENAME_MAX_SIZE + 1];
1444 	struct mm_struct *mm = current->mm;
1445 	struct linux_binfmt * binfmt;
1446 	struct inode * inode;
1447 	struct file * file;
1448 	int retval = 0;
1449 	int fsuid = current->fsuid;
1450 	int flag = 0;
1451 
1452 	binfmt = current->binfmt;
1453 	if (!binfmt || !binfmt->core_dump)
1454 		goto fail;
1455 	down_write(&mm->mmap_sem);
1456 	if (!mm->dumpable) {
1457 		up_write(&mm->mmap_sem);
1458 		goto fail;
1459 	}
1460 
1461 	/*
1462 	 *	We cannot trust fsuid as being the "true" uid of the
1463 	 *	process nor do we know its entire history. We only know it
1464 	 *	was tainted so we dump it as root in mode 2.
1465 	 */
1466 	if (mm->dumpable == 2) {	/* Setuid core dump mode */
1467 		flag = O_EXCL;		/* Stop rewrite attacks */
1468 		current->fsuid = 0;	/* Dump root private */
1469 	}
1470 	mm->dumpable = 0;
1471 	init_completion(&mm->core_done);
1472 	spin_lock_irq(&current->sighand->siglock);
1473 	current->signal->flags = SIGNAL_GROUP_EXIT;
1474 	current->signal->group_exit_code = exit_code;
1475 	spin_unlock_irq(&current->sighand->siglock);
1476 	coredump_wait(mm);
1477 
1478 	/*
1479 	 * Clear any false indication of pending signals that might
1480 	 * be seen by the filesystem code called to write the core file.
1481 	 */
1482 	current->signal->group_stop_count = 0;
1483 	clear_thread_flag(TIF_SIGPENDING);
1484 
1485 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1486 		goto fail_unlock;
1487 
1488 	/*
1489 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1490 	 * uses lock_kernel()
1491 	 */
1492  	lock_kernel();
1493 	format_corename(corename, core_pattern, signr);
1494 	unlock_kernel();
1495 	file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600);
1496 	if (IS_ERR(file))
1497 		goto fail_unlock;
1498 	inode = file->f_dentry->d_inode;
1499 	if (inode->i_nlink > 1)
1500 		goto close_fail;	/* multiple links - don't dump */
1501 	if (d_unhashed(file->f_dentry))
1502 		goto close_fail;
1503 
1504 	if (!S_ISREG(inode->i_mode))
1505 		goto close_fail;
1506 	if (!file->f_op)
1507 		goto close_fail;
1508 	if (!file->f_op->write)
1509 		goto close_fail;
1510 	if (do_truncate(file->f_dentry, 0) != 0)
1511 		goto close_fail;
1512 
1513 	retval = binfmt->core_dump(signr, regs, file);
1514 
1515 	if (retval)
1516 		current->signal->group_exit_code |= 0x80;
1517 close_fail:
1518 	filp_close(file, NULL);
1519 fail_unlock:
1520 	current->fsuid = fsuid;
1521 	complete_all(&mm->core_done);
1522 fail:
1523 	return retval;
1524 }
1525